Sample records for earthquake damage assessment

  1. Earthquake Damage Assessment Using Very High Resolution Satelliteimagery

    NASA Astrophysics Data System (ADS)

    Chiroiu, L.; André, G.; Bahoken, F.; Guillande, R.

    Various studies using satellite imagery were applied in the last years in order to assess natural hazard damages, most of them analyzing the case of floods, hurricanes or landslides. For the case of earthquakes, the medium or small spatial resolution data available in the recent past did not allow a reliable identification of damages, due to the size of the elements (e.g. buildings or other structures), too small compared with the pixel size. The recent progresses of remote sensing in terms of spatial resolution and data processing makes possible a reliable damage detection to the elements at risk. Remote sensing techniques applied to IKONOS (1 meter resolution) and IRS (5 meters resolution) imagery were used in order to evaluate seismic vulnerability and post earthquake damages. A fast estimation of losses was performed using a multidisciplinary approach based on earthquake engineering and geospatial analysis. The results, integrated into a GIS database, could be transferred via satellite networks to the rescue teams deployed on the affected zone, in order to better coordinate the emergency operations. The methodology was applied to the city of Bhuj and Anjar after the 2001 Gujarat (India) Earthquake.

  2. Application of Remote Sensing in Building Damages Assessment after Moderate and Strong Earthquake

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zhang, J.; Dou, A.

    2003-04-01

    - Earthquake is a main natural disaster in modern society. However, we still cannot predict the time and place of its occurrence accurately. Then it is of much importance to survey the damages information when an earthquake occurs, which can help us to mitigate losses and implement fast damage evaluation. In this paper, we use remote sensing techniques for our purposes. Remotely sensed satellite images often view a large scale of land at a time. There are several kinds of satellite images, which of different spatial and spectral resolutions. Landsat-4/5 TM sensor can view ground at 30m resolution, while Landsat-7 ETM Plus has a resolution of 15m in panchromatic waveband. SPOT satellite can provide images with higher resolutions. Those images obtained pre- and post-earthquake can help us greatly in identifying damages of moderate and large-size buildings. In this paper, we bring forward a method to implement quick damages assessment by analyzing both pre- and post-earthquake satellite images. First, those images are geographically registered together with low RMS (Root Mean Square) error. Then, we clip out residential areas by overlaying images with existing vector layers through Geographic Information System (GIS) software. We present a new change detection algorithm to quantitatively identify damages degree. An empirical or semi-empirical model is then established by analyzing the real damage degree and changes of pixel values of the same ground objects. Experimental result shows that there is a good linear relationship between changes of pixel values and ground damages, which proves the potentials of remote sensing in post-quake fast damage assessment. Keywords: Damages Assessment, Earthquake Hazard, Remote Sensing

  3. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  4. Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Oommen, Thomas

    2011-01-01

    On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.

  5. Visual inspection & capacity assessment of earthquake damaged reinforced concrete bridge elements.

    DOT National Transportation Integrated Search

    2008-11-01

    The overarching objective of this project was to produce standard procedures and associated training materials, for the conduct of post-earthquake visual inspection and capacity assessment of damaged reinforced concrete (RC) bridges where the procedu...

  6. Earthquake-Induced Building Damage Assessment Based on SAR Correlation and Texture

    NASA Astrophysics Data System (ADS)

    Gong, Lixia; Li, Qiang; Zhang, Jingfa

    2016-08-01

    Comparing with optical Remote Sensing, the Synthetic Aperture Radar (SAR) has unique advantages as applied to seismic hazard monitoring and evaluation. SAR can be helpful in the whole process of after an earthquake, which can be divided into three stages. On the first stage, pre-disaster imagery provides history information of the attacked area. On the mid-term stage, up-to-date thematic maps are provided for disaster relief. On the later stage, information is provided to assist secondary disaster monitoring, post- disaster assessment and reconstruction second stage. In recent years, SAR has become an important data source of earthquake damage analysis and evaluation.Correlation between pre- and post-event SAR images is considered to be related with building damage. There will be a correlation decrease when the building collapsed in a shock. Whereas correlation decrease does not definitely indicate building changes. Correlation is also affected by perpendicular baseline, the ground coverage type, atmospheric change and other natural conditions, data processing and other factors. Building samples in the earthquake are used to discriminate the relation between damage degree and SAR correlation.

  7. A new methodology for earthquake damage assessment (MEDEA) and its application following the Molise Italy earthquake of 31.10.02

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Papa, F.; Spence, R.

    2003-04-01

    MEDEA is a multi-media tool designed to support earthquake damage assessment teams in Italy, by providing a means to train the technicians involved. In MEDEA, a range of alternative mechanisms of damage are defined and described, and the symptoms of each mechanism which can be recognised by the assessor are identified and linked to the related causative mechanisms. By using MEDEA, the assessor is guided by the experience of experts in the identification of the damage states and also of the separate mechanisms involved. This leads to a better safety assessment, a more homogeneous evaluation of damage across the affected area, and a great enhancement in the value of the damage statistics obtained in the assessment. The method is applied to both masonry and reinforced concrete buildings of the forms widespread in Italy and neighbouring countries. The paper will describe MEDEA and the context for which it was designed; and will present an example of its use in the M5.1 Molise earthquake of 31.10.02 in which 27 people died and which caused damage to hundreds of buildings.

  8. Building Damage Assessment after Earthquake Using Post-Event LiDAR Data

    NASA Astrophysics Data System (ADS)

    Rastiveis, H.; Eslamizade, F.; Hosseini-Zirdoo, E.

    2015-12-01

    After an earthquake, damage assessment plays an important role in leading rescue team to help people and decrease the number of mortality. Damage map is a map that demonstrates collapsed buildings with their degree of damage. With this map, finding destructive buildings can be quickly possible. In this paper, we propose an algorithm for automatic damage map generation after an earthquake using post-event LiDAR Data and pre-event vector map. The framework of the proposed approach has four main steps. To find the location of all buildings on LiDAR data, in the first step, LiDAR data and vector map are registered by using a few number of ground control points. Then, building layer, selected from vector map, are mapped on the LiDAR data and all pixels which belong to the buildings are extracted. After that, through a powerful classifier all the extracted pixels are classified into three classes of "debris", "intact building" and "unclassified". Since textural information make better difference between "debris" and "intact building" classes, different textural features are applied during the classification. After that, damage degree for each candidate building is estimated based on the relation between the numbers of pixels labelled as "debris" class to the whole building area. Calculating the damage degree for each candidate building, finally, building damage map is generated. To evaluate the ability proposed method in generating damage map, a data set from Port-au-Prince, Haiti's capital after the 2010 Haiti earthquake was used. In this case, after calculating of all buildings in the test area using the proposed method, the results were compared to the damage degree which estimated through visual interpretation of post-event satellite image. Obtained results were proved the reliability of the proposed method in damage map generation using LiDAR data.

  9. Thermal anomaly before earthquake and damage assessment using remote sensing data for 2014 Yutian earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Yanmei; Huang, Haiying; Jiang, Zaisen; Fang, Ying; Cheng, Xiao

    2014-12-01

    Thermal anomaly appears to be a significant precursor of some strong earthquakes. In this study, time series of MODIS Land Surface Temperature (LST) products from 2001 to 2014 are processed and analyzed to locate possible anomalies prior to the Yutian earthquake (12 February 2014, Xinjiang, CHINA). In order to reduce the seasonal or annual effects from the LST variations, also to avoid the rainy and cloudy weather in this area, a background mean of ten-day nighttime LST are derived using averaged MOD11A2 products from 2001 to 2012. Then the ten-day LST data from Jan 2014 to FebJanuary 2014 were differenced using the above background. Abnormal LST increase before the earthquake is quite obvious from the differential images, indicating that this method is useful in such area with high mountains and wide-area deserts. Also, in order to assess the damage to infrastructure, China's latest civilian high-resolution remote sensing satellite - GF-1 remote sensed data are applied to the affected counties in this area. The damaged infrastructures and ground surface could be easily interpreted in the fused pan-chromatic and multi-spectral images integrating both texture and spectral information.

  10. Post-earthquake building safety assessments for the Canterbury Earthquakes

    USGS Publications Warehouse

    Marshall, J.; Barnes, J.; Gould, N.; Jaiswal, K.; Lizundia, B.; Swanson, David A.; Turner, F.

    2012-01-01

    This paper explores the post-earthquake building assessment program that was utilized in Christchurch, New Zealand following the Canterbury Sequence of earthquakes beginning with the Magnitude (Mw.) 7.1 Darfield event in September 2010. The aftershocks or triggered events, two of which exceeded Mw 6.0, continued with events in February and June 2011 causing the greatest amount of damage. More than 70,000 building safety assessments were completed following the February event. The timeline and assessment procedures will be discussed including the use of rapid response teams, selection of indicator buildings to monitor damage following aftershocks, risk assessments for demolition of red-tagged buildings, the use of task forces to address management of the heavily damaged downtown area and the process of demolition. Through the post-event safety assessment program that occurred throughout the Canterbury Sequence of earthquakes, many important lessons can be learned that will benefit future response to natural hazards that have potential to damage structures.

  11. Social Media as Seismic Networks for the Earthquake Damage Assessment

    NASA Astrophysics Data System (ADS)

    Meletti, C.; Cresci, S.; La Polla, M. N.; Marchetti, A.; Tesconi, M.

    2014-12-01

    The growing popularity of online platforms, based on user-generated content, is gradually creating a digital world that mirrors the physical world. In the paradigm of crowdsensing, the crowd becomes a distributed network of sensors that allows us to understand real life events at a quasi-real-time rate. The SoS-Social Sensing project [http://socialsensing.it/] exploits the opportunistic crowdsensing, involving users in the sensing process in a minimal way, for social media emergency management purposes in order to obtain a very fast, but still reliable, detection of emergency dimension to face. First of all we designed and implemented a decision support system for the detection and the damage assessment of earthquakes. Our system exploits the messages shared in real-time on Twitter. In the detection phase, data mining and natural language processing techniques are firstly adopted to select meaningful and comprehensive sets of tweets. Then we applied a burst detection algorithm in order to promptly identify outbreaking seismic events. Using georeferenced tweets and reported locality names, a rough epicentral determination is also possible. The results, compared to Italian INGV official reports, show that the system is able to detect, within seconds, events of a magnitude in the region of 3.5 with a precision of 75% and a recall of 81,82%. We then focused our attention on damage assessment phase. We investigated the possibility to exploit social media data to estimate earthquake intensity. We designed a set of predictive linear models and evaluated their ability to map the intensity of worldwide earthquakes. The models build on a dataset of almost 5 million tweets exploited to compute our earthquake features, and more than 7,000 globally distributed earthquakes data, acquired in a semi-automatic way from USGS, serving as ground truth. We extracted 45 distinct features falling into four categories: profile, tweet, time and linguistic. We run diagnostic tests and

  12. Development of damage probability matrices based on Greek earthquake damage data

    NASA Astrophysics Data System (ADS)

    Eleftheriadou, Anastasia K.; Karabinis, Athanasios I.

    2011-03-01

    A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio α g/ a o, where α g is the maximum peak ground acceleration (PGA) of the earthquake event and a o is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.

  13. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    NASA Technical Reports Server (NTRS)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  14. Business losses, transportation damage and the Northridge Earthquake

    DOT National Transportation Integrated Search

    1998-05-01

    The 1994 Northridge earthquake damaged four major freeways in the Los Angeles area. Southern California firms were surveyed to assess the role that these transportation disruptions played in business losses. Of the firms that reported any earthquake ...

  15. The CATDAT damaging earthquakes database

    NASA Astrophysics Data System (ADS)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  16. Damaging earthquakes: A scientific laboratory

    USGS Publications Warehouse

    Hays, Walter W.; ,

    1996-01-01

    This paper reviews the principal lessons learned from multidisciplinary postearthquake investigations of damaging earthquakes throughout the world during the past 15 years. The unique laboratory provided by a damaging earthquake in culturally different but tectonically similar regions of the world has increased fundamental understanding of earthquake processes, added perishable scientific, technical, and socioeconomic data to the knowledge base, and led to changes in public policies and professional practices for earthquake loss reduction.

  17. Earthquake damage to transportation systems

    USGS Publications Warehouse

    McCullough, Heather

    1994-01-01

    Earthquakes represent one of the most destructive natural hazards known to man. A large magnitude earthquake near a populated area can affect residents over thousands of square kilometers and cause billions of dollars in property damage. Such an event can kill or injure thousands of residents and disrupt the socioeconomic environment for months, sometimes years. A serious result of a large-magnitude earthquake is the disruption of transportation systems, which limits post-disaster emergency response. Movement of emergency vehicles, such as police cars, fire trucks and ambulances, is often severely restricted. Damage to transportation systems is categorized below by cause including: ground failure, faulting, vibration damage, and tsunamis.

  18. Update earthquake risk assessment in Cairo, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  19. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  20. Earthquake damage to schools

    USGS Publications Warehouse

    McCullough, Heather

    1994-01-01

    These unusual slides show earthquake damage to school and university buildings around the world. They graphically illustrate the potential danger to our schools, and to the welfare of our children, that results from major earthquakes. The slides range from Algeria, where a collapsed school roof is held up only by students' desks; to Anchorage, Alaska, where an elementary school structure has split in half; to California and other areas, where school buildings have sustained damage to walls, roofs, and chimneys. Interestingly, all the United States earthquakes depicted in this set of slides occurred either on a holiday or before or after school hours, except the 1935 tremor in Helena, Montana, which occurred at 11:35 am. It undoubtedly would have caused casualties had the schools not been closed days earlier by Helena city officials because of a damaging foreshock. Students in Algeria, the People's Republic of China, Armenia, and other stricken countries were not so fortunate. This set of slides represents 17 destructive earthquakes that occurred in 9 countries, and covers more than a century--from 1886 to 1988. Two of the tremors, both of which occurred in the United States, were magnitude 8+ on the Richter Scale, and four were magnitude 7-7.9. The events represented by the slides (see table below) claimed more than a quarter of a million lives.

  1. NASA-Produced Maps Help Gauge Italy Earthquake Damage

    NASA Image and Video Library

    2016-10-05

    A NASA-funded program provided valuable information for responders and groups supporting the recovery efforts for the Aug. 24, 2016, magnitude 6.2 earthquake that struck central Italy. The earthquake caused significant loss of life and property damage in the town of Amatrice. To assist in the disaster response efforts, scientists at NASA's Jet Propulsion Laboratory and Caltech, both in Pasadena, California, obtained and used radar imagery of the earthquake's hardest-hit region to discriminate areas of damage from that event. The views indicate the extent of damage caused by the earthquake and subsequent aftershocks in and around Amatrice, based on changes to the ground surface detected by radar. The color variations from yellow to red indicate increasingly more significant ground surface change. The damage maps were created from data obtained before and after the earthquake by satellites belonging to the Italian Space Agency (ASI) and the Japan Aerospace Exploration Agency (JAXA). The radar-derived damage maps compare well with a damage map produced by the European Commission Copernicus Emergency Management Service based upon visual inspection of high-resolution pre-earthquake aerial photographs and post-earthquake satellite optical imagery, and provide broader geographic coverage of the earthquake's impact in the region. The X-band COSMO-SkyMed (CSK) data were provided through a research collaboration with ASI and were acquired on July 3, August 20, and August 28, 2016. The L-band ALOS/PALSAR-2 data were provided by JAXA through its science research program and were acquired on September 9, 2015, January 27, 2016, and August 24, 2016. The radar data were processed by the Advanced Rapid Imaging and Analysis (ARIA) team at JPL and Caltech. ARIA is a NASA-funded project that is building an automated system for demonstrating the ability to rapidly and reliably provide GPS and satellite data to support the local, national and international hazard monitoring and

  2. Earthquake damage orientation to infer seismic parameters in archaeological sites and historical earthquakes

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel

    2018-01-01

    Studies to provide information concerning seismic parameters and seismic sources of historical and archaeological seismic events are used to better evaluate the seismic hazard of a region. This is of especial interest when no surface rupture is recorded or the seismogenic fault cannot be identified. The orientation pattern of the earthquake damage (ED) (e.g., fallen columns, dropped key stones) that affected architectonic elements of cities after earthquakes has been traditionally used in historical and archaeoseismological studies to infer seismic parameters. However, in the literature depending on the authors, the parameters that can be obtained are contradictory (it has been proposed: the epicenter location, the orientation of the P-waves, the orientation of the compressional strain and the fault kinematics) and authors even question these relations with the earthquake damage. The earthquakes of Lorca in 2011, Christchurch in 2011 and Emilia Romagna in 2012 present an opportunity to measure systematically a large number and wide variety of earthquake damage in historical buildings (the same structures that are used in historical and archaeological studies). The damage pattern orientation has been compared with modern instrumental data, which is not possible in historical and archaeoseismological studies. From measurements and quantification of the orientation patterns in the studied earthquakes, it is observed that there is a systematic pattern of the earthquake damage orientation (EDO) in the proximity of the seismic source (fault trace) (<10 km). The EDO in these earthquakes is normal to the fault trend (±15°). This orientation can be generated by a pulse of motion that in the near fault region has a distinguishable acceleration normal to the fault due to the polarization of the S-waves. Therefore, the earthquake damage orientation could be used to estimate the seismogenic fault trend of historical earthquakes studies where no instrumental data are available.

  3. Real-time earthquake shake, damage, and loss mapping for Istanbul metropolitan area

    NASA Astrophysics Data System (ADS)

    Zülfikar, A. Can; Fercan, N. Özge Zülfikar; Tunç, Süleyman; Erdik, Mustafa

    2017-01-01

    The past devastating earthquakes in densely populated urban centers, such as the 1994 Northridge; 1995 Kobe; 1999 series of Kocaeli, Düzce, and Athens; and 2011 Van-Erciş events, showed that substantial social and economic losses can be expected. Previous studies indicate that inadequate emergency response can increase the number of casualties by a maximum factor of 10, which suggests the need for research on rapid earthquake shaking damage and loss estimation. The reduction in casualties in urban areas immediately following an earthquake can be improved if the location and severity of damages can be rapidly assessed by information from rapid response systems. In this context, a research project (TUBITAK-109M734) titled "Real-time Information of Earthquake Shaking, Damage, and Losses for Target Cities of Thessaloniki and Istanbul" was conducted during 2011-2014 to establish the rapid estimation of ground motion shaking and related earthquake damages and casualties for the target cities. In the present study, application to Istanbul metropolitan area is presented. In order to fulfill this objective, earthquake hazard and risk assessment methodology known as Earthquake Loss Estimation Routine, which was developed for the Euro-Mediterranean region within the Network of Research Infrastructures for European Seismology EC-FP6 project, was used. The current application to the Istanbul metropolitan area provides real-time ground motion information obtained by strong motion stations distributed throughout the densely populated areas of the city. According to this ground motion information, building damage estimation is computed by using grid-based building inventory, and the related loss is then estimated. Through this application, the rapidly estimated information enables public and private emergency management authorities to take action and allocate and prioritize resources to minimize the casualties in urban areas during immediate post-earthquake periods. Moreover, it

  4. Recent damaging earthquakes in Japan, 2003-2008

    USGS Publications Warehouse

    Kayen, Robert E

    2008-01-01

    During the last six years, from 2003-2008, Japan has been struck by three significant and damaging earthquakes: The most recent M6.6 Niigata Chuetsu Oki earthquake of July 16, 2007 off the coast of Kashiwazaki City, Japan; The M6.6 Niigata Chuetsu earthquake of October 23, 2004, located in Niigata Prefecture in the central Uonuma Hills; and the M8.0 Tokachi Oki Earthquake of September 26, 2003 effecting southeastern Hokkaido Prefecture. These earthquakes stand out among many in a very active period of seismicity in Japan. Within the upper 100 km of the crust during this period, Japan experienced 472 earthquakes of magnitude 6, or greater. Both Niigata events affected the south-central region of Tohoku Japan, and the Tokachi-Oki earthquake affected a broad region of the continental shelf and slope southeast of the Island of Hokkaido. This report is synthesized from the work of scores of Japanese and US researchers who led and participated in post-earthquake reconnaissance of these earthquakes: their noteworthy and valuable contributions are listed in an extended acknowledgements section at the end of the paper. During the Niigata Chuetsu Oki event of 2007, damage to the Kashiwazaki-Kariwa nuclear power plant, structures, infrastructure, and ground were primarily the product of two factors: (1) high intensity motions from this moderate-sized shallow event, and (2) soft, poor performing, or liquefiable soils in the coastal region of southwestern Niigata Prefecture. Structural and geotechnical damage along the slopes of dunes was ubiquitous in the Kashiwazaki-Kariwa region. The 2004 Niigata Chuetsu Earthquake was the most significant to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 were injured, and many hundreds of landslides destroyed entire upland villages. Landslides were of all types; some dammed streams, temporarily creating lakes threatening to overtop their new embankments and cause flash floods and mudslides. The numerous

  5. Damages from the 20 September earthquakes near Klamath Falls, Oregon

    USGS Publications Warehouse

    Dewey, J.W.

    1993-01-01

    Most of the damage resulting from the earthquakes was reported from Klamath Falls, approximately 20 km from the source region of earthquakes. As has commonly been the case with earthquakes in other parts of the United States, the degree of damage was highly uneven in Klamath Falls. Most of the town escaped with little damage to buildings or building contents. Losses were concentrated in the downtown area, but even there most of the buildings were not damaged. The unevenness of damage in earthquakes results primarily from large differences in the seismic resistance of individual buildings and differences in the seismic response due to different soil conditions and geology beneath buildings. 

  6. Estimation of vulnerability functions based on a global earthquake damage database

    NASA Astrophysics Data System (ADS)

    Spence, R. J. S.; Coburn, A. W.; Ruffle, S. J.

    2009-04-01

    Developing a better approach to the estimation of future earthquake losses, and in particular to the understanding of the inherent uncertainties in loss models, is vital to confidence in modelling potential losses in insurance or for mitigation. For most areas of the world there is currently insufficient knowledge of the current building stock for vulnerability estimates to be based on calculations of structural performance. In such areas, the most reliable basis for estimating vulnerability is performance of the building stock in past earthquakes, using damage databases, and comparison with consistent estimates of ground motion. This paper will present a new approach to the estimation of vulnerabilities using the recently launched Cambridge University Damage Database (CUEDD). CUEDD is based on data assembled by the Martin Centre at Cambridge University since 1980, complemented by other more-recently published and some unpublished data. The database assembles in a single, organised, expandable and web-accessible database, summary information on worldwide post-earthquake building damage surveys which have been carried out since the 1960's. Currently it contains data on the performance of more than 750,000 individual buildings, in 200 surveys following 40 separate earthquakes. The database includes building typologies, damage levels, location of each survey. It is mounted on a GIS mapping system and links to the USGS Shakemaps of each earthquake which enables the macroseismic intensity and other ground motion parameters to be defined for each survey and location. Fields of data for each building damage survey include: · Basic earthquake data and its sources · Details of the survey location and intensity and other ground motion observations or assignments at that location · Building and damage level classification, and tabulated damage survey results · Photos showing typical examples of damage. In future planned extensions of the database information on human

  7. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  8. ANALYSIS FOR HOUSE DAMAGE PROPERTY OF 2007 MID-NIIGATA PREFECTURE OFFSHORE EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Ochiai, Hirokazu; Yamada, Kento; Ohtsuka, Satoru; Isobe, Koichi

    This paper reports the result of correlation analysis for house damage in 2007 Mid-piigata prefecture offshore earthquake by focusing geomorphological land classification and other factors as landform and ground properties with organizing the house damage data of disaster victim certificate conducted by public administrations. In former part of the paper, the features of house damage at 2007 Mid-Niigata prefecture offshore earthquake were analyzed for various influencing factors. The authors discussed the affrecting factors to houses at earthquake. In latter part, the features of house damage at 2007 Mid-Niigata prefecture offshore earthquake was discussed with that at 2004 Mid-Niigata prefecture earthquake. The house damage function of distance from the epicenter was proposed based on the analysis on house damage ratio recorded in two earthquakes.

  9. Damage Assessment Map from Interferometric Coherence

    NASA Astrophysics Data System (ADS)

    Yun, S.; Fielding, E. J.; Simons, M.; Rosen, P. A.; Owen, S. E.; Webb, F.

    2010-12-01

    Large earthquakes cause buildings to collapse, which often claims the lives of many. For example, 2010 Haiti earthquake killed about 230,000 people, with about 280,000 buildings collapsed or severely damaged. When a major earthquake hits an urban area, one of the most critical information for rescue operations is rapid and accurate assessment of building-collapse areas. From a study on 2003 Bam earthquake in Iran, interferometric coherence was proved useful for earthquake damage assessment (Fielding et al., 2005) when similar perpendicular baselines can be found for pre- and coseismic interferometric pairs and when there is little temporal and volume decorrelation. In this study we develop a new algorithm to create a more robust and accurate damage assessment map using interferometric coherence despite different interferometric baselines and with other decorrelation sources. We test the algorithm on a building block that recently underwent demolition, which is a proxy for building collapse due to earthquakes, for new construction in the City of Pasadena, California. The size of the building block is about 150 m E-W and 300 m N-S, and the demolition project started on April 23, 2007 and continued until January 22, 2008. After we process Japanese L-band ALOS PALSAR data with ROI_PAC, an interferometric coherence map that spans the demolition period is registered to a coherence map before the demolition, and the relative bias of the coherence values are removed, then a causality constraint is applied to enhance the change due to demolition. The results show clear change in coherence at the demolition site. We improve the signal-to-noise ratio of the coherence change at the demolition site from 17.3 (for simple difference) to 44.6 (with the new algorithm). The damage assessment map algorithm will become more useful with the emergence of InSAR missions with more frequent data acquisition, such as Sentinel-1 and DESDynI.

  10. Building Damage Extraction Triggered by Earthquake Using the Uav Imagery

    NASA Astrophysics Data System (ADS)

    Li, S.; Tang, H.

    2018-04-01

    When extracting building damage information, we can only determine whether the building is collapsed using the post-earthquake satellite images. Even the satellite images have the sub-meter resolution, the identification of slightly damaged buildings is still a challenge. As the complementary data to satellite images, the UAV images have unique advantages, such as stronger flexibility and higher resolution. In this paper, according to the spectral feature of UAV images and the morphological feature of the reconstructed point clouds, the building damage was classified into four levels: basically intact buildings, slightly damaged buildings, partially collapsed buildings and totally collapsed buildings, and give the rules of damage grades. In particular, the slightly damaged buildings are determined using the detected roof-holes. In order to verify the approach, we conduct experimental simulations in the cases of Wenchuan and Ya'an earthquakes. By analyzing the post-earthquake UAV images of the two earthquakes, the building damage was classified into four levels, and the quantitative statistics of the damaged buildings is given in the experiments.

  11. Nonstructural damages of reinforced concrete buildings due to 2015 Ranau earthquake

    NASA Astrophysics Data System (ADS)

    Adiyanto, Mohd Irwan; Majid, Taksiah A.; Nazri, Fadzli Mohamed

    2017-07-01

    On 15th June 2016 a moderate earthquake with magnitude Mw5.9 was occurred in Sabah, Malaysia. Specifically, the epicentre was located at 16 km northwest of Ranau. Less than two days after the first event, a reconnaissance mission took action to investigate the damages on buildings. Since the reinforced concrete buildings in Ranau were designed based on gravity and wind load only, a lot of minor to severe damages was occurred. This paper presents the damages on the nonstructural elements of reinforced concrete buildings due to Ranau earthquake. The assessment was conducted via in-situ field investigation covering the visual observation, taking photo, and interview with local resident. Based on in-situ field investigation, there was a lot of damages occurred on the nonstructural elements like the brick walls. Such damages cannot be neglected since it can cause injury and fatality to the victims. Therefore, it can be concluded that the installation of nonstructural elements should be reviewed for the sake of safety.

  12. Road Damage Extraction from Post-Earthquake Uav Images Assisted by Vector Data

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Dou, A.

    2018-04-01

    Extraction of road damage information after earthquake has been regarded as urgent mission. To collect information about stricken areas, Unmanned Aerial Vehicle can be used to obtain images rapidly. This paper put forward a novel method to detect road damage and bring forward a coefficient to assess road accessibility. With the assistance of vector road data, image data of the Jiuzhaigou Ms7.0 Earthquake is tested. In the first, the image is clipped according to vector buffer. Then a large-scale segmentation is applied to remove irrelevant objects. Thirdly, statistics of road features are analysed, and damage information is extracted. Combining with the on-filed investigation, the extraction result is effective.

  13. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning

    NASA Astrophysics Data System (ADS)

    Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene

    2016-07-01

    Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.

  14. ELER software - a new tool for urban earthquake loss assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.

    2010-12-01

    Rapid loss estimation after potentially damaging earthquakes is critical for effective emergency response and public information. A methodology and software package, ELER-Earthquake Loss Estimation Routine, for rapid estimation of earthquake shaking and losses throughout the Euro-Mediterranean region was developed under the Joint Research Activity-3 (JRA3) of the EC FP6 Project entitled "Network of Research Infrastructures for European Seismology-NERIES". Recently, a new version (v2.0) of ELER software has been released. The multi-level methodology developed is capable of incorporating regional variability and uncertainty originating from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. Although primarily intended for quasi real-time estimation of earthquake shaking and losses, the routine is also equally capable of incorporating scenario-based earthquake loss assessments. This paper introduces the urban earthquake loss assessment module (Level 2) of the ELER software which makes use of the most detailed inventory databases of physical and social elements at risk in combination with the analytical vulnerability relationships and building damage-related casualty vulnerability models for the estimation of building damage and casualty distributions, respectively. Spectral capacity-based loss assessment methodology and its vital components are presented. The analysis methods of the Level 2 module, i.e. Capacity Spectrum Method (ATC-40, 1996), Modified Acceleration-Displacement Response Spectrum Method (FEMA 440, 2005), Reduction Factor Method (Fajfar, 2000) and Coefficient Method (ASCE 41-06, 2006), are applied to the selected building types for validation and verification purposes. The damage estimates are compared to the results obtained from the other studies available in the literature, i.e. SELENA v4.0 (Molina et al., 2008) and

  15. Earthquake Damage Assessment over Port-au-Prince (Haiti) by Fusing Optical and SAR Data

    NASA Astrophysics Data System (ADS)

    Romaniello, V.; Piscini, A.; Bignami, C.; Anniballe, R.; Pierdicca, N.; Stramondo, S.

    2016-08-01

    This work proposes methodologies aiming at evaluating the sensitivity of optical and SAR change features obtained from satellite images with respect to the damage grade. The proposed methods are derived from the literature ([1], [2], [3], [4]) and the main novelty concerns the estimation of these change features at object scale.The test case is the Mw 7.0 earthquake that hit Haiti on January 12, 2010.The analysis of change detection indicators is based on ground truth information collected during a post- earthquake survey. We have generated the damage map of Port-au-Prince by considering a set of polygons extracted from the open source Open Street Map geo- database. The resulting damage map was calculated in terms of collapse ratio [5].We selected some features having a good sensitivity with damage at object scale [6]: the Normalised Difference Index, the Kullback-Libler Divergence, the Mutual Information and the Intensity Correlation Difference.The Naive Bayes and the Support Vector Machine classifiers were used to evaluate the goodness of these features. The classification results demonstrate that the simultaneous use of several change features from EO observations can improve the damage estimation at object scale.

  16. Structural damages of L'Aquila (Italy) earthquake

    NASA Astrophysics Data System (ADS)

    Kaplan, H.; Bilgin, H.; Yilmaz, S.; Binici, H.; Öztas, A.

    2010-03-01

    On 6 April 2009 an earthquake of magnitude 6.3 occurred in L'Aquila city, Italy. In the city center and surrounding villages many masonry and reinforced concrete (RC) buildings were heavily damaged or collapsed. After the earthquake, the inspection carried out in the region provided relevant results concerning the quality of the materials, method of construction and the performance of the structures. The region was initially inhabited in the 13th century and has many historic structures. The main structural materials are unreinforced masonry (URM) composed of rubble stone, brick, and hollow clay tile. Masonry units suffered the worst damage. Wood flooring systems and corrugated steel roofs are common in URM buildings. Moreover, unconfined gable walls, excessive wall thicknesses without connection with each other are among the most common deficiencies of poorly constructed masonry structures. These walls caused an increase in earthquake loads. The quality of the materials and the construction were not in accordance with the standards. On the other hand, several modern, non-ductile concrete frame buildings have collapsed. Poor concrete quality and poor reinforcement detailing caused damage in reinforced concrete structures. Furthermore, many structural deficiencies such as non-ductile detailing, strong beams-weak columns and were commonly observed. In this paper, reasons why the buildings were damaged in the 6 April 2009 earthquake in L'Aquila, Italy are given. Some suggestions are made to prevent such disasters in the future.

  17. Urban Earthquake Shaking and Loss Assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Zulfikar, C.; Durukal, E.; Erdik, M.

    2009-04-01

    This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Level 2 analysis of the ELER Software (similar to HAZUS and SELENA) is essentially intended for earthquake risk assessment (building damage, consequential human casualties and macro economic loss quantifiers) in urban areas. The basic Shake Mapping is similar to the Level 0 and Level 1 analysis however, options are available for more sophisticated treatment of site response through externally entered data and improvement of the shake map through incorporation

  18. Earthquake response analysis of 11-story RC building that suffered damage in 2011 East Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Shibata, Akenori; Masuno, Hidemasa

    2017-10-01

    An eleven-story RC apartment building suffered medium damage in the 2011 East Japan earthquake and was retrofitted for re-use. Strong motion records were obtained near the building. This paper discusses the inelastic earthquake response analysis of the building using the equivalent single-degree-of-freedom (1-DOF) system to account for the features of damage. The method of converting the building frame into 1-DOF system with tri-linear reducing-stiffness restoring force characteristics was given. The inelastic response analysis of the building against the earthquake using the inelastic 1-DOF equivalent system could interpret well the level of actual damage.

  19. A new method to assess damage to RCMRFs from period elongation and Park-Ang damage index using IDA

    NASA Astrophysics Data System (ADS)

    Aghagholizadeh, Mehrdad; Massumi, Ali

    2016-09-01

    Despite a significant progress in loading and design codes of seismic resistant structures and technology improvements in building structures, the field of civil engineering is still facing critical challenges. An example of those challenges is the assessment of the state of damage that has been imposed to a structure after earthquakes of different intensities. To determine the operability of a structure and its resistance to probable future earthquakes, quick assessment of damages and determining the operability of a structure after an earthquake are crucial. Present methods to calculate damage to structures are time consuming and do not accurately provide the rate of damage. Damage estimation is important task in the fields of structural health monitoring and decision-making. This study examines the relationship between period elongation and the Park-Ang damage index. A dynamic non-linear analysis is employed with IDARC program to calculate the amount of damage and period of the current state. This new method is shown to be a quick and accurate technique for damage assessment. It is easy to calculate the period of an existing structure and changes in the period which reflects changes in the stiffness matrix.

  20. The characteristic of the earthquake damage in Kyoto during the historical period

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akihito

    2017-04-01

    The Kyoto city is located in the northern part of the Kyoto basin, central Japan and has a history of more than 1200 years. Kyoto has long been populated area with many buildings, and the center of politics, economics and culture of Japan. Due to historical large earthquakes, the Kyoto city was severely damaged such as collapses of buildings and human casualties. In the historical period, the Kyoto city has experienced six damaging large earthquake of 976, 1185, 1449, 1596, 1662 and 1830. Among them, Kyoto has experienced three damaging large earthquakes from the end of the 16th century to the middle of the 19th century, when the urban area was being expanded. All of these earthquakes are considered to be not the earthquakes in the Kyoto basin but inland earthquakes occurred in the surrounding area. The earthquake damage in Kyoto during the historical period is strongly controlled by ground conditions and earthquakes resistance of buildings rather than distance from the estimated source fault. To better estimate seismic intensity based on building damage, it is necessary to consider the state of buildings (e.g., elapsed years since established, histories of repairs and/or reinforcements, building structures) as well as the strength of ground shakings. By considering the strength of buildings at the time of an earthquake occurrence, the seismic intensity distribution due to historical large earthquakes can be estimated with higher reliability than before. The estimated seismic intensity distribution map for such historical earthquakes can be utilized for developing the strong ground motion prediction in the Kyoto basin.

  1. Sizing up earthquake damage: Differing points of view

    USGS Publications Warehouse

    Hough, S.; Bolen, A.

    2007-01-01

    When a catastrophic event strikes an urban area, many different professionals hit the ground running. Emergency responders respond, reporters report, and scientists and engineers collect and analyze data. Journalists and scientists may share interest in these events, but they have very different missions. To a journalist, earthquake damage is news. To a scientist or engineer, earthquake damage represents a valuable source of data that can help us understand how strongly the ground shook as well as how particular structures responded to the shaking.

  2. RICHTER: A Smartphone Application for Rapid Collection of Geo-Tagged Pictures of Earthquake Damage

    NASA Astrophysics Data System (ADS)

    Skinnemoen, H.; Bossu, R.; Furuheim, K.; Bjorgo, E.

    2010-12-01

    RICHTER (Rapid geo-Images for Collaborative Help Targeting Earthquake Response) is a smartphone version of a professional application developed to provide high quality geo-tagged image communication over challenging network links, such as satellites and poor mobile links. Developed for Android mobile phones, it allows eyewitnesses to share their pictures of earthquake damage easily and without cost with the Euro-Mediterranean Seismological Centre (EMSC). The goal is to engage citizens in the collection of the most up-to-date visual information on local damage for improved rapid impact assessment. RICHTER integrates the innovative and award winning ASIGN protocol initially developed for satellite communication between cameras / computers / satcom terminals and servers at HQ. ASIGN is a robust and optimal image and video communication management solution for bandwidth-limited communication networks which was developed for use particularly in emergency and disaster situations. Contrary to a simple Multimedia Messaging System (MMS), RICHTER allows access to high definition images with embedded location information. Location is automatically assigned from either the internal GPS, derived from the mobile network (triangulation) or the current Wi-Fi domain, in that order, as this corresponds to the expected positioning accuracy. Pictures are compressed to 20-30KB of data typically for fast transfer and to avoid network overload. Full size images can be requested by the EMSC either fully automatically, or on a case-by-case basis, depending on the user preferences. ASIGN was initially developed in coordination with INMARSAT and the European Space Agency. It was used by the Rapid Mapping Unit of the United Nations notably for the damage assessment of the January 12, 2010 Haiti earthquake where more than 700 photos were collected. RICHTER will be freely distributed on the EMSC website to eyewitnesses in the event of significantly damaging earthquakes. The EMSC is the second

  3. New Satellite Damage Maps Assist Italy Earthquake Disaster Response

    NASA Image and Video Library

    2016-09-01

    Italy earthquake. The quake has caused significant damage in the historic town of Amatrice. To assist in the disaster response efforts, scientists at NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, in collaboration with the Italian Space Agency (ASI), generated this image of the earthquake's hardest-hit region. The 40-by-75 mile (65-by-120 kilometer) Damage Proxy Map (DPM) was derived from two consecutive frames of the Japan Aerospace Exploration Agency's (JAXA's) L-band interferometric synthetic aperture radar (InSAR) data from the ALOS-2 satellite (cyan rectangles), and the 25-by-31 mile (40-by-50 kilometer) DPM was derived from InSAR data from the Agenzia Spaciale Italiana's (ASI's) X-band COSMO-SkyMed satellite (red rectangle). Both DPMs cover the historic town of Amatrice, revealing severe damage in the western side of the town (right panels). The time span of the data for the change is Jan. 27, 2016 to Aug. 24, 2016 for ALOS-2 and Aug. 20, 2016 to Aug. 28, 2016 for COSMO-SkyMed. Each pixel in the damage proxy map is about 100 feet (30 meters) across. The SAR data were processed by the Advanced Rapid Imaging and Analysis (ARIA) team at JPL and Caltech. The technique uses a prototype algorithm to rapidly detect surface changes caused by natural or human-produced damage. The assessment technique is most sensitive to destruction of the built environment. When the radar images areas with little to no destruction, its image pixels are transparent. Increased opacity of the radar image pixels reflects damage, with areas in red reflecting the heaviest damage to cities and towns. The color variations from yellow to red indicate increasingly more significant ground surface change. Preliminary validation was done by comparing the DPMs to a damage assessment map produced by the Copernicus Emergency Management Service, which is based on visual inspection of before and after high-resolution aerial imagery

  4. Near Real-Time Earthquake Exposure and Damage Assessment: An Example from Turkey

    NASA Astrophysics Data System (ADS)

    Kamer, Yavor; Çomoǧlu, Mustafa; Erdik, Mustafa

    2014-05-01

    Confined by infamous strike-slip North Anatolian Fault from the north and by the Hellenic subduction trench from the south Turkey is one of the most seismically active countries in Europe. Due this increased exposure and the fragility of the building stock Turkey is among the top countries exposed to earthquake hazard in terms of mortality and economic losses. In this study we focus recent and ongoing efforts to mitigate the earthquake risk in near real-time. We present actual results of recent earthquakes, such as the M6 event off-shore Antalya which occurred on 28 December 2013. Starting at the moment of detection, we obtain a preliminary ground motion intensity distribution based on epicenter and magnitude. Our real-time application is further enhanced by the integration of the SeisComp3 ground motion parameter estimation tool with the Earthquake Loss Estimation Routine (ELER). SeisComp3 provides the online station parameters which are then automatically incorporated into the ShakeMaps produced by ELER. The resulting ground motion distributions are used together with the building inventory to calculate expected number of buildings in various damage states. All these analysis are conducted in an automated fashion and are communicated within a few minutes of a triggering event. In our efforts to disseminate earthquake information to the general public we make extensive use of social networks such as Tweeter and collaborate with mobile phone operators.

  5. Orientation damage in the Christchurch cemeteries generated during the Christchurch earthquakes of 2010

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel; Perez-Lopez, Raul; Rodrigez-Pascua, Miguel Angel; Martin-Velazquez, Silvia

    2014-05-01

    The intensity scales determined the damage caused by an earthquake. However, a new methodology takes into account not only the damage but the type of damage "Earthquake Archaeological Effects" EAE's, and its orientation (e.g. displaced masonry blocks, impact marks, conjugated fractures, fallen and oriented columns, dipping broken corners, etc.). It focuses not only on the amount of damage but also in its orientation, giving information about the ground motion during the earthquake. In 2010 an earthquake of magnitude 6.2 took place in Christchurch (New Zealand) (22-2-2010), 185 casualties, making it the second-deadliest natural disaster in New Zealand. Due to the magnitude of the catastrophe, the city centre (CBD) was closed and the most damaged buildings were closed and later demolished. For this reason it could not be possible to access to sampling or make observations in the most damaged areas. However, the cemeteries were not closed and a year later still remained intact since the financial means to recover were used to reconstruct infrastructures and housing the city. This peculiarity of the cemeteries made measures of the earthquake effects possible. Orientation damage was measured on the tombs, crosses and headstones of the cemeteries (mainly on falling objects such as fallen crosses, obelisks, displaced tombstones, etc.). 140 data were taken in the most important cemeteries (Barbadoes, Addington, Pebleton, Woodston, Broomley and Linwood cemeteries) covering much of the city area. The procedure involved two main phases: a) inventory and identification of damages, and b) analysis of the damage orientations. The orientation was calculated for each element and plotted in a map and statistically in rose diagrams. The orientation dispersion is high in some cemeteries but damage orientation S-N and E-W is observed. However, due to the multiple seismogenic faults responsible for earthquakes and damages in Christchurch during the year after the 2010 earthquake, a

  6. Use of QuakeSim and UAVSAR for Earthquake Damage Mitigation and Response

    NASA Technical Reports Server (NTRS)

    Donnellan, A.; Parker, J. W.; Bawden, G.; Hensley, S.

    2009-01-01

    Spaceborne, airborne, and modeling and simulation techniques are being applied to earthquake risk assessment and response for mitigation from this natural disaster. QuakeSim is a web-based portal for modeling interseismic strain accumulation using paleoseismic and crustal deformation data. The models are used for understanding strain accumulation and release from earthquakes as well as stress transfer to neighboring faults. Simulations of the fault system can be used for understanding the likelihood and patterns of earthquakes as well as the likelihood of large aftershocks from events. UAVSAR is an airborne L-band InSAR system for collecting crustal deformation data. QuakeSim, UAVSAR, and DESDynI (following launch) can be used for monitoring earthquakes, the associated rupture and damage, and postseismic motions for prediction of aftershock locations.

  7. Road Damage Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Ground shaking triggered liquefaction in a subsurface layer of water-saturated sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and slit, which moved from right to left towards the Pajaro River. This mode of ground failure, termed lateral spreading, is a principal cause of liquefaction-related earthquake damage caused by the Oct. 17, 1989, Loma Prieta earthquake. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: S.D. Ellen, U.S. Geological Survey

  8. Developing ShakeCast statistical fragility analysis framework for rapid post-earthquake assessment

    USGS Publications Warehouse

    Lin, K.-W.; Wald, D.J.

    2012-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap estimates the extent of potentially damaging shaking and provides overall information regarding the affected areas. The USGS ShakeCast system is a freely-available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. We describe notable improvements of the ShakeMap and the ShakeCast applications. We present a design for comprehensive fragility implementation, integrating spatially-varying ground-motion uncertainties into fragility curves for ShakeCast operations. For each facility, an overall inspection priority (or damage assessment) is assigned on the basis of combined component-based fragility curves using pre-defined logic. While regular ShakeCast users receive overall inspection priority designations for each facility, engineers can access the full fragility analyses for further evaluation.

  9. Earthquake risk assessment of Alexandria, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Gaber, Hanan; Ibrahim, Hamza

    2015-01-01

    Throughout historical and recent times, Alexandria has suffered great damage due to earthquakes from both near- and far-field sources. Sometimes, the sources of such damages are not well known. During the twentieth century, the city was shaken by several earthquakes generated from inland dislocations (e.g., 29 Apr. 1974, 12 Oct. 1992, and 28 Dec. 1999) and the African continental margin (e.g., 12 Sept. 1955 and 28 May 1998). Therefore, this study estimates the earthquake ground shaking and the consequent impacts in Alexandria on the basis of two earthquake scenarios. The simulation results show that Alexandria affected by both earthquakes scenarios relatively in the same manner despite the number of casualties during the first scenario (inland dislocation) is twice larger than the second one (African continental margin). An expected percentage of 2.27 from Alexandria's total constructions (12.9 millions, 2006 Census) will be affected, 0.19 % injuries and 0.01 % deaths of the total population (4.1 millions, 2006 Census) estimated by running the first scenario. The earthquake risk profile reveals that three districts (Al-Montazah, Al-Amriya, and Shark) lie in high seismic risks, two districts (Gharb and Wasat) are in moderate, and two districts (Al-Gomrok and Burg El-Arab) are in low seismic risk level. Moreover, the building damage estimations reflect that Al-Montazah is the highest vulnerable district whereas 73 % of expected damages were reported there. The undertaken analysis shows that the Alexandria urban area faces high risk. Informal areas and deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated earthquake risks (buildings damages) are concentrated at the most densely populated (Al-Montazah, Al-Amriya, and Shark) districts. Moreover, about 75 % of casualties are in the same districts.

  10. Modelling earthquake ruptures with dynamic off-fault damage

    NASA Astrophysics Data System (ADS)

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban

    2017-04-01

    Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for

  11. Preliminary Results of Earthquake-Induced Building Damage Detection with Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Uca Avci, Z. D.; Sunar, F.

    2016-06-01

    Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.

  12. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    NASA Astrophysics Data System (ADS)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  13. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    NASA Astrophysics Data System (ADS)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  14. Building damage assessment using airborne lidar

    NASA Astrophysics Data System (ADS)

    Axel, Colin; van Aardt, Jan

    2017-10-01

    The assessment of building damage following a natural disaster is a crucial step in determining the impact of the event itself and gauging reconstruction needs. Automatic methods for deriving damage maps from remotely sensed data are preferred, since they are regarded as being rapid and objective. We propose an algorithm for performing unsupervised building segmentation and damage assessment using airborne light detection and ranging (lidar) data. Local surface properties, including normal vectors and curvature, were used along with region growing to segment individual buildings in lidar point clouds. Damaged building candidates were identified based on rooftop inclination angle, and then damage was assessed using planarity and point height metrics. Validation of the building segmentation and damage assessment techniques were performed using airborne lidar data collected after the Haiti earthquake of 2010. Building segmentation and damage assessment accuracies of 93.8% and 78.9%, respectively, were obtained using lidar point clouds and expert damage assessments of 1953 buildings in heavily damaged regions. We believe this research presents an indication of the utility of airborne lidar remote sensing for increasing the efficiency and speed at which emergency response operations are performed.

  15. Statistical analysis of low-rise building damage caused by the San Fernando earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholl, R.E.

    1974-02-01

    An empirical investigation of damage to low-rise buildings in two selected control areas within Glendale, California, caused by the ground motion precipitated by the San Fernando earthquake of February 9, 1971 is summarized. The procedures for obtaining the appropriate data and the methodology used in deriving ground motion-damage relationships are described. Motion-damage relationships are derived for overall damage and for the most frequently damaged building components. Overall motion-damage relationships are expressed in terms of damage incidence (damage ratio) and damage cost (damage cost factor). The motion-damage relationships derived from the earthquake data are compared with similar data obtained for lou-risemore » buildings subjected to ground motion generated by an underground nuclear explosion. Overall comparison results show that for the same spectral acceleration, the earthquake caused slightly more damage. Differences in ground-motion characteristics for the two types of disturbances provide the most probable explanation for this discrepancy. (auth)« less

  16. Cumulative co-seismic fault damage and feedbacks on earthquake rupture

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Aben, F. M.; Ostermeijer, G.; Rockwell, T. K.; Doan, M. L.

    2017-12-01

    The importance of the damage zone in the faulting and earthquake process is widely recognized, but our understanding of how damage zones are created, what their properties are, and how they feed back into the seismic cycle, is remarkably poorly known. Firstly, damaged rocks have reduced elastic moduli, cohesion and yield strength, which can cause attenuation and potentially non-linear wave propagation effects during ruptures. Secondly, damaged fault rocks are generally more permeable than intact rocks, and hence play a key role in the migration of fluids in and around fault zones over the seismic cycle. Finally, the dynamic generation of damage as the earthquake propagates can itself influence the dynamics of rupture propagation, by increasing the amount of energy dissipation, decreasing the rupture velocity, modifying the size of the earthquake, changing the efficiency of weakening mechanisms such as thermal pressurisation of pore fluids, and even generating seismic waves itself . All of these effects imply that a feedback exists between the damage imparted immediately after rupture propagation, at the early stages of fault slip, and the effects of that damage on subsequent ruptures dynamics. In recent years, much debate has been sparked by the identification of so-called `pulverized rocks' described on various crustal-scale faults, a type of intensely damaged fault rock which has undergone minimal shear strain, and the occurrence of which has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. In this contribution, we will demonstrate laboratory and field examples of two dynamic mechanisms

  17. Post-Disaster Damage Assessment Through Coherent Change Detection on SAR Imagery

    NASA Astrophysics Data System (ADS)

    Guida, L.; Boccardo, P.; Donevski, I.; Lo Schiavo, L.; Molinari, M. E.; Monti-Guarnieri, A.; Oxoli, D.; Brovelli, M. A.

    2018-04-01

    Damage assessment is a fundamental step to support emergency response and recovery activities in a post-earthquake scenario. In recent years, UAVs and satellite optical imagery was applied to assess major structural damages before technicians could reach the areas affected by the earthquake. However, bad weather conditions may harm the quality of these optical assessments, thus limiting the practical applicability of these techniques. In this paper, the application of Synthetic Aperture Radar (SAR) imagery is investigated and a novel approach to SAR-based damage assessment is presented. Coherent Change Detection (CCD) algorithms on multiple interferometrically pre-processed SAR images of the area affected by the seismic event are exploited to automatically detect potential damages to buildings and other physical structures. As a case study, the 2016 Central Italy earthquake involving the cities of Amatrice and Accumoli was selected. The main contribution of the research outlined above is the integration of a complex process, requiring the coordination of a variety of methods and tools, into a unitary framework, which allows end-to-end application of the approach from SAR data pre-processing to result visualization in a Geographic Information System (GIS). A prototype of this pipeline was implemented, and the outcomes of this methodology were validated through an extended comparison with traditional damage assessment maps, created through photo-interpretation of high resolution aerial imagery. The results indicate that the proposed methodology is able to perform damage detection with a good level of accuracy, as most of the detected points of change are concentrated around highly damaged buildings.

  18. The characteristic of the building damage from historical large earthquakes in Kyoto

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akihito

    2016-04-01

    The Kyoto city, which is located in the northern part of Kyoto basin in Japan, has a long history of >1,200 years since the city was initially constructed. The city has been a populated area with many buildings and the center of the politics, economy and culture in Japan for nearly 1,000 years. Some of these buildings are now subscribed as the world's cultural heritage. The Kyoto city has experienced six damaging large earthquakes during the historical period: i.e., in 976, 1185, 1449, 1596, 1662, and 1830. Among these, the last three earthquakes which caused severe damage in Kyoto occurred during the period in which the urban area had expanded. These earthquakes are considered to be inland earthquakes which occurred around the Kyoto basin. The damage distribution in Kyoto from historical large earthquakes is strongly controlled by ground condition and earthquakes resistance of buildings rather than distance from estimated source fault. Therefore, it is necessary to consider not only the strength of ground shaking but also the condition of building such as elapsed years since the construction or last repair in order to more accurately and reliably estimate seismic intensity distribution from historical earthquakes in Kyoto. The obtained seismic intensity map would be helpful for reducing and mitigating disaster from future large earthquakes.

  19. Damage and Shaking Intensity in the M5.7 Canyondam Earthquake

    NASA Astrophysics Data System (ADS)

    Boatwright, J.; Chapman, K.; Gold, M. B.; Hardebeck, J. L.

    2013-12-01

    An M5.7 earthquake occurred southeast of Lake Almanor, CA, at 8:47 PM on May 23, 2013. Double-difference relocations of the main shock and aftershocks indicate that the earthquake nucleated at 11 km depth and ruptured up dip on a fault striking 292° and dipping 70° to the northeast. The earthquake cracked foundations, broke chimneys, and ruptured plumbing around Lake Almanor. We canvassed communities around the lake and to the south and east for earthquake damage, adding reports from our interviews to the geocoded 'Did You Feel It?' reports and to a set of damage reports collected by the Plumas County Office of Emergency Services. Three communities suffered significant damage. In Lake Almanor West, 14 km and 290° from the hypocenter, one wood-frame house was shifted on its foundation, the cripple wall of another house was racked, and water and gas pipes in five houses were ruptured. This damage indicates the shaking approached MMI 8. In Lake Almanor Country Club, 10 km and 310° from the hypocenter, more than 40 chimneys were cracked, broken, or collapsed, a coupling for the municipal water tank was ruptured, and a 200-foot long fissure opened on a slope facing the lake. This damage indicates shaking between MMI 7 and MMI 8, consistent with the accelerograph recording of PGA = 38% g and PGV = 30 cm/s at the Fire Station in Lake Almanor Country Club. This CSMIP station and a PG&E station on the crest of the Butt Valley Dam obtained the only recordings within 50 km of the epicenter. In Hamilton Branch, 10 km and 345° from the hypocenter, a foundation of a wood-frame house was damaged, and 14 chimneys and a water pipe were broken, indicative of MMI 7 shaking. All three communities are underlain by Tertiary and Quaternary basalts. The communities of Chester, Westwood, and Greenville were less damaged, suffering cracked drywall, broken windows, and objects thrown from shelves. The intensities in the three most strongly damaged communities increase as the azimuth

  20. Near-surface versus fault zone damage following the 1999 Chi-Chi earthquake: Observation and simulation of repeating earthquakes

    USGS Publications Warehouse

    Chen, Kate Huihsuan; Furumura, Takashi; Rubinstein, Justin L.

    2015-01-01

    We observe crustal damage and its subsequent recovery caused by the 1999 M7.6 Chi-Chi earthquake in central Taiwan. Analysis of repeating earthquakes in Hualien region, ~70 km east of the Chi-Chi earthquake, shows a remarkable change in wave propagation beginning in the year 2000, revealing damage within the fault zone and distributed across the near surface. We use moving window cross correlation to identify a dramatic decrease in the waveform similarity and delays in the S wave coda. The maximum delay is up to 59 ms, corresponding to a 7.6% velocity decrease averaged over the wave propagation path. The waveform changes on either side of the fault are distinct. They occur in different parts of the waveforms, affect different frequencies, and the size of the velocity reductions is different. Using a finite difference method, we simulate the effect of postseismic changes in the wavefield by introducing S wave velocity anomaly in the fault zone and near the surface. The models that best fit the observations point to pervasive damage in the near surface and deep, along-fault damage at the time of the Chi-Chi earthquake. The footwall stations show the combined effect of near-surface and the fault zone damage, where the velocity reduction (2–7%) is twofold to threefold greater than the fault zone damage observed in the hanging wall stations. The physical models obtained here allow us to monitor the temporal evolution and recovering process of the Chi-Chi fault zone damage.

  1. Structural damages observed in state buildings after Simav/Turkey earthquake occurred on 19 May 2011

    NASA Astrophysics Data System (ADS)

    Tama, Y. S.

    2012-08-01

    Different levels of damages occurred in state buildings, especially in educational facilities, during the Simav earthquake (ML=5.7) on 19 May 2011. A site survey was carried out in the area after the earthquake, where six state buildings were examined in detail. The results of the survey showed that main reasons for the formation of damages in these buildings are the use of low strength concrete, insufficient reinforcement, inappropriate detailing, and low-quality workmanship. The investigated buildings were also evaluated by P25-rapid assessment method. The method demonstrates that two of the buildings in question are in "high risk band"; the other two fall into "detailed evaluation band", and the rest are in the "low risk band". This figure also matches with the damages observed in the site survey.

  2. An overview of the geotechnical damage brought by the 2016 Kumamoto Earthquake, Japan

    USGS Publications Warehouse

    Hemanta Hazarika,; Takaji Kokusho,; Kayen, Robert E.; Dashti, Shideh; Yutaka Tanoue,; Shuuichi Kuroda and Kentaro Kuribayashi,; Daisuke Matsumoto,; Furuichi, Hideo

    2016-01-01

    The 2016 Kumamoto earthquake with a moment magnitude of 7.0 (Japanese intensity = 7) that struck on April 16 brought devastation in many areas of Kumamoto Prefecture and partly in Oita Prefecture in Kyushu Region, Japan. The earthquake succeeds a foreshock of magnitude 6.5 (Japanese intensity = 7) on April 14. The authors conducted two surveys on the devastated areas: one during April 16-17, and the other during May 11-14. This report summarizes the damage brought to geotechnical structures by the two consecutive earthquakes within a span of twenty-eight hours. This report highlights some of the observed damage and identifies reasons for such damage. The geotechnical challenges towards mitigation of losses from such earthquakes are also suggested.

  3. Kinds of damage that could result from a great earthquake in the central United States

    USGS Publications Warehouse

    Hooper, M.G.; Algermissen, S.T.

    1985-01-01

    The first four photographs show damage caused by intensity VIII and above. None of the damage shown in the photographs in this report occurred in earthquakes larger than the 1811-12 New Madrid shocks, and most of the examples are from considerably smaller shocks. The first two photos show damage to masonry buildings, mostly old and unreinforced, none designed to be earthquake resistant. How many such buildings are in use in your community? The second pair of photos show damage to modern structures close to the epicenter of a magnitude 6.5 earthquake, a small shock compared to the magnitudes (8.4-8.7) of the New Madrid earthquakes

  4. Impact of average household income and damage exposure on post-earthquake distress and functioning: A community study following the February 2011 Christchurch earthquake.

    PubMed

    Dorahy, Martin J; Rowlands, Amy; Renouf, Charlotte; Hanna, Donncha; Britt, Eileen; Carter, Janet D

    2015-08-01

    Post-traumatic stress, depression and anxiety symptoms are common outcomes following earthquakes, and may persist for months and years. This study systematically examined the impact of neighbourhood damage exposure and average household income on psychological distress and functioning in 600 residents of Christchurch, New Zealand, 4-6 months after the fatal February, 2011 earthquake. Participants were from highly affected and relatively unaffected suburbs in low, medium and high average household income areas. The assessment battery included the Acute Stress Disorder Scale, the depression module of the Patient Health Questionnaire (PHQ-9), and the Generalized Anxiety Disorder Scale (GAD-7), along with single item measures of substance use, earthquake damage and impact, and disruptions in daily life and relationship functioning. Controlling for age, gender and social isolation, participants from low income areas were more likely to meet diagnostic cut-offs for depression and anxiety, and have more severe anxiety symptoms. Higher probabilities of acute stress, depression and anxiety diagnoses were evident in affected versus unaffected areas, and those in affected areas had more severe acute stress, depression and anxiety symptoms. An interaction between income and earthquake effect was found for depression, with those from the low and medium income affected suburbs more depressed. Those from low income areas were more likely, post-earthquake, to start psychiatric medication and increase smoking. There was a uniform increase in alcohol use across participants. Those from the low income affected suburb had greater general and relationship disruption post-quake. Average household income and damage exposure made unique contributions to earthquake-related distress and dysfunction. © 2014 The British Psychological Society.

  5. Chimney damage in the greater Seattle area from the Nisqually earthquake of 28 February 2001

    USGS Publications Warehouse

    Booth, D.B.; Wells, R.E.; Givler, R.W.

    2004-01-01

    Unreinforced brick chimneys in the greater Seattle area were damaged repeatedly in the Benioff zone earthquakes of 1949, 1965, and 2001. A survey of visible chimney damage after the 28 February 2001 Nisqually earthquake evaluated approximately 60,000 chimneys through block-by-block coverage of about 50 km2, identifying a total of 1556 damaged chimneys. Chimney damage was strongly clustered in certain areas, in particular in the neighborhood of West Seattle where prior damage was also noted and evaluated after the 1965 earthquake. Our results showed that damage produced by the 2001 earthquake did not obviously correspond to distance from the earthquake epicenter, soft soils, topography, or slope orientation. Chimney damage correlates well to instrumented strong-motion measurements and compiled resident-reported ground-shaking intensities, but it offers much finer spatial resolution than these other data sources. In general, most areas of greatest chimney damage coincide with best estimated locations of strands of the Seattle fault zone. The edge of that zone also coincides with areas where chimney damage dropped abruptly over only one or two blocks' distance. The association between shaking intensity and fault-zone structure suggests that abrupt changes in the depth to bedrock, edge effects at the margin of the Seattle basin, or localized trapping of seismic waves in the Seattle fault zone may be significant contributory factors in the distribution of chimney damage.

  6. Rapid building damage assessment system using mobile phone technology

    NASA Astrophysics Data System (ADS)

    Cimellaro, Gian Paolo; Scura, G.; Renschler, C. S.; Reinhorn, A. M.; Kim, H. U.

    2014-09-01

    One common scenario during disasters such as earthquakes is that the activity of damage field reconnaissance on site is not well-coordinated. For example in Italy the damage assessment of structures after an earthquake is managed from the Italian Emergency Authority, using printed forms (AeDES) which are filled by experts on site generating a lot of confusion in filling and transferring the forms to the Disaster Management Operative Center. Because of this, the paper explores the viability of using mobile communication technologies (smart phones) and the Web to develop response systems that would aid communities after a major disaster, providing channels for allowing residents and responders of uploading and distributing information, related to structural damages coordinating the damage field reconnaissance. A mobile application that can be run by residents on smart phones has been developed, to give an initial damage evaluation of the area, which is going to be very useful when resources (e.g. the number of experts is limited). The mobile application has been tested for the first time during 2012 Emilia earthquake to enhance the emergency response, showing the efficiency of the proposed method in statistical terms comparing the proposed procedure with the standard procedure.

  7. Damage From the Nahrin, Afghanistan, Earthquake of 25 March, 2002

    NASA Astrophysics Data System (ADS)

    Madden, C. L.; Yeats, R. S.

    2002-12-01

    On 25 March, 2002, a destructive earthquake of mb = 6.1 struck the city of Nahrin and nearby villages in Baghlan Province in northeastern Afghanistan. The earthquake occurred on a southeast-dipping reverse fault that parallels the linear northeast-trending range front of the Hindu Kush Mountains, east of Nahrin. Field reconnaissance showed no disturbance of the ground by surface rupture, liquefaction, or lateral spreading, and virtually no evidence of landsliding or rockfall. United Nations and Afghan authorities estimate the death toll from the earthquake to be over 2000, with about 20,000 families impacted by the earthquake. We conducted a survey of damage in 68 villages affected by the earthquake and found that areas within 25 km of the epicenter experienced modified Mercalli intensities of between VI and VII. Shaking intensities were strong enough to cause complete building collapse in many villages. Site conditions were an important factor in the distribution of damage in the Nahrin area. Houses built on the narrow crests of ridges eroded in loess suffered major damage due to the focusing of near-surface seismic waves on ridge-tops. Houses on low fluvial terraces along the Nahrin River also suffered major damage, likely due to their close proximity to the water table. Structures built on metamorphic bedrock and alluvial fans along the range front of the Hindu Kush Mountains or on high terraces along the Nahrin River suffered comparatively less damage. Building failure was predominantly caused by the mud-block construction, characteristic of much of Afghanistan and adjacent countries. Most houses are built of mud blocks made from reworked loess, which contains a relatively low percentage of clay. The walls contain no bracing against lateral shear, and wall corners are not tied together, leading to failure at corners and roof collapse. In several villages, mosques were constructed to a higher standard and suffered significantly less damage than surrounding mud

  8. Debris flow susceptibility assessment after the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Fan, Xuanmei; van Westen, Cees; Tang, Chenxiao; Tang, Chuan

    2014-05-01

    Due to a tremendous amount of loose material from landslides that occurred during the Wenchuan earthquake, the frequency and magnitude of debris flows have been immensely increased, causing many casualties and economic losses. This study attempts to assess the post-earthquake debris flow susceptibility based on catchment units in the Wenchuan county, one of the most severely damaged county by the earthquake. The post earthquake debris flow inventory was created by RS image interpretation and field survey. According to our knowledge to the field, several relevant factors were determined as indicators for post-earthquake debris flow occurrence, including the distance to fault surface rupture, peak ground acceleration (PGA), coseismic landslide density, rainfall data, internal relief, slope, drainage density, stream steepness index, existing mitigation works etc. These indicators were then used as inputs in a heuristic model that was developed by adapting the Spatial Multi Criteria Evaluation (SMCE) method. The relative importance of the indicators was evaluated according to their contributions to the debris flow events that have occurred after the earthquake. The ultimate goal of this study is to estimate the relative likelihood of debris flow occurrence in each catchment, and use this result together with elements at risk and vulnerability information to assess the changing risk of the most susceptible catchment.

  9. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    NASA Astrophysics Data System (ADS)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input

  10. PAGER--Rapid assessment of an earthquake?s impact

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M.

    2010-01-01

    PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts--which were formerly sent based only on event magnitude and location, or population exposure to shaking--now will also be generated based on the estimated range of fatalities and economic losses.

  11. A global probabilistic tsunami hazard assessment from earthquake sources

    USGS Publications Warehouse

    Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana

    2017-01-01

    Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.

  12. Recognition of earthquake-related damage in archaeological sites: Examples from the Dead Sea fault zone

    NASA Astrophysics Data System (ADS)

    Marco, Shmuel

    2008-06-01

    Archaeological structures that exhibit seismogenic damage expand our knowledge of temporal and spatial distribution of earthquakes, afford independent examination of historical accounts, provide information on local earthquake intensities and enable the delineation of macroseismic zones. They also illustrate what might happen in future earthquakes. In order to recover this information, we should be able to distinguish earthquake damage from anthropogenic damage and from other natural processes of wear and tear. The present paper reviews several types of damage that can be attributed with high certainty to earthquakes and discusses associated caveats. In the rare cases, where faults intersect with archaeological sites, offset structures enable precise determination of sense and size of slip, and constrain its time. Among the characteristic off-fault damage types, I consider horizontal shifting of large building blocks, downward sliding of one or several blocks from masonry arches, collapse of heavy, stably-built walls, chipping of corners of building blocks, and aligned falling of walls and columns. Other damage features are less conclusive and require additional evidence, e.g., fractures that cut across several structures, leaning walls and columns, warps and bulges in walls. Circumstantial evidence for catastrophic earthquake-related destruction includes contemporaneous damage in many sites in the same area, absence of weapons or other anthropogenic damage, stratigraphic data on collapse of walls and ceilings onto floors and other living horizons and burial of valuable artifacts, as well as associated geological palaeoseismic phenomena such as liquefaction, land- and rock-slides, and fault ruptures. Additional support may be found in reliable historical accounts. Special care must be taken in order to avoid circular reasoning by maintaining the independence of data acquisition methods.

  13. Validation of the Earthquake Archaeological Effects methodology by studying the San Clemente cemetery damages generated during the Lorca earthquake of 2011

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel; Martín-Velazquez, Silvia; Rodrigez-Pascua, Miguel Angel; Pérez-López, Raul; Silva, Pablo

    2014-05-01

    The intensity scales determined the damage caused by an earthquake. However, a new methodology takes into account not only the damage but the type of damage "Earthquake Archaeological Effects", EAE's, and its orientation (e.g. displaced masonry blocks, conjugated fractures, fallen and oriented columns, impact marks, dipping broken corners, etc.) (Rodriguez-Pascua et al., 2011; Giner-Robles et al., 2012). Its main contribution is that it focuses not only on the amount of damage but also in its orientation, giving information about the ground motion during the earthquake. Therefore, this orientations and instrumental data can be correlated with historical earthquakes. In 2011 an earthquake of magnitude Mw 5.2 took place in Lorca (SE Spain) (9 casualties and 460 million Euros in reparations). The study of the EAE's was carried out through the whole city (Giner-Robles et al., 2012). The present study aimed to a.- validate the EAE's methodology using it only in a small place, specifically the cemetery of San Clemente in Lorca, and b.- constraining the range of orientation for each EAE's. This cemetery has been selected because these damage orientation data can be correlated with instrumental information available, and also because this place has: a.- wide variety of architectural styles (neogothic, neobaroque, neoarabian), b.- its Cultural Interest (BIC), and c.- different building materials (brick, limestone, marble). The procedure involved two main phases: a.- inventory and identification of damage (EAE's) by pictures, and b.- analysis of the damage orientations. The orientation was calculated for each EAE's and plotted in maps. Results are NW-SE damage orientation. This orientation is consistent with that recorded in the accelerometer of Lorca (N160°E) and with that obtained from the analysis of EAE's for the whole town of Lorca (N130°E) (Giner-Robles et al., 2012). Due to the existence of an accelerometer, we know the orientation of the peak ground acceleration

  14. Damaged Speleothems of the Ms 8.0 Wenchuan Earthquake, China, and the Implications for Seismology

    NASA Astrophysics Data System (ADS)

    Xueqin, Zhao; Fudong, Wang

    2017-04-01

    Broken or deformed speleothems can be used for paleoseismic research since they can be dated with radiometric techniques. But it rarely happens that speleologists are in caves just at the time of strong earthquake shocks, and there are only a few published cases of observations from caves visited immediately after an earthquake. So that it is really plausible that earthquakes break speleothem. Therefore, it needs more evidence of recent strong seismic to prove the way of speleoseismology. In order to provide more on-site data for speleoseismology, four underground cavities in the Longmenshan Fault Zone where a devastating Ms 8.0 earthquake has occurred at 2:28 pm, May 12, 2008, have been selected for speleoseismic analysis. We document damaged carbonate cave deposits by Wenchuan earthquake, including collapsed and broken stalactites, in-situ severed stalagmites and stalactites, collapsed bedrock ceilings, and strictures; and discuss the implications of damaged speleothems as possible earthquake recorder. The results show that massive damaged speleothem, as an effective method for paleoseismic, can compatible with strong earthquake.

  15. Lessons learned from the 2016 Kumamoto earthquake: Building damages and behavior of seismically isolated buildings

    NASA Astrophysics Data System (ADS)

    Morita, Keiko; Takayama, Mineo

    2017-10-01

    Powerful earthquakes stuck Kumamoto and Oita Prefectures in Kyushu, Japan. It began with the Magnitude 6.5 foreshock at 21:26 JST 14 April, followed by the Magnitude 7.3 mainshock at 1:25 JST 16 April, 2016. The sequence earthquakes also involved more than 1700 perceptible earthquakes as of 13 June. The entire sequence was named the 2016 Kumamoto earthquake by the Japan Meteorological Agency. Thousands of buildings and many roads were damaged, and landslides occurred. The Japanese building standard law is revised in 1981. Structural damages were concentrated on buildings constructed prior to 1981. The area of Mashiki and Southern Aso were most badly affected, especially wooden houses extremely damaged. In Japan, Prof. Hideyuki Tada (title at the time) undertook research on laminated rubber bearings in 1978, and put it into practical use in 1981. The single family house at Yachiyodai, Chiba Prefecture is completed in 1983, it's the first seismically isolated building which is installed laminated rubber bearings in Japan. Afterward, this system is gradually adopted to mainly office buildings, like a research laboratory, a hospital, a computer center and other offices. In the 1994 Northridge earthquake, the 1995 Kobe earthquake and 2011 Tohoku earthquake, seismically isolated buildings improve these good performances, and recently number of the buildings have increased, mainly high risk area of earthquakes. Many people believed that Kumamoto was a low risk area. But there were 24 seismically isolated buildings in Kumamoto Prefecture at the time. The seismically isolated buildings indicated excellent performances during the earthquakes. They protected people, buildings and other important facilities from damages caused by the earthquake. The purpose of this paper is to discuss lessons learned from the 2016 Kumamoto earthquake and behavior of seismically isolated buildings in the earthquake.

  16. Landslide Distribution, Damage and Land Use Interactions During the 2004 Chuetsu Earthquake

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.; Trandafir, A. C.; Kamai, T.

    2005-05-01

    A series of earthquakes struck Niigata Prefecture, Japan, on 23 October 2004 killing about 40 people and injuring about 3000. These earthquakes were characterized by a shallow focal depth (13 km) that generated strong levels of ground motion, resulting in extensive damage and thousands of landslides throughout the region. Most landslides on natural slopes occurred in the regional geological structure consisting of sandy siltstone and thin-bedded alternations of sandstone and siltstone. Earthquakes exacerbate such potential instabilities by the ground motion induced and the enhancement of pore water pressure in wet regoliths. The three strongest earthquakes occurred within a period of less than 40 minutes, and had sequential magnitudes (JMA) of 6.8, 6.3, and 6.5. The highest density of landslides (12/km2) was mapped within a 2.9 km radius of the M6.5 epicenter near Yamakoshi village; about 4 times higher density compared to the other epicenters located to the east and west. This higher density may be a consequence of the cumulative shaking effects associated with the two earlier earthquakes of M6.8 and 6.5, in addition to the topographic and geologic factors controlling the stability of the region. Roads, residential fills, agricultural terraces on hillslopes, and other earthworks increased the susceptibility of sites to slope failure. Numerous earthquake-induced failures in terraces and adjacent hillslopes around rice paddy fields occurred near Yamakoshi village. A housing development in Nagaoka city constructed on an old earthflow suffered from severe damage to fill slopes during the earthquake. Nearly saturated conditions in these deep fills together with poor drainage systems contributed to the landslide damages. Clearly, land use activities in rural and urban areas exacerbated the extent of earthquake-triggered landslides.

  17. Enhancement of global flood damage assessments using building material based vulnerability curves

    NASA Astrophysics Data System (ADS)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  18. Analysis of a school building damaged by the 2015 Ranau earthquake Malaysia

    NASA Astrophysics Data System (ADS)

    Takano, Shugo; Saito, Taiki

    2017-10-01

    On June 5th, 2015 a severe earthquake with a moment Magnitude of 6.0 occurred in Ranau, Malaysia. Depth of the epicenter is 10 km. Due to the earthquake, many facilities were damaged and 18 people were killed due to rockfalls [1]. Because the British Standard (BS) is adopted as a regulation for built buildings in Malaysia, the seismic force is not considered in the structural design. Therefore, the seismic resistance of Malaysian buildings is unclear. To secure the human life and building safety, it is important to grasp seismic resistance of the building. The objective of this study is to evaluate the seismic resistance of the existing buildings in Malaysia built by the British Standard. A school building that was damaged at the Ranau earthquake is selected as the target building. The building is a four story building and the ground floor is designed to be a parking space for the staff. The structural types are infill masonries where main frame is configured by reinforced concrete columns and beams and brick is installed inside the frame as walls. Analysis is performed using the STERA_3D software that is the software to analyze the seismic performance of buildings developed by one of the authors. Firstly, the natural period of the building is calculated and compared with the result of micro-tremor measurement. Secondly, the nonlinear push-over analysis was conducted to evaluate the horizontal load bearing capacity of the building. Thirdly, the earthquake response analysis was conducted using the time history acceleration data measured at the Ranau earthquake by the seismograph installed at Kota Kinabalu. By comparing the results of earthquake response analysis and the actual damage of the building, the reason that caused damage to the building is clarified.

  19. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    NASA Astrophysics Data System (ADS)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  20. Seismic damage to structures in the M s6.5 Ludian earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu

    2016-03-01

    On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.

  1. The 7.9 Denali Fault Earthquake: Damage to Structures and Lifelines

    NASA Astrophysics Data System (ADS)

    Cox, T.; Hreinsdöttir, S.; Larsen, C.; Estes, S.

    2002-12-01

    In the early afternoon of Sunday, November 3rd, the residents of many interior Alaska towns were shaken up by a magnitude 7.9 earthquake. The shaking lasted an average of three minutes and when it stopped, nearly 300 km of the Denali Fault had ruptured. In the hours that followed, the Alaska Earthquake Information Center (AEIC) fielded reports of structural damage from Cantwell to Tok and other earthquake effects as far away as Louisiana. Upon investigation, the most severe effects were found in the village of Mentasta where basic utilities were interrupted and the school and several houses suffered major damage. Almost 3000 reports submitted to a community internet intensity map show a maximum Mercalli intensity VIII along the eastern end of the rupture area. The Richardson and Parks Highways, two main north-south thoroughfares in Alaska, both buckled and split as a result of the fault rupture. Traffic was stopped for a few hours while repairs were made. Between the Richardson Highway the Tok Cutoff, a section of the Glenn Highway that connects Tok and Glennallen, the maximum offsets on the Denali Fault were observed. Designed to withstand a magnitude 8.5 earthquake at the Denali Fault crossing, the 800-mile long Trans-Alaska Pipeline suffered relatively minor damage. According to Alyeska Pipeline Service Company press releases, the pipeline was shut down shortly after the earthquake occurred. Repairs to pipeline supports and engineering evaluations began immediately thereafter, and oil began flowing through the pipeline Thursday, November 7th . Through it all, the AEIC has collected and archived many photographs, emails, and eyewitness accounts of those who experienced the destruction firsthand. We will detail the effects that the M7.9 Denali Fault earthquake had from near and far.

  2. Estimating shaking-induced casualties and building damage for global earthquake events: a proposed modelling approach

    USGS Publications Warehouse

    So, Emily; Spence, Robin

    2013-01-01

    Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.

  3. Shaking table test and dynamic response prediction on an earthquake-damaged RC building

    NASA Astrophysics Data System (ADS)

    Xianguo, Ye; Jiaru, Qian; Kangning, Li

    2004-12-01

    This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.

  4. Damage during the 6-24 February 2017 Ayvacık (Çanakkale) earthquake swarm

    NASA Astrophysics Data System (ADS)

    Livaoğlu, Ramazan; Ömer Timurağaoğlu, Mehmet; Serhatoğlu, Cavit; Sami Döven, Mahmud

    2018-03-01

    On 6 February 2017 an earthquake swarm began at the western end of Turkey. This was the first recorded swarm in the Çanakkale region since continuous seismic monitoring began in 1970. The number of earthquakes located increased during the following 10 days. This paper describes the output of a survey carried out in the earthquake-prone towns in the area of Ayvacık, Çanakkale, Turkey, in February 2017 after the earthquakes. Observations of traditional buildings were made on site at the rural area of Ayvacık. A description of the main structural features and their effects on the most frequently viewed damage modes were made according to in-plane, out-of-plane behavior of the wall regarding construction practice, connection type, etc. It was found that there were no convenient connections like cavity ties or sufficient mortar strength resulting in decreased and/or lack of lateral load bearing capacity of the wall. Furthermore, distribution maps of damaged/undamaged buildings according to villages, damage ratios, structures and damage levels are generated. Distribution maps showed that damage ratio of structures is higher in villages close to epicenter and decrease away from epicenter except Gülpınar, where past experiences and development level affect the construction quality.

  5. Automatic Blocked Roads Assessment after Earthquake Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Rastiveis, H.; Hosseini-Zirdoo, E.; Eslamizade, F.

    2015-12-01

    In 2010, an earthquake in the city of Port-au-Prince, Haiti, happened quite by chance an accident and killed over 300000 people. According to historical data such an earthquake has not occurred in the area. Unpredictability of earthquakes has necessitated the need for comprehensive mitigation efforts to minimize deaths and injuries. Blocked roads, caused by debris of destroyed buildings, may increase the difficulty of rescue activities. In this case, a damage map, which specifies blocked and unblocked roads, can be definitely helpful for a rescue team. In this paper, a novel method for providing destruction map based on pre-event vector map and high resolution world view II satellite images after earthquake, is presented. For this purpose, firstly in pre-processing step, image quality improvement and co-coordination of image and map are performed. Then, after extraction of texture descriptor from the image after quake and SVM classification, different terrains are detected in the image. Finally, considering the classification results, specifically objects belong to "debris" class, damage analysis are performed to estimate the damage percentage. In this case, in addition to the area objects in the "debris" class their shape should also be counted. The aforementioned process are performed on all the roads in the road layer.In this research, pre-event digital vector map and post-event high resolution satellite image, acquired by Worldview-2, of the city of Port-au-Prince, Haiti's capital, were used to evaluate the proposed method. The algorithm was executed on 1200×800 m2 of the data set, including 60 roads, and all the roads were labelled correctly. The visual examination have authenticated the abilities of this method for damage assessment of urban roads network after an earthquake.

  6. Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment

    NASA Astrophysics Data System (ADS)

    Legg, M.; Eguchi, R. T.

    2015-12-01

    The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and

  7. Earthquake damage history in Israel and its close surrounding - evaluation of spatial and temporal patterns

    NASA Astrophysics Data System (ADS)

    Zohar, Motti; Salamon, Amos; Rubin, Rehav

    2017-01-01

    Israel was hit by destructive earthquakes many times in the course of history. To properly understand the hazard and support effective preparedness towards future earthquakes, we examined the spatial and temporal distribution of the resulted damage. We described in detail our systematic approach to searching the available literature, collecting the data and screening the authenticity of that information. We used GIS (Geographic Information System) to map and evaluate the distribution of the damage and to search for recurring patterns. Overall, it is found that 186 localities were hit, 54 of them at least twice. We also found that Israel was affected by 4, 17, 8 and 2 damaging earthquakes that originated, respectively, from the southern, central, central-northern and northern parts of the Dead Sea Transform (DST). The temporal appearance of the northern earthquakes is clustered; the central earthquakes are more regular in time, whereas no damage from the north-central and the central quakes, with the exception of the year 363 earthquake, seems to have occurred south of the Dead Sea region. Analyzing the distribution of the damage, we realized that the number of the damage reports reflects only half of the incidents that actually happened, attesting to incompleteness of the historical catalogue. Jerusalem is the most reported city with 14 entries, followed by Akko (Acre), Tiberias, Nablus and Tyre with 8, 7, 7 and 6 reports, respectively. In general, localities in the Galilee and north of it suffered more severely than localities in central Israel with the exception of Nablus and the localities along the coastal plain of Israel, most probably due to local site effects. For the sake of hazard management, these observations should be considered for future planning and risk mitigation.

  8. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    USGS Publications Warehouse

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  9. A Rapid Public Health Needs Assessment Framework for after Major Earthquakes Using High-Resolution Satellite Imagery.

    PubMed

    Zhao, Jian; Ding, Fan; Wang, Zhe; Ren, Jinghuan; Zhao, Jing; Wang, Yeping; Tang, Xuefeng; Wang, Yong; Yao, Jianyi; Li, Qun

    2018-05-30

    Background : Earthquakes causing significant damage have occurred frequently in China, producing enormous health losses, damage to the environment and public health issues. Timely public health response is crucial to reduce mortality and morbidity and promote overall effectiveness of rescue efforts after a major earthquake. Methods : A rapid assessment framework was established based on GIS technology and high-resolution remote sensing images. A two-step casualties and injures estimation method was developed to evaluate health loss with great rapidity. Historical data and health resources information was reviewed to evaluate the damage condition of medical resources and public health issues. Results : The casualties and injures are estimated within a few hours after an earthquake. For the Wenchuan earthquake, which killed about 96,000 people and injured about 288,000, the estimation accuracy is about 77%. 242/294 (82.3%) of the medical existing institutions were severely damaged. About 40,000 tons of safe drinking water was needed every day to ensure basic living needs. The risk of water-borne and foodborne disease, respiratory and close contact transmission disease is high. For natural foci diseases, the high-risk area of schistosomiasis was mapped in Lushan County as an example. Finally, temporary settlements for victims of earthquake were mapped. Conclusions : High resolution Earth observation technology can provide a scientific basis for public health emergency management in the major disasters field, which will be of great significance in helping policy makers effectively improve health service ability and public health emergency management in prevention and control of infectious diseases and risk assessment.

  10. Sustained water-level changes caused by damage and compaction induced by teleseismic earthquakes

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Kurzon, Ittai; Doan, Mai-Linh; Lyakhovsky, Vladimir

    2016-07-01

    Sustained water-level increase and decrease induced by distant earthquakes were observed in two wells, Gomè 1 and Meizar 1 in Israel. The Gomè 1 well is located within a damage zone of a major fault zone, and Meizar 1 is relatively far from a fault. The monitored pressure change in both wells shows significant water-level oscillations and sustained water-level changes in response to the passage of the seismic waves. The sustained water-level changes include short-term (minutes) undrained behavior and longer-period (hours and days) drained behavior associated with groundwater flow. We model the short-term undrained response of water pressure oscillations and sustained change to the distant 2013 Mw 7.7 Balochistan earthquake by nonlinear elastic behavior of damaged rocks, accounting for small wave-induced compaction and damage accumulation. We suggest that the rocks are close to failure in both locations and strain oscillations produced by the passing seismic waves periodically push the rock above the yield cap, creating compaction when volumetric strain increases and damage when shear strain increases. Compaction increases pore pressure, whereas damage accumulation decreases pore pressure by fracture dilation. The dominant process depends on the properties of the rock. For highly damaged rocks, dilatancy is dominant and a sustained pressure decrease is expected. For low-damage rocks, compaction is the dominant process creating sustained water-level increase. We calculate damage and porosity changes associated to the Balochistan earthquake in both wells and quantify damage accumulation and compaction during the passage of the seismic waves.

  11. Irian Jaya earthquake and tsunami cause serious damage

    NASA Astrophysics Data System (ADS)

    Imamura, Fumihiko; Subandono, D.; Watson, G.; Moore, A.; Takahashi, T.; Matsutomi, H.; Hidayat, R.

    On February 17,1996, at 0559 UT, a major earthquake with moment magnitude (Mw) 7.9 killed 107 people and caused major damage at Biak Island, 30-40 km southwest of the earthquake's epicenter (Figures 1 and 2). A devastating tsunami washed away all of the houses at Korim, a small village located in a narrow bay facing directly towards the incoming wave, and it left behind clear evidence of sand erosion and deposition that indicated how far the tsunami advanced. An unexpectedly large tsunami run-up of 7.7 m was measured at Wardo in western Biak, which faces away from the primary tsunami source. This high run-up may have been caused by a local submarine landslide.

  12. An Account of Preliminary Landslide Damage and Losses Resulting from the February 28, 2001, Nisqually, Washington, Earthquake

    USGS Publications Warehouse

    Highland, Lynn M.

    2003-01-01

    The February 28, 2001, Nisqually, Washington, earthquake (Mw = 6.8) damaged an area of the northwestern United States that previously experienced two major historical earthquakes, in 1949 and in 1965. Preliminary estimates of direct monetary losses from damage due to earthquake-induced landslides is approximately $34.3 million. However, this figure does not include costs from damages to the elevated portion of the Alaskan Way Viaduct, a major highway through downtown Seattle, Washington that will be repaired or rebuilt, depending on the future decision of local and state authorities. There is much debate as to the cause of the damage to this viaduct with evaluations of cause ranging from earthquake shaking and liquefaction to lateral spreading to a combination of these effects. If the viaduct is included in the costs, the losses increase to $500+ million (if it is repaired) or to more than $1+ billion (if it is replaced). Preliminary estimate of losses due to all causes of earthquake damage is approximately $2 billion, which includes temporary repairs to the Alaskan Way Viaduct. These preliminary dollar figures will no doubt increase when plans and decisions regarding the Viaduct are completed.

  13. Comparison of the sand liquefaction estimated based on codes and practical earthquake damage phenomena

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Huang, Yahong

    2017-12-01

    Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.

  14. Damage Proxy Map from InSAR Coherence Applied to February 2011 M6.3 Christchurch Earthquake, 2011 M9.0 Tohoku-oki Earthquake, and 2011 Kirishima Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Yun, S.; Agram, P. S.; Fielding, E. J.; Simons, M.; Webb, F.; Tanaka, A.; Lundgren, P.; Owen, S. E.; Rosen, P. A.; Hensley, S.

    2011-12-01

    Under ARIA (Advanced Rapid Imaging and Analysis) project at JPL and Caltech, we developed a prototype algorithm to detect surface property change caused by natural or man-made damage using InSAR coherence change. The algorithm was tested on building demolition and construction sites in downtown Pasadena, California. The developed algorithm performed significantly better, producing 150 % higher signal-to-noise ratio, than a standard coherence change detection method. We applied the algorithm to February 2011 M6.3 Christchurch earthquake in New Zealand, 2011 M9.0 Tohoku-oki earthquake in Japan, and 2011 Kirishima volcano eruption in Kyushu, Japan, using ALOS PALSAR data. In Christchurch area we detected three different types of damage: liquefaction, building collapse, and landslide. The detected liquefaction damage is extensive in the eastern suburbs of Christchurch, showing Bexley as one of the most significantly affected areas as was reported in the media. Some places show sharp boundaries of liquefaction damage, indicating different type of ground materials that might have been formed by the meandering Avon River in the past. Well reported damaged buildings such as Christchurch Cathedral, Canterbury TV building, Pyne Gould building, and Cathedral of the Blessed Sacrament were detected by the algorithm. A landslide in Redcliffs was also clearly detected. These detected damage sites were confirmed with Google earth images provided by GeoEye. Larger-scale damage pattern also agrees well with the ground truth damage assessment map indicated with polygonal zones of 3 different damage levels, compiled by the government of New Zealand. The damage proxy map of Sendai area in Japan shows man-made structure damage due to the tsunami caused by the M9.0 Tohoku-oki earthquake. Long temporal baseline (~2.7 years) and volume scattering caused significant decorrelation in the farmlands and bush forest along the coastline. The 2011 Kirishima volcano eruption caused a lot of ash

  15. The Extraction of Post-Earthquake Building Damage Informatiom Based on Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wang, X.; Dou, A.; Wu, X.

    2018-04-01

    The seismic damage information of buildings extracted from remote sensing (RS) imagery is meaningful for supporting relief and effective reduction of losses caused by earthquake. Both traditional pixel-based and object-oriented methods have some shortcoming in extracting information of object. Pixel-based method can't make fully use of contextual information of objects. Object-oriented method faces problem that segmentation of image is not ideal, and the choice of feature space is difficult. In this paper, a new stratage is proposed which combines Convolution Neural Network (CNN) with imagery segmentation to extract building damage information from remote sensing imagery. the key idea of this method includes two steps. First to use CNN to predicate the probability of each pixel and then integrate the probability within each segmentation spot. The method is tested through extracting the collapsed building and uncollapsed building from the aerial image which is acquired in Longtoushan Town after Ms 6.5 Ludian County, Yunnan Province earthquake. The results show that the proposed method indicates its effectiveness in extracting damage information of buildings after earthquake.

  16. Rapid Damage Mapping for the 2015 M7.8 Gorkha Earthquake using Synthetic Aperture Radar Data from COSMO-SkyMed and ALOS-2 Satellites

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Hudnut, K. W.; Owen, S. E.; Webb, F.; Simons, M.; Macdonald, A.; Sacco, P.; Gurrola, E. M.; Manipon, G.; Liang, C.; Fielding, E. J.; Milillo, P.; Hua, H.; Coletta, A.

    2015-12-01

    The April 25, 2015 M7.8 Gorkha earthquake caused more than 8,000 fatalities and widespread building damage in central Nepal. Four days after the earthquake, the Italian Space Agency's (ASI's) COSMO-SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area. Nine days after the earthquake, the Japan Aerospace Exploration Agency's (JAXA's) ALOS-2 SAR satellite covered larger area. Using these radar observations, we rapidly produced damage proxy maps derived from temporal changes in Interferometric SAR (InSAR) coherence. These maps were qualitatively validated through comparison with independent damage analyses by National Geospatial-Intelligence Agency (NGA) and the UNITAR's (United Nations Institute for Training and Research's) Operational Satellite Applications Programme (UNOSAT), and based on our own visual inspection of DigitalGlobe's WorldView optical pre- vs. post-event imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.

  17. Faulting, damage, and intensity in the Canyondam earthquake of May 23, 2013

    USGS Publications Warehouse

    Chapman, K.; Gold, M.B.; Boatwright, John; Sipe, J.; Quitoriano, V.; Dreger, D.; Hardebeck, Jeanne

    2016-09-23

    On Thursday evening, May 23, 2013 (0347 May 24 UTC), a moment magnitude (Mw) = 5.7 earthquake occurred northeast of Canyondam, California. A two-person team of U.S. Geological Survey scientists went to the area to search for surface rupture and to canvass damage in the communities around Lake Almanor. While the causative fault had not been identified at the time of the field survey, surface rupture was expected to have occurred just south of Lake Almanor, approximately 2–4 kilometers south of the epicenter. No surface rupture was discovered. Felt intensity among the communities around Lake Almanor appeared to vary significantly. Lake Almanor West (LAW), Lake Almanor Country Club (LACC), and Hamilton Branch (HB) experienced Modified Mercalli Intensity (MMI) ≥7, whereas other communities around the lake experienced MMI ≤6; the maximum observed intensity was MMI 8, in LAW. Damage in the high intensity areas consisted of broken and collapsed chimneys, ruptured pipes, and some damage to foundations and to structural elements within houses. Although this shaking damage is not usually expected for an Mw 5.7 earthquake, the intensities at Lake Almanor Country Club correlate with the peak ground acceleration (38 percent g) and peak ground velocity (30 centimeters per second) recorded by the California Strong Motion Instrumentation Program accelerometer located at the nearby Lake Almanor Fire Station. The intensity distribution for the three hardest hit areas (LAW, LACC, and HB) appears to increase as the azimuth from epicenter to the intensity sites approaches the fault strike. The small communities of Almanor and Prattville on the southwestern shore of Lake Almanor experienced somewhat lower intensities. The town of Canyondam experienced a lower intensity as well, despite its location up-dip of the earthquake rupture. This report contains information on the earthquake itself, the search for surface rupture, and the damage we observed and compiled from other sources. 

  18. Damage in the town of Miahuatlan by Oaxaca earthquake of September 30, 1999

    NASA Astrophysics Data System (ADS)

    Cuenca, J.; Bernal, I.

    2007-05-01

    Instituto de Ingeniería Coordinación de Ingeniería Sismológica Universidad Nacional Autónoma de México jccsa@pumas.ingen.unam.mx On September 30, 1999 (11:31 local time) a 7.4-magnitude earthquake occurred along the coast of the southern state of Oaxaca (by its proximity called Puerto Escondido earthquake) resulting of subduction of the Cocos plate under the North American continental plate. Reported fatalities 30 people and much more injured. The intense movement felt by people in Mexico City with great scare, caused considerable damage in churches of Oaxaca, as religious representative monuments. Its behavior was some stronger and better earthquake resistant characteristics. Very much houses made of adobe widely used in a poorest state were damaged. Many heavy parapets fell over the street. From 440 km to Mexico City (with light damage) was registered maximum horizontal acceleration of 28 cm/s2, also near to 137 km from the epicenter with 196 cm/s2 on Oaxaca City, were the damage was concentrated, with more than 260 historical building. Constructions moderns were not damaged. To south of Oaxaca the rural town of Miahuatlan was damaged in your adobe houses and some of them destroyed with wood roofs supporting clay tiles, your principal church suffer the collapse of the tower in the side left and some failures in the interior of this church. The fallen superior part of its left tower was projected toward the left side and the other tower of right side not collapsed. Crack in the walls bordering the base of the towers (over the ceiling) as a form of stresses acting along to small walls with cracks in X form (showing effects in this walls to the action of inverted pendulum), as indication of the movement on the four directions. Also was observed some cracks in the small arcs of the towers and in a very high parapet upon of the entrance in the upper in the front of the church without cracks or collapse. It is showed much of the failure in adobe houses

  19. The Benefits and Limitations of Crowdsourced Information for Rapid Damage Assessment of Global Earthquakes

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Landès, M.; Roussel, F.

    2017-12-01

    The Internet has fastened the collection of felt reports and macroseismic data after global earthquakes. At the European-Mediterranean Seismological Centre (EMSC), where the traditional online questionnaires have been replace by thumbnail-based questionnaires, an average of half of the reports are collected within 10 minutes of an earthquake's occurrence. In regions where EMSC is well identified this goes down to 5 min. The user simply specifies the thumbnail corresponding to observed effects erasing languages barriers and improving collection via small smartphone screens. A previous study has shown that EMSC data is well correlated with "Did You Feel It" (DYFI) data and 3 independent, manually collected datasets. The efficiency and rapidity of felt report collection through thumbnail-based questionnaires does not necessarily mean that they offer a complete picture of the situation for all intensities values, especially the higher ones. There are several potential limitations. Demographics probably play a role but so might eyewitnesses' behaviors: it is probably not their priority to report when their own safety and that of their loved ones is at stake. We propose to test this hypothesis on EMSC felt reports and to extend the study to LastQuake smartphone application uses. LastQuake is a free smartphone app providing very rapid information on felt earthquakes. There are currently 210 000 active users around the world covering almost every country except for a few ones in Sub-Saharan Africa. Along with felt reports we also analyze the characteristics of LastQuake app launches. For both composite datasets created from 108 earthquakes, we analyze the rapidity of eyewitnesses' reaction and how it changes with intensity values and surmise how they reflect different types of behaviors. We will show the intrinsic limitations of crowdsourced information for rapid situation awareness. More importantly, we will show in which cases the lack of crowdsourced information could

  20. A media-based assessment of damage and ground motions from the January 26th, 2001 M 7.6 Bhuj, India earthquake

    USGS Publications Warehouse

    Hough, S.E.; Martin, S.; Bilham, R.; Atkinson, G.M.

    2003-01-01

    We compiled available news and internet accounts of damage and other effects from the 26th January, 2001, Bhuj earthquake, and interpreted them to obtain modified Mercalli intensities at over 200 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. The maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated towards the western edge of the inferred fault, consistent with western directivity. Significant sediment-induced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium such as mud flats and salt pans. In addition we use fault rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0-1000 km. We then convert the predicted hard rock ground motion parameters to MMI using a relationship (derived from internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1-2 units than those estimated from news accounts. This discrepancy is generally consistent with the expected effect of sediment response, but it could also reflect other factors such as a tendency for media accounts to focus on the most dramatic damage, rather than the average effects. Our modeling results also suggest, however, that the Bhuj earthquake generated more high-frequency shaking than is expected for earthquakes of similar magnitude in California, and may therefore have been especially damaging.

  1. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    NASA Astrophysics Data System (ADS)

    Güney, D.; Aydin, E.; Öztürk, B.

    2015-07-01

    On March 8th, 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23rd, 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9th, 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings.

  2. Assessment of Stone Columns as a Mitigation Technique of Liquefaction-Induced Effects during Italian Earthquakes (May 2012)

    PubMed Central

    Forcellini, Davide; Tarantino, Angelo Marcello

    2014-01-01

    Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012). The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading. PMID:24592148

  3. Assessment of stone columns as a mitigation technique of liquefaction-induced effects during Italian earthquakes (May 2012).

    PubMed

    Forcellini, Davide; Tarantino, Angelo Marcello

    2014-01-01

    Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012). The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading.

  4. Field investigation on severely damaged aseismic buildings in 2014 Ludian earthquake

    NASA Astrophysics Data System (ADS)

    Lin, Xuchuan; Zhang, Haoyu; Chen, Hongfu; Chen, Hao; Lin, Junqi

    2015-03-01

    The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately after the occurrence of the earthquake. Severely damaged aseismic buildings, which were basically observed in the downtown of Longtoushan Town, were carefully examined one by one with the aim to improve design codes. This paper summarizes the damage observed to the investigated aseismic buildings in both the structural and local levels. A common failure mode was observed that most of the aseismic buildings, such as RC frame structures and confined masonry structures, were similarly destroyed by severe damage or complete collapse of the first story. The related strong ground motion, which was recorded at the nearby station, had a short duration of less than 20 s but a very large PGA up to 1.0 g. The RC frames based on the new design codes still failed to achieve the design target for "strong column, weak beam". Typical local failure details, which were related to the interaction between RC columns and infill walls and between constructional columns and masonry walls, are summarized with preliminary analyses.

  5. Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode

    NASA Astrophysics Data System (ADS)

    Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun

    2011-12-01

    An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.

  6. The TRIPOD e-learning Platform for the Training of Earthquake Safety Assessment

    NASA Astrophysics Data System (ADS)

    Coppari, S.; Di Pasquale, G.; Goretti, A.; Papa, F.; Papa, S.; Paoli, G.; Pizza, A. G.; Severino, M.

    2008-07-01

    The paper summarizes the results of the in progress EU Project titled TRIPOD (Training Civil Engineers on Post-Earthquake Safety Assessment of Damaged Buildings), funded under the Leonardo Da Vinci program. The main theme of the project is the development of a methodology and a learning platform for the training of technicians involved in post-earthquake building safety inspections. In the event of a catastrophic earthquake, emergency building inspections constitute a major undertaking with severe social impact. Given the inevitable chaotic conditions and the urgent need of a great number of specialized individuals to carry out inspections, past experience indicates that inspection teams are often formed in an adhoc manner, under stressful conditions, at a varying levels of technical expertise and experience, sometime impairing the reliability and consistency of the inspection results. Furthermore each Country has its own building damage and safety assessment methodology, developed according to its experience, laws, building technology and seismicity. This holds also for the partners participating to the project (Greece, Italy, Turkey, Cyprus), that all come from seismically sensitive Mediterranean countries. The project aims at alleviating the above shortcomings by designing and developing a training methodology and e-platform, forming a complete training program targeted at inspection engineers, specialized personnel and civil protection agencies. The e-learning platform will provide flexible and friendly authoring mechanisms, self-teaching and assessment capabilities, course and trainee management, etc. Courses will be also made available as stand-alone multimedia applications on CD and in the form of a complete pocket handbook. Moreover the project will offer the possibility of upgrading different experiences and practices: a first step towards the harmonization of methodologies and tools of different Countries sharing similar problems. Finally, through wide

  7. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  8. Use of Ground Motion Simulations of a Historical Earthquake for the Assessment of Past and Future Urban Risks

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Çelik, A.; karimzadeh Naghshineh, S.; Askan, A.

    2017-12-01

    Erzincan city located in the Eastern part of Turkey at the conjunction of three active faults is one of the most hazardous regions in the world. In addition to several historical events, this city has experienced one of the largest earthquakes during the last century: The 27 December 1939 (Ms=8.0) event. With limited knowledge of the tectonic structure by then, the city center was relocated to the North after the 1939 earthquake by almost 5km, indeed closer to the existing major strike slip fault. This decision coupled with poor construction technologies, led to severe damage during a later event that occurred on 13 March 1992 (Mw=6.6). The 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms whereas the 1992 event was only recorded by 3 nearby stations. There are empirical isoseismal maps from both events indicating indirectly the spatial distribution of the damage. In this study, we focus on this region and present a multidisciplinary approach to discuss the different components of uncertainties involved in the assessment and mitigation of seismic risk in urban areas. For this initial attempt, ground motion simulation of the 1939 event is performed to obtain the anticipated ground motions and shaking intensities. Using these quantified results along with the spatial distribution of the observed damage, the relocation decision is assessed and suggestions are provided for future large earthquakes to minimize potential earthquake risks.

  9. Application of τc*Pd in earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, Po-Lun; Lin, Ting-Li; Wu, Yih-Min

    2015-03-01

    Rapid assessment of damage potential and size of an earthquake at the station is highly demanded for onsite earthquake early warning. We study the application of τc*Pd for its estimation on the earthquake size using 123 events recorded by the borehole stations of KiK-net in Japan. The new type of earthquake size determined by τc*Pd is more related to the damage potential. We find that τc*Pd provides another parameter to measure the size of earthquake and the threshold to warn strong ground motion.

  10. Injection-induced earthquakes

    USGS Publications Warehouse

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  11. Assessing the location and magnitude of the 20 October 1870 Charlevoix, Quebec, earthquake

    USGS Publications Warehouse

    Ebel, John E.; Dupuy, Megan; Bakun, William H.

    2013-01-01

    The Charlevoix, Quebec, earthquake of 20 October 1870 caused damage to several towns in Quebec and was felt throughout much of southeastern Canada and along the U.S. Atlantic seaboard from Maine to Maryland. Site‐specific damage and felt reports from Canadian and U.S. cities and towns were used in analyses of the location and magnitude of the earthquake. The macroseismic center of the earthquake was very close to Baie‐St‐Paul, where the greatest damage was reported, and the intensity magnitude MI was found to be 5.8, with a 95% probability range of 5.5–6.0. After corrections for epicentral‐distance differences are applied, the modified Mercalli intensity (MMI) data for the 1870 earthquake and for the moment magnitude M 6.2 Charlevoix earthquake of 1925 at common sites show that on average, the MMI readings are about 0.8 intensity units smaller for the 1870 earthquake than for the 1925 earthquake, suggesting that the 1870 earthquake was MI 5.7. A similar comparison of the MMI data for the 1870 earthquake with the corresponding data for the M 5.9 1988 Saguenay event suggests that the 1870 earthquake was MI 6.0. These analyses all suggest that the magnitude of the 1870 Charlevoix earthquake is between MI 5.5 and MI 6.0, with a best estimate of MI 5.8.

  12. Repair of earthquake-damaged bridge columns with interlocking spirals and fractured bars.

    DOT National Transportation Integrated Search

    2014-07-01

    During earthquakes, reinforced concrete (RC) bridge columns may experience different levels of damage such as cracking, spalling, or crushing of concrete and yielding, buckling, or fracture of reinforcing bars. Although several repair options exist f...

  13. The Key Role of Eyewitnesses in Rapid Impact Assessment of Global Earthquake

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.; Etivant, C.; Frobert, L.; Godey, S.

    2014-12-01

    Uncertainties in rapid impact assessments of global earthquakes are intrinsically large because they rely on 3 main elements (ground motion prediction models, building stock inventory and related vulnerability) which values and/or spatial variations are poorly constrained. Furthermore, variations of hypocentral location and magnitude within their respective uncertainty domain can lead to significantly different shaking level for centers of population and change the scope of the disaster. We present the strategy and methods implemented at the Euro-Med Seismological Centre (EMSC) to rapidly collect in-situ observations on earthquake effects from eyewitnesses for reducing uncertainties of rapid earthquake impact assessment. It comprises crowdsourced information (online questionnaires, pics) as well as information derived from real time analysis of web traffic (flashourcing technique), and more recently deployment of QCN (Quake Catcher Network) low cost sensors. We underline the importance of merging results of different methods to improve performances and reliability of collected data.We try to better understand and respond to public demands and expectations after earthquakes through improved information services and diversification of information tools (social networks, smartphone app., browsers adds-on…), which, in turn, drive more eyewitnesses to our services and improve data collection. We will notably present our LastQuake Twitter feed (Quakebot) and smartphone applications (IOs and android) which only report earthquakes that matter for the public and authorities, i.e. felt and damaging earthquakes identified thanks to citizen generated information.

  14. East Meets West: An Earthquake in India Helps Hazard Assessment in the Central United States

    USGS Publications Warehouse

    ,

    2002-01-01

    Although geographically distant, the State of Gujarat in India bears many geological similarities to the Mississippi Valley in the Central United States. The Mississippi Valley contains the New Madrid seismic zone that, during the winter of 1811-1812, produced the three largest historical earthquakes ever in the continental United States and remains the most seismically active region east of the Rocky Mountains. Large damaging earthquakes are rare in ‘intraplate’ settings like New Madrid and Gujarat, far from the boundaries of the world’s great tectonic plates. Long-lasting evidence left by these earthquakes is subtle (fig. 1). Thus, each intraplate earthquake provides unique opportunities to make huge advances in our ability to assess and understand the hazards posed by such events.

  15. Re-examining the cause of the "Damage Belt" during the 1995 Kobe Earthquake

    NASA Astrophysics Data System (ADS)

    Matsushima, S.; Miyake, H.

    2017-12-01

    The 1995 Kobe earthquake caused devastating disaster which killed 6434 people and collapsed more than 1 million houses. The heavy damage was concentrated in a belt-like area, which was called the "Damage Belt". The cause of the "Damage Belt" was investigated by various researchers and it was found that it was a result of "The Basin-Edge Effect", which is the constructive interference of the direct S-wave with the basin-induced diffracted Rayleigh waves (Kawase, 1996). Matsushima and Kawase (2009) estimated the rupture model of the 1995 Kobe Earthquake by using 3-D reciprocal Green's functions and searching for the best fitting case by grid-search technique assuming plural rectangular strong motion generation areas (SMGAs) and succeeded to reproduce the high PGV area that corresponds to the "Damage Belt". In this study, we re-examine the cause of the "Damage Belt" by combining the estimated rupture model with the up-to-date 3-D velocity structure. The velocity structure of whole Japan has been modeled and is being modified occasionally by the Headquarters for Earthquake Research Promotion using the geological surveys conducted thoroughly by local governments as well as by large research projects since 1995. The very detailed velocity structure of the Osaka basin has been modeled by the Geological Survey of Japan, AIST (Horikawa et al., 2003; Sekiguchi et al., 2008). The aim of this study is to take in account of the different amplification characteristics due to the different velocity structure of the sediment from the seismic bedrock to the surface in Kobe, and investigate its effect to the results of the distribution of PGVs of the simulated ground motions.

  16. The key role of eyewitnesses in rapid earthquake impact assessment

    NASA Astrophysics Data System (ADS)

    Bossu, Rémy; Steed, Robert; Mazet-Roux, Gilles; Roussel, Frédéric; Etivant, Caroline

    2014-05-01

    Uncertainties in rapid earthquake impact models are intrinsically large even when excluding potential indirect losses (fires, landslides, tsunami…). The reason is that they are based on several factors which are themselves difficult to constrain, such as the geographical distribution of shaking intensity, building type inventory and vulnerability functions. The difficulties can be illustrated by two boundary cases. For moderate (around M6) earthquakes, the size of potential damage zone and the epicentral location uncertainty share comparable dimension of about 10-15km. When such an earthquake strikes close to an urban area, like in 1999, in Athens (M5.9), earthquake location uncertainties alone can lead to dramatically different impact scenario. Furthermore, for moderate magnitude, the overall impact is often controlled by individual accidents, like in 2002 in Molise, Italy (M5.7), in Bingol, Turkey (M6.4) in 2003 or in Christchurch, New Zealand (M6.3) where respectively 23 out of 30, 84 out of 176 and 115 out of 185 of the causalities perished in a single building failure. Contrastingly, for major earthquakes (M>7), the point source approximation is not valid anymore, and impact assessment requires knowing exactly where the seismic rupture took place, whether it was unilateral, bilateral etc.… and this information is not readily available directly after the earthquake's occurrence. In-situ observations of actual impact provided by eyewitnesses can dramatically reduce impact models uncertainties. We will present the overall strategy developed at the EMSC which comprises of crowdsourcing and flashsourcing techniques, the development of citizen operated seismic networks, and the use of social networks to engage with eyewitnesses within minutes of an earthquake occurrence. For instance, testimonies are collected through online questionnaires available in 32 languages and automatically processed in maps of effects. Geo-located pictures are collected and then

  17. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    PubMed Central

    Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-01-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam. PMID:29657755

  18. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  19. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China.

    PubMed

    Zhao, Bo; Wang, Yun-Sheng; Luo, Yong-Hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  20. Archaeoseismology in Algeria: observed damages related to probable past earthquakes on archaeological remains on Roman sites (Tel Atlas of Algeria)

    NASA Astrophysics Data System (ADS)

    Roumane, Kahina; Ayadi, Abdelhakim

    2017-04-01

    The seismological catalogue for Algeria exhibits significant lack for the period before 1365. Some attempts led to retrieve ancient earthquakes evidenced by historical documents and achieves. Archaeoseismology allows a study of earthquakes that have affected archaeological sites, based on the analysis of damage observed on remains. We have focused on the Antiquity period that include Roman, Vandal and Byzantine period from B.C 146 to A.D. 533. This will contribute significantly to the understanding of seismic hazard of the Tell Atlas region known as an earthquake prone area. The Tell Atlas (Algeria) experienced during its history many disastrous earthquakes their impacts are graved on landscape and archaeological monuments. On Roman sites such, Lambaesis (Lambèse), Thamugadi (Timgad) Thibilis (Salaoua Announa) or Thevest (Tebessa), damage were observed on monuments and remains related to seismic events following strong shacking or other ground deformation (subsidence, landslide). Examples of observed damage and disorders on several Roman sites are presented as a contribution to Archaeoseismology in Algeria based on effects of earthquakes on ancient structures and monuments. Keywords : Archaeoseismology. Lambaesis. Drop columns. Aspecelium. Ancient earthquakes

  1. Social tension as precursor of large damaging earthquake: legend or reality?

    NASA Astrophysics Data System (ADS)

    Molchanov, O.

    2008-11-01

    Using case study of earthquake (EQ) activity and war conflicts in Caucasus during 1975 2002 time interval and correlation analysis of global distribution of damaging EQs and war-related social tension during 1901 2005 period we conclude:

    • There is a statistically reliable increase of social tension several years (or several months in case study) before damaging EQs,
    • There is evident decrease of social tension several years after damaging EQs, probably due to society consolidation,
    • Preseismic effect is absent for the large EQs in unpopulated areas,
    • There is some factual background for legendary belief in Almighty retribution for social abnormal behavior.

  2. On the modal characteristics of damaging structures subjected to earthquakes

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Antonella; Nigro, Domenico

    2015-04-01

    Structural Health Monitoring, especially for structures located in seismic prone areas, has assumed a meaning of great importance in last years, for the possibility to make a more objective and more rapid estimation of the damage occurred on buildings after a seismic event. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation based on the variation of the dynamic behaviour of structures under seismic loads. The NDE methods for damage detection and evaluation can be classified into four levels, according to the specific criteria provided by the Rytter. Each level of identification is correlated with specific information related to monitored structure. In fact, by increasing the level it is possible to obtain more information about the state of the health of the structures, to know if damage occurred on the structures, to quantify and localize the damage and to evaluate its impact on the monitored structure. Several authors discussed on the possibility to use the mode shape curvature to localize damage on structural elements, for example, by applying the curvature-based method to frequency response function instead of mode shape, and demonstrated the potential of this approach by considering real data. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. In earthquake engineering field, the recourse to experimental research is necessary to understand the mechanical behaviour of the various structural and non-structural components. In this paper a new methodology to detect and localize a possible damage occurred on a framed structure after an earthquake is presented and discussed. The main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by 3, 5 and 8 floors with different geometric configurations and designed for gravity loads only

  3. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  4. Research on Optimal Observation Scale for Damaged Buildings after Earthquake Based on Optimal Feature Space

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.

    2018-04-01

    A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.

  5. Earthquake Hazard Analysis Methods: A Review

    NASA Astrophysics Data System (ADS)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  6. The TRIPOD e-learning Platform for the Training of Earthquake Safety Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppari, S.; Di Pasquale, G.; Goretti, A.

    2008-07-08

    The paper summarizes the results of the in progress EU Project titled TRIPOD (Training Civil Engineers on Post-Earthquake Safety Assessment of Damaged Buildings), funded under the Leonardo Da Vinci program. The main theme of the project is the development of a methodology and a learning platform for the training of technicians involved in post-earthquake building safety inspections. In the event of a catastrophic earthquake, emergency building inspections constitute a major undertaking with severe social impact. Given the inevitable chaotic conditions and the urgent need of a great number of specialized individuals to carry out inspections, past experience indicates that inspectionmore » teams are often formed in an adhoc manner, under stressful conditions, at a varying levels of technical expertise and experience, sometime impairing the reliability and consistency of the inspection results. Furthermore each Country has its own building damage and safety assessment methodology, developed according to its experience, laws, building technology and seismicity. This holds also for the partners participating to the project (Greece, Italy, Turkey, Cyprus), that all come from seismically sensitive Mediterranean countries. The project aims at alleviating the above shortcomings by designing and developing a training methodology and e-platform, forming a complete training program targeted at inspection engineers, specialized personnel and civil protection agencies. The e-learning platform will provide flexible and friendly authoring mechanisms, self-teaching and assessment capabilities, course and trainee management, etc. Courses will be also made available as stand-alone multimedia applications on CD and in the form of a complete pocket handbook. Moreover the project will offer the possibility of upgrading different experiences and practices: a first step towards the harmonization of methodologies and tools of different Countries sharing similar problems. Finally, through

  7. Spatial earthquake hazard assessment of Evansville, Indiana

    USGS Publications Warehouse

    Rockaway, T.D.; Frost, J.D.; Eggert, D.L.; Luna, R.

    1997-01-01

    The earthquake hazard has been evaluated for a 150-square-kilometer area around Evansville, Indiana. GIS-QUAKE, a system that combines liquefaction and ground motion analysis routines with site-specific geological, geotechnical, and seismological information, was used for the analysis. The hazard potential was determined by using 586 SPT borings, 27 CPT sounding, 39 shear-wave velocity profiles and synthesized acceleration records for body-wave magnitude 6.5 and 7.3 mid-continental earthquakes, occurring at distances of 50 km and 250 km, respectively. The results of the GIS-QUAKE hazard analyses for Evansville identify areas with a high hazard potential that had not previously been identified in earthquake zonation studies. The Pigeon Creek area specifically is identified as having significant potential for liquefaction-induced damage. Damage as a result of ground motion amplification is determined to be a moderate concern throughout the area. Differences in the findings of this zonation study and previous work are attributed to the size and range of the database, the hazard evaluation methodologies, and the geostatistical interpolation techniques used to estimate the hazard potential. Further, assumptions regarding the groundwater elevations made in previous studies are also considered to have had a significant effect on the results.

  8. PAGER - Rapid Assessment of an Earthquake's Impact

    USGS Publications Warehouse

    Earle, Paul S.; Wald, David J.

    2007-01-01

    PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system to rapidly assess the number of people and regions exposed to severe shaking by an earthquake, and inform emergency responders, government agencies, and the media to the scope of the potential disaster. PAGER monitors the U.S. Geological Survey?s near real-time U.S. and global earthquake detections and automatically identifies events that are of societal importance, well in advance of ground-truth or news accounts.

  9. Damage instability and Earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.

    2017-12-01

    Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.

  10. Earthquakes; January-February 1982

    USGS Publications Warehouse

    Person, W.J.

    1982-01-01

    In the United States, a number of earthquakes occurred, but only minor damage was reported. Arkansas experienced a swarm of earthquakes beginning on January 12. Canada experienced one of its strongest earthquakes in a number of years on January 9; this earthquake caused slight damage in Maine. 

  11. Rapid damage mapping for the 2015 M7.8 Gorkha earthquake using synthetic aperture radar data from COSMO-SkyMed and ALOS-2 satellites

    USGS Publications Warehouse

    Yun, Sang-Ho; Hudnut, Kenneth W.; Owen, Susan; Webb, Frank; Simons, Mark; Sacco, Patrizia; Gurrola, Eric; Manipon, Gerald; Liang, Cunren; Fielding, Eric; Milillo, Pietro; Hua, Hook; Coletta, Alessandro

    2015-01-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake caused more than 8000 fatalities and widespread building damage in central Nepal. The Italian Space Agency’s COSMO–SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area four days after the earthquake and the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite-2 SAR satellite for larger area nine days after the mainshock. We used these radar observations and rapidly produced damage proxy maps (DPMs) derived from temporal changes in Interferometric SAR coherence. Our DPMs were qualitatively validated through comparison with independent damage analyses by the National Geospatial-Intelligence Agency and the United Nations Institute for Training and Research’s United Nations Operational Satellite Applications Programme, and based on our own visual inspection of DigitalGlobe’s WorldView optical pre- versus postevent imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.

  12. Simulation of earthquake caused building damages for the development of fast reconnaissance techniques

    NASA Astrophysics Data System (ADS)

    Schweier, C.; Markus, M.; Steinle, E.

    2004-04-01

    Catastrophic events like strong earthquakes can cause big losses in life and economic values. An increase in the efficiency of reconnaissance techniques could help to reduce the losses in life as many victims die after and not during the event. A basic prerequisite to improve the rescue teams' work is an improved planning of the measures. This can only be done on the basis of reliable and detailed information about the actual situation in the affected regions. Therefore, a bundle of projects at Karlsruhe university aim at the development of a tool for fast information retrieval after strong earthquakes. The focus is on urban areas as the most losses occur there. In this paper the approach for a damage analysis of buildings will be presented. It consists of an automatic methodology to model buildings in three dimensions, a comparison of pre- and post-event models to detect changes and a subsequent classification of the changes into damage types. The process is based on information extraction from airborne laserscanning data, i.e. digital surface models (DSM) acquired through scanning of an area with pulsed laser light. To date, there are no laserscanning derived DSMs available to the authors that were taken of areas that suffered damages from earthquakes. Therefore, it was necessary to simulate such data for the development of the damage detection methodology. In this paper two different methodologies used for simulating the data will be presented. The first method is to create CAD models of undamaged buildings based on their construction plans and alter them artificially in such a way as if they had suffered serious damage. Then, a laserscanning data set is simulated based on these models which can be compared with real laserscanning data acquired of the buildings (in intact state). The other approach is to use measurements of actual damaged buildings and simulate their intact state. It is possible to model the geometrical structure of these damaged buildings based

  13. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toprak, A. Emre; Guelay, F. Guelten; Ruge, Peter

    2008-07-08

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performedmore » on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 mx7.80 m = 127.90 m{sup 2} with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is

  14. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    NASA Astrophysics Data System (ADS)

    Toprak, A. Emre; Gülay, F. Gülten; Ruge, Peter

    2008-07-01

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 m×7.80 m = 127.90 m2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher

  15. Earthquakes; January-February, 1979

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    The first major earthquake (magnitude 7.0 to 7.9) of the year struck in southeastern Alaska in a sparsely populated area on February 28. On January 16, Iran experienced the first destructive earthquake of the year causing a number of casualties and considerable damage. Peru was hit by a destructive earthquake on February 16 that left casualties and damage. A number of earthquakes were experienced in parts of the Untied States, but only minor damage was reported. 

  16. Evaluation of long carbon fiber reinforced concrete to mitigate earthquake damage of infrastructure components.

    DOT National Transportation Integrated Search

    2013-06-01

    The proposed study involves investigating long carbon fiber reinforced concrete as a method of mitigating earthquake damage to : bridges and other infrastructure components. Long carbon fiber reinforced concrete has demonstrated significant resistanc...

  17. Damage from the El Mayor-Cucapah earthquake, April 2010: Why society cannot afford to ignore seismic risks to agricultural regions

    NASA Astrophysics Data System (ADS)

    Stenner, H. D.; Mathieson, E. L.; Okubo, S.; Anderson, R.; Rodriguez C., M. A.

    2010-12-01

    The M7.2 El Mayor-Cucapah earthquake of April 4, 2010 in Mexico’s Baja California caused extensive damage to the agricultural area of Mexicali Valley. The damage included wide-spread liquefaction and lateral spreading which destroyed or damaged irrigation canals. Without water, wheat, alfalfa, and other crops were lost. Fields were cut by fissures and partially buried by massive sand blows. Regional tilting from the earthquake was a serious issue for the gravity-controlled irrigation system. Ruptured canals and groundwater from sand blows flooded fields, roads, and towns. Flooding further damaged crops and brought contamination with it. Fissures and scarps through farm communities cracked buildings; ruptured water, sewer, and other pipelines; and made roads temporarily difficult to pass. Economically, farmers, seasonal farm workers, and agricultural suppliers were affected; reducing their ability to consume the goods and services of businesses unrelated to agriculture. Similar damage was observed in earlier earthquakes over the past 100 years. Society quickly forgets how the earth responds to strong shaking. We hope to provide a vivid portrait of this agricultural disaster so that other farming communities prone to strong seismic shaking may visualize what can happen from their own inevitable future earthquake. Fissure and sand blows southeast of Cucapah, Baja California, April 16, 2010. Heavily damaged irrigation canal northwest of Zacamoto, Baja California, April 15, 2010.

  18. Earthquakes, May-June 1981

    USGS Publications Warehouse

    Person, W.J.

    1981-01-01

    The months of May and June were somewhat quiet, seismically speaking. There was one major earthquake (7.0-7.9) off the west coast of South Island, New Zealand. The most destructive earthquake during this reporting period was in southern Iran on June 11 which caused fatalities and extensive damage. Peru also experienced a destructive earthquake on June 22 which caused fatalities and damage. In the United States, a number of earthquakes were experienced, but none caused significant damage

  19. Earthquakes, May-June 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    In the United States, a magnitude 5.8 earthquake in southern California on June 28 killed two people and caused considerable damage. Strong earthquakes hit Alaska on May 1 and May 30; the May 1 earthquake caused some minor damage

  20. Correlations between ground motion and building damage. Engineering intensity scale applied to the San Fernando earthquake of February 1971

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, D.; Kintzer, F.C.

    1977-11-01

    The correlation between ground motion and building damage was investigated for the San Fernando earthquake of 1971. A series of iso-intensity maps was compiled to summarize the ground motion in terms of the Blume Engineering Intensity Scale (EIS). This involved the analysis of ground motion records from 62 stations in the Los Angeles area. Damage information for low-rise buildings was obtained in the form of records of loans granted by the Small Business Administration to repair earthquake damage. High-rise damage evaluations were based on direct inquiry and building inspection. Damage factors (ratio of damage repair cost to building value) weremore » calculated and summarized on contour maps. A statistical study was then undertaken to determine relationships between ground motion and damage factor. Several parameters for ground motion were considered and evaluated by means of correlation coefficients.« less

  1. The deadly Morelos-Puebla, Mexico Intraslab Earthquake of 19 September 2017 (Mw7.1): Was the Earthquake Unexpected and Were the Ground Motions and Damage Pattern in Mexico City Abnormal?

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Cruz-Atienza, V. M.; Ordaz, M.; Hjorleifsdottir, V.; Iglesias, A.

    2017-12-01

    On 19 September 2017, thirty two years after the 1985 Michoacan interplate earthquake (Mw8.0), the city was once again devastated but this time by a Mw7.1 intraslab earthquake. The 2017 earthquake was located near the border of the states of Morelos and Puebla (18.410N, -98.710E; H=57 km), to SSE of Mexico City, at a hypocentral distance of about 127 km. It caused great panic in Mexico City, collapse of 44 buildings, and severely damaged many others. More than 200 persons were killed in the city. It was the second most destructive earthquake in the history of Mexico City, next only to the 1985 earthquake. A strong-motion station at CU located on basalt lava flows on main campus UNAM has been in continuous operation since 1964. PGA of 59 gal at CU during the 2017 earthquake is the largest ever, two times greater than that recorded during the 1985 earthquake (29 gal). The 2017 earthquake raised questions that are critical in fathoming the seismic vulnerability of the city and in its reconstruction. Was such an intraslab earthquake (Mw 7 at a hypocentral distance of 127 km) unexpected? Were the recorded ground motions in the city unusually high for such an earthquake? Why did the damage pattern during the earthquake differ from that observed during the 1985 earthquake? The earthquake was the closest M>5 intraslab earthquake to Mexico City ever recorded. However, Mw 5.9 events have occurred in recent years in the vicinity of the 2017 earthquake (R 145 km). Three Mw≥6.9 earthquakes have occurred since 1964 in the distance range 184-225 km. Thus, Mw and R of the earthquake was not surprising. However, a comparison of Fourier acceleration spectra at CU of 10 intraslab earthquakes with largest PGA, reduced to a common distance of R=127 km, shows that the amplitudes of the 2017 events were abnormally high in 1-2s range. Spectra of intraslab events at CU are enriched at higher frequencies relative to interplate ones because of closer distance, greater depth and higher

  2. A smartphone application for earthquakes that matter!

    NASA Astrophysics Data System (ADS)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  3. Introducing ShakeMap to potential users in Puerto Rico using scenarios of damaging historical and probable earthquakes

    NASA Astrophysics Data System (ADS)

    Huerfano, V. A.; Cua, G.; von Hillebrandt, C.; Saffar, A.

    2007-12-01

    The island of Puerto Rico has a long history of damaging earthquakes. Major earthquakes from off-shore sources have affected Puerto Rico in 1520, 1615, 1670, 1751, 1787, 1867, and 1918 (Mueller et al, 2003; PRSN Catalogue). Recent trenching has also yielded evidence of possible M7.0 events inland (Prentice, 2000). The high seismic hazard, large population, high tsunami potential and relatively poor construction practice can result in a potentially devastating combination. Efficient emergency response in event of a large earthquake will be crucial to minimizing the loss of life and disruption of lifeline systems in Puerto Rico. The ShakeMap system (Wald et al, 2004) developed by the USGS to rapidly display and disseminate information about the geographical distribution of ground shaking (and hence potential damage) following a large earthquake has proven to be a vital tool for post earthquake emergency response efforts, and is being adopted/emulated in various seismically active regions worldwide. Implementing a robust ShakeMap system is among the top priorities of the Puerto Rico Seismic Network. However, the ultimate effectiveness of ShakeMap in post- earthquake response depends not only on its rapid availability, but also on the effective use of the information it provides. We developed ShakeMap scenarios of a suite of damaging historical and probable earthquakes that severely impact San Juan, Ponce, and Mayagüez, the 3 largest cities in Puerto Rico. Earthquake source parameters were obtained from McCann and Mercado (1998); and Huérfano (2004). For historical earthquakes that generated tsunamis, tsunami inundation maps were generated using the TIME method (Shuto, 1991). The ShakeMap ground shaking maps were presented to local and regional governmental and emergency response agencies at the 2007 Annual conference of the Puerto Rico Emergency Management and Disaster Administration in San Juan, PR, and at numerous other emergency management talks and training

  4. Damages in American Samoa due to the 29 September 2009 Samoa Islands Region Earthquake Tsunami

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Takahashi, T.; Suzuki, S.

    2009-12-01

    A large earthquake of Mw 8.0 occurred in Samoa Islands Region in the early morning on 29 September 2009 (local time). A Large Tsunami generated by the earthquake hit Samoa, American Samoa, Tonga. Total 192 people were died or missing in these three countries (22 October 2009). The authors surveyed in Tutuila Island, American Samoa from 6 to 8 in October 2009 with the aim to find out damages in the disaster. In American Samoa, death and missing toll was 35. The main findings are as follows; first, human damages were little for tsunami run-up height of about 4 to 6 meters and tsunami arrival time of about 20 minutes. We can suppose that residents evacuated quickly after feeling shaking or something. Secondly, houses were severely damaged in some low elevation coastal villages such as Amanave, Leone, Pago Pago, Tula and so on. Third, a power plant and an airport, which are important infrastructures in relief and recovery phase, were also severely damaged. Inundation depth at the power plant was 2.31 meters. A blackout in the daytime lasted when we surveyed. On the other hand, the airport could use already at that time. But it was closed on the first day in the disaster because of a lot of disaster debris on the runway carried by tsunami. Inundation depth at the airport fence was measured in 0.7 to 0.8 meters. Other countries in the south-western Pacific region may have power plants or airports with similar risk, so it should be assessed against future tsunami disasters. Inundated thermal power plant in Pago Pago Debris on runway in Tafuna Airport (Provided by Mr. Chris Soti, DPA)

  5. Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M7.8 Gorkha, Nepal earthquake

    USGS Publications Warehouse

    McGowan, Sean; Jaiswal, Kishor; Wald, David J.

    2017-01-01

    We make and analyze structural damage observations from within the Kathmandu valley following the 2015 M7.8 Gorkha, Nepal earthquake to derive macroseismic intensities at several locations including some located near ground motion recording sites. The macroseismic intensity estimates supplement the limited strong ground motion data in order to characterize the damage statistics. This augmentation allows for direct comparisons between ground motion amplitudes and structural damage characteristics and ultimately produces a more constrained ground shaking hazard map for the Gorkha earthquake. For systematic assessments, we focused on damage to three specific building categories: (a) low/mid-rise reinforced concrete frames with infill brick walls, (b) unreinforced brick masonry bearing walls with reinforced concrete slabs, and (c) unreinforced brick masonry bearing walls with partial timber framing. Evaluating dozens of photos of each construction type, assigning each building in the study sample to a European Macroseismic Scale (EMS)-98 Vulnerability Class based upon its structural characteristics, and then individually assigning an EMS-98 Damage Grade to each building allows a statistically derived estimate of macroseismic intensity for each of nine study areas in and around the Kathmandu valley. This analysis concludes that EMS-98 macroseismic intensities for the study areas from the Gorkha mainshock typically were in the VII–IX range. The intensity assignment process described is more rigorous than the informal approach of assigning intensities based upon anecdotal media or first-person accounts of felt-reports, shaking, and their interpretation of damage. Detailed EMS-98 macroseismic assessments in urban areas are critical for quantifying relations between shaking and damage as well as for calibrating loss estimates. We show that the macroseismic assignments made herein result in fatality estimates consistent with the overall and district-wide reported values.

  6. Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M7.8 Gorkha, Nepal earthquake

    NASA Astrophysics Data System (ADS)

    McGowan, S. M.; Jaiswal, K. S.; Wald, D. J.

    2017-09-01

    We make and analyze structural damage observations from within the Kathmandu valley following the 2015 M7.8 Gorkha, Nepal earthquake to derive macroseismic intensities at several locations including some located near ground motion recording sites. The macroseismic intensity estimates supplement the limited strong ground motion data in order to characterize the damage statistics. This augmentation allows for direct comparisons between ground motion amplitudes and structural damage characteristics and ultimately produces a more constrained ground shaking hazard map for the Gorkha earthquake. For systematic assessments, we focused on damage to three specific building categories: (a) low/mid-rise reinforced concrete frames with infill brick walls, (b) unreinforced brick masonry bearing walls with reinforced concrete slabs, and (c) unreinforced brick masonry bearing walls with partial timber framing. Evaluating dozens of photos of each construction type, assigning each building in the study sample to a European Macroseismic Scale (EMS)-98 Vulnerability Class based upon its structural characteristics, and then individually assigning an EMS-98 Damage Grade to each building allows a statistically derived estimate of macroseismic intensity for each of nine study areas in and around the Kathmandu valley. This analysis concludes that EMS-98 macroseismic intensities for the study areas from the Gorkha mainshock typically were in the VII-IX range. The intensity assignment process described is more rigorous than the informal approach of assigning intensities based upon anecdotal media or first-person accounts of felt-reports, shaking, and their interpretation of damage. Detailed EMS-98 macroseismic assessments in urban areas are critical for quantifying relations between shaking and damage as well as for calibrating loss estimates. We show that the macroseismic assignments made herein result in fatality estimates consistent with the overall and district-wide reported values.

  7. Effects of the earthquake of March 27, 1964, on the Eklutna Hydroelectric Project, Anchorage, Alaska, with a section on television examination of earthquake damage to underground communication and electrical systems in Anchorage: Chapter A in The Alaska earthquake, March 27, 1964: effects on transportation, communications, and utilities

    USGS Publications Warehouse

    Logan, Malcolm H.; Burton, Lynn R.

    1967-01-01

    The March 27, 1964, Alaska earthquake and its associated aftershocks caused damage requiring several million dollars worth of repair to the Eklwtna Hydroelectric Project, 34 miles northeast of Anchorage. Electric service from the Eklutna powerplant was interrupted during the early phase of the March 27 earthquake, built was restored (intermittently) until May 9,1964, when the plant was closed for inspection and repair. Water for Eklutna project is transported from Eklutna Lake to the powerplant at tidewater on Knik Arm of Cook Inlet by an underwater intake connected to a 4.46-mile tunnel penstock. The primary damage caused by the earthquake was 1at the intake structure in Eklutna Lake. No damage to the power tunnel was observed. The piles-supported powerplant and appurtenant structures, Anchorage and Palmer substations, and the transmission lines suffered minor dammage. Most damage occurred to facilities constructed on un-consolidated sediments and overburden which densified and subsided during the earthquake. Structures built on bedrock experienced little or no damage. Underground communication and electrical systems in Anchorage were examined with a small-diameter television camera to locate damaged areas requiring repair. Most of the damage was concentrated at or near valley slopes. Those parts of the systems within the major slide areas of the city were destroyed.

  8. Using remote sensing to predict earthquake impacts

    NASA Astrophysics Data System (ADS)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  9. Assessment of Seismic Damage on The Exist Buildings Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Pınar, USTA; Nihat, MOROVA; EVCİ, Ahmet; ERGÜN, Serap

    2018-01-01

    Earthquake as a natural disaster could damage the lives of many people and buildings all over the world. These is micvulnerability of the buildings needs to be evaluated. Accurate evaluation of damage sustained by buildings during natural disaster events is critical to determine the buildings safety and their suitability for future occupancy. The earthquake is one of the disasters that structures face the most. There fore, there is a need to evaluate seismic damage and vulnerability of the buildings to protect them. These days fuzzy systems have been widely used in different fields of science because of its simpli city and efficiency. Fuzzy logic provides a suitable framework for reasoning, deduction, and decision making in fuzzy conditions. In this paper, studies on earthquake hazard evaluation of buildings by fuzzy logic modeling concepts in the literature have been investigated and evaluated, as a whole.

  10. Impact of the Christchurch earthquakes on hospital staff.

    PubMed

    Tovaranonte, Pleayo; Cawood, Tom J

    2013-06-01

    On September 4, 2010 a major earthquake caused widespread damage, but no loss of life, to Christchurch city and surrounding areas. There were numerous aftershocks, including on February 22, 2011 which, in contrast, caused substantial loss of life and major damage to the city. The research aim was to assess how these two earthquakes affected the staff in the General Medicine Department at Christchurch Hospital. Problem To date there have been no published data assessing the impact of this type of natural disaster on hospital staff in Australasia. A questionnaire that examined seven domains (demographics, personal impact, psychological impact, emotional impact, impact on care for patients, work impact, and coping strategies) was handed out to General Medicine staff and students nine days after the September 2010 earthquake and 14 days after the February 2011 earthquake. Response rates were ≥ 99%. Sixty percent of responders were <30 years of age, and approximately 60% were female. Families of eight percent and 35% had to move to another place due to the September and February earthquakes, respectively. A fifth to a third of people had to find an alternative route of transport to get to work but only eight percent to 18% took time off work. Financial impact was more severe following the February earthquake, with 46% reporting damage of >NZ $1,000, compared with 15% following the September earthquake (P < .001). Significantly more people felt upset about the situation following the February earthquake than the September earthquake (42% vs 69%, P < .001). Almost a quarter thought that quality of patient care was affected in some way following the September earthquake but this rose to 53% after the February earthquake (12/53 vs 45/85, P < .001). Half believed that discharges were delayed following the September earthquake but this dropped significantly to 15% following the February earthquake (27/53 vs 13/62, P < .001). This survey provides a measure of the result of

  11. Earthquake Building Damage Mapping Based on Feature Analyzing Method from Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    An, L.; Zhang, J.; Gong, L.

    2018-04-01

    Playing an important role in gathering information of social infrastructure damage, Synthetic Aperture Radar (SAR) remote sensing is a useful tool for monitoring earthquake disasters. With the wide application of this technique, a standard method, comparing post-seismic to pre-seismic data, become common. However, multi-temporal SAR processes, are not always achievable. To develop a post-seismic data only method for building damage detection, is of great importance. In this paper, the authors are now initiating experimental investigation to establish an object-based feature analysing classification method for building damage recognition.

  12. Earthquakes, September-October 1980

    USGS Publications Warehouse

    Person, W.J.

    1981-01-01

    There were two major (magnitudes 7.0-7.9) earthquakes during this reporting period; a magnitude (M) 7.3 in Algeria where many people were killed or injured and extensive damage occurred, and an M=7.2 in the Loyalty Islands region of the South Pacific. Japan was struck by a damaging earthquake on September 24, killing two people and causing injuries. There were no damaging earthquakes in the United States. 

  13. Using the USGS Seismic Risk Web Application to estimate aftershock damage

    USGS Publications Warehouse

    McGowan, Sean M.; Luco, Nicolas

    2014-01-01

    The U.S. Geological Survey (USGS) Engineering Risk Assessment Project has developed the Seismic Risk Web Application to combine earthquake hazard and structural fragility information in order to calculate the risk of earthquake damage to structures. Enabling users to incorporate their own hazard and fragility information into the calculations will make it possible to quantify (in near real-time) the risk of additional damage to structures caused by aftershocks following significant earthquakes. Results can quickly be shared with stakeholders to illustrate the impact of elevated ground motion hazard and earthquake-compromised structural integrity on the risk of damage during a short-term, post-earthquake time horizon.

  14. Towards a More Efficient Detection of Earthquake Induced FAÇADE Damages Using Oblique Uav Imagery

    NASA Astrophysics Data System (ADS)

    Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G.

    2017-08-01

    Urban search and rescue (USaR) teams require a fast and thorough building damage assessment, to focus their rescue efforts accordingly. Unmanned aerial vehicles (UAV) are able to capture relevant data in a short time frame and survey otherwise inaccessible areas after a disaster, and have thus been identified as useful when coupled with RGB cameras for façade damage detection. Existing literature focuses on the extraction of 3D and/or image features as cues for damage. However, little attention has been given to the efficiency of the proposed methods which hinders its use in an urban search and rescue context. The framework proposed in this paper aims at a more efficient façade damage detection using UAV multi-view imagery. This was achieved directing all damage classification computations only to the image regions containing the façades, hence discarding the irrelevant areas of the acquired images and consequently reducing the time needed for such task. To accomplish this, a three-step approach is proposed: i) building extraction from the sparse point cloud computed from the nadir images collected in an initial flight; ii) use of the latter as proxy for façade location in the oblique images captured in subsequent flights, and iii) selection of the façade image regions to be fed to a damage classification routine. The results show that the proposed framework successfully reduces the extracted façade image regions to be assessed for damage 6 fold, hence increasing the efficiency of subsequent damage detection routines. The framework was tested on a set of UAV multi-view images over a neighborhood of the city of L'Aquila, Italy, affected in 2009 by an earthquake.

  15. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    NASA Astrophysics Data System (ADS)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  16. Earthquake hazard assessment after Mexico (1985).

    PubMed

    Degg, M R

    1989-09-01

    The 1985 Mexican earthquake ranks foremost amongst the major earthquake disasters of the twentieth century. One of the few positive aspects of the disaster is that it provided massive quantities of data that would otherwise have been unobtainable. Every opportunity should be taken to incorporate the findings from these data in earthquake hazard assessments. The purpose of this paper is to provide a succinct summary of some of the more important lessons from Mexico. It stems from detailed field investigations, and subsequent analyses, conducted by the author on the behalf of reinsurance companies.

  17. A stochastic risk assessment for Eastern Europe and Central Asian countries for earthquakes

    NASA Astrophysics Data System (ADS)

    Daniell, James; Schaefer, Andreas; Toro, Joaquin; Murnane, Rick; Tijssen, Annegien; Simpson, Alanna; Saito, Keiko; Winsemius, Hessel; Ward, Philip

    2015-04-01

    This systematic assessment of earthquake risk for 33 countries in the ECA region was motivated by the interest of the World Bank and the Global Facility for Disaster Reduction and Recovery (GFDRR) in supporting Disaster Risk Management (DRM) efforts. They envisaged an exposure-based analysis that looked at the potential economic and/or social exposure of the populations of various countries to earthquake risk. Using a stochastic earthquake hazard model and historical catalogues, a unified earthquake catalogue was created for the 33 countries. A combined fault and background source model was created using data from many authors. The maximum magnitude and seismotectonic source zone discretization was undertaken using logic tree approaches. Site effects were taken into account on the basis of local topography and tectonic regime. Two approaches were used to calculate local ground motion - intensity prediction equations for MMI and a combination of GMPEs for stable and active settings. A 1km grid was used for analysis with aggregations of exposure quantified in terms of GDP and capital stock using disaggregated provincial analysis from CATDAT, as well as population data from Deltares. Vulnerability functions were calculated using socio-economic empirical functions derived by Daniell (2014) for the countries taking into account historical losses, seismic resistant code implementation and building typologies in each country. PML curves were created for each province in the 33 nations, through 3 methods; the 1st using direct historical values via the CATDAT Damaging Earthquakes Database; the 2nd using normalization procedures in order to provide a quick estimate of the historical record quantified in today's terms filling in gaps; and the 3rd being a traditional stochastic modelling approach over a period of 10,000 years taking all uncertainties into account. SSP projections of growth from the OECD were used to quantify the risk in 2010, 2030 and 2080 in order to examine

  18. Security Implications of Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Jha, B.; Rao, A.

    2016-12-01

    The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.

  19. The 2002 Molise earthquake sequence: relationship between damages and seismic propagation in Ripabottoni (CB)

    NASA Astrophysics Data System (ADS)

    Cevasco, A.; Isella, L.; Pasta, M.; Podestà, S.; Resemini, S.

    2003-04-01

    On October 31st, 2002 and on November 1st, 2002 two moderate size earthquakes (Ml = 5.4 at 11.32 local time and Ml = 5.3 at 16.08 local time) occurred in Molise region, Southern Italy. Ripabottoni (CB), is one of the towns that suffered major damages. The observation of the damage caused by the earthquake to the monumental heritage has confirmed, yet again, how churches represent a typology of building which is particularly vulnerable to seismic actions. Moreover, we noticed how, in many cases, the intrinsic vulnerability was increased as a result of the recent retrofitting intervention, incompatible with the original behaviour of the construction. Roofs remade in r.c. or in steel, the insertion of very thick r.c. tie-beams, the creation of r.c. floors, have led, as partly already observed after the 1997 Umbria-Marches earthquake, to an increase both in the force of the seismic shocks (as a consequence of the greater weight) and in deformations incompatible with the natural vibration-mode of the masonry walls. An emblematic case is that of the churches of Ripabottoni, S. Croce di Magliana and S. Giuliano di Puglia, which have demonstrated damage mechanisms connected with the cracking and collapse of the vaults (owing to their limited thickness and the lack of tie rods) and with the crushing and shearing of the masonry pillars in the churches with more than one nave. Besides, in order to analyse damage effects a temporary seismic/accelerometric local network was installed. The comparison of collected data with surface geology indicates the presence of important local effects. In particular the evaluation of the strong motion records, in Ripabottoni, has allowed a first interpretation of the crushing mechanisms of many masonry pillars

  20. Building vulnerability and human loss assessment in different earthquake intensity and time: a case study of the University of the Philippines, Los Baños (UPLB) Campus

    NASA Astrophysics Data System (ADS)

    Rusydy, I.; Faustino-Eslava, D. V.; Muksin, U.; Gallardo-Zafra, R.; Aguirre, J. J. C.; Bantayan, N. C.; Alam, L.; Dakey, S.

    2017-02-01

    Study on seismic hazard, building vulnerability and human loss assessment become substantial for building education institutions since the building are used by a lot of students, lecturers, researchers, and guests. The University of the Philippines, Los Banos (UPLB) located in an earthquake prone area. The earthquake could cause structural damage and injury of the UPLB community. We have conducted earthquake assessment in different magnitude and time to predict the posibility of ground shaking, building vulnerability and estimated the number of casualty of the UPLB community. The data preparation in this study includes the earthquake scenario modeling using Intensity Prediction Equations (IPEs) for shallow crustal shaking attenuation to produce intensity map of bedrock and surface. Earthquake model was generated from the segment IV and the segment X of the Valley Fault System (VFS). Building vulnerability of different type of building was calculated using fragility curve of the Philippines building. The population data for each building in various occupancy time, damage ratio, and injury ratio data were used to compute the number of casualties. The result reveals that earthquake model from the segment IV and the segment X of the VFS could generate earthquake intensity between 7.6 - 8.1 MMI in the UPLB campus. The 7.7 Mw earthquake (scenario I) from the segment IV could cause 32% - 51% damage of building and 6.5 Mw earthquake (scenario II) occurring in the segment X could cause 18% - 39% structural damage of UPLB buildings. If the earthquake occurs at 2 PM (day-time), it could injure 10.2% - 18.8% for the scenario I and could injure 7.2% - 15.6% of UPLB population in scenario II. The 5 Pm event, predicted will injure 5.1%-9.4% in the scenario I, and 3.6%-7.8% in scenario II. A nighttime event (2 Am) cause injury to students and guests who stay in dormitories. The earthquake is predicted to injure 13 - 66 students and guests in the scenario I and 9 - 47 people in the

  1. The impact of earthquakes on the city of Aigio in Greece. Urban planning as a factor in mitigating seismic damage.

    NASA Astrophysics Data System (ADS)

    Athanasopoulou, Evanthia; Despoiniadou, Varvara; Dritsos, Stefanos

    2008-07-01

    This paper examines the effects of the mortal earthquake on the city of Aigio in Greece in 1995, with particular focus on urbanization and planning policies. It is based on interviews with experts and surveys on damage to buildings following this earthquake. The analysis takes into account several factors, such as exact location, land use, construction period and the height of damaged buildings. Furthermore, the relationship between the seismic damage and the postseismic construction development of Aigio is examined and the conclusion is reached that the Greek urban planning system needs to be better organized to prepare for seismic damage. To this end, the paper recommends a five-point discussion agenda for applying local planning to seismic mitigation.

  2. Housing Damage Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An automobile lies crushed under the third story of this apartment building in the Marina District after the Oct. 17, 1989, Loma Prieta earthquake. The ground levels are no longer visible because of structural failure and sinking due to liquefaction. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: J.K. Nakata, U.S. Geological Survey.

  3. Multi-method Near-surface Geophysical Surveys for Site Response and Earthquake Damage Assessments at School Sites in Washington, USA

    NASA Astrophysics Data System (ADS)

    Cakir, R.; Walsh, T. J.; Norman, D. K.

    2017-12-01

    We, Washington Geological Survey (WGS), have been performing multi-method near surface geophysical surveys to help assess potential earthquake damage at public schools in Washington. We have been conducting active and passive seismic surveys, and estimating Shear-wave velocity (Vs) profiles, then determining the NEHRP soil classifications based on Vs30m values at school sites in Washington. The survey methods we have used: 1D and 2D MASW and MAM, P- and S-wave refraction, horizontal-to-vertical spectral ratio (H/V), and 2ST-SPAC to measure Vs and Vp at shallow (0-70m) and greater depths at the sites. We have also run Ground Penetrating Radar (GPR) surveys at the sites to check possible horizontal subsurface variations along and between the seismic survey lines and the actual locations of the school buildings. The seismic survey results were then used to calculate Vs30m for determining the NEHRP soil classifications at school sites, thus soil amplification effects on the ground motions. Resulting shear-wave velocity profiles generated from these studies can also be used for site response and liquefaction potential studies, as well as for improvement efforts of the national Vs30m database, essential information for ShakeMap and ground motion modeling efforts in Washington and Pacific Northwest. To estimate casualties, nonstructural, and structural losses caused by the potential earthquakes in the region, we used these seismic site characterization results associated with structural engineering evaluations based on ASCE41 or FEMA 154 (Rapid Visual Screening) as inputs in FEMA Hazus-Advanced Engineering Building Module (AEBM) analysis. Compelling example surveys will be presented for the school sites in western and eastern Washington.

  4. April 25, 2015, Gorkha Earthquake, Nepal and Sequence of Aftershocks: Key Lessons

    NASA Astrophysics Data System (ADS)

    Guragain, R.; Dixit, A. M.; Shrestha, S. N.

    2015-12-01

    The Gorkha Earthquake of M7.8 hit Nepal on April 25, 2015 at 11:56 am local time. The epicenter of this earthquake was Barpak, Gorkha, 80 km northwest of Kathmandu Valley. The main shock was followed by hundreds of aftershocks including M6.6 and M6.7 within 48 hours and M7.3 on May 12, 2015. According to the Government of Nepal, a total of 8,686 people lost their lives, 16,808 people injured, over 500,000 buildings completely collapsed and more than 250,000 building partially damaged. The National Society for Earthquake Technology - Nepal (NSET), a not-for-profit civil society organization that has been focused on earthquake risk reduction in Nepal for past 21 years, conducted various activities to support people and the government in responding to the earthquake disaster. The activities included: i) assisting people and critical facility institutions to conduct rapid visual building damage assessment including the training; ii) information campaign to provide proper information regarding earthquake safety; iii) support rescue organizations on search and rescue operations; and iv) provide technical support to common people on repair, retrofit of damaged houses. NSET is also involved in carrying out studies related to earthquake damage, geotechnical problems, and causes of building damages. Additionally, NSET has done post-earthquake detail damage assessment of buildings throughout the affected areas. Prior to the earthquake, NSET has been working with several institutions to improve seismic performance of school buildings, private residential houses, and other critical structures. Such activities implemented during the past decade have shown the effectiveness of risk reduction. Retrofitted school buildings performed very well during the earthquake. Preparedness activities implemented at community levels have helped communities to respond immediately and save lives. Higher level of earthquake awareness achieved including safe behavior, better understanding of

  5. Turkish Compulsory Earthquake Insurance (TCIP)

    NASA Astrophysics Data System (ADS)

    Erdik, M.; Durukal, E.; Sesetyan, K.

    2009-04-01

    Through a World Bank project a government-sponsored Turkish Catastrophic Insurance Pool (TCIP) is created in 2000 with the essential aim of transferring the government's financial burden of replacing earthquake-damaged housing to international reinsurance and capital markets. Providing coverage to about 2.9 Million homeowners TCIP is the largest insurance program in the country with about 0.5 Billion USD in its own reserves and about 2.3 Billion USD in total claims paying capacity. The total payment for earthquake damage since 2000 (mostly small, 226 earthquakes) amounts to about 13 Million USD. The country-wide penetration rate is about 22%, highest in the Marmara region (30%) and lowest in the south-east Turkey (9%). TCIP is the sole-source provider of earthquake loss coverage up to 90,000 USD per house. The annual premium, categorized on the basis of earthquake zones type of structure, is about US90 for a 100 square meter reinforced concrete building in the most hazardous zone with 2% deductible. The earthquake engineering related shortcomings of the TCIP is exemplified by fact that the average rate of 0.13% (for reinforced concrete buildings) with only 2% deductible is rather low compared to countries with similar earthquake exposure. From an earthquake engineering point of view the risk underwriting (Typification of housing units to be insured, earthquake intensity zonation and the sum insured) of the TCIP needs to be overhauled. Especially for large cities, models can be developed where its expected earthquake performance (and consequently the insurance premium) can be can be assessed on the basis of the location of the unit (microzoned earthquake hazard) and basic structural attributes (earthquake vulnerability relationships). With such an approach, in the future the TCIP can contribute to the control of construction through differentiation of premia on the basis of earthquake vulnerability.

  6. Knowledge base about earthquakes as a tool to minimize strong events consequences

    NASA Astrophysics Data System (ADS)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej

    2017-04-01

    The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653

  7. Damage patterns of historical earthquakes in and around Israel

    NASA Astrophysics Data System (ADS)

    Zohar, M.; Salamon, A.; Rubin, R.

    2013-12-01

    Numerous historical reports of earthquakes in the Levant, including their damages and effects, have been accumulating for the last 3,000 years. Most of the seismic activity is associated with the Dead Sea Transform (DST), the plate border between Arabia and Sinai. In this work we focus on the central and southern parts of the DST, where Israel and its surroundings have repeatedly suffered damage. Much of the relevant reports were previously gathered and organized in catalogues and lists. However, some of the early cataloguers did not screen the historical sources and thus their information cannot be taken for granted. In modern times, however, reviewed catalogues have been presented that took care of this shortcoming and consequently provided updated and more reliable information. Yet, the bulk of that data has not yet been fully analyzed, particularly the spatial distribution of the damage. We have collected information associated with damaging events that occurred from the second millennia BCE to the first event recorded by modern instruments in 1927 CE. At the first stage we screened each of the historical reports, determined its reliability, and then characterized the events by date, size, type and approximate geographic origin. At the same time, we related the damage reports to geographic coordinates, approximate severity, and accompanying environmental effects. Finally, we stored these records in a GIS-based relational database constructed so as to enable flexible queries and data manipulations. Preliminary results of frequency-magnitude relations show that the list of events seems to be complete for the estimated magnitudes M > 7, M > 5.5 and M ≥ 5 in the last two millennia, since 1, 500 CE and since 1, 800 CE, respectively. Temporal distribution of the events indicates three periods of relatively intense seismic activity: (1) between the 4th to mid 8th century, followed by almost total silence of reports; (2) from the beginning of the 11th to the

  8. Tsunami damage in the southern Kanto region from the 1703 Genroku Kanto earthquake

    NASA Astrophysics Data System (ADS)

    Muragishi, J.; Satake, K.

    2014-12-01

    The Genroku Kanto earthquake occurred on Dec. 31th, 1703 along the Sagami Trough where the Philippine Sea plate subducts beneath the continental plate. Hatori (1976) reported significant tsunami damage with estimated tsunami heights of 5 m along Kujukuri coast on the Pacific Ocean, and estimated the tsunami heights in the inner Tokyo Bay as approximately 2 m. In Tokyo Bay, there are no records that indicate the tsunami inundated residential areas, while some descriptions of tsunami are recorded in Edo, the former Tokyo. The notice from Edo City Commissioners to residences in Edo described that the tsunami came up to the upper-limit of Sumida River in Tokyo, where four major arrivals of tsunamis were reported. According to Saihen-onkoroku, tsunami came to Fukagawa, where one person was killed by throwing away from a boat affected by the tsunami. In Ichikawa along the coast of Chiba Prefecture in Tokyo Bay, there are historical records about the salt farm. The embankments were collapsed and the salt farm was ruined, while the tsunami damage is not described. At this location, the damage due to storm surge in 1680 is recorded in the same document. Although storm surge damage is recorded in detail, there are no records about the Genroku tsunami, suggesting that the tsunami damage, if any, is slighter than the storm surge. Along the Kujukui coast outside the Tokyo bay, the descriptions are not only damage to buildings or deaths but also an influx of sand brought by the tsunami which damaged the agricultural land. In summary, it became certain that the Genroku tsunami caused some damage in the inner Tokyo Bay area. In addition, we found that a wide range of farmland was suffered by influx of sand and crops could not grow well. Such a description may be able to contribute to the tsunami deposits in future research. This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters from the MEXT of Japan.

  9. Earthquakes, November-December 1977

    USGS Publications Warehouse

    Person, W.J.

    1978-01-01

    In the United States, the largest earthquake during this reporting period was a magntidue 6.6 in the Andreanof Islands, which are part of the Aleutian Islands chain, on November 4 that caused some minor damage. Northern California was struck by a magnitude 4.8 earthquake on November 22 causing moderate damage in the Willits area. This was the most damaging quake in the United States during the year. Two major earthquakes of magntidues 7.0 or above to 14 for the year. 

  10. Post-earthquake bridge inspection guidelines.

    DOT National Transportation Integrated Search

    2010-10-01

    This report presents a course of action that can be used by New York States Department of Transportation : (NYSDOT) to respond to an earthquake that may have damaged bridges, so that the highway system can be : assessed for safety and functionalit...

  11. Post-earthquake bridge inspection guidelines

    DOT National Transportation Integrated Search

    2010-10-01

    This report presents a course of action that can be used by New York States Department of Transportation : (NYSDOT) to respond to an earthquake that may have damaged bridges, so that the highway system can be : assessed for safety and functionalit...

  12. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    NASA Astrophysics Data System (ADS)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-01

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative "dry" cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  13. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understandingmore » the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.« less

  14. 8 March 2010 Elazığ-Kovancilar (Turkey) Earthquake: observations on ground motions and building damage

    USGS Publications Warehouse

    Akkar, Sinan; Aldemir, A.; Askan, A.; Bakir, S.; Canbay, E.; Demirel, I.O.; Erberik, M.A.; Gulerce, Z.; Gulkan, Polat; Kalkan, Erol; Prakash, S.; Sandikkaya, M.A.; Sevilgen, V.; Ugurhan, B.; Yenier, E.

    2011-01-01

    An earthquake of MW = 6.1 occurred in the Elazığ region of eastern Turkey on 8 March 2010 at 02:32:34 UTC. The United States Geological Survey (USGS) reported the epicenter of the earthquake as 38.873°N-39.981°E with a focal depth of 12 km. Forty-two people lost their lives and 137 were injured during the event. The earthquake was reported to be on the left-lateral strike-slip east Anatolian fault (EAF), which is one of the two major active fault systems in Turkey. Teams from the Earthquake Engineering Research Center of the Middle East Technical University (EERC-METU) visited the earthquake area in the aftermath of the mainshock. Their reconnaissance observations were combined with interpretations of recorded ground motions for completeness. This article summarizes observations on building and ground damage in the area and provides a discussion of the recorded motions. No significant observations in terms of geotechnical engineering were made.

  15. Earthquakes, July-August, 1979

    USGS Publications Warehouse

    Person, W.J.

    1980-01-01

    In the United States, on August 6, central California experienced a moderately strong earthquake, which injured several people and caused some damage. A number of earthquakes occurred in other parts of the United States but caused very little damage

  16. Earthquake impact scale

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    With the advent of the USGS prompt assessment of global earthquakes for response (PAGER) system, which rapidly assesses earthquake impacts, U.S. and international earthquake responders are reconsidering their automatic alert and activation levels and response procedures. To help facilitate rapid and appropriate earthquake response, an Earthquake Impact Scale (EIS) is proposed on the basis of two complementary criteria. On the basis of the estimated cost of damage, one is most suitable for domestic events; the other, on the basis of estimated ranges of fatalities, is generally more appropriate for global events, particularly in developing countries. Simple thresholds, derived from the systematic analysis of past earthquake impact and associated response levels, are quite effective in communicating predicted impact and response needed after an event through alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1,000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses reaching $1M, $100M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness predominate in countries in which local building practices typically lend themselves to high collapse and casualty rates, and these impacts lend to prioritization for international response. In contrast, financial and overall societal impacts often trigger the level of response in regions or countries in which prevalent earthquake resistant construction practices greatly reduce building collapse and resulting fatalities. Any newly devised alert, whether economic- or casualty-based, should be intuitive and consistent with established lexicons and procedures. Useful alerts should

  17. USGS Training in Afghanistan: Modern Earthquake Hazards Assessments

    NASA Astrophysics Data System (ADS)

    Medlin, J. D.; Garthwaite, M.; Holzer, T.; McGarr, A.; Bohannon, R.; Bergen, K.; Vincent, T.

    2007-05-01

    Afghanistan is located in a tectonically active region where ongoing deformation has generated rugged mountainous terrain, and where large earthquakes occur frequently. These earthquakes can present a significant hazard, not only from strong ground shaking, but also from liquefaction and extensive land sliding. The magnitude 6.1 earthquake of March 25, 2002 highlighted the vulnerability of Afghanistan to such hazards, and resulted in over 1000 fatalities. The USGS has provided the first of a series of Earth Science training courses to the Afghan Geological Survey (AGS). This course was concerned with modern earthquake hazard assessments, and is an integral part of a larger USGS effort to provide a comprehensive seismic-hazard assessment for Afghanistan. Funding for these courses is provided by the US Agency for International Development Afghanistan Reconstruction Program. The particular focus of this training course, held December 2-6, 2006 in Kabul, was on providing a background in the seismological and geological methods relevant to preparing for future earthquakes. Topics included identifying active faults, modern tectonic theory, geotechnical measurements of near-surface materials, and strong-motion seismology. With this background, participants may now be expected to educate other members of the community and be actively involved in earthquake hazard assessments themselves. The December, 2006, training course was taught by four lecturers, with all lectures and slides being presented in English and translated into Dari. Copies of the lectures were provided to the students in both hardcopy and digital formats. Class participants included many of the section leaders from within the AGS who have backgrounds in geology, geophysics, and engineering. Two additional training sessions are planned for 2007, the first entitled "Modern Concepts in Geology and Mineral Resource Assessments," and the second entitled "Applied Geophysics for Mineral Resource Assessments."

  18. Earthquakes, July-August 1992

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There were two major earthquakes (7.0≤M<8.0) during this reporting period. A magnitude 7.5 earthquake occurred in Kyrgyzstan on August 19 and a magnitude 7.0 quake struck the Ascension Island region on August 28. In southern California, aftershocks of the magnitude 7.6 earthquake on June 28, 1992, continued. One of these aftershocks caused damage and injuries, and at least one other aftershock caused additional damage. Earthquake-related fatalities were reportred in Kyrgzstan and Pakistan. 

  19. Characteristics of strong motions and damage implications of M S6.5 Ludian earthquake on August 3, 2014

    NASA Astrophysics Data System (ADS)

    Xu, Peibin; Wen, Ruizhi; Wang, Hongwei; Ji, Kun; Ren, Yefei

    2015-02-01

    The Ludian County of Yunnan Province in southwestern China was struck by an M S6.5 earthquake on August 3, 2014, which was another destructive event following the M S8.0 Wenchuan earthquake in 2008, M S7.1 Yushu earthquake in 2010, and M S7.0 Lushan earthquake in 2013. National Strong-Motion Observation Network System of China collected 74 strong motion recordings, which the maximum peak ground acceleration recorded by the 053LLT station in Longtoushan Town was 949 cm/s2 in E-W component. The observed PGAs and spectral ordinates were compared with ground-motion prediction equation in China and the NGA-West2 developed by Pacific Earthquake Engineering Researcher Center. This earthquake is considered as the first case for testing applicability of NGA-West2 in China. Results indicate that the observed PGAs and the 5 % damped pseudo-response spectral accelerations are significantly lower than the predicted ones. The field survey around some typical strong motion stations verified that the earthquake damage was consistent with the official isoseismal by China Earthquake Administration.

  20. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    USGS Publications Warehouse

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  1. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  2. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    USGS Publications Warehouse

    Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.

    2010-01-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  3. On some methods for assessing earthquake predictions

    NASA Astrophysics Data System (ADS)

    Molchan, G.; Romashkova, L.; Peresan, A.

    2017-09-01

    A regional approach to the problem of assessing earthquake predictions inevitably faces a deficit of data. We point out some basic limits of assessment methods reported in the literature, considering the practical case of the performance of the CN pattern recognition method in the prediction of large Italian earthquakes. Along with the classical hypothesis testing, a new game approach, the so-called parimutuel gambling (PG) method, is examined. The PG, originally proposed for the evaluation of the probabilistic earthquake forecast, has been recently adapted for the case of 'alarm-based' CN prediction. The PG approach is a non-standard method; therefore it deserves careful examination and theoretical analysis. We show that the PG alarm-based version leads to an almost complete loss of information about predicted earthquakes (even for a large sample). As a result, any conclusions based on the alarm-based PG approach are not to be trusted. We also show that the original probabilistic PG approach does not necessarily identifies the genuine forecast correctly among competing seismicity rate models, even when applied to extensive data.

  4. Use of external fixators for damage-control orthopaedics in natural disasters like the 2005 Pakistan earthquake.

    PubMed

    Awais, Syed; Saeed, Ayesha; Ch, Asad

    2014-08-01

    In the 2005 Pakistan earthquake, the great many injured with multiple fractures and open wounds provided a unique opportunity to practice damage-control orthopaedics. External fixators remain a time-tested tools for operating surgeons on such occasions. The locally manufactured, readily available Naseer-Awais (NA) external fixator filled such needs of this disaster with good outcome. This is a retrospective descriptive study of 19,700 patients that presented over seven months to the two centres established by the lead author (SMA) in Muzaffarabad and Mansehra just one night after the 2005 earthquake. A series of local and foreign orthopaedic surgeon teams operated in succession. The computerised patient data collection of 1,145 operations was retrospectively analysed. Of the 19,700 patients presenting to the SMA centres, 50% had limb injuries. Total fracture fixations were 1,145, of which 295 were external fixations: 185 were applied on the lower limb and 90 on upper limb, the majority were applied on tibia. External fixators are valuable damage-control tools in natural disasters and warfare injuries. The locally manufactured NA external fixator served the needs of the many limb injuries during the 2005 Pakistan earthquake.

  5. Did you feel it? : citizens contribute to earthquake science

    USGS Publications Warehouse

    Wald, David J.; Dewey, James W.

    2005-01-01

    Since the early 1990s, the magnitude and location of an earthquake have been available within minutes on the Internet. Now, as a result of work by the U.S. Geological Survey and with the cooperation of various regional seismic networks, people who experience an earthquake can go online and share information about its effects to help create a map of shaking intensities and damage. Such “Community Internet Intensity Maps” (CIIMs) contribute greatly toward the quick assessment of the scope of an earthquake emergency and provide valuable data for earthquake research.

  6. Seismic vulnerability assessment to earthquake at urban scale: A case of Mostaganem city in Algeria

    PubMed Central

    Benanane, Abdelkader; Boutaraa, Zohra

    2018-01-01

    The focus of this study was the seismic vulnerability assessment of buildings constituting Mostaganem city in Algeria. Situated 320 km to the west of Algiers, Mostaganem city encompasses a valuable cultural and architectural built heritage. The city has suffered several moderate earthquakes in recent years; this has led to extensive structural damage to old structures, especially unreinforced historical buildings. This study was divided into two essential steps, the first step being to establish fragility curves based on a non-linear static pushover analysis for each typology and height of buildings. Twenty-seven pushover analyses were performed by means of SAP2000 software (three analyses for each type of building). The second step was to adopt the US HAZUS software and to modify it to suit the typical setting and parameters of the city of Mostaganem. A seismic vulnerability analysis of Mostaganem city was conducted using HAZUS software after inputting the new parameters of the fragility curves established within the first step. The results indicated that the number of poor-quality buildings expected to be totally destroyed under a 5.5 Mw earthquake scenario could reach more than 28 buildings. Three percent of unreinforced masonry (URM) buildings were completely damaged and 10% were extensively damaged. Of the concrete frame buildings, 6% were extensively damaged and 19% were moderately damaged. According to the built year, 6% of both concrete frame and URM buildings built before 1980 are estimated to be collapsing. Buildings constructed between 1980 and 1999 are more resistant; 8% of those structures were extensively damaged and 18% were moderately damaged. Only 10% of buildings constructed after 1999 were moderately damaged. The results also show that the main hospital of the city, built before 1960, will be extensively damaged during an earthquake of 5.5 Mw. The number of human casualties could reach several hundreds – 10.5% of residents of URM buildings are

  7. Earthquake damage mapping by using remotely sensed data: the Haiti case study

    NASA Astrophysics Data System (ADS)

    Romaniello, Vito; Piscini, Alessandro; Bignami, Christian; Anniballe, Roberta; Stramondo, Salvatore

    2017-01-01

    This work proposes methodologies aimed at evaluating the sensitivity of optical and synthetic aperture radar (SAR) change features obtained from satellite images with respect to the damage grade due to an earthquake. The test case is the Mw 7.0 earthquake that hit Haiti on January 12, 2010, located 25 km west-south-west of the city of Port-au-Prince. The disastrous shock caused the collapse of a huge number of buildings and widespread damage. The objective is to investigate possible parameters that can affect the robustness and sensitivity of the proposed methods derived from the literature. It is worth noting how the proposed analysis concerns the estimation of derived features at object scale. For this purpose, a segmentation of the study area into several regions has been done by considering a set of polygons, over the city of Port-au-Prince, extracted from the open source open street map geo-database. The analysis of change detection indicators is based on ground truth information collected during a postearthquake survey and is available from a Joint Research Centre database. The resulting damage map is expressed in terms of collapse ratio, thus indicating the areas with a greater number of collapsed buildings. The available satellite dataset is composed of optical and SAR images, collected before and after the seismic event. In particular, we used two GeoEye-1 optical images (one preseismic and one postseismic) and three TerraSAR-X SAR images (two preseismic and one postseismic). Previous studies allowed us to identify some features having a good sensitivity with damage at the object scale. Regarding the optical data, we selected the normalized difference index and two quantities coming from the information theory, namely the Kullback-Libler divergence (KLD) and the mutual information (MI). In addition, for the SAR data, we picked out the intensity correlation difference and the KLD parameter. In order to analyze the capability of these parameters to correctly

  8. The great East Japan earthquake disaster: distribution of hospital damage in Miyagi Prefecture.

    PubMed

    Ochi, Sae; Nakagawa, Atsuhiro; Lewis, James; Hodgson, Susan; Murray, Virginia

    2014-06-01

    In catastrophic events, a key to reducing health risks is to maintain functioning of local health facilities. However, little research has been conducted on what types and levels of care are the most likely to be affected by catastrophic events. Problem The Great East Japan Earthquake Disaster (GEJED) was one of a few "mega disasters" that have occurred in an industrialized society. This research aimed to develop an analytical framework for the holistic understanding of hospital damage due to the disaster. Hospital damage data in Miyagi Prefecture at the time of the GEJED were collected retrospectively. Due to the low response rate of questionnaire-based surveillance (7.7%), publications of the national and local governments, medical associations, other nonprofit organizations, and home web pages of hospitals were used, as well as literature and news sources. The data included information on building damage, electricity and water supply, and functional status after the earthquake. Geographical data for hospitals, coastline, local boundaries, and the in undated areas, as well as population size and seismic intensity were collected from public databases. Logistic regression was conducted to identify the risk factors for hospitals ceasing inpatient and outpatient services. The impact was displayed on maps to show the geographical distribution of damage. Data for 143 out of 147 hospitals in Miyagi Prefecture (97%) were obtained. Building damage was significantly associated with closure of both inpatient and outpatient wards. Hospitals offering tertiary care were more resistant to damage than those offering primary care, while those with a higher proportion of psychiatric care beds were more likely to cease functioning, even after controlling for hospital size, seismic intensity, and distance from the coastline. Implementation of building regulations is vital for all health care facilities, irrespective of function. Additionally, securing electricity and water supplies

  9. Damage extraction of buildings in the 2015 Gorkha, Nepal earthquake from high-resolution SAR data

    NASA Astrophysics Data System (ADS)

    Yamazaki, Fumio; Bahri, Rendy; Liu, Wen; Sasagawa, Tadashi

    2016-05-01

    Satellite remote sensing is recognized as one of the effective tools for detecting and monitoring affected areas due to natural disasters. Since SAR sensors can capture images not only at daytime but also at nighttime and under cloud-cover conditions, they are especially useful at an emergency response period. In this study, multi-temporal high-resolution TerraSAR-X images were used for damage inspection of the Kathmandu area, which was severely affected by the April 25, 2015 Gorkha Earthquake. The SAR images obtained before and after the earthquake were utilized for calculating the difference and correlation coefficient of backscatter. The affected areas were identified by high values of the absolute difference and low values of the correlation coefficient. The post-event high-resolution optical satellite images were employed as ground truth data to verify our results. Although it was difficult to estimate the damage levels for individual buildings, the high resolution SAR images could illustrate their capability in detecting collapsed buildings at emergency response times.

  10. Seismogeodetic monitoring techniques for tsunami and earthquake early warning and rapid assessment of structural damage

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Bock, Y.; Saunders, J. K.; Goldberg, D.; Restrepo, J. I.

    2016-12-01

    As part of an effort to promote the use of NASA-sponsored Earth science information for disaster risk reduction, real-time high-rate seismogeodetic data are being incorporated into early warning and structural monitoring systems. Seismogeodesy combines seismic acceleration and GPS displacement measurements using a tightly-coupled Kalman filter to provide absolute estimates of seismic acceleration, velocity and displacement. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. Real-time seismogeodetic observations at subduction zones allow for more robust and rapid magnitude and slip estimation that increase warning time in the near-source region. A NASA-funded effort to utilize GPS and seismogeodesy in NOAA's Tsunami Warning Centers in Alaska and Hawaii integrates new modules for picking, locating, and estimating magnitudes and moment tensors for earthquakes into the USGS earthworm environment at the TWCs. In a related project, NASA supports the transition of this research to seismogeodetic tools for disaster preparedness, specifically by implementing GPS and low-cost MEMS accelerometers for structural monitoring in partnership with earthquake engineers. Real-time high-rate seismogeodetic structural monitoring has been implemented on two structures. The first is a parking garage at the Autonomous University of Baja California Faculty of Medicine in Mexicali, not far from the rupture of the 2011 Mw 7.2 El Mayor Cucapah earthquake enabled through a UCMexus collaboration. The second is the 8-story Geisel Library at University of California, San Diego (UCSD). The system has also been installed for several proof-of-concept experiments at the UCSD Network for Earthquake Engineering Simulation (NEES) Large High Performance Outdoor Shake Table. We present MEMS-based seismogeodetic observations from the 10 June

  11. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Building Structures

    USGS Publications Warehouse

    Çelebi, Mehmet

    1998-01-01

    Several approaches are used to assess the performance of the built environment following an earthquake -- preliminary damage surveys conducted by professionals, detailed studies of individual structures, and statistical analyses of groups of structures. Reports of damage that are issued by many organizations immediately following an earthquake play a key role in directing subsequent detailed investigations. Detailed studies of individual structures and statistical analyses of groups of structures may be motivated by particularly good or bad performance during an earthquake. Beyond this, practicing engineers typically perform stress analyses to assess the performance of a particular structure to vibrational levels experienced during an earthquake. The levels may be determined from recorded or estimated ground motions; actual levels usually differ from design levels. If a structure has seismic instrumentation to record response data, the estimated and recorded response and behavior of the structure can be compared.

  12. Assessing the Applicability of Earthquake Early Warning in Nicaragua.

    NASA Astrophysics Data System (ADS)

    Massin, F.; Clinton, J. F.; Behr, Y.; Strauch, W.; Cauzzi, C.; Boese, M.; Talavera, E.; Tenorio, V.; Ramirez, J.

    2016-12-01

    Nicaragua, like much of Central America, suffers from frequent damaging earthquakes (6 M7+ earthquakes occurred in the last 100 years). Thrust events occur at the Middle America Trench where the Cocos plate subducts by 72-81 mm/yr eastward beneath the Caribbean plate. Shallow crustal events occur on-shore, with potential extensive damage as demonstrated in 1972 by a M6.2 earthquake, 5 km beneath Managua. This seismotectonic setting is challenging for Earthquake Early Warning (EEW) because the target events derive from both the offshore seismicity, with potentially large lead times but uncertain locations, and shallow seismicity in close proximity to densely urbanized areas, where an early warning would be short if available at all. Nevertheless, EEW could reduce Nicaragua's earthquake exposure. The Swiss Development and Cooperation Fund and the Nicaraguan Government have funded a collaboration between the Swiss Seismological Service (SED) at ETH Zurich and the Nicaraguan Geosciences Institute (INETER) in Managua to investigate and build a prototype EEW system for Nicaragua and the wider region. In this contribution, we present the potential of EEW to effectively alert Nicaragua and the neighbouring regions. We model alert time delays using all available seismic stations (existing and planned) in the region, as well as communication and processing delays (observed and optimal) to estimate current and potential performances of EEW alerts. Theoretical results are verified with the output from the Virtual Seismologist in SeisComP3 (VS(SC3)). VS(SC3) is implemented in the INETER SeisComP3 system for real-time operation and as an offline instance, that simulates real-time operation, to record processing delays of playback events. We compare our results with similar studies for Europe, California and New Zealand. We further highlight current capabilities and challenges for providing EEW alerts in Nicaragua. We also discuss how combining different algorithms, like e.g. VS

  13. A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China

    NASA Astrophysics Data System (ADS)

    Xu, Jinghai; An, Jiwen; Nie, Gaozong

    2016-04-01

    Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.

  14. Post earthquake recovery in natural gas systems--1971 San Fernando Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.T. Jr.

    1983-01-01

    In this paper a concise summary of the post earthquake investigations for the 1971 San Fernando Earthquake is presented. The effects of the earthquake upon building and other above ground structures are briefly discussed. Then the damages and subsequent repairs in the natural gas systems are reported.

  15. Damage and Site Effects of the May 2012 Emilia-Romagna and Lombardia Earthquake, with Particular Reference to the "Oltrepò Mantovano" (Mantua) Territory

    NASA Astrophysics Data System (ADS)

    Daminelli, R.; Marcellini, A.; Tento, A.

    2014-12-01

    The seismic sequence that struck the Lombardia and Emilia-Romagna in May 2012 consisted of seven main events of magnitude greater than 5 followed by numerous aftershocks. The strongest earthquakes occurred on May 20 (M=5.9) and May 29 (M=5.8) near the border between Lombardia and Emilia-Romagna. The epicenters of the main events are aligned in east-west direction in a segment of approx. 50 km just south of the Po river. The area was considered a low to medium seismicity: the seismic hazard in the epicentral area, and in the whole damaged area, was estimated to be less than 0.15 g PGA for 10% exceedance in 50 years. Significant damage occurred over an area greater than 1000 km2, which is extremely large for earthquakes of magnitude less than 6, bearing in mind the low vulnerability level of the structures. As seen in detailed geological investigations the degree of damage and its areal extent is largely attributable to the particular conditions of the soil. We focus on the relationship between damage and soil conditions in the area of Oltrepò Mantovano, situated between the Po River and the epicentral area. The soil is largely composed of Quaternary deposits of sands, silty-clay and clay with a very deep bedrock (greater than 100 m) and Vs30 generally less than 500 m/s. According to the cards Aedes (official forms of the Italian Government to assess the state of damage of buildings) houses declared uninhabitable because of the earthquake were mainly concentrated in a few small towns: Moglia, Gonzaga, Quistello and San Giacomo delle Segnate (located approximately at 20 km, 27 km, 20 km and 14 km from the epicenters of the two main shocks, respectively) which reported 73% of the total of all uninhabitable buildings; Moglia 27 %, Gonzaga 14%, Quistello 20% and San Giacomo delle Segnate 12%. The hydrographic system has evolved considerably since the Middle Bronze Age with the result that the area is characterized by a complex geomorphology with the presence of fluvial

  16. The Mw 7.7 Bhuj earthquake: Global lessons for earthquake hazard in intra-plate regions

    USGS Publications Warehouse

    Schweig, E.; Gomberg, J.; Petersen, M.; Ellis, M.; Bodin, P.; Mayrose, L.; Rastogi, B.K.

    2003-01-01

    The Mw 7.7 Bhuj earthquake occurred in the Kachchh District of the State of Gujarat, India on 26 January 2001, and was one of the most damaging intraplate earthquakes ever recorded. This earthquake is in many ways similar to the three great New Madrid earthquakes that occurred in the central United States in 1811-1812, An Indo-US team is studying the similarities and differences of these sequences in order to learn lessons for earthquake hazard in intraplate regions. Herein we present some preliminary conclusions from that study. Both the Kutch and New Madrid regions have rift type geotectonic setting. In both regions the strain rates are of the order of 10-9/yr and attenuation of seismic waves as inferred from observations of intensity and liquefaction are low. These strain rates predict recurrence intervals for Bhuj or New Madrid sized earthquakes of several thousand years or more. In contrast, intervals estimated from paleoseismic studies and from other independent data are significantly shorter, probably hundreds of years. All these observations together may suggest that earthquakes relax high ambient stresses that are locally concentrated by rheologic heterogeneities, rather than loading by plate-tectonic forces. The latter model generally underlies basic assumptions made in earthquake hazard assessment, that the long-term average rate of energy released by earthquakes is determined by the tectonic loading rate, which thus implies an inherent average periodicity of earthquake occurrence. Interpreting the observations in terms of the former model therefore may require re-examining the basic assumptions of hazard assessment.

  17. Earthquakes, November-December 1973

    USGS Publications Warehouse

    Person, W.J.

    1974-01-01

    Other parts of the world suffered fatalities and significant damage from earthquakes. In Iran, an earthquake killed one person, injured many, and destroyed a number of homes. Earthquake fatalities also occurred in the Azores and in Algeria. 

  18. Twitter as Information Source for Rapid Damage Estimation after Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Eggert, Silke; Fohringer, Joachim

    2014-05-01

    Natural disasters like earthquakes require a fast response from local authorities. Well trained rescue teams have to be available, equipment and technology has to be ready set up, information have to be directed to the right positions so the head quarter can manage the operation precisely. The main goal is to reach the most affected areas in a minimum of time. But even with the best preparation for these cases, there will always be the uncertainty of what really happened in the affected area. Modern geophysical sensor networks provide high quality data. These measurements, however, are only mapping disjoint values from their respective locations for a limited amount of parameters. Using observations of witnesses represents one approach to enhance measured values from sensors ("humans as sensors"). These observations are increasingly disseminated via social media platforms. These "social sensors" offer several advantages over common sensors, e.g. high mobility, high versatility of captured parameters as well as rapid distribution of information. Moreover, the amount of data offered by social media platforms is quite extensive. We analyze messages distributed via Twitter after major earthquakes to get rapid information on what eye-witnesses report from the epicentral area. We use this information to (a) quickly learn about damage and losses to support fast disaster response and to (b) densify geophysical networks in areas where there is sparse information to gain a more detailed insight on felt intensities. We present a case study from the Mw 7.1 Philippines (Bohol) earthquake that happened on Oct. 15 2013. We extract Twitter messages, so called tweets containing one or more specified keywords from the semantic field of "earthquake" and use them for further analysis. For the time frame of Oct. 15 to Oct 18 we get a data base of in total 50.000 tweets whereof 2900 tweets are geo-localized and 470 have a photo attached. Analyses for both national level and locally for

  19. Evidence for Ancient Mesoamerican Earthquakes

    NASA Astrophysics Data System (ADS)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  20. Earthquake vulnerability assessment of buildings of ward no. 8 of Haldwani-Kathgodam Municipal Corporation, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Bora, Kritika; Pande, Ravindra K.

    2017-07-01

    "Earthquake does not kill people; it is the building which kills people". Earthquake is a sudden event below the surface of the earth which results in vertical and horizontal waves that causes destruction. The main aim of this research is to bring into light the unplanned and non-engineered construction practices growing in the Urban areas. Lack of space and continuous migration from hills has resulted in Multistorey construction. The present study is based on primary data collection through Rapid Visual Screening for the assessment of vulnerability of buildings. "Haldwani-Kathgodam being a new Municipal Corporation located in the foot hills of Himalayas is facing same problem. The seismic zonation brings this area into zone 4 of damage risk. Therefore an assessment to estimate the risk of the built up environment is important. This paper presents a systematic and useful way of assessing physical vulnerability of buildings. The present paper will show how the growing pressure on urban area tends to make the built up environment vulnerable towards seismic activities. The challenge today is to make our living environment safe for living. The day by day growing population pressure on urban area as a migration trend in developing countries is leading to high rise building, no planning and reckless construction. For the sake of saving some money people usually do not take the approval from structural engineer. This unplanned and haphazard construction proves non-resistant towards earthquake and brings lives and properties to death and a stand still. The total no. of household in the current study area is 543 whereas the total population is 2497 (2011). The recent formation of Himalayas makes the area more sensitive towards seismic event. The closeness to the Main Boundary thrust brings it to zone 4 in the Seismic Zonation of India i.e., High Damage Risk Zone

  1. Earthquakes in Ohio and Vicinity 1776-2007

    USGS Publications Warehouse

    Dart, Richard L.; Hansen, Michael C.

    2008-01-01

    This map summarizes two and a third centuries of earthquake activity. The seismic history consists of letters, journals, diaries, and newspaper and scholarly articles that supplement seismograph recordings (seismograms) dating from the early twentieth century to the present. All of the pre-instrumental (historical) earthquakes were large enough to be felt by people or to cause shaking damage to buildings and their contents. Later, widespread use of seismographs meant that tremors too small or distant to be felt could be detected and accurately located. Earthquakes are a legitimate concern in Ohio and parts of adjacent States. Ohio has experienced more than 160 felt earthquakes since 1776. Most of these events caused no damage or injuries. However, 15 Ohio earthquakes resulted in property damage and some minor injuries. The largest historic earthquake in the state occurred in 1937. This event had an estimated magnitude of 5.4 and caused considerable damage in the town of Anna and in several other western Ohio communities. The large map shows all historical and instrumentally located earthquakes from 1776 through 2007.

  2. Damage assessment of RC buildings subjected to the different strong motion duration

    NASA Astrophysics Data System (ADS)

    Mortezaei, Alireza; mohajer Tabrizi, Mohsen

    2015-07-01

    An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.

  3. ShakeCast: Automating and improving the use of shakemap for post-earthquake deeision-making and response

    USGS Publications Warehouse

    Wald, D.; Lin, K.-W.; Porter, K.; Turner, Loren

    2008-01-01

    When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, on its own can be useful for emergency response, loss estimation, and public information. However, to take full advantage of the potential of ShakeMap, we introduce ShakeCast. ShakeCast facilitates the complicated assessment of potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps of structures or facilities most likely impacted. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users' facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for both public and private emergency managers and responders. ?? 2008, Earthquake Engineering Research Institute.

  4. Estimation of Damaged Areas due to the 2010 Chile Earthquake and Tsunami Using SAR Imagery of Alos/palsar

    NASA Astrophysics Data System (ADS)

    Made, Pertiwi Jaya Ni; Miura, Fusanori; Besse Rimba, A.

    2016-06-01

    A large-scale earthquake and tsunami affect thousands of people and cause serious damages worldwide every year. Quick observation of the disaster damage is extremely important for planning effective rescue operations. In the past, acquiring damage information was limited to only field surveys or using aerial photographs. In the last decade, space-borne images were used in many disaster researches, such as tsunami damage detection. In this study, SAR data of ALOS/PALSAR satellite images were used to estimate tsunami damage in the form of inundation areas in Talcahuano, the area near the epicentre of the 2010 Chile earthquake. The image processing consisted of three stages, i.e. pre-processing, analysis processing, and post-processing. It was conducted using multi-temporal images before and after the disaster. In the analysis processing, inundation areas were extracted through the masking processing. It consisted of water masking using a high-resolution optical image of ALOS/AVNIR-2 and elevation masking which built upon the inundation height using DEM image of ASTER-GDEM. The area result was 8.77 Km2. It showed a good result and corresponded to the inundation map of Talcahuano. Future study in another area is needed in order to strengthen the estimation processing method.

  5. Strategies for rapid global earthquake impact estimation: the Prompt Assessment of Global Earthquakes for Response (PAGER) system

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, D.J.

    2013-01-01

    This chapter summarizes the state-of-the-art for rapid earthquake impact estimation. It details the needs and challenges associated with quick estimation of earthquake losses following global earthquakes, and provides a brief literature review of various approaches that have been used in the past. With this background, the chapter introduces the operational earthquake loss estimation system developed by the U.S. Geological Survey (USGS) known as PAGER (for Prompt Assessment of Global Earthquakes for Response). It also details some of the ongoing developments of PAGER’s loss estimation models to better supplement the operational empirical models, and to produce value-added web content for a variety of PAGER users.

  6. Damage and intensity survey

    USGS Publications Warehouse

    Reagor, G.; Brewer, L.R.

    1992-01-01

    A field team (the tuhors) from the National Earthquake Information Center (USGS) conducted a damage survey of the epicentral area in the week following the earthquakes. Detailed information about damage and where and how strongly the earthquakes were felt was obtained through interviews with local residents and personal observations. 

  7. Magnitude 8.1 Earthquake off the Solomon Islands

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 1, 2007, a magnitude 8.1 earthquake rattled the Solomon Islands, 2,145 kilometers (1,330 miles) northeast of Brisbane, Australia. Centered less than ten kilometers beneath the Earth's surface, the earthquake displaced enough water in the ocean above to trigger a small tsunami. Though officials were still assessing damage to remote island communities on April 3, Reuters reported that the earthquake and the tsunami killed an estimated 22 people and left as many as 5,409 homeless. The most serious damage occurred on the island of Gizo, northwest of the earthquake epicenter, where the tsunami damaged the hospital, schools, and hundreds of houses, said Reuters. This image, captured by the Landsat-7 satellite, shows the location of the earthquake epicenter in relation to the nearest islands in the Solomon Island group. Gizo is beyond the left edge of the image, but its triangular fringing coral reefs are shown in the upper left corner. Though dense rain forest hides volcanic features from view, the very shape of the islands testifies to the geologic activity of the region. The circular Kolombangara Island is the tip of a dormant volcano, and other circular volcanic peaks are visible in the image. The image also shows that the Solomon Islands run on a northwest-southeast axis parallel to the edge of the Pacific plate, the section of the Earth's crust that carries the Pacific Ocean and its islands. The earthquake occurred along the plate boundary, where the Australia/Woodlark/Solomon Sea plates slide beneath the denser Pacific plate. Friction between the sinking (subducting) plates and the overriding Pacific plate led to the large earthquake on April 1, said the United States Geological Survey (USGS) summary of the earthquake. Large earthquakes are common in the region, though the section of the plate that produced the April 1 earthquake had not caused any quakes of magnitude 7 or larger since the early 20th century, said the USGS.

  8. SITE AMPLIFICATION OF EARTHQUAKE GROUND MOTION.

    USGS Publications Warehouse

    Hays, Walter W.

    1986-01-01

    When analyzing the patterns of damage in an earthquake, physical parameters of the total earthquake-site-structure system are correlated with the damage. Soil-structure interaction, the cause of damage in many earthquakes, involves the frequency-dependent response of both the soil-rock column and the structure. The response of the soil-rock column (called site amplification) is controversial because soil has strain-dependent properties that affect the way the soil column filters the input body and surface seismic waves, modifying the amplitude and phase spectra and the duration of the surface ground motion.

  9. Did you feel it? Community-made earthquake shaking maps

    USGS Publications Warehouse

    Wald, D.J.; Wald, L.A.; Dewey, J.W.; Quitoriano, Vince; Adams, Elisabeth

    2001-01-01

    Since the early 1990's, the magnitude and location of an earthquake have been available within minutes on the Internet. Now, as a result of work by the U.S. Geological Survey (USGS) and with the cooperation of various regional seismic networks, people who experience an earthquake can go online and share information about its effects to help create a map of shaking intensities and damage. Such 'Community Internet Intensity Maps' (CIIM's) contribute greatly in quickly assessing the scope of an earthquake emergency, even in areas lacking seismic instruments.

  10. Review Article: A comparison of flood and earthquake vulnerability assessment indicators

    NASA Astrophysics Data System (ADS)

    de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.

    2017-07-01

    In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.

  11. Geomorphic and Geologic Controls of Geohazards induced by Nepal's 2015 Gorkha Earthquake

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Leonard, G. J.; Shugar, D. H.; Haritashya, U.K.; Bevington, A.; Fielding, E. J.; Fujita, K.; Geertsema, M.; Miles, E. S.; Steiner, J.; hide

    2015-01-01

    The Gorkha earthquake (Magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing approx.9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

  12. Quantitative Study of Vulnerability / Damage Curves in South Africa

    NASA Astrophysics Data System (ADS)

    Pule, Tebogo

    2014-05-01

    Southern Africa is considered a stable continental region in spite of several cases of reported earthquakes, which caused considerable damage and casualties particularly in the mining industry. Most buildings and structures in South Africa are not designed to resist any intensity of earthquake and most architects, engineers and builders in the country do not consider seismic resistance as a design requirement. This is mainly because the region has not experienced any large and serious destructive earthquake in recent years. The most destructive earthquake recorded in South Africa is the Ceres earthquake of 1969. The earthquake with a magnitude of 6.3 occurred on September 29, 1969 in the Ceres-Tulbagh region of the Western Cape Province about 100 km northeast of Cape Town. Serious damage occurred to certain buildings in the area (amounting to a total of U.S. 24 million). The structural damage varied from almost total destruction of old and poorly constructed buildings to large cracks in the better-built ones, twelve people were killed and many more were injured. Another event that caused severe damage to infrastructure occurred on March 9, 2005 at Stilfontein near Klerksdorp. It is known that up to 40 or more tremors are recorded monthly in Southern Africa, the locations are predominantly in the places surrounding the gold mining areas with many events around the Carletonville and Klerksdorp areas. Recent years have seen at least four mining induced tremors causing significant damage (Welkom 1976, Klerksdorp 1977, Welkom 1989 and Carletonville 1992). Such events show that it is very necessary to take seismic events into account in the design of any infrastructure. Assessing and understanding the risk facing the South African cities as a result of major seismic activity has been paid little attention. The main focus of this study is to use results of a deterministic hazard assessment to develop the most suitable damage curves for twelve of the most common building

  13. 2016 update on induced earthquakes in the United States

    USGS Publications Warehouse

    Petersen, Mark D.

    2016-01-01

    During the past decade people living in numerous locations across the central U.S. experienced many more small to moderate sized earthquakes than ever before. This earthquake activity began increasing about 2009 and peaked during 2015 and into early 2016. For example, prior to 2009 Oklahoma typically experienced 1 or 2 small earthquakes per year with magnitude greater than 3.0 but by 2015 this number rose to over 900 earthquakes per year of that size and over 30 earthquakes greater than 4.0. These earthquakes can cause damage. In 2011 a magnitude 5.6 earthquake struck near the town of Prague, Oklahoma on a preexisting fault and caused severe damage to several houses and school buildings. During the past 6 years more than 1500 reports of damaging shaking levels were reported in areas of induced seismicity. This rapid increase and the potential for damaging ground shaking from induced earthquakes caused alarm to about 8 million people living nearby and officials responsible for public safety. They wanted to understand why earthquakes were increasing and the potential threats to society and buildings located nearby.

  14. Toward resolving an earthquake ground motion mystery in west Seattle, Washington State: Shallow seismic focusing may cause anomalous chimney damage

    USGS Publications Warehouse

    Stephenson, W.J.; Frankel, A.D.; Odum, J.K.; Williams, R.A.; Pratt, T.L.

    2006-01-01

    A shallow bedrock fold imaged by a 1.3-km long high-resolution shear-wave seismic reflection profile in west Seattle focuses seismic waves arriving from the south. This focusing may cause a pocket of amplified ground shaking and the anomalous chimney damage observed in earthquakes of 1949, 1965 and 2001. The 200-m bedrock fold at ???300-m depth is caused by deformation across an inferred fault within the Seattle fault zone. Ground motion simulations, using the imaged geologic structure and northward-propagating north-dipping plane wave sources, predict a peak horizontal acceleration pattern that matches that observed in strong motion records of the 2001 Nisqually event. Additionally, a pocket of chimney damage reported for both the 1965 and the 2001 earthquakes generally coincides with a zone of simulated amplification caused by focusing. This study further demonstrates the significant impact shallow (<1km) crustal structures can have on earthquake ground-motion variability.

  15. Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings

    NASA Astrophysics Data System (ADS)

    Vega, Johnny Alexander; Hidalgo, Cesar Augusto

    2016-11-01

    This paper outlines a framework for risk assessment of landslides triggered by earthquakes and rainfall in urban buildings in the city of Medellín - Colombia, applying a model that uses a geographic information system (GIS). We applied a computer model that includes topographic, geological, geotechnical and hydrological features of the study area to assess landslide hazards using the Newmark's pseudo-static method, together with a probabilistic approach based on the first order and second moment method (FOSM). The physical vulnerability assessment of buildings was conducted using structural fragility indexes, as well as the definition of damage level of buildings via decision trees and using Medellin's cadastral inventory data. The probability of occurrence of a landslide was calculated assuming that an earthquake produces horizontal ground acceleration (Ah) and considering the uncertainty of the geotechnical parameters and the soil saturation conditions of the ground. The probability of occurrence was multiplied by the structural fragility index values and by the replacement value of structures. The model implemented aims to quantify the risk caused by this kind of disaster in an area of the city of Medellín based on different values of Ah and an analysis of the damage costs of this disaster to buildings under different scenarios and structural conditions. Currently, 62% of ;Valle de Aburra; where the study area is located is under very low condition of landslide hazard and 38% is under low condition. If all buildings in the study area fulfilled the requirements of the Colombian building code, the costs of a landslide would be reduced 63% compared with the current condition. An earthquake with a return period of 475 years was used in this analysis according to the seismic microzonation study in 2002.

  16. Laboratory validation of MEMS-based sensors for post-earthquake damage assessment image

    NASA Astrophysics Data System (ADS)

    Pozzi, Matteo; Zonta, Daniele; Santana, Juan; Colin, Mikael; Saillen, Nicolas; Torfs, Tom; Amditis, Angelos; Bimpas, Matthaios; Stratakos, Yorgos; Ulieru, Dumitru; Bairaktaris, Dimitirs; Frondistou-Yannas, Stamatia; Kalidromitis, Vasilis

    2011-04-01

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings. To reduce the impact of installation and management, data will be transmitted to a remote base station using a wireless interface. During the project, sensor prototypes were produced by assembling pre-existing components and by developing ex-novo miniature devices with ultra-low power consumption and sensing performance beyond that offered by sensors available on the market. The paper outlines the device operating principles, production scheme and working at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, back to back with reference devices, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The paper assesses the economical sustainability and performance of the sensors developed for the project and discusses their applicability to long-term seismic monitoring.

  17. Make an Earthquake: Ground Shaking!

    ERIC Educational Resources Information Center

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  18. Feasibility Study of Earthquake Early Warning in Hawai`i For the Mauna Kea Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Hotovec-Ellis, A. J.; Thelen, W. A.; Bodin, P.; Vidale, J. E.

    2014-12-01

    Earthquakes, including large damaging events, are as central to the geologic evolution of the Island of Hawai`i as its more famous volcanic eruptions and lava flows. Increasing and expanding development of facilities and infrastructure on the island continues to increase exposure and risk associated with strong ground shaking resulting from future large local earthquakes. Damaging earthquakes over the last fifty years have shaken the most heavily developed areas and critical infrastructure of the island to levels corresponding to at least Modified Mercalli Intensity VII. Hawai`i's most recent damaging earthquakes, the M6.7 Kiholo Bay and M6.0 Mahukona earthquakes, struck within seven minutes of one another off of the northwest coast of the island in October 2006. These earthquakes resulted in damage at all thirteen of the telescopes near the summit of Mauna Kea that led to gaps in telescope operations ranging from days up to four months. With the experiences of 2006 and Hawai`i's history of damaging earthquakes, we have begun a study to explore the feasibility of implementing earthquake early warning systems to provide advanced warnings to the Thirty Meter Telescope of imminent strong ground shaking from future local earthquakes. One of the major challenges for earthquake early warning in Hawai`i is the variety of earthquake sources, from shallow crustal faults to deeper mantle sources, including the basal decollement separating the volcanic pile from the ancient oceanic crust. Infrastructure on the Island of Hawai`i may only be tens of kilometers from these sources, allowing warning times of only 20 s or less. We assess the capability of the current seismic network to produce alerts for major historic earthquakes, and we will provide recommendations for upgrades to improve performance.

  19. Tsunami hazard assessments with consideration of uncertain earthquakes characteristics

    NASA Astrophysics Data System (ADS)

    Sepulveda, I.; Liu, P. L. F.; Grigoriu, M. D.; Pritchard, M. E.

    2017-12-01

    The uncertainty quantification of tsunami assessments due to uncertain earthquake characteristics faces important challenges. First, the generated earthquake samples must be consistent with the properties observed in past events. Second, it must adopt an uncertainty propagation method to determine tsunami uncertainties with a feasible computational cost. In this study we propose a new methodology, which improves the existing tsunami uncertainty assessment methods. The methodology considers two uncertain earthquake characteristics, the slip distribution and location. First, the methodology considers the generation of consistent earthquake slip samples by means of a Karhunen Loeve (K-L) expansion and a translation process (Grigoriu, 2012), applicable to any non-rectangular rupture area and marginal probability distribution. The K-L expansion was recently applied by Le Veque et al. (2016). We have extended the methodology by analyzing accuracy criteria in terms of the tsunami initial conditions. Furthermore, and unlike this reference, we preserve the original probability properties of the slip distribution, by avoiding post sampling treatments such as earthquake slip scaling. Our approach is analyzed and justified in the framework of the present study. Second, the methodology uses a Stochastic Reduced Order model (SROM) (Grigoriu, 2009) instead of a classic Monte Carlo simulation, which reduces the computational cost of the uncertainty propagation. The methodology is applied on a real case. We study tsunamis generated at the site of the 2014 Chilean earthquake. We generate earthquake samples with expected magnitude Mw 8. We first demonstrate that the stochastic approach of our study generates consistent earthquake samples with respect to the target probability laws. We also show that the results obtained from SROM are more accurate than classic Monte Carlo simulations. We finally validate the methodology by comparing the simulated tsunamis and the tsunami records for

  20. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  1. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  2. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    NASA Astrophysics Data System (ADS)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  3. International Collaboration for Strengthening Capacity to Assess Earthquake Hazard in Indonesia

    NASA Astrophysics Data System (ADS)

    Cummins, P. R.; Hidayati, S.; Suhardjono, S.; Meilano, I.; Natawidjaja, D.

    2012-12-01

    Indonesia has experienced a dramatic increase in earthquake risk due to rapid population growth in the 20th century, much of it occurring in areas near the subduction zone plate boundaries that are prone to earthquake occurrence. While recent seismic hazard assessments have resulted in better building codes that can inform safer building practices, many of the fundamental parameters controlling earthquake occurrence and ground shaking - e.g., fault slip rates, earthquake scaling relations, ground motion prediction equations, and site response - could still be better constrained. In recognition of the need to improve the level of information on which seismic hazard assessments are based, the Australian Agency for International Development (AusAID) and Indonesia's National Agency for Disaster Management (BNPB), through the Australia-Indonesia Facility for Disaster Reduction, have initiated a 4-year project designed to strengthen the Government of Indonesia's capacity to reliably assess earthquake hazard. This project is a collaboration of Australian institutions including Geoscience Australia and the Australian National University, with Indonesian government agencies and universities including the Agency for Meteorology, Climatology and Geophysics, the Geological Agency, the Indonesian Institute of Sciences, and Bandung Institute of Technology. Effective earthquake hazard assessment requires input from many different types of research, ranging from geological studies of active faults, seismological studies of crustal structure, earthquake sources and ground motion, PSHA methodology, and geodetic studies of crustal strain rates. The project is a large and diverse one that spans all these components, and these will be briefly reviewed in this presentation

  4. Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake.

    PubMed

    Kargel, J S; Leonard, G J; Shugar, D H; Haritashya, U K; Bevington, A; Fielding, E J; Fujita, K; Geertsema, M; Miles, E S; Steiner, J; Anderson, E; Bajracharya, S; Bawden, G W; Breashears, D F; Byers, A; Collins, B; Dhital, M R; Donnellan, A; Evans, T L; Geai, M L; Glasscoe, M T; Green, D; Gurung, D R; Heijenk, R; Hilborn, A; Hudnut, K; Huyck, C; Immerzeel, W W; Liming, Jiang; Jibson, R; Kääb, A; Khanal, N R; Kirschbaum, D; Kraaijenbrink, P D A; Lamsal, D; Shiyin, Liu; Mingyang, Lv; McKinney, D; Nahirnick, N K; Zhuotong, Nan; Ojha, S; Olsenholler, J; Painter, T H; Pleasants, M; Pratima, K C; Yuan, Q I; Raup, B H; Regmi, D; Rounce, D R; Sakai, A; Donghui, Shangguan; Shea, J M; Shrestha, A B; Shukla, A; Stumm, D; van der Kooij, M; Voss, K; Xin, Wang; Weihs, B; Wolfe, D; Lizong, Wu; Xiaojun, Yao; Yoder, M R; Young, N

    2016-01-08

    The Gorkha earthquake (magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9000 people and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes' induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision-makers. We mapped 4312 coseismic and postseismic landslides. We also surveyed 491 glacier lakes for earthquake damage but found only nine landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions. Copyright © 2016, American Association for the Advancement of Science.

  5. Children's Ideas about Earthquakes

    ERIC Educational Resources Information Center

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  6. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Hee; Ree, Jin-Han; Kim, YoungHee; Kim, Sungshil; Kang, Su Young; Seo, Wooseok

    2018-06-01

    The moment magnitude (Mw) 5.4 Pohang earthquake, the most damaging event in South Korea since instrumental seismic observation began in 1905, occurred beneath the Pohang geothermal power plant in 2017. Geological and geophysical data suggest that the Pohang earthquake was induced by fluid from an enhanced geothermal system (EGS) site, which was injected directly into a near-critically stressed subsurface fault zone. The magnitude of the mainshock makes it the largest known induced earthquake at an EGS site.

  7. Tsunami vulnerability and damage assessment in the coastal area of Rabat and Salé, Morocco

    NASA Astrophysics Data System (ADS)

    Atillah, A.; El Hadani, D.; Moudni, H.; Lesne, O.; Renou, C.; Mangin, A.; Rouffi, F.

    2011-12-01

    This study, a companion paper to Renou et al. (2011), focuses on the application of a GIS-based method to assess building vulnerability and damage in the event of a tsunami affecting the coastal area of Rabat and Salé, Morocco. This approach, designed within the framework of the European SCHEMA project (www.schemaproject.org) is based on the combination of hazard results from numerical modelling of the worst case tsunami scenario (inundation depth) based on the historical Lisbon earthquake of 1755 and the Portugal earthquake of 1969, together with vulnerability building types derived from Earth Observation data, field surveys and GIS data. The risk is then evaluated for this highly concentrated population area characterized by the implementation of a vast project of residential and touristic buildings within the flat area of the Bouregreg Valley separating the cities of Rabat and Salé. A GIS tool is used to derive building damage maps by crossing layers of inundation levels and building vulnerability. The inferred damage maps serve as a base for elaborating evacuation plans with appropriate rescue and relief processes and to prepare and consider appropriate measures to prevent the induced tsunami risk.

  8. Using landscape analysis to assess and model tsunami damage in Aceh province, Sumatra

    Treesearch

    Louis R. Iverson; Anantha Prasad

    2007-01-01

    The nearly unprecedented loss of life resulting from the earthquake and tsunami of December 26,2004, was greatest in the province of Aceh, Sumatra (Indonesia). We evaluated tsunami damage and built empirical vulnerability models of damage/no damage based on elevation, distance from shore, vegetation, and exposure. We found that highly predictive models are possible and...

  9. Detection of Earthquake-Induced Damage in a Framed Structure Using a Finite Element Model Updating Procedure

    PubMed Central

    Kim, Seung-Nam; Park, Taewon; Lee, Sang-Hyun

    2014-01-01

    Damage of a 5-story framed structure was identified from two types of measured data, which are frequency response functions (FRF) and natural frequencies, using a finite element (FE) model updating procedure. In this study, a procedure to determine the appropriate weightings for different groups of observations was proposed. In addition, a modified frame element which included rotational springs was used to construct the FE model for updating to represent concentrated damage at the member ends (a formulation for plastic hinges in framed structures subjected to strong earthquakes). The results of the model updating and subsequent damage detection when the rotational springs (RS model) were used were compared with those obtained using the conventional frame elements (FS model). Comparisons indicated that the RS model gave more accurate results than the FS model. That is, the errors in the natural frequencies of the updated models were smaller, and the identified damage showed clearer distinctions between damaged and undamaged members and was more consistent with observed damage. PMID:24574888

  10. Rapid field-based landslide hazard assessment in response to post-earthquake emergency

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Gambini, Stefano; Cancelliere, Giorgio

    2016-04-01

    On April 25, 2015 a Mw 7.8 earthquake occurred 80 km to the northwest of Kathmandu (Nepal). The largest aftershock, occurred on May 12, 2015, was the Mw 7.3 Nepal earthquake (SE of Zham, China), 80 km to the east of Kathmandu. . The earthquakes killed ~9000 people and severely damaged a 10,000 sqkm region in Nepal and neighboring countries. Several thousands of landslides have been triggered during the event, causing widespread damages to mountain villages and the evacuation of thousands of people. Rasuwa was one of the most damaged districts. This contribution describes landslide hazard analysis of the Saramthali, Yarsa and Bhorle VDCs (122 km2, Rasuwa district). Hazard is expressed in terms of qualitative classes (low, medium, high), through a simple matrix approach that combines frequency classes and magnitude classes. The hazard analysis is based primarily on the experience gained during a field survey conducted in September 2014. During the survey, local knowledge has been systematically exploited through interviews with local people that have experienced the earthquake and the coseismic landslides. People helped us to recognize fractures and active deformations, and allowed to reconstruct a correct chronicle of landslide events, in order to assign the landslide events to the first shock, the second shock, or the post-earthquake 2015 monsoon. The field experience was complemented with a standard analysis of the relationship between potential controlling factors and the distribution of landslides reported in Kargel et al (2016). This analysis allowed recognizing the most important controlling factor. This information was integrated with the field observations to verify the mapped units and to complete the mapping in area not accessible for field activity. Finally, the work was completed with the analysis and the use of a detailed landslide inventory produced by the University of Milano Bicocca that covers most of the area affected by coseismic landslides in

  11. Breaking new ground for remote sensing in support of disaster relief efforts: Detecting and pinpointing earthquake damage in near real-time (El Salvador, January 2001)

    NASA Astrophysics Data System (ADS)

    Nezry, Edmond; Romeijn, Paul P.; Sarti, Francesco; Inglada, Jordi; Zagolski, Francis; Yakam-Simen, Francis

    2002-01-01

    On January 13th 2001, a very strong earthquake struck El-Salvador, causing almost 1000 deaths and huge destruction, leaving more than one million people homeless. As support to the rescue teams, a project was initiated to provide up-to date maps and to identify damages to housing and infrastructures, covering the whole country. Based on the analysis of SPOT Panchromatic satellite imagery, updated maps were delivered to the rescue teams within 72 hours after the earthquake. In addition, during the 10 days following the earthquake, high resolution mapping of the damages was carried out in cooperation and coordination with rescue teams and relief organizations. Some areas of particular interest were even processed and damage maps delivered through the Internet, three hours after the request. For the first time in the history of spaceborne Earth observation, identification and evaluation of the damages were delivered on-site, in real-time (during the interventions), to local authorities, rescue teams and humanitarian organizations. In this operation, operating 24 hours a day and technical ability were the keys for success and contributed to saving lives.

  12. Earthquakes, September-October 1978

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    The months of September and October were somewhat quiet seismically speaking. One major earthquake, magnitude (M) 7.7 occurred in Iran on September 16. In Germany, a magntidue 5.0 earthquake caused damage and considerable alarm to many people in parts of that country. In the United States, the largest earthquake occurred along the California-Nevada border region. 

  13. Earthquakes; March-April 1975

    USGS Publications Warehouse

    Person, W.J.

    1975-01-01

    There were no major earthquakes (magnitude 7.0-7.9) in March or April; however, there were earthquake fatalities in Chile, Iran, and Venezuela and approximately 35 earthquake-related injuries were reported around the world. In the United States a magnitude 6.0 earthquake struck the Idaho-Utah border region. Damage was estimated at about a million dollars. The shock was felt over a wide area and was the largest to hit the continental Untied States since the San Fernando earthquake of February 1971. 

  14. Assessment of impact of strong earthquakes to the global economy by example of Thoku event

    NASA Astrophysics Data System (ADS)

    Tatiana, Skufina; Peter, Skuf'in; Sergey, Baranov; Vera, Samarina; Taisiya, Shatalova

    2016-04-01

    We examine the economic consequences of strong earthquakes by example of M9 Tahoku one that occurred on March 11, 2011 close to the northeast shore of Japanese coast Honshu. This earthquake became the strongest in the whole history of the seismological observations in this part of the planet. The generated tsunami killed more than 15,700 people, damaged 332,395 buildings and 2,126 roads. The total economic loss in Japan was estimated at 309 billion. The catastrophe in Japan also impacted global economy. To estimate its impact, we used regional and global stock indexes, production indexes, stock prices of the main Japanese, European and US companies, import and export dynamics, as well as the data provided by the custom of Japan. We also demonstrated that the catastrophe substantially affected the markets and on the short run in some indicators it even exceeded the effect of the global financial crisis of 2008. The last strong earthquake occurred in Nepal (25.04.2015, M7.8) and Chile (16.09.2015, M8.3), both actualized the research of cost assessments of the overall economic impact of seismic hazard. We concluded that it is necessary to treat strong earthquakes as one very important factor that affects the world economy depending on their location. The research was supported by Russian Foundation for Basic Research (Project 16-06-00056A).

  15. Assessment of liquefaction potential during earthquakes by arias intensity

    USGS Publications Warehouse

    Kayen, R.E.; Mitchell, J.K.

    1997-01-01

    An Arias intensity approach to assess the liquefaction potential of soil deposits during earthquakes is proposed, using an energy-based measure of the severity of earthquake-shaking recorded on seismograms of the two horizontal components of ground motion. Values representing the severity of strong motion at depth in the soil column are associated with the liquefaction resistance of that layer, as measured by in situ penetration testing (SPT, CPT). This association results in a magnitude-independent boundary that envelopes initial liquefaction of soil in Arias intensity-normalized penetration resistance space. The Arias intensity approach is simple to apply and has proven to be highly reliable in assessing liquefaction potential. The advantages of using Arias intensity as a measure of earthquake-shaking severity in liquefaction assessment are: Arias intensity is derived from integration of the entire seismogram wave form, incorporating both the amplitude and duration elements of ground motion; all frequencies of recorded motion are considered; and Arias intensity is an appropriate measure to use when evaluating field penetration test methodologies that are inherently energy-based. Predictor equations describing the attenuation of Arias intensity as a function of earthquake magnitude and source distance are presented for rock, deep-stiff alluvium, and soft soil sites.

  16. Regional liquefaction hazard evaluation following the 2010-2011 Christchurch (New Zealand) earthquake sequence

    NASA Astrophysics Data System (ADS)

    Begg, John; Brackley, Hannah; Irwin, Marion; Grant, Helen; Berryman, Kelvin; Dellow, Grant; Scott, David; Jones, Katie; Barrell, David; Lee, Julie; Townsend, Dougal; Jacka, Mike; Harwood, Nick; McCahon, Ian; Christensen, Steve

    2013-04-01

    Following the damaging 4 Sept 2010 Mw7.1 Darfield Earthquake, the 22 Feb 2011 Christchurch Earthquake and subsequent damaging aftershocks, we completed a liquefaction hazard evaluation for c. 2700 km2 of the coastal Canterbury region. Its purpose was to distinguish at a regional scale areas of land that, in the event of strong ground shaking, may be susceptible to damaging liquefaction from areas where damaging liquefaction is unlikely. This information will be used by local government for defining liquefaction-related geotechnical investigation requirements for consent applications. Following a review of historic records of liquefaction and existing liquefaction assessment maps, we undertook comprehensive new work that included: a geologic context from existing geologic maps; geomorphic mapping using LiDAR and integrating existing soil map data; compilation of lithological data for the surficial 10 m from an extensive drillhole database; modelling of depth to unconfined groundwater from existing subsurface and surface water data. Integrating and honouring all these sources of information, we mapped areas underlain by materials susceptible to liquefaction (liquefaction-prone lithologies present, or likely, in the near-surface, with shallow unconfined groundwater) from areas unlikely to suffer widespread liquefaction damage. Comparison of this work with more detailed liquefaction susceptibility assessment based on closely spaced geotechnical probes in Christchurch City provides a level of confidence in these results. We tested our susceptibility map by assigning a matrix of liquefaction susceptibility rankings to lithologies recorded in drillhole logs and local groundwater depths, then applying peak ground accelerations for four earthquake scenarios from the regional probabilistic seismic hazard model (25 year return = 0.13g; 100 year return = 0.22g; 500 year return = 0.38g and 2500 year return = 0.6g). Our mapped boundary between liquefaction-prone areas and areas

  17. Defining Community Disaster Preparedness as a Resilience Factor for Earthquake Risk Assessment in Istanbul

    NASA Astrophysics Data System (ADS)

    Sungay, B.; Durukal, E.; Kilic, O.; Konukcu, B.; Basmaci, A. E.; Khazai, B.; Erdik, M.

    2009-04-01

    The natural events such as earthquakes turn out to be disasters as a result of not only the poor conditions of the built area and infrastructure, but also affected by the socioeconomic fragility and lack of resilience of the community exposed. Likewise, resilience factors play role in increasing the ability of people to cope with hazards. Social resilience is the capacity of social groups and communities to recover from, or respond positively to, crises. Emergency management plans must recognize and build on this capacity, and that improved indicators of social resilience should receive priority consideration in the application of these plans. The physical risk factors and their damage assessment have been pointed out in previous earthquake risk assessment and scenario studies conducted by Bogazici University and OYO International. A rational assessment of the risk aggravating factors is essential in order to reach to a more complete coverage of the overall risk. It would also introduce the social factors that need to be reduced or strengthened through public policies and actions in order to increase the resilience of the community. With experience from several social studies conducted under CENDIM, Kandilli Observatory & Earthquake Research Institute's Disaster Preparedness Education Unit, and research of the studies conducted by several other national and international institutions, we are defining the community disaster preparedness as an indicator for resilience. Social resilience is understood to have two important properties: resistance, recovery. Resistance relates to a community's efforts to withstand a disaster and its consequences whereas recovery relates to a community's ability to coming back to its pre-disaster level of "normalcy". Researches also indicate that the need for local-level and community-based approaches is recognized in achieving sustainable hazard risk reduction. We will conceptually discuss the description and assessment of the community

  18. Earthquake Hazard Assessment: Basics of Evaluation

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA) is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Earthquakes follow the Unified Scaling Law that generalizes the Gutenberg-Richter relationship by taking into account naturally fractal distribution of their sources. Moreover, earthquakes, including the great and mega events, are clustered in time and their sequences have irregular recurrence intervals. Furthermore, earthquake related observations are limited to the recent most decades (or centuries in just a few rare cases). Evidently, all this complicates reliable assessment of seismic hazard and associated risks. Making SHA claims, either termless or time dependent (so-called t-DASH), quantitatively probabilistic in the frames of the most popular objectivists' viewpoint on probability requires a long series of "yes/no" trials, which cannot be obtained without an extended rigorous testing of the method predictions against real observations. Therefore, we reiterate the necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing supplies us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified in brief with a few examples, which analyses in more detail are given in a poster of

  19. Earthquake scenarios based on lessons from the past

    NASA Astrophysics Data System (ADS)

    Solakov, Dimcho; Simeonova, Stella; Aleksandrova, Irena; Popova, Iliana

    2010-05-01

    Earthquakes are the most deadly of the natural disasters affecting the human environment; indeed catastrophic earthquakes have marked the whole human history. Global seismic hazard and vulnerability to earthquakes are increasing steadily as urbanization and development occupy more areas that are prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The implementation of the earthquake scenarios into the policies for seismic risk reduction will allow focusing on the prevention of earthquake effects rather than on intervention following the disasters. The territory of Bulgaria (situated in the eastern part of the Balkan Peninsula) represents a typical example of high seismic risk area. Over the centuries, Bulgaria has experienced strong earthquakes. At the beginning of the 20-the century (from 1901 to 1928) five earthquakes with magnitude larger than or equal to MS=7.0 occurred in Bulgaria. However, no such large earthquakes occurred in Bulgaria since 1928, which may induce non-professionals to underestimate the earthquake risk. The 1986 earthquake of magnitude MS=5.7 occurred in the central northern Bulgaria (near the town of Strazhitsa) is the strongest quake after 1928. Moreover, the seismicity of the neighboring countries, like Greece, Turkey, former Yugoslavia and Romania (especially Vrancea-Romania intermediate earthquakes), influences the seismic hazard in Bulgaria. In the present study deterministic scenarios (expressed in seismic intensity) for two Bulgarian cities (Rouse and Plovdiv) are presented. The work on

  20. Early Earthquakes of the Americas

    NASA Astrophysics Data System (ADS)

    Ni, James

    2004-11-01

    Robert Kovach's second book looks at the interplay of earthquake and volcanic events, archeology, and history in the Americas. Throughout history, major earthquakes have caused the deaths of millions of people and have damaged countless cities. Earthquakes undoubtedly damaged prehistoric cities in the Americas, and evidence of these events could be preserved in archeological records. Kovach asks, Did indigenous native cultures-Indians of the Pacific Northwest, Aztecs, Mayas, and Incas-document their natural history? Some events have been explicitly documented, for example, in Mayan codices, but many may have been recorded as myth and legend. Kovach's discussions of how early cultures dealt with fearful events such as earthquakes and volcanic eruptions are colorful, informative, and entertaining, and include, for example, a depiction of how the Maya would talk to maize plants in their fields during earthquakes to reassure them.

  1. Accounts of damage from historical earthquakes in the northeastern Caribbean to aid in the determination of their location and intensity magnitudes

    USGS Publications Warehouse

    Flores, Claudia H.; ten Brink, Uri S.; Bakun, William H.

    2012-01-01

    Documentation of an event in the past depended on the population and political trends of the island, and the availability of historical documents is limited by the physical resource digitization schedule and by the copyright laws of each archive. Examples of documents accessed are governors' letters, newspapers, and other circulars published within the Caribbean, North America, and Western Europe. Key words were used to search for publications that contain eyewitness accounts of various large earthquakes. Finally, this catalog provides descriptions of damage to buildings used in previous studies for the estimation of moment intensity (MI) and location of significantly damaging or felt earthquakes in Hispaniola and in the northeastern Caribbean, all of which have been described in other studies.

  2. Earthquake Loss Assessment for the Evaluation of the Sovereign Risk and Financial Sustainability of Countries and Cities

    NASA Astrophysics Data System (ADS)

    Cardona, O. D.

    2013-05-01

    Recently earthquakes have struck cities both from developing as well as developed countries, revealing significant knowledge gaps and the need to improve the quality of input data and of the assumptions of the risk models. The quake and tsunami in Japan (2011) and the disasters due to earthquakes in Haiti (2010), Chile (2010), New Zealand (2011) and Spain (2011), only to mention some unexpected impacts in different regions, have left several concerns regarding hazard assessment as well as regarding the associated uncertainties to the estimation of the future losses. Understanding probable losses and reconstruction costs due to earthquakes creates powerful incentives for countries to develop planning options and tools to cope with sovereign risk, including allocating the sustained budgetary resources necessary to reduce those potential damages and safeguard development. Therefore the use of robust risk models is a need to assess the future economic impacts, the country's fiscal responsibilities and the contingent liabilities for governments and to formulate, justify and implement risk reduction measures and optimal financial strategies of risk retention and transfer. Special attention should be paid to the understanding of risk metrics such as the Loss Exceedance Curve (empiric and analytical) and the Expected Annual Loss in the context of conjoint and cascading hazards.

  3. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain

  4. Napa Earthquake impact on water systems

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  5. Geographic variation of clinically diagnosed mood and anxiety disorders in Christchurch after the 2010/11 earthquakes.

    PubMed

    Hogg, Daniel; Kingham, Simon; Wilson, Thomas M; Griffin, Edward; Ardagh, Michael

    2014-11-01

    The 22nd February 2011 Christchurch earthquake killed 185 people, injured over 8000, damaged over 100,000 buildings and on-going aftershocks maintained high anxiety levels. This paper examines the dose of exposure effect of earthquake damage assessments, earthquake intensity measures, liquefaction and lateral spreading on mood and anxiety disorders in Christchurch after this event. We hypothesise that such disorders are more likely to develop in people who have experienced greater exposure to these impacts within their neighborhood than others who have been less exposed, but also live in the city. For this purpose, almost all clinically diagnosed incident and relapsed cases in Christchurch in a 12 months period after the 2011 earthquake were analysed. Spatio-temporal cluster analysis shows that people living in the widely affected central and eastern parts after the 2010/11 earthquakes have a 23% higher risk of developing a mood or anxiety disorder than people living in other parts of the city. Generally, mood and anxiety-related disorders increase with closer proximity to damage from liquefaction and moderate to major lateral spreading, as well as areas that are more likely to suffer from damage in future earthquakes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Road to Total Earthquake Safety

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  7. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  8. Earthquakes in Arkansas and vicinity 1699-2010

    USGS Publications Warehouse

    Dart, Richard L.; Ausbrooks, Scott M.

    2011-01-01

    This map summarizes approximately 300 years of earthquake activity in Arkansas. It is one in a series of similar State earthquake history maps. Work on the Arkansas map was done in collaboration with the Arkansas Geological Survey. The earthquake data plotted on the map are from several sources: the Arkansas Geological Survey, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Mississippi Department of Environmental Quality. In addition to earthquake locations, other materials presented include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Arkansas and parts of adjacent states. Arkansas has undergone a number of significant felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Arkansas and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  9. Earthquakes and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  10. Earthquakes in Mississippi and vicinity 1811-2010

    USGS Publications Warehouse

    Dart, Richard L.; Bograd, Michael B.E.

    2011-01-01

    This map summarizes two centuries of earthquake activity in Mississippi. Work on the Mississippi map was done in collaboration with the Mississippi Department of Environmental Quality, Office of Geology. The earthquake data plotted on the map are from several sources: the Mississippi Department of Environmental Quality, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Arkansas Geological Survey. In addition to earthquake locations, other materials include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Mississippi and parts of adjacent States. Mississippi has undergone a number of felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Mississippi and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  11. Loss Estimations due to Earthquakes and Secondary Technological Hazards

    NASA Astrophysics Data System (ADS)

    Frolova, N.; Larionov, V.; Bonnin, J.

    2009-04-01

    Expected loss and damage assessment due to natural and technological disasters are of primary importance for emergency management just after the disaster, as well as for development and implementation of preventive measures plans. The paper addresses the procedures and simulation models for loss estimations due to strong earthquakes and secondary technological accidents. The mathematical models for shaking intensity distribution, damage to buildings and structures, debris volume, number of fatalities and injuries due to earthquakes and technological accidents at fire and chemical hazardous facilities are considered, which are used in geographical information systems assigned for these purposes. The criteria of technological accidents occurrence are developed on the basis of engineering analysis of past events' consequences. The paper is providing the results of scenario earthquakes consequences estimation and individual seismic risk assessment taking into account the secondary technological hazards at regional and urban levels. The individual risk is understood as the probability of death (or injuries) due to possible hazardous event within one year in a given territory. It is determined through mathematical expectation of social losses taking into account the number of inhabitants in the considered settlement and probability of natural and/or technological disaster.

  12. Comparative risk assessments for the city of Pointe-à-Pitre (French West Indies): earthquakes and storm surge

    NASA Astrophysics Data System (ADS)

    Reveillere, A. R.; Bertil, D. B.; Douglas, J. D.; Grisanti, L. G.; Lecacheux, S. L.; Monfort, D. M.; Modaressi, H. M.; Müller, H. M.; Rohmer, J. R.; Sedan, O. S.

    2012-04-01

    In France, risk assessments for natural hazards are usually carried out separately and decision makers lack comprehensive information. Moreover, since the cause of the hazard (e.g. meteorological, geological) and the physical phenomenon that causes damage (e.g. inundation, ground shaking) may be fundamentally different, the quantitative comparison of single risk assessments that were not conducted in a compatible framework is not straightforward. Comprehensive comparative risk assessments exist in a few other countries. For instance, the Risk Map Germany project has developed and applied a methodology for quantitatively comparing the risk of relevant natural hazards at various scales (city, state) in Germany. The present on-going work applies a similar methodology to the Pointe-à-Pitre urban area, which represents more than half of the population of Guadeloupe, an overseas region in the French West Indies. Relevant hazards as well as hazard intensity levels differ from continental Europe, which will lead to different conclusions. French West Indies are prone to a large number of hazards, among which hurricanes, volcanic eruptions and earthquakes dominate. Hurricanes cause damage through three phenomena: wind, heavy rainfall and storm surge, the latter having had a preeminent role during the largest historical event in 1928. Seismic risk is characterized by many induced phenomena, among which earthquake shocks dominate. This study proposes a comparison of earthquake and cyclonic storm surge risks. Losses corresponding to hazard intensities having the same probability of occurrence are calculated. They are quantified in a common loss unit, chosen to be the direct economic losses. Intangible or indirect losses are not considered. The methodology therefore relies on (i) a probabilistic hazard assessment, (ii) a loss ratio estimation for the exposed elements and (iii) an economic estimation of these assets. Storm surge hazard assessment is based on the selection of

  13. Historical earthquake research in Austria

    NASA Astrophysics Data System (ADS)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  14. Research in seismology and earthquake engineering in Venezuela

    USGS Publications Warehouse

    Urbina, L.; Grases, J.

    1983-01-01

    After the July 29, 1967, damaging earthquake (with a moderate magnitude of 6.3) caused widespread damage to the northern coastal area of Venezuela and to the Caracas Valley, the Venezuelan Government decided to establish a Presidential Earthquake Commission. This commission undertook the task of coordinating the efforts to study the after-effects of the earthquake. The July 1967 earthquake claimed numerous lives and caused extensive damage to the capital of Venezuela. In 1968, the U.S Geological Survey conducted a seismological field study in the northern coastal area and in the Caracas Valley of Venezuela. the objective was to study the area that sustained severe, moderate, and no damage to structures. A reported entitled Ground Amplification Studies in Earthquake Damage Areas: The Caracas Earthquake of 1967 documented, for the first time, short-period seismic wave ground-motion amplifications in the Caracas Valley. Figure 1 shows the area of severe damage in the Los Palos Grantes suburb and the correlation with depth of alluvium and the arabic numbers denote the ground amplification factor at each site in the area. the Venezuelan Government initiated many programs to study in detail the damage sustained and to investigate the ongoing construction practices. These actions motivated professionals in the academic, private, and Government sectors to develops further capabilities and self-sufficiency in the fields of engineering and seismology. Allocation of funds was made to assist in training professionals and technicians and in developing new seismological stations and new programs at the national level in earthquake engineering and seismology. A brief description of the ongoing programs in Venezuela is listed below. these programs are being performed by FUNVISIS and by other national organizations listed at the end of this article.   

  15. Global assessment of human losses due to earthquakes

    USGS Publications Warehouse

    Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen

    2014-01-01

    Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.

  16. Geotechnical aspects in the epicentral region of the 2011, Mw5.8 Mineral, Virginia earthquake

    USGS Publications Warehouse

    Green, Russell A.; Lasley, Samuel; Carter, Mark W.; Munsey, Jeffrey W.; Maurer, Brett W.; Tuttle, Martitia P.

    2015-01-01

    A reconnaissance team documented the geotechnical and geological aspects in the epicentral region of the Mw (moment magnitude) 5.8 Mineral, Virginia (USA), earthquake of 23 August 2011. Tectonically and seismically induced ground deformations, evidence of liquefaction, rock slides, river bank slumps, ground subsidence, performance of earthen dams, damage to public infrastructure and lifelines, and other effects of the earthquake were documented. This moderate earthquake provided the rare opportunity to collect data to help assess current geoengineering practices in the region, as well as to assess seismic performance of the aging infrastructure in the region. Ground failures included two marginal liquefaction sites, a river bank slump, four minor rockfalls, and a ~4-m-wide, ~12-m-long, ~0.3-m-deep subsidence on a residential property. Damage to lifelines included subsidence of the approaches for a bridge and a water main break to a heavily corroded, 5-cm-diameter valve in Mineral, Virginia. Observed damage to dams, landfills, and public-use properties included a small, shallow slide in the temporary (“working”) clay cap of the county landfill, damage to two earthen dams (one in the epicentral region and one further away near Bedford, Virginia), and substantial structural damage to two public school buildings.

  17. Earthquake!

    ERIC Educational Resources Information Center

    Hernandez, Hildo

    2000-01-01

    Examines the types of damage experienced by California State University at Northridge during the 1994 earthquake and what lessons were learned in handling this emergency are discussed. The problem of loose asbestos is addressed. (GR)

  18. Assessing the earthquake hazards in urban areas

    USGS Publications Warehouse

    Hays, W.W.; Gori, P.L.; Kockelman, W.J.

    1988-01-01

    Major urban areas in widely scattered geographic locations across the United States are a t varying degrees of risk from earthquakes. the locations of these urban areas include Charleston, South Carolina; Memphis Tennessee; St.Louis, Missouri; Salt Lake City, Utah; Seattle-Tacoma, Washington; Portland, Oregon; and Anchorage, Alaska; even Boston, Massachusetts, and Buffalo New York, have a history of large earthquakes. Cooperative research during the past decade has focused on assessing the nature and degree of the risk or seismic hazard i nthe broad geographic regions around each urban area. The strategy since the 1970's has been to bring together local, State, and Federal resources to solve the problem of assessing seismic risk. Successfl sooperative programs have been launched in the San Francisco Bay and Los Angeles regions in California and the Wasatch Front region in Utah. 

  19. Earthquakes, November-December 1992

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    There were two major earthquakes (7.0≤M<8.0) during the last two months of the year, a magntidue 7.5 earthquake on December 12 in the Flores region, Indonesia, and a magnitude 7.0 earthquake on December 20 in the Banda Sea. Earthquakes caused fatalities in China and Indonesia. The greatest number of deaths (2,500) for the year occurred in Indonesia. In Switzerland, six people were killed by an accidental explosion recoreded by seismographs. In teh United States, a magnitude 5.3 earthquake caused slight damage at Big Bear in southern California. 

  20. Turkish Children's Ideas about Earthquakes

    ERIC Educational Resources Information Center

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  1. Proposal as to Efficient Collection and Exploitation of Earthquake Damage Information and Verification by Field Experiment at Toyohashi City

    NASA Astrophysics Data System (ADS)

    Zama, Shinsaku; Endo, Makoto; Takanashi, Ken'ichi; Araiba, Kiminori; Sekizawa, Ai; Hosokawa, Masafumi; Jeong, Byeong-Pyo; Hisada, Yoshiaki; Murakami, Masahiro

    Based on the earlier study result that the gathering of damage information can be quickly achieved in a municipality with a smaller population, it is proposed that damage information is gathered and analyzed using an area roughly equivalent to a primary school district as a basic unit. The introduction of this type of decentralized system is expected to quickly gather important information on each area. The information gathered by these communal disaster prevention bases is sent to the disaster prevention headquarters which in turn feeds back more extensive information over a wider area to the communal disaster prevention bases. Concrete systems have been developed according to the above mentioned framework, and we performed large-scale experiments on simulating disaster information collection, transmission and on utilization for smooth responses against earthquake disaster with collaboration from Toyohashi City, Aichi Prefecture, where is considered to suffer extensive damage from the Tokai and Tonankai Earthquakes with very high probability of the occurrence. Using disaster information collection/transmission equipments composed of long-distance wireless LAN, a notebook computer, a Web camera and an IP telephone, city staffs could easily input and transmit the information such as fire, collapsed houses and impassable roads, which were collected by the inhabitants participated in the experiment. Headquarters could confirm such information on the map automatically plotted, and also state of each disaster-prevention facility by means of Web-cameras and IP telephones. Based on the damage information, fire-spreading, evaluation, and traffic simulations were automatically executed at the disaster countermeasure office and their results were displayed on the large screen to utilize for making decisions such as residents' evacuation. These simulated results were simultaneously displayed at each disaster-prevention facility and were served to make people understand the

  2. Earthquakes in the Central United States, 1699-2010

    USGS Publications Warehouse

    Dart, Richard L.; Volpi, Christina M.

    2010-01-01

    This publication is an update of an earlier report, U.S. Geological Survey (USGS) Geologic Investigation I-2812 by Wheeler and others (2003), titled ?Earthquakes in the Central United States-1699-2002.? Like the original poster, the center of the updated poster is a map showing the pattern of earthquake locations in the most seismically active part of the central United States. Arrayed around the map are short explanatory texts and graphics, which describe the distribution of historical earthquakes and the effects of the most notable of them. The updated poster contains additional, post 2002, earthquake data. These are 38 earthquakes covering the time interval from January 2003 to June 2010, including the Mount Carmel, Illinois, earthquake of 2008. The USGS Preliminary Determination of Epicenters (PDE) was the source of these additional data. Like the I-2812 poster, this poster was prepared for a nontechnical audience and designed to inform the general public as to the widespread occurrence of felt and damaging earthquakes in the Central United States. Accordingly, the poster should not be used to assess earthquake hazard in small areas or at individual locations.

  3. Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks

    USGS Publications Warehouse

    Moss, Robb E. S.; Thompson, Eric M.; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital

    2015-01-01

    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.

  4. Building Inventory Database on the Urban Scale Using GIS for Earthquake Risk Assessment

    NASA Astrophysics Data System (ADS)

    Kaplan, O.; Avdan, U.; Guney, Y.; Helvaci, C.

    2016-12-01

    The majority of the existing buildings are not safe against earthquakes in most of the developing countries. Before a devastating earthquake, existing buildings need to be assessed and the vulnerable ones must be determined. Determining the seismic performance of existing buildings which is usually made with collecting the attributes of existing buildings, making the analysis and the necessary queries, and producing the result maps is very hard and complicated procedure that can be simplified with Geographic Information System (GIS). The aim of this study is to produce a building inventory database using GIS for assessing the earthquake risk of existing buildings. In this paper, a building inventory database for 310 buildings, located in Eskisehir, Turkey, was produced in order to assess the earthquake risk of the buildings. The results from this study show that 26% of the buildings have high earthquake risk, 33% of the buildings have medium earthquake risk and the 41% of the buildings have low earthquake risk. The produced building inventory database can be very useful especially for governments in dealing with the problem of determining seismically vulnerable buildings in the large existing building stocks. With the help of this kind of methods, determination of the buildings, which may collapse and cause life and property loss during a possible future earthquake, will be very quick, cheap and reliable.

  5. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    NASA Astrophysics Data System (ADS)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future

  6. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake

    PubMed Central

    Mahmood, Irfan; Qureshi, Shahid Nadeem; Tariq, Shahina; Atique, Luqman; Iqbal, Muhammad Farooq

    2015-01-01

    Introduction: The October 2005, Kashmir earthquake main event was triggered along the Balakot-Bagh Fault which runs from Bagh to Balakot, and caused more damages in and around these areas. Major landslides were activated during and after the earthquake inflicting large damages in the area, both in terms of infrastructure and casualties. These landslides were mainly attributed to the minimum threshold of the earthquake, geology of the area, climatologic and geomorphologic conditions, mudflows, widening of the roads without stability assessment, and heavy rainfall after the earthquake. These landslides were mainly rock and debris falls. Hattian Bala rock avalanche was largest landslide associated with the earthquake which completely destroyed a village and blocked the valley creating a lake. Discussion: The present study shows that the fault rupture and fault geometry have direct influence on the distribution of landslides and that along the rupture zone a high frequency band of landslides was triggered. There was an increase in number of landslides due to 2005 earthquake and its aftershocks and that most of earthquakes have occurred along faults, rivers and roads. It is observed that the stability of landslide mass is greatly influenced by amplitude, frequency and duration of earthquake induced ground motion. Most of the slope failures along the roads resulted from the alteration of these slopes during widening of the roads, and seepages during the rainy season immediately after the earthquake. Conclusion: Landslides occurred mostly along weakly cemented and indurated rocks, colluvial sand and cemented soils. It is also worth noting that fissures and ground crack which were induced by main and after shock are still present and they pose a major potential threat for future landslides in case of another earthquake activity or under extreme weather conditions. PMID:26366324

  7. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake.

    PubMed

    Mahmood, Irfan; Qureshi, Shahid Nadeem; Tariq, Shahina; Atique, Luqman; Iqbal, Muhammad Farooq

    2015-08-26

    The October 2005, Kashmir earthquake main event was triggered along the Balakot-Bagh Fault which runs from Bagh to Balakot, and caused more damages in and around these areas. Major landslides were activated during and after the earthquake inflicting large damages in the area, both in terms of infrastructure and casualties. These landslides were mainly attributed to the minimum threshold of the earthquake, geology of the area, climatologic and geomorphologic conditions, mudflows, widening of the roads without stability assessment, and heavy rainfall after the earthquake. These landslides were mainly rock and debris falls. Hattian Bala rock avalanche was largest landslide associated with the earthquake which completely destroyed a village and blocked the valley creating a lake. The present study shows that the fault rupture and fault geometry have direct influence on the distribution of landslides and that along the rupture zone a high frequency band of landslides was triggered. There was an increase in number of landslides due to 2005 earthquake and its aftershocks and that most of earthquakes have occurred along faults, rivers and roads. It is observed that the stability of landslide mass is greatly influenced by amplitude, frequency and duration of earthquake induced ground motion. Most of the slope failures along the roads resulted from the alteration of these slopes during widening of the roads, and seepages during the rainy season immediately after the earthquake.  Landslides occurred mostly along weakly cemented and indurated rocks, colluvial sand and cemented soils. It is also worth noting that fissures and ground crack which were induced by main and after shock are still present and they pose a major potential threat for future landslides in case of another earthquake activity or under extreme weather conditions.

  8. The HayWired Earthquake Scenario—Earthquake Hazards

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  9. Earthquake Vulnerability Assessment for Hospital Buildings Using a Gis-Based Group Multi Criteria Decision Making Approach: a Case Study of Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Delavar, M. R.; Moradi, M.; Moshiri, B.

    2015-12-01

    Nowadays, urban areas are threatened by a number of natural hazards such as flood, landslide and earthquake. They can cause huge damages to buildings and human beings which necessitates disaster mitigation and preparation. One of the most important steps in disaster management is to understand all impacts and effects of disaster on urban facilities. Given that hospitals take care of vulnerable people reaction of hospital buildings against earthquake is vital. In this research, the vulnerability of hospital buildings against earthquake is analysed. The vulnerability of buildings is related to a number of criteria including age of building, number of floors, the quality of materials and intensity of the earthquake. Therefore, the problem of seismic vulnerability assessment is a multi-criteria assessment problem and multi criteria decision making methods can be used to address the problem. In this paper a group multi criteria decision making model is applied because using only one expert's judgments can cause biased vulnerability maps. Sugeno integral which is able to take into account the interaction among criteria is employed to assess the vulnerability degree of buildings. Fuzzy capacities which are similar to layer weights in weighted linear averaging operator are calculated using particle swarm optimization. Then, calculated fuzzy capacities are included into the model to compute a vulnerability degree for each hospital.

  10. Playing against nature: improving earthquake hazard mitigation

    NASA Astrophysics Data System (ADS)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  11. Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Chen, P.; Cochran, E.S.; Vidale, J.E.; Burdette, T.

    2006-01-01

    We deployed a dense linear array of 45 seismometers across and along the San Andreas fault near Parkfield a week after the M 6.0 Parkfield earthquake on 28 September 2004 to record fault-zone seismic waves generated by aftershocks and explosions. Seismic stations and explosions were co-sited with our previous experiment conducted in 2002. The data from repeated shots detonated in the fall of 2002 and 3 months after the 2004 M 6.0 mainshock show ???1.0%-1.5% decreases in seismic-wave velocity within an ???200-m-wide zone along the fault strike and smaller changes (0.2%-0.5%) beyond this zone, most likely due to the coseismic damage of rocks during dynamic rupture in the 2004 M 6.0 earthquake. The width of the damage zone characterized by larger velocity changes is consistent with the low-velocity waveguide model on the San Andreas fault, near Parkfield, that we derived from fault-zone trapped waves (Li et al., 2004). The damage zone is not symmetric but extends farther on the southwest side of the main fault trace. Waveform cross-correlations for repeated aftershocks in 21 clusters, with a total of ???130 events, located at different depths and distances from the array site show ???0.7%-1.1% increases in S-wave velocity within the fault zone in 3 months starting a week after the earthquake. The velocity recovery indicates that the damaged rock has been healing and regaining the strength through rigidity recovery with time, most likely . due to the closure of cracks opened during the mainshock. We estimate that the net decrease in seismic velocities within the fault zone was at least ???2.5%, caused by the 2004 M 6.0 Parkfield earthquake. The healing rate was largest in the earlier stage of the postmainshock healing process. The magnitude of fault healing varies along the rupture zone, being slightly larger for the healing beneath Middle Mountain, correlating well with an area of large mapped slip. The fault healing is most prominent at depths above ???7 km.

  12. Development of a global slope dataset for estimation of landslide occurrence resulting from earthquakes

    USGS Publications Warehouse

    Verdin, Kristine L.; Godt, Jonathan W.; Funk, Christopher C.; Pedreros, Diego; Worstell, Bruce; Verdin, James

    2007-01-01

    Landslides resulting from earthquakes can cause widespread loss of life and damage to critical infrastructure. The U.S. Geological Survey (USGS) has developed an alarm system, PAGER (Prompt Assessment of Global Earthquakes for Response), that aims to provide timely information to emergency relief organizations on the impact of earthquakes. Landslides are responsible for many of the damaging effects following large earthquakes in mountainous regions, and thus data defining the topographic relief and slope are critical to the PAGER system. A new global topographic dataset was developed to aid in rapidly estimating landslide potential following large earthquakes. We used the remotely-sensed elevation data collected as part of the Shuttle Radar Topography Mission (SRTM) to generate a slope dataset with nearly global coverage. Slopes from the SRTM data, computed at 3-arc-second resolution, were summarized at 30-arc-second resolution, along with statistics developed to describe the distribution of slope within each 30-arc-second pixel. Because there are many small areas lacking SRTM data and the northern limit of the SRTM mission was lat 60?N., statistical methods referencing other elevation data were used to fill the voids within the dataset and to extrapolate the data north of 60?. The dataset will be used in the PAGER system to rapidly assess the susceptibility of areas to landsliding following large earthquakes.

  13. Earthquake recurrence and risk assessment in circum-Pacific seismic gaps

    USGS Publications Warehouse

    Thatcher, W.

    1989-01-01

    THE development of the concept of seismic gaps, regions of low earthquake activity where large events are expected, has been one of the notable achievements of seismology and plate tectonics. Its application to long-term earthquake hazard assessment continues to be an active field of seismological research. Here I have surveyed well documented case histories of repeated rupture of the same segment of circum-Pacific plate boundary and characterized their general features. I find that variability in fault slip and spatial extent of great earthquakes rupturing the same plate boundary segment is typical rather than exceptional but sequences of major events fill identified seismic gaps with remarkable order. Earthquakes are concentrated late in the seismic cycle and occur with increasing size and magnitude. Furthermore, earthquake rup-ture starts near zones of concentrated moment release, suggesting that high-slip regions control the timing of recurrent events. The absence of major earthquakes early in the seismic cycle indicates a more complex behaviour for lower-slip regions, which may explain the observed cycle-to-cycle diversity of gap-filling sequences. ?? 1989 Nature Publishing Group.

  14. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake

    USGS Publications Warehouse

    Kargel, J.S.; Leonard, G.J.; Shugar, D. H.; Haritashya, U. K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E. S.; Steiner, J.; Anderson, E.; Bajracharya, S.; Bawden, G.W.; Breashears, D. F.; Byers, A.; Collins, B.; Dhital, M. R.; Donnellan, A.; Evans, T. L.; Geai, M. L.; Glasscoe, M. T.; Green, D.; Gurung, D. R.; Heijenk, R.; Hilborn, A.; Hudnut, K.; Huyck, C.; Immerzeel, W. W.; Liming, Jiang; Jibson, R.; Kaab, A.; Khanal, N. R.; Kirschbaum, D.; Kraaijenbrink, P. D. A.; Lamsal, D.; Shiyin, Liu; Mingyang, Lv; McKinney, D.; Nahirnick, N. K.; Zhuotong, Nan; Ojha, S.; Olsenholler, J.; Painter, T.H.; Pleasants, M.; Pratima, K. C.; Yuan, Q. I.; Raup, B.H.; Regmi, D.; Rounce, D. R.; Sakai, A.; Donghui, Shangguan; Shea, J. M.; Shrestha, A. B.; Shukla, A.; Stumm, D.; van der Kooij, M.; Voss, K.; Xin, Wang; Weihs, B.; Lizong, Wu; Xiaojun, Yao; Yoder, M. R.; Young, N.

    2016-01-01

    The Gorkha earthquake (magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9000 people and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision-makers. We mapped 4312 coseismic and postseismic landslides. We also surveyed 491 glacier lakes for earthquake damage but found only nine landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

  15. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  16. The development of damage identification methods for buildings with image recognition and machine learning techniques utilizing aerial photographs of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Shohei, N.; Nakamura, H.; Fujiwara, H.; Naoichi, M.; Hiromitsu, T.

    2017-12-01

    It is important to get schematic information of the damage situation immediately after the earthquake utilizing photographs shot from an airplane in terms of the investigation and the decision-making for authorities. In case of the 2016 Kumamoto earthquake, we have acquired more than 1,800 orthographic projection photographs adjacent to damaged areas. These photos have taken between April 16th and 19th by airplanes, then we have distinguished damages of all buildings with 4 levels, and organized as approximately 296,000 GIS data corresponding to the fundamental Geospatial data published by Geospatial Information Authority of Japan. These data have organized by effort of hundreds of engineers. However, it is not considered practical for more extensive disasters like the Nankai Trough earthquake by only human powers. So, we have been developing the automatic damage identification method utilizing image recognition and machine learning techniques. First, we have extracted training data of more than 10,000 buildings which have equally damage levels divided in 4 grades. With these training data, we have been raster scanning in each scanning ranges of entire images, then clipping patch images which represents damage levels each. By utilizing these patch images, we have been developing discriminant models by two ways. One is a model using the Support Vector Machine (SVM). First, extract a feature quantity of each patch images. Then, with these vector values, calculate the histogram density as a method of Bag of Visual Words (BoVW), then classify borders with each damage grades by SVM. The other one is a model using the multi-layered Neural Network. First, design a multi-layered Neural Network. Second, input patch images and damage levels based on a visual judgement, and then, optimize learning parameters with error backpropagation method. By use of both discriminant models, we are going to discriminate damage levels in each patches, then create the image that shows

  17. Lisbon 1755, a multiple-rupture earthquake

    NASA Astrophysics Data System (ADS)

    Fonseca, J. F. B. D.

    2017-12-01

    The Lisbon earthquake of 1755 poses a challenge to seismic hazard assessment. Reports pointing to MMI 8 or above at distances of the order of 500km led to magnitude estimates near M9 in classic studies. A refined analysis of the coeval sources lowered the estimates to 8.7 (Johnston, 1998) and 8.5 (Martinez-Solares, 2004). I posit that even these lower magnitude values reflect the combined effect of multiple ruptures. Attempts to identify a single source capable of explaining the damage reports with published ground motion models did not gather consensus and, compounding the challenge, the analysis of tsunami traveltimes has led to disparate source models, sometimes separated by a few hundred kilometers. From this viewpoint, the most credible source would combine a sub-set of the multiple active structures identifiable in SW Iberia. No individual moment magnitude needs to be above M8.1, thus rendering the search for candidate structures less challenging. The possible combinations of active structures should be ranked as a function of their explaining power, for macroseismic intensities and tsunami traveltimes taken together. I argue that the Lisbon 1755 earthquake is an example of a distinct class of intraplate earthquake previously unrecognized, of which the Indian Ocean earthquake of 2012 is the first instrumentally recorded example, showing space and time correlation over scales of the orders of a few hundred km and a few minutes. Other examples may exist in the historical record, such as the M8 1556 Shaanxi earthquake, with an unusually large damage footprint (MMI equal or above 6 in 10 provinces; 830000 fatalities). The ability to trigger seismicity globally, observed after the 2012 Indian Ocean earthquake, may be a characteristic of this type of event: occurrences in Massachussets (M5.9 Cape Ann earthquake on 18/11/1755), Morocco (M6.5 Fez earthquake on 27/11/1755) and Germany (M6.1 Duren earthquake, on 18/02/1756) had in all likelyhood a causal link to the

  18. Earthquake outlook for the San Francisco Bay region 2014–2043

    USGS Publications Warehouse

    Aagaard, Brad T.; Blair, James Luke; Boatwright, John; Garcia, Susan H.; Harris, Ruth A.; Michael, Andrew J.; Schwartz, David P.; DiLeo, Jeanne S.; Jacques, Kate; Donlin, Carolyn

    2016-06-13

    Using information from recent earthquakes, improved mapping of active faults, and a new model for estimating earthquake probabilities, the 2014 Working Group on California Earthquake Probabilities updated the 30-year earthquake forecast for California. They concluded that there is a 72 percent probability (or likelihood) of at least one earthquake of magnitude 6.7 or greater striking somewhere in the San Francisco Bay region before 2043. Earthquakes this large are capable of causing widespread damage; therefore, communities in the region should take simple steps to help reduce injuries, damage, and disruption, as well as accelerate recovery from these earthquakes.

  19. Earthquakes in Virginia and vicinity 1774 - 2004

    USGS Publications Warehouse

    Tarr, Arthur C.; Wheeler, Russell L.

    2006-01-01

    This map summarizes two and a third centuries of earthquake activity. The seismic history consists of letters, journals, diaries, and newspaper and scholarly articles that supplement seismograph recordings (seismograms) dating from the early twentieth century to the present. All of the pre-instrumental (historical) earthquakes were large enough to be felt by people or to cause shaking damage to buildings and their contents. Later, widespread use of seismographs meant that tremors too small or distant to be felt could be detected and accurately located. Earthquakes are a legitimate concern in Virginia and parts of adjacent States. Moderate earthquakes cause slight local damage somewhere in the map area about twice a decade on the average. Additionally, many buildings in the map area were constructed before earthquake protection was added to local building codes. The large map shows all historical and instrumentally located earthquakes from 1774 through 2004.

  20. Injuries and Traumatic Psychological Exposures Associated with the South Napa Earthquake - California, 2014.

    PubMed

    Attfield, Kathleen R; Dobson, Christine B; Henn, Jennifer B; Acosta, Meileen; Smorodinsky, Svetlana; Wilken, Jason A; Barreau, Tracy; Schreiber, Merritt; Windham, Gayle C; Materna, Barbara L; Roisman, Rachel

    2015-09-11

    On August 24, 2014, at 3:20 a.m., a magnitude 6.0 earthquake struck California, with its epicenter in Napa County (1). The earthquake was the largest to affect the San Francisco Bay area in 25 years and caused significant damage in Napa and Solano counties, including widespread power outages, five residential fires, and damage to roadways, waterlines, and 1,600 buildings (2). Two deaths resulted (2). On August 25, Napa County Public Health asked the California Department of Public Health (CDPH) for assistance in assessing postdisaster health effects, including earthquake-related injuries and effects on mental health. On September 23, Solano County Public Health requested similar assistance. A household-level Community Assessment for Public Health Emergency Response (CASPER) was conducted for these counties in two cities (Napa, 3 weeks after the earthquake, and Vallejo, 6 weeks after the earthquake). Among households reporting injuries, a substantial proportion (48% in Napa and 37% in western Vallejo) reported that the injuries occurred during the cleanup period, suggesting that increased messaging on safety precautions after a disaster might be needed. One fifth of respondents overall (27% in Napa and 9% in western Vallejo) reported one or more traumatic psychological exposures in their households. These findings were used by Napa County Mental Health to guide immediate-term mental health resource allocations and to conduct public training sessions and education campaigns to support persons with mental health risks following the earthquake. In addition, to promote community resilience and future earthquake preparedness, Napa County Public Health subsequently conducted community events on the earthquake anniversary and provided outreach workers with psychological first aid training.

  1. Development of an Earthquake Impact Scale

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Marano, K. D.; Jaiswal, K. S.

    2009-12-01

    With the advent of the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system, domestic (U.S.) and international earthquake responders are reconsidering their automatic alert and activation levels as well as their response procedures. To help facilitate rapid and proportionate earthquake response, we propose and describe an Earthquake Impact Scale (EIS) founded on two alerting criteria. One, based on the estimated cost of damage, is most suitable for domestic events; the other, based on estimated ranges of fatalities, is more appropriate for most global events. Simple thresholds, derived from the systematic analysis of past earthquake impact and response levels, turn out to be quite effective in communicating predicted impact and response level of an event, characterized by alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (major disaster, necessitating international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses exceeding 1M, 10M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness dominate in countries where vernacular building practices typically lend themselves to high collapse and casualty rates, and it is these impacts that set prioritization for international response. In contrast, it is often financial and overall societal impacts that trigger the level of response in regions or countries where prevalent earthquake resistant construction practices greatly reduce building collapse and associated fatalities. Any newly devised alert protocols, whether financial or casualty based, must be intuitive and consistent with established lexicons and procedures. In this analysis, we make an attempt

  2. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  3. Seismogeodesy and Rapid Earthquake and Tsunami Source Assessment

    NASA Astrophysics Data System (ADS)

    Melgar Moctezuma, Diego

    This dissertation presents an optimal combination algorithm for strong motion seismograms and regional high rate GPS recordings. This seismogeodetic solution produces estimates of ground motion that recover the whole seismic spectrum, from the permanent deformation to the Nyquist frequency of the accelerometer. This algorithm will be demonstrated and evaluated through outdoor shake table tests and recordings of large earthquakes, notably the 2010 Mw 7.2 El Mayor-Cucapah earthquake and the 2011 Mw 9.0 Tohoku-oki events. This dissertations will also show that strong motion velocity and displacement data obtained from the seismogeodetic solution can be instrumental to quickly determine basic parameters of the earthquake source. We will show how GPS and seismogeodetic data can produce rapid estimates of centroid moment tensors, static slip inversions, and most importantly, kinematic slip inversions. Throughout the dissertation special emphasis will be placed on how to compute these source models with minimal interaction from a network operator. Finally we will show that the incorporation of off-shore data such as ocean-bottom pressure and RTK-GPS buoys can better-constrain the shallow slip of large subduction events. We will demonstrate through numerical simulations of tsunami propagation that the earthquake sources derived from the seismogeodetic and ocean-based sensors is detailed enough to provide a timely and accurate assessment of expected tsunami intensity immediately following a large earthquake.

  4. Perspectives on earthquake hazards in the New Madrid seismic zone, Missouri

    USGS Publications Warehouse

    Thenhaus, P.C.

    1990-01-01

    A sequence of three great earthquakes struck the Central United States during the winter of 1811-1812 in the area of New Madrid, Missouri. they are considered to be the greatest earthquakes in the conterminous U.S because they were felt and caused damage at far greater distances than any other earthquakes in U.S history. The large population currently living within the damage area of these earthquakes means that widespread destruction and loss of life is likely if the sequence were repeated. In contrast to California, where the earthquakes are felt frequently, the damaging earthquakes that have occurred in the Easter U.S-in 155 (Cape Ann, Mass.), 1811-12 (New Madrid, Mo.), 1886 (Charleston S.C) ,and 1897 (Giles County, Va.- are generally regarded as only historical phenomena (fig. 1). The social memory of these earthquakes no longer exists. A fundamental problem in the Eastern U.S, therefore, is that the earthquake hazard is not generally considered today in land-use and civic planning. This article offers perspectives on the earthquake hazard of the New Madrid seismic zone through discussions of the geology of the Mississippi Embayment, the historical earthquakes that have occurred there, the earthquake risk, and the "tools" that geoscientists have to study the region. The so-called earthquake hazard is defined  by the characterization of the physical attributes of the geological structures that cause earthquakes, the estimation of the recurrence times of the earthquakes, the estimation of the recurrence times of the earthquakes, their potential size, and the expected ground motions. the term "earthquake risk," on the other hand, refers to aspects of the expected damage to manmade strctures and to lifelines as a result of the earthquake hazard.  

  5. Rapid Assessment of Seismic Vulnerability in Palestinian Refugee Camps

    NASA Astrophysics Data System (ADS)

    Al-Dabbeek, Jalal N.; El-Kelani, Radwan J.

    Studies of historical and recorded earthquakes in Palestine demonstrate that damaging earthquakes are occurring frequently along the Dead Sea Transform: Earthquake of 11 July 1927 (ML 6.2), Earthquake of 11 February 2004 (ML 5.2). In order to reduce seismic vulnerability of buildings, losses in lives, properties and infrastructures, an attempt was made to estimate the percentage of damage degrees and losses at selected refugee camps: Al Ama`ri, Balata and Dhaishe. Assessing the vulnerability classes of building structures was carried out according to the European Macro-Seismic Scale 1998 (EMS-98) and the Fedral Emergency Management Agency (FEMA). The rapid assessment results showed that very heavy structural and non structural damages will occur in the common buildings of the investigated Refugee Camps (many buildings will suffer from damages grades 4 and 5). Bad quality of buildings in terms of design and construction, lack of uniformity, absence of spaces between the building and the limited width of roads will definitely increase the seismic vulnerability under the influence of moderate-strong (M 6-7) earthquakes in the future.

  6. 10 th of July, 1894 İstanbul Earthquake (Marmara Sea, Turkey)

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Şahin, Murat

    2017-04-01

    The sea of Marmara is a region with the longest historical earthquake record of our planet. The earthquake of 10 July 1894 in Istanbul is the last earthquake of the historical period before the beginning of the instrumental period in the region. The magnitude and location of this earthquake and also its relationship with the North Anatolian Fault should be discussed in literature. Previous studies have not fully analyzed the historical data of 1894 earthquakes. For this reason, conflicting views are put forward regarding an earthquake in Marmara in the future. According to the historical records, the major damage was in the Istanbul Peninsula, Avcılar, Adalar, Karamürsel and Yalova. Due to its formation properties, it was effective in remote areas (İzmit, Gölcük, Adapazarı). It is clear that the most damage was in Old Istanbul and Prince Island. The tension cracks in different directions were observed in Heybeliada, Büyükada and Burgazada. There are observations to be interpreted as a tsunami wave about one and a half meter-height between Avcılar and Kartal. The submarine telegraph line extending from Kartal to Marmara Sea was broken at three points in the east of Büyükada. According to the damage assessment after the earthquake and other observations, it is understood that this earthquake was along the Adalar Fault. When considering seismic and multibeam data, it is apparent that the Adalar Fault was composed of echolon segments. The submarine landslides were mapped in front of the fault scarp. The Adalar Fault is a 45 km-long, 80o SW-dipping right-lateral normal oblique fault. The tsunami scenarios that we modelld along this fault are compatible with historical observations along the coast of İstanbul. Our GIS-based intensity scenario shows that the magnitude of the 1894 Istanbul Earthquake is Mw 7.

  7. Long aftershock sequences within continents and implications for earthquake hazard assessment.

    PubMed

    Stein, Seth; Liu, Mian

    2009-11-05

    One of the most powerful features of plate tectonics is that the known plate motions give insight into both the locations and average recurrence interval of future large earthquakes on plate boundaries. Plate tectonics gives no insight, however, into where and when earthquakes will occur within plates, because the interiors of ideal plates should not deform. As a result, within plate interiors, assessments of earthquake hazards rely heavily on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. Here, however, we show that many of these recent earthquakes are probably aftershocks of large earthquakes that occurred hundreds of years ago. We present a simple model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Aftershock sequences within the slowly deforming continents are predicted to be significantly longer than the decade typically observed at rapidly loaded plate boundaries. These predictions are in accord with observations. So the common practice of treating continental earthquakes as steady-state seismicity overestimates the hazard in presently active areas and underestimates it elsewhere.

  8. Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale

    NASA Astrophysics Data System (ADS)

    Serva, Leonello; Vittori, Eutizio; Comerci, Valerio; Esposito, Eliana; Guerrieri, Luca; Michetti, Alessandro Maria; Mohammadioun, Bagher; Mohammadioun, Georgianna C.; Porfido, Sabina; Tatevossian, Ruben E.

    2016-05-01

    The main objective of this paper was to introduce the Environmental Seismic Intensity scale (ESI), a new scale developed and tested by an interdisciplinary group of scientists (geologists, geophysicists and seismologists) in the frame of the International Union for Quaternary Research (INQUA) activities, to the widest community of earth scientists and engineers dealing with seismic hazard assessment. This scale defines earthquake intensity by taking into consideration the occurrence, size and areal distribution of earthquake environmental effects (EEE), including surface faulting, tectonic uplift and subsidence, landslides, rock falls, liquefaction, ground collapse and tsunami waves. Indeed, EEEs can significantly improve the evaluation of seismic intensity, which still remains a critical parameter for a realistic seismic hazard assessment, allowing to compare historical and modern earthquakes. Moreover, as shown by recent moderate to large earthquakes, geological effects often cause severe damage"; therefore, their consideration in the earthquake risk scenario is crucial for all stakeholders, especially urban planners, geotechnical and structural engineers, hazard analysts, civil protection agencies and insurance companies. The paper describes background and construction principles of the scale and presents some case studies in different continents and tectonic settings to illustrate its relevant benefits. ESI is normally used together with traditional intensity scales, which, unfortunately, tend to saturate in the highest degrees. In this case and in unpopulated areas, ESI offers a unique way for assessing a reliable earthquake intensity. Finally, yet importantly, the ESI scale also provides a very convenient guideline for the survey of EEEs in earthquake-stricken areas, ensuring they are catalogued in a complete and homogeneous manner.

  9. A revised “earthquake report” questionaire

    USGS Publications Warehouse

    Stover, C.; Reagor, G.; Simon, R.

    1976-01-01

    The U.S geological Survey is responsible for conducting intensity and damage surveys following felt or destructive earthquakes in the United States. Shortly after a felt or damaging earthquake occurs, a canvass of the affected area is made. Specially developed questionnaires are mailed to volunteer observers located within the estimated felt area. These questionnaires, "Earthquake Reports," are filled out by the observers and returned to the Survey's National Earthquake Information Service, which is located in Colorado. They are then evaluated, and, based on answers to questions about physical effects seen or felt, each canvassed location is assigned to the various locations, they are plotted on an intensity distribution map. When all of the intensity data have been plotted, isoseismals can then be contoured through places where equal intensity was experienced. The completed isoseismal map yields a detailed picture of the earthquake, its effects, and its felt area. All of the data and maps are published quarterly in a U.S Geological Survey Circular series entitled "Earthquakes in the United States".  

  10. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    USGS Publications Warehouse

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  11. Hazard assessment of long-period ground motions for the Nankai Trough earthquakes

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.

    2013-12-01

    We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and

  12. Towards Coupling of Macroseismic Intensity with Structural Damage Indicators

    NASA Astrophysics Data System (ADS)

    Kouteva, Mihaela; Boshnakov, Krasimir

    2016-04-01

    Knowledge on basic data of ground motion acceleration time histories during earthquakes is essential to understanding the earthquake resistant behaviour of structures. Peak and integral ground motion parameters such as peak ground motion values (acceleration, velocity and displacement), measures of the frequency content of ground motion, duration of strong shaking and various intensity measures play important roles in seismic evaluation of existing facilities and design of new systems. Macroseismic intensity is an earthquake measure related to seismic hazard and seismic risk description. Having detailed ideas on the correlations between the earthquake damage potential and macroseismic intensity is an important issue in engineering seismology and earthquake engineering. Reliable earthquake hazard estimation is the major prerequisite to successful disaster risk management. The usage of advanced earthquake engineering approaches for structural response modelling is essential for reliable evaluation of the accumulated damages in the existing buildings and structures due to the history of seismic actions, occurred during their lifetime. Full nonlinear analysis taking into account single event or series of earthquakes and the large set of elaborated damage indices are suitable contemporary tools to cope with this responsible task. This paper presents some results on the correlation between observational damage states, ground motion parameters and selected analytical damage indices. Damage indices are computed on the base of nonlinear time history analysis of test reinforced structure, characterising the building stock of the Mediterranean region designed according the earthquake resistant requirements in mid XX-th century.

  13. New seafloor map of the Puerto Rico trench helps assess earthquake and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Brink, Uri ten; Danforth, William; Polloni, Christopher; Andrews, Brian; Llanes, Pilar; Smith, Shepard; Parker, Eugene; Uozumi, Toshihiko

    2004-09-01

    The Puerto Rico Trench, the deepest part of the Atlantic Ocean, is located where the North American (NOAM) plate is subducting under the Caribbean plate (Figure l). The trench region may pose significant seismic and tsunami hazards to Puerto Rico and the U.S.Virgin Islands, where 4 million U.S. citizens reside. Widespread damage in Puerto Rico and Hispaniola from an earthquake in 1787 was estimated to be the result of a magnitude 8 earthquake north of the islands [McCann et al., 2004]. A tsunami killed 40 people in NW Puerto Rico following a magnitude 7.3 earthquake in 1918 [Mercado and McCann, 1998]. Large landslide escarpments have been mapped on the seafloor north of Puerto Rico [Mercado et al., 2002; Schwab et al., 1991],although their ages are unknown.

  14. New seafloor map of the Puerto Rico Trench helps assess earthquake and tsunami hazards

    USGS Publications Warehouse

    ten Brink, Uri S.; Danforth, William; Polloni, Christopher; Andrews, Brian D.; Llanes Estrada, Pilar; Smith, Shepard; Parker, Eugene; Uozumi, Toshihiko

    2004-01-01

    The Puerto Rico Trench, the deepest part of the Atlantic Ocean, is located where the North American (NOAM) plate is subducting under the Caribbean plate (Figure l). The trench region may pose significant seismic and tsunami hazards to Puerto Rico and the U.S.Virgin Islands, where 4 million U.S. citizens reside. Widespread damage in Puerto Rico and Hispaniola from an earthquake in 1787 was estimated to be the result of a magnitude 8 earthquake north of the islands [McCann et al., 2004]. A tsunami killed 40 people in NW Puerto Rico following a magnitude 7.3 earthquake in 1918 [Mercado and McCann, 1998]. Large landslide escarpments have been mapped on the seafloor north of Puerto Rico [Mercado et al., 2002; Schwab et al., 1991],although their ages are unknown.

  15. Perspectives on earthquake hazards in the New Madrid seismic zone, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thenhaus, P.C.

    1990-01-01

    A sequence of three great earthquakes struck the Central United States during the winter of 1811-12 in the area of New Madrid, Missouri. They are considered to be the greatest earthquakes in the conterminous U.S. because they were felt and caused damage at far greater distances than any other earthquakes in US history. In contrast to California, where earthquakes are felt frequently, the damaging earthquakes that have occurred in the Eastern US are generally regarded as only historical phenomena. A fundamental problem in the Eastern US, therefore, is that the earthquake hazard is not generally considered today in land-use andmore » civic planning. This article offers perspectives on the earthquake hazard of the New Madrid seismic zone through discussions of the geology of the Mississippi Embayment, the historical earthquakes that have occurred there, the earthquake risk, and the tools that geoscientists have to study the region. The so-called earthquake hazard is defined by the characterization of the physical attributes of the geological structures that cause earthquakes, the estimation of the recurrence times of the earthquakes, their potential size, and the expected ground motions. The term earthquake risk, on the other hand, refers to aspects of the expected damage to manmade structures and to lifelines as a result of the earthquake hazard.« less

  16. Probabilistic Tsunami Hazard Assessment along Nankai Trough (1) An assessment based on the information of the forthcoming earthquake that Earthquake Research Committee(2013) evaluated

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Morikawa, N.; Kawai, S.; Ohsumi, T.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.

    2015-12-01

    The Earthquake Research Committee(ERC)/HERP, Government of Japan (2013) revised their long-term evaluation of the forthcoming large earthquake along the Nankai Trough; the next earthquake is estimated M8 to 9 class, and the probability (P30) that the next earthquake will occur within the next 30 years (from Jan. 1, 2013) is 60% to 70%. In this study, we assess tsunami hazards (maximum coastal tsunami heights) in the near future, in terms of a probabilistic approach, from the next earthquake along Nankai Trough, on the basis of ERC(2013)'s report. The probabilistic tsunami hazard assessment that we applied is as follows; (1) Characterized earthquake fault models (CEFMs) are constructed on each of the 15 hypothetical source areas (HSA) that ERC(2013) showed. The characterization rule follows Toyama et al.(2015, JpGU). As results, we obtained total of 1441 CEFMs. (2) We calculate tsunamis due to CEFMs by solving nonlinear, finite-amplitude, long-wave equations with advection and bottom friction terms by finite-difference method. Run-up computation on land is included. (3) A time predictable model predicts the recurrent interval of the present seismic cycle is T=88.2 years (ERC,2013). We fix P30 = 67% by applying the renewal process based on BPT distribution with T and alpha=0.24 as its aperiodicity. (4) We divide the probability P30 into P30(i) for i-th subgroup consisting of the earthquakes occurring in each of 15 HSA by following a probability re-distribution concept (ERC,2014). Then each earthquake (CEFM) in i-th subgroup is assigned a probability P30(i)/N where N is the number of CEFMs in each sub-group. Note that such re-distribution concept of the probability is nothing but tentative because the present seismology cannot give deep knowledge enough to do it. Epistemic logic-tree approach may be required in future. (5) We synthesize a number of tsunami hazard curves at every evaluation points on coasts by integrating the information about 30 years occurrence

  17. Unbonded Prestressed Columns for Earthquake Resistance

    DOT National Transportation Integrated Search

    2012-05-01

    Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...

  18. Triggered earthquakes and the 1811-1812 New Madrid, central United States, earthquake sequence

    USGS Publications Warehouse

    Hough, S.E.

    2001-01-01

    The 1811-1812 New Madrid, central United States, earthquake sequence included at least three events with magnitudes estimated at well above M 7.0. I discuss evidence that the sequence also produced at least three substantial triggered events well outside the New Madrid Seismic Zone, most likely in the vicinity of Cincinnati, Ohio. The largest of these events is estimated to have a magnitude in the low to mid M 5 range. Events of this size are large enough to cause damage, especially in regions with low levels of preparedness. Remotely triggered earthquakes have been observed in tectonically active regions in recent years, but not previously in stable continental regions. The results of this study suggest, however, that potentially damaging triggered earthquakes may be common following large mainshocks in stable continental regions. Thus, in areas of low seismic activity such as central/ eastern North America, the hazard associated with localized source zones might be more far reaching than previously recognized. The results also provide additional evidence that intraplate crust is critically stressed, such that small stress changes are especially effective at triggering earthquakes.

  19. Google earth mapping of damage from the Nigata-Ken-Chuetsu M6.6 earthquake of 16 July 2007

    USGS Publications Warehouse

    Kayen, Robert E.; Steele, WM. Clint; Collins, Brian; Walker, Kevin

    2008-01-01

    We describe the use of Google Earth during and after a large damaging earthquake thatstruck the central Japan coast on 16 July 2007 to collect and organize damage information and guide the reconnaissance activities. This software enabled greater real-time collaboration among scientists and engineers. After the field investigation, the Google Earth map is used as a final reporting product that was directly linked to the more traditional research report document. Finally, we analyze the use of the software within the context of a post-disaster reconnaissance investigation, and link it to student use of GoogleEarth in field situations

  20. Earthquakes; July-August 1982

    USGS Publications Warehouse

    Person, W.J.

    1983-01-01

    During this reporting period, there were three major (7.0-7.9) earthquakes all in unpopulated areas. The quakes occurred north of Macquarie Island on July 7, in the Santa Cruz Islands on August 5, and south of Panama on August 19. In the United Stats, a number of earthquakes occurred, but no damage was reported. 

  1. Istanbul Earthquake Early Warning and Rapid Response System

    NASA Astrophysics Data System (ADS)

    Erdik, M. O.; Fahjan, Y.; Ozel, O.; Alcik, H.; Aydin, M.; Gul, M.

    2003-12-01

    damage assessment and rapid response information after a damaging earthquake. Early response information is achieved through fast acquisition and analysis of processed data obtained from the network. The stations are routinely interrogated on regular basis by the main data center. After triggered by an earthquake, each station processes the streaming strong motion data to yield the spectral accelerations at specific periods, 12Hz filtered PGA and PGV and will send these parameters in the form of SMS messages at every 20s directly to the main data center through a designated GSM network and through a microwave system. A shake map and damage distribution map (using aggregate building inventories and fragility curves) will be automatically generated using the algorithm developed for this purpose. Loss assessment studies are complemented by a large citywide digital database on the topography, geology, soil conditions, building, infrastructure and lifeline inventory. The shake and damage maps will be conveyed to the governor's and mayor's offices, fire, police and army headquarters within 3 minutes using radio modem and GPRS communication. An additional forty strong motion recorders were placed on important structures in several interconnected clusters to monitor the health of these structures after a damaging earthquake.

  2. Remote sensing and earthquake risk: A (re)insurance perspective

    NASA Astrophysics Data System (ADS)

    Smolka, Anselm; Siebert, Andreas

    2013-04-01

    The insurance sector is faced with two issues regarding earthquake risk: the estimation of rarely occurring losses from large events and the assessment of the average annual net loss. For this purpose, knowledge is needed of actual event losses, of the distribution of exposed values, and of their vulnerability to earthquakes. To what extent can remote sensing help the insurance industry fulfil these tasks, and what are its limitations? In consequence of more regular and high-resolution satellite coverage, we have seen earth observation and remote sensing methods develop over the past years to a stage where they appear to offer great potential for addressing some shortcomings of the data underlying risk assessment. These include lack of statistical representativeness and lack of topicality. Here, remote sensing can help in the following areas: • Inventories of exposed objects (pre- and post-disaster) • Projection of small-scale ground-based vulnerability classification surveys to a full inventory • Post-event loss assessment But especially from an insurance point of view, challenges remain. The strength of airborne remote sensing techniques lies in outlining heavily damaged areas where damage is caused by easily discernible structural failure, i.e. total or partial building collapse. Examples are the Haiti earthquake (with minimal insured loss) and the tsunami-stricken areas in the Tohoku district of Japan. What counts for insurers, however, is the sum of monetary losses. The Chile, the Christchurch and the Tohoku earthquakes each caused insured losses in the two-digit billion dollar range. By far the greatest proportion of these insured losses were due to non-structural damage to buildings, machinery and equipment. Even with the Tohoku event, no more than 30% of the total material damage was caused by the tsunami according to preliminary surveys, and this figure includes damage due to earthquake shock which was unrecognisable after the passage of the tsunami

  3. Are you prepared for the next big earthquake in Alaska?

    USGS Publications Warehouse

    2006-01-01

    Scientists have long recognized that Alaska has more earthquakes than any other region of the United States and is, in fact, one of the most seismically active areas of the world. The second-largest earthquake ever recorded shook the heart of southern Alaska on March 27th, 1964. The largest strike-slip slip earthquake in North America in almost 150 years occurred on the Denali Fault in central Alaska on November 3rd, 2002. “Great” earthquakes (larger than magnitude 8) have rocked the state on an average of once every 13 years since 1900. It is only a matter of time before another major earthquake will impact a large number of Alaskans.Alaska has changed significantly since the damaging 1964 earthquake, and the population has more than doubled. Many new buildings are designed to withstand intense shaking, some older buildings have been reinforced, and development has been discouraged in some particularly hazardous areas. Despite these precautions, future earthquakes may still cause damage to buildings, displace items within buildings, and disrupt the basic utilities that we take for granted. We must take every reasonable action to prepare for damaging earthquakes in order to lower these risks.

  4. Effects of topographic position and geology on shaking damage to residential wood-framed structures during the 2003 San Simeon earthquake, western San Luis obispo county, California

    USGS Publications Warehouse

    McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.

    2010-01-01

    A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.

  5. Simulation and monitoring tools to protect disaster management facilities against earthquakes

    NASA Astrophysics Data System (ADS)

    Saito, Taiki

    2017-10-01

    The earthquakes that hit Kumamoto Prefecture in Japan on April 14 and 16, 2016 severely damaged over 180,000 houses, including over 8,000 that were completely destroyed and others that were partially damaged according to the Cabinet Office's report as of November 14, 2016 [1]. Following these earthquakes, other parts of the world have been struck by earthquakes including Italy and New Zealand as well as the central part of Tottori Prefecture in October, where the earthquake-induced collapse of buildings has led to severe damage and casualties. The earthquakes in Kumamoto Prefecture, in fact, damaged various disaster management facilities including Uto City Hall, which significantly hindered the city's evacuation and recovery operations. One of the most crucial issues in times of disaster is securing the functions of disaster management facilities such as city halls, hospitals and fire stations. To address this issue, seismic simulations are conducted on the East and the West buildings of Toyohashi City Hall using the analysis tool developed by the author, STERA_3D, with the data of the ground motion waveform prediction for the Nankai Trough earthquake provided by the Ministry of Land, Infrastructure, Transport and Tourism. As the result, it was found that the buildings have sufficient earthquake resistance. It turned out, however, that the west building is at risk for wall cracks or ceiling panel's collapse while in the east building, people would not be able to stand through the strong quakes of 7 on the seismic intensity scale and cabinets not secured to the floors or walls would fall over. Additionally, three IT strong-motion seismometers were installed in the city hall to continuously monitor vibrations. Every five minutes, the vibration data obtained by the seismometers are sent to the computers in Toyohashi University of Technology via the Internet for the analysis tools to run simulations in the cloud. If an earthquake strikes, it is able to use the results

  6. The 1909 Taipei earthquake: implication for seismic hazard in Taipei

    USGS Publications Warehouse

    Kanamori, Hiroo; Lee, William H.K.; Ma, Kuo-Fong

    2012-01-01

    The 1909 April 14 Taiwan earthquake caused significant damage in Taipei. Most of the information on this earthquake available until now is from the written reports on its macro-seismic effects and from seismic station bulletins. In view of the importance of this event for assessing the shaking hazard in the present-day Taipei, we collected historical seismograms and station bulletins of this event and investigated them in conjunction with other seismological data. We compared the observed seismograms with those from recent earthquakes in similar tectonic environments to characterize the 1909 earthquake. Despite the inevitably large uncertainties associated with old data, we conclude that the 1909 Taipei earthquake is a relatively deep (50–100 km) intraplate earthquake that occurred within the subducting Philippine Sea Plate beneath Taipei with an estimated M_W of 7 ± 0.3. Some intraplate events elsewhere in the world are enriched in high-frequency energy and the resulting ground motions can be very strong. Thus, despite its relatively large depth and a moderately large magnitude, it would be prudent to review the safety of the existing structures in Taipei against large intraplate earthquakes like the 1909 Taipei earthquake.

  7. A Geophysical Study of the Cadell Fault Scarp for Earthquake Hazard Assessment in Southeast Australia

    NASA Astrophysics Data System (ADS)

    Collins, C. D.

    2004-12-01

    The historical record of seismicity in Australia is too short (less than 150 years) to confidently define seismic source zones, particularly the recurrence rates for large, potentially damaging earthquakes, and this leads to uncertainty in hazard assessments. One way to extend this record is to search for evidence of earthquakes in the landscape, including Quaternary fault scarps, tilt blocks and disruptions to drainage patterns. A recent Geoscience Australia compilation of evidence of Quaternary tectonics identified over one hundred examples of potentially recent structures in Australia, testifying to the fact that a greater hazard may exist from large earthquakes than is evident from the recorded history alone. Most of these structures have not been studied in detail and have not been dated, so the recurrence rate for damaging events is unknown. One example of recent tectonic activity lies on the Victoria-New South Wales border, where geologically recent uplift has resulted in the formation of the Cadell Fault Scarp, damming Australia's largest river, the Murray River, and diverting its course. The scarp extends along a north-south strike for at least 50 km and reaches a maximum height of about 13 metres. The scarp displaces sands and clays of the Murray Basin sediments which overlie Palaeozoic bedrock at a depth of 100 to 250 m. There is evidence that the river system has eroded the scarp and displaced the topographic expression away from the location where the fault, or faults, meets the surface. Thus, to locate potential sites for trenching which intersect the faults, Geoscience Australia acquired ground-penetrating radar, resistivity and multi-channel high-resolution seismic reflection and refraction data along traverses across the scarp. The seismic data were acquired using an IVI T15000 MiniVib vibrator operating in p-wave mode, and a 24-channel Stratavisor acquisition system. Four 10-second sweeps, with a frequency range of 10-240 Hz, were carried out

  8. Probabilistic Seismic Hazard Assessment for Himalayan-Tibetan Region from Historical and Instrumental Earthquake Catalogs

    NASA Astrophysics Data System (ADS)

    Rahman, M. Moklesur; Bai, Ling; Khan, Nangyal Ghani; Li, Guohui

    2018-02-01

    The Himalayan-Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan-Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg-Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan-Tibetan region.

  9. Stochastic ground-motion simulation of two Himalayan earthquakes: seismic hazard assessment perspective

    NASA Astrophysics Data System (ADS)

    Harbindu, Ashish; Sharma, Mukat Lal; Kamal

    2012-04-01

    The earthquakes in Uttarkashi (October 20, 1991, M w 6.8) and Chamoli (March 8, 1999, M w 6.4) are among the recent well-documented earthquakes that occurred in the Garhwal region of India and that caused extensive damage as well as loss of life. Using strong-motion data of these two earthquakes, we estimate their source, path, and site parameters. The quality factor ( Q β ) as a function of frequency is derived as Q β ( f) = 140 f 1.018. The site amplification functions are evaluated using the horizontal-to-vertical spectral ratio technique. The ground motions of the Uttarkashi and Chamoli earthquakes are simulated using the stochastic method of Boore (Bull Seismol Soc Am 73:1865-1894, 1983). The estimated source, path, and site parameters are used as input for the simulation. The simulated time histories are generated for a few stations and compared with the observed data. The simulated response spectra at 5% damping are in fair agreement with the observed response spectra for most of the stations over a wide range of frequencies. Residual trends closely match the observed and simulated response spectra. The synthetic data are in rough agreement with the ground-motion attenuation equation available for the Himalayas (Sharma, Bull Seismol Soc Am 98:1063-1069, 1998).

  10. What is the earthquake fracture energy?

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Nielsen, S. B.; Passelegue, F. X.; Spagnuolo, E.; Bistacchi, A.; Fondriest, M.; Murphy, S.; Aretusini, S.; Demurtas, M.

    2016-12-01

    The energy budget of an earthquake is one of the main open questions in earthquake physics. During seismic rupture propagation, the elastic strain energy stored in the rock volume that bounds the fault is converted into (1) gravitational work (relative movement of the wall rocks bounding the fault), (2) in- and off-fault damage of the fault zone rocks (due to rupture propagation and frictional sliding), (3) frictional heating and, of course, (4) seismic radiated energy. The difficulty in the budget determination arises from the measurement of some parameters (e.g., the temperature increase in the slipping zone which constraints the frictional heat), from the not well constrained size of the energy sinks (e.g., how large is the rock volume involved in off-fault damage?) and from the continuous exchange of energy from different sinks (for instance, fragmentation and grain size reduction may result from both the passage of the rupture front and frictional heating). Field geology studies, microstructural investigations, experiments and modelling may yield some hints. Here we discuss (1) the discrepancies arising from the comparison of the fracture energy measured in experiments reproducing seismic slip with the one estimated from seismic inversion for natural earthquakes and (2) the off-fault damage induced by the diffusion of frictional heat during simulated seismic slip in the laboratory. Our analysis suggests, for instance, that the so called earthquake fracture energy (1) is mainly frictional heat for small slips and (2), with increasing slip, is controlled by the geometrical complexity and other plastic processes occurring in the damage zone. As a consequence, because faults are rapidly and efficiently lubricated upon fast slip initiation, the dominant dissipation mechanism in large earthquakes may not be friction but be the off-fault damage due to fault segmentation and stress concentrations in a growing region around the fracture tip.

  11. The magnitude 6.7 Northridge, California, earthquake of 17 January 1994

    USGS Publications Warehouse

    Jones, L.; Aki, K.; Boore, D.; Celebi, M.; Donnellan, A.; Hall, J.; Harris, R.; Hauksson, E.; Heaton, T.; Hough, S.; Hudnut, K.; Hutton, K.; Johnston, M.; Joyner, W.; Kanamori, H.; Marshall, G.; Michael, A.; Mori, J.; Murray, M.; Ponti, D.; Reasenberg, P.; Schwartz, D.; Seeber, L.; Shakal, A.; Simpson, R.; Thio, H.; Tinsley, J.; Todorovska, M.; Trifunac, M.; Wald, D.; Zoback, M.L.

    1994-01-01

    The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.

  12. A Crowdsourcing-based Taiwan Scientific Earthquake Reporting System

    NASA Astrophysics Data System (ADS)

    Liang, W. T.; Lee, J. C.; Lee, C. F.

    2017-12-01

    To collect immediately field observations for any earthquake-induced ground damages, such as surface fault rupture, landslide, rock fall, liquefaction, and landslide-triggered dam or lake, etc., we are developing an earthquake damage reporting system which particularly relies on school teachers as volunteers after taking a series of training courses organized by this project. This Taiwan Scientific Earthquake Reporting (TSER) system is based on the Ushahidi mapping platform, which has been widely used for crowdsourcing on different purposes. Participants may add an app-like icon for mobile devices to this website at https://ies-tser.iis.sinica.edu.tw. Right after a potential damaging earthquake occurred in the Taiwan area, trained volunteers will be notified/dispatched to the source area to carry out field surveys and to describe the ground damages through this system. If the internet is available, they may also upload some relevant images in the field right away. This collected information will be shared with all public after a quick screen by the on-duty scientists. To prepare for the next strong earthquake, we set up a specific project on TSER for sharing spectacular/remarkable geologic features wherever possible. This is to help volunteers get used to this system and share any teachable material on this platform. This experimental, science-oriented crowdsourcing system was launched early this year. Together with a DYFI-like intensity reporting system, Taiwan Quake-Catcher Network, and some online games and teaching materials, the citizen seismology has been much improved in Taiwan in the last decade. All these constructed products are now either operated or promoted at the Taiwan Earthquake Research Center (TEC). With these newly developed platforms and materials, we are aiming not only to raise the earthquake awareness and preparedness, but also to encourage public participation in earthquake science in Taiwan.

  13. Integrated Earthquake Risk Assessment in the Kathmandu Valley - A Case Study

    NASA Astrophysics Data System (ADS)

    Schaper, Julia; Anhorn, Johannes; Khazai, Bijan; Nüsser, Marcus

    2013-04-01

    Rapid urban growth is a process which can be observed in cities worldwide. Managing these growing urban areas has become a major challenge for both governing bodies and citizens. Situated not only in a highly earthquake and landslide-prone area, but comprising also the cultural and political capital of Nepal, the fast expanding Kathmandu Valley in the Himalayan region is of particular interest. Vulnerability assessment has been an important tool for spatial planning in this already densely populated area. The magnitude 8.4 earthquake of Bihar in 1934 cost 8600 Nepalis their lives, destroyed 20% of the Kathmandu building stock and heavily damaged another 40%. Since then, Kathmandu has grown into a hub with over a million inhabitants. Rapid infrastructure and population growth aggravate the vulnerability conditions, particularly in the core area of Metropolitan Kathmandu. We propose an integrative framework for vulnerability and risk in Kathmandu Valley. In order to move towards a more systemic and integrated approach, we focus on interactions between natural hazards, physically engineered systems and society. High resolution satellite images are used to identify structural vulnerability of the building stock within the study area. Using object-based image analysis, the spatial dynamics of urban growth are assessed and validated using field data. Complementing this is the analysis of socio-economic attributes gained from databases and field surveys. An indicator-based vulnerability and resilience index will be operationalized using multi-attribute value theory and statistical methods such as principal component analysis. The results allow for a socio-economic comparison of places and their relative potential for harm and loss. The objective in this task is to better understand the interactions between nature and society, engineered systems and built environments through the development of an interdisciplinary framework on systemic seismic risk and vulnerability. Data

  14. LIDAR Investigation Of The 2004 Niigata Ken Chuetsu, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Pack, R. T.; Sugimoto, S.; Tanaka, H.

    2005-12-01

    The 23 October 2004 Niigata Ken Chuetsu, Japan, Mw 6.6 earthquake was the most significant earthquake to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 injured, and numerous landslides destroyed entire upland villages. Landslides and permanent ground deformation caused extensive damage to roads, rail lines and other lifelines, resulting in major economic disruption. The cities and towns most significantly affected by the earthquake were Nagaoka, Ojiya, and the mountainous rural areas of Yamakoshi village and Kawaguchi town. Our EERI team traveled with a tripod mounted LIDAR (Light Detection and Ranging) unit, a scanning-laser that creates ultra high-resolution 3-D digital terrain models of the earthquake damaged surfaces the ground, structures, and life-lines. This new technology allows for rapid and remote sensing of damaged terrain. Ground-based LIDAR has an accuracy range of 0.5-2.5 cm, and can illuminate targets up to 400m away from the sensor. During a single tripod-mounted LIDAR scan of 10 minutes, several million survey points are collected and processed into an ultra-high resolution terrain model of the damaged ground or structure. There are several benefits in acquiring these LIDAR data in the initial reconnaissance effort after the earthquake. First, we record the detailed failure morphologies of damaged ground and structures in order to make measurements that are either impractical or impossible by conventional survey means. The digital terrain models allow us to enlarge, enhance and rotate data in order to visualize damage in orientations and scales not previously possible. This ability to visualize damage allows us to better understand failure modes. Finally, LIDAR allows us to archive 3-D terrain models so that the engineering community can evaluate analytical and numerical models of deformation potential against detailed field measurements. Here, we discuss the findings of this 2004 Niigata Chuetsu Earthquake (M6

  15. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available

  16. Improving vulnerability models: lessons learned from a comparison between flood and earthquake assessments

    NASA Astrophysics Data System (ADS)

    de Ruiter, Marleen; Ward, Philip; Daniell, James; Aerts, Jeroen

    2017-04-01

    In a cross-discipline study, an extensive literature review has been conducted to increase the understanding of vulnerability indicators used in both earthquake- and flood vulnerability assessments, and to provide insights into potential improvements of earthquake and flood vulnerability assessments. It identifies and compares indicators used to quantitatively assess earthquake and flood vulnerability, and discusses their respective differences and similarities. Indicators have been categorized into Physical- and Social categories, and further subdivided into (when possible) measurable and comparable indicators. Physical vulnerability indicators have been differentiated to exposed assets such as buildings and infrastructure. Social indicators are grouped in subcategories such as demographics, economics and awareness. Next, two different vulnerability model types have been described that use these indicators: index- and curve-based vulnerability models. A selection of these models (e.g. HAZUS) have been described, and compared on several characteristics such as temporal- and spatial aspects. It appears that earthquake vulnerability methods are traditionally strongly developed towards physical attributes at an object scale and used in vulnerability curve models, whereas flood vulnerability studies focus more on indicators applied to aggregated land-use scales. Flood risk studies could be improved using approaches from earthquake studies, such as incorporating more detailed lifeline and building indicators, and developing object-based vulnerability curve assessments of physical vulnerability, for example by defining building material based flood vulnerability curves. Related to this, is the incorporation of time of the day based building occupation patterns (at 2am most people will be at home while at 2pm most people will be in the office). Earthquake assessments could learn from flood studies when it comes to the refined selection of social vulnerability indicators

  17. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    NASA Astrophysics Data System (ADS)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  18. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    NASA Astrophysics Data System (ADS)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  19. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Williams, R.A.

    2001-01-01

    Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.

  20. Measuring the size of an earthquake

    USGS Publications Warehouse

    Spence, W.

    1977-01-01

    Earthquakes occur in a broad range of sizes. A rock burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat island earthquake in the Aleutian arc involved a 650-kilometer lenght of Earth's crust. Earthquakes can be even smaller and even larger. if an earthquake is felt or causes perceptible surface damage, then its intesnity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic area or at great focal depths. These are either simply not felt or their felt pattern does not really indicate their true size. 

  1. The Loma Prieta, California, Earthquake of October 17, 1989: Earthquake Occurrence

    USGS Publications Warehouse

    Coordinated by Bakun, William H.; Prescott, William H.

    1993-01-01

    Professional Paper 1550 seeks to understand the M6.9 Loma Prieta earthquake itself. It examines how the fault that generated the earthquake ruptured, searches for and evaluates precursors that may have indicated an earthquake was coming, reviews forecasts of the earthquake, and describes the geology of the earthquake area and the crustal forces that affect this geology. Some significant findings were: * Slip during the earthquake occurred on 35 km of fault at depths ranging from 7 to 20 km. Maximum slip was approximately 2.3 m. The earthquake may not have released all of the strain stored in rocks next to the fault and indicates a potential for another damaging earthquake in the Santa Cruz Mountains in the near future may still exist. * The earthquake involved a large amount of uplift on a dipping fault plane. Pre-earthquake conventional wisdom was that large earthquakes in the Bay area occurred as horizontal displacements on predominantly vertical faults. * The fault segment that ruptured approximately coincided with a fault segment identified in 1988 as having a 30% probability of generating a M7 earthquake in the next 30 years. This was one of more than 20 relevant earthquake forecasts made in the 83 years before the earthquake. * Calculations show that the Loma Prieta earthquake changed stresses on nearby faults in the Bay area. In particular, the earthquake reduced stresses on the Hayward Fault which decreased the frequency of small earthquakes on it. * Geological and geophysical mapping indicate that, although the San Andreas Fault can be mapped as a through going fault in the epicentral region, the southwest dipping Loma Prieta rupture surface is a separate fault strand and one of several along this part of the San Andreas that may be capable of generating earthquakes.

  2. A post-Tohoku earthquake review of earthquake probabilities in the Southern Kanto District, Japan

    NASA Astrophysics Data System (ADS)

    Somerville, Paul G.

    2014-12-01

    The 2011 Mw 9.0 Tohoku earthquake generated an aftershock sequence that affected a large part of northern Honshu, and has given rise to widely divergent forecasts of changes in earthquake occurrence probabilities in northern Honshu. The objective of this review is to assess these forecasts as they relate to potential changes in the occurrence probabilities of damaging earthquakes in the Kanto Region. It is generally agreed that the 2011 Mw 9.0 Tohoku earthquake increased the stress on faults in the southern Kanto district. Toda and Stein (Geophys Res Lett 686, 40: doi:10.1002, 2013) further conclude that the probability of earthquakes in the Kanto Corridor has increased by a factor of 2.5 for the time period 11 March 2013 to 10 March 2018 in the Kanto Corridor. Estimates of earthquake probabilities in a wider region of the Southern Kanto District by Nanjo et al. (Geophys J Int, doi:10.1093, 2013) indicate that any increase in the probability of earthquakes is insignificant in this larger region. Uchida et al. (Earth Planet Sci Lett 374: 81-91, 2013) conclude that the Philippine Sea plate the extends well north of the northern margin of Tokyo Bay, inconsistent with the Kanto Fragment hypothesis of Toda et al. (Nat Geosci, 1:1-6,2008), which attributes deep earthquakes in this region, which they term the Kanto Corridor, to a broken fragment of the Pacific plate. The results of Uchida and Matsuzawa (J Geophys Res 115:B07309, 2013)support the conclusion that fault creep in southern Kanto may be slowly relaxing the stress increase caused by the Tohoku earthquake without causing more large earthquakes. Stress transfer calculations indicate a large stress transfer to the Off Boso Segment as a result of the 2011 Tohoku earthquake. However, Ozawa et al. (J Geophys Res 117:B07404, 2012) used onshore GPS measurements to infer large post-Tohoku creep on the plate interface in the Off-Boso region, and Uchida and Matsuzawa (ibid.) measured similar large creep off the Boso

  3. Characteristics of seismic and tsunami fragility of industries, revealed by the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Kuwahara, Y.; Hasegawa, I.; Yoshimi, M.; Namegaya, Y.; Horikawa, H.; Nakai, M.; Masuda, S.

    2013-12-01

    the data for respective tsunami height are 0.051 for less than 3m, 0.23 for 0.3-1 m, 0.27 for 1-2 m, 0.43 for 2-3 m, and 0.50 for higher than 3m, respectively. These fragility curves can be useful not only to estimate economic damages for future huge earthquakes, but also to rapidly assess the damage just after earthquakes.

  4. Recorded motions of the 6 April 2009 Mw 6.3 L'Aquila, Italy, earthquake and implications for building structural damage: Overview

    USGS Publications Warehouse

    Celebi, M.; Bazzurro, P.; Chiaraluce, L.; Clemente, P.; Decanini, L.; Desortis, A.; Ellsworth, W.; Gorini, A.; Kalkan, E.; Marcucci, S.; Milana, G.; Mollaioli, F.; Olivieri, M.; Paolucci, R.; Rinaldis, D.; Rovelli, A.; Sabetta, F.; Stephens, C.

    2010-01-01

    The normal-faulting earthquake of 6 April 2009 in the Abruzzo Region of central Italy caused heavy losses of life and substantial damage to centuriesold buildings of significant cultural importance and to modern reinforcedconcrete- framed buildings with hollow masonry infill walls. Although structural deficiencies were significant and widespread, the study of the characteristics of strong motion data from the heavily affected area indicated that the short duration of strong shaking may have spared many more damaged buildings from collapsing. It is recognized that, with this caveat of shortduration shaking, the infill walls may have played a very important role in preventing further deterioration or collapse of many buildings. It is concluded that better new or retrofit construction practices that include reinforcedconcrete shear walls may prove helpful in reducing risks in such seismic areas of Italy, other Mediterranean countries, and even in United States, where there are large inventories of deficient structures. ?? 2010, Earthquake Engineering Research Institute.

  5. EXPERIMENTAL AND NUMERICAL APPROACHES OF TOPOGRAPHIC SITE EFFECTS CLAIMED TO BE RESPONSIBLE FOR 1909 PROVENCE EARTHQUAKE DAMAGE DISTRIBUTION

    NASA Astrophysics Data System (ADS)

    Duval, A.; Bertrand, E.; Régnier, J.; Grasso, E.; Gance, J.; Glinsky, N.; Semblat, J.

    2009-12-01

    One of the strongest historical earthquakes in France metropolitan territory occurred in 1909, in Provence, south of France. In the eighties, a scenario study predicted that a similar earthquake may lead to more than the 46 deaths of 1909 and a tremendous economical cost caused by increasing urbanisation in this area. The 1909 maximal intensity was estimated at IX. But a lot of municipalities exhibited strong variations in damage distribution. For some of them, like Rognes and Vernègues, the historical perched village suffered more damage than constructions built on the flat part of the territories. While seismologists realised site effect importance in earthquakes, this 1909 damage distribution became the most famous french illustration of topographic site effect. But if ray theory explains that relief can indubitably focus waves and amplify seismic signal for specific wavelength according to the location on the slope, some doubts remain about the real impact of topographic effects in 1909 damage distribution. It may also be related to the fact that the different types of building were not uniformly spread on the territories and/or that the old structures were more vulnerable than new ones. Finally, was the seismic signal really different along the relief during 1909 earthquake ? Trying to solve this question, several field campaigns were conducted on the village of Rognes. The first one consisted in measuring microtremors on several points and computing H/V ratios (Nogoshi, 1970, Nakamura, 1989). The H/V curves on flat part of the territory do not exhibit any clear peak except for one site on the north where a high frequency peak should be relative to a superficial and thin soft layer. On the contrary, the H/V curves obtained on the top of the relief show a high peak around 1 Hertz. We then decided to install 9 seismic stations to record continuously seismicity at key-points of the relief. The seismicity rate is very low in this region, but the 2 years of

  6. Seismic damage identification using multi-line distributed fiber optic sensor system

    NASA Astrophysics Data System (ADS)

    Ou, Jinping; Hou, Shuang

    2005-06-01

    Determination of the actual nonlinear inelastic response mechanisms developed by civil structures such as buildings and bridges during strong earthquakes and post-earthquake damage assessment of these structures represent very difficult challenges for earthquake structural engineers. One of the main reasons is that the traditional sensor can't serve for such a long period to cover an earthquake and the seismic damage location in the structure can't be predicted in advance definitely. It is thought that the seismic damage of reinforced concrete (RC) structure can be related to the maximum response the structure, which can also be related to the cracks on the concrete. A distributed fiber optic sensor was developed to detect the cracks on the reinforced concrete structure under load. Fiber optic couples were used in the sensor system to extend the sensor system's capacity from one random point detection to more. An optical time domain reflectometer (OTDR) is employed for interrogation of the sensor signal. Fiber optic sensors are attached on the surface of the concrete by the epoxy glue. By choosing the strength of epoxy, the damage state of the concrete can be responded to the occurrence of the Fresnel scattering in the fiber optic sensor. Experiments involved monotonic loading to failure. Finally, the experimental results in terms of crack detection capability are presented and discussed.

  7. 2016 one-year seismic hazard forecast for the Central and Eastern United States from induced and natural earthquakes

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Llenos, Andrea L.; Ellsworth, William L.; Michael, Andrew J.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2016-03-28

    The U.S. Geological Survey (USGS) has produced a 1-year seismic hazard forecast for 2016 for the Central and Eastern United States (CEUS) that includes contributions from both induced and natural earthquakes. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties in earthquake occurrence and diversity of opinion in the science community. Ground shaking seismic hazard for 1-percent probability of exceedance in 1 year reaches 0.6 g (as a fraction of standard gravity [g]) in northern Oklahoma and southern Kansas, and about 0.2 g in the Raton Basin of Colorado and New Mexico, in central Arkansas, and in north-central Texas near Dallas. Near some areas of active induced earthquakes, hazard is higher than in the 2014 USGS National Seismic Hazard Model (NHSM) by more than a factor of 3; the 2014 NHSM did not consider induced earthquakes. In some areas, previously observed induced earthquakes have stopped, so the seismic hazard reverts back to the 2014 NSHM. Increased seismic activity, whether defined as induced or natural, produces high hazard. Conversion of ground shaking to seismic intensity indicates that some places in Oklahoma, Kansas, Colorado, New Mexico, Texas, and Arkansas may experience damage if the induced seismicity continues unabated. The chance of having Modified Mercalli Intensity (MMI) VI or greater (damaging earthquake shaking) is 5–12 percent per year in north-central Oklahoma and southern Kansas, similar to the chance of damage caused by natural earthquakes

  8. Journal of the Chinese Institute of Engineers. Special Issue: Commemoration of Chi-Chi Earthquake (II)

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Contents include the following: Deep Electromagnetic Images of Seismogenic Zone of the Chi-Chi (Taiwan) Earthquake; New Techniques for Stress-Forecasting Earthquakes; Aspects of Characteristics of Near-Fault Ground Motions of the 1999 Chi-Chi (Taiwan) Earthquake; Liquefaction Damage and Related Remediation in Wufeng after the Chi-Chi Earthquake; Fines Content Effects on Liquefaction Potential Evaluation for Sites Liquefied during Chi-Chi Earthquake 1999; Damage Investigation and Liquefaction Potential Analysis of Gravelly Soil; Dynamic Characteristics of Soils in Yuan-Lin Liquefaction Area; A Preliminary Study of Earthquake Building Damage and Life Loss Due to the Chi-Chi Earthquake; Statistical Analyses of Relation between Mortality and Building Type in the 1999 Chi-Chi Earthquake; Development of an After Earthquake Disaster Shelter Evaluation Model; Posttraumatic Stress Reactions in Children and Adolescents One Year after the 1999 Taiwan Chi-Chi Earthquake; Changes or Not is the Question: the Meaning of Posttraumatic Stress Reactions One Year after the Taiwan Chi-Chi Earthquake.

  9. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  10. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    PubMed

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  11. NEIC; the National Earthquake Information Center

    USGS Publications Warehouse

    Masse, R.P.; Needham, R.E.

    1989-01-01

    At least 9,500 people were killed, 30,000 were injured and 100,000 were left homeless by this earthquake. According to some unconfirmed reports, the death toll from this earthquake may have been as high as 35,000. this earthquake is estimated to have seriously affected an area of 825,000 square kilometers, caused between 3 and 4 billion dollars in damage, and been felt by 20 million people. 

  12. Space geodetic tools provide early warnings for earthquakes and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Aoki, Yosuke

    2017-04-01

    Development of space geodetic techniques such as Global Navigation Satellite System and Synthetic Aperture Radar in last few decades allows us to monitor deformation of Earth's surface in unprecedented spatial and temporal resolution. These observations, combined with fast data transmission and quick data processing, enable us to quickly detect and locate earthquakes and volcanic eruptions and assess potential hazards such as strong earthquake shaking, tsunamis, and volcanic eruptions. These techniques thus are key parts of early warning systems, help identify some hazards before a cataclysmic event, and improve the response to the consequent damage.

  13. Earthquake Preparedness Among Japanese Hemodialysis Patients in Prefectures Heavily Damaged by the 2011 Great East Japan Earthquake.

    PubMed

    Sugisawa, Hidehiro; Shimizu, Yumiko; Kumagai, Tamaki; Sugisaki, Hiroaki; Ohira, Seiji; Shinoda, Toshio

    2017-08-01

    The purpose of this study was to explore the factors related to earthquake preparedness in Japanese hemodialysis patients. We focused on three aspects of the related factors: health condition factors, social factors, and the experience of disasters. A mail survey of all the members of the Japan Association of Kidney Disease Patients in three Japanese prefectures (N = 4085) was conducted in March, 2013. We obtained 1841 valid responses for analysis. The health factors covered were: activities of daily living (ADL), mental distress, primary renal diseases, and the duration of dialysis. The social factors were: socioeconomic status, family structure, informational social support, and the provision of information regarding earthquake preparedness from dialysis facilities. The results show that the average percentage of participants that had met each criterion of earthquake preparedness in 2013 was 53%. Hemodialysis patients without disabled ADL, without mental distress, and requiring longer periods of dialysis, were likely to meet more of the earthquake preparedness criteria. Hemodialysis patients who had received informational social support from family or friends, had lived with spouse and children in comparison to living alone, and had obtained information regarding earthquake preparedness from dialysis facilities, were also likely to meet more of the earthquake preparedness criteria. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  14. Scientific, Engineering, and Financial Factors of the 1989 Human-Triggered Newcastle Earthquake in Australia

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2006-12-01

    This presentation emphasizes the dualism of natural resources exploitation and economic growth versus geomechanical pollution and risks of human-triggered earthquakes. Large-scale geoengineering activities, e.g., mining, reservoir impoundment, oil/gas production, water exploitation or fluid injection, alter pre-existing lithostatic stress states in the earth's crust and are anticipated to trigger earthquakes. Such processes of in- situ stress alteration are termed geomechanical pollution. Moreover, since the 19th century more than 200 earthquakes have been documented worldwide with a seismic moment magnitude of 4.5earthquakes increased rapidly. An example of a human-triggered earthquake is the 1989 Newcastle event in Australia that was a result of almost 200 years of coal mining and water over-exploitation, respectively. This earthquake, an Mw=5.6 event, caused more than 3.5 billion U.S. dollars in damage (1989 value) and was responsible for Australia's first and only to date earthquake fatalities. It is therefore thought that, the Newcastle region tends to develop unsustainably if comparing economic growth due to mining and financial losses of triggered earthquakes. An hazard assessment, based on a geomechanical crust model, shows that only four deep coal mines were responsible for triggering this severe earthquake. A small-scale economic risk assessment identifies that the financial loss due to earthquake damage has reduced mining profits that have been re-invested in the Newcastle region for over two centuries beginning in 1801. Furthermore, large-scale economic risk assessment reveals that the financial loss is equivalent to 26% of the Australian Gross Domestic Product (GDP) growth in 1988/89. These costs account for 13% of the total costs of all natural disasters (e.g., flooding, drought, wild fires) and 94% of the costs of all

  15. Evaluation of impact of earthquake on agriculture in Nepal based on remote sensing

    NASA Astrophysics Data System (ADS)

    Sekiyama, Ayako; Shimada, Sawahiko; Okazawa, Hiromu; Mihara, Machito; Kuo, Kuang Ting

    2016-07-01

    The big earthquake happening on April, 2015 killed over than 8000 people in Nepal. The effect of earthquake not only affected safety of local people but also agricultural field. Agricultural economy dominates income of local people. Therefore, restoration of agricultural areas are required for improving life of local people. However, lack of information about agricultural areas is main problem for local government to assess and restore damaged agricultural areas. Remote sensing was applied for accessing damaged agricultural field due to its advantages in observing responds of environment without temporal and spatial restriction. Accordingly, the objective of the study is to evaluate impact of earthquake on agriculture in Nepal based on remote sensing. The experimental procedure includes conducting the impact of earthquake on changes of total agricultural area, and analysis of response of greenness affected by earthquake in agricultural land. For conducting agricultural land changes, land use map was first created and classified into four categories: road, city, forest, and agricultural land. Changes before and after earthquake in total area of agricultural land were analyzed by GIS. Moreover, vegetation index was used as indicator for evaluating greenness responds in agricultural land and computed based on high-resolution satellite imagery such as World view-3. Finally, the conclusion of the study and suggestions will be made and provided for helping local government in Nepal restore agricultural areas.

  16. Social, not physical, infrastructure: the critical role of civil society after the 1923 Tokyo earthquake.

    PubMed

    Aldrich, Daniel P

    2012-07-01

    Despite the tremendous destruction wrought by catastrophes, social science holds few quantitative assessments of explanations for the rate of recovery. This article illuminates four factors-damage, population density, human capital, and economic capital-that are thought to explain the variation in the pace of population recovery following disaster; it also explores the popular but relatively untested factor of social capital. Using time-series, cross-sectional models and propensity score matching, it tests these approaches using new data from the rebuilding of 39 neighbourhoods in Tokyo after its 1923 earthquake. Social capital, more than earthquake damage, population density, human capital, or economic capital, best predicts population recovery in post-earthquake Tokyo. These findings suggest new approaches for research on social capital and disasters as well as public policy avenues for handling catastrophes. © 2012 The Author(s). Journal compilation © Overseas Development Institute, 2012.

  17. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  18. Shake table tests of suspended ceilings to simulate the observed damage in the M s7.0 Lushan earthquake, China

    NASA Astrophysics Data System (ADS)

    Wang, Duozhi; Dai, Junwu; Qu, Zhe; Ning, Xiaoqing

    2016-06-01

    Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M s7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior.

  19. St. Louis Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Williams, Robert A.; Steckel, Phyllis; Schweig, Eugene

    2007-01-01

    St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project will produce digital maps that show variability of earthquake hazards in the St. Louis area. The maps will be available free via the internet. They can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes.

  20. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study

    DOE PAGES

    Klise, Katherine A.; Bynum, Michael; Moriarty, Dylan; ...

    2017-07-07

    Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source PythonTM package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resourcesmore » and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.« less

  1. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Bynum, Michael; Moriarty, Dylan

    Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source PythonTM package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resourcesmore » and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.« less

  2. The October 12, 1992, Dahshur, Egypt, Earthquake

    USGS Publications Warehouse

    Thenhaus, P.C.; Celebi, M.; Sharp, R.V.

    1993-01-01

    We were part of an international reconnaissance team that investigated the Dahsur earthquake. This article summarizes our findings and points out how even a relatively moderate sized earthquake can cause widespread damage and a large number of casualities. 

  3. Identification and calibration of the structural model of historical masonry building damaged during the 2016 Italian earthquakes: The case study of Palazzo del Podestà in Montelupone

    NASA Astrophysics Data System (ADS)

    Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano

    2017-11-01

    The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.

  4. The Determination Method of Extreme Earthquake Disaster Area Based on the Dust Detection Result from GF-4 Data

    NASA Astrophysics Data System (ADS)

    Dou, A.; Ding, L.; Chen, M.; Wang, X.

    2018-04-01

    The remote sensing has played an important role in many earthquake emergencies by rapidly providing the building damage, road damage, landslide and other disaster information. The earthquake in the mountains often caused to the loosening of the mountains and the blowing of the dust in the epicentre area. The dust particles are more serious in the epicentre area than the other disaster area. Basis on the analysis of abnormal spectrum characteristics, the dust detection methods from medium and high resolutions satellite imagery are studied in order to determinate the extreme earthquake disaster area. The results indicate the distribution of extreme disaster can be acquired using the dust detection information from imagery, which can provide great help for disaster intensity assessment.

  5. A collaborative user-producer assessment of earthquake-response products

    USGS Publications Warehouse

    Gomberg, Joan; Jakobitz, Allen

    2013-01-01

    The U.S. Geological Survey (USGS) and the Washington State Emergency Management Division assessed how well USGS earthquake-response products met the needs of emergency managers at county and local levels. Focus-group responses guided development of new products for testing in a regional-scale earthquake exercise. The assessment showed that (1) emergency responders consider most USGS products unnecessary after the first few postearthquake hours because the products are predictors, and responders are quickly immersed in reality; (2) during crises a significant fraction of personnel engaged in emergency response are drawn from many sectors, increasing the breadth of education well beyond emergency management agencies; (3) many emergency personnel do not use maps; and (4) information exchange, archiving, and analyses involve mechanisms and technical capabilities that vary among agencies, so widely used products must be technically versatile and easy to use.

  6. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    NASA Astrophysics Data System (ADS)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a

  7. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths alsomore » resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.« less

  8. Evaluating the Human Damage of Tsunami at Each Time Frame in Aggregate Units Based on GPS data

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.; Akiyama, Y.; Kanasugi, H.; Shibasaki, R.; Kaneda, H.

    2016-06-01

    Assessments of the human damage caused by the tsunami are required in order to consider disaster prevention at such a regional level. Hence, there is an increasing need for the assessments of human damage caused by earthquakes. However, damage assessments in japan currently usually rely on static population distribution data, such as statistical night time population data obtained from national census surveys. Therefore, human damage estimation that take into consideration time frames have not been assessed yet. With these backgrounds, the objectives of this study are: to develop a method for estimating the population distribution of the for each time frame, based on location positioning data observed with mass GPS loggers of mobile phones, to use a evacuation and casualties models for evaluating human damage due to the tsunami, and evaluate each time frame by using the data developed in the first objective, and 3) to discuss the factors which cause the differences in human damage for each time frame. By visualizing the results, we clarified the differences in damage depending on time frame, day and area. As this study enables us to assess damage for any time frame in and high resolution, it will be useful to consider provision for various situations when an earthquake may hit, such as during commuting hours or working hours and week day or holiday.

  9. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  10. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Landslides

    USGS Publications Warehouse

    Keefer, David K.

    1998-01-01

    Central California, in the vicinity of San Francisco and Monterey Bays, has a history of fatal and damaging landslides, triggered by heavy rainfall, coastal and stream erosion, construction activity, and earthquakes. The great 1906 San Francisco earthquake (MS=8.2-8.3) generated more than 10,000 landslides throughout an area of 32,000 km2; these landslides killed at least 11 people and caused substantial damage to buildings, roads, railroads, and other civil works. Smaller numbers of landslides, which caused more localized damage, have also been reported from at least 20 other earthquakes that have occurred in the San Francisco Bay-Monterey Bay region since 1838. Conditions that make this region particularly susceptible to landslides include steep and rugged topography, weak rock and soil materials, seasonally heavy rainfall, and active seismicity. Given these conditions and history, it was no surprise that the 1989 Loma Prieta earthquake generated thousands of landslides throughout the region. Landslides caused one fatality and damaged at least 200 residences, numerous roads, and many other structures. Direct damage from landslides probably exceeded $30 million; additional, indirect economic losses were caused by long-term landslide blockage of two major highways and by delays in rebuilding brought about by concern over the potential long-term instability of some earthquake-damaged slopes.

  11. Building Loss Estimation for Earthquake Insurance Pricing

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Erdik, M.; Sesetyan, K.; Demircioglu, M. B.; Fahjan, Y.; Siyahi, B.

    2005-12-01

    After the 1999 earthquakes in Turkey several changes in the insurance sector took place. A compulsory earthquake insurance scheme was introduced by the government. The reinsurance companies increased their rates. Some even supended operations in the market. And, most important, the insurance companies realized the importance of portfolio analysis in shaping their future market strategies. The paper describes an earthquake loss assessment methodology that can be used for insurance pricing and portfolio loss estimation that is based on our work esperience in the insurance market. The basic ingredients are probabilistic and deterministic regional site dependent earthquake hazard, regional building inventory (and/or portfolio), building vulnerabilities associated with typical construction systems in Turkey and estimations of building replacement costs for different damage levels. Probable maximum and average annualized losses are estimated as the result of analysis. There is a two-level earthquake insurance system in Turkey, the effect of which is incorporated in the algorithm: the national compulsory earthquake insurance scheme and the private earthquake insurance system. To buy private insurance one has to be covered by the national system, that has limited coverage. As a demonstration of the methodology we look at the case of Istanbul and use its building inventory data instead of a portfolio. A state-of-the-art time depent earthquake hazard model that portrays the increased earthquake expectancies in Istanbul is used. Intensity and spectral displacement based vulnerability relationships are incorporated in the analysis. In particular we look at the uncertainty in the loss estimations that arise from the vulnerability relationships, and at the effect of the implemented repair cost ratios.

  12. Earthquake Hazard Assessment Based on Geological Data: An approach from Crystalline Terrain of Peninsular India

    NASA Astrophysics Data System (ADS)

    John, B.

    2009-04-01

    Earthquake Hazard Assessment Based on Geological Data: An approach from Crystalline Terrain of Peninsular India Biju John National Institute of Rock Mechanics b_johnp@yahoo.co.in Peninsular India was for long considered as seismically stable. But the recent earthquake sequence of Latur (1993), Jabalpur (1997), Bhuj (2001) suggests this region is among one of the active Stable Continental Regions (SCRs) of the world, where the recurrence intervals is of the order of tens of thousands of years. In such areas, earthquake may happen at unexpected locations, devoid of any previous seismicity or dramatic geomorphic features. Even moderate earthquakes will lead to heavy loss of life and property in the present scenario. So it is imperative to map suspected areas to identify active faults and evaluate its activities, which will be a vital input to seismic hazard assessment of SCR area. The region around Wadakkanchery, Kerala, South India has been experiencing micro seismic activities since 1989. Subsequent studies, by the author, identified a 30 km long WNW-ESE trending reverse fault, dipping south (45°), that influenced the drainage system of the area. The macroscopic and microscopic studies of the fault rocks from the exposures near Desamangalam show an episodic nature of faulting. Dislocations of pegmatitic veins across the fault indicate a cumulative dip displacement of 2.1m in the reverse direction. A minimum of four episodes of faulting were identified in this fault based on the cross cutting relations of different structural elements and from the mineralogic changes of different generations of gouge zones. This suggests that an average displacement of 52cm per event might have occurred for each event. A cyclic nature of faulting is identified in this fault zone in which the inter-seismic period is characterized by gouge induration and fracture sealing aided by the prevailing fluids. Available empirical relations connecting magnitude with displacement and rupture

  13. Global Instrumental Seismic Catalog: earthquake relocations for 1900-present

    NASA Astrophysics Data System (ADS)

    Villasenor, A.; Engdahl, E.; Storchak, D. A.; Bondar, I.

    2010-12-01

    We present the current status of our efforts to produce a set of homogeneous earthquake locations and improved focal depths towards the compilation of a Global Catalog of instrumentally recorded earthquakes that will be complete down to the lowest magnitude threshold possible on a global scale and for the time period considered. This project is currently being carried out under the auspices of GEM (Global Earthquake Model). The resulting earthquake catalog will be a fundamental dataset not only for earthquake risk modeling and assessment on a global scale, but also for a large number of studies such as global and regional seismotectonics; the rupture zones and return time of large, damaging earthquakes; the spatial-temporal pattern of moment release along seismic zones and faults etc. Our current goal is to re-locate all earthquakes with available station arrival data using the following magnitude thresholds: M5.5 for 1964-present, M6.25 for 1918-1963, M7.5 (complemented with significant events in continental regions) for 1900-1917. Phase arrival time data for earthquakes after 1963 are available in digital form from the International Seismological Centre (ISC). For earthquakes in the time period 1918-1963, phase data is obtained by scanning the printed International Seismological Summary (ISS) bulletins and applying optical character recognition routines. For earlier earthquakes we will collect phase data from individual station bulletins. We will illustrate some of the most significant results of this relocation effort, including aftershock distributions for large earthquakes, systematic differences in epicenter and depth with respect to previous location, examples of grossly mislocated events, etc.

  14. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    USGS Publications Warehouse

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of

  15. The 1748 Montesa (south-east Spain) earthquake, a singular event

    NASA Astrophysics Data System (ADS)

    Buforn, Elisa; Udías, Agustín; Sanz de Galdeano, Carlos

    2015-04-01

    The Montesa earthquakes of 1748 took place in the south-east region of the Iberian Peninsula. Its location falls somewhat outside the seismic active region of southern Spain. The main shock took place on the 23 of March and was followed by a series of aftershocks, the largest on the 2 of April. Despite of the large number of documents with descriptions of the damage produced by this earthquake it has not been the object of a detailed seismological study. Documents described the damage in about 100 towns and villages over a wide area and it was felt in Valencia, Alcoy and Cartagena. The castle of Montesa was totally destroyed and the town of Xàtiva suffered heavy damage. The source region with seismic intensity IX extends about 15 km from Sellent to Enguera, along a possible fault of NE-SW direction. This is a singular event because it occurred in an area with an assigned low seismic risk where in the past very few large earthquakes have happened. This earthquake shows that a destructive earthquake may happen in the future in this region. The area affected by the earthquake has today a high industrial and tourist development.

  16. Modified Mercalli Intensity for scenario earthquakes in Evansville, Indiana

    USGS Publications Warehouse

    Cramer, Chris; Haase, Jennifer; Boyd, Oliver

    2012-01-01

    Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the fact that Evansville is close to the Wabash Valley and New Madrid seismic zones, there is concern about the hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake. Earthquake-hazard maps provide one way of conveying such estimates of strong ground shaking and will help the region prepare for future earthquakes and reduce earthquake-caused losses.

  17. Using Groundwater physiochemical properties for assessing potential earthquake precursor

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Reuveni, Yuval; Anker, Yaakov; Guttman, Joseph

    2017-04-01

    Worldwide studies reports pre-seismic, co-seismic and post-seismic reaction of groundwater to earthquakes. The unique hydrological and geological situation in Israel resulted in relatively deep water wells which are located close to seismically active tectonic plate boundary. Moreover, the Israeli experience show that anomalies may occurs 60-90 minutes prior to the seismic event (Guttman et al., 2005; Anker et al., 2016). Here, we try to assess the possible connection between changes in physiochemical parameters of groundwater and earthquakes along the Dead Sea Transform (DST) region. A designated network of monitoring stations was installed in MEKOROT abandoned deep water wells, continuously measuring water table, conductivity and temperature at a sampling rate of 1 minute. Preliminary analysis compares changes in the measured parameters with rain events, tidal effects and earthquake occurrences of all measured magnitudes (>2.5Md) at monitoring area surroundings. The acquired data set over one year recorded simultaneous abrupt changes in several wells which seems disconnected from standard hydrological occurrences such as precipitation, abstraction or tidal effects. At this stage, our research aims to determine and rationalize a baseline for "normal response" of the measured parameters to external occurrences while isolating those cases in which "deviations" from that base line is recorded. We apply several analysis techniques both in time and frequency domain with the measured signal as well as statistical analysis of several measured earthquake parameters, which indicate potential correlations between earthquakes occurrences and the measured signal. We show that at least in one seismic event (5.1 Md) a potential precursor may have been recorded. Reference: Anker, Y., N. Inbar, A. Y. Dror, Y. Reuveni, J. Guttman, A. Flexer, (2016). Groundwater response to ground movements, as a tool for earthquakes monitoring and a possible precursor. 8th International Conference

  18. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone.

    PubMed

    Xue, Lian; Li, Hai-Bing; Brodsky, Emily E; Xu, Zhi-Qing; Kano, Yasuyuki; Wang, Huan; Mori, James J; Si, Jia-Liang; Pei, Jun-Ling; Zhang, Wei; Yang, Guang; Sun, Zhi-Ming; Huang, Yao

    2013-06-28

    Permeability controls fluid flow in fault zones and is a proxy for rock damage after an earthquake. We used the tidal response of water level in a deep borehole to track permeability for 18 months in the damage zone of the causative fault of the 2008 moment magnitude 7.9 Wenchuan earthquake. The unusually high measured hydraulic diffusivity of 2.4 × 10(-2) square meters per second implies a major role for water circulation in the fault zone. For most of the observation period, the permeability decreased rapidly as the fault healed. The trend was interrupted by abrupt permeability increases attributable to shaking from remote earthquakes. These direct measurements of the fault zone reveal a process of punctuated recovery as healing and damage interact in the aftermath of a major earthquake.

  19. Major earthquakes of the past decade (2000-2010): a comparative review of various aspects of management.

    PubMed

    Kalantar Motamedi, Mohammad Hosein; Sagafinia, Masoud; Ebrahimi, Ali; Shams, Ehsan; Kalantar Motamedi, Mostafa

    2012-01-01

    This article sought to review and compare data of major earthquakes of the past decade and their aftermath in order to compare the magnitude, death toll, type of injuries, management procedures, extent of destruction and effectiveness of relief efforts. A retrospective study of the various aspects of management and aftermath of 5 major earthquakes of the past decade (2000-2010) was undertaken. This included earthquakes occurring in Bam Iran, Sichuan China, Port-au-Prince Haiti, Kashmir Pakistan and Ica Peru. A literature search was done via computer of published articles (indexed in Pubmed). The issues assessed included: 1)Local magnitude,2)Type of building structure 3)Time of the earthquake (day/time/season), 4)Time to rescue, 5)Triage, Transfer, and Treatment 6) Distribution of casualties (dead/ injured), 7)Degree of city damage, 8)Degree of damage to health facilities, 9)Field hospital availability, 10)International aid, 11)Air transfer, 12) Telecommunication systems availability, 13) PTSD prevalence, 14) Most common injury and 15) Most common disease outbreak. The Bam earthquake had the lowest (6.6 Richter's) and the Sichuan earthquake had the greatest magnitude (8.0 Richter's). Mortality in Haiti was 212,000 and it was the deadliest earthquake of the past decade. Collapse of heavy clay roofing structures was a major cause of death in Iran and Pakistan. Earthquakes occurring at night and nonworking days carried a high death toll. The time to rescue and treat was the lengthiest in Haiti (possibly contributing to the death to injured ratio). However, the worst dead to injured ratios were in Bam (51%) and in Pakistan (47%); the best ratio was in China (15%). Iran and Pakistan suffered the highest percentage of damage to the health facilities (90%). Field hospital availability, international aid and air transfer were important issues. Telecommunication systems were best in China and worst in Pakistan. PTSD prevalence was highest in Iran. Respiratory infection was

  20. Damage Assessment | NOAA Gulf Spill Restoration

    Science.gov Websites

    Archive Home How We Restore Damage Assessment Damage Assessment probing for oil in Louisiana marsh Probing for subsurface oil in Barataria Bay, Louisiana During pre-assessment, the Trustees collected time from the oil spill. This data collection included looking at response activities and the

  1. Development of a national system for prevention and mitigation of earthquake damages to people and properties, and the reduction of costs related to earthquakes for the Italian Government

    NASA Astrophysics Data System (ADS)

    Console, R.; Greco, M.; Colangelo, A.; Cioè, A.; Trivigno, L.; Chiappini, M.; Ponzo, F.

    2015-12-01

    Recognizing that the Italian territory is prone to disasters in connection with seismic and hydro-geological risk, it has become necessary to define novel regulations and viable solutions aimed at conveying the economical resources of the Italian Government, too often utilized for the management of post-event situations, towards prevention activities. The work synthetically presents the project developed by the CGIAM together with the INGV, and open to collaboration with other Italian and International partners. This project is aimed at the development of a National System for prevention and mitigation of the earthquakes damages, through the definition of a model that achieves the mitigation of the building collapsing risk and the consequent reduction of casualties. Such a model is based on two main issues a) a correct evaluation of risk, defined as a reliable assessment of the hazard expected at a given site and of the vulnerability of civil and industrial buildings, b) setting up of novel strategies for the safety of buildings. The hazard assessment is pursued through the application of innovative multidisciplinary geophysical methodologies and the application of a physically based earthquake simulator. The structural vulnerability of buildings is estimated by means of simplified techniques based on few representative parameters (such as different structural typologies, dynamic soil-structure interaction, etc.) and, for detailed studies, standard protocols for model updating techniques. We analyze, through numerical and experimental approaches, new solutions for the use of innovative materials, and new techniques for the reduction of seismic vulnerability of structural, non-structural and accessorial elements, including low cost type. The project activities are initially implemented on a study area in Southern Italy (Calabria) selected because of its tectonic complexity. The results are expected to be applicable for other hazardous seismic areas of Italy.

  2. Introduction to the focus section on the 2015 Gorkha, Nepal, earthquake

    USGS Publications Warehouse

    Hough, Susan E.

    2015-01-01

    It has long been recognized that Nepal faces high earthquake hazard, with the most recent large (Mw>7.5) events in 1833 and 1934. When the 25 April 2015Mw 7.8 Gorkha earthquake struck, it appeared initially to be a realization of worst fears. In spite of its large magnitude and proximity to the densely populated Kathmandu valley, however, the level of damage was lower than anticipated, with most vernacular structures within the valley experiencing little or no structural damage. Outside the valley, catastrophic damage did occur in some villages, associated with the high vulnerability of stone masonry construction and, in many cases, landsliding. The unexpected observations from this expected earthquake provide an urgent impetus to understand the event itself and to better characterize hazard from future large Himalayan earthquakes. Toward this end, articles in this special focus section present and describe available data sets and initial results that better illuminate and interpret the earthquake and its effects.

  3. Making the Handoff from Earthquake Hazard Assessments to Effective Mitigation Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Applegate, D.

    2010-12-01

    This year has witnessed a barrage of large earthquakes worldwide with the resulting damages ranging from inconsequential to truly catastrophic. We cannot predict when earthquakes will strike, but we can build communities that are resilient to strong shaking as well as to secondary hazards such as landslides and liquefaction. The contrasting impacts of the magnitude-7 earthquake that struck Haiti in January and the magnitude-8.8 event that struck Chile in April underscore the difference that mitigation and preparedness can make. In both cases, millions of people were exposed to severe shaking, but deaths in Chile were measured in the hundreds rather than the hundreds of thousands that perished in Haiti. Numerous factors contributed to these disparate outcomes, but the most significant is the presence of strong building codes in Chile and their total absence in Haiti. The financial cost of the Chilean earthquake still represents an unacceptably high percentage of that nation’s gross domestic product, a reminder that life safety is the paramount, but not the only, goal of disaster risk reduction measures. For building codes to be effective, both in terms of lives saved and economic cost, they need to reflect the hazard as accurately as possible. As one of four federal agencies that make up the congressionally mandated National Earthquake Hazards Reduction Program (NEHRP), the U.S. Geological Survey (USGS) develops national seismic hazard maps that form the basis for seismic provisions in model building codes through the Federal Emergency Management Agency and private-sector practitioners. This cooperation is central to NEHRP, which both fosters earthquake research and establishes pathways to translate research results into implementation measures. That translation depends on the ability of hazard-focused scientists to interact and develop mutual trust with risk-focused engineers and planners. Strengthening that interaction is an opportunity for the next generation

  4. Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment

    NASA Astrophysics Data System (ADS)

    Cusicanqui, Johnny; Kerle, Norman; Nex, Francesco

    2018-06-01

    Remote sensing has evolved into the most efficient approach to assess post-disaster structural damage, in extensively affected areas through the use of spaceborne data. For smaller, and in particular, complex urban disaster scenes, multi-perspective aerial imagery obtained with unmanned aerial vehicles and derived dense color 3-D models are increasingly being used. These type of data allow the direct and automated recognition of damage-related features, supporting an effective post-disaster structural damage assessment. However, the rapid collection and sharing of multi-perspective aerial imagery is still limited due to tight or lacking regulations and legal frameworks. A potential alternative is aerial video footage, which is typically acquired and shared by civil protection institutions or news media and which tends to be the first type of airborne data available. Nevertheless, inherent artifacts and the lack of suitable processing means have long limited its potential use in structural damage assessment and other post-disaster activities. In this research the usability of modern aerial video data was evaluated based on a comparative quality and application analysis of video data and multi-perspective imagery (photos), and their derivative 3-D point clouds created using current photogrammetric techniques. Additionally, the effects of external factors, such as topography and the presence of smoke and moving objects, were determined by analyzing two different earthquake-affected sites: Tainan (Taiwan) and Pescara del Tronto (Italy). Results demonstrated similar usabilities for video and photos. This is shown by the short 2 cm of difference between the accuracies of video- and photo-based 3-D point clouds. Despite the low video resolution, the usability of these data was compensated for by a small ground sampling distance. Instead of video characteristics, low quality and application resulted from non-data-related factors, such as changes in the scene, lack of

  5. Disparate Tectonic Settings of Devastating Earthquakes in Mexico, September 2017

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, W. P.; Ning, J.

    2017-12-01

    Large earthquakes associated with thrust faulting along the plate interface typically pose the highest seismic risk along subduction zones. However, both damaging earthquakes in Mexico of September 2017 are notable exceptions. The Tehuantepec event on the 8th (Mw 8.1) occurred just landward of the trench but is associated with normal faulting, akin to the large (Ms 8) historical event of 1931 that occurred about 200 km to the northwest along this subduction zone. The Puebla earthquake (on the 19th, Mw 7.1) occurred almost 300 km away from the trench where seismic imaging had indicated that the flat-lying slab steepens abruptly and plunges aseismically into the deep mantle. Here we show that both types of tectonic settings are in fact common along a large portion of the Mexican subduction zone, thus identifying source zones of potentially damaging earthquakes away from the plate interface. Additionally, modeling of broadband waveforms made clear that another significant event (Mw 6.1) on the 23rd, is associated with shallow normal faulting in the upper crust, not directly related to the two damaging earthquakes.

  6. Earthquake Hazard and Risk Assessment based on Unified Scaling Law for Earthquakes: Altai-Sayan Region

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.; Nekrasova, A.

    2017-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 - M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum credible magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g. peak ground acceleration, PGA, or macro-seismic intensity etc.). After a rigorous testing against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory, etc.). This, USLE based, methodology of seismic hazard and risks assessment is applied to the territory of Altai-Sayan Region, of Russia. The study supported by the Russian Science Foundation Grant No. 15-17-30020.

  7. Understanding Earthquake Hazard & Disaster in Himalaya - A Perspective on Earthquake Forecast in Himalayan Region of South Central Tibet

    NASA Astrophysics Data System (ADS)

    Shanker, D.; Paudyal, ,; Singh, H.

    2010-12-01

    It is not only the basic understanding of the phenomenon of earthquake, its resistance offered by the designed structure, but the understanding of the socio-economic factors, engineering properties of the indigenous materials, local skill and technology transfer models are also of vital importance. It is important that the engineering aspects of mitigation should be made a part of public policy documents. Earthquakes, therefore, are and were thought of as one of the worst enemies of mankind. Due to the very nature of release of energy, damage is evident which, however, will not culminate in a disaster unless it strikes a populated area. The word mitigation may be defined as the reduction in severity of something. The Earthquake disaster mitigation, therefore, implies that such measures may be taken which help reduce severity of damage caused by earthquake to life, property and environment. While “earthquake disaster mitigation” usually refers primarily to interventions to strengthen the built environment, and “earthquake protection” is now considered to include human, social and administrative aspects of reducing earthquake effects. It should, however, be noted that reduction of earthquake hazards through prediction is considered to be the one of the effective measures, and much effort is spent on prediction strategies. While earthquake prediction does not guarantee safety and even if predicted correctly the damage to life and property on such a large scale warrants the use of other aspects of mitigation. While earthquake prediction may be of some help, mitigation remains the main focus of attention of the civil society. Present study suggests that anomalous seismic activity/ earthquake swarm existed prior to the medium size earthquakes in the Nepal Himalaya. The mainshocks were preceded by the quiescence period which is an indication for the occurrence of future seismic activity. In all the cases, the identified episodes of anomalous seismic activity were

  8. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  9. Preliminary observations from the 3 January 2017, MW 5.6 Manu, Tripura (India) earthquake

    NASA Astrophysics Data System (ADS)

    Debbarma, Jimmi; Martin, Stacey S.; Suresh, G.; Ahsan, Aktarul; Gahalaut, Vineet K.

    2017-10-01

    On 3 January 2017, a MW 5.6 earthquake occurred in Dhalai district in Tripura (India), at 14:39:03 IST (09:09:03 UTC) with an epicentre at 24.018°N ± 4.9 km and 91.964°E ± 4.4 km, and a focal depth of 31 ± 6.0 km. The focal mechanism solution determined after evaluating data from seismological observatories in India indicated a predominantly strike-slip motion on a steeply dipping plane. The estimated focal depth and focal mechanism solution places this earthquake in the Indian plate that lies beneath the overlying Indo-Burmese wedge. As in the 2016 Manipur earthquake, a strong motion record from Shillong, India, appears to suggest site amplification possibly due to topographic effects. In the epicentral region in Tripura, damage assessed from a field survey and from media reports indicated that the macroseismic intensity approached 6-7 EMS with damage also reported in adjacent parts of Bangladesh. A striking feature of this earthquake were the numerous reports of liquefaction that were forthcoming from fluvial locales in the epicentral region in Tripura, and at anomalous distances farther north in Bangladesh. The occurrence of the 2017 Manu earthquake emphasises the hazard posed by intraplate earthquakes in Tripura and in the neighbouring Bengal basin region where records of past earthquakes are scanty or vague, and where the presence of unconsolidated deltaic sediments and poor implementation of building codes pose a significant societal and economic threat during larger earthquakes in the future.

  10. ShakeCast: Automating and Improving the Use of ShakeMap for Post-Earthquake Decision- Making and Response

    NASA Astrophysics Data System (ADS)

    Lin, K.; Wald, D. J.

    2007-12-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users" facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for emergency managers and responders. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, provides overall information regarding the affected areas. When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. To this end, ShakeCast estimates the potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps showing structures or facilities most likely impacted. All ShakeMap and ShakeCast files and products are non-propriety to simplify interfacing with existing users" response tools and to encourage user-made enhancement to the software. ShakeCast uses standard RSS and HTTP requests to communicate with the USGS Web servers that host ShakeMaps, which are widely-distributed and heavily mirrored. The RSS approach allows ShakeCast users to initiate and receive selected ShakeMap products and information on software updates. To assess facility damage estimates, ShakeCast users can combine measured or estimated ground motion parameters with damage relationships that can be pre-computed, use one of these ground motion parameters as input, and produce a multi-state discrete output of damage likelihood. Presently three common approaches are being used to provide users with an

  11. Approach for Assessing Direct Flood Damages

    NASA Astrophysics Data System (ADS)

    Gaňová, Lenka; Zeleňáková, Martina; Słyś, Daniel; Purcz, Pavol

    2014-11-01

    This article presents a methodological approach to flood direct tangible damage - damage to assets and direct intangible damage - environmental damage and loss of life assessment. The assessment of flood risk is an essential part of the risk management approach, which is the conceptual basis for the EU directive 2007/60/ES on the assessment and management of flood risk. The purpose of this directive is to establish a framework for the assessment and management of flood risk, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with flood in the community. Overall, an accurate estimation of negative effects on assets, environment and people is important in order to be able to determine the economy, environmental and social flood risk level in a system and the effects of risk mitigation measures.

  12. The 17 July 2006 Tsunami earthquake in West Java, Indonesia

    USGS Publications Warehouse

    Mori, J.; Mooney, W.D.; Afnimar,; Kurniawan, S.; Anaya, A.I.; Widiyantoro, S.

    2007-01-01

    A tsunami earthquake (Mw = 7.7) occurred south of Java on 17 July 2006. The event produced relatively low levels of high-frequency radiation, and local felt reports indicated only weak shaking in Java. There was no ground motion damage from the earthquake, but there was extensive damage and loss of life from the tsunami along 250 km of the southern coasts of West Java and Central Java. An inspection of the area a few days after the earthquake showed extensive damage to wooden and unreinforced masonry buildings that were located within several hundred meters of the coast. Since there was no tsunami warning system in place, efforts to escape the large waves depended on how people reacted to the earthquake shaking, which was only weakly felt in the coastal areas. This experience emphasizes the need for adequate tsunami warning systems for the Indian Ocean region.

  13. Hazard-to-Risk: High-Performance Computing Simulations of Large Earthquake Ground Motions and Building Damage in the Near-Fault Region

    NASA Astrophysics Data System (ADS)

    Miah, M.; Rodgers, A. J.; McCallen, D.; Petersson, N. A.; Pitarka, A.

    2017-12-01

    We are running high-performance computing (HPC) simulations of ground motions for large (magnitude, M=6.5-7.0) earthquakes in the near-fault region (< 50 km) to 5 Hz and higher. Ground motions are then used as forcing functions for canonical steel moment frame buildings throughout the near-fault domain. For ground motions, we are using SW4, a fourth order summation-by-parts finite difference time-domain code running on 10,000-100,000's of cores. Earthquake ruptures are generated using the Graves and Pitarka (2017) method. We validated ground motion intensity measurements against Ground Motion Prediction Equations. We considered two events (M=6.5 and 7.0) for vertical strike-slip ruptures with three-dimensional (3D) basin structures, including stochastic heterogeneity. We have also considered M7.0 scenarios for a Hayward Fault rupture scenario which effects the San Francisco Bay Area and northern California using both 1D and 3D earth structure. Dynamic, inelastic response of canonical buildings is computed with the NEVADA, a nonlinear, finite-deformation finite element code. Canonical buildings include 3-, 9-, 20- and 40-story steel moment frame buildings. Damage potential is tracked by the peak inter-story drift (PID) ratio, which measures the maximum displacement between adjacent floors of the building and is strongly correlated with damage. PID ratios greater 1.0 generally indicate non-linear response and permanent deformation of the structure. We also track roof displacement to identify permanent deformation. PID (damage) for a given earthquake scenario (M, slip distribution, hypocenter) is spatially mapped throughout the SW4 domain with 1-2 km resolution. Results show that in the near fault region building damage is correlated with peak ground velocity (PGV), while farther away (> 20 km) it is better correlated with peak ground acceleration (PGA). We also show how simulated ground motions have peaks in the response spectra that shift to longer periods for

  14. Seismo-Tectonics of the 2014 Chiang Rai, Thailand, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Pananont, P.; Herman, M. W.; Waldhauser, F.; Pornsopin, P.; Warnitchai, P.; Kosuwan, S.

    2016-12-01

    On 5 May 2014, a Mw 6.2 strike-slip earthquake struck in the Mae Lao region of Chiang Rai province in Thailand. This earthquake occurred in a region of known faults, but identified as relatively low earthquake hazard, and caused substantial damage and injuries. Detailed field reconnaissance and deployment of a dense, temporary seismometer network allowed details of the damage and its relationship to seismicity to be analyzed. The aftershock sequence associated with this mainshock occurs on two well-defined trends, reflecting the two potential fault planes in earthquake focal mechanisms for the mainshock and the majority of the aftershocks. The damage area was relatively large for an event of this magnitude, but primarily occurs within the primary rupture (aftershock) region or along regional rivers with soils susceptible to liquefaction of other ground failure. Stress modeling combined with the time-series and pattern of aftershock activity lead us to propose that the initial mainshock rupture continued slightly onto its conjugate faults near its northern termination, helping to trigger the distinct pattern of two discrete, conjugate trends of aftershock activity that mirror the kinematics of the mainshock fault mechanism. Although this earthquake occurred in a region of known faults, it cannot be directly linked to a previously mapped structure. This coupled with the substantial damage from the event indicates that there is potentially a higher earthquake hazard in northern and central Thailand than previously recognized.

  15. Flood damage curves for consistent global risk assessments

    NASA Astrophysics Data System (ADS)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra

  16. Damage and Loss Estimation for Natural Gas Networks: The Case of Istanbul

    NASA Astrophysics Data System (ADS)

    Çaktı, Eser; Hancılar, Ufuk; Şeşetyan, Karin; Bıyıkoǧlu, Hikmet; Şafak, Erdal

    2017-04-01

    Natural gas networks are one of the major lifeline systems to support human, urban and industrial activities. The continuity of gas supply is critical for almost all functions of modern life. Under natural phenomena such as earthquakes and landslides the damages to the system elements may lead to explosions and fires compromising human life and damaging physical environment. Furthermore, the disruption in the gas supply puts human activities at risk and also results in economical losses. This study is concerned with the performance of one of the largest natural gas distribution systems in the world. Physical damages to Istanbul's natural gas network are estimated under the most recent probabilistic earthquake hazard models available, as well as under simulated ground motions from physics based models. Several vulnerability functions are used in modelling damages to system elements. A first-order assessment of monetary losses to Istanbul's natural gas distribution network is also attempted.

  17. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occured near (defined as having shear stress change |Δ| 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristics rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  18. Earthquake hazard and risk assessment based on Unified Scaling Law for Earthquakes: Greater Caucasus and Crimea

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir G.; Nekrasova, Anastasia K.

    2018-05-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10 N(M, L) = A + B·(5 - M) + C·log10 L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.

  19. Rapid Field Response to the 3 September 2016 M5.8 Earthquake Near Pawnee, Oklahoma: Summary of Structural Damage and Liquefaction Observations

    NASA Astrophysics Data System (ADS)

    Bennett, S. E. K.; Streig, A. R.; Chang, J. C.; Hornsby, K. T.; Woelfel, I. E.; Andrews, R. D.; Briggs, R. W.; McNamara, D. E.; Williams, R. A.; Wald, D. J.

    2016-12-01

    The Mw5.8 Pawnee, Oklahoma earthquake occurred on 03 September 2016 (07:02:44 local time; depth 5.6 km) in a rural, sparsely populated area. The USGS, Mw-phase moment tensor indicated slip occurred on a sub-vertical fault plane, striking WNW or NNE. Relocations of this mainshock and a dozen aftershocks (Mw 2.5-3.6) in the day following the event were broadly aligned along a WNW trend. These data, along with USGS `Did You Feel It?' and ShakeMap products, helped guide our field response. Our team arrived to the epicentral region 10 hours after the mainshock and spent the next 1.5 days examining 60 km of paved and dirt roads across a 40 km2 area for evidence of surface deformation, liquefaction, and structural damage. We completed a 2 km-long, NNE transect on foot centered on the epicenter, perpendicular to the suspected WNW-striking source fault. No surface rupture was observed during our reconnaissance surveys. We interviewed 10 residents within a 1-6 km radius of the epicenter, who reported up to 30 seconds of shaking. Structural damage was common and ranged from minor to moderate. Failure and collapse of masonry chimneys and exterior house facades made of stone or brick was common near the epicenter, yet a few were undamaged. At several locations, damage patterns suggest an E-W shaking direction; for example, only the western wall of a century-old unreinforced brick storage building failed, elevated fuel tanks shook E-W, and most metal straps securing a trailer home to its cinder-block foundation were sheared in an E-W direction. One earthquake-related injury was caused by chimney bricks that struck a man on the head. Strong ground motion cracked foundations and interior walls at many homes near the epicenter. Minor ground settlement and ground cracking was observed in artificial fill surrounding houses and along the crests of small earthen dams. A large barn fire was attributed to the earthquake. Landowners reported sand blows in farm fields underlain by sandy

  20. Analysis of a Spatial Point Pattern: Examining the Damage to Pavement and Pipes in Santa Clara Valley Resulting from the Loma Prieta Earthquake

    USGS Publications Warehouse

    Phelps, G.A.

    2008-01-01

    This report describes some simple spatial statistical methods to explore the relationships of scattered points to geologic or other features, represented by points, lines, or areas. It also describes statistical methods to search for linear trends and clustered patterns within the scattered point data. Scattered points are often contained within irregularly shaped study areas, necessitating the use of methods largely unexplored in the point pattern literature. The methods take advantage of the power of modern GIS toolkits to numerically approximate the null hypothesis of randomly located data within an irregular study area. Observed distributions can then be compared with the null distribution of a set of randomly located points. The methods are non-parametric and are applicable to irregularly shaped study areas. Patterns within the point data are examined by comparing the distribution of the orientation of the set of vectors defined by each pair of points within the data with the equivalent distribution for a random set of points within the study area. A simple model is proposed to describe linear or clustered structure within scattered data. A scattered data set of damage to pavement and pipes, recorded after the 1989 Loma Prieta earthquake, is used as an example to demonstrate the analytical techniques. The damage is found to be preferentially located nearer a set of mapped lineaments than randomly scattered damage, suggesting range-front faulting along the base of the Santa Cruz Mountains is related to both the earthquake damage and the mapped lineaments. The damage also exhibit two non-random patterns: a single cluster of damage centered in the town of Los Gatos, California, and a linear alignment of damage along the range front of the Santa Cruz Mountains, California. The linear alignment of damage is strongest between 45? and 50? northwest. This agrees well with the mean trend of the mapped lineaments, measured as 49? northwest.

  1. Recovering from the ShakeOut earthquake

    USGS Publications Warehouse

    Wein, Anne; Johnson, Laurie; Bernknopf, Richard

    2011-01-01

    Recovery from an earthquake like the M7.8 ShakeOut Scenario will be a major endeavor taking many years to complete. Hundreds of Southern California municipalities will be affected; most lack recovery plans or previous disaster experience. To support recovery planning this paper 1) extends the regional ShakeOut Scenario analysis into the recovery period using a recovery model, 2) localizes analyses to identify longer-term impacts and issues in two communities, and 3) considers the regional context of local recovery.Key community insights about preparing for post-disaster recovery include the need to: geographically diversify city procurement; set earthquake mitigation priorities for critical infrastructure (e.g., airport), plan to replace mobile homes with earthquake safety measures, consider post-earthquake redevelopment opportunities ahead of time, and develop post-disaster recovery management and governance structures. This work also showed that communities with minor damages are still sensitive to regional infrastructure damages and their potential long-term impacts on community recovery. This highlights the importance of community and infrastructure resilience strategies as well.

  2. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, A.; Luzio, D.; D'Anna, G.

    2014-09-01

    In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system.

  3. Post-Disaster Damage Assessment using Remotely Sensed Data for Post Disaster Needs Assessments: Pakistan and Nigeria case studies

    NASA Astrophysics Data System (ADS)

    Saito, Keiko; Lemoine, Guido; Dell'Oro, Luca; Pedersen, Wendi; Nunez-Gomez, Ariel; Dalmasso, Simone; Balbo, Simone; Louvrier, Christophe; Caravaggi, Ivano; de Groeve, Tom; Slayback, Dan; Policelli, Frederick; Brakenridge, Bob; Rashid, Kashif; Gad, Sawsan; Arshad, Raja; Wielinga, Doekle; Parvez, Ayaz; Khan, Haris

    2013-04-01

    Since the launch of high-resolution optical satellites in 1999, remote sensing has increasingly been used in the context of post-disaster damage assessments worldwide. In the immediate aftermath of a natural disaster, particularly when extensive geographical areas are affected, it is often difficult to determine the extent and magnitude of disaster impacts. The Global Facility for Disaster Reduction and Recovery (GFDRR) has been leading efforts to utilise remote sensing techniques during disasters, starting with the 2010 Haiti earthquake. However, remote sensing has mostly been applied to extensive flood events in the context of developing Post-Disaster Needs Assessments (PDNAs). Given that worldwide, floods were the most frequent type of natural disasters between 2000 and 2011, affecting 106 million people in 2011 alone (EM-DAT) , there is clearly significant potential for on-going use of remote sensing techniques. Two case studies will be introduced here, the 2010 Pakistan flood and the 2012 Nigeria flood. The typical approach is to map the maximum cumulative inundation extent, then overlay this hazard information with available exposure datasets. The PDNA methodology itself is applied to a maximum of 15 sectors, of which remote sensing is most useful for housing, agriculture, transportation. Environment and irrigation could be included but these sectors were not covered in these events. The maximum cumulative flood extent is determined using remotely sensed data led by in-country agencies together with international organizations. To enhance this process, GFDRR hosted a SPRINT event in 2012 to tailor daily flood maps derived from MODIS imagery by NASA Goddard's Office of Applied Sciences to this purpose. To estimate the (direct) damage, exposure data for each sector is required. Initially global datasets are used, but these may be supplemented by national level datasets to revise damage estimates, depending on availability. Remote sensed estimates of direct

  4. Money matters: Rapid post-earthquake financial decision-making

    USGS Publications Warehouse

    Wald, David J.; Franco, Guillermo

    2016-01-01

    Post-earthquake financial decision-making is a realm beyond that of many people. In the immediate aftermath of a damaging earthquake, billions of dollars of relief, recovery, and insurance funds are in the balance through new financial instruments that allow those with resources to hedge against disasters and those at risk to limit their earthquake losses and receive funds for response and recovery.

  5. Chapter B. The Loma Prieta, California, Earthquake of October 17, 1989 - Highway Systems

    USGS Publications Warehouse

    Yashinsky, Mark

    1998-01-01

    This paper summarizes the impact of the Loma Prieta earthquake on highway systems. City streets, urban freeways, county roads, state routes, and the national highway system were all affected. There was damage to bridges, roads, tunnels, and other highway structures. The most serious damage occurred in the cities of San Francisco and Oakland, 60 miles from the fault rupture. The cost to repair and replace highways damaged by this earthquake was $2 billion. About half of this cost was to replace the Cypress Viaduct, a long, elevated double-deck expressway that had a devastating collapse which resulted in 42 deaths and 108 injuries. The earthquake also resulted in some positive changes for highway systems. Research on bridges and earthquakes began to be funded at a much higher level. Retrofit programs were started to upgrade the seismic performance of the nation's highways. The Loma Prieta earthquake changed earthquake policy and engineering practice for highway departments not only in California, but all over the world.

  6. Amplification of earthquake ground motions in Washington, DC, and implications for hazard assessments in central and eastern North America

    USGS Publications Warehouse

    Pratt, Thomas L.; Horton, J. Wright; Munoz, Jessica; Hough, Susan E.; Chapman, Martin C.; Olgun, C. Guney

    2017-01-01

    The extent of damage in Washington, DC, from the 2011 Mw 5.8 Mineral, VA, earthquake was surprising for an epicenter 130 km away; U.S. Geological Survey “Did-You-Feel-It” reports suggest that Atlantic Coastal Plain and other unconsolidated sediments amplified ground motions in the city. We measure this amplification relative to bedrock sites using earthquake signals recorded on a temporary seismometer array. The spectral ratios show strong amplification in the 0.7 to 4 Hz frequency range for sites on sediments. This range overlaps with resonant frequencies of buildings in the city as inferred from their heights, suggesting amplification at frequencies to which many buildings are vulnerable to damage. Our results emphasize that local amplification can raise moderate ground motions to damaging levels in stable continental regions, where low attenuation extends shaking levels over wide areas and unconsolidated deposits on crystalline metamorphic or igneous bedrock can result in strong contrasts in near-surface material properties.

  7. Factors influencing to earthquake caused economical losses on urban territories

    NASA Astrophysics Data System (ADS)

    Nurtaev, B.; Khakimov, S.

    2005-12-01

    Questions of assessment of earthquake economical losses on urban territories of Uzbekistan, taking into account damage forming factors, which are increqasing or reducing economical losses were discussed in the paper. Buildings and facilities vulnerability factors were classified. From total value (equal to 50) were selected most important ones. Factors ranging by level of impact and weight function in loss assessment were ranged. One group of damage forming factors includs seismic hazard assessment, design, construction and maintenance of building and facilities. Other one is formed by city planning characteristics and includes : density of constructions and population, area of soft soils, existence of liquefaction susceptible soils and etc. To all these factors has been given weight functions and interval values by groups. Methodical recomendations for loss asessment taking into account above mentioned factors were developed. It gives possibility to carry out preventive measures for protection of vulnerable territories, to differentiate cost assessment of each region in relation with territory peculiarity and damage value. Using developed method we have ranged cities by risk level. It has allowed to establish ratings of the general vulnerability of urban territories of cities and on their basis to make optimum decisions, oriented to loss mitigation and increase of safety of population. Besides the technique can be used by insurance companies for estimated zoning of territory, development of effective utilization schema of land resources, rational town-planning, an economic estimation of used territory for supply with information of the various works connected to an estimation of seismic hazard. Further improvement of technique of establishment of rating of cities by level of damage from earthquakes will allow to increase quality of construction, rationality of accommodation of buildings, will be an economic stimulator for increasing of seismic resistance of

  8. Feasibility study of earthquake early warning (EEW) in Hawaii

    USGS Publications Warehouse

    Thelen, Weston A.; Hotovec-Ellis, Alicia J.; Bodin, Paul

    2016-09-30

    The effects of earthquake shaking on the population and infrastructure across the State of Hawaii could be catastrophic, and the high seismic hazard in the region emphasizes the likelihood of such an event. Earthquake early warning (EEW) has the potential to give several seconds of warning before strong shaking starts, and thus reduce loss of life and damage to property. The two approaches to EEW are (1) a network approach (such as ShakeAlert or ElarmS) where the regional seismic network is used to detect the earthquake and distribute the alarm and (2) a local approach where a critical facility has a single seismometer (or small array) and a warning system on the premises.The network approach, also referred to here as ShakeAlert or ElarmS, uses the closest stations within a regional seismic network to detect and characterize an earthquake. Most parameters used for a network approach require observations on multiple stations (typically 3 or 4), which slows down the alarm time slightly, but the alarms are generally more reliable than with single-station EEW approaches. The network approach also benefits from having stations closer to the source of any potentially damaging earthquake, so that alarms can be sent ahead to anyone who subscribes to receive the notification. Thus, a fully implemented ShakeAlert system can provide seconds of warning for both critical facilities and general populations ahead of damaging earthquake shaking.The cost to implement and maintain a fully operational ShakeAlert system is high compared to a local approach or single-station solution, but the benefits of a ShakeAlert system would be felt statewide—the warning times for strong shaking are potentially longer for most sources at most locations.The local approach, referred to herein as “single station,” uses measurements from a single seismometer to assess whether strong earthquake shaking can be expected. Because of the reliance on a single station, false alarms are more common than

  9. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  10. Near-Field Deformation Associated with the South Napa Earthquake (M 6.0) Using Differential Airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Glennie, C. L.; Brooks, B. A.; Hauser, D. L.; Ericksen, T.; Boatwright, J.; Rosinski, A.; Dawson, T. E.; Mccrink, T. P.; Mardock, D. K.; Hoirup, D. F., Jr.; Bray, J.

    2014-12-01

    Pre-earthquake airborne LiDAR coverage exists for the area impacted by the M 6.0 South Napa earthquake. The Napa watershed data set was acquired in 2003, and data sets were acquired in other portions of the impacted area in 2007, 2010 and 2014. The pre-earthquake data are being assessed and are of variable quality and point density. Following the earthquake, a coalition was formed to enable rapid acquisition of post-earthquake LiDAR. Coordination of this coalition took place through the California Earthquake Clearinghouse; consequently, a commercial contract was organized by Department of Water Resources that allowed for the main fault rupture and damaged Browns Valley area to be covered 16 days after the earthquake at a density of 20 points per square meter over a 20 square kilometer area. Along with the airborne LiDAR, aerial imagery was acquired and will be processed to form an orthomosaic using the LiDAR-derived DEM. The 'Phase I' airborne data were acquired using an Optech Orion M300 scanner, an Applanix 200 GPS-IMU, and a DiMac ultralight medium format camera by Towill. These new data, once delivered, will be differenced against the pre-earthquake data sets using a newly developed algorithm for point cloud matching, which is improved over prior methods by accounting for scan geometry error sources. Proposed additional 'Phase II' coverage would allow repeat-pass, post-earthquake coverage of the same area of interest as in Phase I, as well as an addition of up to 4,150 square kilometers that would potentially allow for differential LiDAR assessment of levee and bridge impacts at a greater distance from the earthquake source. Levee damage was reported up to 30 km away from the epicenter, and proposed LiDAR coverage would extend up to 50 km away and cover important critical lifeline infrastructure in the western Sacramento River delta, as well as providing full post-earthquake repeat-pass coverage of the Napa watershed to study transient deformation.

  11. Louisiana Deepwater Horizon Natural Resource Damage Assessment (NRDA)

    Science.gov Websites

    Contact Us How We Restore Planning Damage Assessment Projects Near You Strategic Frameworks Monitoring and Natural Resource Damage Assessment (NRDA) Public Meeting Louisiana Deepwater Horizon Natural Resource Damage Assessment (NRDA) Public Meeting share Posted on November 15, 2010 | Assessment and Early

  12. 33 CFR 222.4 - Reporting earthquake effects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... This indicates the possibility that earthquake induced loads may not have been adequately considered in... misalignment of hydraulic control structures or gates. Induced dynamic loading on earth dams may result in loss... area where the earthquake is felt but causes no or insignificant damage (Modified Mercalli Intensity VI...

  13. 33 CFR 222.4 - Reporting earthquake effects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... This indicates the possibility that earthquake induced loads may not have been adequately considered in... misalignment of hydraulic control structures or gates. Induced dynamic loading on earth dams may result in loss... area where the earthquake is felt but causes no or insignificant damage (Modified Mercalli Intensity VI...

  14. Uncovering the 2010 Haiti earthquake death toll

    NASA Astrophysics Data System (ADS)

    Daniell, J. E.; Khazai, B.; Wenzel, F.

    2013-05-01

    Casualties are estimated for the 12 January 2010 earthquake in Haiti using various reports calibrated by observed building damage states from satellite imagery and reconnaissance reports on the ground. By investigating various damage reports, casualty estimates and burial figures, for a one year period from 12 January 2010 until 12 January 2011, there is also strong evidence that the official government figures of 316 000 total dead and missing, reported to have been caused by the earthquake, are significantly overestimated. The authors have examined damage and casualties report to arrive at their estimation that the median death toll is less than half of this value (±137 000). The authors show through a study of historical earthquake death tolls, that overestimates of earthquake death tolls occur in many cases, and is not unique to Haiti. As death toll is one of the key elements for determining the amount of aid and reconstruction funds that will be mobilized, scientific means to estimate death tolls should be applied. Studies of international aid in recent natural disasters reveal that large distributions of aid which do not match the respective needs may cause oversupply of help, aggravate corruption and social disruption rather than reduce them, and lead to distrust within the donor community.

  15. Missing great earthquakes

    USGS Publications Warehouse

    Hough, Susan E.

    2013-01-01

    The occurrence of three earthquakes with moment magnitude (Mw) greater than 8.8 and six earthquakes larger than Mw 8.5, since 2004, has raised interest in the long-term global rate of great earthquakes. Past studies have focused on the analysis of earthquakes since 1900, which roughly marks the start of the instrumental era in seismology. Before this time, the catalog is less complete and magnitude estimates are more uncertain. Yet substantial information is available for earthquakes before 1900, and the catalog of historical events is being used increasingly to improve hazard assessment. Here I consider the catalog of historical earthquakes and show that approximately half of all Mw ≥ 8.5 earthquakes are likely missing or underestimated in the 19th century. I further present a reconsideration of the felt effects of the 8 February 1843, Lesser Antilles earthquake, including a first thorough assessment of felt reports from the United States, and show it is an example of a known historical earthquake that was significantly larger than initially estimated. The results suggest that incorporation of best available catalogs of historical earthquakes will likely lead to a significant underestimation of seismic hazard and/or the maximum possible magnitude in many regions, including parts of the Caribbean.

  16. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  17. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    USGS Publications Warehouse

    McNamara, Daniel E.; Yeck, William; Barnhart, William D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, Amod; Hough, S.E.; Benz, Harley M.; Earle, Paul

    2017-01-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard.Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a ~ 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10–15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  18. Seismicity in the source areas of the 1896 and 1933 Sanriku earthquakes and implications for large near-trench earthquake faults

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Nakamura, Yasuyuki; Fujie, Gou; Kodaira, Shuichi; Kaiho, Yuka; Yamamoto, Yojiro; Miura, Seiichi

    2018-03-01

    In the northern part of the Japan Trench, the 1933 Showa-Sanriku earthquake (Mw 8.4), an outer-trench, normal-faulting earthquake, occurred 37 yr after the 1896 Meiji-Sanriku tsunami earthquake (Mw 8.0), a shallow, near-trench, plate-interface rupture. Tsunamis generated by both earthquakes caused severe damage along the Sanriku coast. Precise locations of earthquakes in the source areas of the 1896 and 1933 earthquakes have not previously been obtained because they occurred at considerable distances from the coast in deep water beyond the maximum operational depth of conventional ocean bottom seismographs (OBSs). In 2015, we incorporated OBSs designed for operation in deep water (ultradeep OBSs) in an OBS array during two months of seismic observations in the source areas of the 1896 and 1933 Sanriku earthquakes to investigate the relationship of seismicity there to outer-rise normal-faulting earthquakes and near-trench tsunami earthquakes. Our analysis showed that seismicity during our observation period occurred along three roughly linear trench-parallel trends in the outer-trench region. Seismic activity along these trends likely corresponds to aftershocks of the 1933 Showa-Sanriku earthquake and the Mw 7.4 normal-faulting earthquake that occurred 40 min after the 2011 Tohoku-Oki earthquake. Furthermore, changes of the clarity of reflections from the oceanic Moho on seismic reflection profiles and low-velocity anomalies within the oceanic mantle were observed near the linear trends of the seismicity. The focal mechanisms we determined indicate that an extensional stress regime extends to about 40 km depth, below which the stress regime is compressional. These observations suggest that rupture during the 1933 Showa-Sanriku earthquake did not extend to the base of the oceanic lithosphere and that compound rupture of multiple or segmented faults is a more plausible explanation for that earthquake. The source area of the 1896 Meiji-Sanriku tsunami earthquake is

  19. Multi-source and multi-angle remote sensing image data collection, application and sharing of Beichuan National Earthquake Ruins Museum

    NASA Astrophysics Data System (ADS)

    Lin, Yueguan; Wang, Wei; Wen, Qi; Huang, He; Lin, Jingli; Zhang, Wei

    2015-12-01

    Ms8.0 Wenchuan earthquake that occurred on May 12, 2008 brought huge casualties and property losses to the Chinese people, and Beichuan County was destroyed in the earthquake. In order to leave a site for commemorate of the people, and for science propaganda and research of earthquake science, Beichuan National Earthquake Ruins Museum has been built on the ruins of Beichuan county. Based on the demand for digital preservation of the earthquake ruins park and collection of earthquake damage assessment of research and data needs, we set up a data set of Beichuan National Earthquake Ruins Museum, including satellite remote sensing image, airborne remote sensing image, ground photogrammetry data and ground acquisition data. At the same time, in order to make a better service for earthquake science research, we design the sharing ideas and schemes for this scientific data set.

  20. Protecting your family from earthquakes: The seven steps to earthquake safety

    USGS Publications Warehouse

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  1. Hazus® estimated annualized earthquake losses for the United States

    USGS Publications Warehouse

    Jaiswal, Kishor; Bausch, Doug; Rozelle, Jesse; Holub, John; McGowan, Sean

    2017-01-01

    Large earthquakes can cause social and economic disruption that can be unprecedented to any given community, and the full recovery from these impacts may or may not always be achievable. In the United States (U.S.), the 1994 M6.7 Northridge earthquake in California remains the third costliest disaster in U.S. history; and it was one of the most expensive disasters for the federal government. Internationally, earthquakes in the last decade alone have claimed tens of thousands of lives and caused hundreds of billions of dollars of economic impact throughout the globe (~90 billion U.S. dollars (USD) from 2008 M7.9 Wenchuan China, ~20 billion USD from 2010 M8.8 Maule earthquake in Chile, ~220 billion USD from 2011 M9.0 Tohoku Japan earthquake, ~25 billion USD from 2011 M6.3 Christchurch New Zealand, and ~22 billion USD from 2016 M7.0 Kumamoto Japan). Recent earthquakes show a pattern of steadily increasing damages and losses that are primarily due to three key factors: (1) significant growth in earthquake-prone urban areas, (2) vulnerability of the older building stock, including poorly engineered non-ductile concrete buildings, and (3) an increased interdependency in terms of supply and demand for the businesses that operate among different parts of the world. In the United States, earthquake risk continues to grow with increased exposure of population and development even though the earthquake hazard has remained relatively stable except for the regions of induced seismic activity. Understanding the seismic hazard requires studying earthquake characteristics and locales in which they occur, while understanding the risk requires an assessment of the potential damage from earthquake shaking to the built environment and to the welfare of people—especially in high-risk areas. Estimating the varying degree of earthquake risk throughout the United States is critical for informed decision-making on mitigation policies, priorities, strategies, and funding levels in the

  2. The incidence of post-traumatic stress disorder among survivors after earthquakes:a systematic review and meta-analysis.

    PubMed

    Dai, Wenjie; Chen, Long; Lai, Zhiwei; Li, Yan; Wang, Jieru; Liu, Aizhong

    2016-06-07

    Post-traumatic stress disorder (PTSD) is a common psychological disorder caused by unusual threats or catastrophic events. Little is known about the combined incidence of PTSD after earthquakes. This study aimed at evaluating the combined incidence of PTSD among survivors after earthquakes using systematic review and meta-analysis. The electronic databases of PubMed, Embase, Web of Science and PsycARTICLES were searched for relevant articles in this study. Loney criteria were used to assess the quality of eligible articles. The combined incidence of PTSD was estimated by using the Freeman-Tukey double arcsine transformation method. Subgroup analyses were conducted using the following variables: the time of PTSD assessment, gender, educational level, marital status, damage to one's house, bereavement, injury of body and witnessing death. Forty-six eligible articles containing 76,101 earthquake survivors met the inclusion criteria, of which 17,706 were diagnosed as having PTSD. Using a random effects model, the combined incidence of PTSD after earthquakes was 23.66 %. Moreover, the combined incidence of PTSD among survivors who were diagnosed at not more than 9 months after earthquake was 28.76 %, while for survivors who were diagnosed at over nine months after earthquake the combined incidence was 19.48 %. A high degree of heterogeneity (I(2) = 99.5 %, p<0.001) was observed in the results, with incidence ranging from 1.20 to 82.64 %. The subgroup analyses showed that the incidence of PTSD after earthquake varied significantly across studies in relation to the time of PTSD assessment, gender, educational level, damage to one's house, bereavement, injury of body and witnessing death. However, stratified analyses could not entirely explain the heterogeneity in the results. Given the high heterogeneity observed in this study, future studies should aim at exploring more possible risk factors for PTSD after earthquakes, especially genetic factors. In spite of

  3. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  4. Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Pananont, P.; Herman, M. W.; Pornsopin, P.; Furlong, K. P.; Habangkaem, S.; Waldhauser, F.; Wongwai, W.; Limpisawad, S.; Warnitchai, P.; Kosuwan, S.; Wechbunthung, B.

    2017-08-01

    On 5 May 2014, a Mw 6.2 strike-slip earthquake occurred in the Mae Lao region of Chiang Rai province in Thailand. This earthquake took place in a region of known faults and caused substantial damage and injuries, although the region had been previously identified as having a relatively low earthquake hazard. Detailed field reconnaissance and deployment of a dense, temporary, network of broadband seismometers allowed details of the damage and its relationship to seismicity to be analyzed. The aftershock sequence associated with this main shock occurs on two well-defined trends, reflecting the two potential fault planes in earthquake mechanisms for the main shock and the majority of the aftershocks. The damage area was relatively large for an event of this magnitude, but building damage was largely limited to the primary rupture region, while liquefaction and other ground failure are spatially associated with the rupture area and along regional rivers. Stress modeling, combined with the time series and pattern of aftershock activity, leads us to propose that slip near the northern termination of the main shock rupture continued slightly onto a conjugate fault, helping to trigger the distinct pattern of two discrete, conjugate trends of aftershock activity that mirror the kinematics of the main shock fault mechanism.

  5. What are the determinants of post-traumatic stress disorder: age, gender, ethnicity or other? Evidence from 2008 Wenchuan earthquake.

    PubMed

    Kun, P; Tong, X; Liu, Y; Pei, X; Luo, H

    2013-07-01

    To estimate the prevalence of post-traumatic stress disorder (PTSD) and assess determinants related to PTSD symptoms among adult earthquake survivors after the 2008 Wenchuan earthquake in China. Cross-sectional multicluster sample surveys with data collected from four counties. Surveys were conducted separately in four counties in Sichuan Province, with a total of 2004 respondents. Beichuan County and Dujiangyan City were damaged more severely than Yaan County and Langzhong County during the earthquake. In total, 1890 households were represented, with a mean of 2.2 respondents per household. Data were collected using structured interviews, and the Harvard Trauma Questionnaire and Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria were used to diagnose PTSD. The prevalence rates of suspected PTSD were 47.3% (n = 436) in heavily damaged areas and 10.4% (n = 93) in moderately damaged areas. The prevalence rates of PTSD symptoms among elderly, middle aged and young adults were 55.8%, 50.2% and 28.6% (P = 0.001), respectively, in heavily damaged areas. Older age, female gender, unmarried/divorced/widowed, ethnic minority, death of family member, no household income and damaged household were independent risk factors for PTSD symptoms in heavily damaged areas. Interventions designed to reduce PTSD among populations affected by the 2008 earthquake should focus on people without household incomes, those with damaged households and those who experienced the death of a family member. Effective, sustainable and culturally sensitive psychosocial interventions and mental health services are required, and attention should be directed to survivors who experienced the death of a family member, women and older adults following the devastating natural disaster. Governments should support income-generating activities and improve living conditions. Trained field personnel can assist with PTSD assessments and referrals, and existing rural healthcare

  6. BAREPP: Earthquake preparedness for the San Francisco Bay area

    USGS Publications Warehouse

    1986-01-01

    The threat of major and damaging earthquakes in California is a fact. How people respond to that threat is a concern shared by many local, state, federal, volunteer and private sector organizations. The Bay Area Regional Earthquake Preparedness Project (BAREPP) promotes comprehensive earthquake preparedness actions by these organizations and provides technical and planning assistance for a variety of programs.

  7. NASA Applied Sciences Disasters Program Support for the September 2017 Mexico Earthquakes

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Kirschbaum, D.; Torres-Perez, J. L.; Yun, S. H.; Owen, S. E.; Hua, H.; Fielding, E. J.; Liang, C.; Bekaert, D. P.; Osmanoglu, B.; Amini, R.; Green, D. S.; Murray, J. J.; Stough, T.; Struve, J. C.; Seepersad, J.; Thompson, V.

    2017-12-01

    The 8 September M 8.1 Tehuantepec and 19 September M 7.1 Puebla earthquakes were among the largest earthquakes recorded in Mexico. These two events caused widespread damage, affecting several million people and causing numerous casualties. A team of event coordinators in the NASA Applied Sciences Program activated soon after these devastating earthquakes in order to support decision makers in Mexico, using NASA modeling and international remote sensing capabilities to generate decision support products to aid in response and recovery. The NASA Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. For these two events, the Disasters Program worked with Mexico's space agency (Agencia Espacial Mexico, AEM) and the National Center for Prevention of Disasters (Centro Nacional de Prevención de Desastres, CENAPRED) to generate products to support response, decision-making, and recovery. Products were also provided to academic partners, technical institutions, and field responders to support response. In addition, the Program partnered with the US Geological Survey (USGS), Office of Foreign Disaster Assistance (OFDA), and other partners in order to provide information to federal and domestic agencies that were supporting event response. Leveraging the expertise of investigators at NASA Centers, products such as landslide susceptibility maps, precipitation models, and radar based damage assessments and surface deformation maps were generated and used by AEM, CENAPRED, and others during the event. These were used by AEM in collaboration with other government agencies in Mexico to make appropriate decisions for mapping damage, rescue and recovery, and informing the population regarding areas prone to potential risk. We will provide an overview of the response activities and data products generated in support of the earthquake response, partnerships with

  8. Earthquake education in California

    USGS Publications Warehouse

    MacCabe, M. P.

    1980-01-01

    In a survey of community response to the earthquake threat in southern California, Ralph Turner and his colleagues in the Department of Sociology at the University of California, Los Angeles, found that the public very definitely wants to be educated about the kinds of problems and hazards they can expect during and after a damaging earthquake; and they also want to know how they can prepare themselves to minimize their vulnerability. Decisionmakers, too, are recognizing this new wave of public concern. 

  9. Global observation of Omori-law decay in the rate of triggered earthquakes

    NASA Astrophysics Data System (ADS)

    Parsons, T.

    2001-12-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 events in El Salvador. In this study, earthquakes with M greater than 7.0 from the Harvard CMT catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near the main shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, triggered earthquakes obey an Omori-law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main-shock centroid. Earthquakes triggered by smaller quakes (foreshocks) also obey Omori's law, which is one of the few time-predictable patterns evident in the global occurrence of earthquakes. These observations indicate that earthquake probability calculations which include interactions from previous shocks should incorporate a transient Omori-law decay with time. In addition, a very simple model using the observed global rate change with time and spatial distribution of triggered earthquakes can be applied to immediately assess the likelihood of triggered earthquakes following large events, and can be in place until more sophisticated analyses are conducted.

  10. Study of Earthquake Disaster Prediction System of Langfang city Based on GIS

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Zhang, Dian; Li, Pan; Zhang, YunHui; Zhang, RuoFei

    2017-07-01

    In this paper, according to the status of China’s need to improve the ability of earthquake disaster prevention, this paper puts forward the implementation plan of earthquake disaster prediction system of Langfang city based on GIS. Based on the GIS spatial database, coordinate transformation technology, GIS spatial analysis technology and PHP development technology, the seismic damage factor algorithm is used to predict the damage of the city under different intensity earthquake disaster conditions. The earthquake disaster prediction system of Langfang city is based on the B / S system architecture. Degree and spatial distribution and two-dimensional visualization display, comprehensive query analysis and efficient auxiliary decision-making function to determine the weak earthquake in the city and rapid warning. The system has realized the transformation of the city’s earthquake disaster reduction work from static planning to dynamic management, and improved the city’s earthquake and disaster prevention capability.

  11. Distributed cable sensors with memory feature for post-disaster damage assessment

    NASA Astrophysics Data System (ADS)

    Chen, Genda; McDaniel, Ryan D.; Pommerenke, David J.; Sun, Shishuang

    2005-05-01

    A new design of distributed crack sensors is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is mainly focused on the performance of cable sensors under dynamic loading, particularly their ability to memorize the crack history of an RC member. This unique memory feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads and they are visually undetectable. Factors affecting the onset of the memory feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors were discussed. The sensors were proven to be fatigue resistant from the shake table tests of RC columns. They continued to show useful signal after the columns can no longer support additional loads.

  12. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  13. The 1868 Hayward Earthquake Alliance: A Case Study - Using an Earthquake Anniversary to Promote Earthquake Preparedness

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Garcia, S.; Aagaard, B. T.; Boatwright, J. J.; Dawson, T.; Hellweg, M.; Knudsen, K. L.; Perkins, J.; Schwartz, D. P.; Stoffer, P. W.; Zoback, M.

    2008-12-01

    Last October 21st marked the 140th anniversary of the M6.8 1868 Hayward Earthquake, the last damaging earthquake on the southern Hayward Fault. This anniversary was used to help publicize the seismic hazards associated with the fault because: (1) the past five such earthquakes on the Hayward Fault occurred about 140 years apart on average, and (2) the Hayward-Rodgers Creek Fault system is the most likely (with a 31 percent probability) fault in the Bay Area to produce a M6.7 or greater earthquake in the next 30 years. To promote earthquake awareness and preparedness, over 140 public and private agencies and companies and many individual joined the public-private nonprofit 1868 Hayward Earthquake Alliance (1868alliance.org). The Alliance sponsored many activities including a public commemoration at Mission San Jose in Fremont, which survived the 1868 earthquake. This event was followed by an earthquake drill at Bay Area schools involving more than 70,000 students. The anniversary prompted the Silver Sentinel, an earthquake response exercise based on the scenario of an earthquake on the Hayward Fault conducted by Bay Area County Offices of Emergency Services. 60 other public and private agencies also participated in this exercise. The California Seismic Safety Commission and KPIX (CBS affiliate) produced professional videos designed forschool classrooms promoting Drop, Cover, and Hold On. Starting in October 2007, the Alliance and the U.S. Geological Survey held a sequence of press conferences to announce the release of new research on the Hayward Fault as well as new loss estimates for a Hayward Fault earthquake. These included: (1) a ShakeMap for the 1868 Hayward earthquake, (2) a report by the U. S. Bureau of Labor Statistics forecasting the number of employees, employers, and wages predicted to be within areas most strongly shaken by a Hayward Fault earthquake, (3) new estimates of the losses associated with a Hayward Fault earthquake, (4) new ground motion

  14. Considering potential seismic sources in earthquake hazard assessment for Northern Iran

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila

    2014-07-01

    Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.

  15. Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, Tom

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ∼39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ∼7–11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  16. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    NASA Astrophysics Data System (ADS)

    Parsons, Tom

    2002-09-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ˜39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ˜7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  17. Probabilistic Tsunami Hazard Assessment along Nankai Trough (2) a comprehensive assessment including a variety of earthquake source areas other than those that the Earthquake Research Committee, Japanese government (2013) showed

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Morikawa, N.; Kawai, S.; Ohsumi, T.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.

    2016-12-01

    For the forthcoming Nankai earthquake with M8 to M9 class, the Earthquake Research Committee(ERC)/Headquarters for Earthquake Research Promotion, Japanese government (2013) showed 15 examples of earthquake source areas (ESAs) as possible combinations of 18 sub-regions (6 segments along trough and 3 segments normal to trough) and assessed the occurrence probability within the next 30 years (from Jan. 1, 2013) was 60% to 70%. Hirata et al.(2015, AGU) presented Probabilistic Tsunami Hazard Assessment (PTHA) along Nankai Trough in the case where diversity of the next event's ESA is modeled by only the 15 ESAs. In this study, we newly set 70 ESAs in addition of the previous 15 ESAs so that total of 85 ESAs are considered. By producing tens of faults models, with various slip distribution patterns, for each of 85 ESAs, we obtain 2500 fault models in addition of previous 1400 fault models so that total of 3900 fault models are considered to model the diversity of the next Nankai earthquake rupture (Toyama et al.,2015, JpGU). For PTHA, the occurrence probability of the next Nankai earthquake is distributed to possible 3900 fault models in the viewpoint of similarity to the 15 ESAs' extents (Abe et al.,2015, JpGU). A major concept of the occurrence probability distribution is; (i) earthquakes rupturing on any of 15 ESAs that ERC(2013) showed most likely occur, (ii) earthquakes rupturing on any of ESAs whose along-trench extent is the same as any of 15 ESAs but trough-normal extent differs from it second likely occur, (iii) earthquakes rupturing on any of ESAs whose both of along-trough and trough-normal extents differ from any of 15 ESAs rarely occur. Procedures for tsunami simulation and probabilistic tsunami hazard synthesis are the same as Hirata et al (2015). A tsunami hazard map, synthesized under an assumption that the Nankai earthquakes can be modeled as a renewal process based on BPT distribution with a mean recurrence interval of 88.2 years (ERC, 2013) and an

  18. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Major Earthquakes of the Past Decade (2000-2010): A Comparative Review of Various Aspects of Management

    PubMed Central

    Kalantar Motamedi, Mohammad Hosein; Sagafinia, Masoud; Ebrahimi, Ali; Shams, Ehsan; Kalantar Motamedi, Mostafa

    2012-01-01

    Objectives: This article sought to review and compare data of major earthquakes of the past decade and their aftermath in order to compare the magnitude, death toll, type of injuries, management procedures, extent of destruction and effectiveness of relief efforts. Materials and Methods: A retrospective study of the various aspects of management and aftermath of 5 major earthquakes of the past decade (2000–2010) was undertaken. This included earthquakes occurring in Bam Iran, Sichuan China, Port-au-Prince Haiti, Kashmir Pakistan and Ica Peru. A literature search was done via computer of published articles (indexed in Pubmed). The issues assessed included: 1)Local magnitude,2)Type of building structure 3)Time of the earthquake (day/time/season), 4)Time to rescue, 5)Triage, Transfer, and Treatment 6) Distribution of casualties (dead/ injured), 7)Degree of city damage, 8)Degree of damage to health facilities, 9)Field hospital availability, 10)International aid, 11)Air transfer, 12) Telecommunication systems availability, 13) PTSD prevalence, 14) Most common injury and 15) Most common disease outbreak. Results: The Bam earthquake had the lowest (6.6 Richter’s) and the Sichuan earthquake had the greatest magnitude (8.0 Richter’s). Mortality in Haiti was 212,000 and it was the deadliest earthquake of the past decade. Collapse of heavy clay roofing structures was a major cause of death in Iran and Pakistan. Earthquakes occurring at night and nonworking days carried a high death toll. The time to rescue and treat was the lengthiest in Haiti (possibly contributing to the death to injured ratio). However, the worst dead to injured ratios were in Bam (51%) and in Pakistan (47%); the best ratio was in China (15%). Iran and Pakistan suffered the highest percentage of damage to the health facilities (90%). Field hospital availability, international aid and air transfer were important issues. Telecommunication systems were best in China and worst in Pakistan. PTSD

  20. Earthquake response of heavily damaged historical masonry mosques after restoration

    NASA Astrophysics Data System (ADS)

    Altunışık, Ahmet Can; Fuat Genç, Ali

    2017-10-01

    Restoration works have been accelerated substantially in Turkey in the last decade. Many historical buildings, mosques, minaret, bridges, towers and structures have been restored. With these restorations an important issue arises, namely how restoration work affects the structure. For this reason, we aimed to investigate the restoration effect on the earthquake response of a historical masonry mosque considering the openings on the masonry dome. For this purpose, we used the Hüsrev Pasha Mosque, which is located in the Ortakapı district in the old city of Van, Turkey. The region of Van is in an active seismic zone; therefore, earthquake analyses were performed in this study. Firstly a finite element model of the mosque was constructed considering the restoration drawings and 16 window openings on the dome. Then model was constructed with eight window openings. Structural analyses were performed under dead load and earthquake load, and the mode superposition method was used in analyses. Maximum displacements, maximum-minimum principal stresses and shear stresses are given with contours diagrams. The results are analyzed according to Turkish Earthquake Code (TEC, 2007) and compared between 8 and 16 window openings cases. The results show that reduction of the window openings affected the structural behavior of the mosque positively.

  1. Distribution of intensity for the Westmorland, California, earthquake of April 26, 1981

    USGS Publications Warehouse

    Barnhard, L.M.; Thenhaus, P.C.; Algermissen, Sylvester Theodore

    1982-01-01

    The maximum Modified Mercalli intensity of the April 26, 1981 earthquake located 5 km northwest of Westmorland, California is VII. Twelve buildings in Westmorland were severely damaged with an additional 30 sustaining minor damage. Two brick parapets fell in Calipatria, 14 km northeast of Westmorland and 10 km from the earthquake epicenter. Significant damage in rural areas was restricted to unreinforced, concrete-lined irrigation canals. Liquefaction effects and ground slumping were widespread in rural areas and were the primary causes of road cracking. Preliminary local government estimates of property loss range from one to three million dollars (Imperial Valley Press, 1981). The earthquake was felt over an area of approximately 160,000 km2; about the same felt area of the October 15, 1979 (Reagor and others, 1980), and May 18, 1940 (Ulrich, 1941) Imperial Valley earthquakes.

  2. Rapid estimation of the economic consequences of global earthquakes

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.

    2011-01-01

    The U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, operational since mid 2007, rapidly estimates the most affected locations and the population exposure at different levels of shaking intensities. The PAGER system has significantly improved the way aid agencies determine the scale of response needed in the aftermath of an earthquake. For example, the PAGER exposure estimates provided reasonably accurate assessments of the scale and spatial extent of the damage and losses following the 2008 Wenchuan earthquake (Mw 7.9) in China, the 2009 L'Aquila earthquake (Mw 6.3) in Italy, the 2010 Haiti earthquake (Mw 7.0), and the 2010 Chile earthquake (Mw 8.8). Nevertheless, some engineering and seismological expertise is often required to digest PAGER's exposure estimate and turn it into estimated fatalities and economic losses. This has been the focus of PAGER's most recent development. With the new loss-estimation component of the PAGER system it is now possible to produce rapid estimation of expected fatalities for global earthquakes (Jaiswal and others, 2009). While an estimate of earthquake fatalities is a fundamental indicator of potential human consequences in developing countries (for example, Iran, Pakistan, Haiti, Peru, and many others), economic consequences often drive the responses in much of the developed world (for example, New Zealand, the United States, and Chile), where the improved structural behavior of seismically resistant buildings significantly reduces earthquake casualties. Rapid availability of estimates of both fatalities and economic losses can be a valuable resource. The total time needed to determine the actual scope of an earthquake disaster and to respond effectively varies from country to country. It can take days or sometimes weeks before the damage and consequences of a disaster can be understood both socially and economically. The objective of the U.S. Geological Survey's PAGER system is

  3. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    Earthquakes have claimed approximately 8 million lives over the last 2,000 years (Dunbar, Lockridge and others, 1992) and fatality rates are likely to continue to rise with increased population and urbanizations of global settlements especially in developing countries. More than 75% of earthquake-related human casualties are caused by the collapse of buildings or structures (Coburn and Spence, 2002). It is disheartening to note that large fractions of the world's population still reside in informal, poorly-constructed & non-engineered dwellings which have high susceptibility to collapse during earthquakes. Moreover, with increasing urbanization half of world's population now lives in urban areas (United Nations, 2001), and half of these urban centers are located in earthquake-prone regions (Bilham, 2004). The poor performance of most building stocks during earthquakes remains a primary societal concern. However, despite this dark history and bleaker future trends, there are no comprehensive global building inventories of sufficient quality and coverage to adequately address and characterize future earthquake losses. Such an inventory is vital both for earthquake loss mitigation and for earthquake disaster response purposes. While the latter purpose is the motivation of this work, we hope that the global building inventory database described herein will find widespread use for other mitigation efforts as well. For a real-time earthquake impact alert system, such as U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER), (Wald, Earle and others, 2006), we seek to rapidly evaluate potential casualties associated with earthquake ground shaking for any region of the world. The casualty estimation is based primarily on (1) rapid estimation of the ground shaking hazard, (2) aggregating the population exposure within different building types, and (3) estimating the casualties from the collapse of vulnerable buildings. Thus, the

  4. Overview of the critical disaster management challenges faced during Van 2011 earthquakes.

    PubMed

    Tolon, Mert; Yazgan, Ufuk; Ural, Derin N; Goss, Kay C

    2014-01-01

    On October 23, 2011, a M7.2 earthquake caused damage in a widespread area in the Van province located in eastern Turkey. This strong earthquake was followed by a M5.7 earthquake on November 9, 2011. This sequence of damaging earthquakes led to 644 fatalities. The management during and after these earthquake disaster imposed many critical challenges. In this article, an overview of these challenges is presented based on the observations by the authors in the aftermath of this disaster. This article presents the characteristics of 2011 Van earthquakes. Afterward, the key information related to the four main phases (ie, preparedness, mitigation, response, and recovery) of the disaster in Van is presented. The potential strategies that can be taken to improve the disaster management practice are identified, and a set of recommendations are proposed to improve the existing situation.

  5. Earthquakes, September-October, 1979

    USGS Publications Warehouse

    Person, W.J.

    1980-01-01

    In the United States, California experienced the strongest earthquake in that State since 1971. The quake, a M=6.8, occurred on October 15, in Baja California, Mexico, near the California border and caused injuries and damage

  6. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Bhat, Harsha S.

    2018-05-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  7. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, M. Y.; Bhat, H. S.

    2017-12-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  8. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  9. A methodology for post-mainshock probabilistic assessment of building collapse risk

    USGS Publications Warehouse

    Luco, N.; Gerstenberger, M.C.; Uma, S.R.; Ryu, H.; Liel, A.B.; Raghunandan, M.

    2011-01-01

    This paper presents a methodology for post-earthquake probabilistic risk (of damage) assessment that we propose in order to develop a computational tool for automatic or semi-automatic assessment. The methodology utilizes the same so-called risk integral which can be used for pre-earthquake probabilistic assessment. The risk integral couples (i) ground motion hazard information for the location of a structure of interest with (ii) knowledge of the fragility of the structure with respect to potential ground motion intensities. In the proposed post-mainshock methodology, the ground motion hazard component of the risk integral is adapted to account for aftershocks which are deliberately excluded from typical pre-earthquake hazard assessments and which decrease in frequency with the time elapsed since the mainshock. Correspondingly, the structural fragility component is adapted to account for any damage caused by the mainshock, as well as any uncertainty in the extent of this damage. The result of the adapted risk integral is a fully-probabilistic quantification of post-mainshock seismic risk that can inform emergency response mobilization, inspection prioritization, and re-occupancy decisions.

  10. POST Earthquake Debris Management — AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  11. Cross-Layer Damage Assessment for Cyber Situational Awareness

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Jia, Xiaoqi; Zhang, Shengzhi; Xiong, Xi; Jhi, Yoon-Chan; Bai, Kun; Li, Jason

    Damage assessment plays a very important role in securing enterprise networks and systems. Gaining good awareness about the effects and impact of cyber attack actions would enable security officers to make the right cyber defense decisions and take the right cyber defense actions. A good number of damage assessment techniques have been proposed in the literature, but they typically focus on a single abstraction level (of the software system in concern). As a result, existing damage assessment techniques and tools are still very limited in satisfying the needs of comprehensive damage assessment which should not result in any “blind spots”.

  12. Introduction to the special issue on the 2004 Parkfield earthquake and the Parkfield earthquake prediction experiment

    USGS Publications Warehouse

    Harris, R.A.; Arrowsmith, J.R.

    2006-01-01

    The 28 September 2004 M 6.0 Parkfield earthquake, a long-anticipated event on the San Andreas fault, is the world's best recorded earthquake to date, with state-of-the-art data obtained from geologic, geodetic, seismic, magnetic, and electrical field networks. This has allowed the preearthquake and postearthquake states of the San Andreas fault in this region to be analyzed in detail. Analyses of these data provide views into the San Andreas fault that show a complex geologic history, fault geometry, rheology, and response of the nearby region to the earthquake-induced ground movement. Although aspects of San Andreas fault zone behavior in the Parkfield region can be modeled simply over geological time frames, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake indicate that predicting the fine details of future earthquakes is still a challenge. Instead of a deterministic approach, forecasting future damaging behavior, such as that caused by strong ground motions, will likely continue to require probabilistic methods. However, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake have provided ample data to understand most of what did occur in 2004, culminating in significant scientific advances.

  13. How citizen seismology is transforming rapid public earthquake information and interactions between seismologists and society

    NASA Astrophysics Data System (ADS)

    Bossu, Rémy; Steed, Robert; Mazet-Roux, Gilles; Roussel, Fréderic; Caroline, Etivant

    2015-04-01

    Historical earthquakes are only known to us through written recollections and so seismologists have a long experience of interpreting the reports of eyewitnesses, explaining probably why seismology has been a pioneer in crowdsourcing and citizen science. Today, Internet has been transforming this situation; It can be considered as the digital nervous system comprising of digital veins and intertwined sensors that capture the pulse of our planet in near real-time. How can both seismology and public could benefit from this new monitoring system? This paper will present the strategy implemented at Euro-Mediterranean Seismological Centre (EMSC) to leverage this new nervous system to detect and diagnose the impact of earthquakes within minutes rather than hours and how it transformed information systems and interactions with the public. We will show how social network monitoring and flashcrowds (massive website traffic increases on EMSC website) are used to automatically detect felt earthquakes before seismic detections, how damaged areas can me mapped through concomitant loss of Internet sessions (visitors being disconnected) and the benefit of collecting felt reports and geolocated pictures to further constrain rapid impact assessment of global earthquakes. We will also describe how public expectations within tens of seconds of ground shaking are at the basis of improved diversified information tools which integrate this user generated contents. A special attention will be given to LastQuake, the most complex and sophisticated Twitter QuakeBot, smartphone application and browser add-on, which deals with the only earthquakes that matter for the public: the felt and damaging earthquakes. In conclusion we will demonstrate that eyewitnesses are today real time earthquake sensors and active actors of rapid earthquake information.

  14. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  15. Psychological recovery 5 years after the 2004 Niigata-Chuetsu earthquake in Yamakoshi, Japan.

    PubMed

    Nakamura, Kazutoshi; Kitamura, Kaori; Someya, Toshiyuki

    2014-01-01

    The 2004 Niigata-Chuetsu earthquake of Japan caused considerable damage. We assessed long-term changes in psychological distress among earthquake victims during the period 5 years after the earthquake. The participants were people aged 18 years or older living in Yamakoshi, a community in Niigata Prefecture near the epicenter. A self-administered questionnaire survey was conducted annually for 5 consecutive years after the earthquake. Response rates were 1316/1841 (71.5%) in 2005, 667/1381 (48.3%) in 2006, 753/1451 (51.9%) in 2007, 541/1243 (43.5%) in 2008, and 814/1158 (70.3%) in 2009. The questionnaire asked about demographic characteristics, including sex, age, employment status, social network, and psychological status. Psychological distress was assessed using the 12-item General Health Questionnaire and was defined as a total score of 4 or higher. The overall prevalence of psychological distress decreased (P < 0.0001) gradually from 2005 (51.0%) to 2008 (30.1%) but tended to increase from 2008 to 2009 (P = 0.1590). Subgroup analyses showed that prevalence did not decrease over the 5-year study period among participants with poor social contact (P = 0.0659). From 2008 to 2009 prevalence increased in women (+7.5%, P = 0.0403) and participants aged 65 years or older (+7.2%, P = 0.0400). The prevalence of psychological distress in Yamakoshi people decreased steadily during the 4 years immediately after the earthquake but appeared to increase thereafter. The earthquake victims are still reestablishing their lives. Thus, continued attention should be focused on maintaining and further assessing their mental health.

  16. Assessing the Utility of and Improving USGS Earthquake Hazards Program Products

    NASA Astrophysics Data System (ADS)

    Gomberg, J. S.; Scott, M.; Weaver, C. S.; Sherrod, B. L.; Bailey, D.; Gibbons, D.

    2010-12-01

    A major focus of the USGS Earthquake Hazards Program (EHP) has been the development and implementation of products and information meant to improve earthquake hazard assessment, mitigation and response for a myriad of users. Many of these products rely on the data and efforts of the EHP and its partner scientists who are building the Advanced National Seismic System (ANSS). We report on a project meant to assess the utility of many of these products and information, conducted collaboratively by EHP scientists and Pierce County Department of Emergency Management staff. We have conducted focus group listening sessions with members of the engineering, business, medical, media, risk management, and emergency response communities as well as participated in the planning and implementation of earthquake exercises in the Pacific Northwest. Thus far we have learned that EHP and ANSS products satisfy many of the needs of engineers and some planners, and information is widely used by media and the general public. However, some important communities do not use these products despite their intended application for their purposes, particularly county and local emergency management and business communities. We have learned that products need to convey more clearly the impact of earthquakes, in everyday terms. Users also want products (e.g. maps, forecasts, etc.) that can be incorporated into tools and systems they use regularly. Rather than simply building products and posting them on websites, products need to be actively marketed and training provided. We suggest that engaging users prior to and during product development will enhance their usage and effectiveness.

  17. Manifold learning-based subspace distance for machinery damage assessment

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang

    2016-03-01

    Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.

  18. Revision of seismic design codes corresponding to building damages in the ``5.12'' Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Yayong

    2010-06-01

    A large number of buildings were seriously damaged or collapsed in the “5.12” Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the “Standard for classification of seismic protection of building constructions GB50223-2008” and “Code for Seismic Design of Buildings GB50011-2001.” The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and pre-cast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.

  19. The next new Madrid earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, W.

    1988-01-01

    Scientists who specialize in the study of Mississippi Valley earthquakes say that the region is overdue for a powerful tremor that will cause major damage and undoubtedly some casualties. The inevitability of a future quake and the lack of preparation by both individuals and communities provided the impetus for this book. It brings together applicable information from many disciplines: history, geology and seismology, engineering, zoology, politics and community planning, economics, environmental science, sociology, and psychology and mental health to provide a perspective of the myriad impacts of a major earthquake on the Mississippi Valley. The author addresses such basic questionsmore » as What, actually, are earthquakes How do they occur Can they be predicted, perhaps even prevented He also addresses those steps that individuals can take to improve their chances for survival both during and after an earthquake.« less

  20. Survey, Hbim and Conservation Plan of a Monumental Building Damaged by Earthquake

    NASA Astrophysics Data System (ADS)

    Oreni, D.; Brumana, R.; Della Torre, S.; Banfi, F.

    2017-05-01

    Surveying a monumental building damaged by the earthquake means to analyse its geometries, the structural elements, the connection still exist between the different parts, in order to define its state of conservation, to make structural analysis and to plan a proper project of restoration, consolidation, seismic improvement or addition of new elements. The survey of structural geometry represents the first necessary moment of building' knowledge investigation, to be performed after the securing of the building by the Firefighters or Civil Protection. How and by which instruments the geometric analysis are conducted depends on many factors, not always exclusively on the will of the experts involved in the restoration project, but more often dictated by political, technical, social or economic needs. The accurate geometrical survey is referred as fundamental operation even by national Directive for evaluation and earthquake risk reduction of cultural heritage (GU n. 24 - 29/01/2008 and 2011 updates), which defines guidelines for preventive interventions on built heritage in order to make the structures less vulnerable in case of earthquake. Nowadays, the wide use of tools and accurate surveying techniques makes it possible to achieve an adequate level of accuracy of information related to the buildings, overcoming the difficulties due to accessibility of the damaged structures. The geometrical survey of the Basilica of Santa Maria di Collemaggio in L'Aquila, was made by Politecnico di Milano starting from 2013, within the project "Ripartire da Collemaggio" (http://www.ungiornoacollemaggio.it/content/2027), financed by Eniservizi. The basilica, an important symbol for the community of L'Aquila, was gravely damaged by the earthquake of 6th April 2009. The objective of Eni was to turn the restoration of the building in a re-birth moment for all the community. The knowledge step was aimed to

  1. Oregon Hazard Explorer for Lifelines Program (OHELP): A web-based geographic information system tool for assessing potential Cascadia earthquake hazard

    NASA Astrophysics Data System (ADS)

    Sharifi Mood, M.; Olsen, M. J.; Gillins, D. T.; Javadnejad, F.

    2016-12-01

    The Cascadia Subduction Zone (CSZ) has the ability to generate earthquake as powerful as 9 moment magnitude creating great amount of damage to structures and facilities in Oregon. Series of deterministic earthquake analysis are performed for M9.0, M8.7, M8.4 and M8.1 presenting persistent, long lasting shaking associated with other geological threats such as ground shaking, landslides, liquefaction-induced ground deformations, fault rupture vertical displacement, tsunamis, etc. These ground deformation endangers urban structures, foundations, bridges, roadways, pipelines and other lifelines. Lifeline providers in Oregon, including private and public practices responsible for transportation, electric and gas utilities, water and wastewater, fuel, airports, and harbors face an aging infrastructure that was built prior to a full understanding of this extreme seismic risk. As recently experienced in Chile and Japan, a three to five minutes long earthquake scenario, expected in Oregon, necessities a whole different method of risk mitigation for these major lifelines than those created for shorter shakings from crustal earthquakes. A web-based geographic information system tool is developed to fully assess the potential hazard from the multiple threats impending from Cascadia subduction zone earthquakes in the region. The purpose of this website is to provide easy access to the latest and best available hazard information over the web, including work completed in the recent Oregon Resilience Plan (ORP) (OSSPAC, 2013) and other work completed by the Department of Geology and Mineral Industries (DOGAMI) and the United States Geological Survey (USGS). As a result, this tool is designated for engineers, planners, geologists, and others who need this information to help make appropriate decisions despite the fact that this web-GIS tool only needs minimal knowledge of GIS to work with.

  2. Seismic hazard assessment over time: Modelling earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Chung-Han; Wang, Yu; Wang, Yu-Ju; Lee, Ya-Ting

    2017-04-01

    To assess the seismic hazard with temporal change in Taiwan, we develop a new approach, combining both the Brownian Passage Time (BPT) model and the Coulomb stress change, and implement the seismogenic source parameters by the Taiwan Earthquake Model (TEM). The BPT model was adopted to describe the rupture recurrence intervals of the specific fault sources, together with the time elapsed since the last fault-rupture to derive their long-term rupture probability. We also evaluate the short-term seismicity rate change based on the static Coulomb stress interaction between seismogenic sources. By considering above time-dependent factors, our new combined model suggests an increased long-term seismic hazard in the vicinity of active faults along the western Coastal Plain and the Longitudinal Valley, where active faults have short recurrence intervals and long elapsed time since their last ruptures, and/or short-term elevated hazard levels right after the occurrence of large earthquakes due to the stress triggering effect. The stress enhanced by the February 6th, 2016, Meinong ML 6.6 earthquake also significantly increased rupture probabilities of several neighbouring seismogenic sources in Southwestern Taiwan and raised hazard level in the near future. Our approach draws on the advantage of incorporating long- and short-term models, to provide time-dependent earthquake probability constraints. Our time-dependent model considers more detailed information than any other published models. It thus offers decision-makers and public officials an adequate basis for rapid evaluations of and response to future emergency scenarios such as victim relocation and sheltering.

  3. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    NASA Astrophysics Data System (ADS)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage

  4. Earthquake Preparedness: What Every Childcare Provider Should Know.

    ERIC Educational Resources Information Center

    California State Office of Emergency Services, Sacramento.

    This brochure provides information to help child care providers reduce or avoid damage, injuries, or loss of life during earthquakes. It first discusses steps to implement before an earthquake strikes, including securing household contents, and practicing with children how to duck and cover. Next, the brochure describes what to do during an…

  5. Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    DOE PAGES

    Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary; ...

    2016-03-17

    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less

  6. Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary

    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less

  7. 2017 One‐year seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Shumway, Allison; McNamara, Daniel E.; Williams, Robert; Llenos, Andrea L.; Ellsworth, William L.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2017-01-01

    We produce a one‐year 2017 seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes that updates the 2016 one‐year forecast; this map is intended to provide information to the public and to facilitate the development of induced seismicity forecasting models, methods, and data. The 2017 hazard model applies the same methodology and input logic tree as the 2016 forecast, but with an updated earthquake catalog. We also evaluate the 2016 seismic‐hazard forecast to improve future assessments. The 2016 forecast indicated high seismic hazard (greater than 1% probability of potentially damaging ground shaking in one year) in five focus areas: Oklahoma–Kansas, the Raton basin (Colorado/New Mexico border), north Texas, north Arkansas, and the New Madrid Seismic Zone. During 2016, several damaging induced earthquakes occurred in Oklahoma within the highest hazard region of the 2016 forecast; all of the 21 moment magnitude (M) ≥4 and 3 M≥5 earthquakes occurred within the highest hazard area in the 2016 forecast. Outside the Oklahoma–Kansas focus area, two earthquakes with M≥4 occurred near Trinidad, Colorado (in the Raton basin focus area), but no earthquakes with M≥2.7 were observed in the north Texas or north Arkansas focus areas. Several observations of damaging ground‐shaking levels were also recorded in the highest hazard region of Oklahoma. The 2017 forecasted seismic rates are lower in regions of induced activity due to lower rates of earthquakes in 2016 compared with 2015, which may be related to decreased wastewater injection caused by regulatory actions or by a decrease in unconventional oil and gas production. Nevertheless, the 2017 forecasted hazard is still significantly elevated in Oklahoma compared to the hazard calculated from seismicity before 2009.

  8. Relationships between traumatic symptoms and environmental damage conditions among children 8 months after the 2011 Japan earthquake and tsunami.

    PubMed

    Usami, Masahide; Iwadare, Yoshitaka; Kodaira, Masaki; Watanabe, Kyota; Aoki, Momoko; Katsumi, Chiaki; Matsuda, Kumi; Makino, Kazunori; Iijima, Sonoko; Harada, Maiko; Tanaka, Hiromi; Sasaki, Yoshinori; Tanaka, Tetsuya; Ushijima, Hirokage; Saito, Kazuhiko

    2012-01-01

    To evaluate relationships between traumatic symptoms and environmental damage conditions among children who survived the 2011 Great East Japan Earthquake and Tsunami. The subjects were 12,524 children in kindergartens, elementary schools, and junior high schools in Ishinomaki City, Miyagi Prefecture, Japan. The Post Traumatic Stress Symptoms for Children 15 items (PTSSC-15), a self-completion questionnaire on traumatic symptoms, was distributed to the children and a questionnaire regarding environmental damage conditions affecting the children was distributed to their teachers. Of 12,524 questionnaires distributed, an effective response was obtained from 11,692 (93.3%). The PTSSC-15 score was significantly higher in females than in males among 4(th) to 6(th) grade students in elementary schools and among junior high school students. In terms of traumatic symptoms and environmental damage conditions, with the exception of kindergartners, children who had their houses damaged or experienced separation from family members had a significantly higher PTSSC-15 score than children who did not experience environmental damage. Except for kindergartners and 4(th)- to 6(th)-grade elementary school students, children who experienced evacuation had a significantly higher PTSSC-15 score. This study demonstrated relationships between traumatic symptoms and environmental damage conditions in children who had suffered from the disaster. Factors examined in studying the relationship between environmental damage conditions and traumatic symptoms were gender, age, house damage, evacuation experience, and bereavement experience. It was critical not only to examine the traumatic symptoms of the children but also to collect accurate information about environmental damage conditions.

  9. Relationships between Traumatic Symptoms and Environmental Damage Conditions among Children 8 Months after the 2011 Japan Earthquake and Tsunami

    PubMed Central

    Usami, Masahide; Iwadare, Yoshitaka; Kodaira, Masaki; Watanabe, Kyota; Aoki, Momoko; Katsumi, Chiaki; Matsuda, Kumi; Makino, Kazunori; Iijima, Sonoko; Harada, Maiko; Tanaka, Hiromi; Sasaki, Yoshinori; Tanaka, Tetsuya; Ushijima, Hirokage; Saito, Kazuhiko

    2012-01-01

    Background To evaluate relationships between traumatic symptoms and environmental damage conditions among children who survived the 2011 Great East Japan Earthquake and Tsunami. Methods The subjects were 12,524 children in kindergartens, elementary schools, and junior high schools in Ishinomaki City, Miyagi Prefecture, Japan. The Post Traumatic Stress Symptoms for Children 15 items (PTSSC-15), a self-completion questionnaire on traumatic symptoms, was distributed to the children and a questionnaire regarding environmental damage conditions affecting the children was distributed to their teachers. Of 12,524 questionnaires distributed, an effective response was obtained from 11,692 (93.3%). Results The PTSSC-15 score was significantly higher in females than in males among 4th to 6th grade students in elementary schools and among junior high school students. In terms of traumatic symptoms and environmental damage conditions, with the exception of kindergartners, children who had their houses damaged or experienced separation from family members had a significantly higher PTSSC-15 score than children who did not experience environmental damage. Except for kindergartners and 4th- to 6th-grade elementary school students, children who experienced evacuation had a significantly higher PTSSC-15 score. Conclusions This study demonstrated relationships between traumatic symptoms and environmental damage conditions in children who had suffered from the disaster. Factors examined in studying the relationship between environmental damage conditions and traumatic symptoms were gender, age, house damage, evacuation experience, and bereavement experience. It was critical not only to examine the traumatic symptoms of the children but also to collect accurate information about environmental damage conditions. PMID:23209817

  10. Emergency medical rescue efforts after a major earthquake: lessons from the 2008 Wenchuan earthquake.

    PubMed

    Zhang, Lulu; Liu, Xu; Li, Youping; Liu, Yuan; Liu, Zhipeng; Lin, Juncong; Shen, Ji; Tang, Xuefeng; Zhang, Yi; Liang, Wannian

    2012-03-03

    Major earthquakes often result in incalculable environmental damage, loss of life, and threats to health. Tremendous progress has been made in response to many medical challenges resulting from earthquakes. However, emergency medical rescue is complicated, and great emphasis should be placed on its organisation to achieve the best results. The 2008 Wenchuan earthquake was one of the most devastating disasters in the past 10 years and caused more than 370,000 casualties. The lessons learnt from the medical disaster relief effort and the subsequent knowledge gained about the regulation and capabilities of medical and military back-up teams should be widely disseminated. In this Review we summarise and analyse the emergency medical rescue efforts after the Wenchuan earthquake. Establishment of a national disaster medical response system, an active and effective commanding system, successful coordination between rescue forces and government agencies, effective treatment, a moderate, timely and correct public health response, and long-term psychological support are all crucial to reduce mortality and morbidity and promote overall effectiveness of rescue efforts after a major earthquake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Emergency mapping and information management during Nepal Earthquake 2015 - Challenges and lesson learned

    NASA Astrophysics Data System (ADS)

    Joshi, G.; Gurung, D. R.

    2016-12-01

    A powerful 7.8 magnitude earthquake struck Nepal at 06:11 UTC on 25 April 2015. Several subsequent aftershocks were deadliest earthquake in recent history of Nepal. In total about 9000 people died and 22,300 people were injured, and lives of eight million people, almost one-third of the population of Nepal was effected. The event lead to massive campaigned to gather data and information on damage and loss using remote sensing, field inspection, and community survey. Information on distribution of relief materials is other important domain of information necessary for equitable relief distribution. Pre and post-earthquake high resolution satellite images helped in damage area assessment and mapping. Many national and international agencies became active to generate and fill the information vacuum. The challenges included data access bottleneck due to lack of good IT infrastructure; inconsistent products due to absence of standard mapping guidelines; dissemination challenges due to absence of Standard Operating Protocols and single information gateway. These challenges were negating opportunities offered by improved earth observation data availability, increasing engagement of volunteers for emergency mapping, and centralized emergency coordination practice. This paper highlights critical practical challenges encountered during emergency mapping and information management during the earthquake in Nepal. There is greater need to address such challenges to effectively use technological leverages that recent advancement in space science, IT and mapping domain provides.

  12. Assessing the damage at Mt. Coffee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.C.; Macauley, L.D.

    1995-12-31

    The Mt. Coffee Hydroelectric Project was damaged during the Liberian civil unrest in early 1990`s. A team of engineers performed a damage assessment of the project with the hope that funding could be obtained to reconstruct the project. The damage done to the plant had far greater impacts to the country than merely the cost to rebuild the facility.

  13. Mitigation of Debris Flow Damage--­ A Case Study of Debris Flow Damage

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Jen, C. H.

    Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.

  14. Developing a Near Real-time System for Earthquake Slip Distribution Inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen

    2016-04-01

    Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.

  15. Automatic Building Damage Detection Method Using High-Resolution Remote Sensing Images and 3d GIS Model

    NASA Astrophysics Data System (ADS)

    Tu, Jihui; Sui, Haigang; Feng, Wenqing; Song, Zhina

    2016-06-01

    In this paper, a novel approach of building damaged detection is proposed using high resolution remote sensing images and 3D GIS-Model data. Traditional building damage detection method considers to detect damaged building due to earthquake, but little attention has been paid to analyze various building damaged types(e.g., trivial damaged, severely damaged and totally collapsed.) Therefore, we want to detect the different building damaged type using 2D and 3D feature of scenes because the real world we live in is a 3D space. The proposed method generalizes that the image geometric correction method firstly corrects the post-disasters remote sensing image using the 3D GIS model or RPC parameters, then detects the different building damaged types using the change of the height and area between the pre- and post-disasters and the texture feature of post-disasters. The results, evaluated on a selected study site of the Beichuan earthquake ruins, Sichuan, show that this method is feasible and effective in building damage detection. It has also shown that the proposed method is easily applicable and well suited for rapid damage assessment after natural disasters.

  16. The 2012 Emilia (Northern Italy) earthquake sequence: an attempt of historical reading

    NASA Astrophysics Data System (ADS)

    Graziani, L.; Bernardini, F.; Castellano, C.; Del Mese, S.; Ercolani, E.; Rossi, A.; Tertulliani, A.; Vecchi, M.

    2015-04-01

    In May-June 2012, the Po Valley (Northern Italy) was struck by an earthquake sequence whose strongest event occurred on 20 May (Mw 5.9). The intensity values (Imax 7-8 EMS98) assessed through macroseismic field surveys seemed inappropriate to describe the whole range of effects observed, especially those to monumental heritage, which suffered very heavy damage and destruction. The observed intensities in fact were significantly lower than those we could have expected after a Mw 5.9 event for Italy. As magnitude-intensity regressions are mainly based on historical earthquake data, we handle this issue going back in time and debating the following hypotheses: (a) the 2012 Emilia earthquake sequence shows lower intensity values than expected because the affected urban context is more heterogeneous and much less vulnerable than that in the past; (b) some historical earthquakes, especially those that occurred centuries ago and are provided with little information, could show a tendency to be overestimated in intensity, and consequently in magnitude. In order to give consistency to such hypotheses, we have introduced, as a test, a dual historical reading of the 2012 Emilia earthquake sequence as if it had occurred in the past: the first reading refers to a period prior to the introduction of concrete in buildings assessing the intensity on traditional masonry buildings only. A further historical reading, assessed by using information on monumental buildings only, was performed, and it can be roughly referred to the XVI-XVII centuries. In both cases, intensity values tend to grow significantly. The results could have a relevant impact when considered for seismic hazard assessments if confirmed on a large scale.

  17. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  18. Improving Flood Damage Assessment Models in Italy

    NASA Astrophysics Data System (ADS)

    Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.

    2015-12-01

    The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.

  19. Geotechnical and structural lessons learnt from the aqaba (ml = 6.2) earthquake of Novemeber 22, 1995

    NASA Astrophysics Data System (ADS)

    Al-Homoud, A.

    2003-04-01

    This study reflects in some details on the following aspects related to the region: geological and tectonic setting, seismicity, swarms activity data base and seismic hazard assessment. Moreover, it documents the following aspects of the November 22, 1995 earthquake: tectonic, seismological, instrumental seismic data, strong motion recordings and response spectral and local site effect analysis, geotechnical effects and structural observations in the region affected by the earthquake. The study identifies local site effects on structural damages. These observations were analyzed in connection with the observed damages. It is concluded that liquefaction potential, effect of soil column, poor quality of construction, and underestimating the design base shear are the main factors that contributed to the observed damages. Practical recommendations are suggested for the authorities to avoid similar damages in newly constructed buildings and lifelines during future similar earthquakes. On November 22, 1995, the Gulf of Aqaba region was shaken by a strong earthquake that was felt from Sudan to Lebanon. The epicenter was located in the gulf water midway between the Egyptian cities of Dahab and Nuweiba on the Sinai Peninsula. The main shock was followed by thousands of aftershocks, the strongest of which occurred on November 23, 1995 with a local magnitude of 5.4. The main shock triggered strong motion accelerographs belonging to the Jordanian and Israeli networks at Aqaba and Eilat cities, respectively. Structural damages to buildings and lifeline systems were reported in several cities located along the gulf coast including Aqaba in Jordan,Haql in Saudi Arabia, Sharm Al-Sheik, Dahab and Nuweiba in Egypt, and Eilat in Israel. In the city of Nuweiba, located 40 km north of the epicenter, surveyed damage suggests that the horizontal peak ground was in the range of 0.16 g - 0.25 g. Strong motion records indicated that at the port cit of Eilat (a distance of 92.7 km from the

  20. The 1964 Great Alaska Earthquake and tsunamis: a modern perspective and enduring legacies

    USGS Publications Warehouse

    Brocher, Thomas M.; Filson, John R.; Fuis, Gary S.; Haeussler, Peter J.; Holzer, Thomas L.; Plafker, George; Blair, J. Luke

    2014-01-01

    The magnitude 9.2 Great Alaska Earthquake that struck south-central Alaska at 5:36 p.m. on Friday, March 27, 1964, is the largest recorded earthquake in U.S. history and the second-largest earthquake recorded with modern instruments. The earthquake was felt throughout most of mainland Alaska, as far west as Dutch Harbor in the Aleutian Islands some 480 miles away, and at Seattle, Washington, more than 1,200 miles to the southeast of the fault rupture, where the Space Needle swayed perceptibly. The earthquake caused rivers, lakes, and other waterways to slosh as far away as the coasts of Texas and Louisiana. Water-level recorders in 47 states—the entire Nation except for Connecticut, Delaware, and Rhode Island— registered the earthquake. It was so large that it caused the entire Earth to ring like a bell: vibrations that were among the first of their kind ever recorded by modern instruments. The Great Alaska Earthquake spawned thousands of lesser aftershocks and hundreds of damaging landslides, submarine slumps, and other ground failures. Alaska’s largest city, Anchorage, located west of the fault rupture, sustained heavy property damage. Tsunamis produced by the earthquake resulted in deaths and damage as far away as Oregon and California. Altogether the earthquake and subsequent tsunamis caused 129 fatalities and an estimated $2.3 billion in property losses (in 2013 dollars). Most of the population of Alaska and its major transportation routes, ports, and infrastructure lie near the eastern segment of the Aleutian Trench that ruptured in the 1964 earthquake. Although the Great Alaska Earthquake was tragic because of the loss of life and property, it provided a wealth of data about subductionzone earthquakes and the hazards they pose. The leap in scientific understanding that followed the 1964 earthquake has led to major breakthroughs in earth science research worldwide over the past half century. This fact sheet commemorates Great Alaska Earthquake and

  1. a Collaborative Cyberinfrastructure for Earthquake Seismology

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Roussel, F.; Mazet-Roux, G.; Lefebvre, S.; Steed, R.

    2013-12-01

    One of the challenges in real time seismology is the prediction of earthquake's impact. It is particularly true for moderate earthquake (around magnitude 6) located close to urbanised areas, where the slightest uncertainty in event location, depth, magnitude estimates, and/or misevaluation of propagation characteristics, site effects and buildings vulnerability can dramatically change impact scenario. The Euro-Med Seismological Centre (EMSC) has developed a cyberinfrastructure to collect observations from eyewitnesses in order to provide in-situ constraints on actual damages. This cyberinfrastructure takes benefit of the natural convergence of earthquake's eyewitnesses on EMSC website (www.emsc-csem.org), the second global earthquake information website within tens of seconds of the occurrence of a felt event. It includes classical crowdsourcing tools such as online questionnaires available in 39 languages, and tools to collect geolocated pics. It also comprises information derived from the real time analysis of the traffic on EMSC website, a method named flashsourcing; In case of a felt earthquake, eyewitnesses reach EMSC website within tens of seconds to find out the cause of the shaking they have just been through. By analysing their geographical origin through their IP address, we automatically detect felt earthquakes and in some cases map the damaged areas through the loss of Internet visitors. We recently implemented a Quake Catcher Network (QCN) server in collaboration with Stanford University and the USGS, to collect ground motion records performed by volunteers and are also involved in a project to detect earthquakes from ground motions sensors from smartphones. Strategies have been developed for several social media (Facebook, Twitter...) not only to distribute earthquake information, but also to engage with the Citizens and optimise data collection. A smartphone application is currently under development. We will present an overview of this

  2. Understanding the distribution of strong motions and the damage caused during the September 19th, 2017 earthquake

    NASA Astrophysics Data System (ADS)

    Aguirre, J.; Ramirez-Guzman, L.; Leonardo Suárez, M.; Quintanar, L.

    2017-12-01

    On September 19, 2017, a normal fault earthquake of magnitude Mw 7.1 occurred 120 km from Mexico City. The quake generated large accelerations, more than 200 cm/s*s at least in two stations in Mexico City, where there was extensive damage. The damage pattern, which includes more than 40 building collapses, differs from the one induced by the 1985 Michoacan earthquake. While the observed accelerations in stations located in the Hill and Transition zones are the largest ever recorded, in the Lake zone the intensities were lower than those recorded in 1985. Even though the proximity of the epicenter could partially explain the accelerations, other factors need to be explored to understand the nuances of the ground motion. Unlike 1985, there is a substantially larger number of acceleration records in Mexico City, operated and maintained by different institutions. In this paper, we present the analysis of acceleration records and 3D numerical simulations to understand if effects such as focusing and directionality participate in the amplified motion. Finally, transfer functions between Lake and Hill zones and response and design spectral values are analyzed in regions where the building code requirements were exceeded. Acknowledgments: Records used in this research are obtained, processed and maintained by the National Autonomous University of Mexico through the Seismic Instrumentation Unit of the Institute of Engineering and the National Seismological Service of the Institute of Geophysics. The Centro de Intrumentacion y Registro Sismico A.C. (CIRES) kindly provided their records. This Project was funded in part by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  3. [Operating room during natural disaster: lessons from the 2011 Tohoku earthquake].

    PubMed

    Fukuda, Ikuo; Hashimoto, Hiroshi; Suzuki, Yasuyuki; Satomi, Susumu; Unno, Michiaki; Ohuchi, Noriaki; Nakaji, Shigeyuki

    2012-03-01

    Objective of this study is to clarify damages in operating rooms after the 2011 Tohoku Earthquake. To survey structural and non-structural damage in operating theaters, we sent questionnaires to 155 acute care hospitals in Tohoku area. Questionnaires were sent back from 105 hospitals (70.3%). Total of 280 patients were undergoing any kinds of operations during the earthquake and severe seismic tremor greater than JMA Seismic Intensity 6 hit 49 hospitals. Operating room staffs experienced life-threatening tremor in 41 hospitals. Blackout occurred but emergency electronic supply unit worked immediately in 81 out of 90 hospitals. However, emergency power plant did not work in 9 hospitals. During earthquake some materials fell from shelves in 44 hospitals and medical instruments fell down in 14 hospitals. In 5 hospitals, they experienced collapse of operating room wall or ceiling causing inability to maintain sterile operative field. Damage in electric power and water supply plus damage in logistics made many operating rooms difficult to perform routine surgery for several days. The 2011 Tohoku earthquake affected medical supply in wide area of Tohoku district and induced dysfunction of operating room. Supply-chain management of medical goods should be reconsidered to prepare severe natural disaster.

  4. The psychological impact of a dual-disaster caused by earthquakes and radioactive contamination in Ichinoseki after the Great East Japan Earthquake.

    PubMed

    Niitsu, Tomihisa; Takaoka, Kota; Uemura, Saho; Kono, Akiko; Saito, Akihiko; Kawakami, Norito; Nakazato, Michiko; Shimizu, Eiji

    2014-05-20

    The psychological impact of dual-disasters (earthquakes and a nuclear accident), on affected communities is unknown. This study investigated the impact of a dual-disaster (earthquakes and radioactive contamination) on the prevalence of psychological distress in a landlocked city within the Tohoku area, Japan. A cross-sectional mail-in survey with a random sample of inhabitants from Ichinoseki city was conducted eleven months after the disasters, and data from 902 respondents were analyzed by logistic regression models, with multiple imputation methodology. The K6 was used to determine psychological distress. The estimated prevalence of psychological distress was 48.0 percent. House damage due to earthquakes and anxiety about radioactive contamination were significantly associated with psychological distress (p < 0.05), while an interactive effect between house damage and anxiety about radioactive contamination was not significant. Being female, middle-to-low educational status and unemployed were additional risk factors for psychological distress. This dual-disaster was associated with a moderate prevalence of psychological distress in the area. The impact of the earthquake and radioactive contamination appeared additive.

  5. Prototype operational earthquake prediction system

    USGS Publications Warehouse

    Spall, Henry

    1986-01-01

    An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.

  6. Scale-Dependent Friction and Damage Interface law: implications for effective earthquake rupture dynamics and radiation

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Vilotte, Jean-Pierre; Raous, Michel; Henninger, Carole

    2010-05-01

    Propagation and radiation of an earthquake rupture is commonly considered as a friction dominated process on fault surfaces. Friction laws, such as the slip weakening and the rate-and-state laws are widely used in the modeling of the earthquake rupture process. These laws prescribe the traction evolution versus slip, slip rate and potentially other internal variables. They introduce a finite cohesive length scale over which the fracture energy is released. However faults are finite-width interfaces with complex internal structures, characterized by highly damaged zones embedding a very thin principal slip interface where most of the dynamic slip localizes. Even though the rupture process is generally investigated at wavelengths larger than the fault zone thickness, which should justify a formulation based upon surface energy, a consistent homogeneization, a very challenging problem, is still missing. Such homogeneization is however be required to derive the consistent form of an effective interface law, as well as the appropriate physical variables and length scales, to correctly describe the coarse-grained dissipation resulting from surface and volumetric contributions at the scale of the fault zone. In this study, we investigate a scale-dependent law, introduced by Raous et al. (1999) in the context of adhesive material interfaces, that takes into account the transition between a damage dominated and a friction dominated state. Such a phase-field formalism describes this transition through an order parameter. We first compare this law to standard slip weakening friction law in terms of the rupture nucleation. The problem is analyzed through the representation of the solution of the quasi-static elastic problem onto the Chebyshev polynomial basis, generalizing the Uenishi-Rice solution. The nucleation solutions, at the onset of instability, are then introduced as initial conditions for the study of the dynamic rupture propagation, in the case of in-plane rupture

  7. Great East Japan Earthquake Tsunami

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.

    2011-12-01

    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  8. UCERF3: A new earthquake forecast for California's complex fault system

    USGS Publications Warehouse

    Field, Edward H.; ,

    2015-01-01

    With innovations, fresh data, and lessons learned from recent earthquakes, scientists have developed a new earthquake forecast model for California, a region under constant threat from potentially damaging events. The new model, referred to as the third Uniform California Earthquake Rupture Forecast, or "UCERF" (http://www.WGCEP.org/UCERF3), provides authoritative estimates of the magnitude, location, and likelihood of earthquake fault rupture throughout the state. Overall the results confirm previous findings, but with some significant changes because of model improvements. For example, compared to the previous forecast (Uniform California Earthquake Rupture Forecast 2), the likelihood of moderate-sized earthquakes (magnitude 6.5 to 7.5) is lower, whereas that of larger events is higher. This is because of the inclusion of multifault ruptures, where earthquakes are no longer confined to separate, individual faults, but can occasionally rupture multiple faults simultaneously. The public-safety implications of this and other model improvements depend on several factors, including site location and type of structure (for example, family dwelling compared to a long-span bridge). Building codes, earthquake insurance products, emergency plans, and other risk-mitigation efforts will be updated accordingly. This model also serves as a reminder that damaging earthquakes are inevitable for California. Fortunately, there are many simple steps residents can take to protect lives and property.

  9. Accelerations from the September 5, 2012 (Mw=7.6) Nicoya, Costa Rica Earthquake

    NASA Astrophysics Data System (ADS)

    Simila, G. W.; Quintero, R.; Burgoa, B.; Mohammadebrahim, E.; Segura, J.

    2013-05-01

    Since 1984, the Seismic Network of the Volcanological and Seismological Observatory of Costa Rica, Universidad Nacional (OVSICORI-UNA) has been recording and registering the seismicity in Costa Rica. Before September 2012, the earthquakes registered by this seismic network in northwestern Costa Rica were moderate to small, except the Cóbano earthquake of March 25, 1990, 13:23, Mw 7.3, lat. 9.648, long. 84.913, depth 20 km; a subduction quake at the entrance of the Gulf of Nicoya and generated peak intensities in the range of MM = VIII near the epicentral area and VI-VII in the Central Valley of Costa Rica. Six years before the installation of the seismic network, OVSICORI-UNA registered two subduction earthquakes in northwestern Costa Rica, specifically on August 23, 1978, at 00:38:32 and 00:50:29 with magnitudes Mw 7.0 (HRVD), Ms 7.0 (ISC) and depths of 58 and 69 km, respectively (EHB Bulletin). On September 5, 2012, at 14:42:02.8 UTC, the seismic network OVSICORI-UNA registered another large subduction earthquake in Nicoya peninsula, northwestern Costa Rica, located 29 km south of Samara, with a depth of 21 km and magnitude Mw 7.6, lat. 9.6392, long. 85.6167. This earthquake was caused by the subduction of the Cocos plate under the Caribbean plate in northwestern Costa Rica. This earthquake was felt throughout the country and also in much of Nicaragua. The instrumental intensity map for the Nicoya earthquake indicates that the earthquake was felt with an intensity of VII-VIII in the Puntarenas and Nicoya Peninsulas, in an area between Liberia, Cañas, Puntarenas, Cabo Blanco, Carrillo, Garza, Sardinal, and Tamarindo in Guanacaste; Nicoya city being the place where the maximum reported intensity of VIII is most notable. An intensity of VIII indicates that damage estimates are moderate to severe, and intensity VII indicates that damage estimates are moderate. According to the National Emergency Commission of Costa Rica, 371 affected communities were reported; most

  10. Repeating Earthquakes Following an Mw 4.4 Earthquake Near Luther, Oklahoma

    NASA Astrophysics Data System (ADS)

    Clements, T.; Keranen, K. M.; Savage, H. M.

    2015-12-01

    An Mw 4.4 earthquake on April 16, 2013 near Luther, OK was one of the earliest M4+ earthquakes in central Oklahoma, following the Prague sequence in 2011. A network of four local broadband seismometers deployed within a day of the Mw 4.4 event, along with six Oklahoma netquake stations, recorded more than 500 aftershocks in the two weeks following the Luther earthquake. Here we use HypoDD (Waldhauser & Ellsworth, 2000) and waveform cross-correlation to obtain precise aftershock locations. The location uncertainty, calculated using the SVD method in HypoDD, is ~15 m horizontally and ~ 35 m vertically. The earthquakes define a near vertical, NE-SW striking fault plane. Events occur at depths from 2 km to 3.5 km within the granitic basement, with a small fraction of events shallower, near the sediment-basement interface. Earthquakes occur within a zone of ~200 meters thickness on either side of the best-fitting fault surface. We use an equivalency class algorithm to identity clusters of repeating events, defined as event pairs with median three-component correlation > 0.97 across common stations (Aster & Scott, 1993). Repeating events occur as doublets of only two events in over 50% of cases; overall, 41% of earthquakes recorded occur as repeating events. The recurrence intervals for the repeating events range from minutes to days, with common recurrence intervals of less than two minutes. While clusters occur in tight dimensions, commonly of 80 m x 200 m, aftershocks occur in 3 distinct ~2km x 2km-sized patches along the fault. Our analysis suggests that with rapidly deployed local arrays, the plethora of ~Mw 4 earthquakes occurring in Oklahoma and Southern Kansas can be used to investigate the earthquake rupture process and the role of damage zones.

  11. Application of laser scanning technique in earthquake protection of Istanbul's historical heritage buildings

    NASA Astrophysics Data System (ADS)

    Çaktı, Eser; Ercan, Tülay; Dar, Emrullah

    2017-04-01

    Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.

  12. Psychological Recovery 5 Years After the 2004 Niigata-Chuetsu Earthquake in Yamakoshi, Japan

    PubMed Central

    Nakamura, Kazutoshi; Kitamura, Kaori; Someya, Toshiyuki

    2014-01-01

    Background The 2004 Niigata-Chuetsu earthquake of Japan caused considerable damage. We assessed long-term changes in psychological distress among earthquake victims during the period 5 years after the earthquake. Methods The participants were people aged 18 years or older living in Yamakoshi, a community in Niigata Prefecture near the epicenter. A self-administered questionnaire survey was conducted annually for 5 consecutive years after the earthquake. Response rates were 1316/1841 (71.5%) in 2005, 667/1381 (48.3%) in 2006, 753/1451 (51.9%) in 2007, 541/1243 (43.5%) in 2008, and 814/1158 (70.3%) in 2009. The questionnaire asked about demographic characteristics, including sex, age, employment status, social network, and psychological status. Psychological distress was assessed using the 12-item General Health Questionnaire and was defined as a total score of 4 or higher. Results The overall prevalence of psychological distress decreased (P < 0.0001) gradually from 2005 (51.0%) to 2008 (30.1%) but tended to increase from 2008 to 2009 (P = 0.1590). Subgroup analyses showed that prevalence did not decrease over the 5-year study period among participants with poor social contact (P = 0.0659). From 2008 to 2009 prevalence increased in women (+7.5%, P = 0.0403) and participants aged 65 years or older (+7.2%, P = 0.0400). Conclusions The prevalence of psychological distress in Yamakoshi people decreased steadily during the 4 years immediately after the earthquake but appeared to increase thereafter. The earthquake victims are still reestablishing their lives. Thus, continued attention should be focused on maintaining and further assessing their mental health. PMID:24390416

  13. Association between earthquake events and cholera outbreaks: a cross-country 15-year longitudinal analysis.

    PubMed

    Sumner, Steven A; Turner, Elizabeth L; Thielman, Nathan M

    2013-12-01

    Large earthquakes can cause population displacement, critical sanitation infrastructure damage, and increased threats to water resources, potentially predisposing populations to waterborne disease epidemics such as cholera. Problem The risk of cholera outbreaks after earthquake disasters remains uncertain. A cross-country analysis of World Health Organization (WHO) cholera data that would contribute to this discussion has yet to be published. A cross-country longitudinal analysis was conducted among 63 low- and middle-income countries from 1995-2009. The association between earthquake disasters of various effect sizes and a relative spike in cholera rates for a given country was assessed utilizing fixed-effects logistic regression and adjusting for gross domestic product per capita, water and sanitation level, flooding events, percent urbanization, and under-five child mortality. Also, the association between large earthquakes and cholera rate increases of various degrees was assessed. Forty-eight of the 63 countries had at least one year with reported cholera infections during the 15-year study period. Thirty-six of these 48 countries had at least one earthquake disaster. In adjusted analyses, country-years with ≥10,000 persons affected by an earthquake had 2.26 times increased odds (95 CI, 0.89-5.72, P = .08) of having a greater than average cholera rate that year compared to country-years having <10,000 individuals affected by an earthquake. The association between large earthquake disasters and cholera infections appeared to weaken as higher levels of cholera rate increases were tested. A trend of increased risk of greater than average cholera rates when more people were affected by an earthquake in a country-year was noted. However these findings did not reach statistical significance at traditional levels and may be due to chance. Frequent large-scale cholera outbreaks after earthquake disasters appeared to be relatively uncommon.

  14. Local-based damage detection of cyclically loaded bridge piers using wireless sensing units

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Lynch, Jerome P.; Parra-Montesinos, Gustavo

    2005-05-01

    Concrete bridge piers are a common structural element employed in the design of bridges and elevated roadways. In order to ensure adequate behavior under earthquake-induced displacements, extensive reinforcement detailing in the form of closely spaced ties or spirals is necessary, leading to congestion problems and difficulties during concrete casting. Further, costly repairs are often necessary in bridge piers after a major earthquake which in some cases involve the total or partial shutdown of the bridge. In order to increase the damage tolerance while relaxing the transverse reinforcement requirements of bridge piers, the use of high-performance fiber reinforced cementitious composites (HPFRCC) in earthquake-resistant bridge piers is explored. HPFRCCs are a relatively new class of cementitious material for civil structures with tensile strain-hardening behavior and high damage tolerance. To monitor the behavior of this new class of material in the field, low-cost wireless monitoring technologies will be adopted to provide HPFRCC structural elements the capability to accurately monitor their performance and health. In particular, the computational core of a wireless sensing unit can be harnessed to screen HPFRCC components for damage in real-time. A seismic damage index initially proposed for flexure dominated reinforced concrete elements is modified to serve as an algorithmic tool for the rapid assessment of damage (due to flexure and shear) in HPFRCC bridge piers subjected to large shear reversals. Traditional and non-traditional sensor strategies of an HPFRCC bridge pier are proposed to optimize the correlation between the proposed damage index model and the damage observed in a circular pier test specimen. Damage index models are shown to be a sufficiently accurate rough measure of the degree of local-area damage that can then be wirelessly communicated to bridge officials.

  15. Atmospheric Baseline Monitoring Data Losses Due to the Samoa Earthquake

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Cunningham, M. C.; Vasel, B. A.; Butler, J. H.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates an Atmospheric Baseline Observatory at Cape Matatula on the north-eastern point of American Samoa, opened in 1973. The manned observatory conducts continuous measurements of a wide range of climate forcing and atmospheric composition data including greenhouse gas concentrations, solar radiation, CFC and HFC concentrations, aerosols and ozone as well as less frequent measurements of many other parameters. The onset of September 29, 2009 earthquake is clearly visible in the continuous data streams in a variety of ways. The station electrical generator came online when the Samoa power grid failed so instruments were powered during and subsequent to the earthquake. Some instruments ceased operation in a spurt of spurious data followed by silence. Other instruments just stopped sending data abruptly when the shaking from the earthquake broke a data or power links, or an integral part of the instrument was damaged. Others survived the shaking but were put out of calibration. Still others suffered damage after the earthquake as heaters ran uncontrolled or rotating shafts continued operating in a damaged environment grinding away until they seized up or chewed a new operating space. Some instruments operated as if there was no earthquake, others were brought back online within a few days. Many of the more complex (and in most cases, most expensive) instruments will be out of service, some for at least 6 months or more. This presentation will show these results and discuss the impact of the earthquake on long-term measurements of climate forcing agents and other critical climate measurements.

  16. Assessment and control of structural damage

    NASA Technical Reports Server (NTRS)

    Jeong, G. D.; Stubbs, N.; Yao, J. T. P.

    1988-01-01

    The objective of this paper is to summarize and review several investigations on the assessment and control of structural damage in civil engineering. Specifically, the definition of structural damage is discussed. A candidate method for the evaluation of damage is then reviewed and demonstrated. Various ways of implementing passive and active control of civil engineering structures are next summarized. Finally, the possibility of applying expert systems is discussed.

  17. The Alaska earthquake, March 27, 1964: lessons and conclusions

    USGS Publications Warehouse

    Eckel, Edwin B.

    1970-01-01

    One of the greatest earthquakes of all time struck south-central Alaska on March 27, 1964. Strong motion lasted longer than for most recorded earthquakes, and more land surface was dislocated, vertically and horizontally, than by any known previous temblor. Never before were so many effects on earth processes and on the works of man available for study by scientists and engineers over so great an area. The seismic vibrations, which directly or indirectly caused most of the damage, were but surface manifestations of a great geologic event-the dislocation of a huge segment of the crust along a deeply buried fault whose nature and even exact location are still subjects for speculation. Not only was the land surface tilted by the great tectonic event beneath it, with resultant seismic sea waves that traversed the entire Pacific, but an enormous mass of land and sea floor moved several tens of feet horizontally toward the Gulf of Alaska. Downslope mass movements of rock, earth, and snow were initiated. Subaqueous slides along lake shores and seacoasts, near-horizontal movements of mobilized soil (“landspreading”), and giant translatory slides in sensitive clay did the most damage and provided the most new knowledge as to the origin, mechanics, and possible means of control or avoidance of such movements. The slopes of most of the deltas that slid in 1964, and that produced destructive local waves, are still as steep or steeper than they were before the earthquake and hence would be unstable or metastable in the event of another great earthquake. Rockslide avalanches provided new evidence that such masses may travel on cushions of compressed air, but a widely held theory that glaciers surge after an earthquake has not been substantiated. Innumerable ground fissures, many of them marked by copious emissions of water, caused much damage in towns and along transportation routes. Vibration also consolidated loose granular materials. In some coastal areas, local

  18. Use of Damage Data for Calibration of GMPE's in Haiti

    NASA Astrophysics Data System (ADS)

    Torres, Y.; Molina, S.; Navarro, M.; Benito, B.

    2013-05-01

    , we used data on the damage caused by the earthquake provided by the Haitian Ministry of Public Works. To achieve that, we simulated the earthquake in SELENA and compared our results with the observed damage. Through an iterative process based on minimizing the residuals, we calibrated both, the GMPE and the damage functions associated with the building typologies. We found that Boore & Atkinson and Campbell & Bozorgnia are the models that yield the lowest root mean square (RMS) error; hence, these GMPS's could be considered as the models that better predict the damage, together with the calibrated set of damage functions. Accordingly, we propose them to be used in future seismic risk assessments in the city.

  19. The MW 7.0 Haiti Earthquake of January 12, 2010: USGS/EERI Advance Reconnaissance Team Report

    USGS Publications Warehouse

    Eberhard, Marc O.; Baldridge, Steven; Marshall, Justin; Mooney, Walter; Rix, Glenn J.

    2010-01-01

    soils (for example, lithology, stiffness, density, and thickness) made it difficult for us to quantitatively assess the role of ground-motion amplification in the widespread damage. Buildings The Haitian Ministry of Statistics and Informatics reported that one-story buildings represent 73 percent of the building inventory. Most ordinary, one-story houses have roofs made of sheet metal (82 percent), whereas most multistory houses and apartments have roofs made of concrete (71 percent). Walls made of concrete/block/stone predominate both in ordinary houses and apartments. It appears that the widespread damage to residences and commercial and government buildings was attributable to a great extent to the lack of earthquake-resistant design. In many cases, the structural types, member dimensions, and detailing practices were inadequate to resist strong ground motions. These vulnerabilities may have been exacerbated by poor construction practices. Reinforced concrete frames with concrete block masonry infill appeared to perform particularly poorly. Structures with light (timber or sheet metal) roofs performed better compared to structures with concrete roofs and slabs. The seismic performance of some buildings was adequate, and some of the damaged buildings appeared to have had low deformation demands. These observations suggest that structures designed and constructed with adequate stiffness and reinforcing details would have resisted the earthquake without being damaged severely. A damage survey of 107 buildings in downtown Port-au-Prince indicated that 28 percent had collapsed and another 33 percent were damaged enough to require repairs. A similar survey of 52 buildings in Leogane found that 62 percent had collapsed and another 31 percent required repairs. Bridges There was no evidence of bridge collapses attributable to the earthquake. Most bridges in Port-au-Prince are simple box culverts consisting of box girders 2.0 to 2.

  20. Hazard Assessment and Early Warning of Tsunamis: Lessons from the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Satake, K.

    2012-12-01

    . Tsunami hazard assessments or long-term forecast of earthquakes have not considered such a triggering or simultaneous occurrence of different types of earthquakes. The large tsunami at the Fukushima nuclear power station was due to the combination of the deep and shallow slip. Disaster prevention for low-frequency but large-scale hazard must be considered. The Japanese government established a general policy to for two levels: L1 and L2. The L2 tsunamis are the largest possible tsunamis with low frequency of occurrence, but cause devastating disaster once they occur. For such events, saving people's lives is the first priority and soft measures such as tsunami hazard maps, evacuation facilities or disaster education will be prepared. The L1 tsunamis are expected to occur more frequently, typically once in a few decades, for which hard countermeasures such as breakwater must be prepared to protect lives and properties of residents as well as economic and industrial activities.

  1. [Environmental damage assessment: international regulations and revelation to China].

    PubMed

    Zhang, Hong-zhen; Cao, Dong; Yu, Fang; Wang, Jin-nan; Qi, Ji; Jia, Qian; Zhang, Tian-zhu; Luo, Yong-ming

    2013-05-01

    As the whole society gradually realizes the scarcity of nature resources and environmental value, countries all over the world have evolved and improved the system of environmental damage assessment through the practices of pollution prevention and ecological environmental protection. On one hand, in the research prospective, the practices of environmental damage assessment brought new challenges to environmental law, environmental economics, environmental science, environmental engineering, etc. On the other hand, they constantly promoted and developed relevant laws and regulations, techniques, working mechanism, and guidelines on procedure in practice. On the hasis of comparison and analysis of international practices and experiences from US, EU, and Japan, etc., this article identified relevant concepts, content, and scope of environmental damage assessment, and presented its scientific positioning and development direction. At present, both theory and practice of environmental damage assessment in China are in their infancy period. Considering current environmental situation and socioeconomic development features of China, learning international practices and experiences and raising the orientation of environmental damage assessment have great meaning in exploring the suitable environmental damage assessment system.

  2. Probabilistic evaluation of damage potential in earthquake-induced liquefaction in a 3-D soil deposit

    NASA Astrophysics Data System (ADS)

    Halder, A.; Miller, F. J.

    1982-03-01

    A probabilistic model to evaluate the risk of liquefaction at a site and to limit or eliminate damage during earthquake induced liquefaction is proposed. The model is extended to consider three dimensional nonhomogeneous soil properties. The parameters relevant to the liquefaction phenomenon are identified, including: (1) soil parameters; (2) parameters required to consider laboratory test and sampling effects; and (3) loading parameters. The fundamentals of risk based design concepts pertient to liquefaction are reviewed. A detailed statistical evaluation of the soil parameters in the proposed liquefaction model is provided and the uncertainty associated with the estimation of in situ relative density is evaluated for both direct and indirect methods. It is found that the liquefaction potential the uncertainties in the load parameters could be higher than those in the resistance parameters.

  3. A stochastic automata network for earthquake simulation and hazard estimation

    NASA Astrophysics Data System (ADS)

    Belubekian, Maya Ernest

    1998-11-01

    This research develops a model for simulation of earthquakes on seismic faults with available earthquake catalog data. The model allows estimation of the seismic hazard at a site of interest and assessment of the potential damage and loss in a region. There are two approaches for studying the earthquakes: mechanistic and stochastic. In the mechanistic approach, seismic processes, such as changes in stress or slip on faults, are studied in detail. In the stochastic approach, earthquake occurrences are simulated as realizations of a certain stochastic process. In this dissertation, a stochastic earthquake occurrence model is developed that uses the results from dislocation theory for the estimation of slip released in earthquakes. The slip accumulation and release laws and the event scheduling mechanism adopted in the model result in a memoryless Poisson process for the small and moderate events and in a time- and space-dependent process for large events. The minimum and maximum of the hazard are estimated by the model when the initial conditions along the faults correspond to a situation right after a largest event and after a long seismic gap, respectively. These estimates are compared with the ones obtained from a Poisson model. The Poisson model overestimates the hazard after the maximum event and underestimates it in the period of a long seismic quiescence. The earthquake occurrence model is formulated as a stochastic automata network. Each fault is divided into cells, or automata, that interact by means of information exchange. The model uses a statistical method called bootstrap for the evaluation of the confidence bounds on its results. The parameters of the model are adjusted to the target magnitude patterns obtained from the catalog. A case study is presented for the city of Palo Alto, where the hazard is controlled by the San Andreas, Hayward and Calaveras faults. The results of the model are used to evaluate the damage and loss distribution in Palo Alto

  4. Hurricane Harvey Building Damage Assessment Using UAV Data

    NASA Astrophysics Data System (ADS)

    Yeom, J.; Jung, J.; Chang, A.; Choi, I.

    2017-12-01

    Hurricane Harvey which was extremely destructive major hurricane struck southern Texas, U.S.A on August 25, causing catastrophic flooding and storm damages. We visited Rockport suffered severe building destruction and conducted UAV (Unmanned Aerial Vehicle) surveying for building damage assessment. UAV provides very high resolution images compared with traditional remote sensing data. In addition, prompt and cost-effective damage assessment can be performed regardless of several limitations in other remote sensing platforms such as revisit interval of satellite platforms, complicated flight plan in aerial surveying, and cloud amounts. In this study, UAV flight and GPS surveying were conducted two weeks after hurricane damage to generate an orthomosaic image and a DEM (Digital Elevation Model). 3D region growing scheme has been proposed to quantitatively estimate building damages considering building debris' elevation change and spectral difference. The result showed that the proposed method can be used for high definition building damage assessment in a time- and cost-effective way.

  5. Tiny intraplate earthquakes triggered by nearby episodic tremor and slip in Cascadia

    USGS Publications Warehouse

    Vidale, J.E.; Hotovec, A.J.; Ghosh, A.; Creager, K.C.; Gomberg, J.

    2011-01-01

    Episodic tremor and slip (ETS) has been observed in many subduction zones, but its mechanical underpinnings as well as its potential for triggering damaging earthquakes have proven difficult to assess. Here we use a seismic array in Cascadia of unprecedented density to monitor seismicity around a moderate 16 day ETS episode. In the 4 months of data we examine, we observe five tiny earthquakes within the subducting slab during the episode and only one more in the same area, which was just before and nearby the next ETS burst. These earthquakes concentrate along the sides and updip edge of the ETS region, consistent with greater stress concentration there than near the middle and downdip edge of the tremor area. Most of the seismicity is below the megathrust, with a similar depth extent to the background intraslab seismicity. The pattern of earthquakes that we find suggests slow slip has a more continuous temporal and spatial pattern than the tremor loci, which notoriously appear in bursts, jumps, and streaks. Copyright 2011 by the American Geophysical Union.

  6. Evaluating Post-Earthquake Building Safety Using Economical MEMS Seismometers

    PubMed Central

    Yin, Ren-Cheng

    2018-01-01

    The earthquake early warning (EEW)-research group at National Taiwan University has been developing a microelectromechanical system-based accelerometer called “P-Alert”, designed for issuing EEWs. The main advantage of P-Alert is that it is a relatively economical seismometer. However, because of the expensive nature of commercial hardware for structural health monitoring (SHM) systems, the application of SHM to buildings remains limited. To determine the performance of P-Alert for evaluating post-earthquake building safety, we conducted a series of steel-frame shaking table tests with incremental damage. We used the fragility curves of different damage levels and the interstory drift ratios (calculated by the measured acceleration of each story using double integration and a filter) to gauge the potential damage levels. We concluded that the acceptable detection of damage for an entire building is possible. With improvements to the synchronization of the P-Alert sensors, we also anticipate a damage localization feature for the stories of a building. PMID:29734736

  7. Evaluating Post-Earthquake Building Safety Using Economical MEMS Seismometers.

    PubMed

    Hsu, Ting-Yu; Yin, Ren-Cheng; Wu, Yih-Min

    2018-05-05

    The earthquake early warning (EEW)-research group at National Taiwan University has been developing a microelectromechanical system-based accelerometer called “P-Alert”, designed for issuing EEWs. The main advantage of P-Alert is that it is a relatively economical seismometer. However, because of the expensive nature of commercial hardware for structural health monitoring (SHM) systems, the application of SHM to buildings remains limited. To determine the performance of P-Alert for evaluating post-earthquake building safety, we conducted a series of steel-frame shaking table tests with incremental damage. We used the fragility curves of different damage levels and the interstory drift ratios (calculated by the measured acceleration of each story using double integration and a filter) to gauge the potential damage levels. We concluded that the acceptable detection of damage for an entire building is possible. With improvements to the synchronization of the P-Alert sensors, we also anticipate a damage localization feature for the stories of a building.

  8. Special Issue "Impact of Natural Hazards on Urban Areas and Infrastructure" in the Bulletin of Earthquake Engineering

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M.

    2009-04-01

    This special issue includes selected papers on the topic of earthquake impact from the sessions held in 2004 in Nice, France and in 2005 in Vienna, Austria at the first and respectivelly the second European Geosciences Union General Assembly. Since its start in 1999, in the Hague, Netherlands, the hazard of earthquakes has been the most popular of the session. The respective calls in 2004 was for: Nature's forces including earthquakes, floods, landslides, high winds and volcanic eruptions can inflict losses to urban settlements and man-made structures such as infrastructure. In Europe, recent years have seen such significant losses from earthquakes in south and south-eastern Europe, floods in central Europe, and wind storms in western Europe. Meanwhile, significant progress has been made in understanding disasters. Several scientific fields contribute to a holistic approach in the evaluation of capacities, vulnerabilities and hazards, the main factors on mitigating urban disasters due to natural hazards. An important part of the session is devoted to assessment of earthquake shaking and loss scenarios, including both physical damage and human causalities. Early warning and rapid damage evaluation are of utmost importance for addressing the safety of many essential facilities, for emergency management of events and for disaster response. In case of earthquake occurrence strong motion networks, data processing and interpretation lead to preliminary estimation (scenarios) of geographical distribution of damages. Factual information on inflicted damage, like those obtained from shaking maps or aerial imagery permit a confrontation with simulation maps of damage in order to define a more accurate picture of the overall losses. Most recent developments towards quantitative and qualitative simulation of natural hazard impacts on urban areas, which provide decision-making support for urban disaster management, and success stories of and lessons learned from disaster

  9. Feasibility of Twitter Based Earthquake Characterization From Analysis of 32 Million Tweets: There's Got to be a Pony in Here Somewhere!

    NASA Astrophysics Data System (ADS)

    Earle, P. S.; Guy, M. R.; Smoczyk, G. M.; Horvath, S. R.; Jessica, T. S.; Bausch, D. B.

    2014-12-01

    The U.S. Geological Survey (USGS) operates a real-time system that detects earthquakes using only data from Twitter—a service for sending and reading public text-based messages of up to 140 characters. The detector algorithm scans for significant increases in tweets containing the word "earthquake" in several languages and sends internal alerts with the detection time, representative tweet texts, and the location of the population center where most of the tweets originated. It has been running in real-time for over two years and finds, on average, two or three felt events per day, with a false detection rate of 9%. The main benefit of the tweet-based detections is speed, with most detections occurring between 20 and 120 seconds after the earthquake origin time. This is considerably faster than seismic detections in poorly instrumented regions of the world. The detections have reasonable coverage of populated areas globally. The number of Twitter-based detections is small compared to the number of earthquakes detected seismically, and only a rough location and qualitative assessment of shaking can be determined based on Tweet data alone. However, the Twitter-based detections are generally caused by widely felt events in populated urban areas that are of more immediate interest than those with no human impact. We will present a technical overview of the system and investigate the potential for rapid characterization of earthquake damage and effects using the 32 million "earthquake" tweets that the system has so far amassed. Initial results show potential for a correlation between characteristic responses and shaking level. For example, tweets containing the word "terremoto" were common following the MMI VII shaking produced by the April 1, 2014 M8.2 Iquique, Chile earthquake whereas a widely-tweeted deep-focus M5.2 north of Santiago, Chile on April 4, 2014 produced MMI VI shaking and almost exclusively "temblor" tweets. We are also investigating the use of other

  10. The ShakeOut Earthquake Scenario - A Story That Southern Californians Are Writing

    USGS Publications Warehouse

    Perry, Suzanne; Cox, Dale; Jones, Lucile; Bernknopf, Richard; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    The question is not if but when southern California will be hit by a major earthquake - one so damaging that it will permanently change lives and livelihoods in the region. How severe the changes will be depends on the actions that individuals, schools, businesses, organizations, communities, and governments take to get ready. To help prepare for this event, scientists of the U.S. Geological Survey (USGS) have changed the way that earthquake scenarios are done, uniting a multidisciplinary team that spans an unprecedented number of specialties. The team includes the California Geological Survey, Southern California Earthquake Center, and nearly 200 other partners in government, academia, emergency response, and industry, working to understand the long-term impacts of an enormous earthquake on the complicated social and economic interactions that sustain southern California society. This project, the ShakeOut Scenario, has applied the best current scientific understanding to identify what can be done now to avoid an earthquake catastrophe. More information on the science behind this project will be available in The ShakeOut Scenario (USGS Open-File Report 2008-1150; http://pubs.usgs.gov/of/2008/1150/). The 'what if?' earthquake modeled in the ShakeOut Scenario is a magnitude 7.8 on the southern San Andreas Fault. Geologists selected the details of this hypothetical earthquake by considering the amount of stored strain on that part of the fault with the greatest risk of imminent rupture. From this, seismologists and computer scientists modeled the ground shaking that would occur in this earthquake. Engineers and other professionals used the shaking to produce a realistic picture of this earthquake's damage to buildings, roads, pipelines, and other infrastructure. From these damages, social scientists projected casualties, emergency response, and the impact of the scenario earthquake on southern California's economy and society. The earthquake, its damages, and

  11. Earthquake prediction; new studies yield promising results

    USGS Publications Warehouse

    Robinson, R.

    1974-01-01

    On Agust 3, 1973, a small earthquake (magnitude 2.5) occurred near Blue Mountain Lake in the Adirondack region of northern New York State. This seemingly unimportant event was of great significance, however, because it was predicted. Seismologsits at the Lamont-Doherty geologcal Observatory of Columbia University accurately foretold the time, place, and magnitude of the event. Their prediction was based on certain pre-earthquake processes that are best explained by a hypothesis known as "dilatancy," a concept that has injected new life and direction into the science of earthquake prediction. Although much mroe reserach must be accomplished before we can expect to predict potentially damaging earthquakes with any degree of consistency, results such as this indicate that we are on a promising road. 

  12. Strong ground motion prediction using virtual earthquakes.

    PubMed

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  13. Predicting earthquake effects—Learning from Northridge and Loma Prieta

    USGS Publications Warehouse

    Holzer, Thomas L.

    1994-01-01

    The continental United States has been rocked by two particularly damaging earthquakes in the last 4.5 years, Loma Prieta in northern California in 1989 and Northridge in southern California in 1994. Combined losses from these two earthquakes approached $30 billion. Approximately half these losses were reimbursed by the federal government. Because large earthquakes typically overwhelm state resources and place unplanned burdens on the federal government, it is important to learn from these earthquakes how to reduce future losses. My purpose here is to explore a potential implication of the Northridge and Loma Prieta earthquakes for hazard-mitigation strategies: earth scientists should increase their efforts to map hazardous areas within urban regions. 

  14. Florida Natural Resource Damage Assessment Public Meeting | NOAA Gulf Spill

    Science.gov Websites

    Damage Assessment Projects Near You Strategic Frameworks Monitoring and Adaptive Management Restoration Publications Press Releases Story Archive Home Florida Natural Resource Damage Assessment Public Meeting Florida Natural Resource Damage Assessment Public Meeting share Posted on November 19, 2010 | Assessment

  15. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  16. Outline of the 2016 Kumamoto, Japan, Earthquakes and lessons for a large urban earthquake in Tokyo Metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirata, N.

    2016-12-01

    A series of devastating earthquakes hit Kumamoto districts in Kyushu, Japan, in April, 2016. The M6.5 event occurred at 21:26 on April 14th (JST) and, 28 hours later, the M7.3 event occurred at 01:25 on April 17th (JST) at almost the same location with a depth of 10 km. The both earthquakes were felt with a seismic intensity of 7 in Japan Metrological Agency (JMA) scale at Mashiki Town. The intensity of 7 is the highest level by definition. Very strong accelerations are observed by the M6.5 event with 1,580 gal at KiK-net Mashiki station and 1,791 gal by the M7.3 event at Ohtsu City station. As a result, more than 8,000 houses are totally collapsed, 26,000 are heavily collapsed, and 120,000 are partially damaged. There are 49 people directly killed and 32 are indirectly killed by the quakes. The most important lesson from the Kumamoto earthquake is that a very strong ground motion may hit immediately after the first large event, say in a few days. This has serious impact to a house damaged by the first large quake. In the 2016 Kumamoto sequence there are also many strong aftershocks including 4 M5.8-5.9 events till April 18th. More than 180,000 people, at most, took shelter because of scaring many strong aftershocks. I will discuss both natural and human aspects of the Kumamoto earthquake disaster by the in-land shallow large earthquakes suggesting lessons for the large Metropolitan Earthquakes in Tokyo, Japan.

  17. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    USGS Publications Warehouse

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  18. How does damage affect rupture propagation across a fault stepover?

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; Savage, H. M.

    2011-12-01

    We investigate the potential for fault damage to influence earthquake rupture at fault step-overs using a mechanical numerical model that explicitly includes the generation of cracks around faults. We compare the off-fault fracture patterns and slip profiles generated along faults with a variety of frictional slip-weakening distances and step-over geometry. Models with greater damage facilitate the transfer of slip to the second fault. Increasing separation and decreasing the overlap distance reduces the transfer of slip across the step over. This is consistent with observations of rupture stopping at step-over separation greater than 4 km (Wesnousky, 2006). In cases of slip transfer, rupture is often passed to the second fault before the damage zone cracks of the first fault reach the second fault. This implies that stresses from the damage fracture tips are transmitted elastically to the second fault to trigger the onset of slip along the second fault. Consequently, the growth of damage facilitates transfer of rupture from one fault to another across the step-over. In addition, the rupture propagates along the damage-producing fault faster than along the rougher fault that does not produce damage. While this result seems counter to our understanding that damage slows rupture propagation, which is documented in our models with pre-existing damage, these model results are suggesting an additional process. The slip along the newly created damage may unclamp portions of the fault ahead of the rupture and promote faster rupture. We simulate the M7.1 Hector Mine Earthquake and compare the generated fracture patterns to maps of surface damage. Because along with the detailed damage pattern, we also know the stress drop during the earthquake, we may begin to constrain parameters like the slip-weakening distance along portions of the faults that ruptured in the Hector Mine earthquake.

  19. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  20. The Loma Prieta, California, Earthquake of October 17, 1989: Performance of the Built Environment

    USGS Publications Warehouse

    Coordinated by Holzer, Thomas L.

    1998-01-01

    Professional Paper 1552 focuses on the response of buildings, lifelines, highway systems, and earth structures to the earthquake. Losses to these systems totaled approximated $5.9 billion. The earthquake displaced many residents from their homes and severely disrupted transportation systems. Some significant findings were: * Approximately 16,000 housing units were uninhabitable after the earthquake including 13,000 in the San Francisco Bay region. Another 30,000-35,000 units were moderately damaged in the earthquake. Renters and low-income residents were particularly hard hit. * Failure of highway systems was the single largest cause of loss of life during the earthquake. Forty-two of the 63 earthquake fatalities died when the Cypress Viaduct in Oakland collapsed. The cost to repair and replace highways damaged by the earthquake was $2 billion, about half of which was to replace the Cypress Viaduct. * Major bridge failures were the result of antiquated designs and inadequate anticipation of seismic loading. * Twenty one kilometers (13 mi) of gas-distribution lines had to be replaced in several communities and more than 1,200 leaks and breaks in water mains and service connections had to be excavated and repaired. At least 5 electrical substations were badly damaged, overwhelming the designed redundancy of the electrical system. * Instruments in 28 buildings recorded their response to earthquake shaking that provided opportunities to understand how different types of buildings responded, the importance of site amplification, and how buildings interact with their foundation when shaken (soil structure interaction).