Science.gov

Sample records for earthquake engineering research

  1. Research in seismology and earthquake engineering in Venezuela

    USGS Publications Warehouse

    Urbina, L.; Grases, J.

    1983-01-01

    After the July 29, 1967, damaging earthquake (with a moderate magnitude of 6.3) caused widespread damage to the northern coastal area of Venezuela and to the Caracas Valley, the Venezuelan Government decided to establish a Presidential Earthquake Commission. This commission undertook the task of coordinating the efforts to study the after-effects of the earthquake. The July 1967 earthquake claimed numerous lives and caused extensive damage to the capital of Venezuela. In 1968, the U.S Geological Survey conducted a seismological field study in the northern coastal area and in the Caracas Valley of Venezuela. the objective was to study the area that sustained severe, moderate, and no damage to structures. A reported entitled Ground Amplification Studies in Earthquake Damage Areas: The Caracas Earthquake of 1967 documented, for the first time, short-period seismic wave ground-motion amplifications in the Caracas Valley. Figure 1 shows the area of severe damage in the Los Palos Grantes suburb and the correlation with depth of alluvium and the arabic numbers denote the ground amplification factor at each site in the area. the Venezuelan Government initiated many programs to study in detail the damage sustained and to investigate the ongoing construction practices. These actions motivated professionals in the academic, private, and Government sectors to develops further capabilities and self-sufficiency in the fields of engineering and seismology. Allocation of funds was made to assist in training professionals and technicians and in developing new seismological stations and new programs at the national level in earthquake engineering and seismology. A brief description of the ongoing programs in Venezuela is listed below. these programs are being performed by FUNVISIS and by other national organizations listed at the end of this article.   

  2. Earthquake engineering in Peru

    USGS Publications Warehouse

    Vargas, N.J

    1983-01-01

    During the last decade, earthquake engineering research in Peru has been carried out at the Catholic University of Peru and at the Universidad Nacional de Ingeniera (UNI). The Geophysical Institute (IGP) under the auspices of the Organization of American States (OAS) has initiated in Peru other efforts in regional seismic hazard assessment programs with direct impact to the earthquake engineering program. Further details on these programs have been reported by L. Ocola in the Earthquake Information Bulletin, January-February 1982, vol. 14, no. 1, pp. 33-38. 

  3. First U.S.-Japan workshop on advanced research on earthquake engineering for dams. Final report

    SciTech Connect

    Hynes, M.E.; Hall, R.; Baker, J.C.; Yamaguchi, Y.

    1998-07-01

    The First US-Japan Workshop on Advanced Research on Earthquake Engineering for Dams was held under the sponsorship of the US Army Engineer Waterways Experiment Station and the Public Works Research Institute of Japan (PWRI) under the auspices of Task Committee D, Earthquake Engineering for Dams, of the UJNR Panel on Wind and Seismic Effects, in Vicksburg, Mississippi, 12-14 November 1996. The workshop provided a valuable forum to exchange technical information on earthquake engineering for dams in both countries. The workshop was attended by 11 Japanese participants, 26 US participants, and 1 visitor from the United Kingdom. Four agencies and two universities were represented in the Japanese delegation. The US participants were drawn from the US Army Corps of Engineers and the US Bureau of Reclamation.

  4. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (Editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  5. Proceedings of lifeline earthquake engineering

    SciTech Connect

    Cassaro, M.A.

    1991-01-01

    This book contains the proceedings of the Lifeline Earthquake Engineering Conference. Topics covered include: Overview of Lifeline Earthquake Engineering; Transportation Lifelines; Seismic Retrofit and Strengthening of Transportation Lifelines; Electric Power Lifelines; Communications Lifelines; Water Delivery and Sewer Lifelines; Seismic Hazards Evaluation; Risk and Reliability Analysis of Lifelines; Lifeline Experience During Earthquakes and System Behavior; Seismic Analysis and Design of Lifelines; Vulnerability of Lifelines; and Vulnerability Reduction, Mitigation Planning, and Emergency Response.

  6. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  7. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    SciTech Connect

    Saragoni, G. Rodolfo

    2008-07-08

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand.

  8. Earthquake research in China

    USGS Publications Warehouse

    Raleigh, B.

    1977-01-01

    The prediction of the Haicheng earthquake was an extraordinary achievement by the geophysical workers of the People's Republic of China, whose national program in earthquake reserach was less than 10 years old at the time. To study the background to this prediction, a delgation of 10 U.S scientists, which I led, visited China in June 1976. 

  9. Introduction: seismology and earthquake engineering in Mexico and Central and South America.

    USGS Publications Warehouse

    Espinosa, A.F.

    1982-01-01

    The results from seismological studies that are used by the engineering community are just one of the benefits obtained from research aimed at mitigating the earthquake hazard. In this issue of Earthquake Information Bulletin current programs in seismology and earthquake engineering, seismic networks, future plans and some of the cooperative programs with different internation organizations are described by Latin-American seismologists. The article describes the development of seismology in Latin America and the seismological interest of the OAS. -P.N.Chroston

  10. Proceedings of the third U. S. national conference on earthquake engineering. Volume II

    SciTech Connect

    Not Available

    1986-01-01

    During the past quarter century the North American continent has experienced a number of damaging earthquakes, among which were the 1964 Alaska earthquake, the 1971 San Fernando, California, earthquake, and most recently the 1985 Mexico City earthquake. A large number of smaller earthquakes have occurred during this period, all of which, along with large earthquakes that have occurred in other parts of the world, serve to remind one that the earthquake hazard is real. In view of potential loss of life and the economic losses that could result from large earthquakes, it is important that the United States continue its vigorous efforts towards mitigating the hazards of earthquakes including developing and implementing safe and economic methods of earthquake-resistant design and construction. In the light of the foregoing observations it it fitting that this Third U.S. National Conference on Earthquake Engineering be held in 1986 at Charleston, South Carolina, on the one-hundred-year anniversary of the 1886 Charleston earthquake. Although intended primarily for participation by U.S. practitioners and researchers, participants from many other parts of the world are also present. From the more than 300 papers offered for publication and presentation, over 200 papers are published in the three volumes of Proceedings and the single volume of Post-Conference Proceedings.

  11. Real-time earthquake monitoring using a search engine method.

    PubMed

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-01-01

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake's parameters in <1 s after receiving the long-period surface wave data. PMID:25472861

  12. Real-time earthquake monitoring using a search engine method.

    PubMed

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-04

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake's parameters in <1 s after receiving the long-period surface wave data.

  13. Research on Swedish earthquakes 1980 - 1981

    NASA Astrophysics Data System (ADS)

    Slunga, R.

    1982-11-01

    The research on Swedish earthquakes, recorded December 1979-1981 by the digital seismic network in Southern Sweden operated by National Defence Research Institute (FOA) is reported. The high-quality earthquake data produced by this network allows source inversion of all recorded earthquakes. A method based on both first-motion polarities and spectral amplitudes is presented. Besides the fault-plane solution and the seismic moment, also corner frequencies, fault dimensions, stress drops, and peak slip displacements are determined for 53 Swedish earthquakes. Epicentral ground motion is studied and a relation for a two-parametric scaling (seismic moment and stress drop) of the earthquake is proposed and applied to the bedrock peak accelerations. An NW-SE horizontal compression is indicated by the source mechanisms. Quite often, surface topographic lineaments are consistent with the fault-plane solutions. The frequency, epicentral and depth distribution, and peak accelerations are in agreement with previous studies on seismic risk.

  14. Real-time earthquake monitoring using a search engine method

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-01

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in <1 s after receiving the long-period surface wave data.

  15. Real-time earthquake monitoring using a search engine method

    PubMed Central

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-01-01

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in <1 s after receiving the long-period surface wave data. PMID:25472861

  16. An Online Platform for Resources and Collaborative Research on Earthquake Source

    NASA Astrophysics Data System (ADS)

    Thingbaijam, K. S.; Mai, P. M.

    2013-12-01

    We develop the online platform http://equake-rc.info for collaborative research on earthquake sources. The platform has three main features: (1) finite-fault earthquake source models (SRCMOD) database, (2) Source Inversion Validation (SIV) Benchmarks and its Wiki, and (3) software Codes for Earthquake Rupture and ground-motion Simulation (CERS). SRCMOD collects and disseminates source models of past earthquakes. SIV aims at benchmarking the current state-of-the-art in earthquake source inversions and developing robust approaches to quantify uncertainties in the source models. CERS currently has three software packages. These include 'RupGen' for generating synthetic earthquake rupture models, 'Stress2Slip' for computing on-fault static stress changes corresponding to a slip distribution, and 'BB-Simulation' for computing and integrating high frequency synthetics with low frequency waveforms to generate hybrid broadband seismograms. We envision that this online platform will be useful in advancing research on earthquake source processes and earthquake engineering.

  17. Approximate formulas for rotational effects in earthquake engineering

    NASA Astrophysics Data System (ADS)

    Falamarz-Sheikhabadi, Mohammad Reza; Ghafory-Ashtiany, Mohsen

    2012-10-01

    The paper addresses the issue of researching into the engineering characteristics of rotational strong ground motion components and rotational effects in structural response. In this regard, at first, the acceleration response spectra of rotational components are estimated in terms of translational ones. Next, new methods in order to consider the effects of rotational components in seismic design codes are presented by determining the effective structural parameters in the rotational loading of structures due only to the earthquake rotational components. Numerical results show that according to the frequency content of rotational components, the contribution of the rocking components to the seismic excitation of short period structures can never be ignored. During strong earthquakes, these rotational motions may lead to the unexpected overturning or local structural damages for the low-rise multi-story buildings located on soft soil. The arrangement of lateral-load resisting system in the plan, period, and aspect ratio of the system can severely change the seismic loading of wide symmetric buildings under the earthquake torsional component.

  18. Theory and application of experimental model analysis in earthquake engineering

    NASA Astrophysics Data System (ADS)

    Moncarz, P. D.

    The feasibility and limitations of small-scale model studies in earthquake engineering research and practice is considered with emphasis on dynamic modeling theory, a study of the mechanical properties of model materials, the development of suitable model construction techniques and an evaluation of the accuracy of prototype response prediction through model case studies on components and simple steel and reinforced concrete structures. It is demonstrated that model analysis can be used in many cases to obtain quantitative information on the seismic behavior of complex structures which cannot be analyzed confidently by conventional techniques. Methodologies for model testing and response evaluation are developed in the project and applications of model analysis in seismic response studies on various types of civil engineering structures (buildings, bridges, dams, etc.) are evaluated.

  19. Use Of Scenario Ground Motion Maps In Earthquake Engineering

    NASA Astrophysics Data System (ADS)

    Somerville, P. G.

    2001-12-01

    dominant magnitude-distance combination. The design ground motions in current building codes correspond to a single annual probability of occurrence, so a single earthquake scenario may be used to approximate the design ground motion. However, the next generation of building codes will be based on the concept of performance based earthquake engineering. PBEE requires that ground motions be specified for several different annual frequencies of occurrence that correspond to different levels of building performance, with increasing ground motion levels (corresponding to decreasing annual probability of occurrence) causing increasingly unacceptable damage states. Thus ground motions for a set of different earthquake scenarios may be required to approximate the ground motions needed for use in PBEE.

  20. Lifeline earthquake engineering: Proceedings of the fourth U.S. conference

    SciTech Connect

    O`Rourke, M.J.

    1995-12-31

    The purpose of the conference was to provide a forum for advances in research, practice, investigation and public policy in lifeline earthquake engineering as a discipline and as a component of infrastructure rehabilitation. As such, it recognizes the growing awareness that interaction among lifelines influences losses, community response and recovery. Papers at the conference were presented in sessions on the following topics: bridge analysis and rehabilitation, bridge earthquake damage assessment, bridge hazard assessment and prioritization methods, case studies, electric power and communications, gas and liquid fuels, infrastructure rehabilitation, lifeline interaction, Northridge earthquake, post earthquake investigations, seismic hazards, socio-economic effects, water and sewerage. Paper relating to energy transport and energy distribution systems have been processed separately for inclusion on the data base.

  1. Introduction: seismology and earthquake engineering in Central and South America.

    USGS Publications Warehouse

    Espinosa, A.F.

    1983-01-01

    Reports the state-of-the-art in seismology and earthquake engineering that is being advanced in Central and South America. Provides basic information on seismological station locations in Latin America and some of the programmes in strong-motion seismology, as well as some of the organizations involved in these activities.-from Author

  2. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    SciTech Connect

    Yoshida, Nozomu

    2008-07-08

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term 'base'. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface.

  3. Deep Downhole Seismic Testing for Earthquake Engineering Studies

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh; Rohay, Alan C.

    2008-10-17

    Downhole seismic testing is one field test that is commonly used to determine compression-wave (P) and shear-wave (S) velocity profiles in geotechnical earthquake engineering investigations. These profiles are required input in evaluations of the responses to earthquake shaking of geotechnical sites and structures at these sites. In the past, traditional downhole testing has generally involved profiling in the 30- to 150-m depth range. As the number of field seismic investigations at locations with critical facilities has increased, profiling depths have also increased. An improved downhole test that can be used for wave velocity profiling to depths of 300 to 600 m or more is presented.

  4. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    NASA Astrophysics Data System (ADS)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    the ground especially in the epicenter area. Similarly, liquefaction occurred in the different parts of Kathmandu valley. However, the recording in KATNP and DMG indicate that the ground motions that resulted from the quake were not strong enough to fully weaken liquefiable materials and in most cases incipient or "marginal" liquefaction was observed. Here, we will present a compilation of the different types of mass wasting that have occurred in this region and discuss their location and hazard potential for local communities. References: Adhikari, L.B., Gautam, U.P., Koirala, B.P., Bhattarai, M., Kandel, T., Gupta, R.M., Timsina, C., Maharjan, N., Maharjan, K., Dhahal, T., Hoste-Colomer, R., Cano, Y., Dandine, M., Guhem, A., Merrer, S., Roudil, P., Bollinger, L., 2015, The aftershock sequence of the 2015 April 25 Gorkha-Nepal Earthquake, Geophysical Journal International, v. 203 (3), pp. 2119-2124. Earthquake Without Frontiers, 2015, http://ewf.nerc.ac.uk/2015/05/12/nepal-update-on-landslide-hazard-following-12-may-2015-earthquake/ GEER, 2015: Geotechnical Extreme Event Reconnaissance http://www.geerassociation.org Moss, R.E.S., Thompson, E.M., Kieffer, D.S., Tiwari, B., Hashash, Y.M.A., Acharya, I., Adhikari B.R., Asimaki, D., Clahan, K.B., Collins, B.D., Dahal, S., Jibson, R.W., Khadka, D., Machdonald, A. Madugo C.L., Mason, H.B., Pehlivan., M., Rayamajhi, D. and Upreti. S., 2015, Geotechnical Effects of the 2015 AMgnitude 7.8 Gorkah, Nepal, Earthquake and Aftershocks, seismological Research Letters, v. 86(6), PP. 1514-1523 National Seismoligical Center, 2015, http://www.seismonepal.gov.np/

  5. New research and tools lead to improved earthquake alerting protocols

    USGS Publications Warehouse

    Wald, David J.

    2009-01-01

    What’s the best way to get alerted about the occurrence and potential impact of an earthquake? The answer to that question has changed dramatically of late, in part due to improvements in earthquake science, and in part by the implementation of new research in the delivery of earthquake information

  6. The January 12, 2010, Haiti earthquake: Science and Engineering for Earthquake Resilience (Invited)

    NASA Astrophysics Data System (ADS)

    Calais, E.; Lerner-Lam, A.; Momplaisir, R.; Prepetit, C.

    2010-12-01

    On January 12, 2010, a magnitude 7.0 earthquake struck the Port-au-Prince region of Haiti, killing more than 200,000 people and causing an estimated 8 billion in damages, ˜120% of the country's GDP. Science and engineering were key to answering pressing questions raised by governement authorities and international agencies in the days and weeks after the event. As Haiti starts its reconstruction, there is an opportunity for science and engineering to provide pragmatic guidelines to help build a sustainable culture of resilience to natural hazards. We will address the challenges and opportunities of integrating risk reduction into government policies, a goal that requires close interations with politicians, risk managers, economists, and social scientists. Communicating science to decision makers and the public, while accounting for the challenges of sustainable development, remains a challenge even in the wake of the human and economic tragedy of the January 12, 2010 earthquake in Haiti.

  7. Performance-based seismic design of nonstructural building components: The next frontier of earthquake engineering

    NASA Astrophysics Data System (ADS)

    Filiatrault, Andre; Sullivan, Timothy

    2014-08-01

    With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major

  8. One research from turkey on groundwater- level changes related earthquake

    NASA Astrophysics Data System (ADS)

    Kirmizitas, H.; Göktepe, G.

    2003-04-01

    Groundwater levels are recorded by limnigraphs in drilling wells in order to determine groundwater potential accurately and reliable under hydrogeological studies in Turkey State Haydraulic Works (DSI) set the limnigraphs to estimate mainly groundwater potential. Any well is drilled to determine and to obtain data on water level changes related earthquake up today. The main purpose of these studies are based on groundwater potential and to expose the hydrodynamic structure of an aquifer. In this study, abnormal oscillations, water rising and water drops were observed on graphs which is related with water level changes in groundwater. These observations showed that, some earthquakes has been effective on water level changes. There is a distance ranging to 2000 km between this epicentral and water wells. Water level changes occur in groundwater bearing layers that could be consisting of grained materials such as, alluvium or consolidated rocks such as, limestones. The biggest water level change is ranging to 1,48 m on diagrams and it is recorded as oscillation movement. Water level changes related earthquake are observed in different types of movements below in this research. 1-Rise-drop oscillation changes on same point. 2-Water level drop in certain periods or permanent periods after earthquakes. 3-Water level rise in certain periods or permanent periods after earthquakes. (For example, during Gölcük Earthquake with magnitude of 7.8 on August, 17, 1999 one artesian occured in DSI well ( 49160 numbered ) in Adapazari, Dernekkiri Village. Groundwater level changes might easily be changed because of atmosferic pressure that comes in first range, precipitation, irrigation or water pumping. Owing to relate groundwater level changes with earthquake on any time, such changes should be observed accurately, carefully and at right time. Thus, first of all, the real reason of this water level changes must be determined From 1970 to 2001 many earthquakes occured in Turkey

  9. Geoscience and Engineering Information For Earthquake Risk Mitigation Plans

    NASA Astrophysics Data System (ADS)

    Roca, A.; Oliveira, C. S.

    Many developments in the fields of Geophysics and Engineering have been undertaken in the recent years with the purpose of understanding the different mechanisms involved in the entire seismic process, from the seismic source, ground shaking, site effects, etc., to the damage caused to buildings, other engineering structures, infra-structures, population and social organizations An important issue is the increasing collaboration among scientists, engineers and decision makers for building up information systems and for establishing communication protocols which allow the scientific and technical knowledge to be transferred in the appropriate form to the key organizations and persons responsible for risk mitigation, through planning and emergency management. With the aid of geographical information systems and other, at present, available tools, damage scenarios generation can easily include many pieces of information, and most of the relevant aspects of the process can be considered. They can serve not only to help decision makers to design their policies for earthquake mitigation in the mid-long run, but also as an on-line tool for helping in the event of an earthquake, speeding up the rescue operations. In this sense, some examples taken from approaches carried out in Catalonia (NE Spain) Spain and Portugal, in particular for the cities of Barcelona and Lisbon are presented and discussed. New avenues will be also presented.

  10. Reduction of earthquake risk in the united states: Bridging the gap between research and practice

    USGS Publications Warehouse

    Hays, W.W.

    1998-01-01

    Continuing efforts under the auspices of the National Earthquake Hazards Reduction Program are under way to improve earthquake risk assessment and risk management in earthquake-prone regions of Alaska, California, Nevada, Washington, Oregon, Arizona, Utah, Wyoming, and Idaho, the New Madrid and Wabash Valley seismic zones in the central United States, the southeastern and northeastern United States, Puerto Rico, Virgin Islands, Guam, and Hawaii. Geologists, geophysicists, seismologists, architects, engineers, urban planners, emergency managers, health care specialists, and policymakers are having to work at the margins of their disciplines to bridge the gap between research and practice and to provide a social, technical, administrative, political, legal, and economic basis for changing public policies and professional practices in communities where the earthquake risk is unacceptable. ?? 1998 IEEE.

  11. Earthquakes

    MedlinePlus

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  12. Earthquakes.

    ERIC Educational Resources Information Center

    Walter, Edward J.

    1977-01-01

    Presents an analysis of the causes of earthquakes. Topics discussed include (1) geological and seismological factors that determine the effect of a particular earthquake on a given structure; (2) description of some large earthquakes such as the San Francisco quake; and (3) prediction of earthquakes. (HM)

  13. Earthquakes.

    ERIC Educational Resources Information Center

    Pakiser, Louis C.

    One of a series of general interest publications on science topics, the booklet provides those interested in earthquakes with an introduction to the subject. Following a section presenting an historical look at the world's major earthquakes, the booklet discusses earthquake-prone geographic areas, the nature and workings of earthquakes, earthquake…

  14. Accessibility of geotechnical earthquake Engineering data and the need for data storage and dissemination standards

    USGS Publications Warehouse

    Tarr, Arthur C.

    1993-01-01

    Ease of data access and data standards are two issues critical to the success of GIS technology when applied to earthquake hazards research problems that require geotechnical engineering and related data. Efforts to reduce data accession costs and to streamline the data exchange process will result in short-term cost and time saving and will add long-term value to the data sets themselves. Such efforts might include centralized data centers, standardized data base designs and formats, cooperative efforts to fill data gaps, and standardized distribution methods and media.

  15. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  16. Concurrent engineering research center

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications.

  17. The Lice, Turkey, earthquake of September 6, 1975; a preliminary engineering investigation

    USGS Publications Warehouse

    Yanev, P. I.

    1976-01-01

    The Fifth European Conference on Earthquake Engineering was held on September 22 through 25 in Istanbul, Turkey. The opening speech by the Honorable H. E. Nurettin Ok, Minister of Reconstruction and Resettlement of Turkey, introduced the several hundred delegates to the realities of earthquake hazards in Turkey:

  18. Earthquakes

    ERIC Educational Resources Information Center

    Roper, Paul J.; Roper, Jere Gerard

    1974-01-01

    Describes the causes and effects of earthquakes, defines the meaning of magnitude (measured on the Richter Magnitude Scale) and intensity (measured on a modified Mercalli Intensity Scale) and discusses earthquake prediction and control. (JR)

  19. Revolutionising engineering education in the Middle East region to promote earthquake-disaster mitigation

    NASA Astrophysics Data System (ADS)

    Baytiyeh, Hoda; Naja, Mohamad K.

    2014-09-01

    Due to the high market demands for professional engineers in the Arab oil-producing countries, the appetite of Middle Eastern students for high-paying jobs and challenging careers in engineering has sharply increased. As a result, engineering programmes are providing opportunities for more students to enrol on engineering courses through lenient admission policies that do not compromise academic standards. This strategy has generated an influx of students who must be carefully educated to enhance their professional knowledge and social capital to assist in future earthquake-disaster risk-reduction efforts. However, the majority of Middle Eastern engineering students are unaware of the valuable acquired engineering skills and knowledge in building the resilience of their communities to earthquake disasters. As the majority of the countries in the Middle East are exposed to seismic hazards and are vulnerable to destructive earthquakes, engineers have become indispensable assets and the first line of defence against earthquake threats. This article highlights the contributions of some of the engineering innovations in advancing technologies and techniques for effective disaster mitigation and it calls for the incorporation of earthquake-disaster-mitigation education into academic engineering programmes in the Eastern Mediterranean region.

  20. Eleventh regional seminar on earthquake engineering, granada, september 1984.

    PubMed

    Vogt, J; Davagnier, M; Jimenez, E

    1985-06-01

    Some of the problems of combining macroseismic (descriptive) and instrumental information on modern and historical earthquakes are discussed, together with the relationships that have evolved between these two fields of study. The paper emphasises the dangers of transferring macroseismic information straight into computer databanks, without taking full account of the levels of confidence attached to the information and its suitability for earthquake risk analysis.

  1. Empirically Driven Software Engineering Research

    NASA Astrophysics Data System (ADS)

    Rombach, Dieter

    Software engineering is a design discipline. As such, its engineering methods are based on cognitive instead of physical laws, and their effectiveness depends highly on context. Empirical methods can be used to observe the effects of software engineering methods in vivo and in vitro, to identify improvement potentials, and to validate new research results. This paper summarizes both the current body of knowledge and further challenges wrt. empirical methods in software engineering as well as empirically derived evidence regarding software typical engineering methods. Finally, future challenges wrt. education, research, and technology transfer will be outlined.

  2. NCEER seminars on earthquakes

    USGS Publications Warehouse

    Pantelic, J.

    1987-01-01

    In May of 1986, the National Center for Earthquake Engineering Research (NCEER) in Buffalo, New York, held the first seminar in its new monthly forum called Seminars on Earthquakes. The Center's purpose in initiating the seminars was to educate the audience about earthquakes, to facilitate cooperation between the NCEER and visiting researchers, and to enable visiting speakers to learn more about the NCEER   

  3. Earthquake Forecast Science Research with a Small Satellite

    NASA Astrophysics Data System (ADS)

    Jason, Susan; da Silva Curiel, Alex; Pulinets, Sergey; Sweeting, Martin, , Sir

    Reliable, repeatable Earthquake forecast is a subject surrounded by controversy and scepticism. What is clear, is that reliable forecast could be the single most effective tool for earthquake disaster management. Roughly a third of the world's population live in areas that are at risk and, every year since the beginning of the twentieth century earthquakes have caused an average of 20,000 deaths [1]. The economic loss in the 1995 Kobe, Japan earthquake was greater than US100 billion [2]. Substantial progress has been made on the development of methods for earthquake hazard analysis on a timescale of a few decades. However, the forecast of specific earthquakes on timescales of a few years to a few days is a difficult problem. It has been proposed that satellites and ground-based facilities may detect earthquake precursors in the ionosphere a few hours or days before the main shock. This hypothesis is now backed by a physical model, derived by the Russian Academy of Sciences from statistical studies and an understanding of the main morphological features of seismo-ionospheric precursors, which allows them to be separated from background ionospheric variability. The main problems now are lack of regular global data and limited funding for what is considered to be financially risky research. Low-cost, small satellites offer a solution to these problems. A 100 kg class SSTL enhanced microsatellite, carrying a RAS topside sounder and complimentary payload, will be used to make regular measurements over seismically active zones around the globe. The low cost of the spacecraft offers a financially low-risk approach to the next step in this invaluable research. The spacecraft will make ionospheric measurements for systematic research into the proposed precursors. The aims will be to confirm or refute the hypothesis; define their reliability and reproducibility; and enable further scientific understanding of their mechanisms. In addition, forecasting of the magnitude of the

  4. Earthquake!

    ERIC Educational Resources Information Center

    Hernandez, Hildo

    2000-01-01

    Examines the types of damage experienced by California State University at Northridge during the 1994 earthquake and what lessons were learned in handling this emergency are discussed. The problem of loose asbestos is addressed. (GR)

  5. Earthquakes

    USGS Publications Warehouse

    Shedlock, Kaye M.; Pakiser, Louis Charles

    1998-01-01

    One of the most frightening and destructive phenomena of nature is a severe earthquake and its terrible aftereffects. An earthquake is a sudden movement of the Earth, caused by the abrupt release of strain that has accumulated over a long time. For hundreds of millions of years, the forces of plate tectonics have shaped the Earth as the huge plates that form the Earth's surface slowly move over, under, and past each other. Sometimes the movement is gradual. At other times, the plates are locked together, unable to release the accumulating energy. When the accumulated energy grows strong enough, the plates break free. If the earthquake occurs in a populated area, it may cause many deaths and injuries and extensive property damage. Today we are challenging the assumption that earthquakes must present an uncontrollable and unpredictable hazard to life and property. Scientists have begun to estimate the locations and likelihoods of future damaging earthquakes. Sites of greatest hazard are being identified, and definite progress is being made in designing structures that will withstand the effects of earthquakes.

  6. Guidelines for Engineering Research Centers.

    ERIC Educational Resources Information Center

    National Academy of Engineering, Washington, DC.

    This report responds to a National Science Foundation (NSF) request to provide advice on developing Engineering Research Centers, which NSF described as "on-campus centers that would house cross-disciplinary experimental research activities." In addition to conducting such research, the principal purposes of the centers are to provide a means for…

  7. Survival interval in earthquake entrapments: research findings reinforced during the 2010 Haiti earthquake response.

    PubMed

    Macintyre, Anthony G; Barbera, Joseph A; Petinaux, Bruno P

    2011-03-01

    Earthquakes can result in collapsed structures with the potential to entrap individuals. In some cases, people can survive entrapment for lengthy periods. The search for and rescue of entrapped people is resource intensive and competes with other postdisaster priorities. The decision to end search and rescue activities is often difficult and in some cases protracted. Medical providers participating in response may be consulted about the probability of continued survival in undiscovered trapped individuals. Historically, many espouse a rigid time frame for viability of entrapped living people (eg, 2 days, 4 days, 14 days). The available medical and engineering data and media reports demonstrate a wide variety in survival "time to rescue," arguing against the acceptance of a single time interval applicable to all incidents. This article presents historical evidence and reports from the 2010 Haiti earthquake. Factors that may contribute to survival after entombment are listed. Finally, a decision process for projecting viability that considers the critical factors in each incident rather than adhering to a single time frame for ceasing search and rescue activities is proposed.

  8. Simulating and analyzing engineering parameters of Kyushu Earthquake, Japan, 1997, by empirical Green function method

    NASA Astrophysics Data System (ADS)

    Li, Zongchao; Chen, Xueliang; Gao, Mengtan; Jiang, Han; Li, Tiefei

    2016-09-01

    Earthquake engineering parameters are very important in the engineering field, especially engineering anti-seismic design and earthquake disaster prevention. In this study, we focus on simulating earthquake engineering parameters by the empirical Green's function method. The simulated earthquake (MJMA6.5) occurred in Kyushu, Japan, 1997. Horizontal ground motion is separated as fault parallel and fault normal, in order to assess characteristics of two new direction components. Broadband frequency range of ground motion simulation is from 0.1 to 20 Hz. Through comparing observed parameters and synthetic parameters, we analyzed distribution characteristics of earthquake engineering parameters. From the comparison, the simulated waveform has high similarity with the observed waveform. We found the following. (1) Near-field PGA attenuates radically all around with strip radiation patterns in fault parallel while radiation patterns of fault normal is circular; PGV has a good similarity between observed record and synthetic record, but has different distribution characteristic in different components. (2) Rupture direction and terrain have a large influence on 90 % significant duration. (3) Arias Intensity is attenuating with increasing epicenter distance. Observed values have a high similarity with synthetic values. (4) Predominant period is very different in the part of Kyushu in fault normal. It is affected greatly by site conditions. (5) Most parameters have good reference values where the hypo-central is less than 35 km. (6) The GOF values of all these parameters are generally higher than 45 which means a good result according to Olsen's classification criterion. Not all parameters can fit well. Given these synthetic ground motion parameters, seismic hazard analysis can be performed and earthquake disaster analysis can be conducted in future urban planning.

  9. Reflections from the interface between seismological research and earthquake risk reduction

    NASA Astrophysics Data System (ADS)

    Sargeant, S.

    2012-04-01

    Scientific understanding of earthquakes and their attendant hazards is vital for the development of effective earthquake risk reduction strategies. Within the global disaster reduction policy framework (the Hyogo Framework for Action, overseen by the UN International Strategy for Disaster Reduction), the anticipated role of science and scientists is clear, with respect to risk assessment, loss estimation, space-based observation, early warning and forecasting. The importance of information sharing and cooperation, cross-disciplinary networks and developing technical and institutional capacity for effective disaster management is also highlighted. In practice, the degree to which seismological information is successfully delivered to and applied by individuals, groups or organisations working to manage or reduce the risk from earthquakes is variable. The challenge for scientists is to provide fit-for-purpose information that can be integrated simply into decision-making and risk reduction activities at all levels of governance and at different geographic scales, often by a non-technical audience (i.e. people without any seismological/earthquake engineering training). The interface between seismological research and earthquake risk reduction (defined here in terms of both the relationship between the science and its application, and the scientist and other risk stakeholders) is complex. This complexity is a function of a range issues that arise relating to communication, multidisciplinary working, politics, organisational practices, inter-organisational collaboration, working practices, sectoral cultures, individual and organisational values, worldviews and expectations. These factors can present significant obstacles to scientific information being incorporated into the decision-making process. The purpose of this paper is to present some personal reflections on the nature of the interface between the worlds of seismological research and risk reduction, and the

  10. Road Surfaces And Earthquake Engineering: A Theoretical And Experimental Study

    SciTech Connect

    Pratico, Filippo Giammaria

    2008-07-08

    As is well known, road surfaces greatly affect vehicle-road interaction. As a consequence, road surfaces have a paramount influence on road safety and pavement management systems. On the other hand, earthquakes produce deformations able to modify road surface structure, properties and performance. In the light of these facts, the main goal of this paper has been confined into the modelling of road surface before, during and after the seismic event. The fundamentals of road surface texture theory have been stated in a general formulation. Models in the field of road profile generation and theoretical properties, before, during and after the earthquake, have been formulated and discussed. Practical applications can be hypothesised in the field of vehicle-road interaction as a result of road surface texture derived from deformations and accelerations caused by seismic or similar events.

  11. Road Surfaces And Earthquake Engineering: A Theoretical And Experimental Study

    NASA Astrophysics Data System (ADS)

    Praticò, Filippo Giammaria

    2008-07-01

    As is well known, road surfaces greatly affect vehicle-road interaction. As a consequence, road surfaces have a paramount influence on road safety and pavement management systems. On the other hand, earthquakes produce deformations able to modify road surface structure, properties and performance. In the light of these facts, the main goal of this paper has been confined into the modelling of road surface before, during and after the seismic event. The fundamentals of road surface texture theory have been stated in a general formulation. Models in the field of road profile generation and theoretical properties, before, during and after the earthquake, have been formulated and discussed. Practical applications can be hypothesised in the field of vehicle—road interaction as a result of road surface texture derived from deformations and accelerations caused by seismic or similar events.

  12. Why is earthquake prediction research not progressing faster?

    NASA Astrophysics Data System (ADS)

    Wyss, Max

    2001-08-01

    As a physical phenomenon, earthquakes must be predictable to a certain degree. However, the problem is difficult, because the source volume inside the earth is inaccessible to direct observation and because the most important parameter, the stress level, cannot be measured directly. Also, seismology is such a young science that the cause of earthquakes was discovered in the 1960s only. Advanced seismograph networks as well as modern techniques to measure crustal deformations, such as the Global Positioning System (GPS) and the Synthetic Aperture Radar Interferometry technique (InSAR), have come on line only recently, and only in Japan are they deployed with the densities necessary for significant advances in the understanding of the rupture initiation process. In addition, no real program for earthquake prediction research exists in the United States, largely because funding agencies and peer reviewers shy away from a field in which unprofessional, but motivated individuals are active. Although claims of successful predictions are often not justified, a few correct predictions have been made. Most of these had time-windows of years, but some were accurate to days and allowed preparatory actions. To make significant progress, we must learn how to conduct rigorous science in a field where amateurs cannot be discouraged to venture. Leadership is necessary to raise the funding to an adequate level and to involve the best minds in this promising, potentially extremely rewarding, but controversial research topic.

  13. Pedagogical Training and Research in Engineering Education

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2008-01-01

    Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…

  14. Earthquake research for the safer siting of critical facilities

    SciTech Connect

    Cluff, J.L.

    1980-01-01

    The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

  15. Earthquake hazard mapping for lifeline engineering Coquitlam, British Columbia

    SciTech Connect

    Gohl, W.B.; Hawson, H.H.; Dou, H.; Nyberg, N.; Lee, R.; Wong, H.

    1995-12-31

    A series of maps plotted at a 1:15,000 scale were prepared to illustrate geotechnical aspects of seismic hazard for the 475 year return period earthquake event within the City of Coquitlam located in the Vancouver Lower Mainland of British Columbia. The maps were prepared to facilitate evaluation of lifeline damage potential within the City of Coquitlam (e.g. roads, sewers, water supply lines, oil/gas pipelines, power lines, compressor/pumping stations, water reservoirs, bridges, and rail lines) and to assist in evaluation of the impact of seismic ground shaking on new infrastructure.

  16. 76 FR 11821 - Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake Engineering..., including the use of appropriate automated, electronic, mechanical, or other technological collection... Investigators on Earthquake Engineering Research Awards Made by the National Science Foundation, 2003-2009....

  17. WEGENER: World Earthquake GEodesy Network for Environmental Hazard Research

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Zerbini, Susanna; Bastos, Luisa; Becker, Matthias; Meghraoui, Mustapha; Reilinger, Robert

    2013-04-01

    WEGENER is originally the acronym for Working Group of European Geoscientists for the Establishment of Networks for Earth-science Research. It was founded in March 1981 in response to an appeal delivered at the Journées Luxembourgeoises de Geodynamique in December 1980 to respond with a coordinated European proposal to a NASA Announcement of Opportunity inviting participation in the Crustal Dynamics and Earthquake Research Program. WEGENER, during the past 32 years, has always kept a close contact with the Agencies and Institutions responsible for the development and maintenance of the global space geodetic networks with the aim to make them aware of the scientific needs and outcomes of the project which might have an influence on the general science policy trends. WEGENER was serving as Inter-commission Project 3.2, between Commission 1 and Commission 3, of the International Association of Geodesy (IAG) until 2012. Since then, WEGENER project has became the Sub-commission 3.5 of IAG commission 3, namely Tectonics and Earthquake Geodesy. In this study, we briefly review the accomplishments of WEGENER as originally conceived and outline and justify the new focus of the WEGENER consortium. The remarkable and rapid evolution of the present state of global geodetic monitoring in regard to the precision of positioning capabilities (and hence deformation) and global coverage, the development of InSAR for monitoring strain with unprecedented spatial resolution, and continuing and planned data from highly precise satellite gravity and altimetry missions, encourage us to shift principal attention from mainly monitoring capabilities by a combination of space and terrestrial geodetic techniques to applying existing observational methodologies to the critical geophysical phenomena that threaten our planet and society. Our new focus includes developing an improved physical basis to mitigate earthquake, tsunami, and volcanic risks, and the effects of natural and anthropogenic

  18. Integrated Program of Multidisciplinary Education and Research in Mechanics and Physics of Earthquakes

    NASA Astrophysics Data System (ADS)

    Lapusta, N.

    2011-12-01

    Studying earthquake source processes is a multidisciplinary endeavor involving a number of subjects, from geophysics to engineering. As a solid mechanician interested in understanding earthquakes through physics-based computational modeling and comparison with observations, I need to educate and attract students from diverse areas. My CAREER award has provided the crucial support for the initiation of this effort. Applying for the award made me to go through careful initial planning in consultation with my colleagues and administration from two divisions, an important component of the eventual success of my path to tenure. Then, the long-term support directed at my program as a whole - and not a specific year-long task or subject area - allowed for the flexibility required for a start-up of a multidisciplinary undertaking. My research is directed towards formulating realistic fault models that incorporate state-of-the-art experimental studies, field observations, and analytical models. The goal is to compare the model response - in terms of long-term fault behavior that includes both sequences of simulated earthquakes and aseismic phenomena - with observations, to identify appropriate constitutive laws and parameter ranges. CAREER funding has enabled my group to develop a sophisticated 3D modeling approach that we have used to understand patterns of seismic and aseismic fault slip on the Sunda megathrust in Sumatra, investigate the effect of variable hydraulic properties on fault behavior, with application to Chi-Chi and Tohoku earthquake, create a model of the Parkfield segment of the San Andreas fault that reproduces both long-term and short-term features of the M6 earthquake sequence there, and design experiments with laboratory earthquakes, among several other studies. A critical ingredient in this research program has been the fully integrated educational component that allowed me, on the one hand, to expose students from different backgrounds to the

  19. MIT Space Engineering Research Center

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.

    1990-01-01

    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report.

  20. FY2012 Engineering Research & Technology Report

    SciTech Connect

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  1. Strong Earthquake Motion Estimates for the UCSB Campus, and Related Response of the Engineering 1 Building

    SciTech Connect

    Archuleta, R.; Bonilla, F.; Doroudian, M.; Elgamal, A.; Hueze, F.

    2000-06-06

    This is the second report on the UC/CLC Campus Earthquake Program (CEP), concerning the estimation of exposure of the U.C. Santa Barbara campus to strong earthquake motions (Phase 2 study). The main results of Phase 1 are summarized in the current report. This document describes the studies which resulted in site-specific strong motion estimates for the Engineering I site, and discusses the potential impact of these motions on the building. The main elements of Phase 2 are: (1) determining that a M 6.8 earthquake on the North Channel-Pitas Point (NCPP) fault is the largest threat to the campus. Its recurrence interval is estimated at 350 to 525 years; (2) recording earthquakes from that fault on March 23, 1998 (M 3.2) and May 14, 1999 (M 3.2) at the new UCSB seismic station; (3) using these recordings as empirical Green's functions (EGF) in scenario earthquake simulations which provided strong motion estimates (seismic syntheses) at a depth of 74 m under the Engineering I site; 240 such simulations were performed, each with the same seismic moment, but giving a broad range of motions that were analyzed for their mean and standard deviation; (4) laboratory testing, at U.C. Berkeley and U.C. Los Angeles, of soil samples obtained from drilling at the UCSB station site, to determine their response to earthquake-type loading; (5) performing nonlinear soil dynamic calculations, using the soil properties determined in-situ and in the laboratory, to calculate the surface strong motions resulting from the seismic syntheses at depth; (6) comparing these CEP-generated strong motion estimates to acceleration spectra based on the application of state-of-practice methods - the IBC 2000 code, UBC 97 code and Probabilistic Seismic Hazard Analysis (PSHA), this comparison will be used to formulate design-basis spectra for future buildings and retrofits at UCSB; and (7) comparing the response of the Engineering I building to the CEP ground motion estimates and to the design

  2. Introducing Students to Structural Dynamics and Earthquake Engineering

    ERIC Educational Resources Information Center

    Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel

    2010-01-01

    The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…

  3. The New Madrid earthquakes; an engineering-geologic interpretation of relict liquefaction features

    USGS Publications Warehouse

    Obermeier, Stephen F.

    1989-01-01

    Earthquake-induced sand blows and sand-filled fissures are present in a belt 40 to 60 km. wide that extends from near Charleston, Mo., southward to about 20 km. south of Marked Tree, Ark. This region of earthquake-induced sand blows and other liquefaction-related features is almost exclusively in the St. Francis Basin, an alluvial lowland that typically has a thin (2 to 8 m thick), clay-bearing topstratum underlain by about 30 to 60 m of unconsolidated sand (the substratum). Liquefaction of the substratum sands has made the sand blows. The sand blows and other liquefaction-related features on the ground surface in the St. Francis Basin are almost certainly results of the New Madrid earthquakes of 1811-12. In this report, geologic and engineering properties of the alluvium are used in combination with a map showing the bounds of the liquefaction-related features to locate approximately the epicentral zones for two of the major shocks: the earthquakes of December 16,1811, and February 7,1812. Properties used for the analysis included the Standard Penetration Resistance of the substratum sands, characteristics of the sand's grain size, thickness of the topstratum, and the thickness of the post-Tertiary alluvium. The method of analysis relies largely on the evaluation of the liquefaction potential of the sands. This is done by using the Standard Penetration Test blow counts and by devising a method that uses all possible combinations of liquefaction potential and a realistic relation between attenuation of earthquake accelerations and distance from the epicenter (or more correctly, energy-release center). Two interpreted 1811-12 energy-release centers generally agree well with zones of seismicity defined by modern, small earthquakes. Bounds on accelerations are placed at the limits of sand blows that were generated by the 1811-12 earthquakes in the St. Francis Basin. Conclusions show how the topstratum thickness, sand size of the substratum, and thickness of alluvium

  4. The Role of Science and Engineering in Response and Reconstruction Following the 2010 Haiti Earthquake (Invited)

    NASA Astrophysics Data System (ADS)

    Pennington, W. D.

    2010-12-01

    The 12 January 2010 Haiti earthquake (M7) provoked a strong interest in assistance, from people worldwide. Scientists and engineers offered their assistance in many forms, including the inspection of buildings and infrastructure to determine their safety for occupancy, and the monitoring of aftershock activity to better locate the causal fault and improve hazard analysis. Disaster specialists usually refer to four phases of emergency management: mitigation; preparedness; response; and recovery (or reconstruction). Mitigation and preparedness had been given low priority, given other challenges in the country, and the tasks associated with those phases must now be part of the recovery or reconstruction phase. At the same time as the humanitarian response effort was underway, the scientific and engineering communities developed plans for two general tasks: (1) assisting the community in their immediate needs; and (2) studying the effects and properties of the earthquake and its aftershocks. Some of the scientists and engineers had personal connections within Haiti, and organized their self-funded efforts through them; others followed a more formal route through funding agencies and international governmental protocol. The funded scientific studies and formal engineering analyses form the basis of this discussion. The engineering efforts spawned an independent review of damaged buildings, labeling them as appropriate either for occupancy, for occupancy after repairs, or for demolition. The scientific efforts led to a number of new observations and concerns over the actual causative fault and possible implications for future hazard. Both the scientific and engineering efforts are providing valuable information that is, and will continue to be, useful in improving our understanding of risk mitigation in Haiti and other places facing similar hazards. As the response phase gradually evolved into the recovery or reconstruction phase, the scientific and engineering

  5. Earthquakes for Kids

    MedlinePlus

    ... Hazards Data & Products Learn Monitoring Research Earthquakes for Kids Kid's Privacy Policy Earthquake Topics for Education FAQ Earthquake Glossary For Kids Prepare Google Earth/KML Files Earthquake Summary Posters ...

  6. Earthquakes, Cities, and Lifelines: lessons integrating tectonics, society, and engineering in middle school Earth Science

    NASA Astrophysics Data System (ADS)

    Toke, N.; Johnson, A.; Nelson, K.

    2010-12-01

    Earthquakes are one of the most widely covered geologic processes by the media. As a result students, even at the middle school level, arrive in the classroom with preconceptions about the importance and hazards posed by earthquakes. Therefore earthquakes represent not only an attractive topic to engage students when introducing tectonics, but also a means to help students understand the relationships between geologic processes, society, and engineering solutions. Facilitating understanding of the fundamental connections between science and society is important for the preparation of future scientists and engineers as well as informed citizens. Here, we present a week-long lesson designed to be implemented in five one hour sessions with classes of ~30 students. It consists of two inquiry-based mapping investigations, motivational presentations, and short readings that describe fundamental models of plate tectonics, faults, and earthquakes. The readings also provide examples of engineering solutions such as the Alaskan oil pipeline which withstood multi-meter surface offset in the 2002 Denali Earthquake. The first inquiry-based investigation is a lesson on tectonic plates. Working in small groups, each group receives a different world map plotting both topography and one of the following data sets: GPS plate motion vectors, the locations and types of volcanoes, the location of types of earthquakes. Using these maps and an accompanying explanation of the data each group’s task is to map plate boundary locations. Each group then presents a ~10 minute summary of the type of data they used and their interpretation of the tectonic plates with a poster and their mapping results. Finally, the instructor will facilitate a class discussion about how the data types could be combined to understand more about plate boundaries. Using student interpretations of real data allows student misconceptions to become apparent. Throughout the exercise we record student preconceptions

  7. Feminist Methodologies and Engineering Education Research

    ERIC Educational Resources Information Center

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  8. Ground Shaking and Earthquake Engineering Aspects of the M 8.8 Chile Earthquake of 2010 - Applications to Cascadia and Other Subduction Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Cassidy, J. F.; Boroschek, R.; Ventura, C.; Huffman, S.

    2010-12-01

    The M 8.8 Maule, Chile earthquake of February 27, 2010 was the fifth largest earthquake ever recorded by seismographs and provides a rare opportunity to compare strong shaking observations with earthquake rupture and damage patterns. This subduction earthquake was caused by up to 13 m of eastward slip of the Nazca plate beneath the South American plate. The rupture zone extended nearly 600 km along the Chile coast and covered the most populated region of the country - extending from south of Concepcion to just south of Valpraiso (near the latitude of Santiago). As this is the type of earthquake that is expected along the Cascadia subduction zone of western Canada and the U.S., and given that modern building codes and construction styles in Chile and Cascadia are very similar, the Canadian Association of Earthquake Engineers sent a team of 10 engineers and a seismologist to the earthquake zone to learn from this earthquake. In this presentation we focus on sites where strong ground shaking was recorded (the data available to date range from about 0.1g to 0.66g). The recorded waveforms showed strong shaking for up to 2-3 minutes, with two distinct bursts of energy that may correspond to two large asperities that ruptured. At many locations, particularly along the coast, the recorded shaking levels exceeded code values, especially at longer periods (~ 1 second and longer). There was significant damage to older hospitals and schools. Twenty-five hospitals were severely damaged (17 collapsed, 8 repairable) and in the Maule region, 45% of the hospital beds were lost. More than 2500 schools were damaged and more than 780,000 students were affected. Of about 12,000 bridges in Chile, only 40 were damaged, 20 severely (many of these were newer overpasses). Modern high-rise buildings, in general, did very well. Of the 10,000 3-storey or higher buildings constructed since 1985, only 4 collapsed, and 50-150 were badly damaged. This clearly demonstrates the importance of modern

  9. UNLV’s environmentally friendly Science and Engineering Building is monitored for earthquake shaking

    USGS Publications Warehouse

    Kalkan, Erol; Savage, Woody; Reza, Shahneam; Knight, Eric; Tian, Ying

    2013-01-01

    The University of Nevada Las Vegas’ (UNLV) Science and Engineering Building is at the cutting edge of environmentally friendly design. As the result of a recent effort by the U.S. Geological Survey’s National Strong Motion Project in cooperation with UNLV, the building is now also in the forefront of buildings installed with structural monitoring systems to measure response during earthquakes. This is particularly important because this is the first such building in Las Vegas. The seismic instrumentation will provide essential data to better understand the structural performance of buildings, especially in this seismically active region.

  10. Research on Earthquake Precursor in E-TEC: A Study on Land Surface Thermal Anomalies Using MODIS LST Product in Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, W. Y.; Wu, M. C.

    2014-12-01

    Taiwan has been known as an excellent natural laboratory characterized by rapid active tectonic rate and high dense seismicity. The Eastern Taiwan Earthquake Research Center (E-TEC) is established on 2013/09/24 in National Dong Hwa University and collaborates with Central Weather Bureau (CWB), National Center for Research on Earthquake Engineering (NCREE), National Science and Technology Center for Disaster Reduction (NCDR), Institute of Earth Science of Academia Sinica (IES, AS) and other institutions (NCU, NTU, CCU) and aims to provide an integrated platform for researchers to conduct the new advances on earthquake precursors and early warning for seismic disaster prevention in the eastern Taiwan, as frequent temblors are most common in the East Taiwan rift valley. E-TEC intends to integrate the multi-disciplinary observations and is equipped with stations to monitor a wide array of factors of quake precursors, including seismicity, GPS, strain-meter, ground water, geochemistry, gravity, electromagnetic, ionospheric density, thermal infrared remote sensing, gamma radiation etc, and will maximize the value of the data for researches with the range of monitoring equipment that enable to predict where and when the next devastated earthquake will strike Taiwan and develop reliable earthquake prediction models. A preliminary study on earthquake precursor using monthly Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) data before 2013/03/27 Mw6.2 Nantou earthquake in Taiwan is presented. Using the statistical analysis, the result shows the peak of the anomalous LST that exceeds a standard deviation of LST appeared on 2013/03/09 and became less or none anomalies observed on 2013/03/16 before the main-shock, which is in consist with the phenomenon observed by other researchers. This preliminary experimental result shows that the thermal anomalies reveal the possibility to associate surface thermal phenomena before the strong earthquakes.

  11. Principles for selecting earthquake motions in engineering design of large dams

    USGS Publications Warehouse

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    This report gives a synopsis of the various tools and techniques used in selecting earthquake ground motion parameters for large dams. It presents 18 charts giving newly developed relations for acceleration, velocity, and duration versus site earthquake intensity for near- and far-field hard and soft sites and earthquakes having magnitudes above and below 7. The material for this report is based on procedures developed at the Waterways Experiment Station. Although these procedures are suggested primarily for large dams, they may also be applicable for other facilities. Because no standard procedure exists for selecting earthquake motions in engineering design of large dams, a number of precautions are presented to guide users. The selection of earthquake motions is dependent on which one of two types of engineering analyses are performed. A pseudostatic analysis uses a coefficient usually obtained from an appropriate contour map; whereas, a dynamic analysis uses either accelerograms assigned to a site or specified respunse spectra. Each type of analysis requires significantly different input motions. All selections of design motions must allow for the lack of representative strong motion records, especially near-field motions from earthquakes of magnitude 7 and greater, as well as an enormous spread in the available data. Limited data must be projected and its spread bracketed in order to fill in the gaps and to assure that there will be no surprises. Because each site may have differing special characteristics in its geology, seismic history, attenuation, recurrence, interpreted maximum events, etc., as integrated approach gives best results. Each part of the site investigation requires a number of decisions. In some cases, the decision to use a 'least ork' approach may be suitable, simply assuming the worst of several possibilities and testing for it. Because there are no standard procedures to follow, multiple approaches are useful. For example, peak motions at

  12. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  13. Earthquake research: Premonitory models and the physics of crustal distortion

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. H.

    1981-01-01

    Seismic, gravity, and electrical resistivity data, believed to be most relevent to development of earthquake premonitory models of the crust, are presented. Magnetotellurics (MT) are discussed. Radon investigations are reviewed.

  14. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Earth Structures and Engineering Characterization of Ground Motion

    USGS Publications Warehouse

    Holzer, Thomas L.

    1998-01-01

    This chapter contains two papers that summarize the performance of engineered earth structures, dams and stabilized excavations in soil, and two papers that characterize for engineering purposes the attenuation of ground motion with distance during the Loma Prieta earthquake. Documenting the field performance of engineered structures and confirming empirically based predictions of ground motion are critical for safe and cost effective seismic design of future structures as well as the retrofitting of existing ones.

  15. Proceedings of the third U. S. national conference on earthquake engineering. Volume 3

    SciTech Connect

    Not Available

    1986-01-01

    This book compiles the papers presented in the conference on the subject of earthquake damage and its detection. The topics discussed are: Buckling of pipelines in seismic environments; earthquake hazards mitigation and emergency planning; study of earthquake effects in San Francisco; Seismic effects on storage tanks; earthquake hazard reduction techniques at petroleum-facilities in Japan; seismic effects of power distribution systems in Eastern United States; Mexico Earthquake and public policy regarding earthquakes.

  16. Engineering Research in Irish Economic Development

    ERIC Educational Resources Information Center

    Kelly, John

    2011-01-01

    This article summarizes the main findings and recommendations of a report published in December 2010 by the Irish Academy of Engineering (IAE). The report, representing the views of a committee of distinguished Irish engineers from a wide range of disciplines, addresses the role of engineering research in Ireland's economic development and the…

  17. Research Trends with Cross Tabulation Search Engine

    ERIC Educational Resources Information Center

    Yin, Chengjiu; Hirokawa, Sachio; Yau, Jane Yin-Kim; Hashimoto, Kiyota; Tabata, Yoshiyuki; Nakatoh, Tetsuya

    2013-01-01

    To help researchers in building a knowledge foundation of their research fields which could be a time-consuming process, the authors have developed a Cross Tabulation Search Engine (CTSE). Its purpose is to assist researchers in 1) conducting research surveys, 2) efficiently and effectively retrieving information (such as important researchers,…

  18. Engineering Research Centers: A Partnership for Competitiveness.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    This publication consists of colorful data sheets on the National Science Foundation's Engineering Research Centers (ERC) Program, a program designed to strengthen the competitiveness of U.S. industries by bringing new approaches and goals to academic engineering research and education. The main elements of the ERC mission are cross-disciplinary…

  19. Engineering and Applied Science, Recent Research Reports.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate of Engineering and Applied Science.

    This collection contains abstracts of technical reports and journal articles resulting from research funded by the National Science Foundation. Included in the collection are abstracts arranged in several categories: (1) electrical, computer, and systems engineering; (2) civil and mechanical engineering; (3) applied research; (4) problem-focused…

  20. P-12 Engineering Education Research and Practice

    ERIC Educational Resources Information Center

    Moore, Tamara; Richards, Larry G.

    2012-01-01

    This special issue of "Advances in Engineering Education" explores recent developments in P-12 Engineering Education. It includes papers devoted to research and practice, and reports some of the most exciting work in the field today. In our Call of Papers, we solicited two types of papers: Research papers and Practice papers. The former…

  1. Stochastic Modeling and Simulation of Near-Fault Ground Motions for Performance-Based Earthquake Engineering

    NASA Astrophysics Data System (ADS)

    Dabaghi, Mayssa Nabil

    A comprehensive parameterized stochastic model of near-fault ground motions in two orthogonal horizontal directions is developed. The proposed model uniquely combines several existing and new sub-models to represent major characteristics of recorded near-fault ground motions. These characteristics include near-fault effects of directivity and fling step; temporal and spectral non-stationarity; intensity, duration and frequency content characteristics; directionality of components, as well as the natural variability of motions for a given earthquake and site scenario. By fitting the model to a database of recorded near-fault ground motions with known earthquake source and site characteristics, empirical "observations" of the model parameters are obtained. These observations are used to develop predictive equations for the model parameters in terms of a small number of earthquake source and site characteristics. Functional forms for the predictive equations that are consistent with seismological theory are employed. A site-based simulation procedure that employs the proposed stochastic model and predictive equations is developed to generate synthetic near-fault ground motions at a site. The procedure is formulated in terms of information about the earthquake design scenario that is normally available to a design engineer. Not all near-fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed procedure produces pulselike and non-pulselike motions in the same proportions as they naturally occur among recorded near-fault ground motions for a given design scenario. The proposed models and simulation procedure are validated by several means. Synthetic ground motion time series with fitted parameter values are compared with the corresponding recorded motions. The proposed empirical predictive relations are compared to similar relations available in the literature. The overall simulation procedure is

  2. Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey. (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST)

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.; Erdik, M. O.; Takahashi, N.; Meral Ozel, N.; Hori, T.; Hori, M.; Kumamoto, K.; Kalafat, D.; Pinar, A.; Ozel, A. O.; Yalciner, A. C.; Nurlu, M.; Tanircan, G.; Citak, S.; Ariyoshi, K.; Necmioglu, O.

    2014-12-01

    Since 1900, around 90,000 people have lost their lives in 76 earthquakes occurred in Turkey, with a total affected population of ~7 million and direct estimated losses of ~25 billion USD. About half the lives lost were due to two earthquakes associated with the North Anatolian Fault in 1939 and 1999. During this time, seven large westward-migrating earthquakes created a 900-km-long continuous surface rupture along the fault zone from Erzincan to the Marmara Sea, stopping just short of Istanbul. Based on a time-dependent model that includes coseismic and postseismic effects of the 1999 Kocaeli earthquake with moment magnitude (Mw) = 7.4, Parsons concluded that the probability of an earthquake with Mw >7 in the Sea of Marmara near Istanbul is 35% to 70% in the next 30 years. This high probability is shared by Tokyo and San Francisco; however, the earthquake fragility of the pre-2000 building stock in Turkey is much higher than that of California or Japan. (Erdik, 2013). All of the arguments described above provide a sound basis for a Japanese-Turkish partnership enabling each partner to share experiences gained from past destructive earthquakes and prepare for expected large earthquakes. The SATREPS project aims to address this need, also focusing on the tsunami hazard. The project's main objectives are i) to develop disaster mitigation policies and strategies based on multidisciplinary research activities; ii) to provide decision makers with newly found knowledge for its implementation to the current regulations; iii) to organize disaster education programs in order to increase disaster awareness in Turkey; iv) to contribute the evaluation of active fault studies in Japan. To achieve successfully these objectives, 4 research groups have been set specializing on observations, simulations, civil engineering and disaster education and the results will be integrated for disaster mitigation in the Marmara region and disaster education in Turkey.

  3. From the rupture to the buildings: reconciling engineering evidences of the April 6 2009 L’Aquila earthquake (Mw 6.3)

    NASA Astrophysics Data System (ADS)

    Convertito, V.; Iervolino, I.; Calcaterra, D.; de Luca Tupputi, F.; Santo, A.; di Crescenzo, G.; Festa, G.; Zollo, A.; Silvestri, F.; D'Onofrio, A.; Simonelli, A.; Manfredi, G.; Verderame, G.; Ricci, P.; James, V.; Penna, A.; Sica, S.; Monaco, P.; Totani, G.

    2009-12-01

    The April 6 2009 L’Aquila earthquake (Mw 6.3) was the first case, in Italy, of a well recorded seismic event the near-source region of which is densely populated of engineering structures. In fact, because of the short distance from the fault (0km Joyner and Boore distance), the strong motion parameters relevant for the damage description may not be obtained by 1D attenuation relationships, which do not account for fault extension and fail in the fault vicinity. On the other hand, the large amount of data coming from strong-motion, regional and teleseismic records, GPS, SAR, surface geology, geotechnical profiles and detailed damage surveys provide an unique opportunity to investigate the effects of the rupture and propagation on the seismic response of buildings. Because in Italy the current state of earthquake engineering research and its interaction with bordering Earth Sciences may be considered advanced, also because it recently benefitted of large research programs funded by the governmental department for civil protection, a research group (AQ-FII) has been set up to apply an integrated approach to reconcile earthquake engineering evidences from the event. State-of-the art models are employed to simulate source, path, site effects and engineering systems’ response. This ambitious project has a threefold scope: (1) to confirm and/or explore seismologic near-fault effects and their modelling issues; (2) to deepen structural and geotechnical engineering understanding of near-source seismic response and observed variability at small scale (i.e., individual structure level); (3) to validate the comprehensive and multi-disciplinary approach to earthquake science invoked in the last decades. The AQ-FII group includes: a seismological component for the modelling of the source and radiation; a geological component characterizing the propagation features at large scale in the region (the Aterno valley); a geotechnical competency for the characterization of

  4. Engineering-geological model of the landslide of Güevejar (S Spain) reactivated by historical earthquakes

    NASA Astrophysics Data System (ADS)

    Delgado, José; García-Tortosa, Francisco J.; Garrido, Jesús; Giner, José; Lenti, Luca; López-Casado, Carlos; Martino, Salvatore; Peláez, José A.; Sanz de Galdeano, Carlos; Soler, Juan L.

    2015-04-01

    Landslides are a common ground effect induced by earthquakes of moderate to large magnitude. Most of them correspond to first-time instabilities induced by the seismic event, being the reactivation of pre-existing landslides less frequent in practice. The landslide of Güevejar (Granada province, S Spain) represents a case study of landslide that was reactivated, at least, two times by far field earthquakes: the Mw 8.7, 1755, Lisbon earthquake (with estimated epicentral distance of 680 km), and the Mw 6.5, 1884, Andalucia event (estimated epicentral distance of 45 km), but not by near field events of moderate magnitude (Mw < 6.0 and epicentral distances lower than 25 km). To study the seismic response of this landslide, a study has been conducted to elaborate an engineering-geological model. For this purpose, field work done included the elaboration of a detailed geological map (1:1000) of the landslide and surrounding areas, drilling of deep boreholes (80 m deep), down-hole measurement of both P and S wave velocities in the boreholes drilled, piezometric control of water table, MASW and ReMi profiles for determining the underlying structure of the sites tested (soil profile stratigraphy and the corresponding S-wave velocity of each soil level) and undisturbed sampling of the materials affected by the landslide. These samples were then tested in laboratory according to standard procedures for determination of both static (among which soil density, soil classification and shear strength) and dynamic properties (degradation curves for shear modulus and damping ratio with shear strain) of the landslide-involved materials. The model proposed corresponds to a complex landslide that combines a rototranslational mechanism with an earth-flow at its toe, which is characterized by a deep (> 50 m) sliding surface. The engineering-geological model constitutes the first step in an ongoing research devoted to understand how it could be reactivated during far field events. The

  5. Applications of research from the U.S. Geological Survey program, assessment of regional earthquake hazards and risk along the Wasatch Front, Utah

    USGS Publications Warehouse

    Gori, Paula L.

    1993-01-01

    INTERACTIVE WORKSHOPS: ESSENTIAL ELEMENTS OF THE EARTHQUAKE HAZARDS RESEARCH AND REDUCTION PROGRAM IN THE WASATCH FRONT, UTAH: Interactive workshops provided the forum and stimulus necessary to foster collaboration among the participants in the multidisciplinary, 5-yr program of earthquake hazards reduction in the Wasatch Front, Utah. The workshop process validated well-documented social science theories on the importance of interpersonal interaction, including interaction between researchers and users of research to increase the probability that research will be relevant to the user's needs and, therefore, more readily used. REDUCING EARTHQUAKE HAZARDS IN UTAH: THE CRUCIAL CONNECTION BETWEEN RESEARCHERS AND PRACTITIONERS: Complex scientific and engineering studies must be translated for and transferred to nontechnical personnel for use in reducing earthquake hazards in Utah. The three elements needed for effective translation, likelihood of occurrence, location, and severity of potential hazards, and the three elements needed for effective transfer, delivery, assistance, and encouragement, are described and illustrated for Utah. The importance of evaluating and revising earthquake hazard reduction programs and their components is emphasized. More than 30 evaluations of various natural hazard reduction programs and techniques are introduced. This report was prepared for research managers, funding sources, and evaluators of the Utah earthquake hazard reduction program who are concerned about effectiveness. An overview of the Utah program is provided for those researchers, engineers, planners, and decisionmakers, both public and private, who are committed to reducing human casualties, property damage, and interruptions of socioeconomic systems. PUBLIC PERCEPTIONS OF THE IMPLEMENTATION OF EARTHQUAKE MITIGATION POLICIES ALONG THE WASATCH FRONT IN UTAH: The earthquake hazard potential along the Wasatch Front in Utah has been well defined by a number of scientific and

  6. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  7. Research of Hydro-Geological Precursors of Earthquakes in Armenia

    NASA Astrophysics Data System (ADS)

    Pashayan, R.

    2007-12-01

    The observations of hydro-geological regime of underground waters in observed boreholes began in Armenia in 1986. Now these work is concentrated in National Seismic Service. For a long time observations are carried out studying several parameters (debit, temperature, chemical and gas composition) in several deposits of carbon mineral waters of Armenia. The interpretation of materials shows that that a number of strong and medium-strength earthquakes are accompanied by anomal changes in the level of underground waters. Regarding mineral waters, in connection with earthquakes some parameters are immediately changed: debit, temperature, chemical and gas composition. The study of hydrogeodynamic characteristics of precursors specify that the quantity of registered hydrogeodynamic precursors decreases with the increase of epicentrical distance. The majority of precursors is registered at the distance of 200 km from epicenter. There is a tendency of gradual increase of time and amplitude of a precursor of an earthquake depending on the rise of magnitude and epicentral distance. The behaviour of hydrogeodynamic precursors depends on the angle between the faults, to which this or that borehole reaches; with increase of this angle the deformation in the zone of the fault during the preparation of earthquakes is stronger, than in terms of small angles. 1. S1 2. Earthquake processes, Precursors and Forecasts 3. Garni Geophysical Observatory of the National Academy of Sciences of Armenia, 375019, Yerevan, Republic of Armenia, email: hakhleon@sci.am 4. O 5. 10808801 6. Artavazd Payment Type: select 'Purchase Order' PO Number: AGU WAIVER Billing Address: Enter Your Institution City: Enter Your City Country Code: Enter Your Country Name: Enter Your Name Phone: Enter Your Telephone Number

  8. Directions in automotive engine research and development

    SciTech Connect

    Samuels, G.

    1980-01-01

    The advent of high fuel costs and automotive fuel economy and emission regulations has cast doubt on the economic superiority and even the technical feasibility of conventional spark ignition and diesel engines, and has opened the field to other concepts. The emission regulations and their effect on the design and efficiency of conventional engines are reviewed, the research and development effort to improve the performance of conventional engines and to develop advanced engines is discussed, and the current status of these engines is presented.

  9. Virtual earthquake engineering laboratory with physics-based degrading materials on parallel computers

    NASA Astrophysics Data System (ADS)

    Cho, In Ho

    -scale reinforced concrete (RC) structures under cyclic loading are proposed. Quantitative comparison of state-of-the-art parallel strategies, in terms of factorization, had been carried out, leading to the problem-optimized solver, which is successfully embracing the penalty method and banded nature. Particularly, the penalty method employed imparts considerable smoothness to the global response, which yields a practical superiority of the parallel triangular system solver over other advanced solvers such as parallel preconditioned conjugate gradient method. Other salient issues on parallelization are also addressed. The parallel platform established offers unprecedented access to simulations of real-scale structures, giving new understanding about the physics-based mechanisms adopted and probabilistic randomness at the entire system level. Particularly, the platform enables bold simulations of real-scale RC structures exposed to cyclic loading---H-shaped wall system and 4-story T-shaped wall system. The simulations show the desired capability of accurate prediction of global force-displacement responses, postpeak softening behavior, and compressive buckling of longitudinal steel bars. It is fascinating to see that intrinsic randomness of the 3d interlocking model appears to cause "localized" damage of the real-scale structures, which is consistent with reported observations in different fields such as granular media. Equipped with accuracy, stability and scalability as demonstrated so far, the parallel platform is believed to serve as a fertile ground for the introducing of further physical mechanisms into various research fields as well as the earthquake engineering community. In the near future, it can be further expanded to run in concert with reliable FEA programs such as FRAME3d or OPENSEES. Following the central notion of "multiscale" analysis technique, actual infrastructures exposed to extreme natural hazard can be successfully tackled by this next generation analysis

  10. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  11. A Bibliometric Analysis of Climate Engineering Research

    NASA Astrophysics Data System (ADS)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  12. Feminist methodologies and engineering education research

    NASA Astrophysics Data System (ADS)

    Beddoes, Kacey

    2013-03-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory. The paper begins with a literature review that covers a broad range of topics featured in the literature on feminist methodologies. Next, data from interviews with engineering educators and researchers who have engaged with feminist methodologies are presented. The ways in which feminist methodologies shape their research topics, questions, frameworks of analysis, methods, practices and reporting are each discussed. The challenges and barriers they have faced are then discussed. Finally, the benefits of further and broader engagement with feminist methodologies within the engineering education community are identified.

  13. 2001 Bhuj, India, earthquake engineering seismoscope recordings and Eastern North America ground-motion attenuation relations

    USGS Publications Warehouse

    Cramer, C.H.; Kumar, A.

    2003-01-01

    Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.

  14. Ten recommendations for software engineering in research.

    PubMed

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  15. Summaries of FY 1994 engineering research

    SciTech Connect

    Not Available

    1994-12-01

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists.

  16. ERTS Applications in earthquake research and mineral exploration in California

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M.; Silverstein, J.

    1973-01-01

    Examples that ERTS imagery can be effectively utilized to identify, locate, and map faults which show geomorphic evidence of geologically recent breakage are presented. Several important faults not previously known have been identified. By plotting epicenters of historic earthquakes in parts of California, Sonora, Mexico, Arizona, and Nevada, we found that areas known for historic seismicity are often characterized by abundant evidence of recent fault and crustal movements. There are many examples of seismically quiet areas where outstanding evidence of recent fault movements is observed. One application is clear: ERTS-1 imagery could be effectively utilized to delineate areas susceptible to earthquake recurrence which, on the basis of seismic data alone, may be misleadingly considered safe. ERTS data can also be utilized in planning new sites in the geophysical network of fault movement monitoring and strain and tilt measurements.

  17. FY08 Engineering Research and Technology Report

    SciTech Connect

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  18. The NASA hypersonic research engine program

    NASA Technical Reports Server (NTRS)

    Rubert, Kennedy F.; Lopez, Henry J.

    1992-01-01

    An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.

  19. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  20. Stirling engine research at Argonne National Laboratory

    SciTech Connect

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  1. FY06 Engineering Research and Technology Report

    SciTech Connect

    Minichino, C; Alves, S W; Anderson, A T; Bennett, C V; Brown, C G; Brown, W D; Chinn, D; Clague, D; Clark, G; Cook, E G; Davidson, J C; Deri, R J; Dougherty, G; Fasenfest, B J; Florando, J N; Fulkerson, E S; Haugen, P; Heebner, J E; Hickling, T; Huber, R; Hunter, S L; Javedani, J; Kallman, J S; Kegelmeyer, L M; Koning, J; Kosovic, B; Kroll, J J; LeBlanc, M; Lin, J; Mariella, R P; Miles, R; Nederbragt, W W; Ness, K D; Nikolic, R J; Paglieroni, D; Pannu, S; Pierce, E; Pocha, M D; Poland, D N; Puso, M A; Quarry, M J; Rhee, M; Romero, C E; Rose, K A; Sain, J D; Sharpe, R M; Spadaccini, C M; Stolken, J S; Van Buuren, A; Wemhoff, A; White, D; Yao, Y

    2007-01-22

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2006. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out primarily through two internal programs: the Laboratory Directed Research and Development (LDRD) program and the technology base, or ''Tech Base'', program. LDRD is the vehicle for creating technologies and competencies that are cutting-edge, or require discovery-class research to be fully understood. Tech Base is used to prepare those technologies to be more broadly applicable to a variety of Laboratory needs. The term commonly used for Tech Base projects is ''reduction to practice''. Thus, LDRD reports have a strong research emphasis, while Tech Base reports document discipline-oriented, core competency activities. This report combines the LDRD and Tech Base summaries into one volume, organized into six thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Precision Engineering; Engineering Systems for Knowledge and Inference; and Energy Manipulation.

  2. Mechanical Engineering Department engineering research: Annual report, FY 1986

    SciTech Connect

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O.

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

  3. NASA's Hypersonic Research Engine Project: A review

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1994-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.

  4. The Electronic Encyclopedia of Earthquakes

    NASA Astrophysics Data System (ADS)

    Benthien, M.; Marquis, J.; Jordan, T.

    2003-12-01

    The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will

  5. The Himalayan Seismogenic Zone: A New Frontier for Earthquake Research

    NASA Astrophysics Data System (ADS)

    Brown, Larry; Hubbard, Judith; Karplus, Marianne; Klemperer, Simon; Sato, Hiroshi

    2016-04-01

    The Mw 7.8 Gorkha, Nepal, earthquake that occurred on April 25 of this year was a dramatic reminder that great earthquakes are not restricted to the large seismogenic zones associated with subduction of oceanic lithosphere. Not only does Himalayan seismogenesis represents important scientific and societal issues in its own right, it constitutes a reference for evaluating general models of the earthquake cycle derived from the studies of the oceanic subduction systems. This presentation reports results of a Mini-Workshop sponsored by the GeoPrisms project that was held in conjunction with the American Geophysical Union on December 15, 2015, designed to organize a new initiative to study the great Himalaya earthquake machine. The Himalayan seismogenic zone shares with its oceanic counterparts a number of fundamental questions, including: a) What controls the updip and downdip limits of rupture? b) What controls the lateral segmentation of rupture zones (and hence magnitude)? c) What is the role of fluids in facilitating slip and or rupture? d) What nucleates rupture (e..g. asperities?)? e) What physical properties can be monitored as precursors to future events? f) How effectively can the radiation pattern of future events be modeled? g) How can a better understanding of Himalayan rupture be translated into more cost effective preparations for the next major event in this region? However the underthrusting of continental, as opposed to oceanic, lithosphere in the Himalayas frames these questions in a very different context: h) How does the greater thickness and weaker rheology of continental crust/lithosphere affect locking of the seismogenic zone? i) How does the different thermal structure of continental vs oceanic crust affect earthquake geodynamics? j) Are fluids a significant factor in intercontinental thrusting? k) How does the basement morphology of underthrust continental crust affect locking/creep, and how does it differ from the oceanic case? l) What is the

  6. Summaries of FY 1991 engineering research

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the BES Engineering Research Program for fiscal year 1991; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) delineates the six Divisions within the OER Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1991. Major topics covered include fluid mechanics, fracture mechanics, chemical engineering and mechanical engineering.

  7. 77 FR 14462 - Research, Engineering and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of Meeting. Name: Research, Engineering &...

  8. 75 FR 14243 - Research, Engineering And Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Federal Aviation Administration Research, Engineering And Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. Agency: Federal Aviation Administration. Action: Notice of Meeting. Name: Research, Engineering &...

  9. 76 FR 12404 - Research, Engineering and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. AGENCY: Federal Aviation Administration. ACTION: Notice of meeting. Name: Research, Engineering &...

  10. 76 FR 44648 - Research, Engineering and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of meeting. Name: Research, Engineering &...

  11. 78 FR 16357 - Research, Engineering and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development Advisory Committee AGENCY: Federal... Research, Engineering and Development (R,E&D) Advisory Committee. Name: Research, Engineering &...

  12. 77 FR 54648 - Research, Engineering and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R, E&D) Advisory Committee. AGENCY: Federal Aviation Administration. ACTION: Notice of Meeting. NAME: Research, Engineering &...

  13. Journal of the Chinese Institute of Engineers. Special Issue: Commemoration of Chi-Chi Earthquake (II)

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Contents include the following: Deep Electromagnetic Images of Seismogenic Zone of the Chi-Chi (Taiwan) Earthquake; New Techniques for Stress-Forecasting Earthquakes; Aspects of Characteristics of Near-Fault Ground Motions of the 1999 Chi-Chi (Taiwan) Earthquake; Liquefaction Damage and Related Remediation in Wufeng after the Chi-Chi Earthquake; Fines Content Effects on Liquefaction Potential Evaluation for Sites Liquefied during Chi-Chi Earthquake 1999; Damage Investigation and Liquefaction Potential Analysis of Gravelly Soil; Dynamic Characteristics of Soils in Yuan-Lin Liquefaction Area; A Preliminary Study of Earthquake Building Damage and Life Loss Due to the Chi-Chi Earthquake; Statistical Analyses of Relation between Mortality and Building Type in the 1999 Chi-Chi Earthquake; Development of an After Earthquake Disaster Shelter Evaluation Model; Posttraumatic Stress Reactions in Children and Adolescents One Year after the 1999 Taiwan Chi-Chi Earthquake; Changes or Not is the Question: the Meaning of Posttraumatic Stress Reactions One Year after the Taiwan Chi-Chi Earthquake.

  14. Research of Earthquake Potential from Active Fault Observation in Taiwan

    NASA Astrophysics Data System (ADS)

    Chien-Liang, C.; Hu, J. C.; Liu, C. C.; En, C. K.; Cheng, T. C. T.

    2015-12-01

    We utilize GAMIT/GLOBK software to estimate the precise coordinates for continuous GPS (CGPS) data of Central Geological Survey (CGS, MOEA) in Taiwan. To promote the software estimation efficiency, 250 stations are divided by 8 subnets which have been considered by station numbers, network geometry and fault distributions. Each of subnets include around 50 CGPS and 10 international GNSS service (IGS) stations. After long period of data collection and estimation, a time series variation can be build up to study the effect of earthquakes and estimate the velocity of stations. After comparing the coordinates from campaign-mode GPS sites and precise leveling benchmarks with the time series from continuous GPS stations, the velocity field is consistent with previous measurement which show the reliability of observation. We evaluate the slip rate and slip deficit rate of active faults in Taiwan by 3D block model DEFNODE. First, to get the surface fault traces and the subsurface fault geometry parameters, and then establish the block boundary model of study area. By employing the DEFNODE technique, we invert the GPS velocities for the best-fit block rotate rates, long term slip rates and slip deficit rates. Finally, the probability analysis of active faults is to establish the flow chart of 33 active faults in Taiwan. In the past two years, 16 active faults in central and northern Taiwan have been assessed to get the recurrence interval and the probabilities for the characteristic earthquake occurred in 30, 50 and 100 years.

  15. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  16. Biomedical engineering for health research and development.

    PubMed

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  17. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  18. Reengineering Biomedical Translational Research with Engineering Ethics.

    PubMed

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes.

  19. Reengineering Biomedical Translational Research with Engineering Ethics.

    PubMed

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes. PMID:24928281

  20. Earthquakes in Arkansas and vicinity 1699-2010

    USGS Publications Warehouse

    Dart, Richard L.; Ausbrooks, Scott M.

    2011-01-01

    This map summarizes approximately 300 years of earthquake activity in Arkansas. It is one in a series of similar State earthquake history maps. Work on the Arkansas map was done in collaboration with the Arkansas Geological Survey. The earthquake data plotted on the map are from several sources: the Arkansas Geological Survey, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Mississippi Department of Environmental Quality. In addition to earthquake locations, other materials presented include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Arkansas and parts of adjacent states. Arkansas has undergone a number of significant felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Arkansas and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  1. MIT Space Engineering Research Center testbed programs

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.

    1991-01-01

    The Space Engineering Research Center (SERC) at M.I.T., started in July 1988, has completed two and one-half years of research. This Semi-Annual Report presents annotated viewgraph material presented at the January 1991 Steering Committee and Technical Representative Review. The objective of the Space Engineering Research Center is to develop and disseminate a unified technology of controlled structures. There has been continued evolution of the concept of intelligent structures (including in this past year the first successful embedding of a microelectronic component into a structural element).

  2. NASA Propulsion Engineering Research Center, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center

  3. NASA Propulsion Engineering Research Center, volume 1

    NASA Astrophysics Data System (ADS)

    1993-11-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center

  4. NASA's new university engineering space research programs

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.

    1988-01-01

    The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.

  5. Council of Energy Engineering Research. Final Report

    SciTech Connect

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  6. Summaries of FY 1985 engineering research

    SciTech Connect

    Not Available

    1985-12-01

    Following an overview of the Engineering Research program, brief summaries are given for each of the 100 individual projects. Each summary gives the name of the institution carrying out the work, names of the investigators, project title, brief description, funding level for fiscal year 1985, year in which the project began, expected duration, and a budget activity number. The technical areas addressed by the program are, broadly, mechanical sciences, systems sciences, and engineering analysis. (LEW)

  7. Electronics Engineering Research. Final report, FY 1979

    SciTech Connect

    Weissenberger, S.

    1980-01-01

    Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80.

  8. Scientific Research Database of the 2008 Ms8.0 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Liang, C.; Yang, Y.; Yu, Y.

    2013-12-01

    Nearly 5 years after the 2008 Ms8.0 Wenchuan Earthquake, the Ms7.0 Lushan earthquake stroke 70km away along the same fault system. Given the tremendous life loss and property damages as well as the short time and distance intervals between the two large magnitude events, the scientific probing into their causing factors and future seismic activities in the nearby region will continue to be in the center of earthquake research in China and even the world for years to come. In the past five years, scientists have made significant efforts to study the Wenchuan earthquake from various aspects using different datasets and methods. Their studies cover a variety of topics including seismogenic environment, earthquake precursors, rupture process, co-seismic phenomenon, hazard relief, reservoir induced seismicity and more. These studies have been published in numerous journals in Chinese, English and many other languages. In addition, 54 books regarding to this earthquake have been published. The extremely diversified nature of all publications makes it very difficult and time-consuming, if not impossible, to sort out information needed by individual researcher in an efficient way. An information platform that collects relevant scientific information and makes them accessible in various ways can be very handy. With this mission in mind, the Earthquake Research Group in the Chengdu University of Technology has developed a website www.wceq.org to attack this target: (1) articles published by major journals and books are recorded into a database. Researchers will be able to find articles by topics, journals, publication dates, authors and keywords e.t.c by a few clicks; (2) to fast track the latest developments, researchers can also follow upon updates in the current month, last 90days, 180 days and 365 days by clicking on corresponding links; (3) the modern communication tools such as Facebook, Twitter and their Chinese counterparts are accommodated in this site to share

  9. Reconnaissance engineering geology of the Metlakatla area, Annette Island, Alaska, with emphasis on evaluation of earthquakes and other geologic hazards

    USGS Publications Warehouse

    Yehle, Lynn A.

    1977-01-01

    A program to study the engineering geology of most larger Alaska coastal communities and to evaluate their earthquake and other geologic hazards was started following the 1964 Alaska earthquake; this report about the Metlakatla area, Annette Island, is a product of that program. Field-study methods were of a reconnaissance nature, and thus the interpretations in the report are tentative. Landscape of the Metlakatla Peninsula, on which the city of Metlakatla is located, is characterized by a muskeg-covered terrane of very low relief. In contrast, most of the rest of Annette Island is composed of mountainous terrane with steep valleys and numerous lakes. During the Pleistocene Epoch the Metlakatla area was presumably covered by ice several times; glaciers smoothed the present Metlakatla Peninsula and deeply eroded valleys on the rest. of Annette Island. The last major deglaciation was completed probably before 10,000 years ago. Rebound of the earth's crust, believed to be related to glacial melting, has caused land emergence at Metlakatla of at least 50 ft (15 m) and probably more than 200 ft (61 m) relative to present sea level. Bedrock in the Metlakatla area is composed chiefly of hard metamorphic rocks: greenschist and greenstone with minor hornfels and schist. Strike and dip of beds are generally variable and minor offsets are common. Bedrock is of late Paleozoic to early Mesozoic age. Six types of surficial geologic materials of Quaternary age were recognized: firm diamicton, emerged shore, modern shore and delta, and alluvial deposits, very soft muskeg and other organic deposits, and firm to soft artificial fill. A combination map unit is composed of bedrock or diamicton. Geologic structure in southeastern Alaska is complex because, since at least early Paleozoic time, there have been several cycles of tectonic deformation that affected different parts of the region. Southeastern Alaska is transected by numerous faults and possible faults that attest to major

  10. Seismic design and engineering research at the U.S. Geological Survey

    USGS Publications Warehouse

    1988-01-01

    The Engineering Seismology Element of the USGS Earthquake Hazards Reduction Program is responsible for the coordination and operation of the National Strong Motion Network to collect, process, and disseminate earthquake strong-motion data; and, the development of improved methodologies to estimate and predict earthquake ground motion.  Instrumental observations of strong ground shaking induced by damaging earthquakes and the corresponding response of man-made structures provide the basis for estimating the severity of shaking from future earthquakes, for earthquake-resistant design, and for understanding the physics of seismologic failure in the Earth's crust.

  11. Summaries of FY 1993 Engineering Research

    SciTech Connect

    Not Available

    1993-09-01

    This report documents the BES Engineering Research Program for fiscal year 1993; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) on the next page delineates the six Divisions within the OER Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1993. The summaries received have been edited if necessary.

  12. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  13. Analog earthquakes

    SciTech Connect

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  14. Summaries of FY 1996 engineering research

    SciTech Connect

    1997-06-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1996; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report the principal investigators were asked to submit summaries for their projects that were specifically applicable to fiscal year 1996. The summaries received have been edited if necessary, but the press for timely publication made it impractical to have the investigators review and approve the revised summaries prior to publication. For more information about a given project, it is suggested that the investigators be contacted directly.

  15. Tissue engineering: from research to dental clinics

    PubMed Central

    Rosa, Vinicius; Bona, Alvaro Della; Cavalcanti, Bruno Neves; Nör, Jacques Eduardo

    2013-01-01

    Tissue engineering is an interdisciplinary field that combines the principles of engineering, material and biological sciences toward the development of therapeutic strategies and biological substitutes that restore, maintain, replace or improve biological functions. The association of biomaterials, stem cells, growth and differentiation factors have yielded the development of new treatment opportunities in most of the biomedical areas, including Dentistry. The objective of this paper is to present the principles underlying tissue engineering and the current scenario, the challenges and the perspectives of this area in Dentistry. Significance The growth of tissue engineering as a research field have provided a novel set of therapeutic strategies for biomedical applications. The emerging knowledge arisen from studies in the dental area may translate into new methods for caring or improving the alternatives used to treat patients in the daily clinic. PMID:22240278

  16. Earthquakes in Mississippi and vicinity 1811-2010

    USGS Publications Warehouse

    Dart, Richard L.; Bograd, Michael B.E.

    2011-01-01

    This map summarizes two centuries of earthquake activity in Mississippi. Work on the Mississippi map was done in collaboration with the Mississippi Department of Environmental Quality, Office of Geology. The earthquake data plotted on the map are from several sources: the Mississippi Department of Environmental Quality, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Arkansas Geological Survey. In addition to earthquake locations, other materials include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Mississippi and parts of adjacent States. Mississippi has undergone a number of felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Mississippi and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  17. Defeating Earthquakes

    NASA Astrophysics Data System (ADS)

    Stein, R. S.

    2012-12-01

    our actions. Using these global datasets will help to make the model as uniform as possible. The model must be built by scientists in the affected countries with GEM's support, augmented by their insights and data. The model will launch in 2014; to succeed it must be open, international, independent, and continuously tested. But the mission of GEM is not just the likelihood of ground shaking, but also gaging the economic and social consequences of earthquakes, which greatly amplify the losses. For example, should the municipality of Istanbul retrofit schools, or increase its insurance reserves and recovery capacity? Should a homeowner in a high-risk area move or strengthen her building? This is why GEM is a public-private partnership. GEM's fourteen public sponsors and eight non-governmental organization members are standing for the developing world. To extend GEM into the financial world, we draw upon the expertise of companies. GEM's ten private sponsors have endorsed the acquisition of public knowledge over private gain. In a competitive world, this is a courageous act. GEM is but one link in a chain of preparedness: from earth science and engineering research, through groups like GEM, to mitigation, retrofit or relocate decisions, building codes and insurance, and finally to prepared hospitals, schools, and homes. But it is a link that our community can make strong.

  18. NASA's engineering research centers and interdisciplinary education

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  19. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  20. Federal Funding of Engineering Research and Development, 1980-1984.

    ERIC Educational Resources Information Center

    American Society of Mechanical Engineers, Washington, DC.

    Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…

  1. NASA Propulsion Engineering Research Center, Volume 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the second volume in the 1994 annual report for the NASA Propulsion Engineering Research Center's Sixth Annual Symposium. This conference covered: (1) Combustors and Nozzles; (2) Turbomachinery Aero- and Hydro-dynamics; (3) On-board Propulsion systems; (4) Advanced Propulsion Applications; (5) Vaporization and Combustion; (6) Heat Transfer and Fluid Mechanics; and (7) Atomization and Sprays.

  2. Engineering Education in Research-Intensive Universities

    ERIC Educational Resources Information Center

    Alpay, E.; Jones, M. E.

    2012-01-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as…

  3. 77 FR 52701 - Board on Coastal Engineering Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: September 18-20, 2012. Place: Starboard... coastal engineering field and the objectives of the Chief of Engineers. Proposed Agenda: The goal of...

  4. Tohoku Earthquake-associated Marine Sciences: the research project for the Great East Japan Earthquake on March 11, 2011

    NASA Astrophysics Data System (ADS)

    Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Hara, Motoyuki; Nagata, Toshi; Fujikura, Kasunori; Sonoda, Akira

    2015-04-01

    At 2:46 pm on March 11, 2011, a huge earthquake (M 9.0) occurred off the Pacific coast of Tohoku Region, Japan. The subsequent Tsunamis hit the coasts and seriously damaged fishing villages and towns in the area. Tohoku Region faces Northwestern Pacific where is one of the most productive oceans on the Earth. Then, what happened to the marine ecosystems in the Tohoku Region? What happened to the fishery bioresources? What is the mechanism to sustain high productivity in the Region? Is the ecosystem restoring after 4 years? What is required for the recovery of fisheries in the area? In order to answer these questions, the 10 years research project, TEAMS (Tohoku Ecosystem-Associated Marine Sciences) was launched in January 2012 funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) to conduct comprehensive research on the area. Tohoku University (TU), Atmosphere and Ocean Research Institute, the University of Tokyo (AORIUT), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), and 25 other institutions are conducting research for this project in close association with local government and fishery people. Currently, approximately 400 people (200 scientists, 160 students and others) covering physical, chemical, biological, and geological sciences including modeling take part in the project from all over Japan. MEXT also supports TEAMS by constructing R/V Shinsei Maru in 2013 for the oceanic investigations in the region. In this report, the overview of the ecosystem before and after the disaster, major findings and challenges of TEAMS will be described.

  5. Scientific, Engineering, and Financial Factors of the 1989 Human-Triggered Newcastle Earthquake in Australia

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2006-12-01

    This presentation emphasizes the dualism of natural resources exploitation and economic growth versus geomechanical pollution and risks of human-triggered earthquakes. Large-scale geoengineering activities, e.g., mining, reservoir impoundment, oil/gas production, water exploitation or fluid injection, alter pre-existing lithostatic stress states in the earth's crust and are anticipated to trigger earthquakes. Such processes of in- situ stress alteration are termed geomechanical pollution. Moreover, since the 19th century more than 200 earthquakes have been documented worldwide with a seismic moment magnitude of 4.5earthquakes increased rapidly. An example of a human-triggered earthquake is the 1989 Newcastle event in Australia that was a result of almost 200 years of coal mining and water over-exploitation, respectively. This earthquake, an Mw=5.6 event, caused more than 3.5 billion U.S. dollars in damage (1989 value) and was responsible for Australia's first and only to date earthquake fatalities. It is therefore thought that, the Newcastle region tends to develop unsustainably if comparing economic growth due to mining and financial losses of triggered earthquakes. An hazard assessment, based on a geomechanical crust model, shows that only four deep coal mines were responsible for triggering this severe earthquake. A small-scale economic risk assessment identifies that the financial loss due to earthquake damage has reduced mining profits that have been re-invested in the Newcastle region for over two centuries beginning in 1801. Furthermore, large-scale economic risk assessment reveals that the financial loss is equivalent to 26% of the Australian Gross Domestic Product (GDP) growth in 1988/89. These costs account for 13% of the total costs of all natural disasters (e.g., flooding, drought, wild fires) and 94% of the costs of all

  6. Engineering education in research-intensive universities

    NASA Astrophysics Data System (ADS)

    Alpay, E.; Jones, M. E.

    2012-12-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as the need to improve faculty motivation towards teaching, broaden the workplace skills of students, widen employer engagement in teaching and raise the relevance and value of scholarly activity in the discipline of engineering education. Examples of good practice used to address such issues are reported.

  7. 78 FR 13030 - Board on Coastal Engineering Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: March 18-19, 2013. Place: Conference Room... development of research projects in consonance with the needs of the coastal engineering field and...

  8. 76 FR 37084 - Board on Coastal Engineering Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: July 26-28, 2011. Place: Crowne Jewel... development of research projects in consonance with the needs of the coastal engineering field and...

  9. Students' Changing Images of Engineering and Engineers. Research Brief

    ERIC Educational Resources Information Center

    Jocuns, Andrew; Stevens, Reed; Garrison, Lari; Amos, Daniel

    2008-01-01

    This study analyzes the images of engineers and engineering that students construct over the course of their undergraduate engineering educations. Students in their first year of study to become engineers knew very little about the work they would be doing as an engineer and their expectations were more specific, hopeful, and high status than…

  10. 78 FR 47049 - Research, Engineering and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... hereby given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. AGENCY: Federal Aviation Administration. ACTION: Notice of meeting. Name: Research,...

  11. Final Report: Performance Engineering Research Institute

    SciTech Connect

    Mellor-Crummey, John

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  12. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Engineering survey building damage assessment training manual

    SciTech Connect

    Not Available

    1990-01-01

    The training objectives are: differentiate between the various levels of damage caused to buildings and structures by an earthquake and classify them as to their safety of occupancy, extent of damage, and resources needed for recovery/repair.

  13. Reconnaissance engineering geology of Sitka and vicinity, Alaska, with emphasis on evaluation of earthquake and other geologic hazards

    USGS Publications Warehouse

    Yehle, Lynn A.

    1974-01-01

    A program to study the engineering geology of most of the larger Alaska coastal communities and to evaluate their earthquake and other geologic hazards was started following the 1964 Alaska earthquake; this report about Sitka and vicinity is a product of that program. Field-study methods were of a reconnaissance nature, and thus the interpretations in the report are subject to revision as further information becomes available. This report can provide broad geologic guidelines for planners and engineers during preparation of land-use plans. The use of this information should lead to minimizing future loss of life and property due to geologic hazards, especially during very large earthquakes. Landscape of Sitka and surrounding area is characterized by numerous islands and a narrow strip of gently rolling ground adjacent to rugged mountains; steep valleys and some fiords cut sharply into the mountains. A few valley floors are wide and flat and grade into moderate-sized deltas. Glaciers throughout southeastern Alaska and elsewhere became vastly enlarged during the Pleistocene Epoch. The Sitka area presumably was covered by ice several times; glaciers deeply eroded some valleys and removed fractured bedrock along some faults. The last major deglaciation occurred sometime before 10,000 years ago. Crustal rebound believed to be related to glacial melting caused land emergence at Sitka of at least 35 feet (10.7 m) relative to present sea level. Bedrock at Sitka and vicinity is composed mostly of bedded, hard, dense graywacke and some argillite. Beds strike predominantly northwest and are vertical or steeply dipping. Locally, bedded rocks are cut by dikes of fine-grained igneous rock. Host bedrock is of Jurassic and Cretaceous age. Eight types of surficial deposits of Quaternary age were recognized. Below altitudes of 3S feet (10.7 m), the dominant deposits are those of modern and elevated shores and deltas; at higher altitudes, widespread muskeg overlies a mantle of

  14. Engineering research, development and technology report

    SciTech Connect

    Langland, R T

    1999-02-01

    Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for it is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.

  15. Proceedings of the 9th U.S.-Japan natural resources panel for earthquake research

    USGS Publications Warehouse

    Detweiler, Shane T.; Ellsworth, William L.

    2015-01-01

    The Panel strongly urges that the appropriate agencies in the U.S. and Japan that are represented on this panel work together with the academic sector to support and coordinate scientific work in these areas of cooperation. The Panel recognizes the importance of promoting the exchange of scientific personnel, exchange of data, and fundamental studies to advance progress in earthquake research. The U.S. and Japan should promote these exchanges throughout the world. The Panel endorses continuation of these activities.

  16. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  17. Probabilistic Tsunami Hazard Assessment along Nankai Trough (1) An assessment based on the information of the forthcoming earthquake that Earthquake Research Committee(2013) evaluated

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Morikawa, N.; Kawai, S.; Ohsumi, T.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.

    2015-12-01

    The Earthquake Research Committee(ERC)/HERP, Government of Japan (2013) revised their long-term evaluation of the forthcoming large earthquake along the Nankai Trough; the next earthquake is estimated M8 to 9 class, and the probability (P30) that the next earthquake will occur within the next 30 years (from Jan. 1, 2013) is 60% to 70%. In this study, we assess tsunami hazards (maximum coastal tsunami heights) in the near future, in terms of a probabilistic approach, from the next earthquake along Nankai Trough, on the basis of ERC(2013)'s report. The probabilistic tsunami hazard assessment that we applied is as follows; (1) Characterized earthquake fault models (CEFMs) are constructed on each of the 15 hypothetical source areas (HSA) that ERC(2013) showed. The characterization rule follows Toyama et al.(2015, JpGU). As results, we obtained total of 1441 CEFMs. (2) We calculate tsunamis due to CEFMs by solving nonlinear, finite-amplitude, long-wave equations with advection and bottom friction terms by finite-difference method. Run-up computation on land is included. (3) A time predictable model predicts the recurrent interval of the present seismic cycle is T=88.2 years (ERC,2013). We fix P30 = 67% by applying the renewal process based on BPT distribution with T and alpha=0.24 as its aperiodicity. (4) We divide the probability P30 into P30(i) for i-th subgroup consisting of the earthquakes occurring in each of 15 HSA by following a probability re-distribution concept (ERC,2014). Then each earthquake (CEFM) in i-th subgroup is assigned a probability P30(i)/N where N is the number of CEFMs in each sub-group. Note that such re-distribution concept of the probability is nothing but tentative because the present seismology cannot give deep knowledge enough to do it. Epistemic logic-tree approach may be required in future. (5) We synthesize a number of tsunami hazard curves at every evaluation points on coasts by integrating the information about 30 years occurrence

  18. National clearinghouse for Loma Prieta earthquake information catalog, November 1991

    SciTech Connect

    Not Available

    1991-01-01

    This catalog lists 440 new citations including recently completed work, abstracts of National Science Foundation research projects in progress, and contributions to the clearinghouse received after April, 1991. Section titles are: General topics and conference proceedings; Selected topics in seismology; Engineering seismology; Strong-motion seismometry; Dynamics of soils, rocks, and foundations; Dynamics of structures; Earthquake-resistant design and construction; Earthquake damage; and Earthquakes as natural disasters. Included are indexes by author, title, subject, and format.

  19. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  20. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    SciTech Connect

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  1. Anomalous record of October 15, 1979, Imperial Valley, California, earthquake from Coachella Canal Engine House No. 4

    USGS Publications Warehouse

    Bycroft, G.N.

    1981-01-01

    A recording obtained at the Coachella Canal Engine House No. 4 of the October 15, 1979, Imperial Valley earthquake shows a dominant 2 Hz frequency. This feature is very unusual and an attempt has been made to determine if the recording is real or spurious. As the pumping station is a small heavily constructed bunker type of structure located on material of low shear wave velocity it was considered likely that soil-structure interaction might be responsible for the 2 Hz component. However, both an experimental and theoretical investigation fail to establish this. This report describes the theoretical investigation. The experimental investigation is described in a separate open-file report.

  2. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1984-01-01

    Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.

  3. 75 FR 62113 - Board on Coastal Engineering Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: October 25-26, 2010. Place: Atlanta... consonance with the needs of the coastal engineering field and the objectives of the Chief of...

  4. Information Needs and Information-Gathering Behavior of Research Engineers.

    ERIC Educational Resources Information Center

    Siess, Judith A.

    Research into both the information needs of engineers engaged in research and development, and the means chosen by engineers to fulfill their information needs are summarized in this condensation of a Master's thesis. Parallel questionnaires were administered in 1981 to 78 engineers at the U.S. Army Corps of Engineers Construction Engineering…

  5. Special Issue "Impact of Natural Hazards on Urban Areas and Infrastructure" in the Bulletin of Earthquake Engineering

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M.

    2009-04-01

    mitigation will be presented. The session includes contributions showing methodological and modelling approaches from scientists in geophysical/seismological, hydrological, remote sensing, civil engineering, insurance, and urbanism, amongst other fields, as well as presentations from practitioners working on specific case studies, regarding analysis of recent events and their impact on cities as well as re-evaluation of past events from the point of view of long-time recovery. In 2005 it was called for: Most strategies for both preparedness and emergency management in case of disaster mitigation are related to urban planning. While natural, engineering and social sciences contribute to the evaluation of the impact of earthquakes and their secondary events (including tsunamis, earthquake triggered landslides, or fire), floods, landslides, high winds, and volcanic eruptions on urban areas, there are the instruments of urban planning which are to be employed for both visualisation as well as development and implementation of strategy concepts for pre- and postdisaster intervention. The evolution of natural systems towards extreme conditions is taken into consideration so far at it concerns the damaging impact on urban areas and infrastructure and the impact on the natural environment of interventions to reduce such damaging impact.

  6. Application of space technology to crustal dynamics and earthquake research

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In cooperation with other Federal government agencies, and the governments of other countries, NASA is undertaking a program of research in geodynamics. The present program activities and plans for extension of these activities in the time period 1979-1985 are described. The program includes operation of observatories for laser ranging to the Moon and to artificial satellites, and radio observatories for very long baseline microwave interferometry (VLBI). These observatories are used to measure polar motion, earth rotation, and tectonic plate movement, and serve as base stations for mobile facilities. The mobile laser ranging and VLBI facilities are used to measure crustal deformation in tectonically active areas.

  7. Network of seismo-geochemical monitoring observatories for earthquake prediction research in India

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Hirok; Barman, Chiranjib; Iyengar, A.; Ghose, Debasis; Sen, Prasanta; Sinha, Bikash

    2013-08-01

    Present paper deals with a brief review of the research carried out to develop multi-parametric gas-geochemical monitoring facilities dedicated to earthquake prediction research in India by installing a network of seismo-geochemical monitoring observatories at different regions of the country. In an attempt to detect earthquake precursors, the concentrations of helium, argon, nitrogen, methane, radon-222 (222Rn), polonium-218 (218Po), and polonium-214 (214Po) emanating from hydrothermal systems are monitored continuously and round the clock at these observatories. In this paper, we make a cross correlation study of a number of geochemical anomalies recorded at these observatories. With the data received from each of the above observatories we attempt to make a time series analysis to relate magnitude and epicentral distance locations through statistical methods, empirical formulations that relate the area of influence to earthquake scale. Application of the linear and nonlinear statistical techniques in the recorded geochemical data sets reveal a clear signature of long-range correlation in the data sets.

  8. The importance of earthquake research in the assessment of seismic hazards in Argentina

    NASA Astrophysics Data System (ADS)

    Giuliano, A.; Alvarado, P.; Beck, S.

    2007-05-01

    The history of Argentina has repeated occurrences of damaging crustal earthquakes with examples like the 1944 (Mw 7.0) San Juan earthquake, considered the largest natural disaster. These large earthquakes occur in the continental Andean backarc crust as far as 600 to 800 km east from the Trench. Of high significance is the correlation of this large-sized continental seismicity with the horizontal position of the subducted Nazca plate at about 100-km depth. In addition, lateral variations of the crustal structure are expected since several terranes have been accreted to western South America since the Paleozoic. Given the high seismic potential of this region, understanding of these seismotectonic processes and the crustal structure is essential for the assessment of seismic hazards and the mitigation of their effects. In this presentation we show our work based on an integrated research effort that combines permanent and temporal seismic networks from the Argentinean National Institute for Seismic Disaster Mitigation (INPRES) and IRIS- Passcal arrays. This international collaboration started in 2000 and involves researchers, technicians and students from the University of Arizona (USA), the National University of San Juan (Argentina) and INPRES (Argentina).

  9. Electromagnetic earthquake triggering phenomena: State-of-the-art research and future developments

    NASA Astrophysics Data System (ADS)

    Zeigarnik, Vladimir; Novikov, Victor

    2014-05-01

    Developed in the 70s of the last century in Russia unique pulsed power systems based on solid propellant magneto-hydrodynamic (MHD) generators with an output of 10-500 MW and operation duration of 10 to 15 s were applied for an active electromagnetic monitoring of the Earth's crust to explore its deep structure, oil and gas electrical prospecting, and geophysical studies for earthquake prediction due to their high specific power parameters, portability, and a capability of operation under harsh climatic conditions. The most interesting and promising results were obtained during geophysical experiments at the test sites located at Pamir and Northern Tien Shan mountains, when after 1.5-2.5 kA electric current injection into the Earth crust through an 4 km-length emitting dipole the regional seismicity variations were observed (increase of number of weak earthquakes within a week). Laboratory experiments performed by different teams of the Institute of Physics of the Earth, Joint Institute for High Temperatures, and Research Station of Russian Academy of Sciences on observation of acoustic emission behavior of stressed rock samples during their processing by electric pulses demonstrated similar patterns - a burst of acoustic emission (formation of cracks) after application of current pulse to the sample. Based on the field and laboratory studies it was supposed that a new kind of earthquake triggering - electromagnetic initiation of weak seismic events has been observed, which may be used for the man-made electromagnetic safe release of accumulated tectonic stresses and, consequently, for earthquake hazard mitigation. For verification of this hypothesis some additional field experiments were carried out at the Bishkek geodynamic proving ground with application of pulsed ERGU-600 facility, which provides 600 A electric current in the emitting dipole. An analysis of spatio-temporal redistribution of weak regional seismicity after ERGU-600 pulses, as well as a response

  10. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk

    USGS Publications Warehouse

    Celsi, R.; Wolfinbarger, M.; Wald, D.

    2005-01-01

    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  11. Virtual earthquake engineering laboratory with physics-based degrading materials on parallel computers

    NASA Astrophysics Data System (ADS)

    Cho, In Ho

    For the last few decades, we have obtained tremendous insight into underlying microscopic mechanisms of degrading quasi-brittle materials from persistent and near-saintly efforts in laboratories, and at the same time we have seen unprecedented evolution in computational technology such as massively parallel computers. Thus, time is ripe to embark on a novel approach to settle unanswered questions, especially for the earthquake engineering community, by harmoniously combining the microphysics mechanisms with advanced parallel computing technology. To begin with, it should be stressed that we placed a great deal of emphasis on preserving clear meaning and physical counterparts of all the microscopic material models proposed herein, since it is directly tied to the belief that by doing so, the more physical mechanisms we incorporate, the better prediction we can obtain. We departed from reviewing representative microscopic analysis methodologies, selecting out "fixed-type" multidirectional smeared crack model as the base framework for nonlinear quasi-brittle materials, since it is widely believed to best retain the physical nature of actual cracks. Microscopic stress functions are proposed by integrating well-received existing models to update normal stresses on the crack surfaces (three orthogonal surfaces are allowed to initiate herein) under cyclic loading. Unlike the normal stress update, special attention had to be paid to the shear stress update on the crack surfaces, due primarily to the well-known pathological nature of the fixed-type smeared crack model---spurious large stress transfer over the open crack under nonproportional loading. In hopes of exploiting physical mechanism to resolve this deleterious nature of the fixed crack model, a tribology-inspired three-dimensional (3d) interlocking mechanism has been proposed. Following the main trend of tribology (i.e., the science and engineering of interacting surfaces), we introduced the base fabric of solid

  12. 7th U.S. / Japan Natural Resources (UJNR) Panel on Earthquake Research: Abstract Volume and Technical Program

    USGS Publications Warehouse

    Detweiler, Shane T.; Ellsworth, William L.

    2008-01-01

    The U.S. / Japan Natural Resources (UJNR) Panel on Earthquake Research promotes advanced study toward a more fundamental understanding of the earthquake process and hazard estimation. The Panel promotes basic and applied research to improve our understanding of the causes and effects of earthquakes and to facilitate the transmission of research results to those who implement hazard reduction measures on both sides of the Pacific and around the world. Meetings are held every other year, and alternate between countries with short presentation on current research and local field trips being the highlights. The 5th Joint Panel meeting was held at Asilomar, California in October, 2004. The technical sessions featured reports on the September 28, 2004 Parkfield, California earthquake, progress on earthquake early warning and rapid post-event assessment technology, probabilistic earthquake forecasting and the newly discovered phenomenon of nonvolcanic tremor. The Panel visited the epicentral region of the M 6.0 Parkfield earthquake and viewed the surface ruptures along the San Andreas Fault. They also visited the San Andreas Fault Observatory at Depth (SAFOD), which had just completed the first phase of drilling into the fault. The 6th Joint Panel meeting was held in Tokushima, Japan in November, 2006. The meeting included very productive exchanges of information on approaches to systematic observation of earthquake processes. Sixty eight technical papers were presented during the meeting on a wide range of subjects, including interplate earthquakes in subduction zones, slow slip and nonvolcanic tremor, crustal deformation, recent earthquake activity and hazard mapping. Through our discussion, we reaffirmed the benefits of working together to achieve our common goal of reducing earthquake hazard, continued cooperation on issues involving densification of observation networks and the open exchange of data among scientific communities. We also reaffirmed the importance of

  13. Charles Darwin's earthquake reports

    NASA Astrophysics Data System (ADS)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  14. Summaries of FY 1997 engineering research

    SciTech Connect

    1998-09-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1997, it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The individual project summaries follow the program overview. The summaries are ordered alphabetically by name of institution; the table of contents lists all the institutions at which projects were sponsored in fiscal year 1997. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1997 appears to the right of address. The summary description of the project completes the entry. A separate index of Principal Investigators includes phone number, fax number and e-main address, where available.

  15. Collaborative Engineering for Research and Development

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  16. Revolutionising Engineering Education in the Middle East Region to Promote Earthquake-Disaster Mitigation

    ERIC Educational Resources Information Center

    Baytiyeh, Hoda; Naja, Mohamad K.

    2014-01-01

    Due to the high market demands for professional engineers in the Arab oil-producing countries, the appetite of Middle Eastern students for high-paying jobs and challenging careers in engineering has sharply increased. As a result, engineering programmes are providing opportunities for more students to enroll on engineering courses through lenient…

  17. Recent DOE-sponsored hydropower engineering research

    SciTech Connect

    Chappell, J.R.

    1983-01-01

    Purpose of this paper is to provide an overview of DOE Engineering Development research activity since Waterpower 1981. General results of about 11 projects that have been completed since Waterpower 1981 are presented and compared. Continuing efforts are also described briefly. DOE has sponsored four projects dealing with the use of pumps as turbines. This approach results in capital cost savings, shorter time for completing a hydropower plant, wider variety of off-the-shelf equipment available, and better maintenance services. Results are summarized for feasibility studies, laboratory tests, and in-the-field experience surveys of the use of pumps as turbines. Other projects discussed include microhydropower plants (less than 100 kW in capacity), head augmentation devices, Schneider engines, the use of marine thrusters as turbines, low cost cross-flow turbines made of plastic, variable speed constant frequency generators, hydraulic air compressors, scroll motor turbines and modular float-in powerhouses. The paper also discusses some of the technologies where future research may prove fruitful.

  18. An overview of the NASA rotary engine research program

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Hady, W. F.

    1984-01-01

    A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.

  19. Landslides triggered by the 2004 Niigata Ken Chuetsu, Japan, earthquake

    USGS Publications Warehouse

    Kieffer, D.S.; Jibson, R.; Rathje, E.M.; Kelson, K.

    2006-01-01

    The Niigata Ken Chuetsu earthquake triggered a vast number of lanslides in the epicentral region. Landslide concentrations were among the highest ever measured after an earthquake, and most of the triggered landslides were relatively shallow failures parallel to the steep slope faces. The dense concentration of landslides can be attributed to steep local topography in relatively weak geologic units, adverse hydrologic conditions caused by significant antecedent rainfall, and very strong shaking. Many of the landslides could be discerned from high-resolution satellite imagery acquired immediately after the earthquake. ?? 2006, Earthquake Engineering Research Institute.

  20. GLASS 2.0: An Operational, Multimodal, Bayesian Earthquake Data Association Engine

    NASA Astrophysics Data System (ADS)

    Benz, H.; Johnson, C. E.; Patton, J. M.; McMahon, N. D.; Earle, P. S.

    2015-12-01

    The legacy approach to automated detection and determination of hypocenters is arrival time stacking algorithms. Examples of such algorithms are the associator, Binder, which has been in continuous use in many USGS-supported regional seismic networks since the 1980s and the spherical earth successor, GLASS 1.0, currently in service at the USGS National Earthquake Information Center for over 10 years. The principle short-comings of the legacy approach are 1) it can only use phase arrival times, 2) it does not adequately address the problems of extreme variations in station density worldwide, 3) it cannot incorporate multiple phase models or statistical attributes of phases with distance, and 4) it cannot incorporate noise model attributes of individual stations. Previously we introduced a theoretical framework of a new associator using a Bayesian kernel stacking approach to approximate a joint probability density function for hypocenter localization. More recently we added station- and phase-specific Bayesian constraints to the association process. GLASS 2.0 incorporates a multiplicity of earthquake related data including phase arrival times, back-azimuth and slowness information from array beamforming, arrival times from waveform cross correlation processing, and geographic constraints from real-time social media reports of ground shaking. We demonstrate its application by modeling an aftershock sequence using dozens of stations that recorded tens of thousands of earthquakes over a period of one month. We also demonstrate Glass 2.0 performance regionally and teleseismically using the globally distributed real-time monitoring system at NEIC.

  1. Role of WEGENER (World Earthquake GEodesy Network for Environmental Hazard Research) in monitoring natural hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Zerbini, S.; Bastos, M. L.; Becker, M. H.; Meghraoui, M.; Reilinger, R. E.

    2013-12-01

    WEGENER was originally the acronym for Working Group of European Geoscientists for the Establishment of Networks for Earth-science Research. It was founded in March 1981 in response to an appeal delivered at the Journées Luxembourgeoises de Geodynamique in December 1980 to respond with a coordinated European proposal to a NASA Announcement of Opportunity inviting participation in the Crustal Dynamics and Earthquake Research Program. WEGENER, during the past 33 years, has always kept a close contact with the Agencies and Institutions responsible for the development and maintenance of the global space geodetic networks with the aim to make them aware of the scientific needs and outcomes of the project which might have an influence on the general science policy trends. WEGENER served as Inter-commission Project 3.2, between Commission 1 and Commission 3, of the International Association of Geodesy (IAG) until 2012. Since then, WEGENER project has become the Sub-commission 3.5 of IAG commission 3, namely Tectonics and Earthquake Geodesy. In this presentation, we briefly review the accomplishments of WEGENER as originally conceived and outline and justify the new focus of the WEGENER consortium. The remarkable and rapid evolution of the present state of global geodetic monitoring in regard to the precision of positioning capabilities (and hence deformation) and global coverage, the development of InSAR for monitoring strain with unprecedented spatial resolution, and continuing and planned data from highly precise satellite gravity and altimetry missions, encourage us to shift principal attention from mainly monitoring capabilities by a combination of space and terrestrial geodetic techniques to applying existing observational methodologies to the critical geophysical phenomena that threaten our planet and society. Our new focus includes developing an improved physical basis to mitigate earthquake, tsunami, and volcanic risks, and the effects of natural and

  2. Estimating earthquake potential

    USGS Publications Warehouse

    Page, R.A.

    1980-01-01

    The hazards to life and property from earthquakes can be minimized in three ways. First, structures can be designed and built to resist the effects of earthquakes. Second, the location of structures and human activities can be chosen to avoid or to limit the use of areas known to be subject to serious earthquake hazards. Third, preparations for an earthquake in response to a prediction or warning can reduce the loss of life and damage to property as well as promote a rapid recovery from the disaster. The success of the first two strategies, earthquake engineering and land use planning, depends on being able to reliably estimate the earthquake potential. The key considerations in defining the potential of a region are the location, size, and character of future earthquakes and frequency of their occurrence. Both historic seismicity of the region and the geologic record are considered in evaluating earthquake potential. 

  3. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  4. NASA Research Bearing on Jet Engine Reliability

    NASA Technical Reports Server (NTRS)

    Mason, S. S.; Ault, G. M.; Pinkel, B.

    1959-01-01

    Turbojet engine reliability has long been an intense interest to the military users of this type of aircraft propulsion. With the recent inauguration of commercial jet transport this subject has assumed a new dimension of importance. In January l96 the Lewis Research Center of the NASA (then the MACA) published the results of an extensive study on the factors that affect the opera- center dot tional reliability of turbojet engines (ref. 1). At that time the report was classified Confidential. In July l98 this report was declassified. It is thus appropriate at this time to present some of the highlights of the studies described in the NASA report. In no way is it intended to outline the complete contents of the report; rather it is hoped to direct attention to it among those who are center dot directly concerned with this problem. Since the publication of our study over three years ago, the NASA has completed a number of additional investigations that bear significantly on this center dot subject. A second object of this paper, therefore, is to summarize the results of these recent studies and to interpret their significance in relation to turbojet operational reliability.

  5. Engineer at Lehigh University Campaigns for More Construction Research.

    ERIC Educational Resources Information Center

    Wheeler, David L.

    1987-01-01

    A civil engineering professor would like to see civil engineers spend less time looking at broken structures and more time testing construction materials, and has founded a research center for that purpose. (MSE)

  6. Engineering Research Division publication report, calendar year 1980

    SciTech Connect

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  7. AiResearch QCGAT engine performance and emissions tests

    NASA Technical Reports Server (NTRS)

    Norgren, W. M.

    1980-01-01

    Results of aerodynamic performance and emission tests, conducted on a specially designed QCGAT engine in the 17,793-N (4,000 lb) thrust class, are presented. Performance of the AiResearch QCGAT engine was excellent throughout all testing. No serious mechanical malfunctions were encountered, and no significant test time was lost due to engine-related problems. Emissions were drastically reduced over similar engines, and the engine exhibited good smoke performance.

  8. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  9. The Beni Haoua, Algeria, Mw 4.9 earthquake: source parameters, engineering, and seismotectonic implications

    NASA Astrophysics Data System (ADS)

    Abbes, Khadidja; Dorbath, Louis; Dorbath, Catherine; Djeddi, Mohamed; Ousadou, Farida; Maouche, Said; Benkaci, Nassima; Slimani, Abdennasser; Larbes, Said; Bouziane, Djillali

    2016-04-01

    A moderate Mw 4.9 earthquake struck the Beni Haoua (Algeria) coastal area on April 25, 2012. The mainshock was largely recorded by the accelerograph network of the Centre National de Recherche Appliquée en Génie Parasismique (CGS). The same day the earthquake occurred, eight mobile short period stations were deployed through the epicentral area. In this study, we use accelerogram and seismogram data recorded by these two networks. We combined the focal mechanism built from the first motion of P waves and from waveform inversion, and the distribution of aftershocks to well constrain the source parameters. The mainshock is located with a shallow focal depth, ˜9 km, and the focal mechanism shows a nearly pure left lateral strike slip motion, with total seismic moment of 2.8 × 1016 N.m (Mw = 4.9). The aftershocks mainly cluster on a narrow NS strip, starting at the coast up to 3-4 km inland. This cluster, almost vertical, is concentrated between 6 and 10 km depth. The second part of this work concerns the damage distribution and estimated intensity in the epicentral area. The damage distribution is discussed in connection with the observed maximum strong motion. The acceleration response spectrum with 5 % damping of the mainshock and aftershocks give the maximum amplitude in high frequency which directly affects the performance of the high-frequency structures. Finally, we tie this earthquake with the seismotectonic of the region, leading to conclude that it occurred on a N-S transform zone between two major compressional fault zones oriented NE-SW.

  10. Biomedical engineering research at DOE national labs

    SciTech Connect

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  11. Large Historical Tsunamigenic Earthquakes in Italy: The Neglected Tsunami Research Point of View

    NASA Astrophysics Data System (ADS)

    Armigliato, A.; Tinti, S.; Pagnoni, G.; Zaniboni, F.

    2015-12-01

    It is known that tsunamis are rather rare events, especially when compared to earthquakes, and the Italian coasts are no exception. Nonetheless, a striking evidence is that 6 out of 10 earthquakes occurred in the last thousand years in Italy, and having equivalent moment magnitude equal or larger than 7 where accompanied by destructive or heavily damaging tsunamis. If we extend the lower limit of the equivalent moment magnitude down to 6.5 the percentage decreases (around 40%), but is still significant. Famous events like those occurred on 30 July 1627 in Gargano, on 11 January 1693 in eastern Sicily, and on 28 December 1908 in the Messina Straits are part of this list: they were all characterized by maximum run-ups of several meters (13 m for the 1908 tsunami), significant maximum inundation distances, and large (although not precisely quantifiable) numbers of victims. Further evidences provided in the last decade by paleo-tsunami deposit analyses help to better characterize the tsunami impact and confirm that none of the cited events can be reduced to local or secondary effects. Proper analysis and simulation of available tsunami data would then appear as an obvious part of the correct definition of the sources responsible for the largest Italian tsunamigenic earthquakes, in a process in which different datasets analyzed by different disciplines must be reconciled rather than put into contrast with each other. Unfortunately, macroseismic, seismic and geological/geomorphological observations and data typically are assigned much heavier weights, and in-land faults are often assigned larger credit than the offshore ones, even when evidence is provided by tsunami simulations that they are not at all capable of justifying the observed tsunami effects. Tsunami generation is imputed a-priori to only supposed, and sometimes even non-existing, submarine landslides. We try to summarize the tsunami research point of view on the largest Italian historical tsunamigenic

  12. Extending Engineering Practice Research with Shared Qualitative Data

    ERIC Educational Resources Information Center

    Trevelyan, James

    2016-01-01

    Research on engineering practice is scarce and sharing of qualitative research data can reduce the effort required for an aspiring researcher to obtain enough data from engineering workplaces to draw generalizable conclusions, both qualitative and quantitative. This paper describes how a large shareable qualitative data set on engineering…

  13. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    NASA Astrophysics Data System (ADS)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  14. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  15. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  16. The Use of Web Search Engines in Information Science Research.

    ERIC Educational Resources Information Center

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  17. Research program on Indonesian active faults to support the national earthquake hazard assesments

    NASA Astrophysics Data System (ADS)

    Natawidjaja, D. H.

    2012-12-01

    In mid 2010 an Indonesian team of earthquake scientists published the new Indonesian probabilistic seismic hazard analysis (PSHA) map. The new PSHA map replaced the previous version that is published in 2002. One of the major challenges in developing the new map is that data for many active fault zones in Indonesia is sparse and mapped only at regional scale, thus the input fault parameters for the PSHA introduce unavoidably large uncertainties. Despite the fact that most Indonesian islands are torn by active faults, only Sumatra has been mapped and studied in sufficient details. In other areas, such as Java and Bali, the most populated regions as well as in the east Indonesian region, where tectonic plate configurations are far more complex and relative plate motions are generally higher, many major active faults and plate boundaries are not well mapped and studied. In early 2011, we have initiated a research program to study major active faults in Indonesia together with starting a new graduate study program, GREAT (Graduate Research for Earthquake and Active Tectonics), hosted by ITB (Institute of Technology bandung) and LIPI (Indonesian Institute of Sciences) in partnership with the Australia-Indonesia Facility for Disaster Reduction (AIFDR). The program include acquisition of high-resolution topography and images required for detailed fault mapping, measuring geological slip rates and locating good sites for paleoseismological studies. It is also coupled by seismological study and GPS surveys to measure geodetic slip rates. To study submarine active faults, we collect and incorporate bathymetry and marine geophysical data. The research will be carried out, in part, through masters and Ph.D student theses. in the first four year of program we select several sites for active fault studies, particulary the ones that pose greater risks to society.

  18. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  19. Research project for increasing pool of minority engineers

    NASA Technical Reports Server (NTRS)

    Rogers, Decatur B.

    1995-01-01

    The Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers is designed to develop engineers who have academic and research experiences in technical areas of interest to NASA. These engineers will also have some degree of familiarity with NASA Lewis Research Center as a result of interaction with Lewis engineers, field trips and internships at Lewis. The Research Project has four components, which are: (1) Minority Introduction to Engineering (MITE), a high school precollege program, (2) engineering and technology previews, (3) the NASA LeRC Scholars program which includes scholarships and summer internships, and (4) undergraduate research experiences on NASA sponsored research. MITE is a two-week summer engineering camp designed to introduce minority high school students to engineering by exposing them to: (1) engineering role models (engineering students and NASA engineer), (2) field trips to engineering firms, (3) in addition to introducing youth to the language of the engineer (i.e., science, mathematics, technical writing, computers, and the engineering laboratory). Three MITE camps are held on the campus of TSU with an average of 40 participants. MITE has grown from 25 participants at its inception in 1990 to 118 participants in 1994 with participants from 17 states, including the District of Columbia, and 51 percent of the participants were female. Over the four-year period, 77 percent of the seniors who participated in MITE have gone to college, while 53 percent of those seniors in college are majoring in science, engineering or mathematics (SEM). This first Engineering and Technology Previews held in 1993 brought 23 youths from Cleveland, Ohio to TSU for a two-day preview of engineering and college life. Two previews are scheduled for 1994-1995. The NASA LeRC Scholars program provides scholarships and summer internships for minority engineering students majoring in electrical or mechanical engineering. Presently six

  20. Modern optical diagnostics in engine research

    NASA Astrophysics Data System (ADS)

    Leipertz, A.; Wensing, M.

    2007-10-01

    Different optical diagnistic techniques are used to gain insight into the single steps forming the functioning chain of the engine combustion process and the complex interplay between these single steps. Examples are given for the application of Mie scattering, laser-induced fluorescence, Raman scattering, CARS and laser-induced incandescence to study diesel engine, SI engine and HCCI combustion processes. The careful adaptation of each optical tool to one part of the engine process makes it possible to get valuable information with minimum change of the process investigated. The paper demonstrates that in addition to conventional engine measurement techniques, a number of different optical techniques must be applied -- and sometimes simultaneously -- to successfully determine the critical parameters of the processes and to investigate their influences on the performance and the quality of real engine combustion.

  1. 2007 Research and Engineering Annual Report

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data

  2. Engineering Student Outcomes for Grades 9-12. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Childress, Vincent; Rhodes, Craig

    2006-01-01

    This research study was conducted during the 2005-2006 academic year. Its purpose is to help the National Center for Engineering and Technology Education determine those engineering outcomes that should be studied in high school when the high school student intends to pursue engineering in college. The results of the study will also be used to…

  3. Professional ethics in biomedical engineering practice and research.

    PubMed

    Monzon, Jorge E; Monzon-Wyngaard, Alvaro

    2008-01-01

    This paper discusses some guidelines for use with the accepted fundamental canons of ethics for engineers. We present some rules of practice and professional obligations emerging from these canons. Basic recommendations for engineers dissenting on ethical grounds are also presented. Ethical issues relating to Biomedical Engineering research are illustrated. We mention some cases that could be used to further understanding the ethical implications of biomedical engineering practice.

  4. A research agenda for academic petroleum engineering programs

    SciTech Connect

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  5. A research agenda for academic petroleum engineering programs. [Final report

    SciTech Connect

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  6. Ethical considerations in tissue engineering research: Case studies in translation.

    PubMed

    Baker, Hannah B; McQuilling, John P; King, Nancy M P

    2016-04-15

    Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of "modest translational distance" and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. PMID:26282436

  7. Experimental research on the Stirling engine

    NASA Technical Reports Server (NTRS)

    Ishizaki, Y.; Tani, Y.; Haramura, N.

    1982-01-01

    Experiments on Stirling engines of the 50 KW class were conducted to clarify the characteristics of the engine and its problems. The problems involve durability of the high temperature heat exchanger which is exposed to high flame temperatures above 1600 C, thermal distortion and high temperature corrosion of the devices near combustion, and of the preheater.

  8. Process Systems Engineering Education: Learning by Research

    ERIC Educational Resources Information Center

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…

  9. Storytelling in Engineering Education. Research Brief

    ERIC Educational Resources Information Center

    Adams, Robin; Allendoerfer, Cheryl; Smith, Tori Rhoulac; Socha, David; Williams, Dawn; Yasuhara, Ken

    2007-01-01

    The Institute for Scholarship on Engineering Education (ISEE) team of the Center for the Advancement of Engineering Education, designed and implemented a 120 minute interactive session called "Communities In Practice--What Are We Learning?" for the 2006 Frontiers in Education Conference in Indianapolis. Six story posters were provided by 8…

  10. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    ScienceCinema

    None

    2016-07-12

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  11. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    SciTech Connect

    2013-04-12

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  12. Rutgers University Research Experience for Teachers in Engineering: Preliminary Findings

    ERIC Educational Resources Information Center

    Laffey, Evelyn H.; Cook-Chennault, Kimberly; Hirsch, Linda S.

    2013-01-01

    In addressing the nation's need for a more technologically-literate society, the Rutgers University Research Experience for Teachers in Engineering (RU RET-E) is designed to: (1) engage middle and high school math and science teachers in innovative "green" engineering research during the summer, and (2) support teachers in integrating…

  13. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  14. Implementation plan for engineering research, development and demonstration

    SciTech Connect

    Not Available

    1994-10-01

    This document contains information on the planned implementation of the EMF RAPID Program`s engineering activities. It describes the approach and specific projects required to achieve the goals laid out in the EMF Engineering Research component of the Research Agenda and Communication Plan. In addition to efforts funded by the RAPID Program, ongoing quality assurance and dosimetry research currently funded by the DOE EMF Biological Mechanisms Research Program are considered essential to achieving the goals of the RAPID Program.

  15. Experimental Research Progress of the VASIMR Engine

    NASA Astrophysics Data System (ADS)

    Squire, J. P.; Díaz, F. R. Chang; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.

    2002-01-01

    The Advanced Space Propulsion Laboratory (ASPL) of NASA's Johnson Space Center is performing research on a Variable Specific Impulse MagnetoPlasma Rocket (VASIMR). The VASIMR is a high power, radio frequency (RF) driven magnetoplasma rocket, capable of very high exhaust velocities, > 100 km/s. In addition, its unique architecture allows in- flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led research team involving industry, academia and government facilities is pursuing the development of this concept in the United States. The ASPL's experimental research focuses on three major areas: helicon plasma production, ion cyclotron resonant acceleration (ICRA) and plasma expansion in a magnetic nozzle. The VASIMR experiment (VX-10) performs experimental research that demonstrates the thruster concept at a total RF power on the order of 10 kW. A flexible four- magnet system, with a 1.3 Tesla maximum magnetic field strength, is computer controlled to study axial magnetic field profile shape effects. Power generated at 10 - 50 MHz with about 5 kW is used to perform helicon plasma source development. A 3 MHz RF transmitter capable of 100 kW is available for ICRA experiments. The primary diagnostics are: gas mass flow controllers, RF input power, Langmuir probes, Mach probe, retarding potential analyzers (RPA), microwave interferometer, neutral pressure measurements and plasma light emission. In addition, many thermocouples are attached inside the vacuum chamber to measure heat loads around the plasma discharge. Helicon research so far has been done with hydrogen, deuterium, helium, nitrogen, argon, xenon and mixtures of these gases. Optimization studies have been performed with the magnetic field axial profile shape, gas flow rate, gas tube geometry and RF frequency. The highest performing discharges are found with a high magnetic field choke downstream of the helicon antenna. Upwards of a 40% gas utilization is

  16. The Central and Eastern European Earthquake Research Network - CE3RN

    NASA Astrophysics Data System (ADS)

    Bragato, Pier Luigi; Costa, Giovanni; Gallo, Antonella; Gosar, Andrej; Horn, Nikolaus; Lenhardt, Wolfgang; Mucciarelli, Marco; Pesaresi, Damiano; Steiner, Rudolf; Suhadolc, Peter; Tiberi, Lara; Živčić, Mladen; Zoppé, Giuliana

    2014-05-01

    The region of the Central and Eastern Europe is an area characterised by a relatively high seismicity. The active seismogenic structures and the related potentially destructive events are located in the proximity of the political boundaries between several countries existing in the area. An example is the seismic region between the NE Italy (FVG, Trentino-Alto Adige and Veneto), Austria (Tyrol, Carinthia) and Slovenia. So when a destructive earthquake occurs in the area, all the three countries are involved. In the year 2001 the Agencija Republike Slovenije za Okolje (ARSO) in Slovenia, the Department of Mathematics and Geoscience of the University of Trieste (DMG), the OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) in Italy and the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Austria signed an agreement for the real-time seismological data exchange in the Southeastern Alps region. Soon after the Interreg IIIa Italia-Austria projects "Trans-National Seismological Networks in the South-Eastern Alps" and "FASTLINK" started. The main goal of these projects was the creation of a transfrontier network for the common seismic monitoring of the region for scientific and civil defense purposes. During these years the high quality data recorded by the transfrontier network has been used, by the involved institutions, for their scientific research, for institutional activities and for the civil defense services. Several common international projects have been realized with success. The instrumentation has been continuously upgraded, the installations quality improved as well as the data transmission efficiency. In the 2013 ARSO, DMG, OGS and ZAMG decided to name the cooperative network "Central and Eastern European Earthquake Research Network - CE3RN". The national/regional seismic networks actually involved in the CE3RN network are: • Austrian national BB network (ZAMG - OE) • Friuli Veneto SP network (OGS - FV) • Friuli VG

  17. Design of a preprototype Stirling Laboratory Research Engine

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Mcdougal, A. R.

    1978-01-01

    A description is given for the design and fabrication of a first generation, preprototype Stirling Laboratory Research Engine. The engine represents the first step in providing a research tool to be used to support the development of a broad range of analytical modeling and experimental efforts, and to evaluate new approaches to the design of components for Stirling engines. The test engine is a horizontally-opposed, two-piston, single-acting machine with a dual crankshaft drive mechanism. The preprototype engine is rated at 10 kW and was designed for maximum modularity. The long term objective of the project is to provide a proven design of a standardized test engine, which can be commercially produced, for national research on Stirling cycle machines.

  18. Postseismic Deformation after the 1964 Great Alaskan Earthquake: Collaborative Research with Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Freymueller, Jeffrey T.

    1999-01-01

    The purpose of this project was to carry out GPS observations on the Kenai Peninsula, southern Alaska, in order to study the postseismic and contemporary deformation following the 1964 Alaska earthquake. All of the research supported in this grant was carried out in collaboration with Dr. Steven Cohen of Goddard Space Flight Center. The research funding from this grant primarily supported GPS fieldwork, along with the acquisition of computer equipment to allow analysis and modeling of the GPS data. A minor amount of salary support was provided by the PI, but the great majority of the salary support was provided by the Geophysical Institute. After the expiration of this grant, additional funding was obtained from the National Science Foundation to continue the work. This grant supported GPS field campaigns in August 1995, June 1996, May-June and September 1997, and May-June 1998. We initially began the work by surveying leveling benchmarks on the Kenai peninsula that had been surveyed after the 1964 earthquake. Changes in height from the 1964 leveling data to the 1995+ GPS data, corrected for the geoid-ellipsoid separation, give the total elevation change since the earthquake. Beginning in 1995, we also identified or established sites that were suitable for long-term surveying using GPS. In the subsequent annual GPS campaigns, we made regular measurements at these GPS marks, and steadily enhanced our set of points for which cumulative postseismic uplift data were available. From 4 years of Global Positioning System (GPS) measurements, we find significant spatial variations in present-day deformation between the eastern and western Kenai peninsula, Alaska. Sites in the eastern Kenai peninsula and Prince William Sound move to the NNW relative to North America, in the direction of Pacific-North America relative plate motion. Velocities decrease in magnitude from nearly the full plate rate in southern Prince William Sound to about 30 mm/yr at Seward and to about 5 mm

  19. The 1906 earthquake and a century of progress in understanding earthquakes and their hazards

    USGS Publications Warehouse

    Zoback, M.L.

    2006-01-01

    The 18 April 1906 San Francisco earthquake killed nearly 3000 people and left 225,000 residents homeless. Three days after the earthquake, an eight-person Earthquake Investigation Commission composed of 25 geologists, seismologists, geodesists, biologists and engineers, as well as some 300 others started work under the supervision of Andrew Lawson to collect and document physical phenomena related to the quake . On 31 May 1906, the commission published a preliminary 17-page report titled "The Report of the State Earthquake Investigation Commission". The report included the bulk of the geological and morphological descriptions of the faulting, detailed reports on shaking intensity, as well as an impressive atlas of 40 oversized maps and folios. Nearly 100 years after its publication, the Commission Report remains a model for post-earthquake investigations. Because the diverse data sets were so complete and carefully documented, researchers continue to apply modern analysis techniques to learn from the 1906 earthquake. While the earthquake marked a seminal event in the history of California, it served as impetus for the birth of modern earthquake science in the United States.

  20. Researches on direct injection in internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  1. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  2. Stirling engine research at national and university laboratories in Japan

    SciTech Connect

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  3. Earthquake prediction research at the Seismological Laboratory, California Institute of Technology

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    Nevertheless, basic earthquake-related information has always been of consuming interest to the public and the media in this part of California (fig. 2.). So it is not surprising that earthquake prediction continues to be a significant reserach program at the laboratory. Several of the current spectrum of projects related to prediction are discussed below. 

  4. Scientific and Engineering Research Facilities: 2001. Detailed Statistical Tables.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

    This report presents information on the amount of science and engineering (S&E) research space existing at U.S. colleges, universities, and nonprofit biomedical research institutions based on research data collected biennially through the National Science Foundation. Data are also provided on the adequacy of this research space to meet current…

  5. Engineering therapeutic processes: from research to commodity

    NASA Astrophysics Data System (ADS)

    Galloway, Robert L.

    2014-03-01

    Three of the most important forces driving medical care are: patient specificity, treatment specificity and the move from discovery to design. Engineers while trained in specificity, efficiency, and design are often not trained in either biology or medical processes. Yet they are increasing critical to medical care. For example, modern medical imaging at US hospitals generates 1 exabyte (10^18 bytes) of data per year clearly beyond unassisted human analysis. It is not desirable to involve engineers in the acquisition, storage and analysis of this data, it is essential. While in the past we have nibbled around the edges of medical care, it is time and perhaps past time to insert ourselves more squarely into medical processes, making them more efficient, more specific and more robust. This requires engineers who understand biology and physicians who are willing to step away from classic medical thinking to try new approaches. But once the idea is proven in a laboratory, it must move into use and then into common practice. This requires additional engineering to make the process robust to noisy data and imprecise practices as well as workflow analysis to get the new technique into operating and treatment rooms. True innovation and true translation will require physicians, engineers, other medical stakeholders and even corporate involvement to take a new, important idea and move it not just to a patient but to all patients.

  6. Heat engine regenerators: Research status and needs

    SciTech Connect

    Hutchinson, R.A.

    1987-08-01

    The rapidly oscillating, variable density flows of regenerative heat engines provide a class of poorly understood unsteady flow and heat transfer problems. These problems are not currently amenable to direct experimental resolution. Experiences in engine development and test programs and efforts to develop analysis tools point to the regenerator as a key area of insufficient understanding. Focusing on flow and heat transfer in regenerators, this report discusses similarity parameters for the flows and reviews the experimental data currently available for Stirling analysis. Then a number of experimental results are presented from recent fundamental fluid mechanical and thermal investigations that shed additional light on the functioning of heat engine regenerators. Suggestions are made for approaches for further measurement and analysis efforts.

  7. Steam engine research for solar parabolic dish

    NASA Technical Reports Server (NTRS)

    Demler, R. L.

    1981-01-01

    The parabolic dish solar concentrator provides an opportunity to generate high grade energy in a modular system. Most of the capital is projected to be in the dish and its installation. Assurance of a high production demand of a standard dish could lead to dramatic cost reductions. High production volume in turn depends upon maximum application flexibility by providing energy output options, e.g., heat, electricity, chemicals and combinations thereof. Subsets of these options include energy storage and combustion assist. A steam engine design and experimental program is described which investigate the efficiency potential of a small 25 kW compound reheat cycle piston engine. An engine efficiency of 35 percent is estimated for a 700 C steam temperature from the solar receiver.

  8. The Research of Software Engineering Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Kuang, Li-Qun; Han, Xie

    With the problem that software engineering training can't meet the needs of the community, this paper analysis some outstanding reasons in software engineering curriculum teaching, such as old teaching contents, weak in practice and low quality of teachers etc. We propose the methods of teaching reform as guided by market demand, update the teaching content, optimize the teaching methods, reform the teaching practice, strengthen the teacher-student exchange and promote teachers and students together. We carried out the reform and explore positive and achieved the desired results.

  9. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  10. Supporting research and technology for automotive Stirling engine development

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1980-01-01

    The technology advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or backups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. These planned SRT activities are related to the timeline of the engine development program that they must support.

  11. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    SciTech Connect

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  12. Status of Research in Biomedical Engineering 1968.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  13. Biomedical engineering: A platform for research and innovation in ultrasound

    NASA Astrophysics Data System (ADS)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  14. FY10 Engineering Innovations, Research and Technology Report

    SciTech Connect

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations

  15. An Engineering Degree Does Not (Necessarily) an Engineer Make: Career Decision Making among Undergraduate Engineering Majors. Research Brief

    ERIC Educational Resources Information Center

    Lichtenstein, Gary; Loshbaugh, Heidi G.; Claar, Brittany; Chen, Helen L.; Jackson, Kristyn; Sheppard, Sheri

    2009-01-01

    This paper explores the career-related decision making of seniors enrolled in undergraduate engineering programs at two nationally recognized institutions. This strand of the Academic Pathways Study (APS) research revealed that many engineering students were undecided about their career plans, even late into their senior years and that many were…

  16. Development of a Taxonomy of Keywords for Engineering Education Research

    ERIC Educational Resources Information Center

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-01-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research…

  17. Career Pathways of Science, Engineering and Technology Research Postgraduates

    ERIC Educational Resources Information Center

    Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin

    2009-01-01

    Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…

  18. Market-implied spread for earthquake CAT bonds: financial implications of engineering decisions.

    PubMed

    Damnjanovic, Ivan; Aslan, Zafer; Mander, John

    2010-12-01

    In the event of natural and man-made disasters, owners of large-scale infrastructure facilities (assets) need contingency plans to effectively restore the operations within the acceptable timescales. Traditionally, the insurance sector provides the coverage against potential losses. However, there are many problems associated with this traditional approach to risk transfer including counterparty risk and litigation. Recently, a number of innovative risk mitigation methods, termed alternative risk transfer (ART) methods, have been introduced to address these problems. One of the most important ART methods is catastrophe (CAT) bonds. The objective of this article is to develop an integrative model that links engineering design parameters with financial indicators including spread and bond rating. The developed framework is based on a four-step structural loss model and transformed survival model to determine expected excess returns. We illustrate the framework for a seismically designed bridge using two unique CAT bond contracts. The results show a nonlinear relationship between engineering design parameters and market-implied spread.

  19. Thermometric consideration for RF and microwave research in food engineering.

    PubMed

    Ofoli, R Y

    1986-01-01

    A review of thermometric methods for the processing of food materials at RF and microwave frequencies is presented. Some areas of needed food engineering research are discussed, as well as factors of importance in the selection of temperature monitoring systems.

  20. Research into the origins of engineering thermodynamics

    SciTech Connect

    Bejan, A.

    1988-09-01

    This paper draws attention to a series of misconceptions and misstatements regarding the origin and meaning of some of the most basic concepts of engineering thermodynamics. The six examples exhibited in the paper relate to the concepts of reversibility, entropy, mechanical equivalent of the calorie, the first law of thermodynamics for open systems, enthalpy and the Diesel cycle. A complete list of the pioneering references concludes the paper.

  1. Earthquake forecasting and warning

    SciTech Connect

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  2. The Research of Vertical Search Engine for Agriculture

    NASA Astrophysics Data System (ADS)

    Li, Weiying; Zhao, Yan; Liu, Bo; Li, Qiang

    Following rapid expansion of huge Agriculture information body on the Web, the efficient Agriculture information gathering on specified top becomes more and more important in search engine research. Through the statement of the developing trend of search engine and sharing agriculture information resource, this paper discusses the necessity of building search engine for agriculture information. The author clarifies the working principles of professional search engine for agriculture and finally analyses the improvement of searching technique of agriculture and proposes a model for agriculture - focused search.

  3. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology areas that have been identified as critical for the present and future work of the Laboratory, and are

  4. Scientific and Engineering Research Facilities, 1999. Detailed Statistical Tables.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

    The data in these tables are collected biennially through the National Science Foundation's (NSF's) Congressionally mandated Survey of Scientific and Engineering Research Facilities. The 1999 survey was sent to research-performing colleges and universities in the United States and to U.S. biomedical research institutions that received National…

  5. Engineering research, development and technology FY99

    SciTech Connect

    Langland, R T

    2000-02-01

    The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is to develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural

  6. Recent Developments in U.S. Engine Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Envia, Edmane; Huff, Dennis

    2001-01-01

    Aircraft engine noise research in the United States has made considerable progress over the past 10 years for both subsonic and supersonic flight applications. The Advanced Subsonic Technology (AST) Noise Reduction Program started in 1994 and will be completed in 2001 without major changes to program plans and funding levels. As a result, significant progress has been made toward the goal of reducing engine source noise by 6 EPNdB (Effective Perceived Noise level in decibels). This paper will summarize some of the significant accomplishments from the subsonic engine noise research performed over the past 10 years. The review is by no means comprehensive and only represents a sample of major accomplishments.

  7. Summary of NACA Research on Afterburners for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Lundin, Bruce T; Gabriel, David S; Fleming, William A

    1956-01-01

    NACA research on afterburners for turbojet engines during the past 5 years is summarized. Although most of this work has been directed toward the development of specific afterburners for various engines rather than toward the accumulation of systematic data, it has, nevertheless, provided a large fund of experimental data and experience in the field. The references cited present over 1000 afterburner configurations and some 3500 hours of operation. In the treatment of the material of this summary, the principal effort has been to convey to the reader the "know-how" acquired by research engineers in the course of the work rather than to formulate a set of design rules.

  8. Research Project for Increasing the Pool of Minority Engineers

    NASA Technical Reports Server (NTRS)

    Gott, Susan F. (Technical Monitor); Rogers, Decatur B.

    2003-01-01

    The NASA Glenn Research Center (GRC) funded the 2001-2002 Tennessee State University (TSU) Research Project for increasing the pool of minority engineers. The NASA GRC/TSU Research Project is designed to develop a cadre of SMET professionals who have academic and research expertise in technical areas of interest to NASA, in addition to having some familiarity with the mission of the NASA Glenn Research Center. The goal of increasing minority participation in SMET disciplines was accomplished by: (1) introducing and exposing 96 minority youth to Science, Math, Engineering, and Technology (SMET) careers and to the required high school preparation necessary to make high school graduation, college attendance and engineering careers a reality through the campus based pre-college SMET program: Minority Introduction to Engineering (MITE); (2) by providing financial support through scholarships for four (4) TSU engineering students to NASA; (3) familiarization with the SMET profession and with NASA through summer internships at NASA GRC for two TSU NASA Glenn Research Scholars; and experiences through research internships at NASA GRC.

  9. Summaries of FY 1995 engineering research

    SciTech Connect

    1996-03-01

    The individual engineering project summaries follow the program overview. The summaries are ordered alphabetically by name of institution and so the table of contents lists all the institutions at which projects were sponsored in fiscal year 1995. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1995 appears to the right of title; it is followed by the budget activity number. These numbers categorize the projects for budgetary purposes and the categories are described in the budget number index. A separate index of Principal Investigators includes phone number, fax number and e-mail address, where available. The fiscal year in which either the project began or was renewed and the anticipated duration in years are indicated respectively by the first two and last digits of the sequence directly below the budget activity number. The summary description of the project completes the entry.

  10. Tissue Engineering Organs for Space Biology Research

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  11. Engineering education research: Impacts of an international network of female engineers on the persistence of Liberian undergraduate women studying engineering

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Reddivari, Sahithya; Cotel, Aline

    2015-11-01

    As international efforts to educate and empower women continue to rise, engineering educators are in a unique position to be a part of these efforts by encouraging and supporting women across the world at the university level through STEM education and outreach. For the past two years, the University of Michigan has been a part of a grassroots effort to encourage and support the persistence of engineering female students at University of Liberia. This effort has led to the implementation of a leadership camp this past August for Liberian engineering undergraduate women, meant to: (i) to empower engineering students with the skills, support, and inspiration necessary to become successful and well-rounded engineering professionals in a global engineering market; and (ii) to strengthen the community of Liberian female engineers by building cross-cultural partnerships among students resulting in a international network of women engineers. This session will present qualitative research findings on the impact of this grassroots effort on Liberian female students? persistence in engineering, and the future directions of this work.

  12. Re-Educating Jet-Engine-Researchers to Stay Relevant

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2016-06-01

    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  13. New trends in combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1983-01-01

    Research on combustion is being conducted to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines, in order to enable engine manufacturers to reduce the development time of these concepts. The elements of the combustion fundamentals program is briefly discussed with examples of research projects described more fully. Combustion research will continue to emphasize the development of analytical models and the support of these models with fundamental flow experiments to assess the models accuracy and shortcomings.

  14. An Overview of NASA Engine Ice-Crystal Icing Research

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Veres, Joseph P.

    2011-01-01

    Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

  15. Recent and Potential Application of Engineering Tools to Educational Research.

    ERIC Educational Resources Information Center

    Taft, Martin I.

    This paper presents a summary of some recent engineering research in education and identifies some research areas with high payoff potential. The underlying assumption is that a school is a system with a set of subsystems which is potentially susceptible to analysis, design, and eventually some sort of optimization. This assumption leads to the…

  16. An overview of the Penn State Propulsion Engineering Research Center

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    An overview of the Penn State Propulsion Engineering Research Center is presented. The following subject areas are covered: research objectives and long term perspective of the Center; current status and operational philosophy; and brief description of Center projects (combustion, fluid mechanics and heat transfer, materials compatibility, turbomachinery, and advanced propulsion concepts).

  17. Developing Research Skills for Civil Engineers: A Library Contribution.

    ERIC Educational Resources Information Center

    Bruce, C. S.; Brameld, G. H.

    1990-01-01

    A library instruction program has been instituted in civil engineering at the Queensland University of Technology (Australia) in an effort to improve the research skills of fourth year students working on research projects. Students with extended library instruction were found to have better information-seeking behavior than others. (Author/MSE)

  18. Genetic Engineering of Animals for Medical Research: Students' Views.

    ERIC Educational Resources Information Center

    Hill, Ruaraidh; Stanisstreet, Martin; O'Sullivan, Helen; Boyes, Edward

    1999-01-01

    Reports on the results of a survey meant to ascertain the views of 16- to 18-year-old students (n=778) on using animals in medical research. Suggests that students have no greater objection to the use of genetically engineered animals over naturally bred animals in medical research. Contains 16 references. (Author/WRM)

  19. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  20. GREMEX update (Goddard research engineering management exercise)

    NASA Technical Reports Server (NTRS)

    Vaccaro, M. J.; Denault, M. F.

    1973-01-01

    Management simulation techniques offer training in management problems. Exercise was developed to provide experience in research and development project decision making from management rather than technological perspective. Program and documentation have been revised innumerable times in past. Described report is revised version as it exists to date.

  1. Chemical Engineering Division research highlights, 1979

    SciTech Connect

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  2. Preliminary test results with a Stirling Laboratory Research Engine

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Nguyen, B. D.; Schmit, D. D.

    1979-01-01

    The Jet Propulsion Laboratory has designed, assembled, and initiated testing of a Stirling Laboratory Research Engine (SLRE). This preprototype engine provides a research tool to support the development of a broad range of analytical modeling and experimental efforts. The SLRE is a horizontally opposed, two-piston, single-acting Stirling engine with a split crankshaft drive mechanism. The paper discusses the preliminary results obtained during engine motoring tests and compares these results with two different analytical prediction models. Comparisons are made between experiment, the classical Schmidt analysis, and the JPL Stirling Cycle Analysis Model (SCAM). SCAM is a computerized one-dimensional, cyclic, compressible flow model of the SLRE and consists of a compilation of individual component subroutines. The formulation and current state of development of the SCAM program is briefly described.

  3. ARMA models for earthquake ground motions. Seismic safety margins research program

    SciTech Connect

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.

  4. Fundamental heat transfer research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  5. Engineering Design Thinking and Information Gathering. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2011-01-01

    The objective of this research was to explore the relationship between information access and design solution quality of high school students presented with an engineering design problem. This objective is encompassed in the research question driving this inquiry: How does information access impact the design process? This question has emerged in…

  6. Rational for Conducting PTSD Research and Challenges of Recruiting and Training Volunteers to Screen and Treat PTSD among the Nepal 2015 Earthquake Survivors.

    PubMed

    Jha, A; Shakya, S

    2015-01-01

    Post-traumatic Stress Disorder (PTSD) is common psychiatric morbidity among earthquake survivors, and if untreated people suffer from it for years. Government of Nepal and NGOs provided various short-term mental health services to the victims of the 2015 earthquake in Nepal, but there was no plan or provision for long-term mental health problems. The prevalence of PTSD following natural disasters depends on various local factors requiring understanding and further investigation before identifying affordable evidence based interventions. This paper discusses the need for PTSD research among the survivors of the 2015 earthquake in Nepal, and describes the challenges and difficulties of recruiting and training PTSD volunteers. PMID:27549507

  7. Researches on the Nankai trough mega thrust earthquake seismogenic zones using real time observing systems for advanced early warning systems and predictions

    NASA Astrophysics Data System (ADS)

    Kaneda, Yoshiyuki

    2015-04-01

    We recognized the importance of real time monitoring on Earthquakes and Tsunamis Based on lessons learned from 2004 Sumatra Earthquake/Tsunamis and 2011 East Japan Earthquake. We deployed DONET1 and are developing DONET2 as real time monitoring systems which are dense ocean floor networks around the Nankai trough seismogenic zone Southwestern Japan. Total observatories of DONE1 and DONET2 are 51 observatories equipped with multi kinds of sensors such as the accelerometer, broadband seismometer, pressure gauge, difference pressure gauge, hydrophone and thermometer in each observatory. These systems are indispensable for not only early warning of Earthquakes/ Tsunamis, but also researches on broadband crustal activities around the Nankai trough seismogenic zone for predictions. DONET1 detected offshore tsunamis 15 minutes earlier than onshore stations at the 2011 East Japan earthquake/tsunami. Furthermore, DONET1/DONET2 will be expected to monitor slow events such as low frequency tremors and slow earthquakes for the prediction researches. Finally, the integration of observations and simulation researches will contribute to estimate of seismic stage changes from the inter-seismic to pre seismic stage. I will introduce applications of DONET1/DONET2 data and advanced simulation researches.

  8. Sharing Research Models: Using Software Engineering Practices for Facilitation.

    PubMed

    Bryant, Stephanie P; Solano, Eric; Cantor, Susanna; Cooley, Philip C; Wagener, Diane K

    2011-03-01

    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems' behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations-such as nonintuitive user interface features and data input specifications-may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices- the iterative software development process, object-oriented methodology, and Unified Modeling Language-and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers.

  9. Sharing Research Models: Using Software Engineering Practices for Facilitation

    PubMed Central

    Bryant, Stephanie P.; Solano, Eric; Cantor, Susanna; Cooley, Philip C.; Wagener, Diane K.

    2011-01-01

    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems’ behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations—such as nonintuitive user interface features and data input specifications—may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices— the iterative software development process, object-oriented methodology, and Unified Modeling Language—and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers. PMID:21687780

  10. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective

  11. General aviation internal combustion engine research programs at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  12. The collaborative program of research in engineering sciences

    SciTech Connect

    Hardt, D.E. . Energy Lab.)

    1992-09-01

    In 1985, the Energy Laboratory of the Massachusetts Institute of Technology (MIT) and the Idaho National Engineering Laboratory (INEL) began a collaborative program of energy-related engineering research. This program was extended for another three years starting in January 1991. The program continues to pursue three broad goals: to perform quality research on energy-related technologies involved in industrial processes and productivity; to demonstrate the potential of collaborative programs between universities and the national laboratories; and to encourage the transfer of the technology developed to the industrial sector. This annual report describes progress at MIT under the MIT/INEL program during the past year.

  13. Engineering and socioeconomic impacts of earthquakes: An analysis of electricity lifeline disruptions in the New Madrid area

    SciTech Connect

    Shinozuka, M.; Rose, A.; Eguchi, R.T.

    1998-12-31

    This monograph examines the potential effects of a repeat of the New Madrid earthquake to the metropolitan Memphis area. The authors developed a case study of the impact of such an event to the electric power system, and analyzed how this disruption would affect society. In nine chapters and 189 pages, the book traces the impacts of catastrophic earthquakes through a curtailment of utility lifeline services to its host regional economy and beyond. the monographs` chapters include: Modeling the Memphis economy; seismic performance of electric power systems; spatial analysis techniques for linking physical damage to economic functions; earthquake vulnerability and emergency preparedness among businesses; direct economic impacts; regional economic impacts; socioeconomic and interregional impacts; lifeline risk reduction; and public policy formulation and implementation.

  14. Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement

    SciTech Connect

    Hollingsworth, Jeffrey K.

    2015-10-12

    This project concentrated on various ways to improve the measurement and tuning large-scale parallel applications. This project was supplement to the project DE-FC0206ER25763 (“Performance Engineering Research Center”). The research conducted during this project is summarized in this report. The complete details of the work are available in the ten publications listed at the end of the report. It also supported the Ph.D. studies of three students and one research scientist.

  15. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting...

  16. 34 CFR 350.33 - What cooperation requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a)...

  17. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting...

  18. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting...

  19. 34 CFR 350.33 - What cooperation requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a)...

  20. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting...

  1. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting...

  2. 34 CFR 350.33 - What cooperation requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a)...

  3. 34 CFR 350.33 - What cooperation requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a)...

  4. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    SciTech Connect

    Phelan, Patrick; Abdelaziz, Omar; Otanicar, Todd; Phelan, Bernadette; Prasher, Ravi; Taylor, Robert; Tyagi, Himanshu

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  5. An overview of NASA intermittent combustion engine research

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants.

  6. Formulating a Concept Base for Secondary Level Engineering: A Review and Synthesis. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Custer, Rodney L.; Daugherty, Jenny L.; Meyer, Joseph P.

    2009-01-01

    The purpose of the study was to identify and refine a conceptual foundation for secondary school engineering education. Specifically, this study sought to address the following research questions: (1) What engineering concepts are present in literature related to the nature and philosophy of engineering?; (2) What engineering concepts are embedded…

  7. NASA Lewis Research Center/University Graduate Research Program on Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  8. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  9. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  10. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  11. ChE Undergraduate Research Projects in Biomedical Engineering.

    ERIC Educational Resources Information Center

    Stroeve, Pieter

    1981-01-01

    Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)

  12. 77 FR 3240 - Board on Coastal Engineering Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3240-3241] [FR..., Executive Secretary. [FR Doc. 2012-1193 Filed 1-20-12; 8:45 am] BILLING CODE 3720-58-P ... Engineering Research AGENCY: Department of the Army, DoD. ACTION: Notice of meeting. SUMMARY: In...

  13. The Research Proposal in Biomechanical and Biological Engineering Courses

    ERIC Educational Resources Information Center

    Harrison, Roger G.; Nollert, Matthias U.; Schmidtke, David W.; Sikavitsas, Vassilios I.

    2006-01-01

    Students in four biochemical and biological engineering courses for upper-­level undergraduates and graduate students were required to write a research proposal. Breaking the requirements down into segments (such as a summary with specific aims, rough draft, and final draft) due on different dates helped make the assignment more manageable for the…

  14. 1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL. NOTE CONTROL TRAILER IN BACKGROUND. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  15. 2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING VIDEO-CONTROLED BOAT MODEL FROM CONTROL TRAILER. NOTE VIEW FROM BOAT-MOUNTED VIDEO CAMERA SHOWN ON MONITOR, AND MODEL WATERWAY VISIBLE THROUGH WINDOW AT LEFT. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  16. Teaching Ethics to Engineers--A Research-Based Perspective

    ERIC Educational Resources Information Center

    Bowden, Peter

    2010-01-01

    This paper describes research underpinning a course, developed in Australia, on ethics for engineers. The methodology used, that of identifying the principal ethical issues facing the discipline and designing the course around these issues, would be applicable to other disciplines and in other countries. The course was based on the assumption that…

  17. Development of a taxonomy of keywords for engineering education research

    NASA Astrophysics Data System (ADS)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-05-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research initiatives. This report describes the process for developing such a taxonomy, the EER Taxonomy. Although the taxonomy focuses on engineering education research in the United States, inclusive efforts have engaged 266 individuals from 149 cities in 30 countries during one multiday workshop, 7 conference sessions, and several other virtual and in-person activities. The resulting taxonomy comprises 455 terms arranged in 14 branches and 6 levels. This taxonomy was found to satisfy four criteria for validity and reliability: (1) keywords assigned to a set of abstracts were reproducible by multiple researchers, (2) the taxonomy comprised terms that could be selected as keywords to fully describe 243 articles in 3 journals, (3) the keywords for those 243 articles were evenly distributed across the branches of the taxonomy, and (4) the authors of 31 conference papers agreed with 90% of researcher-assigned keywords. This report also describes guidelines developed to help authors consistently assign keywords for their articles by encouraging them to choose terms from three categories: (1) context/focus/topic, (2) purpose/target/motivation, and (3) research approach.

  18. Towards a portal and search engine to facilitate academic and research collaboration in engineering and education

    NASA Astrophysics Data System (ADS)

    Bonilla Villarreal, Isaura Nathaly

    While international academic and research collaborations are of great importance at this time, it is not easy to find researchers in the engineering field that publish in languages other than English. Because of this disconnect, there exists a need for a portal to find Who's Who in Engineering Education in the Americas. The objective of this thesis is to built an object-oriented architecture for this proposed portal. The Unified Modeling Language (UML) model developed in this thesis incorporates the basic structure of a social network for academic purposes. Reverse engineering of three social networks portals yielded important aspects of their structures that have been incorporated in the proposed UML model. Furthermore, the present work includes a pattern for academic social networks..

  19. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  20. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect

    Smith-Holbert, Connie; Petrolino, Joseph; Watkins, Bart; Irick, David

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was

  1. Research engine test of coal slurry fuels. Final report

    SciTech Connect

    Not Available

    1985-02-01

    The program discussed in this report involved evaluation of the combustion characteristics of several coal slurry fuels in a single cylinder test engine operating under conditions simulating medium size and speed commercial diesel engines. Baseline performance was established using a reference DF-2 test fuel. Slurry fuels tested included: (1) 45% of a low volatile coal in diesel fuel; (2) 40% of cleaned of a cleaned high-volatile coal in a carrier containing 91% methanol and 9% water; and (3) 41% cleaned, high volatile coal in methanol. The testing program demonstrated the importance of several engine operating and fuel composition parameters on engine and ancillary system performance: (1) coal particle top size of 38 microns was identified as the limiting value for the test equipment utilized in this study; coal volatility affects burnout, but ignition is unaffected as long as the slurry carrier provides the ignition source; coal ash content affects the wear rate, but wear rate is not linear with ash content or total ash throughput; and engine components may require modifications in order to handle fuels containing abrasive solid materials. These tests demonstrated that slurry fuels are a viable alternative to highly refined petroleum fuels in medium speed diesel engine applications. However, additional research is required before widespread application of these fuels can occur. The study demonstrated the lack of available information on the microscale mechanisms of slurry fuel atomization, ignition, and combustion in the diesel engine combustion chamber environment. Also, the problems of burning a coal/water slurry in the engine were not addressed. 12 references, 51 figures, 14 tables.

  2. Workshop on continuing actions to reduce potential losses from future earthquakes in the Northeastern United States: proceedings of conference XXI

    SciTech Connect

    Hays, W.W.; Gori, P.L.

    1983-01-01

    This workshop was designed to define the earthquake threat in the eastern United States and to improve earthquake preparedness. Four major themes were addressed: (1) the nature of the earthquake threat in the northeast and what can be done to improve the state of preparedness; (2) increasing public awareness and concern for the earthquake hazard in the northeast; (3) improving the state of preparedness through scientific, engineering, and social science research; and (4) possible functions of one or more seismic safety organizations. Papers have been abstracted separately. (ACR)

  3. Geopotential research mission, science, engineering and program summary

    NASA Technical Reports Server (NTRS)

    Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)

    1986-01-01

    This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.

  4. Reconnaissance engineering geology of the Haines area, Alaska, with emphasis on evaluation of earthquake and other geologic hazards

    USGS Publications Warehouse

    Lemke, Richard Walter; Yehle, Lynn A.

    1972-01-01

    The Alaska earthquake of March 27, 1964, brought into sharp focus the need for engineering geologic studies in urban areas. Study of the Haines area constitutes an integral part of an overall program to evaluate earthquake and other geologic hazards in most of the larger Alaska coastal communities. The evaluations of geologic hazards that follow, although based only upon reconnaissance studies and, therefore, subject to revision, will provide broad guidelines useful in city and land-use planning. It is hoped that the knowledge gained will result in new facilities being built in the best possible geologic environments and being designed so as to minimize future loss of life and property damage. Haines, which is in the northern part of southeastern Alaska approximately 75 miles northwest of Juneau, had a population, of about 700 people in 1970. It is built at the northern end of the Chilkat Peninsula and lies within the Coast Mountains of the Pacific Mountain system. The climate is predominantly marine and is characterized by mild winters and cool summers. The mapped area described in this report comprises about 17 square miles of land; deep fiords constitute most of the remaining mapped area that is evaluated in this study. The Haines area was covered by glacier ice at least once and probably several times during the Pleistocene Epoch. The presence of emergent marine deposits, several hundred feet above sea level, demonstrates that the land has been uplifted relative to sea level since the last major deglaciation of the region about 10,000 years ago. The rate of relative uplift of the land at Haines during the past 39 years is 2.26 cm per year. Most or all of this uplift appears to be due to rebound as a result of deglaciation. Both bedrock and surficial deposits are present in the area. Metamorphic and igneous rocks constitute the exposed bedrock. The metamorphic rocks consist of metabasalt of Mesozoic age and pyroxenite of probable early middle Cretaceous age. The

  5. Towards Multi-Method Research Approach in Empirical Software Engineering

    NASA Astrophysics Data System (ADS)

    Mandić, Vladimir; Markkula, Jouni; Oivo, Markku

    This paper presents results of a literature analysis on Empirical Research Approaches in Software Engineering (SE). The analysis explores reasons why traditional methods, such as statistical hypothesis testing and experiment replication are weakly utilized in the field of SE. It appears that basic assumptions and preconditions of the traditional methods are contradicting the actual situation in the SE. Furthermore, we have identified main issues that should be considered by the researcher when selecting the research approach. In virtue of reasons for weak utilization of traditional methods we propose stronger use of Multi-Method approach with Pragmatism as the philosophical standpoint.

  6. NASA Space Engineering Research Center for VLSI systems design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  7. Estimating surface faulting impacts from the shakeout scenario earthquake

    USGS Publications Warehouse

    Treiman, J.A.; Pontib, D.J.

    2011-01-01

    An earthquake scenario, based on a kinematic rupture model, has been prepared for a Mw 7.8 earthquake on the southern San Andreas Fault. The rupture distribution, in the context of other historic large earthquakes, is judged reasonable for the purposes of this scenario. This model is used as the basis for generating a surface rupture map and for assessing potential direct impacts on lifelines and other infrastructure. Modeling the surface rupture involves identifying fault traces on which to place the rupture, assigning slip values to the fault traces, and characterizing the specific displacements that would occur to each lifeline impacted by the rupture. Different approaches were required to address variable slip distribution in response to a variety of fault patterns. Our results, involving judgment and experience, represent one plausible outcome and are not predictive because of the variable nature of surface rupture. ?? 2011, Earthquake Engineering Research Institute.

  8. Characterizing interdisciplinarity of researchers and research topics using web search engines.

    PubMed

    Sayama, Hiroki; Akaishi, Jin

    2012-01-01

    Researchers' networks have been subject to active modeling and analysis. Earlier literature mostly focused on citation or co-authorship networks reconstructed from annotated scientific publication databases, which have several limitations. Recently, general-purpose web search engines have also been utilized to collect information about social networks. Here we reconstructed, using web search engines, a network representing the relatedness of researchers to their peers as well as to various research topics. Relatedness between researchers and research topics was characterized by visibility boost-increase of a researcher's visibility by focusing on a particular topic. It was observed that researchers who had high visibility boosts by the same research topic tended to be close to each other in their network. We calculated correlations between visibility boosts by research topics and researchers' interdisciplinarity at the individual level (diversity of topics related to the researcher) and at the social level (his/her centrality in the researchers' network). We found that visibility boosts by certain research topics were positively correlated with researchers' individual-level interdisciplinarity despite their negative correlations with the general popularity of researchers. It was also found that visibility boosts by network-related topics had positive correlations with researchers' social-level interdisciplinarity. Research topics' correlations with researchers' individual- and social-level interdisciplinarities were found to be nearly independent from each other. These findings suggest that the notion of "interdisciplinarity" of a researcher should be understood as a multi-dimensional concept that should be evaluated using multiple assessment means.

  9. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  10. Volunteers in the earthquake hazard reduction program

    USGS Publications Warehouse

    Ward, P.L.

    1978-01-01

    With this in mind, I organized a small workshop for approximately 30 people on February 2 and 3, 1978, in Menlo Park, Calif. the purpose of the meeting was to discuss methods of involving volunteers in a meaningful way in earthquake research and in educating the public about earthquake hazards. The emphasis was on earthquake prediction research, but the discussions covered the whole earthquake hazard reduction program. Representatives attended from the earthquake research community, from groups doing socioeconomic research on earthquake matters, and from a wide variety of organizations who might sponsor volunteers. 

  11. Turkish Compulsory Earthquake Insurance (TCIP)

    NASA Astrophysics Data System (ADS)

    Erdik, M.; Durukal, E.; Sesetyan, K.

    2009-04-01

    Through a World Bank project a government-sponsored Turkish Catastrophic Insurance Pool (TCIP) is created in 2000 with the essential aim of transferring the government's financial burden of replacing earthquake-damaged housing to international reinsurance and capital markets. Providing coverage to about 2.9 Million homeowners TCIP is the largest insurance program in the country with about 0.5 Billion USD in its own reserves and about 2.3 Billion USD in total claims paying capacity. The total payment for earthquake damage since 2000 (mostly small, 226 earthquakes) amounts to about 13 Million USD. The country-wide penetration rate is about 22%, highest in the Marmara region (30%) and lowest in the south-east Turkey (9%). TCIP is the sole-source provider of earthquake loss coverage up to 90,000 USD per house. The annual premium, categorized on the basis of earthquake zones type of structure, is about US90 for a 100 square meter reinforced concrete building in the most hazardous zone with 2% deductible. The earthquake engineering related shortcomings of the TCIP is exemplified by fact that the average rate of 0.13% (for reinforced concrete buildings) with only 2% deductible is rather low compared to countries with similar earthquake exposure. From an earthquake engineering point of view the risk underwriting (Typification of housing units to be insured, earthquake intensity zonation and the sum insured) of the TCIP needs to be overhauled. Especially for large cities, models can be developed where its expected earthquake performance (and consequently the insurance premium) can be can be assessed on the basis of the location of the unit (microzoned earthquake hazard) and basic structural attributes (earthquake vulnerability relationships). With such an approach, in the future the TCIP can contribute to the control of construction through differentiation of premia on the basis of earthquake vulnerability.

  12. Research on geo-electrical resistivity observation system specially used for earthquake monitoring in China

    NASA Astrophysics Data System (ADS)

    Zhao, Jialiu; Wang, Lanwei; Qian, Jiadong

    2011-12-01

    This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in the fixed points of the networks, which would be associated with the earthquake preparation. The observation system is characterized by the high accuracy in measurement, long term stability in operation and high level of rejection to the environmental interference. It consists of three main parts, configuration system measurement system, the calibration and inspection system.

  13. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  14. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  15. Pulse Detonation Rocket Engine Research at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    This viewgraph representation provides an overview of research being conducted on Pulse Detonation Rocket Engines (PDRE) by the Propulsion Research Center (PRC) at the Marshall Space Flight Center. PDREs have a theoretical thermodynamic advantage over Steady-State Rocket Engines (SSREs) although unsteady blowdown processes complicate effective use of this advantage in practice; PRE is engaged in a fundamental study of PDRE gas dynamics to improve understanding of performance issues. Topics covered include: simplified PDRE cycle, comparison of PDRE and SSRE performance, numerical modeling of quasi 1-D rocket flows, time-accurate thrust calculations, finite-rate chemistry effects in nozzles, effect of F-R chemistry on specific impulse, effect of F-R chemistry on exit species mole fractions and PDRE performance optimization studies.

  16. The collaborative program of research in engineering science

    SciTech Connect

    Not Available

    1990-12-01

    MIT and Idaho National Engineering Laboratory are continuing the program of collaborative research on energy-related engineering. The program involves research in the following areas: (1) mathematical modeling of thermal plasma systems, (2) high-temperature gas-particle reactions, (3) metal transfer in gas-metal arc welding, (4) multivariate control of gas-metal arc welding, (5) fundamentals of elastic-plastic fracture, (6) comminution of energy materials, and (7) synthesis and optimization of integrated chemical processes. A key objective of this collaborative program is to serve as a prototype for other university/laboratory collaborative programs. Another important goal is to enhance the transfer of new technology to the industrial sector.

  17. Trends in aeropropulsion research and their impact on engineering education

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Reichert, Bruce A.; Glassman, Arthur J.

    1992-01-01

    This presentation is concerned with the trends in aeropropulsion both in the U.S. and abroad and the impact of these trends on the educational process in our universities. In this paper, we shall outline the new directions for research which may be of interest to educators in the aeropropulsion field. Awareness of new emphases, such as emission reductions, noise control, maneuverability, speed, etc., will have a great impact on engineering educators responsible for restructuring courses in propulsion. The information presented herein will also provide some background material for possible consideration in the future development of propulsion courses. In describing aeropropulsion, we are concerned primarily with air-breathing propulsion; however many observations apply equally as well to rocket engine systems. Aeropropulsion research needs are primarily motivated by technologies required for advanced vehicle systems and frequently driven by external requirements such as economic competitiveness, environmental concern and national security. In this presentation, vehicle based research is first described, followed by a discussion of discipline and multidiscipline research necessary to implement the vehicle-focused programs. The importance of collaboration in research and the training of future researchers concludes this presentation.

  18. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  19. 78 FR 48659 - Board on Coastal Engineering Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Boulevard, Long Branch, NJ 07740. Time: 8:00 a.m. to 1:30 p.m. (September 4, 2013). 8:00 a.m. to 5:00 p.m..., and the availability of space, the Board on Coastal Engineering Research meeting is open to the public... is required. Oral participation by public attendees is encouraged during the time scheduled on...

  20. NASA Space Engineering Research Center Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1990-01-01

    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers.

  1. FY2011 Engineering Innovations, Research, and Technology Report

    SciTech Connect

    Hamilton, Kip; Martz, Harry E.; Poyneer, Lisa A.; Shusteff, Maxim; Spadaccini, Christopher M.; Hopkins, Jonathan B.; Bernier, Joel V.; King, Michael J.; Puso, Michael A.; Weisgraber, Todd H.; Goldstein, Noah C.; Sales, Ana Paula De Oliveira; Dehlinger, Dietrich A.; Kotovsky, Jack; Kuntz, Joshua D.; Voss, Lars F.; Wheeler, Elizabeth K.; Chang, John T.; Lehman, Sean K.; Vernon, Stephen P.; Tang, Vincent

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  2. Response of a 14-story Anchorage, Alaska, building in 2002 to two close earthquakes and two distant Denali fault earthquakes

    USGS Publications Warehouse

    Celebi, M.

    2004-01-01

    The recorded responses of an Anchorage, Alaska, building during four significant earthquakes that occurred in 2002 are studied. Two earthquakes, including the 3 November 2002 M7.9 Denali fault earthquake, with epicenters approximately 275 km from the building, generated long trains of long-period (>1 s) surface waves. The other two smaller earthquakes occurred at subcrustal depths practically beneath Anchorage and produced higher frequency motions. These two pairs of earthquakes have different impacts on the response of the building. Higher modes are more pronounced in the building response during the smaller nearby events. The building responses indicate that the close-coupling of translational and torsional modes causes a significant beating effect. It is also possible that there is some resonance occurring due to the site frequency being close to the structural frequency. Identification of dynamic characteristics and behavior of buildings can provide important lessons for future earthquake-resistant designs and retrofit of existing buildings. ?? 2004, Earthquake Engineering Research Institute.

  3. Students Engaged in Research - Young Engineers and Scientists (YES)

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.

    2009-09-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including geosciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  4. Young Engineers and Scientists (YES) -engaging students in research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Reiff, Patricia

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) during the past 18 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including space sciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students' preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  5. Research on groundwater radon as a fluid phase precursor to earthquakes

    SciTech Connect

    Teng, T.; Sun, L.

    1986-11-10

    Groundwater radon monitoring work carried out in southern California by the University of Southern California since 1974 is summarized here. This effort began with a sampling network over a locked segment of the San Andreas fault from Tejon to Cajon and was later expanded to cover part of the southern Transverse Mountain ranges. Groundwater samples were brought back weekly to the laboratory for high precision scintillation counting. Needs for more frequent sampling and less labor prompted the development of an economical and field worthy instrument known as the continuous radon monitor. About 10 have been installed in the network since early 1980. The groundwater radon content was found to show anomalous increases (mostly at a single station) before a number of moderate and nearby earthquakes. Our work is hampered by a lack of large earthquakes that may have a regional impact on radon anomalies and by the complexity of the underground hydrological regime. To circumvent this difficulty, we have chosen to monitor only deep artesian wells or hot spring wells.

  6. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  7. An Engineering Research Program for High School Science Teachers: Year Two Changes and Results

    ERIC Educational Resources Information Center

    DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga

    2016-01-01

    The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…

  8. 76 FR 46359 - Announcing the Nineteenth Public Meeting of the Crash Injury Research and Engineering Network...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... centers to enroll crash victims into the CIREN program. Engineering teams are led by mechanical engineers... Research and Engineering Network (CIREN) AGENCY: National Highway Traffic Safety Administration (NHTSA... members of the Crash Injury Research and Engineering Network. CIREN is a collaborative effort to...

  9. Research & Development 100 (R&D 100) NASA Glenn Research Center, Makel Engineering, Inc,

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Research & Development 100 (R&D 100) NASA Glenn Research Center, Makel Engineering, Inc, Case Western Reserve Univ, Ohio State Univ. for the development of Multi-Parameter, MicroSensor-Based Low False Alarm Fire Detection System (MMFDS) Award Plaque

  10. Data Sharing in Interpretive Engineering Education Research: Challenges and Opportunities from a Research Quality Perspective

    ERIC Educational Resources Information Center

    Walther, Joachim; Sochacka, Nicola W.; Pawley, Alice L.

    2016-01-01

    This article explores challenges and opportunities associated with sharing qualitative data in engineering education research. This exploration is theoretically informed by an existing framework of interpretive research quality with a focus on the concept of Communicative Validation. Drawing on practice anecdotes from the authors' work, the…

  11. Performance of the NCREE's on-site warning system during the 5 February 2016 Mw 6.53 Meinong earthquake

    NASA Astrophysics Data System (ADS)

    Hsu, Ting-Yu; Wang, Hsui-Hsien; Lin, Pei-Yang; Lin, Che-Min; Kuo, Chun-Hsiang; Wen, Kuo-Liang

    2016-09-01

    The National Center for Research on Earthquake Engineering in Taiwan has developed an on-site earthquake early warning system (NEEWS). The Meinong earthquake with a moment magnitude of 6.53 and a focal depth of 14.6 km occurred on 5 February 2016 in southern Taiwan. It caused 117 deaths, injured 551, caused the collapse of six buildings, and serious damage to 247 buildings. During the Meinong earthquake, the system performance of 16 NEEWS stations was recorded. Based on a preassigned peak ground acceleration (PGA) threshold to issue alarms at different stations, no false alarms or missed alarms were issued during the earthquake. About 4 s to 33 s of lead time were provided by the NEEWS depending on the epicenter distance. In addition, the directivity of the earthquake source characteristic and also possibly the site effects were observed in the diagram of the distribution of PGA difference between the predicted PGA and the measured PGA.

  12. The role of chemical engineering in medicinal research including Alzheimer's.

    PubMed

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases.

  13. An overview of NASA intermittent combustion engine research

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectedly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts, the stratified-charge, multi-fuel rotary and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants. Previously announced in STAR as N84-24583

  14. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  15. The role of chemical engineering in medicinal research including Alzheimer's.

    PubMed

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases. PMID:25416110

  16. From biomedical-engineering research to clinical application and industrialization

    NASA Astrophysics Data System (ADS)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  17. National clearinghouse for Loma Prieta earthquake information catalog, April 1992

    SciTech Connect

    Not Available

    1992-01-01

    This catalog lists 142 new citations on the Loma Prieta earthquake. Section titles are: General topics and conference proceedings; Selected topics in seismology; Engineering seismology; Strong-motion seismometry; Dynamics of soils, rocks, and foundations; Dynamics of structures; Earthquake-resistant design and construction; Earthquake damage; and Earthquakes as natural disasters. Included are indexes by author, title, subject, and format.

  18. 48 CFR 206.302-3 - Industrial mobilization; or engineering, development, or research capability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Industrial mobilization; or engineering, development, or research capability. 206.302-3 Section 206.302-3 Federal Acquisition... engineering, development, or research capability....

  19. Phenomenology Research Using Past Nevada Test Site Explosion and Earthquake Data

    SciTech Connect

    Mayeda, K M; Pasyanos, M E; O'Boyle, J; Myers, S C; Walter, W R; Goldstein, P

    2000-07-27

    We use regional waveform data from the Nevada Test Site (NTS) to investigate phenomenological relationships between recorded amplitude and explosion yield as well as test regional depth estimation procedures. Our goal is to better understand the performance of seismic observables in other regions of monitoring interest, especially at small magnitudes (m{sub b}<<4.5). Some of the topics we are studying include: stable yield estimation, depth estimation, and M{sub g}:m{sub b} performance. We use Lawrence Livermore National Laboratory's NTS explosion database, which consists of several hundred events ranging from {approx}200 to {approx}1500-m depth and yields ranging from a few tenths of a kiloton to the megaton range. In addition to the broadband explosion data, we have a large dataset of well-located earthquakes on the test site with depths ranging from 2 to 17 km and magnitudes ranging between M{sub w}1.5 and 5.7. For yield estimation the relation between teleseismic body wave magnitude (mb) and nuclear explosion yield has been studied extensively over the past several decades for a number of test sites for large (>1 kt) explosions. In this paper we will look at broadband coda, P{sub g,} and L{sub g} from over 260 nuclear explosions to study yield estimation capability by comparing F-factors. For monitoring compliance with a CTBT, small events that are recorded only at regional distances will be used to estimate magnitude and equivalent yield, Past coda studies show that coda-derived magnitudes of earthquakes and explosions are more stable than any direct phase method, including mb(Lg). In fact, single-station coda measurements can be equivalent to a network average of at least ten direct phase measurements over a broad range of frequencies. In regions where the depth estimate is poorly constrained, other regional methods have been proposed to estimate depth. These include time-domain measures of P-wave complexity, cepstral peaking, and more recently spectral

  20. NGO collaboration in community post-disaster reconstruction: field research following the 2008 Wenchuan earthquake in China.

    PubMed

    Lu, Yi; Xu, Jiuping

    2015-04-01

    The number of communities affected by disasters has been rising. As a result, non-governmental organisations (NGOs) that attend community post-disaster reconstruction are often unable to deliver all requirements and have to develop cooperative approaches. However, this collaboration can cause problems because of the complex environments, the fight for limited resources and uncoordinated management, all of which result in poor service delivery to the communities, adding to their woes. From extensive field research and case studies conducted in the post-Wenchuan earthquake-stricken communities, this paper introduces an integrated collaboration framework for community post-disaster reconstruction with the focus on three types of NGOs: international, government organised and civil. The proposed collaboration framework examines the three interrelated components of organisational structure, operational processes and reconstruction goals/implementation areas. Of great significance in better promoting collaborative participation between NGOs are the crucial concepts of participatory reconstruction, double-layer collaborative networks, and circular review and revision.

  1. The Role of Communication in Post-disaster Research Coordination: Communicating the research moratorium after the 22 February 2011 Mw 6 Christchurch Earthquake in New Zealand.

    NASA Astrophysics Data System (ADS)

    Beaven, S.

    2015-12-01

    Disasters stimulate research activity by creating comparatively rare post-disaster data, while also increasing the urgency of agency demand for scientific evidence. In the wake of the 2011 Christchurch Earthquake disaster, New Zealand, post-disaster research activity was coordinated by a national Natural Hazards Research Platform, in collaboration with response agencies. The focus was on research support for responding agencies, with an emphasis on creating high quality scientific outcomes. This coordinated research effort did not include independent research activity, which escalated steeply in the weeks after the event. The risks this increased research pressure posed to response operations and impacted populations informed the declaration of a moratorium on research not deemed relevant to the needs of response agencies. This presentation summarizes communication issues that made it difficult to disseminate the moratorium, and to establish the relevance of this decision where it might have been most effective in diminishing these risks: within national and international natural hazard and disaster research communities, other national research communities, across responding agencies and organisations, and among impacted organizations and communities.

  2. Peer review, basic research, and engineering: Defining a role for QA professionals in basic research environments

    SciTech Connect

    Bodnarczuk, M.

    1989-02-01

    Within the context of doing basic research, this paper seeks to answer four major questions: (1) What is the authority structure of science. (2) What is peer review. (3) Where is the interface between basic physics research and standard engineering. and (4) Given the conclusions to the first three questions, what is the role of the QA professional in a basic research environment like Fermilab. 23 refs.

  3. Toward ethical norms and institutions for climate engineering research

    NASA Astrophysics Data System (ADS)

    Morrow, David R.; Kopp, Robert E.; Oppenheimer, Michael

    2009-10-01

    Climate engineering (CE), the intentional modification of the climate in order to reduce the effects of increasing greenhouse gas concentrations, is sometimes touted as a potential response to climate change. Increasing interest in the topic has led to proposals for empirical tests of hypothesized CE techniques, which raise serious ethical concerns. We propose three ethical guidelines for CE researchers, derived from the ethics literature on research with human and animal subjects, applicable in the event that CE research progresses beyond computer modeling. The Principle of Respect requires that the scientific community secure the global public's consent, voiced through their governmental representatives, before beginning any empirical research. The Principle of Beneficence and Justice requires that researchers strive for a favorable risk-benefit ratio and a fair distribution of risks and anticipated benefits, all while protecting the basic rights of affected individuals. Finally, the Minimization Principle requires that researchers minimize the extent and intensity of each experiment by ensuring that no experiments last longer, cover a greater geographical extent, or have a greater impact on the climate, ecosystem, or human welfare than is necessary to test the specific hypotheses in question. Field experiments that might affect humans or ecosystems in significant ways should not proceed until a full discussion of the ethics of CE research occurs and appropriate institutions for regulating such experiments are established.

  4. 75 FR 48411 - Research, Engineering and Development Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Federal Aviation Administration Research, Engineering and Development Advisory Committee; Notice of... of a meeting of the FAA Research, Engineering and Development (R, E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: September 22, 2010--9:30 a.m. to 4...

  5. Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey Part2 Yoshiyuki KANEDA Nagoya University Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Haluk OZENER Boğaziçi University, Earthquake Researches Institute (KOERI) and Members of SATREPS Japan-Turkey project

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.; Ozener, H.

    2015-12-01

    The 1999 Izumit Earthquake as the destructive earthquake occurred near the Marmara Sea. The Marmara Sea should be focused on because of a seismic gap in the North Anatolian fault. Istanbul is located around the Marmara Sea, so, if next earthquake will occur near Istanbul, fatal damages will be generated. The Japan and Turkey can share our own experiences during past damaging earthquakes and we can prepare for future large earthquakes in cooperation with each other. In earthquakes in Tokyo area and Istanbul area as the destructive earthquakes near high population cities, there are common disaster researches and measures. For disaster mitigation, we are progressing multidisciplinary researches. Our goals of this SATREPS project are as follows, To develop disaster mitigation policy and strategies based on multidisciplinary research activities. To provide decision makers with newly found knowledge for its implementation to the current regulations. To organize disaster education programs in order to increase disaster awareness in Turkey. To contribute the evaluation of active fault studies in Japan. This project is composed of four research groups. The first group is Marmara Earthquake Source region observationally research group. This group has 4 sub-themes such as Seismicity, Geodesy, Electromagnetics and Trench analyses. The second group focuses on scenario researches of earthquake occurrence along the North Anatolia fault and precise tsunami simulation in the Marmara region. Aims of the third group are improvements and constructions of seismic characterizations and damage predictions based on observation researches and precise simulations. The fourth group is promoting disaster educations using research result visuals. In this SATREPS project, we will integrate these research results for disaster mitigation in Marmara region and .disaster education in Turkey. We will have a presentation of the updated results of this SATREPS project.

  6. Enabling Arctic Research Through Science and Engineering Partnerships

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  7. Integrating Global Hydrology Into Graduate Engineering Education and Research

    NASA Astrophysics Data System (ADS)

    Griffis, V. W.

    2007-12-01

    Worldwide, polluted water affects the health of 1.2 billion people and contributes to the death of 15 million children under five every year. In addition poor environmental quality contributes to 25 per cent of all preventable ill health in the world. To address some of these problems, at the 2002 World Summit on Sustainable Development, the world community set the goal of halving, by the year 2015, the proportion of people without access to safe drinking water and basic sanitation. Solving sanitation and water resource management problems in any part of the world presents an interdisciplinary, complex challenge. However, when we attempt to solve these problems in an international context, our technical approaches must be tempered with cultural sensitivity and extraordinary management strategies. To meet this challenge, Michigan Tech has developed a unique global partnership with the U.S. Peace Corps to address our acknowledgement of the importance of placing engineering solutions in a global context. The program has graduated 30 students. Program enrollment is now over 30 and over 20 countries have hosted our students. The objective of this presentation is to demonstrate how this unique partnership can be integrated with graduate engineering education and research and also show how such a program may attract a more diverse student population into engineering. All graduate students enrolled in our Master's International Program in Civil and Environmental Engineering must complete specific coursework requirements before departing for their international experience. In CE5993 (Field Engineering in the Developing World) students learn to apply concepts of sustainable development and appropriate technology in the developing world. In FW5770 (Rural Community Development Planning and Analysis) students learn how one involves a community in the decision making process. A common theme in both courses is the role of woman in successful development projects. Technical

  8. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    SciTech Connect

    Casey, Leslie A.

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  9. NACA's 9th Annual Aircraft Engineering Research Conference

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Eight of the twelve members of the National Advisory Committee for Aeronautics attending the 9th Annual Aircraft Engineering Research Conference posed for this photograph at Langley Field, Virginia, on May 23, 1934. Those pictured are (left to right): Brig. Gen. Charles A. Lindbergh, USAFR Vice Admiral Arthur B. Cook, USN Charles G. Abbot, Secretary of the Smithsonian Institution Dr. Joseph S. Ames, Committee Chairman Orville Wright Edward P. Warner Fleet Admiral Ernest J. King, USN Eugene L. Vidal, Director, Bureau of Air Commerce.

  10. Research and engineering assessment of biological solubilization of phosphate

    SciTech Connect

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  11. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  12. The Alaska earthquake, March 27, 1964: lessons and conclusions

    USGS Publications Warehouse

    Eckel, Edwin B.

    1970-01-01

    subsidence was superimposed on regional tectonic subsidence to heighten the flooding damage. Ground and surface waters were measurably affected by the earthquake, not only in Alaska but throughout the world. Expectably, local geologic conditions largely controlled the extent of structural damage, whether caused directly by seismic vibrations or by secondary effects such as those just described. Intensity was greatest in areas underlain by thick saturated unconsolidated deposits, least on indurated bedrock or permanently frozen ground, and intermediate on coarse well-drained gravel, on morainal deposits, or on moderately indurated sedimentary rocks. Local and even regional geology also controlled the distribution and extent of the earthquake's effects on hydrologic systems. In the conterminous United States, for example, seiches in wells and bodies of surface water were controlled by geologic structures of regional dimension. Devastating as the earthquake was, it had many long-term beneficial effects. Many of these were socioeconomic or engineering in nature; others were of scientific value. Much new and corroborative basic geologic and hydrologic information was accumulated in the course of the earthquake studies, and many new or improved investigative techniques were developed. Chief among these, perhaps, were the recognition that lakes can be used as giant tiltmeters, the refinement of methods for measuring land-level changes by observing displacements of barnacles and other sessile organisms, and the relating of hydrology to seismology by worldwide study of hydroseisms in surface-water bodies and in wells. The geologic and hydrologic lessons learned from studies of the Alaska earthquake also lead directly to better definition of the research needed to further our understanding of earthquakes and of how to avoid or lessen the effects of future ones. Research is needed on the origins and mechanisms of earthquakes, on crustal structure, and on the generation of tsunamis and

  13. Earthquakes in Action: Incorporating Multimedia, Internet Resources, Large-scale Seismic Data, and 3-D Visualizations into Innovative Activities and Research Projects for Today's High School Students

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.

    2006-12-01

    The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http

  14. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    PubMed

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  15. The 1868 Hayward Earthquake Alliance: A Case Study - Using an Earthquake Anniversary to Promote Earthquake Preparedness

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Garcia, S.; Aagaard, B. T.; Boatwright, J. J.; Dawson, T.; Hellweg, M.; Knudsen, K. L.; Perkins, J.; Schwartz, D. P.; Stoffer, P. W.; Zoback, M.

    2008-12-01

    Last October 21st marked the 140th anniversary of the M6.8 1868 Hayward Earthquake, the last damaging earthquake on the southern Hayward Fault. This anniversary was used to help publicize the seismic hazards associated with the fault because: (1) the past five such earthquakes on the Hayward Fault occurred about 140 years apart on average, and (2) the Hayward-Rodgers Creek Fault system is the most likely (with a 31 percent probability) fault in the Bay Area to produce a M6.7 or greater earthquake in the next 30 years. To promote earthquake awareness and preparedness, over 140 public and private agencies and companies and many individual joined the public-private nonprofit 1868 Hayward Earthquake Alliance (1868alliance.org). The Alliance sponsored many activities including a public commemoration at Mission San Jose in Fremont, which survived the 1868 earthquake. This event was followed by an earthquake drill at Bay Area schools involving more than 70,000 students. The anniversary prompted the Silver Sentinel, an earthquake response exercise based on the scenario of an earthquake on the Hayward Fault conducted by Bay Area County Offices of Emergency Services. 60 other public and private agencies also participated in this exercise. The California Seismic Safety Commission and KPIX (CBS affiliate) produced professional videos designed forschool classrooms promoting Drop, Cover, and Hold On. Starting in October 2007, the Alliance and the U.S. Geological Survey held a sequence of press conferences to announce the release of new research on the Hayward Fault as well as new loss estimates for a Hayward Fault earthquake. These included: (1) a ShakeMap for the 1868 Hayward earthquake, (2) a report by the U. S. Bureau of Labor Statistics forecasting the number of employees, employers, and wages predicted to be within areas most strongly shaken by a Hayward Fault earthquake, (3) new estimates of the losses associated with a Hayward Fault earthquake, (4) new ground motion

  16. NASA Glenn's Engine Components Research Lab, Cell 2B, Reactivated to Support the U.S. Army Research Laboratory T700 Engine Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Griffin, Thomas A.

    2004-01-01

    The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.

  17. Engaging the Global South on climate engineering research

    NASA Astrophysics Data System (ADS)

    Winickoff, David E.; Flegal, Jane A.; Asrat, Asfawossen

    2015-07-01

    The Global South is relatively under-represented in public deliberations about solar radiation management (SRM), a controversial climate engineering concept. This Perspective analyses the outputs of a deliberative exercise about SRM, which took place at the University of California-Berkeley and involved 45 mid-career environmental leaders, 39 of whom were from the Global South. This analysis identifies and discusses four themes from the Berkeley workshop that might inform research and governance in this arena: (1) the 'moral hazard' problem should be reframed to emphasize 'moral responsibility'; (2) climate models of SRM deployment may not be credible as primary inputs to policy because they cannot sufficiently address local concerns such as access to water; (3) small outdoor experiments require some form of international public accountability; and (4) inclusion of actors from the Global South will strengthen both SRM research and governance.

  18. User guide to the Burner Engineering Research Laboratory

    SciTech Connect

    Fornaciari, N.; Schefer, R.; Paul, P.; Lubeck, C.; Sanford, R.; Claytor, L.

    1994-11-01

    The Burner Engineering Research Laboratory (BERL) was established with the purpose of providing a facility where manufacturers and researchers can study industrial natural gas burners using conventional and laser-based diagnostics. To achieve this goal, an octagonal furnace enclosure with variable boundary conditions and optical access that can accommodate burners with firing rates up to 2.5 MMBtu per hour was built. In addition to conventional diagnostic capabilities like input/output measurements, exhaust gas monitoring, suction pyrometry and in-furnace gas sampling, laser-based diagnostics available at BERL include planar Mie scattering, laser Doppler velocimetry and laser-induced fluorescence. This paper gives an overview of the operation of BERL and a description of the diagnostic capabilities and an estimate of the time required to complete each diagnostic for the potential user who is considering submitting a proposal.

  19. Initiatives to Reduce Earthquake Risk of Developing Countries

    NASA Astrophysics Data System (ADS)

    Tucker, B. E.

    2008-12-01

    an earthquake- and tsunami-resistant structure in Sumatra to house a tsunami museum, a community training center, and offices of a local NGO that is preparing Padang for the next tsunami. This facility would be designed and built by a team of US and Indonesian academics, architects, engineers and students. Another initiative would launch a collaborative research program on school earthquake safety with the scientists and engineers from the US and the ten Islamic countries that comprise the Economic Cooperation Organization. Finally, GHI hopes to develop internet and satellite communication techniques that will allow earthquake risk managers in the US to interact with masons, government officials, engineers and architects in remote communities of vulnerable developing countries, closing the science and engineering divide.

  20. Tissue-engineered models of human tumors for cancer research

    PubMed Central

    Villasante, Aranzazu; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. Areas covered In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. Expert opinion While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function. PMID:25662589

  1. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  2. Hidden earthquakes

    SciTech Connect

    Stein, R.S.; Yeats, R.S.

    1989-06-01

    Seismologists generally look for earthquakes to happen along visible fault lines, e.g., the San Andreas fault. The authors maintain that another source of dangerous quakes has been overlooked: the release of stress along a fault that is hidden under a fold in the earth's crust. The paper describes the differences between an earthquake which occurs on a visible fault and one which occurs under an anticline and warns that Los Angeles greatest earthquake threat may come from a small quake originating under downtown Los Angeles, rather than a larger earthquake which occurs 50 miles away at the San Andreas fault.

  3. I'm Graduating This Year! So What IS an Engineer Anyway? Research Brief

    ERIC Educational Resources Information Center

    Matusovich, Holly; Streveler, Ruth; Miller, Ron; Olds, Barbara

    2009-01-01

    It is often assumed that graduating engineering students readily envision what it means to be an engineer and what type of work they will be doing as engineers in the future. How can one know if this is true? This research begins to answer these questions by aiming to understand undergraduate engineering students' perceptions of themselves as…

  4. Nonlinear processes in earthquakes

    SciTech Connect

    Jones, E.M.; Frohlich, C.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Three-dimensional, elastic-wave-propagation calculations were performed to define the effects of near-source geologic structure on the degree to which seismic signals produced by earthquakes resemble {open_quotes}non-double-couple{close_quotes} sources. Signals from sources embedded in a subducting slab showed significant phase and amplitude differences compared with a {open_quotes}no-slab{close_quotes} case. Modifications to the LANL elastic-wave propagation code enabled improved simulations of path effects on earthquake and explosion signals. These simulations demonstrate that near-source, shallow, low-velocity basins can introduce earthquake-like features into explosion signatures through conversion of compressive (P-wave) energy to shear (S- and R-wave) modes. Earthquake sources simulated to date do not show significant modifications.

  5. Lunar Landing Research Vehicle (LLRV) engine test firing on ramp

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This 1964 NASA Flight Reserch Center photograph shows a ground engine test underway on the Lunar Landing Research Vehicle (LLRV) number 1. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw

  6. Engine structures: A bibliography of Lewis Research Center's research for 1980-1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Structures Division of the NASA Lewis Research Center from 1980 through 1987. All the publications were announced in the l980 to 1987 issues of STAR (Scientific and Technical Aerospace Reports) and or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  7. Development of a Gas-Fed Pulse Detonation Research Engine

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Hutt, John (Technical Monitor)

    2001-01-01

    In response to the growing need for empirical data on pulse detonation engine performance and operation, NASA Marshall Space Flight Center has developed and placed into operation a low-cost gas-fed pulse detonation research engine. The guiding design strategy was to achieve a simple and flexible research apparatus, which was inexpensive to build and operate. As such, the engine was designed to operate as a heat sink device, and testing was limited to burst-mode operation with run durations of a few seconds. Wherever possible, maximum use was made of standard off-the-shelf industrial or automotive components. The 5-cm diameter primary tube is about 90-cm long and has been outfitted with a multitude of sensor and optical ports. The primary tube is fed by a coaxial injector through an initiator tube, which is inserted directly into the injector head face. Four auxiliary coaxial injectors are also integrated into the injector head assembly. All propellant flow is controlled with industrial solenoid valves. An automotive electronic ignition system was adapted for use, and spark plugs are mounted in both tubes so that a variety of ignition schemes can be examined. A microprocessor-based fiber-optic engine control system was developed to provide precise control over valve and ignition timing. Initial shakedown testing with hydrogen/oxygen mixtures verified the need for Schelkin spirals in both the initiator and primary tubes to ensure rapid development of the detonation wave. Measured pressure wave time-of-flight indicated detonation velocities of 2.4 km/sec and 2.2 km/sec in the initiator and primary tubes, respectively. These values implied a fuel-lean mixture corresponding to an H2 volume fraction near 0.5. The axial distribution for the detonation velocity was found to be essentially constant along the primary tube. Time-resolved thrust profiles were also acquired for both underfilled and overfilled tube conditions. These profiles are consistent with previous time

  8. Concurrent Engineering for the Management of Research and Development

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben; Petersen, Paul F.; Keys, L. Ken; Chen, Injazz J.

    2004-01-01

    The Management of Research and Development (R&D) is facing the challenges of reducing time from R&D to customer, reducing the cost of R&D, having higher accountability for results (improved quality), and increasing focus on customers. Concurrent engineering (CE) has shown great success in the automotive and technology industries resulting in significant decreases in cycle time, reduction of total cost, and increases in quality and reliability. This philosophy of concurrency can have similar implications or benefits for the management of R&D organizations. Since most studies on the application of CE have been performed in manufacturing environments, research into the benefits of CE into other environments is needed. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the application of CE in the management of an R&D organization. In particular the paper emphasizes possible barriers and enhancers that this environment presents to the successful implementation of CE. Preliminary results and recommendations are based on a series of interviews and subsequent surveys, from which data has been gathered and analyzed as part of the GRC's Continuous Improvement Process.

  9. 34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering...

  10. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering...

  11. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering...

  12. 34 CFR 350.32 - What activities must a Rehabilitation Engineering Research Center conduct?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What activities must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.32 What activities must a Rehabilitation Engineering...

  13. 34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering...

  14. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; engineering, developmental, or research capability; or expert services. 6.302-3 Section 6.302-3 Federal... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research,...

  15. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering...

  16. 34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering...

  17. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering...

  18. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering...

  19. 34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering...

  20. 34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering...

  1. 34 CFR 350.32 - What activities must a Rehabilitation Engineering Research Center conduct?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What activities must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.32 What activities must a Rehabilitation Engineering...

  2. Earthquake Simulator Finds Tremor Triggers

    SciTech Connect

    Johnson, Paul

    2015-03-27

    Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher has found that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often long after a quake has subsided. The research provides insight into how earthquakes may be triggered and how they recur. Los Alamos researcher Paul Johnson and colleague Chris Marone at Penn State have discovered how wave energy can be stored in certain types of granular materials-like the type found along certain fault lines across the globe-and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional “aftershock zone” of a main quake. Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.

  3. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  4. Earthquake Hazards.

    ERIC Educational Resources Information Center

    Donovan, Neville

    1979-01-01

    Provides a survey and a review of earthquake activity and global tectonics from the advancement of the theory of continental drift to the present. Topics include: an identification of the major seismic regions of the earth, seismic measurement techniques, seismic design criteria for buildings, and the prediction of earthquakes. (BT)

  5. Earthquake prediction

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1991-01-01

    The state of the art in earthquake prediction is discussed. Short-term prediction based on seismic precursors, changes in the ratio of compressional velocity to shear velocity, tilt and strain precursors, electromagnetic precursors, hydrologic phenomena, chemical monitors, and animal behavior is examined. Seismic hazard assessment is addressed, and the applications of dynamical systems to earthquake prediction are discussed.

  6. Earthquakes with non--double-couple mechanisms.

    PubMed

    Frohlich, C

    1994-05-01

    Seismological observations confirm that the pattern of seismic waves from some earthquakes cannot be produced by slip along a planar fault surface. More than one physical mechanism is required to explain the observed varieties of these non-double-couple earthquakes. The simplest explanation is that some earthquakes are complex, with stress released on two or more suitably oriented, nonparallel fault surfaces. However, some shallow earthquakes in volcanic and geothermal areas require other explanations. Current research focuses on whether fault complexity explains most observed non-double-couple earthquakes and to what extent ordinary earthquakes have non-double-couple components.

  7. Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale

    NASA Astrophysics Data System (ADS)

    Serva, Leonello; Vittori, Eutizio; Comerci, Valerio; Esposito, Eliana; Guerrieri, Luca; Michetti, Alessandro Maria; Mohammadioun, Bagher; Mohammadioun, Georgianna C.; Porfido, Sabina; Tatevossian, Ruben E.

    2016-05-01

    The main objective of this paper was to introduce the Environmental Seismic Intensity scale (ESI), a new scale developed and tested by an interdisciplinary group of scientists (geologists, geophysicists and seismologists) in the frame of the International Union for Quaternary Research (INQUA) activities, to the widest community of earth scientists and engineers dealing with seismic hazard assessment. This scale defines earthquake intensity by taking into consideration the occurrence, size and areal distribution of earthquake environmental effects (EEE), including surface faulting, tectonic uplift and subsidence, landslides, rock falls, liquefaction, ground collapse and tsunami waves. Indeed, EEEs can significantly improve the evaluation of seismic intensity, which still remains a critical parameter for a realistic seismic hazard assessment, allowing to compare historical and modern earthquakes. Moreover, as shown by recent moderate to large earthquakes, geological effects often cause severe damage"; therefore, their consideration in the earthquake risk scenario is crucial for all stakeholders, especially urban planners, geotechnical and structural engineers, hazard analysts, civil protection agencies and insurance companies. The paper describes background and construction principles of the scale and presents some case studies in different continents and tectonic settings to illustrate its relevant benefits. ESI is normally used together with traditional intensity scales, which, unfortunately, tend to saturate in the highest degrees. In this case and in unpopulated areas, ESI offers a unique way for assessing a reliable earthquake intensity. Finally, yet importantly, the ESI scale also provides a very convenient guideline for the survey of EEEs in earthquake-stricken areas, ensuring they are catalogued in a complete and homogeneous manner.

  8. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  9. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    PubMed

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  10. Global earthquake casualties due to secondary effects: A quantitative analysis for improving rapid loss analyses

    USGS Publications Warehouse

    Marano, K.D.; Wald, D.J.; Allen, T.I.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER's overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra-Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability. ?? Springer Science+Business Media B.V. 2009.

  11. Global Earthquake Casualties due to Secondary Effects: A Quantitative Analysis for Improving PAGER Losses

    USGS Publications Warehouse

    Wald, David J.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey’s (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER’s overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra–Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability.

  12. Research Prototype: Automated Analysis of Scientific and Engineering Semantics

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Follen, Greg (Technical Monitor)

    2001-01-01

    Physical and mathematical formulae and concepts are fundamental elements of scientific and engineering software. These classical equations and methods are time tested, universally accepted, and relatively unambiguous. The existence of this classical ontology suggests an ideal problem for automated comprehension. This problem is further motivated by the pervasive use of scientific code and high code development costs. To investigate code comprehension in this classical knowledge domain, a research prototype has been developed. The prototype incorporates scientific domain knowledge to recognize code properties (including units, physical, and mathematical quantity). Also, the procedure implements programming language semantics to propagate these properties through the code. This prototype's ability to elucidate code and detect errors will be demonstrated with state of the art scientific codes.

  13. Machine learning, medical diagnosis, and biomedical engineering research - commentary.

    PubMed

    Foster, Kenneth R; Koprowski, Robert; Skufca, Joseph D

    2014-07-05

    A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique.

  14. Machine learning, medical diagnosis, and biomedical engineering research - commentary

    PubMed Central

    2014-01-01

    A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique. PMID:24998888

  15. Cell stretching devices as research tools: engineering and biological considerations.

    PubMed

    Kamble, Harshad; Barton, Matthew J; Jun, Myeongjun; Park, Sungsu; Nguyen, Nam-Trung

    2016-08-16

    Cells within the human body are subjected to continuous, cyclic mechanical strain caused by various organ functions, movement, and growth. Cells are well known to have the ability to sense and respond to mechanical stimuli. This process is referred to as mechanotransduction. A better understanding of mechanotransduction is of great interest to clinicians and scientists alike to improve clinical diagnosis and understanding of medical pathology. However, the complexity involved in in vivo biological systems creates a need for better in vitro technologies, which can closely mimic the cells' microenvironment using induced mechanical strain. This technology gap motivates the development of cell stretching devices for better understanding of the cell response to mechanical stimuli. This review focuses on the engineering and biological considerations for the development of such cell stretching devices. The paper discusses different types of stretching concepts, major design consideration and biological aspects of cell stretching and provides a perspective for future development in this research area. PMID:27440436

  16. Machining of beryllium with the LLNL Precision Engineering Research Lathe

    SciTech Connect

    Foley, R.J.

    1985-04-01

    In August 1984, six flat samples of beryllium, which were prepared by Brush-Wellmen Corp. using various pressing and sintering processes, were machined at LLNL on the recently completed Precision Engineering Research Lathe (PERL). The purpose of this study, which was conducted in cooperation with the Hughes Aircraft Corporation and partially funded by that organization, was to determine the optical properties of machined beryllium surfaces when prepared under highly controlled conditions using high quality machine tools and CBN (cubic boron nitrite) cutting tools. This report will summarize the materials properties, the machining conditions used on the PERL and a comparison of the completed samples using optical measuring techniques and scanning electron microscopy (SEM). The mirror surface reflecting measurements in the IR region are to be made by the group at Hughes Aircraft and will be exchanged with LLNL as a part of this joint technical effort. 3 refs., 14 figs.

  17. Engineering uses of physics-based ground motion simulations

    USGS Publications Warehouse

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  18. Earthquakes and the urban environment. Volume II

    SciTech Connect

    Berlin, G.L.

    1980-01-01

    Because of the complex nature of earthquake effects, current investigations encompass many disciplines, including those of both the physical and social sciences. Research activities center on such diversified topics as earthquake mechanics, earthquake prediction and control, the prompt and accurate detection of tsunamis (seismic sea waves), earthquake-resistant construction, seismic building code improvements, land use zoning, earthquake risk and hazard perception, disaster preparedness, plus the study of the concerns and fears of people who have experienced the effects of an earthquake. This monograph attempts to amalgamate recent research input comprising the vivifying components of urban seismology at a level useful to those having an interest in the earthquake and its effects upon an urban environment. Volume 2 contains chapters on earthquake prediction, control, building design and building response.

  19. Earthquakes and the urban environment. Volume I

    SciTech Connect

    Berlin, G.L.

    1980-01-01

    Because of the complex nature of earthquake effects, current investigations encompass many disciplines, including those of both the physical and social sciences. Research activities center on such diversified topics as earthquake mechanics, earthquake prediction and control, the prompt and accurate detection of tsunamis (seismic sea waves), earthquake-resistant construction, seismic building code improvements, land use zoning, earthquake risk and hazard perception, disaster preparedness, plus the study of the concerns and fears of people who have experienced the effects of an earthquake. This monograph attempts to amalgamate recent research input comprising the vivifying components of urban seismology at a level useful to those having an interest in the earthquake and its effects upon an urban environment. Volume 1 contains chapters on earthquake parameters and hazards.

  20. Engineering Education Research in "European Journal of Engineering Education" and "Journal of Engineering Education": Citation and Reference Discipline Analysis

    ERIC Educational Resources Information Center

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of "European Journal of Engineering Education" ("EJEE") and "Journal of Engineering Education" ("JEE") in 1973 ("JEE," 1975 "EJEE"), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become…

  1. POLLUTION PREVENTION RESEARCH ONGOING - EPA'S RISK REDUCTION ENGINEERING LABORATORY

    EPA Science Inventory

    The mission of the Risk Reduction Engineering Laboratory is to advance the understanding, development and application of engineering solutions for the prevention or reduction of risks from environmental contamination. This mission is accomplished through basic and applied researc...

  2. Earthquake impact scale

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    also be both specific (although allowably uncertain) and actionable. In this analysis, an attempt is made at both simple and intuitive color-coded alerting criteria; yet the necessary uncertainty measures by which one can gauge the likelihood for the alert to be over- or underestimated are preserved. The essence of the proposed impact scale and alerting is that actionable loss information is now available in the immediate aftermath of significant earthquakes worldwide on the basis of quantifiable loss estimates. Utilizing EIS, PAGER's rapid loss estimates can adequately recommend alert levels and suggest appropriate response protocols, despite the uncertainties; demanding or awaiting observations or loss estimates with a high level of accuracy may increase the losses. ?? 2011 American Society of Civil Engineers.

  3. Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS

    NASA Technical Reports Server (NTRS)

    Whitesides, John L.

    2000-01-01

    This paper is a final report on Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS (Joint Institute for Advancement of Flight Sciences). The objectives of the program were to conduct research at the NASA Langley Research Center and to increase the number of underrepresented minorities in aerospace engineering.

  4. Seismicity-induced groundwater level changes in boreholes around Mizunami Underground Research Laboratory (MIU), Japan: Effect of the 2011 off the Pacific coast of Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Niwa, M.; Takeuchi, R.; Onoe, H.; Asamori, K.; Umeda, K.; Sugihara, K.

    2011-12-01

    For improving the scientific basis for geological disposal of high-level radioactive waste, multidisciplinary researches are approached in the MIU, in which two vertical shafts are excavated in the crystalline rock mass. Groundwater levels are continuously logged in multiple boreholes, for understanding the regional groundwater flow around the MIU site. Soon after the 2011 off the Pacific coast of Tohoku Earthquake, groundwater level changes were observed in the almost boreholes. All boreholes arranged away from the MIU (approximately 1 to 5 km) showed drawdown ranging from 1 to 5 m. Several studies (e.g. Wang, 1997, JGR; Ge and Stover, 2000, JGR; Hamiel et al., 2005, EPSL) suggest that coseismic changes of groundwater level correspond to static volumetric strain changes induced by earthquakes, i.e., drawdown/elevation of groundwater level is reflected by crustal dilatation/constriction. We calculated volumetric strain changes due to the Tohoku earthquake based on the previously-reported fault models (slip models estimated by teleseismic source inversion; Yagi and Nishimura, Univ. of Tsukuba; Poiata et al., ERI, Univ. of Tokyo). We determined crustal deformation and stress change using the program Coulomb 3.0 (Lin and Stein, 2004, JGR; Toda et al., 2005, JGR). The calculation outputs approximately 2.3E-7 strain of dilatation around the MIU. Thus the drawdown observed in the boreholes arranged away from the MIU is consistent with the volumetric strain changes associated with the Tohoku earthquake. In contrast, groundwater levels were elevated up to 15 m in the boreholes localized in the vicinity of the MIU (within 600 m). These boreholes had shown successive drawdown since the shaft excavations started in the MIU, while voluminous sump water had been released successively from the shafts. Soon after the Tohoku earthquake, volume of the sump water increased approximately ten percent. Irregular elevation of water level soon after an earthquake like the case of the MIU

  5. Discussion of the design of satellite-laser measurement stations in the eastern Mediterranean under the geological aspect. Contribution to the earthquake prediction research by the Wegener Group and to NASA's Crustal Dynamics Project

    NASA Technical Reports Server (NTRS)

    Paluska, A.; Pavoni, N.

    1983-01-01

    Research conducted for determining the location of stations for measuring crustal dynamics and predicting earthquakes is discussed. Procedural aspects, the extraregional kinematic tendencies, and regional tectonic deformation mechanisms are described.

  6. Women: Support Factors and Persistence in Engineering. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Duncan, John R.; Zeng, Yong

    2005-01-01

    Limited information is available regarding the factors that promote persistence by women in engineering programs. Stated simply, the problem is that the number of women engineers continues to fall short in comparison to the gender ratio of women to men in the population in the U.S. (BEST, 2002) and worldwide (Hersh, 2000). More women engineers are…

  7. SR-71 Research Engineer Marta Bohn-Meyer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This 1992 photo shows SR-71 flight engineer Marta Bohn-Meyer in front of one of NASA's SR-71 aircraft on the ramp at the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. An aerospace engineer who has been at Dryden since 1979, Bohn-Meyer is the first female crew member ever assigned to fly in the SR-71. Data from the SR-71 program carried out by NASA will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes

  8. Earthquake Analysis.

    ERIC Educational Resources Information Center

    Espinoza, Fernando

    2000-01-01

    Indicates the importance of the development of students' measurement and estimation skills. Analyzes earthquake data recorded at seismograph stations and explains how to read and modify the graphs. Presents an activity for student evaluation. (YDS)

  9. Final priority; National Institute on Disability and Rehabilitation Research--Rehabilitation Engineering Research Centers. Final priority.

    PubMed

    2014-07-01

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Improving the Accessibility, Usability, and Performance of Technology for Individuals who are Deaf or Hard of Hearing. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improving the accessibility, usability, and performance of technology for individuals who are deaf or hard of hearing. PMID:25016623

  10. Final priority; National Institute on Disability and Rehabilitation Research--Rehabilitation Engineering Research Centers. Final priority.

    PubMed

    2014-06-01

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Technologies to Enhance Independence in Daily Living for Adults with Cognitive Impairments. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improved outcomes related to independence in daily activities in the home, community, or workplace setting for adults with cognitive impairments. PMID:24908686

  11. The California Post-Earthquake Information Clearinghouse: A Plan to Learn From the Next Large California Earthquake

    NASA Astrophysics Data System (ADS)

    Loyd, R.; Walter, S.; Fenton, J.; Tubbesing, S.; Greene, M.

    2008-12-01

    In the rush to remove debris after a damaging earthquake, perishable data related to a wide range of impacts on the physical, built and social environments can be lost. The California Post-Earthquake Information Clearinghouse is intended to prevent this data loss by supporting the earth scientists, engineers, and social and policy researchers who will conduct fieldwork in the affected areas in the hours and days following the earthquake to study these effects. First called for by Governor Ronald Reagan following the destructive M6.5 San Fernando earthquake in 1971, the concept of the Clearinghouse has since been incorporated into the response plans of the National Earthquake Hazard Reduction Program (USGS Circular 1242). This presentation is intended to acquaint scientists with the purpose, functions, and services of the Clearinghouse. Typically, the Clearinghouse is set up in the vicinity of the earthquake within 24 hours of the mainshock and is maintained for several days to several weeks. It provides a location where field researchers can assemble to share and discuss their observations, plan and coordinate subsequent field work, and communicate significant findings directly to the emergency responders and to the public through press conferences. As the immediate response effort winds down, the Clearinghouse will ensure that collected data are archived and made available through "lessons learned" reports and publications that follow significant earthquakes. Participants in the quarterly meetings of the Clearinghouse include representatives from state and federal agencies, universities, NGOs and other private groups. Overall management of the Clearinghouse is delegated to the agencies represented by the authors above.

  12. NEIC - the National Earthquake Information Center

    USGS Publications Warehouse

    Masse, R.P.; Needham, R.E.

    1989-01-01

    The National Earthquake Information Center of the US Geological Survey has three main missions. First, the NEIC determines as rapidly and as accurately as possible, the location and size of all destructive earthquakes that occur worldwide. Second, the NEIC collects and provides to scientists and to the public an extensive seismic database that serves as a solid foundation for scientific research. Third, the NEIC pursues an active research program to improve its ability to locate earthquakes and to understand the earthquake mechanism. These efforts are all aimed at mitigating the risks of earthquakes to mankind. -from Authors

  13. Earthquake watch

    USGS Publications Warehouse

    Hill, M.

    1976-01-01

     When the time comes that earthquakes can be predicted accurately, what shall we do with the knowledge? This was the theme of a November 1975 conference on earthquake warning and response held in San Francisco called by Assistant Secretary of the Interior Jack W. Carlson. Invited were officials of State and local governments from Alaska, California, Hawaii, Idaho, Montana, Nevada, utah, Washington, and Wyoming and representatives of the news media. 

  14. A Module to Foster Engineering Creativity: An Interpolative Design Problem and an Extrapolative Research Project

    ERIC Educational Resources Information Center

    Forbes, Neil S.

    2008-01-01

    This article describes a teaching module designed to enhance engineering creativity in an introductory chemical engineering course. The module includes an exercise to design column packing material, and an open-ended research project to describe the societal impact of chemical engineering. These assignments were created to illustrate the benefit…

  15. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  16. Does knowledge signify protection? The SEISMOPOLIS centre for improvement of behavior in case of an earthquake

    NASA Astrophysics Data System (ADS)

    Dandoulaki, M.; Kourou, A.; Panoutsopoulou, M.

    2009-04-01

    It is vastly accepted that earthquake education is the way to earthquake protection. Nonetheless experience demonstrates that knowing what to do does not necessarily result in a better behaviour in case of a real earthquake. A research project titled: "Seismopolis" - "Pilot integrated System for Public Familiarization with Earthquakes and Information on Earthquake Protection" aimed at the improvement of the behaviour of people through an appropriate amalgamation of knowledge transfer and virtually experiencing an earthquake situation. Seismopolis combines well established education means such as books and leaflets with new technologies like earthquake simulation and virtual reality. It comprises a series of 5 main spaces that the visitor passes one-by-one. Space 1. Reception and introductory information. Visitors are given fundamental information on earthquakes and earthquake protection, as well as on the appropriate behaviour in case of an earthquake. Space 2. Earthquake simulation room Visitors experience an earthquake in a room. A typical kitchen is set on a shake table area (3m x 6m planar triaxial shake table) and is shaken in both horizontal and vertical directions by introducing seismographs of real or virtual earthquakes. Space 3. Virtual reality room Visitors may have the opportunity to virtually move around in the building or in the city after an earthquake disaster and take action as in a real-life situation, wearing stereoscopic glasses and using navigation tools. Space 4. Information and resources library Visitors are offered the opportunity to know more about earthquake protection. A series of means are available for this, some developed especially for Seismopolis (3 books, 2 Cds, a website and an interactive table game). Space 5. De-briefing area Visitors may be subjected to a pedagogical and psychological evaluation at the end of their visit and offered support if needed. For the evaluation of the "Seismopolis" Centre, a pilot application of the

  17. Tennessee State University (TSU) Research Project For Increasing The Pool of Minority Engineers

    NASA Technical Reports Server (NTRS)

    Rogers, Decatur B.; Merritt, Sylvia (Technical Monitor)

    2000-01-01

    The NASA Glenn Research Center funded the 1998-1999 Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers. The NASA/GRC-TSU Research Project developed a cadre of engineers who have academic and research expertise in technical areas of interest to NASA, in addition to having some familiarity with the mission of the NASA/Glenn Research Center. Increased minority participation in engineering was accomplished by: (1) introducing and exposing minority youth to engineering careers and to the required high school preparation necessary to access engineering through two campus based precollege programs: Minority Introduction to Engineering (MITE), and Engineering and Technology Previews; (2) providing financial support through the Research Scholars Program for minority youth majoring in engineering disciplines of interest to NASA; (3) familiarization with the engineering profession and with NASA through field trips and summer internships at the Space and Rocket Center, and (4) with practical research exposure and experiences through research internships at NASA/GRC and at TSU.

  18. The Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) Internship Program

    NASA Astrophysics Data System (ADS)

    Perry, S.; Jordan, T.

    2006-12-01

    Our undergraduate research program, SCEC/UseIT, an NSF Research Experience for Undergraduates site, provides software for earthquake researchers and educators, movies for outreach, and ways to strengthen the technical career pipeline. SCEC/UseIT motivates diverse undergraduates towards science and engineering careers through team-based research in the exciting field of earthquake information technology. UseIT provides the cross-training in computer science/information technology (CS/IT) and geoscience needed to make fundamental progress in earthquake system science. Our high and increasing participation of women and minority students is crucial given the nation"s precipitous enrollment declines in CS/IT undergraduate degree programs, especially among women. UseIT also casts a "wider, farther" recruitment net that targets scholars interested in creative work but not traditionally attracted to summer science internships. Since 2002, SCEC/UseIT has challenged 79 students in three dozen majors from as many schools with difficult, real-world problems that require collaborative, interdisciplinary solutions. Interns design and engineer open-source software, creating increasingly sophisticated visualization tools (see "SCEC-VDO," session IN11), which are employed by SCEC researchers, in new curricula at the University of Southern California, and by outreach specialists who make animated movies for the public and the media. SCEC-VDO would be a valuable tool for research-oriented professional development programs.

  19. An overview of NASA research on positive displacement general-aviation engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.

  20. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2

  1. What kind of disturbances did March 11, 2011 Tohoku Earthquake and Tsunamis leave continental margin ecosystems? : Lessons from five years monitoring research

    NASA Astrophysics Data System (ADS)

    Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Hara, Motoyuki; Nagata, Toshi; Fujikura, Kasunori; Sonoda, Akira

    2016-04-01

    On March 11, 2011, huge earthquake with M9.0 took place at Japan Trench area off Northeast Japan. Vigorous disturbances of marine environments and ecosystems have taken place at coastal areas where huge tsunamis swept sediments and organisms away from the coastal areas to deeper oceans. Distributional pattern of sediments and organisms in coves and bays have strongly changed after tsunamis. Marine ecosystems at Northeast Japan have totally disturbed and damaged. Scientists from Tohoku University, the University of Tokyo and JAMSTEC have started to monitor how much marine ecosystem disturbed and how it may recover. A research team, named Tohoku Ecosystem-Associated Marine Sciences, continually makes research on marine ecosystems as ten years monitoring project funded by MEXT, Japan since 2011. On 2016, it takes five years from the Earthquake and Tsunami occurred. What happens marine ecosystems at Tohoku area during these years. Water column ecosystems are rather easy to recover from disturbances. Seaweed communities have strongly damaged, but, they gradually recover. Sediment communities have not recovered yet as sediment distribution is different from before earthquake and tsunamis. Most difficulties are scars in human minds. We, scientists, try to share scientific activities and results with local peoples including fishermen and local governments for better understanding of both oceanic conditions and fishery resources. Disaster risk reduction should accelerate with resilience of community structure. But, mental resilience is the most effective way to recover human activities at the damaged areas.

  2. Ethical issues in engineering models: an operations researcher's reflections.

    PubMed

    Kleijnen, J

    2011-09-01

    This article starts with an overview of the author's personal involvement--as an Operations Research consultant--in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers, the clients, and the public at large. The article further presents an overview of codes of ethics in a variety of disciples. It discusses the role of mathematical models, focusing on the validation of these models' assumptions. Documentation of these model assumptions needs special attention. Some ethical norms and values may be quantified through the model's multiple performance measures, which might be optimized. The uncertainty about the validity of the model leads to risk or uncertainty analysis and to a search for robust models. Ethical questions may be pressing in military models, including war games. However, computer games and the related experimental economics may also provide a special tool to study ethical issues. Finally, the article briefly discusses whistleblowing. Its many references to publications and websites enable further study of ethical issues in modeling. PMID:20535643

  3. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  4. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.

    PubMed

    Wittmann, Alexander; Suess, Beatrix

    2012-07-16

    Riboswitches are natural RNA-based genetic switches that sense small-molecule metabolites and regulate in response the expression of the corresponding metabolic genes. Within the last years, several engineered riboswitches have been developed that act on various stages of gene expression. These switches can be engineered to respond to any ligand of choice and are therefore of great interest for synthetic biology. In this review, we present an overview of engineered riboswitches and discuss their application in conditional gene expression systems. We will provide structural and mechanistic insights and point out problems and recent trends in the development of engineered riboswitches. PMID:22710175

  5. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  6. A summary of NASA/Air Force full scale engine research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.

  7. Earthquake Prediction is Coming

    ERIC Educational Resources Information Center

    MOSAIC, 1977

    1977-01-01

    Describes (1) several methods used in earthquake research, including P:S ratio velocity studies, dilatancy models; and (2) techniques for gathering base-line data for prediction using seismographs, tiltmeters, laser beams, magnetic field changes, folklore, animal behavior. The mysterious Palmdale (California) bulge is discussed. (CS)

  8. Headaches prior to earthquakes

    NASA Astrophysics Data System (ADS)

    Morton, L. L.

    1988-06-01

    In two surveys of headaches it was noted that their incidence had increased significantly within 48 h prior to earthquakes from an incidence of 17% to 58% in the first survey using correlated samples and from 20.4% to 44% in the second survey using independent samples. It is suggested that an increase in positive air ions from rock compression may trigger head pain via a decrease in brain levels of the neurotransmitter serotonin. The findings are presented as preliminary, with the hope of generating further research efforts in areas more prone to earthquakes.

  9. A global building inventory for earthquake loss estimation and risk management

    USGS Publications Warehouse

    Jaiswal, K.; Wald, D.; Porter, K.

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat's demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature. ?? 2010, Earthquake Engineering Research Institute.

  10. Geology in the news: Incorporating research on the Mw 9.0 Tohoku-Oki earthquake into an intermediate-level undergraduate Neotectonics course

    NASA Astrophysics Data System (ADS)

    Reinen, L. A.

    2011-12-01

    The Mw 9.0 Tohoku-Oki earthquake of March 11, 2011 - with its combination of a very large earthquake, subsequent tsunami and damage to nuclear power plants - was a disaster of historically unprecedented proportions that dominated news reports and captured the attention of the world. It also provided an opportunity to engage students in the classroom via active research into an on-going major seismic event. As part of an intermediate-level undergraduate course in Neotectonics, six students participated in a 4-week research project to assess the Tohoku-Oki earthquake and its aftereffects, and make general predictions for similar events on the active margin of the western United States. In a series of guided inquiries, student teams addressed questions of: [1] Regional setting (e.g., tectonic plates, convergence velocities and directions, and distribution of population, nuclear plants and topography); [2] Historic and present-day seismicity (e.g., earthquake recurrence, and aftershock adherence to predicted Bath, Omori, and Gutenberg-Richter relationships); and [3] Application to the western United States (Cascadia or Southern California). With each subsequent question set student independence increased, moving from initial steps of the tectonic setting and historical seismicity of Japan, to the important components on which teams could focus their efforts for the Cascadia or Southern California regions. I will present results from this teaching experiment and examples of the student projects, including the students' preparation for this assignment. Discussion and suggestions (particularly about effective means of conducting rigorous long-term assessment of student learning) are strongly encouraged.

  11. Road Damage Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Ground shaking triggered liquefaction in a subsurface layer of water-saturated sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and slit, which moved from right to left towards the Pajaro River. This mode of ground failure, termed lateral spreading, is a principal cause of liquefaction-related earthquake damage caused by the Oct. 17, 1989, Loma Prieta earthquake. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: S.D. Ellen, U.S. Geological Survey

  12. USEMS & GLASS: investigator-driven frontier research in earthquake physics. Ground-breaking research in Europe enhances outreach to the general public

    NASA Astrophysics Data System (ADS)

    Mariano, S.; di Toro, G.; Collettini, C.; Usems Team; Glass Team

    2011-12-01

    USEMS and GLASS are two projects financed by the European Research Council (ERC) as part of the ERC starting grants scheme within the FP7 framework. The rationale behind the funding scheme is to support some of the most promising scientific endeavours in Europe that are being led by young researchers, and to emphasize the excellence of individual ideas rather than specific research areas; in other words, to promote bottom-up frontier research. The general benefits of this rationale are evident in the two ongoing projects that deal with earthquake physics, as these projects are increasingly recognized in their scientific community. We can say that putting excellence at the heart of European Research strongly contributes to the construction of a European knowledge-based society. From a researcher point-of-view one of the most challenging aspects of these projects is to approach and convey the results of the projects to a general public, contributing to the construction of knowledge-based society. Luckily, media interest and the availability of a number of new communication tools facilitate the outreach of scientific achievements. The largest earthquakes during the last ten years (e.g. Sumatra 2004 and Japan 2011) have received widespread attention in the media world (TV, W.W.W., Newspaper and so on) for months, and successful research projects such as those above also become media protagonists, gaining their space in the media bullring. The USEMS principal investigator and his team have participated in several dissemination events in the Mass Media, such as interviews wit Italian and French TV national broadcasts (RAI Due TG2, RAI Uno Unomattina, Rai Tre Geo & Geo, FRANCE 2); interviews in scientific journals: SCIENCE (Sept. 2010), newspapers and web (Corriere della Sera, Il Gazzettino, Il Messagero, La Stampa, Libero, Il Mattino, Yahoo, ANSA, AdnKronos and AGI); radio (RadioRai Uno, RadioRai Tre Scienza); documentary "Die Eroberung der Alpen" produced by Tangram

  13. Building with Earthquakes in Mind

    NASA Astrophysics Data System (ADS)

    Mangieri, Nicholas

    2016-04-01

    Earthquakes are some of the most elusive and destructive disasters humans interact with on this planet. Engineering structures to withstand earthquake shaking is critical to ensure minimal loss of life and property. However, the majority of buildings today in non-traditional earthquake prone areas are not built to withstand this devastating force. Understanding basic earthquake engineering principles and the effect of limited resources helps students grasp the challenge that lies ahead. The solution can be found in retrofitting existing buildings with proper reinforcements and designs to deal with this deadly disaster. The students were challenged in this project to construct a basic structure, using limited resources, that could withstand a simulated tremor through the use of an earthquake shake table. Groups of students had to work together to creatively manage their resources and ideas to design the most feasible and realistic type of building. This activity provided a wealth of opportunities for the students to learn more about a type of disaster they do not experience in this part of the country. Due to the fact that most buildings in New York City were not designed to withstand earthquake shaking, the students were able to gain an appreciation for how difficult it would be to prepare every structure in the city for this type of event.

  14. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  15. The Future for Industrial Engineers: Education and Research Opportunities

    ERIC Educational Resources Information Center

    Mummolo, Giovanni

    2007-01-01

    EU graduation and the recruitment of industrial engineers (IEs) have been investigated. An increasing demand is observed for graduates in almost all industrial engineering (IE) subjects. The labour market in the EU is evolving towards the service sector even if manufacturing still represents a significant share of both IE employment and gross…

  16. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  17. Sociological aspects of earthquake prediction

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    Henry Spall talked recently with Denis Mileti who is in the Department of Sociology, Colorado State University, Fort Collins, Colo. Dr. Mileti is a sociologst involved with research programs that study the socioeconomic impact of earthquake prediction. 

  18. The next new Madrid earthquake

    SciTech Connect

    Atkinson, W.

    1988-01-01

    Scientists who specialize in the study of Mississippi Valley earthquakes say that the region is overdue for a powerful tremor that will cause major damage and undoubtedly some casualties. The inevitability of a future quake and the lack of preparation by both individuals and communities provided the impetus for this book. It brings together applicable information from many disciplines: history, geology and seismology, engineering, zoology, politics and community planning, economics, environmental science, sociology, and psychology and mental health to provide a perspective of the myriad impacts of a major earthquake on the Mississippi Valley. The author addresses such basic questions as What, actually, are earthquakes How do they occur Can they be predicted, perhaps even prevented He also addresses those steps that individuals can take to improve their chances for survival both during and after an earthquake.

  19. The Contribution of Qualitative Research Towards the Issues Affecting Female Undergraduate Engineering Students

    ERIC Educational Resources Information Center

    Duggan, Louise Maria

    2015-01-01

    This article explores the use of qualitative research methods towards our understanding of the issues affecting female undergraduate engineers. As outlined in this article female engineering students face many challenges during their undergraduate studies. Qualitative research methods provide an opportunity to gain a deeper understanding of the…

  20. Earthquake alarm; operating the seismograph station at the University of California, Berkeley.

    USGS Publications Warehouse

    Stump, B.

    1980-01-01

    At the University of California seismographic stations, the task of locating and determining magnitudes for both local and distant earthquakes is a continuous one. Teleseisms must be located rapidly so that events that occur in the Pacific can be identified and the Pacific Tsunami Warning System alerted. For great earthquakes anywhere, there is a responsibility to notify public agencies such as the California Office of Emergency Services, the Federal Disaster Assistance Administration, the Earthquake Engineering Research Institute, the California Seismic Safety Commission, and the American Red Cross. In the case of damaging local earthquakes, it is necessary to alert also the California Department of Water Resources, California Division of Mines and Geology, U.S Army Corps of Engineers, Federal Bureau of Reclamation, and the Bay Area Rapid Transit. These days, any earthquakes that are felt in northern California cause immediate inquiries from the news media and an interested public. The series of earthquakes that jolted the Livermore area from January 24 to 26 1980, is a good case in point. 

  1. An Engineering Approach to Management of Occupational and Community Noise Exposure at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1997-01-01

    Workplace and environmental noise issues at NASA Lewis Research Center are effectively managed via a three-part program that addresses hearing conservation, community noise control, and noise control engineering. The Lewis Research Center Noise Exposure Management Program seeks to limit employee noise exposure and maintain community acceptance for critical research while actively pursuing engineered controls for noise generated by more than 100 separate research facilities and the associated services required for their operation.

  2. Earthquake and ambient vibration monitoring of the steel-frame UCLA factor building

    USGS Publications Warehouse

    Kohler, M.D.; Davis, P.M.; Safak, E.

    2005-01-01

    Dynamic property measurements of the moment-resisting steel-frame University of California, Los Angeles, Factor building are being made to assess how forces are distributed over the building. Fourier amplitude spectra have been calculated from several intervals of ambient vibrations, a 24-hour period of strong winds, and from the 28 March 2003 Encino, California (ML = 2.9), the 3 September 2002 Yorba Linda, California (ML = 4.7), and the 3 November 2002 Central Alaska (Mw = 7.9) earthquakes. Measurements made from the ambient vibration records show that the first-mode frequency of horizontal vibration is between 0.55 and 0.6 Hz. The second horizontal mode has a frequency between 1.6 and 1.9 Hz. In contrast, the first-mode frequencies measured from earthquake data are about 0.05 to 0.1 Hz lower than those corresponding to ambient vibration recordings indicating softening of the soil-structure system as amplitudes become larger. The frequencies revert to pre-earthquake levels within five minutes of the Yorba Linda earthquake. Shaking due to strong winds that occurred during the Encino earthquake dominates the frequency decrease, which correlates in time with the duration of the strong winds. The first shear wave recorded from the Encino and Yorba Linda earthquakes takes about 0.4 sec to travel up the 17-story building. ?? 2005, Earthquake Engineering Research Institute.

  3. Preliminary observations on the Campania-Basilicata, Italy, earthquake of November 23, 1980

    USGS Publications Warehouse

    Stratta, J. L.; Escalente, L. E.; Krinitzsky, E.L.; Morelli, U.

    1981-01-01

    The authors comprised a field study team sent by the Earthquake Engineering Research Institue (EERI) and the National Research Council (NRC) of the United States to make a reconnaissance study of the earthquake in southern Italy. The team members were selected for their experience and expertise and served the EERI and the NRC as individuals, into as representatives of employers or agencies with which they are affiliated. The team's preliminary obersvations are given below. A report of the study will be published jointly by EERI and NRC.  

  4. Delivering Core Engineering Concepts to Secondary Level Students. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2007-01-01

    Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…

  5. Critical Features of Engineering Design in Technology Education. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Asunda, Paul A.; Hill, Roger B.

    2007-01-01

    The purpose of this study was to find critical features of engineering design that can be incorporated within technology education learning activities, and develop a rubric for assessing these features. Data were collected through semi-structured interviews with three professors actively involved in engineering education. Supporting documents such…

  6. Earthquakes and the urban environment. Volume III

    SciTech Connect

    Berlin, G.L.

    1980-01-01

    Because of the complex nature of earthquake effects, current investigations encompass many disciplines, including those of both the physical and social sciences. Research activities center on such diversified topics as earthquake mechanics, earthquake prediction and control, the prompt and accurate detection of tsunamis (seismic sea waves), earthquake-resistant construction, seismic building code improvements, land use zoning, earthquake risk and hazard perception, disaster preparedness, plus the study of the concerns and fears of people who have experienced the effects of an earthquake. This monograph attempts to amalgamate recent research input comprising the vivifying components of urban seismology at a level useful to those having an interest in the earthquake and its effects upon an urban environment. Volume 3 contains chapters on seismic planning, social aspects and future prospects.

  7. Software Engineering Research/Developer Collaborations (C104)

    NASA Technical Reports Server (NTRS)

    Shell, Elaine; Shull, Forrest

    2005-01-01

    The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with

  8. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  9. Employing a community based participatory research approach to bear witness: psycho-social impact of the 2010 earthquake on Haitians in Somerville, MA.

    PubMed

    Martinez, Linda Sprague; Reich, Amanda J; Ndulue, Uchenna J; Dalembert, Franklin; Gute, David M; Peréa, Flavia C

    2014-12-01

    We employed a community-based participatory research approach to assess mental health among the Haitian community in the Somerville, MA area. The development of the survey coincided with the 2010 earthquake in Haiti, and so several questions related to the natural disaster were included in the analysis to increase understanding of the impact locally. We surveyed a convenience sample of 64 Haitians recruited with the assistance of the Somerville Haitian Coalition. The survey assessed demographic data, reasons for migrating to the area, response to the 2010 earthquake, and mental health. Mental health measures included the short versions of the Center for Epidemiologic Studies Depression Scale (CES-D) and the Perceived Stress Scale. Participants reported high rates of stress and depression post-earthquake. On the CES-D, men reported higher average depression and stress scores than women (13.8 vs. 11 and 20.6 vs. 17.6). Our results suggest that social and family support resources may be beneficial to Haitians in our sample.

  10. Polar Seismic TETwalker: Integrating Engineering Teaching and Research

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Ruiz, I.; Carmichael, B. L.; Wade, U. B.; Agah, A.

    2007-12-01

    .g., broadband seismometer) and other structures of the node-and-strut TETwalker robot architecture. It is planned to take the design models and construct a physical prototype for future testing in Greenland and Antarctica. This work involved three undergraduate students from underrepresented groups as part of the CReSIS Summer REU program, aimed at involving these groups in science and engineering research.

  11. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  12. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  13. The Alaska earthquake, March 27, 1964: lessons and conclusions

    USGS Publications Warehouse

    Eckel, Edwin B.

    1970-01-01

    subsidence was superimposed on regional tectonic subsidence to heighten the flooding damage. Ground and surface waters were measurably affected by the earthquake, not only in Alaska but throughout the world. Expectably, local geologic conditions largely controlled the extent of structural damage, whether caused directly by seismic vibrations or by secondary effects such as those just described. Intensity was greatest in areas underlain by thick saturated unconsolidated deposits, least on indurated bedrock or permanently frozen ground, and intermediate on coarse well-drained gravel, on morainal deposits, or on moderately indurated sedimentary rocks. Local and even regional geology also controlled the distribution and extent of the earthquake's effects on hydrologic systems. In the conterminous United States, for example, seiches in wells and bodies of surface water were controlled by geologic structures of regional dimension. Devastating as the earthquake was, it had many long-term beneficial effects. Many of these were socioeconomic or engineering in nature; others were of scientific value. Much new and corroborative basic geologic and hydrologic information was accumulated in the course of the earthquake studies, and many new or improved investigative techniques were developed. Chief among these, perhaps, were the recognition that lakes can be used as giant tiltmeters, the refinement of methods for measuring land-level changes by observing displacements of barnacles and other sessile organisms, and the relating of hydrology to seismology by worldwide study of hydroseisms in surface-water bodies and in wells. The geologic and hydrologic lessons learned from studies of the Alaska earthquake also lead directly to better definition of the research needed to further our understanding of earthquakes and of how to avoid or lessen the effects of future ones. Research is needed on the origins and mechanisms of earthquakes, on crustal structure, and on the generation of tsunamis and

  14. Biomedical engineering - A means to add new dimension to medicine and research

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  15. Is the debate on the sources of large historical tsunamigenic earthquakes along the Italian coasts closed? The tsunami research point of view

    NASA Astrophysics Data System (ADS)

    Armigliato, Alberto; Tinti, Stefano; Pagnoni, Gianluca; Zaniboni, Filippo

    2015-04-01

    We present a review on the research regarding the possible sources of the largest historical tsunamis hitting the Italian coasts and following large magnitude earthquakes. Although it is known that tsunamis are rather rare events, especially when compared to earthquakes, we emphasize that 6 out of 10 earthquakes occurred in the last thousand years in Italy, and having equivalent moment magnitude equal or larger than 7 where accompanied by destructive or heavily damaging tsunamis: the percentage is still significant (around 40%) if we extend the lower limit of the equivalent moment magnitude down to 6.5. The most famous of these events are those occurred on 30 July 1627 in Gargano, on 11 January 1693 in eastern Sicily, and on 28 December 1908 in the Messina Straits. Maximum run-ups in the order of 10 m, significant maximum inundation distances, and large (although not precisely quantifiable) numbers of victims are reported, or can be deduced from coeval sources. Analyses carried out on paleo-tsunami deposits in the impacted regions and published over the last decade help to better characterise the tsunami impact, confirming that none of the cited events can be reduced to local or secondary effects. Hence, we point out the importance of including a proper analysis and simulation of tsunami data in the approach to a correct definition of the sources responsible for the largest Italian tsunamigenic earthquakes. Unfortunately, this is not the usual practice, as macroseismic, seismic and geological/geomorphological observations and data typically are assigned much heavier weights; one of the consequences is that in-land faults are often assigned larger credit than the offshore ones, and the tsunami generation is imputed a-priori to only supposed, and sometimes even non-existing, submarine landslides. We try to summarise the tsunami research point of view on the largest Italian historical tsunamigenic earthquakes, having in mind that the different datasets analysed by

  16. Earthquake Testing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    During NASA's Apollo program, it was necessary to subject the mammoth Saturn V launch vehicle to extremely forceful vibrations to assure the moonbooster's structural integrity in flight. Marshall Space Flight Center assigned vibration testing to a contractor, the Scientific Services and Systems Group of Wyle Laboratories, Norco, California. Wyle-3S, as the group is known, built a large facility at Huntsville, Alabama, and equipped it with an enormously forceful shock and vibration system to simulate the liftoff stresses the Saturn V would encounter. Saturn V is no longer in service, but Wyle-3S has found spinoff utility for its vibration facility. It is now being used to simulate earthquake effects on various kinds of equipment, principally equipment intended for use in nuclear power generation. Government regulations require that such equipment demonstrate its ability to survive earthquake conditions. In upper left photo, Wyle3S is preparing to conduct an earthquake test on a 25ton diesel generator built by Atlas Polar Company, Ltd., Toronto, Canada, for emergency use in a Canadian nuclear power plant. Being readied for test in the lower left photo is a large circuit breaker to be used by Duke Power Company, Charlotte, North Carolina. Electro-hydraulic and electro-dynamic shakers in and around the pit simulate earthquake forces.

  17. 77 FR 46154 - Announcing the Twentieth Public Meeting of the Crash Injury Research and Engineering Network (CIREN)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... centers to enroll crash victims into the CIREN program. Engineering teams are led by mechanical engineers... Research and Engineering Network (CIREN) AGENCY: National Highway Traffic Safety Administration (NHTSA... members of the Crash Injury Research and Engineering Network. CIREN is a collaborative effort to...

  18. 78 FR 52605 - Announcing the Twenty First Public Meeting of the Crash Injury Research and Engineering Network...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... mechanical engineers, typically trained in the area of impact biomechanics. Engineering teams also include... Injury Research and Engineering Network (CIREN) AGENCY: National Highway Traffic Safety Administration... Meeting of members of the Crash Injury Research and Engineering Network. CIREN is a collaborative...

  19. [Research progress of genetic engineering on medicinal plants].

    PubMed

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  20. New Research on the Cowling and Cooling of Radial Engines

    NASA Technical Reports Server (NTRS)

    Molloy, Richard C.; Brewster, James H., III

    1943-01-01

    An extensive series of wind-tunnel tests on a half-scale conventional, nacelle model were made by the United Aircraft Corporation to determine and correlate the effects of many variables on cooling air flow and nacelle drag. The primary investigation was concerned with the reaction of these factors to varying conditions ahead of, across, and behind the engine. In the light of this investigation, common misconceptions and factors which are frequently overlooked in the cooling and cowling of radial engines are considered in some detail. Data are presented to support certain design recommendations and conclusions which should lead toward the improvement of present engine installations. Several charts are included to facilitate the estimation of cooling drag, available cooling pressure, and cowl exit area.

  1. Measurement uncertainty for the Uniform Engine Testing Program conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Abdelwahab, Mahmood; Biesiadny, Thomas J.; Silver, Dean

    1987-01-01

    An uncertainty analysis was conducted to determine the bias and precision errors and total uncertainty of measured turbojet engine performance parameters. The engine tests were conducted as part of the Uniform Engine Test Program which was sponsored by the Advisory Group for Aerospace Research and Development (AGARD). With the same engines, support hardware, and instrumentation, performance parameters were measured twice, once during tests conducted in test cell number 3 and again during tests conducted in test cell number 4 of the NASA Lewis Propulsion Systems Laboratory. The analysis covers 15 engine parameters, including engine inlet airflow, engine net thrust, and engine specific fuel consumption measured at high rotor speed of 8875 rpm. Measurements were taken at three flight conditions defined by the following engine inlet pressure, engine inlet total temperature, and engine ram ratio: (1) 82.7 kPa, 288 K, 1.0, (2) 82.7 kPa, 288 K, 1.3, and (3) 20.7 kPa, 288 K, 1.3. In terms of bias, precision, and uncertainty magnitudes, there were no differences between most measurements made in test cells number 3 and 4. The magnitude of the errors increased for both test cells as engine pressure level decreased. Also, the level of the bias error was two to three times larger than that of the precision error.

  2. Contrastive research of ionospheric precursor anomalies between Calbuco volcanic eruption on April 23 and Nepal earthquake on April 25, 2015

    NASA Astrophysics Data System (ADS)

    Li, Wang; Guo, Jinyun; Yue, Jianping; Yang, Yang; Li, Zhen; Lu, Deikai

    2016-05-01

    On April 23, 2015, the VEI4 (volcanic explosive index) Calbuco volcano abruptly erupted in Chile and the Mw7.9 Nepal earthquake occurred on April 25. In order to investigate the similarities and differences between total electron content (TEC) anomalies preceding these two types of geophysical activities, the TEC time series over preparation zones before the volcanic eruption and earthquake extracted from global ionosphere map were analyzed. We used sunspot numbers (SSN), Bz, Dst, and Kp indices to represent the solar-terrestrial environment and eliminate the effects of solar and geomagnetic activities on ionosphere by the sliding interquartile range method with the 27-day window. The results indicate that TEC-negative and -positive anomalies appeared in the 14th and 6th day before the eruption, respectively. The anomalies lasted about 4-6 h with a magnitude of 15-20 TECU. The TEC anomalies were also observed on the 14th and 6th day before the Nepal earthquake with a duration of 6-8 h, and the absolute magnitude of TEC anomalies was within 12-20 TECU. These findings indicate that the magnitude of TEC anomalies preceding volcanic eruption was larger, and the duration of TEC anomalies before the earthquake was longer, which may be associated with their particular physical mechanisms. The TEC anomalies before the Nepal earthquake in the Eastern hemisphere occurred in the afternoon local time, but those before the eruption were observed in the night local time. Peak regions of TEC anomalies did not coincide with the epicenters of geophysical activities, and the TEC anomalies also appeared in the magnetic conjugated region. Both the TEC anomalies in the preparation zone and conjugated region were distributed near the boundaries of equatorial anomaly zone and moved along the boundaries. In the moving process, sometimes the extent or magnitude of TEC anomalies in the conjugated region was larger than that in the preparation zone. Many more GPS stations and receivers

  3. Three dimensions of learning: experiential activity for engineering innovation education and research

    NASA Astrophysics Data System (ADS)

    Killen, Catherine P.

    2015-09-01

    This paper outlines a novel approach to engineering education research that provides three dimensions of learning through an experiential class activity. A simulated decision activity brought current research into the classroom, explored the effect of experiential activity on learning outcomes and contributed to the research on innovation decision making. The 'decision task' was undertaken by more than 480 engineering students. It increased their reported measures of learning and retention by an average of 0.66 on a five-point Likert scale, and revealed positive correlations between attention, enjoyment, ongoing interest and learning and retention. The study also contributed to innovation management research by revealing the influence of different data visualisation methods on decision quality, providing an example of research-integrated education that forms part of the research process. Such a dovetailing of different research studies demonstrates how engineering educators can enhance educational impact while multiplying the outcomes from their research efforts.

  4. Summer graduate research program for interns in science and engineering

    SciTech Connect

    Lee, C.B.

    1992-03-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  5. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  6. Summer graduate research program for interns in science and engineering

    NASA Technical Reports Server (NTRS)

    Lee, Clinton B.

    1992-01-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  7. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  8. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  9. Angiogenesis, cell differentiation and cell survival in tissue engineering and cancer research

    PubMed Central

    Tilkorn, Daniel Johannes

    2015-01-01

    Recent medical advances lead to a growing demand for tissue engineering and regenerative medicine in the future. Tissue engineering and regenerative medicine aim to create substitute tissue or restore lost or impaired tissue by combining biological science with engineering techniques, whereas cancer research faces the challenge to identify and hinder aberrant and uncontrolled cell growth. These two seemingly opposing fields of research share fundamental communalities. This review focuses on the shared underlying biological processes. Exploring these mechanisms of tissue growth and homeostasis from different angles will allow for creative novel approaches for both areas of research. PMID:26504737

  10. 75 FR 28593 - Board on Coastal Engineering Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... recommendations regarding the implications of projected Climate Change scenarios to U.S. Army Corps of Engineers... ] dealing with the Science of Climate Change on Tuesday morning, June 22, will include Is Sea Level..., Evidence for a Changing North Pacific Wave Climate as a Result of Global Climate Change, Coastal Change...

  11. Biomedical Engineering: A Compendium of Research Training Programs.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  12. Researching Primary Engineering Education: UK Perspectives, an Exploratory Study

    ERIC Educational Resources Information Center

    Clark, Robin; Andrews, Jane

    2010-01-01

    This paper draws attention to the findings of an exploratory study that critically identified and analysed relevant perceptions of elementary level engineering education within the UK. Utilising an approach based upon grounded theory methodology, 30 participants including teachers, representatives of government bodies and non-profit providers of…

  13. Engineering Students Define Diversity: An Uncommon Thread. Research Brief

    ERIC Educational Resources Information Center

    Fleming, Lorraine; Ledbetter, Sislena; Williams, Dawn; McCain, Janice

    2008-01-01

    Diversity has taken on many meanings, depending on the context in which it is used and the person using it. Today's engineering students have come to embody diversity as an extension of their home, academic and social environments. The result is a group of students that often show indifference to diversity (however defined) and the impact it will…

  14. Status of NASA full-scale engine aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1980-01-01

    Data relevant to several types of aeroelastic instabilities were obtained using several types of turbojet and turbofan engines. In particular, data relative to separated flow (stall) flutter, choke flutter, and system mode instabilities are presented. The unique characteristics of these instabilities are discussed, and a number of correlations are presented that help identify the nature of the phenomena.

  15. Helping Engineers Learn Mathematics: A Developmental Research Approach

    ERIC Educational Resources Information Center

    Jaworski, Barbara

    2008-01-01

    A mathematics module in the undergraduate programme for first year engineers aims to enable those with low mathematical qualifications to understand and use efficiently calculus and related topics. The teaching approach is designed to develop student's fluency, understanding and responsibility through creating an inquiry community, encouraging…

  16. Ethical aspects of the mitigation obstruction argument against climate engineering research.

    PubMed

    Morrow, David R

    2014-12-28

    Many commentators fear that climate engineering research might lead policy-makers to reduce mitigation efforts. Most of the literature on this so-called 'moral hazard' problem focuses on the prediction that climate engineering research would reduce mitigation efforts. This paper focuses on a related ethical question: Why would it be a bad thing if climate engineering research obstructed mitigation? If climate engineering promises to be effective enough, it might justify some reduction in mitigation. Climate policy portfolios involving sufficiently large or poorly planned reductions in mitigation, however, could lead to an outcome that would be worse than the portfolio that would be chosen in the absence of further climate engineering research. This paper applies three ethical perspectives to describe the kinds of portfolios that would be worse than that 'baseline portfolio'. The literature on climate engineering identifies various mechanisms that might cause policy-makers to choose these inferior portfolios, but it is difficult to know in advance whether the existence of these mechanisms means that climate engineering research really would lead to a worse outcome. In the light of that uncertainty, a precautionary approach suggests that researchers should take measures to reduce the risk of mitigation obstruction. Several such measures are suggested.

  17. Geoethics and decision science issues in Japan's disaster management system: case study in the 2011 Tohoku earthquake and tsunami

    NASA Astrophysics Data System (ADS)

    Sugimoto, Megumi

    2015-04-01

    The March 11, 2011 Tohoku earthquake and its tsunami killed 18,508 people, including the missing (National Police Agency report as of April 2014) and raise the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station in Japan. The problems revealed can be viewed as due to a combination of risk-management, risk-communication, and geoethics issues. Japan's preparations for earthquakes and tsunamis are based on the magnitude of the anticipated earthquake for each region. The government organization coordinating the estimation of anticipated earthquakes is the "Headquarters for Earthquake Research Promotion" (HERP), which is under the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Japan's disaster mitigation system is depicted schematically as consisting of three layers: seismology, civil engineering, and disaster mitigation planning. This research explains students in geoscience should study geoethics as part of their education related Tohoku earthquake and the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station. Only when they become practicing professionals, they will be faced with real geoethical dilemmas. A crisis such as the 2011 earthquake, tsunami, and Fukushima Dai-ichi nuclear accident, will force many geoscientists to suddenly confront previously unanticipated geoethics and risk-communication issues. One hopes that previous training will help them to make appropriate decisions under stress. We name it "decision science".

  18. The Regional Distribution of Energy-Related Scientists and Engineers, 1976. Research Memorandum.

    ERIC Educational Resources Information Center

    Finn, Michael G.; Blair, Philip

    Examined are several factors related to regional variations in the number of energy-related scientists and engineers and how this subgroup differs from the base group of scientists and engineers. The emphasis of this research project was to determine the influence of regional differences in industry mix and in staffing patterns within industries…

  19. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research, or... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Industrial...

  20. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research, or... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Industrial...

  1. The Use of Motivation Theory in Engineering Education Research: A Systematic Review of Literature

    ERIC Educational Resources Information Center

    Brown, Philip R.; McCord, Rachel E.; Matusovich, Holly M.; Kajfez, Rachel L.

    2015-01-01

    Motivation is frequently studied in the context of engineering education. However, the use of the term motivation can be inconsistent, both in how clearly it is defined and in how it is implemented in research designs and practice. This systematic literature review investigates the use of motivation across recent engineering education…

  2. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  3. America's faulty earthquake plans

    SciTech Connect

    Rosen, J

    1989-10-01

    In this article, the author discusses the liklihood of major earthquakes in both the western and eastern United States as well as the level of preparedness of each region of the U.S. for a major earthquake. Current technology in both earthquake-resistance design and earthquake detection is described. Governmental programs for earthquake hazard reduction are outlined and critiqued.

  4. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  5. A Case Study: Teaching Engineering Concepts in Science. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Stricker, David R.

    2010-01-01

    This study was conducted to describe a teacher developed high school engineering course, to identify teaching strategies used in the process of delivering math and science literacy through this course, to identify challenges and constraints that occurred during its development and delivery, and to describe the strategies that were used to overcome…

  6. Impact of Commercial Search Engines and International Databases on Engineering Teaching and Research

    ERIC Educational Resources Information Center

    Chanson, Hubert

    2007-01-01

    For the last three decades, the engineering higher education and professional environments have been completely transformed by the "electronic/digital information revolution" that has included the introduction of personal computer, the development of email and world wide web, and broadband Internet connections at home. Herein the writer compares…

  7. Earthquake prediction: Gas emission and ground-water changes. (lLtest citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the forecasting and prediction of earthquakes by observation and measurement of changes in groundwater and gaseous emissions prior to the seismic event. The citations discuss detection and measurement of changes in radon and other gas emissions from fault lines, groundwater, and well holes in earthquake-prone areas. Groundwater chemistry level changes of subsurface waters, and changes in conductive properties of groundwater are presented. Studies on other precursors to large seismic events are discussed in a separate bibliography. (Contains a minimum of 94 citations and includes a subject term index and title list.)

  8. Sand Volcano Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)

  9. Housing Damage Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An automobile lies crushed under the third story of this apartment building in the Marina District after the Oct. 17, 1989, Loma Prieta earthquake. The ground levels are no longer visible because of structural failure and sinking due to liquefaction. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: J.K. Nakata, U.S. Geological Survey.

  10. Research and Innovation of Engineering Education in Europe the contribution of SEFI

    NASA Astrophysics Data System (ADS)

    Graaff, Erik De; Borri, Claudio

    The roots of engineering education lie in the workplace. It was not until the 19th century that higher engineering education moved to a more scholarly environment. True to its origins, research in the applied sciences never aimed at pure understanding alone. The goal of engineering investigations has always been to devise solutions to practice problems with a mixture of design, construction and innovation. If the establishing of a research tradition in engineering has taken quite a long time, the time needed to apply an academic mode of thinking to the approach to teaching and learning has been much longer. In fact, most of the design choices concerning the curricula in higher engineering education were made based on intuition, rather than on insight, until well over the half of the last century. Aiming at to support the development of engineering education in Europe, in 1973 the European Society of Engineering Education was established (labelled SEFI according to the French acronym Société. Européenne pour la Formation des Ingénieurs). Presently the society represents 196 institutional members. SEFI promotes cooperation between higher engineering education institutions and other scientific and international bodies on issues of research and development in Engineering Education, for instance through participating in European network projects such as the SOCRATES Thematic Network “TREE” (Teaching and Research in Engineering Education in Europe). SEFI is also engaged in policy development regarding engineering education publishing statements regarding issues like the Bologna process and the proposed European Institute of Technology. In the future SEFI aims to consolidate and strengthen its role in the European arena and to represent Europe on the Global stage.

  11. A University Consortium on Homogeneous Charge Compression Ignition Engine Research

    SciTech Connect

    Assanis, Dennis; Atreya, Arvind; Bowman, Craig; Chen, Jyh-Yuan; Cheng, Wai; Davidson, David; Dibble, Robert; Edwards, Chris; Filipi, Zoran; Golden, David; Green, William; Hanson, Ronald; Hedrick, J Karl; Heywood, John; Im, Hong; Lavoie, George; Sick, Volker; Wooldridge, Margaret

    2007-03-31

    Over the course of this four year project, the consortium team members from UM, MIT, Stanford, and Berkeley along with contributors from Sandia National Labs and LLNL, have produced a wide range of results on gasoline HCCI control and implementation. The work spanned a wide range of activities including engine experiments, fundamental chemical kinetics experiments, and an array of analytical modeling techniques and simulations. Throughout the project a collaborative approach has produced a many significant new insights into HCCI engines and their behavior while at the same time we achieved our key consortium goal: to develop workable strategies for gasoline HCCI control and implementation. The major accomplishments in each task are summarized, followed by detailed discussion.

  12. Software Engineering Research/Developer Collaborations in 2004 (C104)

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Markosian, Lawrance

    2005-01-01

    In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.

  13. [Research Conducted at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.

  14. Research in progress at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.

  15. Training Initiative for Embedded Software Engineers through Collaborative Research Project and Open Educational Course

    NASA Astrophysics Data System (ADS)

    Ishida, Rieko; Yamamoto, Masaki; Unagami, Tomoaki; Mori, Takao; Hond, Shinya; Ichiba, Toshiyuki; Takase, Hideki; Takada, Hiroaki

    The authors developed two types of human resource development program consisting of a) one-year collaborative research project, and b) open education course, aimed to train embedded software engineers to high technical standards. In the collaborative research oriented approach, the authors train engineers through research project at Nagoya University. In the open education course, the authors reflect and adopt the latest outcome of the aforementioned research project to one or two days open education course to educate engineers. This allowed the authors to design and provide several courses aimed to train engineers with the latest contents that reflect the rapid technical advances in the embedded software industry. The courses were highly evaluated by the participants.

  16. Research pressure instrumentation for NASA Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The development of prototype pressure transducers which are targeted to meet the Space Shuttle Main Engine SSME performance design goals is discussed. The fabrication, testing and delivery of 10 prototype units is examined. Silicon piezoresistive strain sensing technology is used to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. Integration of multiple functions on a single chip is the key attribute of this technology.

  17. Pulse Detonation Rocket Engine Research at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE is described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of an optimized, fixed PDRE nozzle configuration is reported. The results are compared to a steady-state rocket system using similar modeling assumptions.

  18. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  19. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  20. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...