Sample records for earthquake fault rupture

  1. Modelling earthquake ruptures with dynamic off-fault damage

    NASA Astrophysics Data System (ADS)

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban

    2017-04-01

    Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for

  2. The effect of segmented fault zones on earthquake rupture propagation and termination

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2017-12-01

    A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for

  3. Influence of fault steps on rupture termination of strike-slip earthquake faults

    NASA Astrophysics Data System (ADS)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  4. Fault Branching and Long-Term Earthquake Rupture Scenario for Strike-Slip Earthquake

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; CHOI, J. H.; Vallage, A.

    2017-12-01

    Careful examination of surface rupture for large continental strike-slip earthquakes reveals that for the majority of earthquakes, at least one major branch is involved in the rupture pattern. Often, branching might be either related to the location of the epicenter or located toward the end of the rupture, and possibly related to the stopping of the rupture. In this work, we examine large continental earthquakes that show significant branches at different scales and for which ground surface rupture has been mapped in great details. In each case, rupture conditions are described, including dynamic parameters, past earthquakes history, and regional stress orientation, to see if the dynamic stress field would a priori favor branching. In one case we show that rupture propagation and branching are directly impacted by preexisting geological structures. These structures serve as pathways for the rupture attempting to propagate out of its shear plane. At larger scale, we show that in some cases, rupturing a branch might be systematic, hampering possibilities for the development of a larger seismic rupture. Long-term geomorphology hints at the existence of a strong asperity in the zone where the rupture branched off the main fault. There, no evidence of throughgoing rupture could be seen along the main fault, while the branch is well connected to the main fault. This set of observations suggests that for specific configurations, some rupture scenarios involving systematic branching are more likely than others.

  5. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution

  6. Surface rupture of the 2002 Denali fault, Alaska, earthquake and comparison with other strike-slip ruptures

    USGS Publications Warehouse

    Haeussler, Peter J.; Schwartz, D.P.; Dawson, T.E.; Stenner, Heidi D.; Lienkaemper, J.J.; Cinti, F.; Montone, Paola; Sherrod, B.; Craw, P.

    2004-01-01

    On 3 November 2002, an M7.9 earthquake produced 340 km of surface rupture on the Denali and two related faults in Alaska. The rupture proceeded from west to east and began with a 40-km-long break on a previously unknown thrust fault. Estimates of surface slip on this thrust are 3-6 m. Next came the principal surface break along ???218 km of the Denali fault. Right-lateral offsets averaged around 5 m and increased eastward to a maximum of nearly 9 m. The fault also ruptured beneath the trans-Alaska oil pipeline, which withstood almost 6 m of lateral offset. Finally, slip turned southeastward onto the Totschunda fault. Right-lateral offsets are up to 3 m, and the surface rupture is about 76 km long. This three-part rupture ranks among the longest strike-slip events of the past two centuries. The earthquake is typical when compared to other large earthquakes on major intracontinental strike-slip faults. ?? 2004, Earthquake Engineering Research Institute.

  7. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the

  8. Earthquake rupture process recreated from a natural fault surface

    USGS Publications Warehouse

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  9. Cumulative co-seismic fault damage and feedbacks on earthquake rupture

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Aben, F. M.; Ostermeijer, G.; Rockwell, T. K.; Doan, M. L.

    2017-12-01

    The importance of the damage zone in the faulting and earthquake process is widely recognized, but our understanding of how damage zones are created, what their properties are, and how they feed back into the seismic cycle, is remarkably poorly known. Firstly, damaged rocks have reduced elastic moduli, cohesion and yield strength, which can cause attenuation and potentially non-linear wave propagation effects during ruptures. Secondly, damaged fault rocks are generally more permeable than intact rocks, and hence play a key role in the migration of fluids in and around fault zones over the seismic cycle. Finally, the dynamic generation of damage as the earthquake propagates can itself influence the dynamics of rupture propagation, by increasing the amount of energy dissipation, decreasing the rupture velocity, modifying the size of the earthquake, changing the efficiency of weakening mechanisms such as thermal pressurisation of pore fluids, and even generating seismic waves itself . All of these effects imply that a feedback exists between the damage imparted immediately after rupture propagation, at the early stages of fault slip, and the effects of that damage on subsequent ruptures dynamics. In recent years, much debate has been sparked by the identification of so-called `pulverized rocks' described on various crustal-scale faults, a type of intensely damaged fault rock which has undergone minimal shear strain, and the occurrence of which has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. In this contribution, we will demonstrate laboratory and field examples of two dynamic mechanisms

  10. Examining Structural Controls on Earthquake Rupture Dynamics Along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    McGuire, J. J.; Ben-Zion, Y.

    2002-12-01

    Recent numerical simulations of dynamic rupture [Andrews and Ben-Zion, 1997; Harris and Day, 1997] have confirmed earlier analytical results [Weertman, 1980; Adams, 1995] that a contrast in elastic properties between the two sides of a fault will generate an interaction between the normal stress and fault slip that is not present in a homogeneous medium. It has been shown that for a range of frictional parameters and initial conditions, this interaction produces a statistical preference for unilateral rupture propagation in the direction of slip of the more compliant medium [Ben-Zion and Andrews, 1998; Cochard and Rice, 2000; Ben-Zion and Huang 2002]. Thus, the directivity of earthquake ruptures on large faults with well-developed material interfaces may be controlled by material contrasts of the rocks within and across the fault zone. One of the largest known velocity contrasts across a major crustal fault occurs along the Bear Valley section of the San Andreas where high velocity materials on the SW side (P-velocity >5 km/s) are juxtaposed with low-velocity material on the NE side (P-velocity <4 km/s) down to a depth of about 4 km with a less dramatic contrast continuing to about 8 km [Thurber et al., 1997]. This boundary is strong enough to generate significant head-waves refracted along it that are recorded as the first arrivals at stations close to the fault on the NE side [McNally and McEvilly, 1977]. Rubin and Gillard [2000] and Rubin [2002] relocated the events in this region using NCSN waveform data and found that more than twice as many immediate aftershocks to small earthquakes occurred to the NW of the mainshock as to the SE, which they interpreted as being consistent with a preferred rupture direction to the SE. Their interpretation that aftershocks to microearthquakes occur preferentially in the direction opposite of rupture propagation has not been directly tested and is inconsistent with observations from moderate [Fletcher and Spudich, 1998] and

  11. Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Lyon-Caen, Hélène; Boiselet, Aurélien

    2017-10-01

    Modeling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (fault-to-fault, FtF, ruptures). The Uniform California Earthquake Rupture Forecast version 3 (UCERF-3) model takes into account this possibility by considering a system-level approach rather than an individual-fault-level approach using the geological, seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information along fault networks is often not well constrained. There is therefore a need to propose a methodology relying on geological information alone to compute earthquake rates of the faults in the network. In the proposed methodology, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty, similarly to UCERF-3. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an a priori chosen shape and the rate of earthquakes on each fault is determined by the specific slip rate of each segment depending on the possible FtF ruptures. The modeled earthquake rates are then compared to the available independent data (geodetical, seismological and paleoseismological data) in order to weight different hypothesis explored in a logic tree.The methodology is tested on the western Corinth rift (WCR), Greece, where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ˜ 15 mm yr-1 north

  12. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    NASA Astrophysics Data System (ADS)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the

  13. Surface fault rupture during the Mw 7.8 Kaikoura earthquake, New Zealand, with specific comment on the Kekerengu Fault - one of the country's fastest slipping onland active faults

    NASA Astrophysics Data System (ADS)

    Van Dissen, Russ; Little, Tim

    2017-04-01

    The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches

  14. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  15. Broadband Rupture Process of the 2001 Kunlun Fault (Mw 7.8) Earthquake

    NASA Astrophysics Data System (ADS)

    Antolik, M.; Abercrombie, R.; Ekstrom, G.

    2003-04-01

    We model the source process of the 14 November, 2001 Kunlun fault earthquake using broadband body waves from the Global Digital Seismographic Network (P, SH) and both point-source and distributed slip techniques. The point-source mechanism technique is a non-linear iterative inversion that solves for focal mechanism, moment rate function, depth, and rupture directivity. The P waves reveal a complex rupture process for the first 30 s, with smooth unilateral rupture toward the east along the Kunlun fault accounting for the remainder of the 120 s long rupture. The obtained focal mechanism for the main portion of the rupture is (strike=96o, dip=83o, rake=-8o) which is consistent with both the Harvard CMT solution and observations of the surface rupture. The seismic moment is 5.29×1020 Nm and the average rupture velocity is ˜3.5 km/s. However, the initial portion of the P waves cannot be fit at all with this mechanism. A strong pulse visible in the first 20 s can only be matched with an oblique-slip subevent (MW ˜ 6.8-7.0) involving a substantial normal faulting component, but the nodal planes of this mechanism are not well constrained. The first-motion polarities of the P waves clearly require a strike mechanism with a similar orientation as the Kunlun fault. Field observations of the surface rupture (Xu et al., SRL, 73, No. 6) reveal a small 26 km-long strike-slip rupture at the far western end (90.5o E) with a 45-km long gap and extensional step-over between this rupture and the main Kunlun fault rupture. We hypothesize that the initial fault break occurred on this segment, with release of the normal faulting energy as a continuous rupture through the extensional step, enabling transfer of the slip to the main Kunlun fault. This process is similar to that which occurred during the 2002 Denali fault (MW 7.9) earthquake sequence except that 11 days elapsed between the October 23 (M_W 6.7) foreshock and the initial break of the Denali earthquake along a thrust fault.

  16. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such

  17. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement

  18. Fault Rupture Model of the 2016 Gyeongju, South Korea, Earthquake and Its Implication for the Underground Fault System

    NASA Astrophysics Data System (ADS)

    Uchide, Takahiko; Song, Seok Goo

    2018-03-01

    The 2016 Gyeongju earthquake (ML 5.8) was the largest instrumentally recorded inland event in South Korea. It occurred in the southeast of the Korean Peninsula and was preceded by a large ML 5.1 foreshock. The aftershock seismicity data indicate that these earthquakes occurred on two closely collocated parallel faults that are oblique to the surface trace of the Yangsan fault. We investigate the rupture properties of these earthquakes using finite-fault slip inversion analyses. The obtained models indicate that the ruptures propagated NNE-ward and SSW-ward for the main shock and the large foreshock, respectively. This indicates that these earthquakes occurred on right-step faults and were initiated around a fault jog. The stress drops were up to 62 and 43 MPa for the main shock and the largest foreshock, respectively. These high stress drops imply high strength excess, which may be overcome by the stress concentration around the fault jog.

  19. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  20. Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Bassett, Dan; Jiang, Junle; Shearer, Peter M.; Ji, Chen

    2017-11-01

    The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted ∼65 s with a rupture speed of ∼1.2 km/s, while the second stage lasted from ∼65 to 150 s with a rupture speed of ∼2.7 km/s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also colocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.

  1. Dynamic fracture network around faults: implications for earthquake ruptures, ground motion and energy budget

    NASA Astrophysics Data System (ADS)

    Okubo, K.; Bhat, H. S.; Rougier, E.; Lei, Z.; Knight, E. E.; Klinger, Y.

    2017-12-01

    Numerous studies have suggested that spontaneous earthquake ruptures can dynamically induce failure in secondary fracture network, regarded as damage zone around faults. The feedbacks of such fracture network play a crucial role in earthquake rupture, its radiated wave field and the total energy budget. A novel numerical modeling tool based on the combined finite-discrete element method (FDEM), which accounts for the main rupture propagation and nucleation/propagation of secondary cracks, was used to quantify the evolution of the fracture network and evaluate its effects on the main rupture and its associated radiation. The simulations were performed with the FDEM-based software tool, Hybrid Optimization Software Suite (HOSSedu) developed by Los Alamos National Laboratory. We first modeled an earthquake rupture on a planar strike-slip fault surrounded by a brittle medium where secondary cracks can be nucleated/activated by the earthquake rupture. We show that the secondary cracks are dynamically generated dominantly on the extensional side of the fault, mainly behind the rupture front, and it forms an intricate network of fractures in the damage zone. The rupture velocity thereby significantly decreases, by 10 to 20 percent, while the supershear transition length increases in comparison to the one with purely elastic medium. It is also observed that the high-frequency component (10 to 100 Hz) of the near-field ground acceleration is enhanced by the dynamically activated fracture network, consistent with field observations. We then conducted the case study in depth with various sets of initial stress state, and friction properties, to investigate the evolution of damage zone. We show that the width of damage zone decreases in depth, forming "flower-like" structure as the characteristic slip distance in linear slip-weakening law, or the fracture energy on the fault, is kept constant with depth. Finally, we compared the fracture energy on the fault to the energy

  2. Pore pressure may control rupture propagation of the 2001 Mw=7.8 Kokoxili earthquake from the Kunlun fault to the Kunlun Pass fault

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Wang, W.; He, J.

    2016-12-01

    The 2001 Mw=7.8 Kokoxili earthquake nucleated on the west-east tending Kunlun strike-slip fault in center of the Tibetan plateau. When the rupture propagated eastward near the Xidatan segment of the Kunlun fault, this earthquake jumped to the Kunlun Pass fault, a less matured fault that, due to the geometric orientation, was obviously clamped by the coseismic deformation before its rupture. To investigate the possible mechanism for the rupture jump, we updated the coseismic rupture model from a joint inversion of the geological, geodetic and seismic wave data. Constrained with the rupture process, a three-dimensional finite element model was developed to calculate the failure stress from elastic and poroelastic deformation of the crust during the rupture propagation. Results show that just before the rupture reached the conjunction of the Xidatan segment and the Kunlun Pass fault, the failure stress induced by elastic deformation is indeed larger on Xidatan segment of the Kunlun fault than on the Kunlun Pass fault. However, if the pore pressure resulted from undrained poroelastic deformation was invoked, the failure stress is significantly increased on the Kunlun Pass fault. Given a reasonable bound on fault friction and on poroelastic parameters, it can be seen that the poroelastic failure stress is 0.3-0.9 Mpa greater on the Kunlun Pass fault than on Xidatan segment of the Kunlun fault. We therefore argue that during the rupture process of the 2001 Mw=7.8 Kokoxili earthquake, pore pressure may play an important role on controlling the rupture propagation from the Kunlun fault to the Kunlun Pass fault.

  3. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    NASA Astrophysics Data System (ADS)

    Gabriel, A. A.; Madden, E. H.; Ulrich, T.; Wollherr, S.

    2016-12-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  4. Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Grützner, Christoph; Howell, Andy; Jackson, James; Penney, Camilla; Wimpenny, Sam

    2018-03-01

    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment.

  5. The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Wei, Shengji; Shi, Xuhua; Qiu, Qiang; Li, Linlin; Peng, Dongju; Weldon, Ray J.; Barbot, Sylvain

    2018-01-01

    The distribution of slip during an earthquake and how it propagates among faults in the subduction system play a major role in seismic and tsunami hazards, yet they are poorly understood because offshore observations are often lacking. Here we derive the slip distribution and rupture evolution during the 2016 Mw 7.9 Kaikōura (New Zealand) earthquake that reconcile the surface rupture, space geodetic measurements, seismological and tsunami waveform records. We use twelve fault segments, with eleven in the crust and one on the megathrust interface, to model the geodetic data and match the major features of the complex surface ruptures. Our modeling result indicates that a large portion of the moment is distributed on the subduction interface, making a significant contribution to the far field surface deformation and teleseismic body waves. The inclusion of local strong motion and teleseismic waveform data in the joint inversion reveals a unilateral rupture towards northeast with a relatively low averaged rupture speed of ∼1.5 km/s. The first 30 s of the rupture took place on the crustal faults with oblique slip motion and jumped between fault segments that have large differences in strike and dip. The peak moment release occurred at ∼65 s, corresponding to simultaneous rupture of both plate interface and the overlying splay faults with rake angle changes progressively from thrust to strike-slip. The slip on the Papatea fault produced more than 2 m of offshore uplift, making a major contribution to the tsunami at the Kaikōura station, while the northeastern end of the rupture can explain the main features at the Wellington station. Our inversions and simulations illuminate complex up-dip rupture behavior that should be taken into consideration in both seismic and tsunami hazard assessment. The extreme complex rupture behavior also brings new challenges to the earthquake dynamic simulations and understanding the physics of earthquakes.

  6. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  7. The 2015 M w 6.0 Mt. Kinabalu earthquake: an infrequent fault rupture within the Crocker fault system of East Malaysia

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry

    2017-12-01

    The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.

  8. Creeping Guanxian-Anxian Fault ruptured in the 2008 Mw 7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    He, X.; Li, H.; Wang, H.; Zhang, L.; Si, J.

    2017-12-01

    Crustal active faults can slide either steadily by aseismic creep, or abruptly by earthquake rupture. Creep can relax continuously the stress and reduce the occurrence of large earthquakes. Identifying the behaviors of active faults plays a crucial role in predicting and preventing earthquake disasters. Based on multi-scale structural analyses for fault rocks from the GAF surface rupture zone and the Wenchuan Earthquake Fault Zone Science Drilling borehole 3P, we detect the analogous "mylonite structures" develop pervasively in GAF fault rocks. Such specious "ductile deformations", showing intensive foliation, spindly clasts, tailing structure, "boudin structure", "augen structure" and S-C fabrics, are actually formed in brittle faulting, which indicates the creeping behavior of the GAF. Furthermore, some special structures hint the creeping mechanism. The cracks and veins developed in fractured clasts imply pressure and fluid control in the faulting. Under the effect of fluid, clasts are dissolved in pressing direction, and solutions are transferred to stress vacancy area at both ends of clasts and deposit to regenerate clay minerals. The clasts thus present spindly shape and are surrounded by orientational clay minerals constituting continuous foliation structure. The clay minerals are dominated by phyllosilicates that can weaken faults and promote pressure solution. Therefore, pressure solution creep and phyllosilicates weakening reasonably interpret the creeping of GAF. Additionally, GPS velocity data show slip rates of the GAF are respectively 1.5 and 12 mm/yr during 1998-2008 and 2009-2011, which also indicate the GAF is in creeping during interseismic period. According to analysis on aftershocks distribution and P-wave velocity with depth and geological section in the Longmenshan thrust belt, we suggest the GAF is creeping in shallow (<10 km) and locked in deep (10-20 km). Comprehensive research shows stress propagated from the west was concentrated near the

  9. Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present

    USGS Publications Warehouse

    Scharer, Katherine M.; Weldon, Ray; Biasi, Glenn; Streig, Ashley; Fumal, Thomas E.

    2017-01-01

    Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes.

  10. Large earthquakes and creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  11. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  12. Evidence for surface rupture in 1868 on the Hayward Fault in North Oakland and major rupturing in prehistoric earthquakes

    NASA Astrophysics Data System (ADS)

    Lienkaemper, James J.; Williams, Patrick L.

    1999-07-01

    WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776.

  13. Evidence for surface rupture in 1868 on the Hayward fault in north Oakland and major rupturing in prehistoric earthquakes

    USGS Publications Warehouse

    Lienkaemper, J.J.; Williams, P.L.

    1999-01-01

    WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776. Copyright 1999 by the American Geophysical Union.

  14. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake

    USGS Publications Warehouse

    Shen, Z.-K.; Sun, Jielun; Zhang, P.; Wan, Y.; Wang, M.; Burgmann, R.; Zeng, Y.; Gan, Weijun; Liao, H.; Wang, Q.

    2009-01-01

    The disastrous 12 May 2008 Wenchuan earthquake in China took the local population as well as scientists by surprise. Although the Longmen Shan fault zonewhich includes the fault segments along which this earthquake nucleatedwas well known, geologic and geodetic data indicate relatively low (<3 mm yr -1) deformation rates. Here we invert Global Positioning System and Interferometric Synthetic Aperture Radar data to infer fault geometry and slip distribution associated with the earthquake. Our analysis shows that the geometry of the fault changes along its length: in the southwest, the fault plane dips moderately to the northwest but becomes nearly vertical in the northeast. Associated with this is a change in the motion along the fault from predominantly thrusting to strike-slip. Peak slip along the fault occurs at the intersections of fault segments located near the towns of Yingxiu, Beichuan and Nanba, where fatalities and damage were concentrated. We suggest that these locations represent barriers that failed in a single event, enabling the rupture to cascade through several fault segments and cause a major moment magnitude (Mw) 7.9 earthquake. Using coseismic slip distribution and geodetic and geological slip rates, we estimate that the failure of barriers and rupture along multiple segments takes place approximately once in 4,000 years. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  15. Holocene surface-faulting earthquakes at the Spring Lake and North Creek Sites on the Wasatch Fault Zone: Evidence for complex rupture of the Nephi Segment

    USGS Publications Warehouse

    Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon

    2017-01-01

    The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers

  16. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  17. Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.

    2017-12-01

    The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip

  18. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  19. Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa

    NASA Astrophysics Data System (ADS)

    Heesakkers, V.; Murphy, S.; Reches, Z.

    2011-12-01

    We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in

  20. Constraining Earthquake Source Parameters in Rupture Patches and Rupture Barriers on Gofar Transform Fault, East Pacific Rise from Ocean Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.

    2015-12-01

    On Gofar transform fault on the East Pacific Rise (EPR), Mw ~6.0 earthquakes occur every ~5 years and repeatedly rupture the same asperity (rupture patch), while the intervening fault segments (rupture barriers to the largest events) only produce small earthquakes. In 2008, an ocean bottom seismometer (OBS) deployment successfully captured the end of a seismic cycle, including an extensive foreshock sequence localized within a 10 km rupture barrier, the Mw 6.0 mainshock and its aftershocks that occurred in a ~10 km rupture patch, and an earthquake swarm located in a second rupture barrier. Here we investigate whether the inferred variations in frictional behavior along strike affect the rupture processes of 3.0 < M < 4.5 earthquakes by determining source parameters for 100 earthquakes recorded during the OBS deployment.Using waveforms with a 50 Hz sample rate from OBS accelerometers, we calculate stress drop using an omega-squared source model, where the weighted average corner frequency is derived from an empirical Green's function (EGF) method. We obtain seismic moment by fitting the omega-squared source model to the low frequency amplitude of individual spectra and account for attenuation using Q obtained from a velocity model through the foreshock zone. To ensure well-constrained corner frequencies, we require that the Brune [1970] model provides a statistically better fit to each spectral ratio than a linear model and that the variance is low between the data and model. To further ensure that the fit to the corner frequency is not influenced by resonance of the OBSs, we require a low variance close to the modeled corner frequency. Error bars on corner frequency were obtained through a grid search method where variance is within 10% of the best-fit value. Without imposing restrictive selection criteria, slight variations in corner frequencies from rupture patches and rupture barriers are not discernable. Using well-constrained source parameters, we find an

  1. Physics of Earthquake Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  2. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data

    USGS Publications Warehouse

    Haeussler, Peter J.

    2009-01-01

    The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.

  3. Simulating Large-Scale Earthquake Dynamic Rupture Scenarios On Natural Fault Zones Using the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2014-05-01

    In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.

  4. Material contrast does not predict earthquake rupture propagation direction

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    2005-01-01

    Earthquakes often occur on faults that juxtapose different rocks. The result is rupture behavior that differs from that of an earthquake occurring on a fault in a homogeneous material. Previous 2D numerical simulations have studied simple cases of earthquake rupture propagation where there is a material contrast across a fault and have come to two different conclusions: 1) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake rupture propagation direction cannot be predicted from the material contrast. In this paper we provide observational evidence from 70 years of earthquakes at Parkfield, CA, and new 3D numerical simulations. Both the observations and the numerical simulations demonstrate that earthquake rupture propagation direction is unlikely to be predictable on the basis of a material contrast. Copyright 2005 by the American Geophysical Union.

  5. Rupture process of the M 7.9 Denali fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions

    USGS Publications Warehouse

    Frankel, A.

    2004-01-01

    Displacement waveforms and high-frequency acceleration envelopes from stations at distances of 3-300 km were inverted to determine the source process of the M 7.9 Denali fault earthquake. Fitting the initial portion of the displacement waveforms indicates that the earthquake started with an oblique thrust subevent (subevent # 1) with an east-west-striking, north-dipping nodal plane consistent with the observed surface rupture on the Susitna Glacier fault. Inversion of the remainder of the waveforms (0.02-0.5 Hz) for moment release along the Denali and Totschunda faults shows that rupture proceeded eastward on the Denali fault, with two strike-slip subevents (numbers 2 and 3) centered about 90 and 210 km east of the hypocenter. Subevent 2 was located across from the station at PS 10 (Trans-Alaska Pipeline Pump Station #10) and was very localized in space and time. Subevent 3 extended from 160 to 230 km east of the hypocenter and had the largest moment of the subevents. Based on the timing between subevent 2 and the east end of subevent 3, an average rupture velocity of 3.5 km/sec, close to the shear wave velocity at the average rupture depth, was found. However, the portion of the rupture 130-220 km east of the epicenter appears to have an effective rupture velocity of about 5.0 km/ sec, which is supershear. These two subevents correspond approximately to areas of large surface offsets observed after the earthquake. Using waveforms of the M 6.7 Nenana Mountain earthquake as empirical Green's functions, the high-frequency (1-10 Hz) envelopes of the M 7.9 earthquake were inverted to determine the location of high-frequency energy release along the faults. The initial thrust subevent produced the largest high-frequency energy release per unit fault length. The high-frequency envelopes and acceleration spectra (>0.5 Hz) of the M 7.9 earthquake can be simulated by chaining together rupture zones of the M 6.7 earthquake over distances from 30 to 180 km east of the

  6. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  7. Evidence of Multiple Ground-rupturing Earthquakes in the Past 4000 Years along the Pasuruan Fault, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2015-12-01

    Instrumental and historical records of earthquakes, supplemented by paleoeseismic constraints can help reveal the earthquake potential of an area. The Pasuruan fault is a high angle normal fault with prominent youthful scarps cutting young deltaic sediments in the north coast of East Java, Indonesia and may pose significant hazard to the densely populated region. This fault has not been considered a significant structure, and mapped as a lineament with no sense of motion. Information regarding past earthquakes along this fault is not available. The fault is well defined both in the imagery and in the field as a ~13km long, 2-50m-high scarp. Open and filled fractures and natural exposures of the south-dipping fault plane indicate normal sense of motion. We excavated two fault-perpendicular trenches across a relay ramp identified during our surface mapping. Evidence for past earthquakes (documented in both trenches) includes upward fault termination with associated fissure fills, colluvial wedges and scarp-derived debris, folding, and angular unconformities. The ages of the events are constrained by 23 radiocarbon dates on detrital charcoal. We calibrated the dates using IntCal13 and used Oxcal to build the age model of the events. Our preliminary age model indicates that since 2006±134 B.C., there has been at least five ground rupturing earthquakes along the fault. The oldest event identified in the trench however, is not well-dated. Our modeled 95th percentile ranges of the next four earlier earthquakes (and their mean) are A.D. 1762-1850 (1806), A.D. 1646-1770 (1708), A.D. 1078-1648 (1363), and A.D. 726-1092 (909), yielding a rough recurrence rate of 302±63 yrs. These new data imply that Pasuruan fault is more active than previously thought. Additional well-dated earthquakes are necessary to build a solid earthquake recurrence model. Rupture along the whole section implies a minimum earthquake magnitude of 6.3, considering 13km as the minimum surface rupture

  8. Dynamic rupture simulation of the 2017 Mw 7.8 Kaikoura (New Zealand) earthquake: Is spontaneous multi-fault rupture expected?

    NASA Astrophysics Data System (ADS)

    Ando, R.; Kaneko, Y.

    2017-12-01

    The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al

  9. Insights into the Fault Geometry and Rupture History of the 2016 MW 7.8 Kaikoura, New Zealand, Earthquake

    NASA Astrophysics Data System (ADS)

    Adams, M.; Ji, C.

    2017-12-01

    The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the east coast of the northern part of the South Island. The local tectonic setting is complicated. The central South Island is dominated by oblique continental convergence, whereas the southern part of this island experiences eastward subduction of the Australian plate. Available information (e.g., Hamling et al., 2017; Bradley et al., 2017) indicate that this earthquake involved multiple fault segments of the Marlborough fault system (MFS) as the rupture propagated northwards for more than 150 km. Additional slip might also occur on the subduction interface of the Pacific plate under the Australian plate, beneath the MFS. However, the exact number of involved fault segments as well as the temporal co-seismic rupture sequence has not been fully determined with geodetic and geological observations. Knowledge of the kinematics of complex fault interactions has important implications for our understanding of global seismic hazards, particularly to relatively unmodeled multisegment ruptures. Understanding the Kaikoura earthquake will provide insight into how one incorporates multi-fault ruptures in seismic-hazard models. We propose to apply a multiple double-couple inversion to determine the fault geometry and spatiotemporal rupture history using teleseismic and strong motion waveforms, before constraining the detailed slip history using both seismic and geodetic data. The Kaikoura earthquake will be approximated as the summation of multiple subevents—each represented as a double-couple point source, characterized by i) fault geometry (strike, dip and rake), ii) seismic moment, iii) centroid time, iv) half-duration and v) location (latitude, longitude and depth), a total of nine variables. We progressively increase the number of point sources until the additional source cannot produce significant improvement to the observations. Our preliminary results using only teleseismic data indicate

  10. Rupture of the Pitáycachi Fault in the 1887 Mw 7.5 Sonora, Mexico earthquake (southern Basin-and-Range Province): Rupture kinematics and epicenter inferred from rupture branching patterns

    NASA Astrophysics Data System (ADS)

    Suter, Max

    2015-01-01

    During the 3 May 1887 Mw 7.5 Sonora earthquake (surface rupture end-to-end length: 101.8 km), an array of three north-south striking Basin-and-Range Province faults (from north to south Pitáycachi, Teras, and Otates) slipped sequentially along the western margin of the Sierra Madre Occidental Plateau. This detailed field survey of the 1887 earthquake rupture zone along the Pitáycachi fault includes mapping the rupture scarp and measurements of surface deformation. The surface rupture has an endpoint-to-endpoint length of ≥41.0 km, dips 70°W, and is characterized by normal left-lateral extension. The maximum surface offset is 487 cm and the mean offset 260 cm. The rupture trace shows a complex pattern of second-order segmentation. However, this segmentation is not expressed in the 1887 along-rupture surface offset profile, which indicates that the secondary segments are linked at depth into a single coherent fault surface. The Pitáycachi surface rupture shows a well-developed bipolar branching pattern suggesting that the rupture originated in its central part, where the polarity of the rupture bifurcations changes. Most likely the rupture first propagated bilaterally along the Pitáycachi fault. The southern rupture front likely jumped across a step over to the Teras fault and from there across a major relay zone to the Otates fault. Branching probably resulted from the lateral propagation of the rupture after breaching the seismogenic part of the crust, given that the much shorter ruptures of the Otates and Teras segments did not develop branches.

  11. The SCEC/USGS dynamic earthquake rupture code verification exercise

    USGS Publications Warehouse

    Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.

    2009-01-01

    Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous

  12. Development of Final A-Fault Rupture Models for WGCEP/ NSHMP Earthquake Rate Model 2

    USGS Publications Warehouse

    Field, Edward H.; Weldon, Ray J.; Parsons, Thomas; Wills, Chris J.; Dawson, Timothy E.; Stein, Ross S.; Petersen, Mark D.

    2008-01-01

    This appendix discusses how we compute the magnitude and rate of earthquake ruptures for the seven Type-A faults (Elsinore, Garlock, San Jacinto, S. San Andreas, N. San Andreas, Hayward-Rodgers Creek, and Calaveras) in the WGCEP/NSHMP Earthquake Rate Model 2 (referred to as ERM 2. hereafter). By definition, Type-A faults are those that have relatively abundant paleoseismic information (e.g., mean recurrence-interval estimates). The first section below discusses segmentation-based models, where ruptures are assumed be confined to one or more identifiable segments. The second section discusses an un-segmented-model option, the third section discusses results and implications, and we end with a discussion of possible future improvements. General background information can be found in the main report.

  13. Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010

    NASA Astrophysics Data System (ADS)

    Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.

    2010-12-01

    On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.

  14. Metrics for comparing dynamic earthquake rupture simulations

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  15. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  16. How does damage affect rupture propagation across a fault stepover?

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; Savage, H. M.

    2011-12-01

    We investigate the potential for fault damage to influence earthquake rupture at fault step-overs using a mechanical numerical model that explicitly includes the generation of cracks around faults. We compare the off-fault fracture patterns and slip profiles generated along faults with a variety of frictional slip-weakening distances and step-over geometry. Models with greater damage facilitate the transfer of slip to the second fault. Increasing separation and decreasing the overlap distance reduces the transfer of slip across the step over. This is consistent with observations of rupture stopping at step-over separation greater than 4 km (Wesnousky, 2006). In cases of slip transfer, rupture is often passed to the second fault before the damage zone cracks of the first fault reach the second fault. This implies that stresses from the damage fracture tips are transmitted elastically to the second fault to trigger the onset of slip along the second fault. Consequently, the growth of damage facilitates transfer of rupture from one fault to another across the step-over. In addition, the rupture propagates along the damage-producing fault faster than along the rougher fault that does not produce damage. While this result seems counter to our understanding that damage slows rupture propagation, which is documented in our models with pre-existing damage, these model results are suggesting an additional process. The slip along the newly created damage may unclamp portions of the fault ahead of the rupture and promote faster rupture. We simulate the M7.1 Hector Mine Earthquake and compare the generated fracture patterns to maps of surface damage. Because along with the detailed damage pattern, we also know the stress drop during the earthquake, we may begin to constrain parameters like the slip-weakening distance along portions of the faults that ruptured in the Hector Mine earthquake.

  17. Heterogeneous rupture on homogenous faults: Three-dimensional spontaneous rupture simulations with thermal pressurization

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2008-11-01

    To understand role of fluid on earthquake rupture processes, we investigated effects of thermal pressurization on spatial variation of dynamic rupture by computing spontaneous rupture propagation on a rectangular fault. We found thermal pressurization can cause heterogeneity of rupture even on a fault of uniform properties. On drained faults, tractions drop linearly with increasing slip in the same way everywhere. However, by changing the drained condition to an undrained one, the slip-weakening curves become non-linear and depend on locations on faults with small shear zone thickness w, and the dynamic frictional stresses vary spatially and temporally. Consequently, the super-shear transition fault length decreases for small w, and the final slip distribution can have some peaks regardless of w, especially on undrained faults. These effects should be taken into account of determining dynamic rupture parameters and modeling earthquake cycles when the presence of fluid is suggested in the source regions.

  18. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  19. Dynamic rupture modeling of the transition from thrust to strike-slip motion in the 2002 Denali fault earthquake, Alaska

    USGS Publications Warehouse

    Aagaard, Brad T.; Anderson, G.; Hudnut, K.W.

    2004-01-01

    We use three-dimensional dynamic (spontaneous) rupture models to investigate the nearly simultaneous ruptures of the Susitna Glacier thrust fault and the Denali strike-slip fault. With the 1957 Mw 8.3 Gobi-Altay, Mongolia, earthquake as the only other well-documented case of significant, nearly simultaneous rupture of both thrust and strike-slip faults, this feature of the 2002 Denali fault earthquake provides a unique opportunity to investigate the mechanisms responsible for development of these large, complex events. We find that the geometry of the faults and the orientation of the regional stress field caused slip on the Susitna Glacier fault to load the Denali fault. Several different stress orientations with oblique right-lateral motion on the Susitna Glacier fault replicate the triggering of rupture on the Denali fault about 10 sec after the rupture nucleates on the Susitna Glacier fault. However, generating slip directions compatible with measured surface offsets and kinematic source inversions requires perturbing the stress orientation from that determined with focal mechanisms of regional events. Adjusting the vertical component of the principal stress tensor for the regional stress field so that it is more consistent with a mixture of strike-slip and reverse faulting significantly improves the fit of the slip-rake angles to the data. Rotating the maximum horizontal compressive stress direction westward appears to improve the fit even further.

  20. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    NASA Astrophysics Data System (ADS)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor

  1. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine

  2. Dynamic fault rupture model of the 2008 Iwate-Miyagi Nairiku earthquake, Japan; Role of rupture velocity changes on extreme ground motions

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Dalguer Gudiel, L. A.; Aoi, S.

    2009-12-01

    The Iwate-Miyagi Nairiku earthquake, a reverse earthquake occurred in the southern Iwate prefecture Japan (2008/6/14), produced the largest peak ground acceleration recorded to date (4g) (Aoi et al. 2008), at the West Ichinoseki (IWTH25), KiK-net strong motion station of NIED. This station which is equipped with surface and borehole accelerometers (GL-260), also recorded very high peak accelerations up to 1g at the borehole level, despite being located in a rock site. From comparison of spectrograms of the observed surface and borehole records at IWTH25, Pulido et. al (2008) identified two high frequency (HF) ground motion events located at 4.5s and 6.3s originating at the source, which likely derived in the extreme observed accelerations of 3.9g and 3.5g at IWTH25. In order to understand the generation mechanism of these HF events we performed a dynamic fault rupture model of the Iwate-Miyagi Nairiku earthquake by using the Support Operator Rupture Dynamics (SORD) code, (Ely et al., 2009). SORD solves the elastodynamic equation using a generalized finite difference method that can utilize meshes of arbitrary structure and is capable of handling geometries appropriate to thrust earthquakes. Our spontaneous dynamic rupture model of the Iwate-Miyagi Nairiku earthquake is governed by the simple slip weakening friction law. The dynamic parameters, stress drop, strength excess and critical slip weakening distance are estimated following the procedure described in Pulido and Dalguer (2009) [PD09]. These parameters develop earthquake rupture consistent with the final slip obtained by kinematic source inversion of near source strong ground motion recordings. The dislocation model of this earthquake is characterized by a patch of large slip located ~7 km south of the hypocenter (Suzuki et al. 2009). Our results for the calculation of stress drop follow a similar pattern. Using the rupture times obtained from the dynamic model of the Iwate-Miyagi Nairiku earthquake we

  3. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  4. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duru, Kenneth, E-mail: kduru@stanford.edu; Dunham, Eric M.; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a)more » enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  5. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics

  6. Earthquake fracture energy inferred from kinematic rupture models on extended faults

    USGS Publications Warehouse

    Tinti, E.; Spudich, P.; Cocco, M.

    2005-01-01

    We estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4 ?? 105 and 2 ?? 107 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production. Copyright 2005 by the American Geophysical Union.

  7. Detailed ground surface displacement and fault ruptures of the 2016 Kumamoto Earthquake revealed by SAR and GNSS data

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Yarai, H.; Morishita, Y.; Kawamoto, S.; Fujiwara, S.; Nakano, T.

    2016-12-01

    We report ground displacement associated with the 2016 Kumamoto Earthquake obtained by ALOS-2 SAR and GNSS data. For the SAR analyses, we applied InSAR, MAI, and pixel offset methods, which has successfully provided a 3D displacement field showing the widely- and locally-distributed deformation. The obtained displacement field shows clear displacement boundaries linearly along the Futagawa, the Hinagu, and the Denokuchi faults across which the sign of displacement component turns to be opposite, suggesting that the fault ruptures occurred there. Our fault model for the main shock suggests that the main rupture occurred on the Futagawa fault with a right-lateral motion including a slight normal fault motion. Due to the normal faulting movement, the northern side of the active fault subsides with approximately 2 m. The rupture on the Futagawa fault extends into the Aso caldera with slightly shifting the position northward. Of note, the fault plane oppositely dips toward southeast. It may be a conjugate fault against the main fault. In the western side of the Futagawa fault, the slip on the Hinagu fault, in which the Mj6.5 and Mj6.4 foreshocks occurred with a pure right-lateral motion, is also deeply involved with the main shock. This fault rupture released the amount of approximately 30 percent of the total seismic moment. The hypocenter is determined near the fault and its focal mechanism is consistent with the estimated slip motion of this fault plane, maybe suggesting that the rupture started at this fault and proceeded toward the Futagawa fault eastward. Acknowledgements: ALOS-2 data were provided from the Earthquake Working Group under a cooperative research contract with JAXA (Japan Aerospace Exploration Agency). The ownership of ALOS-2 data belongs to JAXA.

  8. Characterize kinematic rupture history of large earthquakes with Multiple Haskell sources

    NASA Astrophysics Data System (ADS)

    Jia, Z.; Zhan, Z.

    2017-12-01

    Earthquakes are often regarded as continuous rupture along a single fault, but the occurrence of complex large events involving multiple faults and dynamic triggering challenges this view. Such rupture complexities cause difficulties in existing finite fault inversion algorithms, because they rely on specific parameterizations and regularizations to obtain physically meaningful solutions. Furthermore, it is difficult to assess reliability and uncertainty of obtained rupture models. Here we develop a Multi-Haskell Source (MHS) method to estimate rupture process of large earthquakes as a series of sub-events of varying location, timing and directivity. Each sub-event is characterized by a Haskell rupture model with uniform dislocation and constant unilateral rupture velocity. This flexible yet simple source parameterization allows us to constrain first-order rupture complexity of large earthquakes robustly. Additionally, relatively few parameters in the inverse problem yields improved uncertainty analysis based on Markov chain Monte Carlo sampling in a Bayesian framework. Synthetic tests and application of MHS method on real earthquakes show that our method can capture major features of large earthquake rupture process, and provide information for more detailed rupture history analysis.

  9. Seismic constraints on the architecture of the Newport-Inglewood/Rose Canyon fault: Implications for the length and magnitude of future earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Sahakian, Valerie; Bormann, Jayne; Driscoll, Neal; Harding, Alistair; Kent, Graham; Wesnousky, Steve

    2017-03-01

    The Newport-Inglewood/Rose Canyon (NIRC) fault zone is an active strike-slip fault system within the Pacific-North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.

  10. Seismogenic width controls aspect ratios of earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Weng, Huihui; Yang, Hongfeng

    2017-03-01

    We investigate the effect of seismogenic width on aspect ratios of earthquake ruptures by using numerical simulations of strike-slip faulting and an energy balance criterion near rupture tips. If the seismogenic width is smaller than a critical value, then ruptures cannot break the entire fault, regardless of the size of the nucleation zone. The seismic moments of these self-arresting ruptures increase with the nucleation size, forming nucleation-related events. The aspect ratios increase with the seismogenic width but are smaller than 8. In contrast, ruptures become breakaway and tend to have high aspect ratios (>8) if the seismogenic width is sufficiently large. But the critical nucleation size is larger than the theoretical estimate for an unbounded fault. The eventual seismic moments of breakaway ruptures do not depend on the nucleation size. Our results suggest that estimating final earthquake magnitude from the nucleation phase may only be plausible on faults with small seismogenic width.

  11. A multiple fault rupture model of the November 13 2016, M 7.8 Kaikoura earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Benites, R. A.; Francois-Holden, C.; Langridge, R. M.; Kaneko, Y.; Fry, B.; Kaiser, A. E.; Caldwell, T. G.

    2017-12-01

    The rupture-history of the November 13 2016 MW7.8 Kaikoura earthquake recorded by near- and intermediate-field strong-motion seismometers and 2 high-rate GPS stations reveals a complex cascade of multiple crustal fault rupture. In spite of such complexity, we show that the rupture history of each fault is well approximated by simple kinematic model with uniform slip and rupture velocity. Using 9 faults embedded in a crustal layer 19 km thick, each with a prescribed slip vector and rupture velocity, this model accurately reproduces the displacement waveforms recorded at the near-field strong-motion and GPS stations. This model includes the `Papatea Fault' with a mixed thrust and strike-slip mechanism based on in-situ geological observations with up to 8 m of uplift observed. Although the kinematic model fits the ground-motion at the nearest strong station, it doesn not reproduce the one sided nature of the static deformation field observed geodetically. This suggests a dislocation based approach does not completely capture the mechanical response of the Papatea Fault. The fault system as a whole extends for approximately 150 km along the eastern side of the Marlborough fault system in the South Island of New Zealand. The total duration of the rupture was 74 seconds. The timing and location of each fault's rupture suggests fault interaction and triggering resulting in a northward cascade crustal ruptures. Our model does not require rupture of the underlying subduction interface to explain the data.

  12. Radiated energy and the rupture process of the Denali fault earthquake sequence of 2002 from broadband teleseismic body waves

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2004-01-01

    Displacement, velocity, and velocity-squared records of P and SH body waves recorded at teleseismic distances are analyzed to determine the rupture characteristics of the Denali fault, Alaska, earthquake of 3 November 2002 (MW 7.9, Me 8.1). Three episodes of rupture can be identified from broadband (???0.1-5.0 Hz) waveforms. The Denali fault earthquake started as a MW 7.3 thrust event. Subsequent right-lateral strike-slip rupture events with centroid depths of 9 km occurred about 22 and 49 sec later. The teleseismic P waves are dominated by energy at intermediate frequencies (0.1-1 Hz) radiated by the thrust event, while the SH waves are dominated by energy at lower frequencies (0.05-0.2 Hz) radiated by the strike-slip events. The strike-slip events exhibit strong directivity in the teleseismic SH waves. Correcting the recorded P-wave acceleration spectra for the effect of the free surface yields an estimate of 2.8 ?? 1015 N m for the energy radiated by the thrust event. Correcting the recorded SH-wave acceleration spectra similarly yields an estimate of 3.3 ?? 10 16 N m for the energy radiated by the two strike-slip events. The average rupture velocity for the strike-slip rupture process is 1.1??-1.2??. The strike-slip events were located 90 and 188 km east of the epicenter. The rupture length over which significant or resolvable energy is radiated is, thus, far shorter than the 340-km fault length over which surface displacements were observed. However, the seismic moment released by these three events, 4 ?? 1020 N m, was approximately half the seismic moment determined from very low-frequency analyses of the earthquake. The difference in seismic moment can be reasonably attributed to slip on fault segments that did not radiate significant or coherent seismic energy. These results suggest that very large and great strike-slip earthquakes can generate stress pulses that rapidly produce substantial slip with negligible stress drop and little discernible radiated

  13. Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.

    2013-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several

  14. Complex rupture during the 12 January 2010 Haiti earthquake

    USGS Publications Warehouse

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  15. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2)

    USGS Publications Warehouse

    ,

    2008-01-01

    California?s 35 million people live among some of the most active earthquake faults in the United States. Public safety demands credible assessments of the earthquake hazard to maintain appropriate building codes for safe construction and earthquake insurance for loss protection. Seismic hazard analysis begins with an earthquake rupture forecast?a model of probabilities that earthquakes of specified magnitudes, locations, and faulting types will occur during a specified time interval. This report describes a new earthquake rupture forecast for California developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP 2007).

  16. Rupture Process During the Mw 8.1 2017 Chiapas Mexico Earthquake: Shallow Intraplate Normal Faulting by Slab Bending

    NASA Astrophysics Data System (ADS)

    Okuwaki, R.; Yagi, Y.

    2017-12-01

    A seismic source model for the Mw 8.1 2017 Chiapas, Mexico, earthquake was constructed by kinematic waveform inversion using globally observed teleseismic waveforms, suggesting that the earthquake was a normal-faulting event on a steeply dipping plane, with the major slip concentrated around a relatively shallow depth of 28 km. The modeled rupture evolution showed unilateral, downdip propagation northwestward from the hypocenter, and the downdip width of the main rupture was restricted to less than 30 km below the slab interface, suggesting that the downdip extensional stresses due to the slab bending were the primary cause of the earthquake. The rupture front abruptly decelerated at the northwestern end of the main rupture where it intersected the subducting Tehuantepec Fracture Zone, suggesting that the fracture zone may have inhibited further rupture propagation.

  17. Mega-earthquakes rupture flat megathrusts.

    PubMed

    Bletery, Quentin; Thomas, Amanda M; Rempel, Alan W; Karlstrom, Leif; Sladen, Anthony; De Barros, Louis

    2016-11-25

    The 2004 Sumatra-Andaman and 2011 Tohoku-Oki earthquakes highlighted gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution: A fast convergence rate and young buoyant lithosphere are not required to produce mega-earthquakes. We calculated the curvature along the major subduction zones of the world, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces. A simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature. Shear strength on flat megathrusts is more homogeneous, and hence more likely to be exceeded simultaneously over large areas, than on highly curved faults. Copyright © 2016, American Association for the Advancement of Science.

  18. Historic Surface Rupture Informing Probabilistic Fault Displacement Analysis: New Zealand Case Studies

    NASA Astrophysics Data System (ADS)

    Villamor, P.; Litchfield, N. J.; Van Dissen, R. J.; Langridge, R.; Berryman, K. R.; Baize, S.

    2016-12-01

    Surface rupture associated with the 2010 Mw7.1 Darfield Earthquake (South Island, New Zealand) was extremely well documented, thanks to an immediate field mapping response and the acquisition of LiDAR data within days of the event. With respect to informing Probabilistic Fault Displacement Analysis (PFDHA) the main insights and outcomes from this rupture through Quaternary gravel are: 1) significant distributed deformation either side of the main trace (30 to 300 m wide deformation zone) and how the deformation is distributed away from the main trace; 2) a thorough analysis of uncertainty of the displacement measures obtained using the LIDAR data and repeated measurements from several scientists; and 3) the short surface rupture length for the reported magnitude, resulting from complex fault rupture with 5-6 reverse and strike-slip strands, most of which had no surface rupture. While the 2010 event is extremely well documented and will be an excellent case to add to the Surface Rupture during Earthquakes database (SURE), other NZ historical earthquakes that are not so well documented, but can provide important information for PFDHA. New Zealand has experienced about 10 historical surface fault ruptures since 1848, comprising ruptures on strike-slip, reverse and normal faults. Mw associated with these ruptures ranges between 6.3 and 8.1. From these ruptures we observed that the surface expression of deformation can be influenced by: fault maturity; the type of Quaternary sedimentary cover; fault history (e.g., influence of inversion tectonics, flexural slip); fault complexity; and primary versus secondary rupture. Other recent >Mw 6.6 earthquakes post-2010 that did not rupture the ground surface have been documented with InSAR and can inform Mw thresholds for surface fault rupture. It will be important to capture all this information and that of similar events worldwide to inform the SURE database and ultimately PFDHA.

  19. A Controllable Earthquake Rupture Experiment on the Homestake Fault

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Murdoch, L. C.; Garagash, D.; Reches, Z.; Martel, S. J.; Gwaba, D.; Elsworth, D.; Lowell, R. P.; Onstott, T. C.

    2010-12-01

    Fault-slip is typically simulated in the laboratory at the cm-to-dm scale. Laboratory results are then up-scaled by orders of magnitude to understand faulting and earthquakes processes. We suggest an experimental approach to reactivate faults in-situ at scales ~10-100 m using thermal techniques and fluid injection to modify in situ stresses and the fault strength to the point where the rock fails. Mines where the modified in-situ stresses are sufficient to drive faulting, present an opportunity to conduct such experiments. During our recent field work in the former Homestake gold mine in the northern Black Hills, South Dakota, we found a large fault present on multiple mine levels. The fault is subparallel to the local foliation in the Poorman formation, a Proterozoic metamorphic rock deformed into regional-scale folds with axes plunging ~40° to the SSE. The fault extends at least 1.5 km along strike and dip, with a center ~1.5 km deep. It strikes ~320-340° N, dips ~45-70° NE, and is recognized by a ~0.3-0.5 m thick distinct gouge that contains crushed host rock and black material that appears to be graphite. Although we could not find clear evidence for fault displacement, secondary features suggest that it is a normal fault. The size and distinct structure of this fault make it a promising target for in-situ experimentation of fault strength, hydrological properties, and slip nucleation processes. Most earthquakes are thought to be the result of unstable slip on existing faults, Activation of the Homestake fault in response to the controlled fluid injection and thermally changing background stresses is likely to be localized on a crack-like patch. Slow patch propagation, moderated by the injection rate and the rate of change of the background stresses, may become unstable, leading to the nucleation of a small earthquake (dynamic) rupture. This controlled instability is intimately related to the dependence of the fault strength on the slip process and has been

  20. Long-Period Ground Motion due to Near-Shear Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Koketsu, K.; Yokota, Y.; Hikima, K.

    2010-12-01

    Long-period ground motion has become an increasingly important consideration because of the recent rapid increase in the number of large-scale structures, such as high-rise buildings and large oil storage tanks. Large subduction-zone earthquakes and moderate to large crustal earthquakes can generate far-source long-period ground motions in distant sedimentary basins with the help of path effects. Near-fault long-period ground motions are generated, for the most part, by the source effects of forward rupture directivity (Koketsu and Miyake, 2008). This rupture directivity effect is the maximum in the direction of fault rupture when a rupture velocity is nearly equal to shear wave velocity around a source fault (Dunham and Archuleta, 2005). The near-shear rupture was found to occur during the 2008 Mw 7.9 Wenchuan earthquake at the eastern edge of the Tibetan plateau (Koketsu et al., 2010). The variance of waveform residuals in a joint inversion of teleseismic and strong motion data was the minimum when we adopted a rupture velocity of 2.8 km/s, which is close to the shear wave velocity of 2.6 km/s around the hypocenter. We also found near-shear rupture during the 2010 Mw 6.9 Yushu earthquake (Yokota et al., 2010). The optimum rupture velocity for an inversion of teleseismic data is 3.5 km/s, which is almost equal to the shear wave velocity around the hypocenter. Since, in addition, supershear rupture was found during the 2001 Mw 7.8 Central Kunlun earthquake (Bouchon and Vallee, 2003), such fast earthquake rupture can be a characteristic of the eastern Tibetan plateau. Huge damage in Yingxiu and Beichuan from the 2008 Wenchuan earthquake and damage heavier than expected in the county seat of Yushu from the medium-sized Yushu earthquake can be attributed to the maximum rupture directivity effect in the rupture direction due to near-shear earthquake ruptures.

  1. Earthquake rupture dynamics in poorly lithified sediments

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Bullock, R. J.; Holdsworth, R.; Marco, S.; Nielsen, S. B.

    2017-12-01

    Several recent large earthquakes have generated anomalously large slip patches when propagating through fluid-saturated, clay-rich sediments near the surface. Friction experiments at seismic slip rates show that such sediments are extremely weak and deform with very little energy dissipation, which facilitates rupture propagation. Although dynamic weakening may explain the ease of rupture propagation through such sediments, it cannot account for the peculiar slow rupture velocity and low radiation efficiency exhibited by some large, shallow ruptures. Here, we integrate field and experimental datasets to describe on- and off-fault deformation in natural syn-depositional seismogenic faults (< 35 ka) in shallow, clay-rich, poorly lithified sediments from the Dead Sea Fault system, Israel. The data are then used to estimate the energy dissipated by on- and off-fault damage during earthquake rupture through shallow, clay-rich sediments. Our mechanical and field data show localised principal slip zones (PSZs) that deform by particulate flow, with little energy dissipated by brittle fracturing with cataclasis. Conversely, we show that coseismic brittle and ductile deformation in the damage zones outwith the PSZ, which cannot be replicated in small-scale laboratory experiments, is a significant energy sink, contributing to an energy dissipation that is one order of magnitude greater than that estimated from laboratory experiments alone. In particular, a greater proportion of dissipated energy would result in lower radiation efficiency, due to a reduced proportion of radiated energy, plus slower rupture velocity and more energy radiation in the low frequency range than might be anticipated from laboratory experiments alone. This result is in better agreement with seismological estimates of fracture energy, implying that off-fault damage can account for the geophysical characteristics of earthquake ruptures as they pass through clay-rich sediments in the shallow crust.

  2. A suite of exercises for verifying dynamic earthquake rupture codes

    USGS Publications Warehouse

    Harris, Ruth A.; Barall, Michael; Aagaard, Brad T.; Ma, Shuo; Roten, Daniel; Olsen, Kim B.; Duan, Benchun; Liu, Dunyu; Luo, Bin; Bai, Kangchen; Ampuero, Jean-Paul; Kaneko, Yoshihiro; Gabriel, Alice-Agnes; Duru, Kenneth; Ulrich, Thomas; Wollherr, Stephanie; Shi, Zheqiang; Dunham, Eric; Bydlon, Sam; Zhang, Zhenguo; Chen, Xiaofei; Somala, Surendra N.; Pelties, Christian; Tago, Josue; Cruz-Atienza, Victor Manuel; Kozdon, Jeremy; Daub, Eric; Aslam, Khurram; Kase, Yuko; Withers, Kyle; Dalguer, Luis

    2018-01-01

    We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types of computer codes are often used to understand how earthquakes operate, and they produce simulation results that include earthquake size, amounts of fault slip, and the patterns of ground shaking and crustal deformation. The benchmark exercises examine a range of features that scientists incorporate in their dynamic earthquake rupture simulations. These include implementations of simple or complex fault geometry, off‐fault rock response to an earthquake, stress conditions, and a variety of formulations for fault friction. Many of the benchmarks were designed to investigate scientific problems at the forefronts of earthquake physics and strong ground motions research. The exercises are freely available on our website for use by the scientific community.

  3. How does the 2010 El Mayor - Cucapah Earthquake Rupture Connect to the Southern California Plate Boundary Fault System

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.

    2016-12-01

    The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from

  4. Paleoseismic Trenching on 1939 Erzincan and 1942 Niksar-Erbaa Earthquake Surface Ruptures, the North Anatolian Fault (Turkey)

    NASA Astrophysics Data System (ADS)

    Akyuz, H. S.; Karabacak, V.; Zabci, C.; Sancar, T.; Altunel, E.; Gursoy, H.; Tatar, O.

    2009-04-01

    Two devastating earthquakes occurred between Erzincan (39.75N, 39.49E) and Erbaa, Tokat (40.70N, 36.58E) just three years one after another in 1939 and 1942. While 1939 Erzincan earthquake (M=7.8) ruptured nearly 360 km, 1942 Erbaa-Niksar earthquake (M=7.1) has a length of 50 km surface rupture. Totally, more than 35000 citizens lost their lives after these events. Although Turkey has one of the richest historical earthquake records, there is no clear evidence of the spatial distribution of paleoevents within these two earthquake segments of the North Anatolian Fault. 17 August 1668 Anatolian earthquake is one of the known previous earthquakes that may have occurred on the same segments with a probable rupture length of more than 400 km. It is still under debate in different catalogues, if it was ruptured in multiple events or a single one. We achieved paleoseismic trench studies to have a better understanding on the recurrence of large earthquakes on these two faults in the framework of T.C. DPT. Project no. 2006K120220. We excavated a total of 8 trenches in 7 different sites. While three of them are along the 1942 Erbaa-Niksar Earthquake rupture, others are located on the 1939 Erzincan one. Alanici and Direkli trenches were excavated on the 1942 rupture. Direkli trench site is located at the west of Niksar, Tokat (40.62N, 36.85E) on the fluvial terrace deposits of the Kelkit River. Only one paleoevent could be determined from the structural relationships of the trench wall stratigraphy. By radiocarbon dating of charcoal sample from above the event horizon indicates that this earthquake should have occurred before 480-412 BC. The second trench, Alanici, on the same segment was located between Erbaa and Niksar (40.65N, 36.78E) at the western boundary of a sag-pond. While signs of two (possible three) earthquakes were identified on the trench wall, the prior event to 1942 Earthquake is dated to be before 5th century AD. We interpreted this to have possibility of

  5. High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, b value, and the scaling of strength on faults

    USGS Publications Warehouse

    Frankel, A.

    1991-01-01

    The high-frequency falloff ??-y of earthquake displacement spectra and the b value of aftershock sequences are attributed to the character of spatially varying strength along fault zones. I assume that the high frequency energy of a main shock is produced by a self-similar distribution of subevents, where the number of subevents with radii greater than R is proportional to R-D, D being the fractal dimension. In the model, an earthquake is composed of a hierarchical set of smaller earthquakes. The static stress drop is parameterized to be proportional to R??, and strength is assumed to be proportional to static stress drop. I find that a distribution of subevents with D = 2 and stress drop independent of seismic moment (?? = 0) produces a main shock with an ??-2 falloff, if the subevent areas fill the rupture area of the main shock. By equating subevents to "islands' of high stress of a random, self-similar stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - ??. Thus D = 2 corresponds to constant stress drop scaling (?? = 0) and scale-invariant fault strength. A self-similar model of aftershock rupture zones on a fault is used to determine the relationship between the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. -from Author

  6. Fault rupture process and strong ground motion simulation of the 2014/04/01 Northern Chile (Pisagua) earthquake (Mw8.2)

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Suzuki, W.; Aoi, S.

    2014-12-01

    A megathrust earthquake occurred in Northern Chile in April 1, 2014, 23:46 (UTC) (Mw 8.2), in a region that had not experienced a major earthquake since the great 1877 (~M8.6) event. This area had been already identified as a mature seismic gap with a strong interseismic coupling inferred from geodetic measurements (Chlieh et al., JGR, 2011 and Metois et al., GJI, 2013). We used 48 components of strong motion records belonging to the IPOC network in Northern Chile to investigate the source process of the M8.2 Pisagua earthquake. Acceleration waveforms were integrated to get velocities and filtered between 0.02 and 0.125 Hz. We assumed a single fault plane segment with an area of 180 km by 135 km, a strike of 357, and a dip of 18 degrees (GCMT). We set the starting point of rupture at the USGS hypocenter (19.610S, 70.769W, depth 25km), and employed a multi-time-window linear waveform inversion method (Hartzell and Heaton, BSSA, 1983), to derive the rupture process of the Pisagua earthquake. Our results show a slip model characterized by one large slip area (asperity) localized 50 km south of the epicenter, a peak slip of 10 m and a total seismic moment of 2.36 x 1021Nm (Mw 8.2). Fault rupture slowly propagated to the south in front of the main asperity for the initial 25 seconds, and broke it by producing a strong acceleration stage. The fault plane rupture velocity was in average 2.9 km/s. Our calculations show an average stress drop of 4.5MPa for the entire fault rupture area and 12MPa for the asperity area. We simulated the near-source strong ground motion records in a broad frequency band (0.1 ~ 20 Hz), to investigate a possible multi-frequency fault rupture process as the one observed in recent mega-thrust earthquakes such as the 2011 Tohoku-oki (M9.0). Acknowledgments Strong motion data was kindly provided by Chile University as well as the IPOC (Integrated Plate boundary Observatory Chile).

  7. Spatial and Temporal Variations in Earthquake Stress Drop on Gofar Transform Fault, East Pacific Rise: Implications for Fault Strength

    NASA Astrophysics Data System (ADS)

    Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.

    2017-12-01

    During the last five seismic cycles on Gofar transform fault on the East Pacific Rise, the largest earthquakes (6.0 ≤ Mw ≤ 6.2) have repeatedly ruptured the same fault segment (rupture asperity), while intervening fault segments host swarms of microearthquakes. Previous studies on Gofar have shown that these segments of low (≤10%) seismic coupling contain diffuse zones of seismicity and P-wave velocity reduction compared with the rupture asperity; suggesting heterogeneous fault properties control earthquake behavior. We investigate the role systematic differences in material properties have on earthquake rupture along Gofar using waveforms from ocean bottom seismometers that recorded the end of the 2008 Mw 6.0 seismic cycle.We determine stress drop for 117 earthquakes (2.4 ≤ Mw ≤ 4.2) that occurred in and between rupture asperities from corner frequency derived using an empirical Green's function spectral ratio method and seismic moment obtained by fitting the omega-square source model to the low frequency amplitude of earthquake spectra. We find stress drops from 0.03 to 2.7 MPa with significant spatial variation, including 2 times higher average stress drop in the rupture asperity compared to fault segments with low seismic coupling. We interpret an inverse correlation between stress drop and P-wave velocity reduction as the effect of damage on earthquake rupture. Earthquakes with higher stress drops occur in more intact crust of the rupture asperity, while earthquakes with lower stress drops occur in regions of low seismic coupling and reflect lower strength, highly fractured fault zone material. We also observe a temporal control on stress drop consistent with log-time healing following the Mw 6.0 mainshock, suggesting a decrease in stress drop as a result of fault zone damage caused by the large earthquake.

  8. Ground-motion signature of dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.

    2016-04-01

    Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.

  9. Landslides and the Fault Surface Ruptures during the 2008 Wengchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Xiyong, Wu; Takashi, Inokuchi; Gonghui, Wang

    2009-04-01

    2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). In order to clarify the distribution of these landslides and to characterize them, we interpreted satellite images and made field investigation for 3 weeks by using these images. We used satellite ALOS images taken by the sensors AVNIR II with a resolution of 10 m and PRISM with a resolution of 2.5 m, both of which were taken on 4th in June. We also used satellite images of before and after the earthquake provided by Google Earth. The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. Ridges and valleys are generally trending NE parallel to the trends of the geologic structures, while large rivers, such as the Minjiang River, and the Fujiang River are flowing from the north or northwest to the south or southeast, crossing these trends. The NE-trending Longmenshan fault zone runs along the boundary between the mountains and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. (Geologic map of China). Landslide distribution areas were mainly of two types: One was the area along the fault that generated this earthquake, and another was along the steep slopes of inner valleys along the Minjian River. Landslides were concentrated on the hanging wall of the earthquake fault, which appeared for more than 180 km along the Longmenshan fault zone. The distribution area of landslides was wider around the middle and the southwest parts of the surface rupture trace and became narrower to the northeast. The directions of the

  10. Fault zones ruptured during the early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0) based on the associated co-seismic surface ruptures

    NASA Astrophysics Data System (ADS)

    Lekkas, Efthymios L.; Mavroulis, Spyridon D.

    2016-01-01

    The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.

  11. Three dimensional modelling of earthquake rupture cycles on frictional faults

    NASA Astrophysics Data System (ADS)

    Simpson, Guy; May, Dave

    2017-04-01

    We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.

  12. Earthquake rupture at focal depth, part II: mechanics of the 2004 M2.2 earthquake along the Pretorius Fault, TauTona Mine, South Africa

    USGS Publications Warehouse

    Heesakkers, V.; Murphy, S.; Lockner, D.A.; Reches, Z.

    2011-01-01

    We analyze here the rupture mechanics of the 2004, M2.2 earthquake based on our observations and measurements at focal depth (Part I). This event ruptured the Archean Pretorius fault that has been inactive for at least 2 Ga, and was reactivated due to mining operations down to a depth of 3.6 km depth. Thus, it was expected that the Pretorius fault zone will fail similarly to an intact rock body independently of its ancient healed structure. Our analysis reveals a few puzzling features of the M2.2 rupture-zone: (1) the earthquake ruptured four, non-parallel, cataclasite bearing segments of the ancient Pretorius fault-zone; (2) slip occurred almost exclusively along the cataclasite-host rock contacts of the slipping segments; (3) the local in-situ stress field is not favorable to slip along any of these four segments; and (4) the Archean cataclasite is pervasively sintered and cemented to become brittle and strong. To resolve these observations, we conducted rock mechanics experiments on the fault-rocks and host-rocks and found a strong mechanical contrast between the quartzitic cataclasite zones, with elastic-brittle rheology, and the host quartzites, with damage, elastic–plastic rheology. The finite-element modeling of a heterogeneous fault-zone with the measured mechanical contrast indicates that the slip is likely to reactivate the ancient cataclasite-bearing segments, as observed, due to the strong mechanical contrast between the cataclasite and the host quartzitic rock.

  13. A fault is born: The Landers-Mojave earthquake line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nur, A.; Ron, H.

    1993-04-01

    The epicenter and the southern portion of the 1992 Landers earthquake fell on an approximately N-S earthquake line, defined by both epicentral locations and by the rupture directions of four previous M>5 earthquakes in the Mojave: The 1947 Manix; 1975 Galway Lake; 1979 Homestead Valley: and 1992 Joshua Tree events. Another M 5.2 earthquake epicenter in 1965 fell on this line where it intersects the Calico fault. In contrast, the northern part of the Landers rupture followed the NW-SE trending Camp Rock and parallel faults, exhibiting an apparently unusual rupture kink. The block tectonic model (Ron et al., 1984) combiningmore » fault kinematic and mechanics, explains both the alignment of the events, and their ruptures (Nur et al., 1986, 1989), as well as the Landers kink (Nur et al., 1992). Accordingly, the now NW oriented faults have rotated into their present direction away from the direction of maximum shortening, close to becoming locked, whereas a new fault set, optimally oriented relative to the direction of shortening, is developing to accommodate current crustal deformation. The Mojave-Landers line may thus be a new fault in formation. During the transition of faulting from the old, well developed and wak but poorly oriented faults to the strong, but favorably oriented new ones, both can slip simultaneously, giving rise to kinks such as Landers.« less

  14. Induced seismicity provides insight into why earthquake ruptures stop.

    PubMed

    Galis, Martin; Ampuero, Jean Paul; Mai, P Martin; Cappa, Frédéric

    2017-12-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  15. Induced seismicity provides insight into why earthquake ruptures stop

    PubMed Central

    Galis, Martin; Ampuero, Jean Paul; Mai, P. Martin; Cappa, Frédéric

    2017-01-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures. PMID:29291250

  16. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  17. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  18. Dynamic stress changes during earthquake rupture

    USGS Publications Warehouse

    Day, S.M.; Yu, G.; Wald, D.J.

    1998-01-01

    We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stress-drop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.

  19. The seismic velocity structure of a foreshock zone on an oceanic transform fault: Imaging a rupture barrier to the 2008 Mw 6.0 earthquake on the Gofar fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Lizarralde, D.; Collins, J. A.

    2010-12-01

    East Pacific Rise (EPR) oceanic transform faults are known to exhibit a number of unique seismicity characteristics, including abundant seismic swarms, a prevalence of aseismic slip, and high rates of foreshock activity. Until recently the details of how this behavior fits into the seismic cycle of large events that occur periodically on transforms have remained poorly understood. In 2008 the most recent seismic cycle of the western segment (G3) of the Gofar fault (4 degrees South on the EPR) ended with a Mw 6.0 earthquake. Seismicity associated with this event was recorded by a local array of ocean bottom seismometers, and earthquake locations reveal several distinct segments with unique slip behavior on the G3 fault. Preceding the Mw 6.0 event, a significant foreshock sequence was recorded just to the east of the mainshock rupture zone that included more than 20,000 detected earthquakes. This foreshock zone formed the eastern barrier to the mainshock rupture, and following the mainshock, seismicity rates within the foreshock zone remained unchanged. Based on aftershock locations of events following the 2007 Mw 6.0 event that completed the seismic cycle on the eastern end of the G3 fault, it appears that the same foreshock zone may have served as the western rupture barrier for that prior earthquake. Moreover, mainshock rupture associated with each of the last 8 large (~ Mw 6.0) events on the G3 fault seems to terminate at the same foreshock zone. In order to elucidate some of the structural controls on fault slip and earthquake rupture along transform faults, we present a seismic P-wave velocity profile crossing the center of the foreshock zone of the Gofar fault, as well as a profile for comparison across the neighboring Quebrada fault. Although tectonically similar, Quebrada does not sustain large earthquakes and is thought to accommodate slip primarily aseismically and with small magnitude earthquake swarms. Velocity profiles were obtained using data collected

  20. Stress before and after the 2002 Denali fault earthquake

    USGS Publications Warehouse

    Wesson, R.L.; Boyd, O.S.

    2007-01-01

    Spatially averaged, absolute deviatoric stress tensors along the faults ruptured during the 2002 Denali fault earthquake, both before and after the event, are derived, using a new method, from estimates of the orientations of the principal stresses and the stress change associated with the earthquake. Stresses are estimated in three regions along the Denali fault, one of which also includes the Susitna Glacier fault, and one region along the Totschunda fault. Estimates of the spatially averaged shear stress before the earthquake resolved onto the faults that ruptured during the event range from near 1 MPa to near 4 MPa. Shear stresses estimated along the faults in all these regions after the event are near zero (0 ?? 1 MPa). These results suggest that deviatoric stresses averaged over a few tens of km along strike are low, and that the stress drop during the earthquake was complete or nearly so.

  1. Earthquake scaling laws for rupture geometry and slip heterogeneity

    NASA Astrophysics Data System (ADS)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  2. Transpressional Rupture Cascade of the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Feng, Guangcai; Meng, Lingsen; Zhang, Ailin; Ampuero, Jean Paul; Bürgmann, Roland; Fang, Lihua

    2018-03-01

    Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. Teleseismic back projection imaging shows that rupture speed was overall slow (1.4 km/s) but faster on individual fault segments (approximately 2 km/s) and that the conjugate, oblique-reverse, north striking faults released the largest high-frequency energy. We show that the linking Conway-Charwell faults aided in propagation of rupture across the step over from the Humps fault zone to the Hope fault. Fault slip cascaded along the Jordan Thrust, Kekerengu, and Needles faults, causing stress perturbations that activated two major conjugate faults, the Hundalee and Papatea faults. Our results shed important light on the study of earthquakes and seismic hazard evaluation in geometrically complex fault systems.

  3. The Rurrand Fault, Germany: A Holocene surface rupture and new slip rate estimates

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Fischer, Peter; Reicherter, Klaus

    2016-04-01

    Very low deformation rates in continental interiors are a challenge for research on active tectonics and seismic hazard. Faults tend to have very long earthquake recurrence intervals and morphological evidence of surface faulting is often obliterated by erosion and sedimentation. The Lower Rhine Graben in Central Europe is characterized by slow active faults with individual slip rates of well less than 0.1 mm/a. As a consequence, most geodetic techniques fail to record tectonic motions and the morphological expression of the faults is subtle. Although damaging events are known from this region, e.g. the 1755/56 Düren earthquakes series, there is no account for surface rupturing events in instrumental and historical records. Owing to the short temporal coverage with respect to the fault recurrence intervals, these records probably fail to depict the maximum possible magnitudes. In this study we used morphological evidence from a 1 m airborne LiDAR survey, near surface geophysics, and paleoseismological trenching to identify surface rupturing earthquakes at the Rurrand Fault between Cologne and Aachen in W Germany. LiDAR data allowed identifying a young fault strand parallel to the already known main fault with the subtle morphological expression of recent surface faulting. In the paleoseismological trenches we found evidence for two surface rupturing earthquakes. The most recent event occurred in the Holocene, and a previous earthquake probably happened in the last 150 ka. Geophysical data allowed us to estimate a minimum slip rate of 0.03 mm/a from an offset gravel horizon. We estimate paleomagnitudes of MW5.9-6.8 based on the observed offsets in the trench (<0.5 m per event) and fault scaling relationships. Our data imply that the Rurrand Fault did not creep during the last 150 ka, but rather failed in large earthquakes. These events were much stronger than those known from historical sources. We are able to show that the Rurrand Fault did not rupture the surface

  4. Flexible kinematic earthquake rupture inversion of tele-seismic waveforms: Application to the 2013 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Yagi, Y.; Okuwaki, R.; Kasahara, A.

    2017-12-01

    The kinematic earthquake rupture models are useful to derive statistics and scaling properties of the large and great earthquakes. However, the kinematic rupture models for the same earthquake are often different from one another. Such sensitivity of the modeling prevents us to understand the statistics and scaling properties of the earthquakes. Yagi and Fukahata (2011) introduces the uncertainty of Green's function into the tele-seismic waveform inversion, and shows that the stable spatiotemporal distribution of slip-rate can be obtained by using an empirical Bayesian scheme. One of the unsolved problems in the inversion rises from the modeling error originated from an uncertainty of a fault-model setting. Green's function near the nodal plane of focal mechanism is known to be sensitive to the slight change of the assumed fault geometry, and thus the spatiotemporal distribution of slip-rate should be distorted by the modeling error originated from the uncertainty of the fault model. We propose a new method accounting for the complexity in the fault geometry by additionally solving the focal mechanism on each space knot. Since a solution of finite source inversion gets unstable with an increasing of flexibility of the model, we try to estimate a stable spatiotemporal distribution of focal mechanism in the framework of Yagi and Fukahata (2011). We applied the proposed method to the 52 tele-seismic P-waveforms of the 2013 Balochistan, Pakistan earthquake. The inverted-potency distribution shows unilateral rupture propagation toward southwest of the epicenter, and the spatial variation of the focal mechanisms shares the same pattern as the fault-curvature along the tectonic fabric. On the other hand, the broad pattern of rupture process, including the direction of rupture propagation, cannot be reproduced by an inversion analysis under the assumption that the faulting occurred on a single flat plane. These results show that the modeling error caused by simplifying the

  5. Effect of Sediments on Rupture Dynamics of Shallow Subduction Zone Earthquakes and Tsunami Generation

    NASA Astrophysics Data System (ADS)

    Ma, S.

    2011-12-01

    Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.

  6. Dynamic 3D simulations of earthquakes on en echelon faults

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    1999-01-01

    One of the mysteries of earthquake mechanics is why earthquakes stop. This process determines the difference between small and devastating ruptures. One possibility is that fault geometry controls earthquake size. We test this hypothesis using a numerical algorithm that simulates spontaneous rupture propagation in a three-dimensional medium and apply our knowledge to two California fault zones. We find that the size difference between the 1934 and 1966 Parkfield, California, earthquakes may be the product of a stepover at the southern end of the 1934 earthquake and show how the 1992 Landers, California, earthquake followed physically reasonable expectations when it jumped across en echelon faults to become a large event. If there are no linking structures, such as transfer faults, then strike-slip earthquakes are unlikely to propagate through stepovers >5 km wide. Copyright 1999 by the American Geophysical Union.

  7. Geometry, slip distribution, and kinematics of surface rupture on the Sakarya fault segment during the 17 August 1999 İzmit, Turkey, earthquake

    USGS Publications Warehouse

    Langridge, R.M.; Stenner, Heidi D.; Fumal, T.E.; Christofferson, S.A.; Rockwell, T.K.; Hartleb, R.D.; Bachhuber, J.; Barka, A.A.

    2002-01-01

    The Mw 7.4 17 August 1999 İzmit earthquake ruptured five major fault segments of the dextral North Anatolian Fault Zone. The 26-km-long, N86°W-trending Sakarya fault segment (SFS) extends from the Sapanca releasing step-over in the west to near the town of Akyazi in the east. The SFS emerges from Lake Sapanca as two distinct fault traces that rejoin to traverse the Adapazari Plain to Akyazi. Offsets were measured across 88 cultural and natural features that cross the fault, such as roads, cornfield rows, rows of trees, walls, rails, field margins, ditches, vehicle ruts, a dike, and ground cracks. The maximum displacement observed for the İzmit earthquake (∼5.1 m) was encountered on this segment. Dextral displacement for the SFS rises from less than 1 m at Lake Sapanca to greater than 5 m near Arifiye, only 3 km away. Average slip decreases uniformly to the east from Arifiye until the fault steps left from Sagir to Kazanci to the N75°W, 6-km-long Akyazi strand, where slip drops to less than 1 m. The Akyazi strand passes eastward into the Akyazi Bend, which consists of a high-angle bend (18°-29°) between the Sakarya and Karadere fault segments, a 6-km gap in surface rupture, and high aftershock energy release. Complex structural geometries exist between the İzmit, Düzce, and 1967 Mudurnu fault segments that have arrested surface ruptures on timescales ranging from 30 sec to 88 days to 32 yr. The largest of these step-overs may have acted as a rupture segmentation boundary in previous earthquake cycles.

  8. Geological structures control on earthquake ruptures: The Mw7.7, 2013, Balochistan earthquake, Pakistan

    NASA Astrophysics Data System (ADS)

    Vallage, A.; Klinger, Y.; Lacassin, R.; Delorme, A.; Pierrot-Deseilligny, M.

    2016-10-01

    The 2013 Mw7.7 Balochistan earthquake, Pakistan, ruptured the Hoshab fault. Left-lateral motion dominated the deformation pattern, although significant vertical motion is found along the southern part of the rupture. Correlation of high-resolution (2.5 m) optical satellite images provided horizontal displacement along the entire rupture. In parallel, we mapped the ground rupture geometry at 1:500 scale. We show that the azimuth of the ground rupture distributes mainly between two directions, N216° and N259°. The direction N216° matches the direction of preexisting geologic structures resulting from penetrative deformation caused by the nearby Makran subduction. Hence, during a significant part of its rupture, the 2013 Balochistan rupture kept switching between a long-term fault front and secondary branches, in which existence and direction are related to the compressional context. It shows unambiguous direct interactions between different preexisting geologic structures, regional stress, and dynamic-rupture stress, which controlled earthquake propagation path.

  9. The 2016 M7.8 Kaikōura earthquake revealed by multiple seismic wavefield simulations: slow rupture propagation on a geometrically complex fault network

    NASA Astrophysics Data System (ADS)

    Kaneko, Y.; Francois-Holden, C.; Hamling, I. J.; D'Anastasio, E.; Fry, B.

    2017-12-01

    The 2016 M7.8 Kaikōura (New Zealand) earthquake generated ground motions over 1g across a 200-km long region, resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution during the Kaikōura earthquake multiple kinematic modelling methods based on local strong-motion and high-rate GPS data. Our kinematic models constrained by near-source data capture, in detail, a complex pattern of slowly (Vr < 2km/s) propagating rupture from the south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 seconds after the origin time. Interestingly, both models indicate rupture re-activation on the Kekerengu fault with the time separation of 11 seconds. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.

  10. The history of late holocene surface-faulting earthquakes on the central segments of the Wasatch fault zone, Utah

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen; Olig, Susan S; Crone, Anthony J.; Hylland, Michael D.; Lund, William R; Schwartz, David P.

    2017-01-01

    The Wasatch fault (WFZ)—Utah’s longest and most active normal fault—forms a prominent eastern boundary to the Basin and Range Province in northern Utah. To provide paleoseismic data for a Wasatch Front regional earthquake forecast, we synthesized paleoseismic data to define the timing and displacements of late Holocene surface-faulting earthquakes on the central five segments of the WFZ. Our analysis yields revised histories of large (M ~7) surface-faulting earthquakes on the segments, as well as estimates of earthquake recurrence and vertical slip rate. We constrain the timing of four to six earthquakes on each of the central segments, which together yields a history of at least 24 surface-faulting earthquakes since ~6 ka. Using earthquake data for each segment, inter-event recurrence intervals range from about 0.6 to 2.5 kyr, and have a mean of 1.2 kyr. Mean recurrence, based on closed seismic intervals, is ~1.1–1.3 kyr per segment, and when combined with mean vertical displacements per segment of 1.7–2.6 m, yield mean vertical slip rates of 1.3–2.0 mm/yr per segment. These data refine the late Holocene behavior of the central WFZ; however, a significant source of uncertainty is whether structural complexities that define the segments of the WFZ act as hard barriers to ruptures propagating along the fault. Thus, we evaluate fault rupture models including both single-segment and multi-segment ruptures, and define 3–17-km-wide spatial uncertainties in the segment boundaries. These alternative rupture models and segment-boundary zones honor the WFZ paleoseismic data, take into account the spatial and temporal limitations of paleoseismic data, and allow for complex ruptures such as partial-segment and spillover ruptures. Our data and analyses improve our understanding of the complexities in normal-faulting earthquake behavior and provide geological inputs for regional earthquake-probability and seismic hazard assessments.

  11. Deformation of the 2002 Denali Fault earthquakes, mapped by Radarsat-1 interferometry

    USGS Publications Warehouse

    Lu, Zhong; Wright, Tim; Wicks, Chuck

    2003-01-01

    The magnitude 7.9 earthquake that struck central Alaska on 3 November 2002 was the largest strike-slip earthquake in North America for more than 150 years. The earthquake ruptured about 340 km of the Denali Fault system with observed right-lateral offsets of up to 9 m [Eberhart-Phillips et al., 2003] (Figure l). The rupture initiated with slip on a previously unknown thrust fault, the 40-km-long Susitna Glacier Fault. The rupture propagated eastward for about 220 km along the right-lateral Denali Fault where right-lateral slip averaged ˜5 m, before stepping southeastward onto the Totschunda Fault for about 70 km, with offsets as large as 2 m. The 3 November earthquake was preceded by a magnitude 6.7 shock on 23 October—the Nenana Mountain Earthquake—which was located about 25 km to the west of the 3 November earthquake.

  12. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  13. Earthquake geology of the Bulnay Fault (Mongolia)

    USGS Publications Warehouse

    Rizza, Magali; Ritz, Jean-Franciois; Prentice, Carol S.; Vassallo, Ricardo; Braucher, Regis; Larroque, Christophe; Arzhannikova, A.; Arzhanikov, S.; Mahan, Shannon; Massault, M.; Michelot, J-L.; Todbileg, M.

    2015-01-01

    The Bulnay earthquake of July 23, 1905 (Mw 8.3-8.5), in north-central Mongolia, is one of the world's largest recorded intracontinental earthquakes and one of four great earthquakes that occurred in the region during the 20th century. The 375-km-long surface rupture of the left-lateral, strike-slip, N095°E trending Bulnay Fault associated with this earthquake is remarkable for its pronounced expression across the landscape and for the size of features produced by previous earthquakes. Our field observations suggest that in many areas the width and geometry of the rupture zone is the result of repeated earthquakes; however, in those areas where it is possible to determine that the geomorphic features are the result of the 1905 surface rupture alone, the size of the features produced by this single earthquake are singular in comparison to most other historical strike-slip surface ruptures worldwide. Along the 80 km stretch, between 97.18°E and 98.33°E, the fault zone is characterized by several meters width and the mean left-lateral 1905 offset is 8.9 ± 0.6 m with two measured cumulative offsets that are twice the 1905 slip. These observations suggest that the displacement produced during the penultimate event was similar to the 1905 slip. Morphotectonic analyses carried out at three sites along the eastern part of the Bulnay fault, allow us to estimate a mean horizontal slip rate of 3.1 ± 1.7 mm/yr over the Late Pleistocene-Holocene period. In parallel, paleoseismological investigations show evidence for two earthquakes prior to the 1905 event with recurrence intervals of ~2700-4000 years.

  14. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  15. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    NASA Astrophysics Data System (ADS)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure

  16. Fine structure of the landers fault zone: Segmentation and the rupture process

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.

    1994-01-01

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  17. The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Haeussler, Peter J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; Dawson, T.E.; Fletcher, H.; Hansen, R.; Harp, E.L.; Harris, R.A.; Hill, D.P.; Hreinsdottir, S.; Jibson, R.W.; Jones, L.M.; Kayen, R.; Keefer, D.K.; Larsen, C.F.; Moran, S.C.; Personius, S.F.; Plafker, G.; Sherrod, B.; Sieh, K.; Sitar, N.; Wallace, W.K.

    2003-01-01

    The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

  18. Fault failure with moderate earthquakes

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.

    1987-01-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  19. Paleoearthquakes at Frazier Mountain, California delimit extent and frequency of past San Andreas Fault ruptures along 1857 trace

    USGS Publications Warehouse

    Scharer, Katherine M.; Weldon, Ray; Streig, Ashley; Fumal, Thomas

    2014-01-01

    Large earthquakes are infrequent along a single fault, and therefore historic, well-characterized earthquakes exert a strong influence on fault behavior models. This is true of the 1857 Fort Tejon earthquake (estimated M7.7–7.9) on the southern San Andreas Fault (SSAF), but an outstanding question is whether the 330 km long rupture was typical. New paleoseismic data for six to seven ground-rupturing earthquakes on the Big Bend of the SSAF restrict the pattern of possible ruptures on the 1857 stretch of the fault. In conjunction with existing sites, we show that over the last ~650 years, at least 75% of the surface ruptures are shorter than the 1857 earthquake, with estimated rupture lengths of 100 to <300 km. These results suggest that the 1857 rupture was unusual, perhaps leading to the long open interval, and that a return to pre-1857 behavior would increase the rate of M7.3–M7.7 earthquakes.

  20. Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.

    2013-12-01

    A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF

  1. Rupture Propagation of the 2013 Mw7.7 Balochistan, Pakistan, Earthquake Affected by Poroelastic Stress Changes

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, W.; Xiao, J.

    2015-12-01

    The 2013 Mw7.7 Balochistan, Pakistan, earthquake occurred on the curved Hoshab fault. This fault connects with the north-south trending Chaman strike-slip fault to northeast, and with the west-east trending Makran thrust fault system to southwest. Teleseismic waveform inversion, incorporated with coseismic ground surface deformation data, show that the rupture of this earthquake nucleated around northeast segment of the fault, and then propagated southwestward along the northwest dipping Hoshab fault about 200 km, with the maximum coseismic displacement, featured mainly by purely left-lateral strike-slip motion, about 10 meters. In context of the India-Asia collision frame, associating with the fault geometry around this region, the rupture propagation of this earthquake seems to not follow an optimal path along the fault segment, because after nucleation of this event the Hoshab fault on the southwest of hypocenter of this earthquake is clamped by elastic stress change. Here, we build a three-dimensional finite-element model to explore the evolution of both stress and pore-pressure during the rupturing process of this earthquake. In the model, the crustal deformation is treated as undrained poroelastic media as described by Biot's theory, and the instantaneous rupture process is specified with split-node technique. By testing a reasonable range of parameters, including the coefficient of friction, the undrained Poisson's ratio, the permeability of the fault zone and the bulk crust, numerical results have shown that after the nucleation of rupture of this earthquake around the northeast of the Hoshab fault, the positive change of normal stress (clamping the fault) on the fault plane is greatly reduced by the instantaneous increase of pore pressure (unclamping the fault). This process could result in the change of Coulomb failure stress resolved on the Hoshab fault to be hastened, explaining the possible mechanism for southwestward propagation of rupture of the Mw7

  2. Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake

    NASA Astrophysics Data System (ADS)

    Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.

    2012-12-01

    On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.

  3. UCERF3: A new earthquake forecast for California's complex fault system

    USGS Publications Warehouse

    Field, Edward H.; ,

    2015-01-01

    With innovations, fresh data, and lessons learned from recent earthquakes, scientists have developed a new earthquake forecast model for California, a region under constant threat from potentially damaging events. The new model, referred to as the third Uniform California Earthquake Rupture Forecast, or "UCERF" (http://www.WGCEP.org/UCERF3), provides authoritative estimates of the magnitude, location, and likelihood of earthquake fault rupture throughout the state. Overall the results confirm previous findings, but with some significant changes because of model improvements. For example, compared to the previous forecast (Uniform California Earthquake Rupture Forecast 2), the likelihood of moderate-sized earthquakes (magnitude 6.5 to 7.5) is lower, whereas that of larger events is higher. This is because of the inclusion of multifault ruptures, where earthquakes are no longer confined to separate, individual faults, but can occasionally rupture multiple faults simultaneously. The public-safety implications of this and other model improvements depend on several factors, including site location and type of structure (for example, family dwelling compared to a long-span bridge). Building codes, earthquake insurance products, emergency plans, and other risk-mitigation efforts will be updated accordingly. This model also serves as a reminder that damaging earthquakes are inevitable for California. Fortunately, there are many simple steps residents can take to protect lives and property.

  4. Rupture processes of the 2010 Canterbury earthquake and the 2011 Christchurch earthquake inferred from InSAR, strong motion and teleseismic datasets

    NASA Astrophysics Data System (ADS)

    Yun, S.; Koketsu, K.; Aoki, Y.

    2014-12-01

    The September 4, 2010, Canterbury earthquake with a moment magnitude (Mw) of 7.1 is a crustal earthquake in the South Island, New Zealand. The February 22, 2011, Christchurch earthquake (Mw=6.3) is the biggest aftershock of the 2010 Canterbury earthquake that is located at about 50 km to the east of the mainshock. Both earthquakes occurred on previously unrecognized faults. Field observations indicate that the rupture of the 2010 Canterbury earthquake reached the surface; the surface rupture with a length of about 30 km is located about 4 km south of the epicenter. Also various data including the aftershock distribution and strong motion seismograms suggest a very complex rupture process. For these reasons it is useful to investigate the complex rupture process using multiple data with various sensitivities to the rupture process. While previously published source models are based on one or two datasets, here we infer the rupture process with three datasets, InSAR, strong-motion, and teleseismic data. We first performed point source inversions to derive the focal mechanism of the 2010 Canterbury earthquake. Based on the focal mechanism, the aftershock distribution, the surface fault traces and the SAR interferograms, we assigned several source faults. We then performed the joint inversion to determine the rupture process of the 2010 Canterbury earthquake most suitable for reproducing all the datasets. The obtained slip distribution is in good agreement with the surface fault traces. We also performed similar inversions to reveal the rupture process of the 2011 Christchurch earthquake. Our result indicates steep dip and large up-dip slip. This reveals the observed large vertical ground motion around the source region is due to the rupture process, rather than the local subsurface structure. To investigate the effects of the 3-D velocity structure on characteristic strong motion seismograms of the two earthquakes, we plan to perform the inversion taking 3-D velocity

  5. Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults

    USGS Publications Warehouse

    Felzer, Karen R.

    2014-01-01

    An earthquake occurs when rock that has been deformed under stress rebounds elastically along a fault plane (Gilbert, 1884; Reid, 1911), radiating seismic waves through the surrounding earth. Rupture along the entire fault surface does not spontaneously occur at the same time, however. Rather the rupture starts in one tiny area, the rupture nucleation zone, and spreads sequentially along the fault. Like a row of dominoes, one bit of rebounding fault triggers the next. This triggering is understood to occur because of the large dynamic stresses at the tip of an active seismic rupture. The importance of these crack tip stresses is a central question in earthquake physics. The crack tip stresses are minimally important, for example, in the time predictable earthquake model (Shimazaki and Nakata, 1980), which holds that prior to rupture stresses are comparable to fault strength in many locations on the future rupture plane, with bits of variation. The stress/strength ratio is highest at some point, which is where the earthquake nucleates. This model does not require any special conditions or processes at the nucleation site; the whole fault is essentially ready for rupture at the same time. The fault tip stresses ensure that the rupture occurs as a single rapid earthquake, but the fact that fault tip stresses are high is not particularly relevant since the stress at most points does not need to be raised by much. Under this model it should technically be possible to forecast earthquakes based on the stress-renewaql concept, or estimates of when the fault as a whole will reach the critical stress level, a practice used in official hazard mapping (Field, 2008). This model also indicates that physical precursors may be present and detectable, since stresses are unusually high over a significant area before a large earthquake.

  6. The Mechanics of Transient Fault Slip and Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Marone, C.; Leeman, J.; Scuderi, M.; Saffer, D. M.; Collettini, C.

    2015-12-01

    Earthquakes are understood as frictional stick-slip instabilities in which stored elastic energy is released suddenly, driving catastrophic failure. In normal (fast) earthquakes the rupture zone expands at a rate dictated by elastic wave speeds, a few km/s, and fault slip rates reach 1-10 m/s. However, tectonic faults also fail in slow earthquakes with rupture durations of months and fault slip speeds of ~100 micron/s or less. We know very little about the mechanics of slow earthquakes. What determines the rupture propagation velocity in slow earthquakes and in other forms of quasi-dynamic rupture? What processes limit stress drop and fault slip speed in slow earthquakes? Existing lab studies provide some help via observations of complex forms of stick-slip, creep-slip, or, in a few cases, slow slip. However, these are mainly anecdotal and rarely include examples of repetitive slow slip or systematic measurements that could be used to isolate the underlying mechanisms. Numerical studies based on rate and state friction also shed light on transiently accelerating slip, showing that slow slip can occur if: 1) fault rheology involves a change in friction rate dependence (a-b) with velocity or unusually large values of the frictional weakening distance Dc, or 2) fault zone elastic stiffness equals the critical frictional weakening rate kc = (b-a)/Dc. Recent laboratory work shows that the latter can occur much more commonly that previously thought. We document the complete spectrum of stick-slip behaviors from transient slow slip to fast stick-slip for a narrow range of conditions around k/kc = 1.0. Slow slip occurs near the threshold between stable and unstable failure, controlled by the interplay of fault zone frictional properties, normal stress, and elastic stiffness of the surrounding rock. Our results provide a generic mechanism for slow earthquakes, consistent with the wide range of conditions for which slow slip has been observed.

  7. Geometry and earthquake potential of the shoreline fault, central California

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2013-01-01

    The Shoreline fault is a vertical strike‐slip fault running along the coastline near San Luis Obispo, California. Much is unknown about the Shoreline fault, including its slip rate and the details of its geometry. Here, I study the geometry of the Shoreline fault at seismogenic depth, as well as the adjacent section of the offshore Hosgri fault, using seismicity relocations and earthquake focal mechanisms. The Optimal Anisotropic Dynamic Clustering (OADC) algorithm (Ouillon et al., 2008) is used to objectively identify the simplest planar fault geometry that fits all of the earthquakes to within their location uncertainty. The OADC results show that the Shoreline fault is a single continuous structure that connects to the Hosgri fault. Discontinuities smaller than about 1 km may be undetected, but would be too small to be barriers to earthquake rupture. The Hosgri fault dips steeply to the east, while the Shoreline fault is essentially vertical, so the Hosgri fault dips towards and under the Shoreline fault as the two faults approach their intersection. The focal mechanisms generally agree with pure right‐lateral strike‐slip on the OADC planes, but suggest a non‐planar Hosgri fault or another structure underlying the northern Shoreline fault. The Shoreline fault most likely transfers strike‐slip motion between the Hosgri fault and other faults of the Pacific–North America plate boundary system to the east. A hypothetical earthquake rupturing the entire known length of the Shoreline fault would have a moment magnitude of 6.4–6.8. A hypothetical earthquake rupturing the Shoreline fault and the section of the Hosgri fault north of the Hosgri–Shoreline junction would have a moment magnitude of 7.2–7.5.

  8. Rare normal faulting earthquake induced by subduction megaquake: example from 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.

    2012-04-01

    A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m

  9. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    USGS Publications Warehouse

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  10. Earthquake behavior along the Levant fault from paleoseismology (Invited)

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Le Beon, M.; Wechsler, N.; Rockwell, T. K.

    2013-12-01

    The Levant fault is a major continental structure 1200 km-long that bounds the Arabian plate to the west. The finite offset of this left-lateral strike-slip fault is estimated to be 105 km for the section located south of the restraining bend corresponding roughly to Lebanon. Along this southern section the slip-rate has been estimated over a large range of time scales, from few years to few hundreds thousands of years. Over these different time scales, studies agree for the slip-rate to be 5mm/yr × 2 mm/yr. The southern section of the Levant fault is particularly attractive to study earthquake behavior through time for several reasons: 1/ The fault geometry is simple and well constrained. 2/ The fault system is isolated and does not interact with obvious neighbor fault systems. 3/ The Middle-East, where the Levant fault is located, is the region in the world where one finds the longest and most complete historical record of past earthquakes. About 30 km north of the city of Aqaba, we opened a trench in the southern part of the Yotvata playa, along the Wadi Araba fault segment. The stratigraphy presents silty sand playa units alternating with coarser sand sediments from alluvial fans flowing westwards from the Jordan plateau. Two fault zones can be recognized in the trench and a minimum of 8 earthquakes can be identified, based on upward terminations of ground ruptures. Dense 14C dating through the entire exposure allows matching the 4 most recent events with historical events in AD1458, AD1212, AD1068 and AD748. Size of the ground rupture suggests a bi-modal distribution of earthquakes with earthquakes rupturing the entire Wadi Araba segment and earthquakes ending in the extensional jog forming the playa. Timing of earthquakes shows that no earthquakes occurred at this site since about 600 years, suggesting earthquake clustering along this section of the fault and potential for a large earthquake in the near future. 3D paleoseismological trenches at the Beteiha

  11. Source model of an earthquake doublet that occurred in a pull-apart basin along the Sumatran fault, Indonesia

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Toda, S.; Ando, R.; Yamashina, T.; Inoue, H.; Sunarjo

    2010-04-01

    On 2007 March 6, an earthquake doublet occurred along the Sumatran fault, Indonesia. The epicentres were located near Padang Panjang, central Sumatra, Indonesia. The first earthquake, with a moment magnitude (Mw) of 6.4, occurred at 03:49 UTC and was followed two hours later (05:49 UTC) by an earthquake of similar size (Mw = 6.3). We studied the earthquake doublet by a waveform inversion analysis using data from a broadband seismograph network in Indonesia (JISNET). The focal mechanisms of the two earthquakes indicate almost identical right-lateral strike-slip faults, consistent with the geometry of the Sumatran fault. Both earthquakes nucleated below the northern end of Lake Singkarak, which is in a pull-apart basin between the Sumani and Sianok segments of the Sumatran fault system, but the earthquakes ruptured different fault segments. The first earthquake occurred along the southern Sumani segment and its rupture propagated southeastward, whereas the second one ruptured the northern Sianok segment northwestward. Along these fault segments, earthquake doublets, in which the two adjacent fault segments rupture one after the other, have occurred repeatedly. We investigated the state of stress at a segment boundary of a fault system based on the Coulomb stress changes. The stress on faults increases during interseismic periods and is released by faulting. At a segment boundary, on the other hand, the stress increases both interseismically and coseismically, and may not be released unless new fractures are created. Accordingly, ruptures may tend to initiate at a pull-apart basin. When an earthquake occurs on one of the fault segments, the stress increases coseismically around the basin. The stress changes caused by that earthquake may trigger a rupture on the other segment after a short time interval. We also examined the mechanism of the delayed rupture based on a theory of a fluid-saturated poroelastic medium and dynamic rupture simulations incorporating a

  12. Effects of fault dip and slip rake angles on near-source ground motions: Why rupture directivity was minimal in the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Aagaard, Brad T.; Hall, J.F.; Heaton, T.H.

    2004-01-01

    We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km2 for the 30??-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60??- and 75??-dipping faults this velocity is exceeded over an area of 2700 km2 . These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter.

  13. Modeling earthquake magnitudes from injection-induced seismicity on rough faults

    NASA Astrophysics Data System (ADS)

    Maurer, J.; Dunham, E. M.; Segall, P.

    2017-12-01

    It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.

  14. Estimating the Locations of Past and Future Large Earthquake Ruptures using Recent M4 and Greater Events

    NASA Astrophysics Data System (ADS)

    Ebel, J.; Chambers, D. W.

    2017-12-01

    Although most aftershock activity dies away within months or a few years of a mainshock, there is evidence that aftershocks still occur decades or even centuries after mainshocks, particularly in areas of low background seismicity such as stable continental regions. There also is evidence of long-lasting aftershock sequences in California. New work to study the occurrences of recent M≥4 in California shows that these events occur preferentially at the edges of past major ruptures, with the effect lessening with decreasing magnitude below M4. Prior to several California mainshocks, the M≥4 seismicity was uniformly spread along the future fault ruptures without concentrations at the fault ends. On these faults, the rates of the M≥4 earthquakes prior to the mainshocks were much greater than the rates of the recent M≥4 earthquakes. These results suggest that the spatial patterns and rates of M≥4 earthquakes may help identify which faults are most prone to rupturing in the near future. Using this idea, speculation on which faults in California may be the next ones to experience major earthquakes is presented. Some Japanese earthquakes were also tested for the patterns of M≥4 earthquake seen in California. The 2000 Mw6.6 Western Tottori earthquake shows a premonitory pattern similar to the patterns seen in California, and there have not been any M≥4 earthquakes in the fault vicinity since 2010. The 1995 Mw6.9 Kobe earthquake had little M≥4 seismicity in the years prior to the mainshock, and the M≥4 seismicity since 2000 has been scattered along the fault rupture. Both the 2016 M7.3 Kumamoto, Kyushu earthquake and the 2016 Mw6.2 Central Tottori earthquake had some M≥4 earthquakes along the fault in the two decades before the mainshocks. The results of these analyses suggest that the locations of recent M≥4 earthquakes may be useful for determining the spatial extents of past earthquake ruptures and also may help indicate which faults may have strong

  15. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, Andrew V.; Hayes, Gavin P.; Wei, Yong; Convers, Jaime

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5–9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast.

  16. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and

  17. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  18. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  19. Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi

    2017-05-01

    The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.

  20. Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II

    NASA Astrophysics Data System (ADS)

    Smith, D.; Boese, M.; Heaton, T. H.

    2015-12-01

    Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.

  1. Rupture complexity and the supershear transition on rough faults

    NASA Astrophysics Data System (ADS)

    Bruhat, Lucile; Fang, Zijun; Dunham, Eric M.

    2016-01-01

    Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.

  2. Rupture directivity of moderate earthquakes in northern California

    USGS Publications Warehouse

    Seekins, Linda C.; Boatwright, John

    2010-01-01

    We invert peak ground velocity and acceleration (PGV and PGA) to estimate rupture direction and rupture velocity for 47 moderate earthquakes (3.5≥M≥5.4) in northern California. We correct sets of PGAs and PGVs recorded at stations less than 55–125 km, depending on source depth, for site amplification and source–receiver distance, then fit the residual peak motions to the unilateral directivity function of Ben-Menahem (1961). We independently invert PGA and PGV. The rupture direction can be determined using as few as seven peak motions if the station distribution is sufficient. The rupture velocity is unstable, however, if there are no takeoff angles within 30° of the rupture direction. Rupture velocities are generally subsonic (0.5β–0.9β); for stability, we limit the rupture velocity at v=0.92β, the Rayleigh wave speed. For 73 of 94 inversions, the rupture direction clearly identifies one of the nodal planes as the fault plane. The 35 strike-slip earthquakes have rupture directions that range from nearly horizontal (6 events) to directly updip (5 events); the other 24 rupture partly along strike and partly updip. Two strike-slip earthquakes rupture updip in one inversion and downdip in the other. All but 1 of the 11 thrust earthquakes rupture predominantly updip. We compare the rupture directions for 10 M≥4.0 earthquakes to the relative location of the mainshock and the first two weeks of aftershocks. Spatial distributions of 8 of 10 aftershock sequences agree well with the rupture directivity calculated for the mainshock.

  3. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

    NASA Astrophysics Data System (ADS)

    Yue, Han; Simons, Mark; Duputel, Zacharie; Jiang, Junle; Fielding, Eric; Liang, Cunren; Owen, Susan; Moore, Angelyn; Riel, Bryan; Ampuero, Jean Paul; Samsonov, Sergey V.

    2017-09-01

    On April 25th 2015, the Mw 7.8 Gorkha (Nepal) earthquake ruptured a portion of the Main Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03-0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture, while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquake may have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes.

  4. Character and Significance of Surface Rupture Near the Intersection of the Denali and Totschunda Faults, M7.9 Denali Fault Earthquake, Alaska, November 3, 2002

    NASA Astrophysics Data System (ADS)

    Wallace, W. K.; Sherrod, B. L.; Dawson, T. E.

    2002-12-01

    Preliminary observations suggest that right-lateral strike-slip on the Denali fault is transferred to the Totschunda fault via an extensional bend in the Little Tok River valley. Most of the surface rupture during the Denali fault earthquake was along an east- to east-southeast striking, gently curved segment of the Denali fault. However, in the Little Tok River valley, rupture transferred to the southeast-striking Totschunda fault and continued to the southeast for another 75 km. West of the Little Tok River valley, 5-7 m of right-lateral slip and up to 2 m of vertical offset occurred on the main strand of the Denali fault, but no apparent displacement occurred on the Denali fault east of the valley. Rupture west of the intersection also occurred on multiple discontinuous strands parallel to and south of the main strand of the Denali fault. In the Little Tok River valley, the northern part of the Totschunda fault system consists of multiple discontinuous southeast-striking strands that are connected locally by south-striking stepover faults. Faults of the northern Totschunda system display 0-2.5 m of right-lateral slip and 0-2.75 m of vertical offset, with the largest vertical offset on a dominantly extensional stepover fault. The strands of the Totschunda system converge southeastward to a single strand that had up to 2 m of slip. Complex and discontinuous faulting may reflect in part the immaturity of the northern Totschunda system, which is known to be younger and have much less total slip than the Denali. The Totschunda fault forms an extensional bend relative to the dominantly right-lateral Denali fault to the west. The fault geometry and displacements at the intersection suggest that slip on the Denali fault during the earthquake was accommodated largely by extension in the northern Totschunda fault system, allowing a significant decrease in strike-slip relative to the Denali fault. Strands to the southwest in the area of the bend may represent shortcut

  5. Intraslab rupture triggering megathrust rupture coseismically in the 17 December 2016 Solomon Islands Mw 7.9 earthquake

    NASA Astrophysics Data System (ADS)

    Lay, Thorne; Ye, Lingling; Ammon, Charles J.; Kanamori, Hiroo

    2017-02-01

    The 17 December 2016 Solomon Islands earthquake (Mw 7.9) initiated 103 km deep in the subducting Solomon Sea slab near the junction of the Solomon Islands and New Britain trenches. Most aftershocks are located near the Solomon Islands plate boundary megathrust west of Bougainville, where previous large interplate thrust faulting earthquakes occurred in 1995 (Mw 7.7) and 1971 (Mw 8.0). Teleseismic body wave modeling and aftershock relocations indicate that the initial 30 s of the 2016 rupture occurred over depths of 90 to 120 km on an intraslab fault dipping 30° to the southwest, almost perpendicular to the dipping slab interface. The next 50 s of rupture took place at depths of 32 to 47 km in the deeper (Domain C) portion of the overlying megathrust fault dipping 35° to the northeast. High susceptibility to triggering in the region accounts for this compound rupture of two separate fault planes.

  6. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, A.V.; Hayes, G.; Wei, Y.; Convers, J.

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5-9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast. Copyright 2011 by the American Geophysical Union.

  7. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    NASA Astrophysics Data System (ADS)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  8. Earthquake Clustering on the Bear River Fault—Influence of Preexisting Structure on the Rupture Behavior of a New Normal Fault

    NASA Astrophysics Data System (ADS)

    Hecker, S.; Schwartz, D. P.

    2017-12-01

    The Bear River normal fault is located on the eastern margin of basin and range extension in the Rocky Mountains of Utah and Wyoming. Interpretation of paleoseismic data from three sites supports the conclusion of an earlier study (West, 1993) that the fault, which appears to have reactivated a thrust ramp in the Sevier orogenic belt, first ruptured to the surface in the late Holocene. Our observations provide evidence and additional age control for two previously identified large earthquakes ( 4500 and 3000 yr B.P.) and for a newly recognized earthquake that occurred c. 200-300 yr B.P. (after development of a topsoil above a deposit with a date of A.D. 1630 and before the beginning of the historical period in 1850). These earthquakes, which were likely high-stress-drop events, cumulatively produced about 6-8 m of net vertical displacement on a zone 40 km long and up to 5 km wide. The complexity and evolution of rupture at the south end of the fault, mapped in detail using airborne lidar imagery, is strongly influenced by interaction with the Uinta arch, an east-west-trending (orthogonal) basement-cored uplift. The relatively rapid flurry of strain release and high slip rate ( 2 mm/yr), which make the Bear River fault one of the most active in the Basin and Range, occurred in a region of low crustal extension (geodetic velocity of <1 mm/yr relative to North America). We postulate that this behavior, which is a clear example of nonuniform strain release (Wallace, 1987), is a consequence of mechanical buttressing of the nascent Bear River fault against and below the strong Uinta arch. This may have implications for the earthquake behavior of other immature faults affected by structural or geometric impediments. In addition, the sudden initiation of faulting in an area of no prior late Cenozoic extension has implications for the size of background earthquakes (M>7) that should be considered for seismic hazard analysis.

  9. Rupture history of 2008 May 12 Mw 8.0 Wen-Chuan earthquake: Evidence of slip interaction

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.; Lu, Z.; Hudnut, K.; Jiu, J.; Hayes, G.; Zeng, Y.

    2008-12-01

    We will present the rupture process of the May 12, 2008 Mw 8.0 Wenchuan earthquake using all available data. The current model, using both teleseismic body and surface waves and interferometric LOS displacements, reveals an unprecedented complex rupture process which can not be resolved using either of the datasets individually. Rupture of this earthquake involved both the low angle Pengguan fault and the high angle Beichuan fault, which intersect each other at depth and are separated approximately 5-15 km at the surface. Rupture initiated on the Pengguan fault and triggered rupture on the Beichuan fault 10 sec later. The two faults dynamically interacted and unilaterally ruptured over 270 km with an average rupture velocity of 3.0 km/sec. The total seismic moment is 1.1x1021 Nm (Mw 8.0), roughly equally partitioned between the two faults. However, the spatiotemporal evaluations of the two faults are very different. This study will focus on the evidence for fault interactions and will analyze the corresponding uncertainties, in preparation for future dynamic studies of the same detailed nature.

  10. 3D Dynamic Rupture Simulations along the Wasatch Fault, Utah, Incorporating Rough-fault Topography

    NASA Astrophysics Data System (ADS)

    Withers, Kyle; Moschetti, Morgan

    2017-04-01

    Studies have found that the Wasatch Fault has experienced successive large magnitude (>Mw 7.2) earthquakes, with an average recurrence interval near 350 years. To date, no large magnitude event has been recorded along the fault, with the last rupture along the Salt Lake City segment occurring 1300 years ago. Because of this, as well as the lack of strong ground motion records in basins and from normal-faulting earthquakes worldwide, seismic hazard in the region is not well constrained. Previous numerical simulations have modeled deterministic ground motion in the heavily populated regions of Utah, near Salt Lake City, but were primarily restricted to low frequencies ( 1 Hz). Our goal is to better assess broadband ground motions from the Wasatch Fault Zone. Here, we extend deterministic ground motion prediction to higher frequencies ( 5 Hz) in this region by using physics-based spontaneous dynamic rupture simulations along a normal fault with characteristics derived from geologic observations. We use a summation by parts finite difference code (Waveqlab3D) with rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) and include off-fault plasticity to simulate ruptures > Mw 6.5. Geometric complexity along fault planes has previously been shown to generate broadband sources with spectral energy matching that of observations. We investigate the impact of varying the hypocenter location, as well as the influence that multiple realizations of rough-fault topography have on the rupture process and resulting ground motion. We utilize Waveqlab3's computational efficiency to model wave-propagation to a significant distance from the fault with media heterogeneity at both long and short spatial wavelengths. These simulations generate a synthetic dataset of ground motions to compare with GMPEs, in terms of both the median and inter and intraevent variability.

  11. Multiple geophysical observations indicate possible splay fault activation during the 2006 Java Tsunami earthquake

    NASA Astrophysics Data System (ADS)

    Fan, W.; Bassett, D.; Denolle, M.; Shearer, P. M.; Ji, C.; Jiang, J.

    2017-12-01

    The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted 65 s with a rupture speed of 1.2 km/s, while the second stage lasted from 65 to 150 s with a rupture speed of 2.7 km/s. In addition, P-wave high-frequency radiated energy and fall-off rates indicate a rupture transition at 60 s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also collocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.

  12. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large

  13. Paleoseismologic evidence for large-magnitude (Mw 7.5-8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California

    USGS Publications Warehouse

    McAuliffe, Lee J.; Dolan, James F.; Rhodes, Edward J.; Hubbard, Judith; Shaw, John H.; Pratt, Thomas L.

    2015-01-01

    Detailed analysis of continuously cored boreholes and cone penetrometer tests (CPTs), high-resolution seismic-reflection data, and luminescence and 14C dates from Holocene strata folded above the tip of the Ventura blind thrust fault constrain the ages and displacements of the two (or more) most recent earthquakes. These two earthquakes, which are identified by a prominent surface fold scarp and a stratigraphic sequence that thickens across an older buried fold scarp, occurred before the 235-yr-long historic era and after 805 ± 75 yr ago (most recent folding event[s]) and between 4065 and 4665 yr ago (previous folding event[s]). Minimum uplift in these two scarp-forming events was ∼6 m for the most recent earthquake(s) and ∼5.2 m for the previous event(s). Large uplifts such as these typically occur in large-magnitude earthquakes in the range of Mw7.5–8.0. Any such events along the Ventura fault would likely involve rupture of other Transverse Ranges faults to the east and west and/or rupture downward onto the deep, low-angle décollements that underlie these faults. The proximity of this large reverse-fault system to major population centers, including the greater Los Angeles region, and the potential for tsunami generation during ruptures extending offshore along the western parts of the system highlight the importance of understanding the complex behavior of these faults for probabilistic seismic hazard assessment.

  14. Complementary Ruptures of Surface Ruptures and Deep Asperity during the 2014 Northern Nagano, Japan, Earthquake (MW 6.3)

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.; Kubo, H.

    2015-12-01

    A thrust earthquake of MW 6.3 occurred along the northern part of the Itoigawa-Shizuoka Tectonic Line (ISTL) in the northern Nagano prefecture, central Japan, on November 22, 2014. This event was reported to be related to an active fault, the Kamishiro fault belonging to the ISTL (e.g., HERP, 2014). The surface rupture is observed along the Kamishiro fault (e.g., Lin et al., 2015; Okada et al., 2015). We estimated the kinematic source rupture process of this earthquake through the multiple time-window linear waveform inversion method (Hartzell and Heaton, 1983). We used velocity waveforms in 0.05-1 Hz from 12 strong motion stations of K-NET, KiK-net (NIED), JMA, and Nagano prefecture (SK-net, ERI). In order to enhance the reliability in Green's functions, we assumed one-dimensional velocity structure models different for the different stations, which were extracted from the nation-wide three-dimensional velocity structure model, Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012). Considering the spatial distribution of aftershocks (Sakai et al., 2015) and surface ruptures, the assumed fault model consisted of two dip-bending fault segments with different dip angles between the northern and southern segments. The total length and width of the fault plane is 20 km and 13 km, relatively, and the fault model is divided into 260 subfaults of 1 km × 1 km in space and six smoothed ramp functions in time. An asperity or large slip area with a peak slip of 1.9 m was estimated in the lower plane of the northern segment in the approximate depth range of 4 to 8 km. The depth extent of this asperity is consistent with the seismogenic zone revealed by past studies (e.g., Panayotopoulos et al., 2014). In contrast, the slip in the southern segment is relatively concentrated in the shallow portion of the segment where the surface ruptures were found along the Kamishiro fault. The overall spatial rupture pattern of the source fault, in which the deep asperity

  15. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    USGS Publications Warehouse

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  16. Long Return Periods for Earthquakes in San Gorgonio Pass and Implications for Large Ruptures of the San Andreas Fault in Southern California

    NASA Astrophysics Data System (ADS)

    Yule, J.; McBurnett, P.; Ramzan, S.

    2011-12-01

    The largest discontinuity in the surface trace of the San Andreas fault occurs in southern California at San Gorgonio Pass. Here, San Andreas motion moves through a 20 km-wide compressive stepover on the dextral-oblique-slip thrust system known as the San Gorgonio Pass fault zone. This thrust-dominated system is thought to rupture during very large San Andreas events that also involve strike-slip fault segments north and south of the Pass region. A wealth of paleoseismic data document that the San Andreas fault segments on either side of the Pass, in the San Bernardino/Mojave Desert and Coachella Valley regions, rupture on average every ~100 yrs and ~200 yrs, respectively. In contrast, we report here a notably longer return period for ruptures of the San Gorgonio Pass fault zone. For example, features exposed in trenches at the Cabezon site reveal that the most recent earthquake occurred 600-700 yrs ago (this and other ages reported here are constrained by C-14 calibrated ages from charcoal). The rupture at Cabezon broke a 10 m-wide zone of east-west striking thrusts and produced a >2 m-high scarp. Slip during this event is estimated to be >4.5 m. Evidence for a penultimate event was not uncovered but presumably lies beneath ~1000 yr-old strata at the base of the trenches. In Millard Canyon, 5 km to the west of Cabezon, the San Gorgonio Pass fault zone splits into two splays. The northern splay is expressed by 2.5 ± 0.7 m and 5.0 ± 0.7 m scarps in alluvial terraces constrained to be ~1300 and ~2500 yrs old, respectively. The scarp on the younger, low terrace postdates terrace abandonment ~1300 yrs ago and probably correlates with the 600-700 yr-old event at Cabezon, though we cannot rule out that a different event produced the northern Millard scarp. Trenches excavated in the low terrace reveal growth folding and secondary faulting and clear evidence for a penultimate event ~1350-1450 yrs ago, during alluvial deposition prior to the abandonment of the low terrace

  17. Detailed Surface Rupture Geometry from the 2016 Amatrice Earthquake

    NASA Astrophysics Data System (ADS)

    Mildon, Z. K.; Iezzi, F.; Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M. W.; Faure Walker, J.; Roberts, G.; Livio, F.; Vittori, E.; Michetti, A.; Frigerio, C.; Ferrario, F.; Blumetti, A. M.; Guerrieri, L.; Di Manna, P.; Comerci, V.

    2016-12-01

    The Amatrice earthquake was generated by co-rupture of the Mt. Vettore and Laga faults at depth. Surface ruptures were observed for 5km along the Mt. Vettore fault, with no clear observations on the Laga fault reported to date. The surface rupture on Mt. Vettore manifests as a 15-20cm pale stripe at the base of a 60-80o dipping bedrock fault scarp and similar magnitude vertical offsets of colluvial deposits. We have measured the strike and dip of the fault alongside the coseismic throw, heave, and slip azimuth along the length of the rupture with high spatial resolution (c.2-6m, >2000 measurements). The slip azimuth is relatively constant between 210-270° even where the rupture faces uphill at its SE termination which is consistent with the regional NW-SE extension direction, defined by focal mechanisms and borehole break-out data. The simplest coseismic throw profile that would be expected is quasi-symmetric. However we found the highest values of throw (Inter Quartile Range 15-19.5cm) are skewed towards the NW end on a 1.7 km section of the fault that is oblique relative to the overall fault strike. In the centre of the rupture, orientated close to the overall fault strike, the throw is lower (IQR 7.5-13cm) and discontinuous along strike. We suggest that the skewed throw profile occurs because the strike, dip and throw must vary systematically in order to preserve the principal strain rate across a fault, in agreement with previous publications. The density of our measurements, crucially including the slip azimuth, allows us to resolve the regional debate over whether normal fault ruptures are primary tectonic features or landslides of hangingwall sediments. If the surface offsets are due to landslides, then the slip azimuth should correlate with the downslope direction of the hangingwall. We show using an available 10m DEM that this is not the case and hence the surface offsets described herein are a primary tectonic feature. This presentation offers new

  18. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China

    NASA Astrophysics Data System (ADS)

    Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli

    2018-06-01

    There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.

  19. Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.

    2017-12-01

    Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new

  20. Source Parameters and Rupture Directivities of Earthquakes Within the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Allen, A. A.; Chen, X.

    2017-12-01

    The Mendocino Triple Junction (MTJ), a region in the Cascadia subduction zone, produces a sizable amount of earthquakes each year. Direct observations of the rupture properties are difficult to achieve due to the small magnitudes of most of these earthquakes and lack of offshore observations. The Cascadia Initiative (CI) project provides opportunities to look at the earthquakes in detail. Here we look at the transform plate boundary fault located in the MTJ, and measure source parameters of Mw≥4 earthquakes from both time-domain deconvolution and spectral analysis using empirical Green's function (EGF) method. The second-moment method is used to infer rupture length, width, and rupture velocity from apparent source duration measured at different stations. Brune's source model is used to infer corner frequency and spectral complexity for stacked spectral ratio. EGFs are selected based on their location relative to the mainshock, as well as the magnitude difference compared to the mainshock. For the transform fault, we first look at the largest earthquake recorded during the Year 4 CI array, a Mw5.72 event that occurred in January of 2015, and select two EGFs, a Mw1.75 and a Mw1.73 located within 5 km of the mainshock. This earthquake is characterized with at least two sub-events, with total duration of about 0.3 second and rupture length of about 2.78 km. The earthquake is rupturing towards west along the transform fault, and both source durations and corner frequencies show strong azimuthal variations, with anti-correlation between duration and corner frequency. The stacked spectral ratio from multiple stations with the Mw1.73 EGF event shows deviation from pure Brune's source model following the definition from Uchide and Imanishi [2016], likely due to near-field recordings with rupture complexity. We will further analyze this earthquake using more EGF events to test the reliability and stability of the results, and further analyze three other Mw≥4 earthquakes

  1. Rupture dynamics along dipping thrust faults: free surface interaction and the case of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre

    2017-04-01

    To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep

  2. Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Gorum, Tolga; van Westen, Cees J.; Korup, Oliver; van der Meijde, Mark; Fan, Xuanmei; van der Meer, Freek D.

    2013-02-01

    The 12 January 2010 Mw 7.0 Haiti earthquake occurred in a complex deformation zone at the boundary between the North American and Caribbean plates. Combined geodetic, geological and seismological data posited that surface deformation was driven by rupture on the Léogâne blind thrust fault, while part of the rupture occurred as deep lateral slip on the Enriquillo-Plantain Garden Fault (EPGF). The earthquake triggered > 4490 landslides, mainly shallow, disrupted rock falls, debris-soil falls and slides, and a few lateral spreads, over an area of ~ 2150 km2. The regional distribution of these slope failures defies those of most similar earthquake-triggered landslide episodes reported previously. Most of the coseismic landslides did not proliferate in the hanging wall of the main rupture, but clustered instead at the junction of the blind Léogâne and EPGF ruptures, where topographic relief and hillslope steepness are above average. Also, low-relief areas subjected to high coseismic uplift were prone to lesser hanging wall slope instability than previous studies would suggest. We argue that a combined effect of complex rupture dynamics and topography primarily control this previously rarely documented landslide pattern. Compared to recent thrust fault-earthquakes of similar magnitudes elsewhere, we conclude that lower static stress drop, mean fault displacement, and blind ruptures of the 2010 Haiti earthquake resulted in fewer, smaller, and more symmetrically distributed landslides than previous studies would suggest. Our findings caution against overly relying on across-the-board models of slope stability response to seismic ground shaking.

  3. Slip-pulse rupture behavior on a 2 meter granite fault

    USGS Publications Warehouse

    McLaskey, Gregory C.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe observations of dynamic rupture events that spontaneously arise on meter-scale laboratory earthquake experiments. While low-frequency slip of the granite sample occurs in a relatively uniform and crack-like manner, instruments capable of detecting high frequency motions show that some parts of the fault slip abruptly (velocity >100 mm∙s-1, acceleration >20 km∙s-2) while the majority of the fault slips more slowly. Abruptly slipping regions propagate along the fault at nearly the shear wave speed. We propose that the dramatic reduction in frictional strength implied by this pulse-like rupture behavior has a common mechanism to the weakening reported in high velocity friction experiments performed on rotary machines. The slip pulses can also be identified as migrating sources of high frequency seismic waves. As observations from large earthquakes show similar propagating high frequency sources, the pulses described here may have relevance to the mechanics of larger earthquakes.

  4. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrún; Clark, Kate; Elliott, John; Liang, Cunren; Fielding, Eric; Litchfield, Nicola; Villamor, Pilar; Wallace, Laura; Wright, Tim J; D'Anastasio, Elisabetta; Bannister, Stephen; Burbidge, David; Denys, Paul; Gentle, Paula; Howarth, Jamie; Mueller, Christof; Palmer, Neville; Pearson, Chris; Power, William; Barnes, Philip; Barrell, David J A; Van Dissen, Russ; Langridge, Robert; Little, Tim; Nicol, Andrew; Pettinga, Jarg; Rowland, Julie; Stirling, Mark

    2017-04-14

    On 14 November 2016, northeastern South Island of New Zealand was struck by a major moment magnitude ( M w ) 7.8 earthquake. Field observations, in conjunction with interferometric synthetic aperture radar, Global Positioning System, and seismology data, reveal this to be one of the most complex earthquakes ever recorded. The rupture propagated northward for more than 170 kilometers along both mapped and unmapped faults before continuing offshore at the island's northeastern extent. Geodetic and field observations reveal surface ruptures along at least 12 major faults, including possible slip along the southern Hikurangi subduction interface; extensive uplift along much of the coastline; and widespread anelastic deformation, including the ~8-meter uplift of a fault-bounded block. This complex earthquake defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and should motivate reevaluation of these issues in seismic hazard models. Copyright © 2017, American Association for the Advancement of Science.

  5. Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964

    USGS Publications Warehouse

    Bufe, C.G.

    2004-01-01

    Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise

  6. Fluid-rock interaction during a large earthquake recorded in fault gouge: A case study of the Nojima fault, Japan

    NASA Astrophysics Data System (ADS)

    Bian, D.; Lin, A.

    2016-12-01

    Distinguishing the seismic ruptures during the earthquake from a lot of fractures in borehole core is very important to understand rupture processes and seismic efficiency. In particular, a great earthquake like the 1995 Mw 7.2 Kobe earthquake, but again, evidence has been limited to the grain size analysis and the color of fault gouge. In the past two decades, increasing geological evidence has emerged that seismic faults and shear zones within the middle to upper crust play a crucial role in controlling the architectures of crustal fluid migration. Rock-fluid interactions along seismogenic faults give us a chance to find the seismic ruptures from the same event. Recently, a new project of "Drilling into Fault Damage Zone" has being conducted by Kyoto University on the Nojima Fault again after 20 years of the 1995 Kobe earthquake for an integrated multidisciplinary study on the assessment of activity of active faults involving active tectonics, geochemistry and geochronology of active fault zones. In this work, we report on the signature of slip plane inside the Nojima Fault associated with individual earthquakes on the basis of trace element and isotope analyses. Trace element concentrations and 87Sr/86Sr ratios of fault gouge and host rocks were determined by an inductively coupled plasma mass spectrometer (ICP-MS) and thermal ionization mass spectrometry (TIMS). Samples were collected from two trenches and an outcrop of Nojima Fault which. Based on the geochemical result, we interpret these geochemical results in terms of fluid-rock interactions recorded in fault friction during earthquake. The trace-element enrichment pattern of the slip plane can be explained by fluid-rock interactions at high temperature. It also can help us find the main coseismic fault slipping plane inside the thick fault gouge zone.

  7. The temporal distribution of seismic radiation during deep earthquake rupture

    USGS Publications Warehouse

    Houston, H.; Vidale, J.E.

    1994-01-01

    The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.

  8. Source rupture process of the 2016 Kaikoura, New Zealand earthquake estimated from the kinematic waveform inversion of strong-motion data

    NASA Astrophysics Data System (ADS)

    Zheng, Ao; Wang, Mingfeng; Yu, Xiangwei; Zhang, Wenbo

    2018-03-01

    On 2016 November 13, an Mw 7.8 earthquake occurred in the northeast of the South Island of New Zealand near Kaikoura. The earthquake caused severe damages and great impacts on local nature and society. Referring to the tectonic environment and defined active faults, the field investigation and geodetic evidence reveal that at least 12 fault sections ruptured in the earthquake, and the focal mechanism is one of the most complicated in historical earthquakes. On account of the complexity of the source rupture, we propose a multisegment fault model based on the distribution of surface ruptures and active tectonics. We derive the source rupture process of the earthquake using the kinematic waveform inversion method with the multisegment fault model from strong-motion data of 21 stations (0.05-0.35 Hz). The inversion result suggests the rupture initiates in the epicentral area near the Humps fault, and then propagates northeastward along several faults, until the offshore Needles fault. The Mw 7.8 event is a mixture of right-lateral strike and reverse slip, and the maximum slip is approximately 19 m. The synthetic waveforms reproduce the characteristics of the observed ones well. In addition, we synthesize the coseismic offsets distribution of the ruptured region from the slips of upper subfaults in the fault model, which is roughly consistent with the surface breaks observed in the field survey.

  9. It's Our Fault: better defining earthquake risk in Wellington, New Zealand

    NASA Astrophysics Data System (ADS)

    Van Dissen, R.; Brackley, H. L.; Francois-Holden, C.

    2012-12-01

    The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. In its short historic period (ca. 160 years), the region has been impacted by large earthquakes on the strike-slip faults, but has yet to bear the brunt of a subduction interface rupture directly beneath the capital city. It's Our Fault is a comprehensive study of Wellington's earthquake risk. Its objective is to position the capital city of New Zealand to become more resilient through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. It's Our Fault is jointly funded by New Zealand's Earthquake Commission, Accident Compensation Corporation, Wellington City Council, Wellington Region Emergency Management Group, Greater Wellington Regional Council, and Natural Hazards Research Platform. The programme has been running for six years, and key results to date include better definition and constraints on: 1) location, size, timing, and likelihood of large earthquakes on the active faults closest to Wellington; 2) earthquake size and ground shaking characterization of a representative suite of subduction interface rupture scenarios under Wellington; 3) stress interactions between these faults; 4) geological, geotechnical, and geophysical parameterisation of the near-surface sediments and basin geometry in Wellington City and the Hutt Valley; and 5) characterisation of earthquake ground shaking behaviour in these two urban areas in terms of subsoil classes specified in the NZ Structural Design Standard. The above investigations are already supporting measures aimed at risk reduction, and collectively they will facilitate identification of additional actions that will have the greatest benefit towards further

  10. Magnitude and Surface Rupture Length of Prehistoric Upper Crustal Earthquakes in the Puget Lowland, Washington State

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Styron, R. H.

    2016-12-01

    Paleoseismic studies documented prehistoric earthquakes after the last glaciation ended 15 ka on 13 upper-crustal fault zones in the Cascadia fore arc. These fault zones are a consequence of north-directed fore arc block migration manifesting as a series of bedrock uplifts and intervening structural basins in the southern Salish Sea lowland between Vancouver, B.C. to the north and Olympia, WA to the south, and bounded on the east and west by the Cascade Mountains and Olympic Mountains, respectively. Our dataset uses published information and includes 27 earthquakes tabulated from observations of postglacial deformation at 63 sites. Stratigraphic offsets along faults consist of two types of measurements: 1) vertical separation of strata along faults observed in fault scarp excavations, and 2) estimates from coastal uplift and subsidence. We used probabilistic methods to estimate past rupture magnitudes and surface rupture length (SRL), applying empirical observations from modern earthquakes and point measurements from paleoseismic sites (Biasi and Weldon, 2006). Estimates of paleoearthquake magnitude ranged between M 6.5 and M 7.5. SRL estimates varied between 20 and 90 km. Paleoearthquakes on the Seattle fault zone and Saddle Mountain West fault about 1100 years ago were outliers in our analysis. Large offsets observed for these two earthquakes implies a M 7.8 and 200 km SRL, given the average observed ratio of slip/SRL in modern earthquakes. The actual mapped traces of these faults are less than 200km, implying these earthquakes had an unusually high static stress drop or, in the case of the Seattle fault, splay faults may have accentuated uplift in the hanging wall. Refined calculations incorporating fault area may change these magnitude and SRL estimates. Biasi, G.P., and Weldon, R.J., 2006, Estimating Surface Rupture Length and Magnitude of Paleoearthquakes from Point Measurements of Rupture Displacement: B. Seismol. Soc. Am., 96, 1612-1623.

  11. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  12. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    NASA Astrophysics Data System (ADS)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali

  13. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    NASA Astrophysics Data System (ADS)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  14. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  15. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    USGS Publications Warehouse

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  16. Co-seismic Static Stress Drops for Earthquake Ruptures Nucleated on Faults After Progressive Strain Localization

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Nielsen, S.; di Toro, G.; Pollard, D. D.; Pennacchioni, G.

    2007-12-01

    static stress drop is calculated for a circular fault using the length of the mapped faults and their slip distributions as well as the shear modulus of the host granodiorite measured in the laboratory. Calculations yield stress drops on the order of 100-200 MPa, one to two orders of magnitude larger than typical seismological estimates. The studied seismic ruptures occurred along small, deep-seated faults (10 km depth), and, given the fault mineral filling (quartz-bearing mylonites) these were "strong" faults. Our estimates are consistent with static stress drops estimated by Nadeau and Johnson (1998) for small repeated earthquakes.

  17. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Bhat, Harsha S.

    2018-05-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  18. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, M. Y.; Bhat, H. S.

    2017-12-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  19. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath

    2016-06-01

    The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.

  20. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    NASA Astrophysics Data System (ADS)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  1. Global variations of large megathrust earthquake rupture characteristics

    PubMed Central

    Kanamori, Hiroo

    2018-01-01

    Despite the surge of great earthquakes along subduction zones over the last decade and advances in observations and analysis techniques, it remains unclear whether earthquake complexity is primarily controlled by persistent fault properties or by dynamics of the failure process. We introduce the radiated energy enhancement factor (REEF), given by the ratio of an event’s directly measured radiated energy to the calculated minimum radiated energy for a source with the same seismic moment and duration, to quantify the rupture complexity. The REEF measurements for 119 large [moment magnitude (Mw) 7.0 to 9.2] megathrust earthquakes distributed globally show marked systematic regional patterns, suggesting that the rupture complexity is strongly influenced by persistent geological factors. We characterize this as the existence of smooth and rough rupture patches with varying interpatch separation, along with failure dynamics producing triggering interactions that augment the regional influences on large events. We present an improved asperity scenario incorporating both effects and categorize global subduction zones and great earthquakes based on their REEF values and slip patterns. Giant earthquakes rupturing over several hundred kilometers can occur in regions with low-REEF patches and small interpatch spacing, such as for the 1960 Chile, 1964 Alaska, and 2011 Tohoku earthquakes, or in regions with high-REEF patches and large interpatch spacing as in the case for the 2004 Sumatra and 1906 Ecuador-Colombia earthquakes. Thus, combining seismic magnitude Mw and REEF, we provide a quantitative framework to better represent the span of rupture characteristics of great earthquakes and to understand global seismicity. PMID:29750186

  2. Holocene surface ruptures of the Rurrand Fault, Germany—insights from palaeoseismology, remote sensing and shallow geophysics

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Fischer, Peter; Reicherter, Klaus

    2016-03-01

    The Lower Rhine Embayment in Central Europe hosts a rift system that has very low deformation rates. The faults in this area have slip rates of less than 0.1 mm yr-1, which does not allow to investigate ongoing tectonic deformation with geodetic techniques, unless they cover very long time spans. Instrumental seismicity does only cover a small fraction of the very long earthquake recurrence intervals of several thousands of years. Palaeoseismological studies are needed to constrain slip rates and the earthquake history of such faults. Destructive earthquakes are rare in the study area, but did occur in historic times. In 1755/1756, a series of strong earthquakes caused significant destruction in the city of Düren (Germany) and the surrounding areas. In this study we document palaeoseismological data from the nearby Rurrand Fault. In contrast to earlier studies on the same fault, we found evidence for a surface rupturing earthquake in the Holocene, and we identified at least one more surface rupturing event. Our study shows that the Rurrand Fault currently accommodates deformation in earthquakes rather than by creeping. The coseismic offsets were determined to be between less than 0.5 m per event. We assign maximum possible magnitudes of Mw 5.9-6.8 for the Rurrand Fault and a slip rate of at least 0.02-0.03 mm yr-1 for the last ˜130-50 kyr. The surface ruptures did not occur at the main fault trace that has a clear morphological expression due to older tectonic motions, but on a younger fault strand in the hanging wall of the main fault. Terrain analyses based on 1 m resolution airborne LiDAR data have been used to image the subtle morphological expression of this young fault zone. Georadar and electric resistivity tomography were applied to image the fault zone at depth and to test if these shallow geophysical methods can be used to identify and trace the fault zone. Georadar failed to produce reliable results, but geoelectrics were successfully applied and

  3. The origin of high frequency radiation in earthquakes and the geometry of faulting

    NASA Astrophysics Data System (ADS)

    Madariaga, R.

    2004-12-01

    In a seminal paper of 1967 Kei Aki discovered the scaling law of earthquake spectra and showed that, among other things, the high frequency decay was of type omega-squared. This implies that high frequency displacement amplitudes are proportional to a characteristic length of the fault, and radiated energy scales with the cube of the fault dimension, just like seismic moment. Later in the seventies, it was found out that a simple explanation for this frequency dependence of spectra was that high frequencies were generated by stopping phases, waves emitted by changes in speed of the rupture front as it propagates along the fault, but this did not explain the scaling of high frequency waves with fault length. Earthquake energy balance is such that, ignoring attenuation, radiated energy is the change in strain energy minus energy released for overcoming friction. Until recently the latter was considered to be a material property that did not scale with fault size. Yet, in another classical paper Aki and Das estimated in the late 70s that energy release rate also scaled with earthquake size, because earthquakes were often stopped by barriers or changed rupture speed at them. This observation was independently confirmed in the late 90s by Ide and Takeo and Olsen et al who found that energy release rates for Kobe and Landers were in the order of a MJ/m2, implying that Gc necessarily scales with earthquake size, because if this was a material property, small earthquakes would never occur. Using both simple analytical and numerical models developed by Addia-Bedia and Aochi and Madariaga, we examine the consequence of these observations for the scaling of high frequency waves with fault size. We demonstrate using some classical results by Kostrov, Husseiny and Freund that high frequency energy flow measures energy release rate and is generated when ruptures change velocity (both direction and speed) at fault kinks or jogs. Our results explain why super shear ruptures are

  4. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie

    2018-05-01

    The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m ( M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.

  5. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie

    2018-02-01

    The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m (M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.

  6. Dynamic rupture modeling of thrust faults with parallel surface traces.

    NASA Astrophysics Data System (ADS)

    Peshette, P.; Lozos, J.; Yule, D.

    2017-12-01

    Fold and thrust belts (such as those found in the Himalaya or California Transverse Ranges) consist of many neighboring thrust faults in a variety of geometries. Active thrusts within these belts individually contribute to regional seismic hazard, but further investigation is needed regarding the possibility of multi-fault rupture in a single event. Past analyses of historic thrust surface traces suggest that rupture within a single event can jump up to 12 km. There is also observational precedent for long distance triggering between subparallel thrusts (e.g. the 1997 Harnai, Pakistan events, separated by 50 km). However, previous modeling studies find a maximum jumping rupture distance between thrust faults of merely 200 m. Here, we present a new dynamic rupture modeling parameter study that attempts to reconcile these differences and determine which geometrical and stress conditions promote jumping rupture. We use a community verified 3D finite element method to model rupture on pairs of thrust faults with parallel surface traces. We vary stress drop and fault strength to determine which conditions produce jumping rupture at different dip angles and different separations between surface traces. This parameter study may help to understand the likelihood of jumping rupture in real-world thrust systems, and may thereby improve earthquake hazard assessment.

  7. Paleo-earthquake Analysis from the Morphologic Features of Unconsolidated-sediment Fault Scarp: An Example from Dushanzi Thrust Fault in the Northern Tianshan, China

    NASA Astrophysics Data System (ADS)

    Wei, Z.; He, H.

    2016-12-01

    Fault scarp is important specific tectonic landform caused by surface-rupture earthquake. The morphology of the fault scarp in unconsolidated sediment could evolve in a predictable, time-dependent diffusion model. As a result, the investigation of fault-generated fault scarps is a prevalent technique used to study fault activity, geomorphic evolution, and the recurrence of faulting events. Addition to obtainment of cumulative displacement, gradient changes, i.e. slope breaks, in the morphology of fault scarps could indicate multiple rupture events along an active fault. In this study, we exacted a large set of densely spaced topographic profiles across fault scarp from LiDAR-derive DEM to detect subtle changes in the fault scarp geometry at the Dushanzi trust fault in the Northern Tianshan, China. Several slope breaks in topographic profiles can be identified, which may represent repeated rupture at the investigated fault. The number of paleo-earthquakes derived from our analysis is 4-3, well in agreement with the investigation results from the paleoseismological trenches. Statistical analysis results show that the scarp height of fault scarp with one slope break is 0.75±0.12 (mean value ±1 standard deviation) m representing the last incremental displacement during earthquakes; the height of fault scarp with two slope breaks is 1.86±0.32 m, and the height of fault scarp with three-four slope break is 6.45±1.44 m. Our approach enables us to obtain paleo-earthquake information from geomorphological analysis of fault scarps, and to assess the multiple rupture history of a complex fault system.

  8. Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults

    NASA Astrophysics Data System (ADS)

    Goto, Hideaki; Tsutsumi, Hiroyuki; Toda, Shinji; Kumahara, Yasuhiro

    2017-02-01

    The 30-km-long surface ruptures associated with the M w 7.0 ( M j 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped 100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Authority of Japan (GSI) indicated coseismic surface deformation in and around the downtown of Kumamoto City, the surface ruptures have not been clearly mapped in the central part of the Kumamoto Plain, and whether there are other active faults other than the Futagawa fault in the Kumamoto Plain remained unclear. We produced topographical stereo images (anaglyph) from 5-m-mesh digital elevation model of GSI, which was generated from light detection and ranging data. We interpreted them and identified that several SW-sloping river terraces formed after the deposition of the pyroclastic flow deposits related to the latest large eruption of the Aso caldera (86.8-87.3 ka) are cut and deformed by several NW-trending flexure scarps down to the southwest. These 5.4-km-long scarps that cut across downtown Kumamoto were identified for the first time, and we name them as the Suizenji fault zone. Surface deformation such as continuous cracks, tilts, and monoclinal folding associated with the main shock of the 2016 Kumamoto earthquake was observed in the field along the fault zone. The amount of vertical deformation ( 0.1 m) along this fault associated with the 2016 Kumamoto earthquake was quite small compared to the empirically calculated coseismic slip (0.5 m) based on the fault length. We thus suggest that the slip on this fault zone was triggered by the Kumamoto earthquake, but the fault zone has potential to generate an earthquake with larger slip that poses a high seismic risk in downtown Kumamoto area.[Figure not available: see fulltext.

  9. Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.

    2018-04-01

    Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.

  10. Mathematical modeling and numerical simulation of unilateral dynamic rupture propagation along very-long reverse faults

    NASA Astrophysics Data System (ADS)

    Hirano, S.

    2017-12-01

    For some great earthquakes, dynamic rupture propagates unilaterally along a horizontal direction of very-long reverse faults (e.g., the Mw9.1 Sumatra earthquake in 2004, the Mw8.0 Wenchuan earthquake in 2008, and the Mw8.8 Maule earthquake in 2010, etc.). It seems that barriers or creeping sections may not lay along the opposite region of the co-seismically ruptured direction. In fact, in the case of Sumatra, the Mw8.6 earthquake occurred in the opposite region only three months after the mainshock. Mechanism of unilateral mode-II rupture along a material interface has been investigated theoretically and numerically. For mode-II rupture propagating along a material interface, an analytical solution implies that co-seismic stress perturbation depends on the rupture direction (Weertman, 1980 JGR; Hirano & Yamashita, 2016 BSSA), and numerical modeling of plastic yielding contributes to simulating the unilateral rupture (DeDonteny et al., 2011 JGR). However, mode-III rupture may dominate for the very-long reverse faults, and it can be shown that stress perturbation due to mode-III rupture does not depend on the rupture direction. Hence, an effect of the material interface is insufficient to understand the mechanism of unilateral rupture along the very-long reverse faults. In this study, I consider a two-dimensional bimaterial system with interfacial dynamic mode-III rupture under an obliquely pre-stressed configuration (i.e., the maximum shear direction of the background stress is inclined from the interfacial fault). First, I derived an analytical solution of regularized elastic stress field around a steady-state interfacial slip pulse using the method of Rice et al. (2005 BSSA). Then I found that the total stress, which is the sum of the background stress and co-seismic stress perturbation, depends on the rupture direction even in the mode-III case. Second, I executed a finite difference numerical simulation with a plastic yielding model of Andrews (1978 JGR; 2005

  11. Off-fault ground ruptures in the Santa Cruz Mountains, California: Ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Ponti, Daniel J.; Wells, Ray E.

    1991-01-01

    The Ms 7.1 Loma Prieta earthquake of 18 October 1989 produced abundant ground ruptures in an 8 by 4 km area along Summit Road and Skyland Ridge in the Santa Cruz Mountains. Predominantly extensional fissures formed a left-stepping, crudely en echelon pattern along ridges of the hanging-wall block southwest of the San Andreas fault, about 12 km northwest of the epicenter. The fissures are subparallel to the San Andreas fault and appear to be controlled by bedding planes, faults, joints, and other weak zones in the underlying Tertiary sedimentary strata of the hanging-wall block. The pattern of extensional fissures is generally consistent with tectonic extension across the crest of the uplifted hanging-wall block. Also, many displacements in Laurel Creek canyon and along the San Andreas and Sargent faults are consistent with right-lateral reverse faulting inferred for the mainshock. Additional small tensile failures along the axis of the Laurel anticline may reflect growth of the fold during deep-seated compression. However, the larger ridge-top fissures commonly have displacements that are parallel to the north-northeast regional slope directions and appear inconsistent with east-northeast extension expected from this earthquake. Measured cumulative displacements across the ridge crests are at least 35 times larger than that predicted by the geodetically determined surface deformation. These fissures also occur in association with ubiquitous landslide complexes that were reactivated by the earthquake to produce the largest concentration of co-seismic slope failures in the epicentral region. The anomalously large displacements and the apparent slope control of the geometry and displacement of many co-seismic surface ruptures lead us to conclude that gravity is an important driving force in the formation of the ridge-top fissures. Shaking-induced gravitational spreading of ridges and downslope movement may account for 90¿ or more of the observed displacements on

  12. Coulomb stress transfer and tectonic loading preceding the 2002 Denali fault earthquake

    USGS Publications Warehouse

    Bufe, Charles G.

    2006-01-01

    Pre-2002 tectonic loading and Coulomb stress transfer are modeled along the rupture zone of the M 7.9 Denali fault earthquake (DFE) and on adjacent segments of the right-lateral Denali–Totschunda fault system in central Alaska, using a three-dimensional boundary-element program. The segments modeled closely follow, for about 95°, the arc of a circle of radius 375 km centered on an inferred asperity near the northeastern end of the intersection of the Patton Bay fault with the Alaskan megathrust under Prince William Sound. The loading model includes slip of 6 mm/yr below 12 km along the fault system, consistent with rotation of the Wrangell block about the asperity at a rate of about 1°/m.y. as well as slip of the Pacific plate at 5 cm/yr at depth along the Fairweather–Queen Charlotte transform fault system and on the Alaska megathrust. The model is consistent with most available pre-2002 Global Positioning System (GPS) displacement rate data. Coulomb stresses induced on the Denali–Totschunda fault system (locked above 12 km) by slip at depth and by transfer from the M 9.2 Prince William Sound earthquake of 1964 dominated the changing Coulomb stress distribution along the fault. The combination of loading (∼70–85%) and coseismic stress transfer from the great 1964 earthquake (∼15–30%) were the principal post-1900 stress factors building toward strike-slip failure of the northern Denali and Totschunda segments in the M 7.9 earthquake of November 2002. Postseismic stresses transferred from the 1964 earthquake may also have been a significant factor. The M 7.2–7.4 Delta River earthquake of 1912 (Carver et al., 2004) may have delayed or advanced the timing of the DFE, depending on the details and location of its rupture. The initial subevent of the 2002 DFE earthquake was on the 40-km Susitna Glacier thrust fault at the western end of the Denali fault rupture. The Coulomb stress transferred from the 1964 earthquake moved the Susitna Glacier thrust

  13. Fault geometry of 2015, Mw7.2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data

    NASA Astrophysics Data System (ADS)

    Sangha, Simran; Peltzer, Gilles; Zhang, Ailin; Meng, Lingsen; Liang, Cunren; Lundgren, Paul; Fielding, Eric

    2017-03-01

    Combining space-based geodetic and array seismology observations can provide detailed information about earthquake ruptures in remote regions. Here we use Landsat-8 imagery and ALOS-2 and Sentinel-1 radar interferometry data combined with data from the European seismology network to describe the source of the December 7, 2015, Mw7.2 Murghab (Tajikistan) earthquake. The earthquake reactivated a ∼79 km-long section of the Sarez-Karakul Fault, a NE oriented sinistral, trans-tensional fault in northern Pamir. Pixel offset data delineate the geometry of the surface break and line of sight ground shifts from two descending and three ascending interferograms constrain the fault dip and slip solution. Two right-stepping, NE-striking segments connected by a more easterly oriented segment, sub-vertical or steeply dipping to the west were involved. The solution shows two main patches of slip with up to 3.5 m of left lateral slip on the southern and central fault segments. The northern segment has a left-lateral and normal oblique slip of up to a meter. Back-projection of high-frequency seismic waves recorded by the European network, processed using the Multitaper-MUSIC approach, focuses sharply along the surface break. The time progression of the high-frequency radiators shows that, after a 10 second initiation phase at slow speed, the rupture progresses in 2 phases at super-shear velocity (∼4.3-5 km/s) separated by a 3 second interval of slower propagation corresponding to the passage through the restraining bend. The intensity of the high-frequency radiation reaches maxima during the initial and middle phases of slow propagation and is reduced by ∼50% during the super-shear phases of the propagation. These findings are consistent with studies of other strike-slip earthquakes in continental domain, showing the importance of fault geometric complexities in controlling the speed of fault propagation and related spatiotemporal pattern of the high-frequency radiation.

  14. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new

  15. Surface rupture of the 1933 M 7.5 Diexi earthquake in eastern Tibet: implications for seismogenic tectonics

    NASA Astrophysics Data System (ADS)

    Ren, Junjie; Xu, Xiwei; Zhang, Shimin; Yeats, Robert S.; Chen, Jiawei; Zhu, Ailan; Liu, Shao

    2018-03-01

    The 1933 M 7.5 Diexi earthquake is another catastrophic event with the loss of over 10 000 lives in eastern Tibet comparable to the 2008 Mw 7.9 Wenchuan earthquake. Because of its unknown surface rupture, the seismogenic tectonics of the 1933 earthquake remains controversial. We collected unpublished reports, literatures and old photos associated with the 1933 earthquake and conducted field investigations based on high-resolution Google Earth imagery. Combined with palaeoseismological analysis, radiocarbon dating and relocated earthquakes, our results demonstrate that the source of the 1933 earthquake is the northwest-trending Songpinggou fault. This quake produced a > 30 km long normal-faulting surface rupture with the coseismic offset of 0.9-1.7 m. Its moment magnitude (Mw) is ˜6.8. The Songpinggou fault undergoes an average vertical slip rate of ˜0.25 mm yr-1 and has a recurrence interval of ˜6700 yr of large earthquakes. The normal-faulting surface rupture of this quake is probably the reactivation of the Mesozoic Jiaochang tectonic belt in gravitational adjustment of eastern Tibet. Besides the major boundary faults, minor structures within continental blocks may take a role in strain partitioning of eastern Tibet and have the potential of producing large earthquake. This study contributes to a full understanding of seismotectonics of large earthquakes and strain partitioning in eastern Tibet.

  16. Persistent fine-scale fault structures control rupture development in Parkfield, CA.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2016-12-01

    We investigate the fine-scale geometry and structure of the San Andreas Fault (SAF) near Parkfield, CA, and their role in the development of the 1966 and 2004 M6 earthquakes. Both events broke the fault mainly unilaterally with similar length ( 30 km) but in opposite directions. Seismic slip occurred in a narrow zone between 5 and 10 km depth, as outlined by the concentration of aftershocks along the edge of the slip area. Across fault distribution of the 2004 aftershocks show a rapid decrease of event density away from the fault core. The damage zone is narrower in the Parkfield section (few 100 meters) than in the creeping section ( 1 km). We observe a similar but broader distribution during the interseismic periods. This implies that stress accumulates in a volume around the fault during interseismic periods, whereas coseismic deformation is more localized on the mature SAF. Large aftershocks are concentrated at both rupture tips, characterized by strong heterogeneities in the fault structure at the surface and at depth: i) in the south near Gold Hill-Cholame, a large releasing bend (>25°) separates the Parkfield section from the southern section of the SAF; ii) in the north at Middle Mountain, the surface fault trace goes through an ancient restraining step-over connecting the Parkfield and creeping sections. Fine-scale analysis of the 2004 aftershocks reveals a change in the fault dip and local variations of the fault strike (up to 25°) beneath Middle Mountain, in good agreement with focal mechanisms, which show oblique normal and reverse faulting. We observe these variations during the interseismic periods before and after the 2004 event, suggesting that the structural heterogeneities persisted through at least two earthquake cycles. These heterogeneities act as barriers to rupture propagation of moderate size earthquakes at Parkfield, but also as stress concentrations where rupture initiates.

  17. Scaling Relations of Earthquakes on Inland Active Mega-Fault Systems

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Matsushima, S.; Azuma, T.; Irikura, K.; Kitagawa, S.

    2010-12-01

    Since 2005, The Headquarters for Earthquake Research Promotion (HERP) has been publishing 'National Seismic Hazard Maps for Japan' to provide useful information for disaster prevention countermeasures for the country and local public agencies, as well as promote public awareness of disaster prevention of earthquakes. In the course of making the year 2009 version of the map, which is the commemorate of the tenth anniversary of the settlement of the Comprehensive Basic Policy, the methods to evaluate magnitude of earthquakes, to predict strong ground motion, and to construct underground structure were investigated in the Earthquake Research Committee and its subcommittees. In order to predict the magnitude of earthquakes occurring on mega-fault systems, we examined the scaling relations for mega-fault systems using 11 earthquakes of which source processes were analyzed by waveform inversion and of which surface information was investigated. As a result, we found that the data fit in between the scaling relations of seismic moment and rupture area by Somerville et al. (1999) and Irikura and Miyake (2001). We also found that maximum displacement of surface rupture is two to three times larger than the average slip on the seismic fault and surface fault length is equal to length of the source fault. Furthermore, compiled data of the source fault shows that displacement saturates at 10m when fault length(L) is beyond 100km, L>100km. By assuming the fault width (W) to be 18km in average of inland earthquakes in Japan, and the displacement saturate at 10m for length of more than 100 km, we derived a new scaling relation between source area and seismic moment, S[km^2] = 1.0 x 10^-17 M0 [Nm] for mega-fault systems that seismic moment (M0) exceeds 1.8×10^20 Nm.

  18. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  19. Evidence for and implications of self-healing pulses of slip in earthquake rupture

    USGS Publications Warehouse

    Heaton, T.H.

    1990-01-01

    Dislocation time histories of models derived from waveforms of seven earthquakes are discussed. In each model, dislocation rise times (the duration of slip for a given point on the fault) are found to be short compared to the overall duration of the earthquake (??? 10%). However, in many crack-like numerical models of dynamic rupture, the slip duration at a given point is comparable to the overall duration of the rupture; i.e. slip at a given point continues until information is received that the rupture has stopped propagating. Alternative explanations for the discrepancy between the short slip durations used to model waveforms and the long slip durations inferred from dynamic crack models are: (1) the dislocation models are unable to resolve the relatively slow parts of earthquake slip and have seriously underestimated the dislocations for these earthquakes; (2) earthquakes are composed of a sequence of small-dimension (short duration) events that are separated by locked regions (barriers); (3) rupture occurs in a narrow self-healing pulse of slip that travels along the fault surface. Evidence is discussed that suggests that slip durations are indeed short and that the self-healing slip-pulse model is the most appropriate explanation. A qualitative model is presented that produces self-healing slip pulses. The key feature of the model is the assumption that friction on the fault surface is inversely related to the local slip velocity. The model has the following features: high static strength of materials (kilobar range), low static stress drops (in the range of tens of bars), and relatively low frictional stress during slip (less than several hundreds of bars). It is suggested that the reason that the average dislocation scales with fault length is because large-amplitude slip pulses are difficult to stop and hence tend to propagate large distances. This model may explain why seismicity and ambient stress are low along fault segments that have experienced large

  20. Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California

    USGS Publications Warehouse

    Lozos, Julian C.; Harris, Ruth A.; Murray, Jessica R.; Lienkaemper, James J.

    2015-01-01

    The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.

  1. An insight on correlations between kinematic rupture parameters from dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin

    2017-04-01

    We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.

  2. A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)

    USGS Publications Warehouse

    Field, Edward; Jordan, Thomas H.; Page, Morgan T.; Milner, Kevin R.; Shaw, Bruce E.; Dawson, Timothy E.; Biasi, Glenn; Parsons, Thomas E.; Hardebeck, Jeanne L.; Michael, Andrew J.; Weldon, Ray; Powers, Peter; Johnson, Kaj M.; Zeng, Yuehua; Bird, Peter; Felzer, Karen; van der Elst, Nicholas; Madden, Christopher; Arrowsmith, Ramon; Werner, Maximillan J.; Thatcher, Wayne R.

    2017-01-01

    Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of distributed seismicity, constrained by earthquake‐clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self‐consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short‐term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short‐term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault‐based models: long‐term forecasts constrained to have local Gutenberg–Richter scaling, and short‐term forecasts that lack stress relaxation by elastic rebound.

  3. High-resolution seismic profiling reveals faulting associated with the 1934 Ms 6.6 Hansel Valley earthquake (Utah, USA)

    USGS Publications Warehouse

    Bruno, Pier Paolo G.; Duross, Christopher; Kokkalas, Sotirios

    2017-01-01

    The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-km-wide zone of north-south−trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous east- and west-dipping normal faults that dip 40°−70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ∼1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ∼3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes.

  4. Rupture behaviors of the 2010 Jiashian and 2016 Meinong Earthquakes: Implication for interaction of two asperities on the Chishan Transfer Fault Zone in SW Taiwan.

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Chen, Y. L.; Meng, L.; Tseng, T. L.

    2017-12-01

    After about 45 years of seismic quiescence, southwest Taiwan was imperiled by two strong earthquakes, the 2010 Mw 6.2 Jiashian and deadly 2016 Mw 6.4 Meinong earthquakes in the last decade. The focal mechanisms and their aftershock distributions imply that both events occurred on NW-SE striking, shallow-dipping fault planes but at different depths of 21 and 16 km, respectively. Here we present the MUSIC back projection images using high-frequency P- and sP-waves recorded in the European and Australian seismic networks, the directivity analysis using global teleseismic P waves and relocated aftershocks to characterize the rupture behaviors of the two mainshocks and explore the potential connection between them. The results for the Meinong event indicate a unilateral, subhorizontal rupture propagating NW-ward 17 km and lasting for 6-7 s [Jian et al., 2017]. For the Jiashian event, the rupture initiated at a greater depth of 21 km and then propagated both NW-ward and up-dip ( 16o) on the fault plane, with a shorter rupture length of 10 km and duration of 4-5 s. The up-dip propagation is corroborated by the 3-D directivity analysis that leads to the widths of P-wave pulses increasing linearly with the directivity parameter. Moreover, relocation of aftershocks reveals that the Jiashian sequence is confined in a NW-SE elongated zone extending 15 km and 5 km shallower than the hypocenter. The Meinong aftershock sequence shows three clusters: one surrounding the mainshock hypocenter, another one distributed northwestern and deeper (>20 km) off the rupture plane beneath Tainan, and the other distant shallow-focus one (<10 km) beneath the southern Central Mountain Range. As evidenced by similar focal mechanism, rupture behaviors, as well as the spatial configuration of the mainshock rupture zones and aftershock distributions, we attribute the Jiashian and Meinong earthquakes to two asperities on a buried oblique fault that has been reactivated recently, the NW-SE striking

  5. A-Priori Rupture Models for Northern California Type-A Faults

    USGS Publications Warehouse

    Wills, Chris J.; Weldon, Ray J.; Field, Edward H.

    2008-01-01

    This appendix describes how a-priori rupture models were developed for the northern California Type-A faults. As described in the main body of this report, and in Appendix G, ?a-priori? models represent an initial estimate of the rate of single and multi-segment surface ruptures on each fault. Whether or not a given model is moment balanced (i.e., satisfies section slip-rate data) depends on assumptions made regarding the average slip on each segment in each rupture (which in turn depends on the chosen magnitude-area relationship). Therefore, for a given set of assumptions, or branch on the logic tree, the methodology of the present Working Group (WGCEP-2007) is to find a final model that is as close as possible to the a-priori model, in the least squares sense, but that also satisfies slip rate and perhaps other data. This is analogous the WGCEP- 2002 approach of effectively voting on the relative rate of each possible rupture, and then finding the closest moment-balance model (under a more limiting set of assumptions than adopted by the present WGCEP, as described in detail in Appendix G). The 2002 Working Group Report (WCCEP, 2003, referred to here as WGCEP-2002), created segmented earthquake rupture forecast models for all faults in the region, including some that had been designated as Type B faults in the NSHMP, 1996, and one that had not previously been considered. The 2002 National Seismic Hazard Maps used the values from WGCEP-2002 for all the faults in the region, essentially treating all the listed faults as Type A faults. As discussed in Appendix A, the current WGCEP found that there are a number of faults with little or no data on slip-per-event, or dates of previous earthquakes. As a result, the WGCEP recommends that faults with minimal available earthquake recurrence data: the Greenville, Mount Diablo, San Gregorio, Monte Vista-Shannon and Concord-Green Valley be modeled as Type B faults to be consistent with similarly poorly-known faults statewide

  6. Unraveling the Earthquake History of the Denali Fault System, Alaska: Filling a Blank Canvas With Paleoearthquakes

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Haeussler, P. J.; Seitz, G. G.; Dawson, T. E.; Stenner, H. D.; Matmon, A.; Crone, A. J.; Personius, S.; Burns, P. B.; Cadena, A.; Thoms, E.

    2005-12-01

    Developing accurate rupture histories of long, high-slip-rate strike-slip faults is is especially challenging where recurrence is relatively short (hundreds of years), adjacent segments may fail within decades of each other, and uncertainties in dating can be as large as, or larger than, the time between events. The Denali Fault system (DFS) is the major active structure of interior Alaska, but received little study since pioneering fault investigations in the early 1970s. Until the summer of 2003 essentially no data existed on the timing or spatial distribution of past ruptures on the DFS. This changed with the occurrence of the M7.9 2002 Denali fault earthquake, which has been a catalyst for present paleoseismic investigations. It provided a well-constrained rupture length and slip distribution. Strike-slip faulting occurred along 290 km of the Denali and Totschunda faults, leaving unruptured ?140km of the eastern Denali fault, ?180 km of the western Denali fault, and ?70 km of the eastern Totschunda fault. The DFS presents us with a blank canvas on which to fill a chronology of past earthquakes using modern paleoseismic techniques. Aware of correlation issues with potentially closely-timed earthquakes we have a) investigated 11 paleoseismic sites that allow a variety of dating techniques, b) measured paleo offsets, which provide insight into magnitude and rupture length of past events, at 18 locations, and c) developed late Pleistocene and Holocene slip rates using exposure age dating to constrain long-term fault behavior models. We are in the process of: 1) radiocarbon-dating peats involved in faulting and liquefaction, and especially short-lived forest floor vegetation that includes outer rings of trees, spruce needles, and blueberry leaves killed and buried during paleoearthquakes; 2) supporting development of a 700-900 year tree-ring time-series for precise dating of trees used in event timing; 3) employing Pb 210 for constraining the youngest ruptures in

  7. The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.

    2012-12-01

    The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.

  8. Inferring rupture characteristics using new databases for 3D slab geometry and earthquake rupture models

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Plescia, S. M.; Moore, G.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center has recently published a database of finite fault models for globally distributed M7.5+ earthquakes since 1990. Concurrently, we have also compiled a database of three-dimensional slab geometry models for all global subduction zones, to update and replace Slab1.0. Here, we use these two new and valuable resources to infer characteristics of earthquake rupture and propagation in subduction zones, where the vast majority of large-to-great-sized earthquakes occur. For example, we can test questions that are fairly prevalent in seismological literature. Do large ruptures preferentially occur where subduction zones are flat (e.g., Bletery et al., 2016)? Can `flatness' be mapped to understand and quantify earthquake potential? Do the ends of ruptures correlate with significant changes in slab geometry, and/or bathymetric features entering the subduction zone? Do local subduction zone geometry changes spatially correlate with areas of low slip in rupture models (e.g., Moreno et al., 2012)? Is there a correlation between average seismogenic zone dip, and/or seismogenic zone width, and earthquake size? (e.g., Hayes et al., 2012; Heuret et al., 2011). These issues are fundamental to the understanding of earthquake rupture dynamics and subduction zone seismogenesis, and yet many are poorly understood or are still debated in scientific literature. We attempt to address these questions and similar issues in this presentation, and show how these models can be used to improve our understanding of earthquake hazard in subduction zones.

  9. Salient Features of the 2015 Gorkha, Nepal Earthquake in Relation to Earthquake Cycle and Dynamic Rupture Models

    NASA Astrophysics Data System (ADS)

    Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.

    2015-12-01

    Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity

  10. Dynamic Rupture and Energy Partition in Models of Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Needleman, A.; Ben-Zion, Y.

    2006-12-01

    We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically

  11. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    NASA Astrophysics Data System (ADS)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the

  12. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    USGS Publications Warehouse

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  13. Low footwall accelerations and variable surface rupture behavior on the Fort Sage Mountains fault, northeast California

    USGS Publications Warehouse

    Briggs, Richard W.; Wesnousky, Steven G.; Brune, James N.; Purvance, Matthew D.; Mahan, Shannon

    2013-01-01

    The Fort Sage Mountains fault zone is a normal fault in the Walker Lane of the western Basin and Range that produced a small surface rupture (L 5.6 earthquake in 1950. We investigate the paleoseismic history of the Fort Sage fault and find evidence for two paleoearthquakes with surface displacements much larger than those observed in 1950. Rupture of the Fort Sage fault ∼5.6  ka resulted in surface displacements of at least 0.8–1.5 m, implying earthquake moment magnitudes (Mw) of 6.7–7.1. An older rupture at ∼20.5  ka displaced the ground at least 1.5 m, implying an earthquake of Mw 6.8–7.1. A field of precariously balanced rocks (PBRs) is located less than 1 km from the surface‐rupture trace of this Holocene‐active normal fault. Ground‐motion prediction equations (GMPEs) predict peak ground accelerations (PGAs) of 0.2–0.3g for the 1950 rupture and 0.3–0.5g for the ∼5.6  ka paleoearthquake one kilometer from the fault‐surface trace, yet field tests indicate that the Fort Sage PBRs will be toppled by PGAs between 0.1–0.3g. We discuss the paleoseismic history of the Fort Sage fault in the context of the nearby PBRs, GMPEs, and probabilistic seismic hazard maps for extensional regimes. If the Fort Sage PBRs are older than the mid‐Holocene rupture on the Fort Sage fault zone, this implies that current GMPEs may overestimate near‐fault footwall ground motions at this site.

  14. Nucleation and dynamic rupture on weakly stressed faults sustained by thermal pressurization

    NASA Astrophysics Data System (ADS)

    Schmitt, Stuart V.; Segall, Paul; Dunham, Eric M.

    2015-11-01

    Earthquake nucleation requires that the shear stress τ locally reaches a fault's static strength, fσeff, the product of the friction coefficient and effective normal stress. Once rupture initiates, shear heating-induced thermal pressurization can sustain rupture at much lower τ/σeff ratios, a stress condition believed to be the case during most earthquakes. This requires that earthquakes nucleate at heterogeneities. We model nucleation and dynamic rupture on faults in a 2-D elastic medium with rate/state friction and thermal pressurization, subjected to globally low τ but with local stress heterogeneities that permit nucleation. We examine end-member cases of either high-τ or low-σeff heterogeneities. We find that thermal pressurization can sustain slip at τ/σeff values as low as 0.13, compared to static friction of ˜0.7. Background τ (and, to lesser extent, heterogeneity width) controls whether ruptures arrest or are sustained, with extremely low values resulting in arrest. For a small range of background τ, sustained slip is pulse-like. Cessation of slip in a pulse tail can result from either diffusive restrengthening of σeff or a wave-mediated stopping phase that follows the rupture tip. Slightly larger background τ leads to sustained crack-like rupture. Thermal pressurization is stronger at high-τ heterogeneities, resulting in a lower background τ threshold for sustained rupture and potentially larger arresting ruptures. High-stress events also initiate with higher moment rate, although this may be difficult to observe in nature. For arresting ruptures, stress drops and the dependence of fracture energy on mean slip are both consistent with values inferred for small earthquakes.

  15. Uniform California earthquake rupture forecast, version 2 (UCERF 2)

    USGS Publications Warehouse

    Field, E.H.; Dawson, T.E.; Felzer, K.R.; Frankel, A.D.; Gupta, V.; Jordan, T.H.; Parsons, T.; Petersen, M.D.; Stein, R.S.; Weldon, R.J.; Wills, C.J.

    2009-01-01

    The 2007 Working Group on California Earthquake Probabilities (WGCEP, 2007) presents the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). This model comprises a time-independent (Poisson-process) earthquake rate model, developed jointly with the National Seismic Hazard Mapping Program and a time-dependent earthquake-probability model, based on recent earthquake rates and stress-renewal statistics conditioned on the date of last event. The models were developed from updated statewide earthquake catalogs and fault deformation databases using a uniform methodology across all regions and implemented in the modular, extensible Open Seismic Hazard Analysis framework. The rate model satisfies integrating measures of deformation across the plate-boundary zone and is consistent with historical seismicity data. An overprediction of earthquake rates found at intermediate magnitudes (6.5 ??? M ???7.0) in previous models has been reduced to within the 95% confidence bounds of the historical earthquake catalog. A logic tree with 480 branches represents the epistemic uncertainties of the full time-dependent model. The mean UCERF 2 time-dependent probability of one or more M ???6.7 earthquakes in the California region during the next 30 yr is 99.7%; this probability decreases to 46% for M ???7.5 and to 4.5% for M ???8.0. These probabilities do not include the Cascadia subduction zone, largely north of California, for which the estimated 30 yr, M ???8.0 time-dependent probability is 10%. The M ???6.7 probabilities on major strike-slip faults are consistent with the WGCEP (2003) study in the San Francisco Bay Area and the WGCEP (1995) study in southern California, except for significantly lower estimates along the San Jacinto and Elsinore faults, owing to provisions for larger multisegment ruptures. Important model limitations are discussed.

  16. Dynamic Rupture Simulations of 11 March 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Dunham, E. M.

    2012-12-01

    There is strong observational evidence that the 11 March 2011 Tohoku earthquake rupture reached the seafloor. This was unexpected because the shallow portion of the plate interface is believed to be frictionally stable and thus not capable of sustaining coseismic rupture. In order to explore this seeming inconsistency we have developed a two-dimensional dynamic rupture model of the Tohoku earthquake. The model uses a complex fault, seafloor, and material interface structure as derived from seismic surveys. We use a rate-and-state friction model with steady state shear strength depending logarithmically on slip velocity, i.e., there is no dynamic weakening in the model. The frictional parameters are depth dependent with the shallowest portions of the fault beneath the accretionary prism being velocity strengthening. The total normal stress on the fault is taken to be lithostatic and the pore pressure is hydrostatic until a maximum effective normal stress is reached (40 MPa in our preferred model) after which point the pore pressure follows the lithostatic gradient. We also account for poroelastic buffering of effective normal stress changes on the fault. The off-fault response is linear elastic. Using this model we find that large stress changes are dynamically transmitted to the shallowest portions of the fault by waves released by deep slip that are reflected off the seafloor. These stress changes are significant enough to drive the rupture through a velocity strengthening region that is tens of kilometers long. Rupture to the trench is therefore consistent with standard assumptions about depth-dependence of subduction zone properties, and does not require extreme dynamic weakening, shallow high stress drop asperities, or other exceptional processes. We also make direct comparisons with measured seafloor deformation and onshore 1-Hz GPS data from the Tohoku earthquake. Through these comparisons we are able to determine the sensitivity of these data to several

  17. Probabilistic approach for earthquake scenarios in the Marmara region from dynamic rupture simulations

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo

    2014-05-01

    The Marmara region (Turkey) along the North Anatolian fault is known as a high potential of large earthquakes in the next decades. For the purpose of seismic hazard/risk evaluation, kinematic and dynamic source models have been proposed (e.g. Oglesby and Mai, GJI, 2012). In general, the simulated earthquake scenarios depend on the hypothesis and cannot be verified before the expected earthquake. We then introduce a probabilistic insight to give the initial/boundary conditions to statistically analyze the simulated scenarios. We prepare different fault geometry models, tectonic loading and hypocenter locations. We keep the same framework of the simulation procedure as the dynamic rupture process of the adjacent 1999 Izmit earthquake (Aochi and Madariaga, BSSA, 2003), as the previous models were able to reproduce the seismological/geodetic aspects of the event. Irregularities in fault geometry play a significant role to control the rupture progress, and a relatively large change in geometry may work as barriers. The variety of the simulate earthquake scenarios should be useful for estimating the variety of the expected ground motion.

  18. The 2016 Kaikōura Earthquake Revealed by Kinematic Source Inversion and Seismic Wavefield Simulations: Slow Rupture Propagation on a Geometrically Complex Crustal Fault Network

    NASA Astrophysics Data System (ADS)

    Holden, C.; Kaneko, Y.; D'Anastasio, E.; Benites, R.; Fry, B.; Hamling, I. J.

    2017-11-01

    The 2016 Kaikōura (New Zealand) earthquake generated large ground motions and resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution using two kinematic modeling techniques based on analysis of local strong-motion and high-rate GPS data. Our kinematic models capture a complex pattern of slowly (Vr < 2 km/s) propagating rupture from south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 s after the origin time. Both models indicate rupture reactivation on the Kekerengu fault with the time separation of 11 s between the start of the original failure and start of the subsequent one. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.

  19. Repeating Marmara Sea earthquakes: indication for fault creep

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Wollin, Christopher; Domigall, Dorina; Küperkoch, Ludger; Martínez-Garzón, Patricia; Kwiatek, Grzegorz; Dresen, Georg; Malin, Peter E.

    2017-07-01

    Discriminating between a creeping and a locked status of active faults is of central relevance to characterize potential rupture scenarios of future earthquakes and the associated seismic hazard for nearby population centres. In this respect, highly similar earthquakes that repeatedly activate the same patch of an active fault portion are an important diagnostic tool to identify and possibly even quantify the amount of fault creep. Here, we present a refined hypocentre catalogue for the Marmara region in northwestern Turkey, where a magnitude M up to 7.4 earthquake is expected in the near future. Based on waveform cross-correlation for selected spatial seismicity clusters, we identify two magnitude M ∼ 2.8 repeater pairs. These repeaters were identified as being indicative of fault creep based on the selection criteria applied to the waveforms. They are located below the western part of the Marmara section of the North Anatolian Fault Zone and are the largest reported repeaters for the larger Marmara region. While the eastern portion of the Marmara seismic gap has been identified to be locked, only sparse information on the deformation status has been reported for its western part. Our findings indicate that the western Marmara section deforms aseismically to a substantial extent, which reduces the probability for this region to host a nucleation point for the pending Marmara earthquake. This is of relevance, since a nucleation of the Marmara event in the west and subsequent eastward rupture propagation towards the Istanbul metropolitan region would result in a substantially higher seismic hazard and resulting risk than if the earthquake would nucleate in the east and thus propagate westward away from the population centre Istanbul.

  20. Geologic and structural controls on rupture zone fabric: A field-based study of the 2010 Mw 7.2 El Mayor–Cucapah earthquake surface rupture

    USGS Publications Warehouse

    Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander

    2015-01-01

    We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the

  1. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a

  2. Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.

    2010-01-01

    Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.

  3. Pulse-like partial ruptures and high-frequency radiation at creeping-locked transition during megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Michel, Sylvain; Avouac, Jean-Philippe; Lapusta, Nadia; Jiang, Junle

    2017-08-01

    Megathrust earthquakes tend to be confined to fault areas locked in the interseismic period and often rupture them only partially. For example, during the 2015 M7.8 Gorkha earthquake, Nepal, a slip pulse propagating along strike unzipped the bottom edge of the locked portion of the Main Himalayan Thrust (MHT). The lower edge of the rupture produced dominant high-frequency (>1 Hz) radiation of seismic waves. We show that similar partial ruptures occur spontaneously in a simple dynamic model of earthquake sequences. The fault is governed by standard laboratory-based rate-and-state friction with the aging law and contains one homogenous velocity-weakening (VW) region embedded in a velocity-strengthening (VS) area. Our simulations incorporate inertial wave-mediated effects during seismic ruptures (they are thus fully dynamic) and account for all phases of the seismic cycle in a self-consistent way. Earthquakes nucleate at the edge of the VW area and partial ruptures tend to stay confined within this zone of higher prestress, producing pulse-like ruptures that propagate along strike. The amplitude of the high-frequency sources is enhanced in the zone of higher, heterogeneous stress at the edge of the VW area.

  4. Pulse-Like Partial Ruptures and High-Frequency Radiation at Creeping-Locked Transition during Megathrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Michel, S. G. R. M.; Avouac, J. P.; Lapusta, N.; Jiang, J.

    2017-12-01

    Megathrust earthquakes tend to be confined to fault areas locked in the interseismic period and often rupture them only partially. For example, during the 2015 M7.8 Gorkha earthquake, Nepal, a slip pulse propagating along strike unzipped the bottom edge of the locked portion of the Main Himalayan Thrust (MHT). The lower edge of the rupture produced dominant high-frequency (>1 Hz) radiation of seismic waves. We show that similar partial ruptures occur spontaneously in a simple dynamic model of earthquake sequences. The fault is governed by standard laboratory-based rate-and-state friction with the ageing law and contains one homogenous velocity-weakening (VW) region embedded in a velocity-strengthening (VS) area. Our simulations incorporate inertial wave-mediated effects during seismic ruptures (they are thus fully dynamic) and account for all phases of the seismic cycle in a self-consistent way. Earthquakes nucleate at the edge of the VW area and partial ruptures tend to stay confined within this zone of higher prestress, producing pulse-like ruptures that propagate along strike. The amplitude of the high-frequency sources is enhanced in the zone of higher, heterogeneous stress at the edge of the VW area.

  5. Variations in rupture process with recurrence interval in a repeated small earthquake

    USGS Publications Warehouse

    Vidale, J.E.; Ellsworth, W.L.; Cole, A.; Marone, Chris

    1994-01-01

    In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and

  6. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake Along the Roseau Fault (French Antilles)

    NASA Astrophysics Data System (ADS)

    Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.

    2016-12-01

    While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (<3.5m run-up). These vehicles acquired acoustic (multibeam bathymetry) and optical data (video and electronic images) spanning from regional (>1 km) to outcrop (<1 m) scales. These high-resolution submarine observations, analogous to those routinely conducted subaerially, rely on advanced image and video processing techniques, such as mosaicking and structure-from-motion (SFM). We identify sub-vertical fault slip planes along the Roseau scarp, displaying coseismic deformation structures undoubtedly due to the 2004 event. First, video mosaicking allows us to identify the freshly exposed fault plane at the base of one of these scarps. A maximum vertical coseismic displacement of 0.9 m can be measured from the video-derived terrain models and the texture-mapped imagery, which have better resolution than any available acoustic systems (<10 cm). Second, seafloor photomosaics allow us to identify and map both additional sub-vertical fault scarps, and cracks and fissures at their base, recording hangingwall damage from the same event. These observations provide critical parameters to understand the seismic cycle and long-term seismic behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.

  7. Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.

    PubMed

    Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F

    2016-11-18

    Field investigations and seismic data show that the 16 April 2016 moment magnitude (M w ) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano. Copyright © 2016, American Association for the Advancement of Science.

  8. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Oskin, M. E.; Liu-zeng, J.; Shao, Y.-X.

    2018-05-01

    Restraining double-bends along strike-slip faults inhibit or permit throughgoing ruptures depending on bend angle, length, and prior rupture history. Modeling predicts that for mature strike-slip faults in a regional stress regime characterized by simple shear, a restraining bend of >18° and >4 km length impedes propagating rupture. Indeed, natural evidence shows that the most recent rupture(s) of the Xorkoli section (90°-93°E) of the eastern Altyn Tagh fault (ATF) ended at large restraining bends. However, when multiple seismic cycles are considered in numerical dynamic rupture modeling, heterogeneous residual stresses enable some ruptures to propagate further, modulating whether the bends persistently serve as barriers. These models remain to be tested using observations of the cumulative effects of multiple earthquake ruptures. Here we investigate whether a large restraining double-bend on the ATF serves consistently as a barrier to rupture by measuring long-term slip rates around the terminus of its most recent surface rupture at the Aksay bend. Our results show a W-E decline in slip as the SATF enters the bend, as would be predicted from repeated rupture terminations there. Prior work demonstrated no Holocene slip on the central, most misoriented portion of the bend, while 19-79 m offsets suggest that multiple ruptures have occurred on the west side of the bend during the Holocene. Thus we conclude the gradient in the SATF's slip rate results from the repeated termination of earthquake ruptures there. However, a finite slip rate east of the bend represents the transmission of some slip, suggesting that a small fraction of ruptures may fully traverse or jump the double-bend. This agreement between natural observations of slip accumulation and multi-cycle models of fault rupture enables us to translate observed slip rates into insight about the dynamic rupture process of individual earthquakes as they encounter geometric complexities along faults.

  9. Three-dimensional fault framework of the 2014 South Napa Earthquake, San Francisco Bay region, California

    NASA Astrophysics Data System (ADS)

    Graymer, R. W.

    2014-12-01

    Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.

  10. Refinements on the inferred causative faults of the great 2012 Indian Ocean earthquakes

    NASA Astrophysics Data System (ADS)

    Revathy, P. M.; Rajendran, K.

    2014-12-01

    As the largest known intra-plate strike-slip events, the pair of 2012 earthquakes in the Wharton Basin is a rarity. Separated in time by 2 hours these events rouse interest also because of their short inter-event duration, complex rupture mechanism, and spatial-temporal proximity to the great 2004 Sumatra plate boundary earthquake. Reactivation of fossil ridge-transform pairs is a favoured mechanism for large oceanic plate earthquakes and their inherent geometry triggers earthquakes on conjugate fault systems, as observed previously in the Wharton Basin. The current debate is whether the ruptures occurred on the WNW-ESE paleo ridges or the NNE-SSW paleo transforms. Back-projection models give a complex rupture pattern that favours the WNW-ESE fault [1]. However, the static stress changes due to the 2004 Sumatra earthquake and 2005 Nias earthquake favour the N15°E fault [2]. We use the Teleseismic Body-Wave Inversion Program [3] and waveform data from Global Seismic Network, to obtain the best fit solutions using P and S-wave synthetic modelling. The preliminary P-wave analysis of both earthquakes gives source parameters that are consistent with the Harvard CMT solutions. The obtained slip distribution complies with the NNE-SSW transforms. Both these earthquakes triggered small tsunamis which appear as two distinctive pulses on 13 Indian Ocean tide gauges and buoys. Frequency spectra of the tsunami recordings from various azimuths provide additional constraint for the choice of the causative faults. References: [1] Yue, H., T. Lay, and K. D. Koper (2012), En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes, Nature, 490, 245-249, doi:10.1038/nature11492 [2] Delescluse, M., N. Chamot-Rooke, R. Cattin, L. Fleitout, O. Trubienko and C. Vigny April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust, Nature, 490(2012), pp. 240-244, doi:10.1038/nature11520 [3] M. Kikuchi and H. Kanamori, Note on

  11. Variability of displacement at a point: Implications for earthquake‐size distribution and rupture hazard on faults

    USGS Publications Warehouse

    Hecker, Suzanne; Abrahamson, N.A.; Wooddell, Kathryn

    2013-01-01

    To investigate the nature of earthquake‐magnitude distributions on faults, we compare the interevent variability of surface displacement at a point on a fault from a composite global data set of paleoseismic observations with the variability expected from two prevailing magnitude–frequency distributions: the truncated‐exponential model and the characteristic‐earthquake model. We use forward modeling to predict the coefficient of variation (CV) for the alternative earthquake distributions, incorporating factors that would effect observations of displacement at a site. The characteristic‐earthquake model (with a characteristic‐magnitude range of ±0.25) produces CV values consistent with the data (CV∼0.5) only if the variability for a given earthquake magnitude is small. This condition implies that rupture patterns on a fault are stable, in keeping with the concept behind the model. This constraint also bears upon fault‐rupture hazard analysis, which, for lack of point‐specific information, has used global scaling relations to infer variability in average displacement for a given‐size earthquake. Exponential distributions of earthquakes (from M 5 to the maximum magnitude) give rise to CV values that are significantly larger than the empirical constraint. A version of the model truncated at M 7, however, yields values consistent with a larger CV (∼0.6) determined for small‐displacement sites. Although this result allows for a difference in the magnitude distribution of smaller surface‐rupturing earthquakes, it may reflect, in part, less stability in the displacement profile of smaller ruptures and/or the tails of larger ruptures.

  12. Shallow megathrust earthquake ruptures betrayed by their outer-trench aftershocks signature

    NASA Astrophysics Data System (ADS)

    Sladen, Anthony; Trevisan, Jenny

    2018-02-01

    For some megathrust earthquakes, the rupture extends to the solid Earth's surface, at the ocean floor. This unexpected behaviour holds strong implications for the tsunami potential of subduction zones and for the physical conditions governing earthquakes, but such ruptures occur in underwater areas which are hard to observe, even with current instrumentation and imaging techniques. Here, we evidence that aftershocks occurring ocean-ward from the trench are conditioned by near-surface rupture of the megathrust fault. Comparison to well constrained earthquake slip models further reveals that for each event the number of aftershocks is proportional to the amount of shallow slip, a link likely related to static stress transfer. Hence, the spatial distribution of these specific aftershock sequences could provide independent constrains on the coseismic shallow slip of future events. It also offers the prospect to be able to reassess the rupture of many large subduction earthquakes back to the beginning of the instrumental era.

  13. Surface Rupture and Slip Distribution Resulting from the 2013 M7.7 Balochistan, Pakistan Earthquake

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Gold, R. D.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.

    2014-12-01

    The 24 September 2013 M7.7 earthquake in Balochistan, Pakistan, produced a ~200 km long left-lateral strike-slip surface rupture along a portion of the Hoshab fault, a moderately dipping (45-75º) structure in the Makran accretionary prism. The rupture is remarkably continuous and crosses only two (0.7 and 1.5 km wide) step-overs along its arcuate path through southern Pakistan. Displacements are dominantly strike-slip, with a minor component of reverse motion. We remotely mapped the surface rupture at 1:5,000 scale and measured displacements using high resolution (0.5 m) pre- and post-event satellite imagery. We mapped 295 laterally faulted stream channels, terrace margins, and roads to quantify near-field displacement proximal (±10 m) to the rupture trace. The maximum near-field left-lateral offset is 15±2 m (average of ~7 m). Additionally, we used pre-event imagery to digitize 254 unique landforms in the "medium-field" (~100-200 m from the rupture) and then measured their displacements compared to the post-event imagery. At this scale, maximum left-lateral offset approaches 17 m (average of ~8.5 m). The width (extent of observed surface faulting) of the rupture zone varies from ~1 m to 3.7 km. Near- and medium-field offsets show similar slip distributions that are inversely correlated with the width of the fault zone at the surface (larger offsets correspond to narrow fault zones). The medium-field offset is usually greater than the near-field offset. The along-strike surface slip distribution is highly variable, similar to the slip distributions documented for the 2002 Denali M7.9 earthquake and 2001 Kunlun M7.8 earthquake, although the Pakistan offsets are larger in magnitude. The 2013 Pakistan earthquake ranks among the largest documented continental strike-slip displacements, possibly second only to the 18+ m surface displacements attributed to the 1855 Wairarapa M~8.1 earthquake.

  14. A N-S fossil transform fault reactivated by the March 2, 2016 Mw7.8 southwest of Sumatra, Indonesia earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, H.; van der Lee, S.

    2016-12-01

    Warton Basin (WB) is characterized by N-S striking fossil transform faults and E-W trending extinct ridges. The 2016 Mw7.8 southwest of Sumatra earthquake, nearby the WB's center, was first imaged by back-projecting P-waves from three regional seismic networks in Europn, Japan, and Australia. Next, the rupture direction of the earthquake was further determined using the rupture directivity analysis to P-waves from the global seismic network (GSN). Finally, we inverting these GSN waveforms on a defined N-S striking vertical fault for a kinematic source model. The results show that the earthquake reactivates a 190 degree N-S striking vertical fossil transform fault and asymmetrically bilaterally ruptures a 65 km by 30 km asperity over 35 s. Specifically, the earthquake first bilaterally ruptures northward and southward at a speed of 1.0 km/s over the first 12 s, and then mainly rupture northward at a speed of 1.6 km/s. Compared with two previous M≥7.8 WB earthquakes, including the 2000 southern WB earthquake and 2012 Mw8.6 Sumatra earthquake, the lower seismic energy radiation efficiency and slower rupture velicity of the 2016 earthquake indicate the rupture of the earthquake is probably controlled by the warmer ambient slab and tectonic stress regime.

  15. Physical and chemical properties of the creeping fault ruptured in the 2008 Mw 7.9 Wenchuan earthquake from the WFSD-3P cores, eastern Tibet

    NASA Astrophysics Data System (ADS)

    He, X.; Li, H.; Wang, H.; Zhang, L., Jr.; Chevalier, M. L.

    2016-12-01

    The Anxian-Guanxian Fault (AGF) is a frontal fault of the Longmen Shan thrust belt, which ruptured during the 2008 Mw 7.9 Wenchuan earthquake in the eastern margin of the Tibetan Plateau. This study focuses on the 551.54 m-depth cores from the shallow hole of the Wenchuan earthquake Fault Scientific Drilling Project WFSD-3P which drilled across the AGF. Detailed core petrological study, geophysical downhole logs, rock magnetism and XRF analyses were conducted to explore the physical and chemical properties of the AGF, which is helpful to reveal the faulting mechanism and provides a reference to determine behaviors of other faults. The AGF zone in the WFSD-3p mainly consists of fault gouge and fault breccia from 442.41-510.14 m depth cores ( 48 m thick), with a dip angle of 45°. Fine-grained fault gouge and pressolution structures are commonly observed under optical microscope, which indicate the AGF is in creeping. The average magnetic susceptibility value of the fault gouge is slightly less than that of the country rock and the main magnetic carriers are pyrrhotite on the basis of low-temperature magnetic measurement. This phenomenon is different from the characteristics of other seismic faults with high magnetic susceptibility value due to heating by rapid slip friction. In terms of chemical properties, the fault gouge is characterized by relatively low concentration of iron, manganese and calcium, as well as high concentration of copper, vanadium and sulfur according to XRF analyses. In addition, the fluid samples are reductive, with a PH value of 10 and a negative value for redox potential. Combined with the grey-green sandstone along the rupture zone, they indicate that the AGF creeping is in a reducing environment. There are partly locked areas with clasts by rapid slip during the earthquake in the AGF zone. This observation was present at the boundary of the Triassic and Jurassic units ( 507 m depth), near the bottom of the fault zone. It represents the

  16. The 7.9 Denali Fault Earthquake: Damage to Structures and Lifelines

    NASA Astrophysics Data System (ADS)

    Cox, T.; Hreinsdöttir, S.; Larsen, C.; Estes, S.

    2002-12-01

    In the early afternoon of Sunday, November 3rd, the residents of many interior Alaska towns were shaken up by a magnitude 7.9 earthquake. The shaking lasted an average of three minutes and when it stopped, nearly 300 km of the Denali Fault had ruptured. In the hours that followed, the Alaska Earthquake Information Center (AEIC) fielded reports of structural damage from Cantwell to Tok and other earthquake effects as far away as Louisiana. Upon investigation, the most severe effects were found in the village of Mentasta where basic utilities were interrupted and the school and several houses suffered major damage. Almost 3000 reports submitted to a community internet intensity map show a maximum Mercalli intensity VIII along the eastern end of the rupture area. The Richardson and Parks Highways, two main north-south thoroughfares in Alaska, both buckled and split as a result of the fault rupture. Traffic was stopped for a few hours while repairs were made. Between the Richardson Highway the Tok Cutoff, a section of the Glenn Highway that connects Tok and Glennallen, the maximum offsets on the Denali Fault were observed. Designed to withstand a magnitude 8.5 earthquake at the Denali Fault crossing, the 800-mile long Trans-Alaska Pipeline suffered relatively minor damage. According to Alyeska Pipeline Service Company press releases, the pipeline was shut down shortly after the earthquake occurred. Repairs to pipeline supports and engineering evaluations began immediately thereafter, and oil began flowing through the pipeline Thursday, November 7th . Through it all, the AEIC has collected and archived many photographs, emails, and eyewitness accounts of those who experienced the destruction firsthand. We will detail the effects that the M7.9 Denali Fault earthquake had from near and far.

  17. How fault geometry controls earthquake magnitude

    NASA Astrophysics Data System (ADS)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  18. Evaluation of Earthquake-Induced Effects on Neighbouring Faults and Volcanoes: Application to the 2016 Pedernales Earthquake

    NASA Astrophysics Data System (ADS)

    Bejar, M.; Alvarez Gomez, J. A.; Staller, A.; Luna, M. P.; Perez Lopez, R.; Monserrat, O.; Chunga, K.; Herrera, G.; Jordá, L.; Lima, A.; Martínez-Díaz, J. J.

    2017-12-01

    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the short-term behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with a useful tool to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Space geodesy is now routinely used following an earthquake to image the displacement of the ground and estimate the rupture geometry and the distribution of slip. Using the obtained source model, it is possible to evaluate the remaining moment deficit and to infer the stress changes on nearby faults and volcanoes produced by the earthquake, which can be used to identify which faults and volcanoes are brought closer to failure or activation. Although these procedures are commonly used today, the transference of these results to the authorities managing the post-disaster situation is not straightforward and thus its usefulness is reduced in practice. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after an earthquake. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 SAR and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip. Then we use this model to evaluate the moment deficit on the subduction interface and changes of stress on the surrounding faults and volcanoes. The results are compared with the seismic and volcanic events that have occurred after the earthquake. We discuss potential and limits of the methodology and the lessons learnt from discussion with local authorities.

  19. Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault

    USGS Publications Warehouse

    Andrews, D.J.; Ma, Shuo

    2010-01-01

    Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.

  20. Structure, Frictional Melting and Fault Weakening during the 2008 Mw 7.9 Wenchuan Earthquake Slip: Observation from the WFSD Drilling Core Samples

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Li, C.; Zhang, J.; Sun, Z.; Si, J.; Liu, D.; Chevalier, M. L.; Han, L.; Yun, K.; Zheng, Y.

    2015-12-01

    The 2008 Mw7.9 Wenchuan earthquake produced two co-seismic surface ruptures along Yingxiu-Beichuan fault (~270 km) and the Guanxian-Anxian fault (~80 km) simultaneously in the Longmen Shan thrust belt. Besides, two surface rupture zones were tracked in the southern segment of the Yingxiu-Beichuan rupture zone, one along the Yingxiu fault, the other along the Shenxigou-Longchi fault, which both converged into one rupture zone at the Bajiaomiao village, Hongkou town, where one distinct fault plane with two striation orientations was exposed. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) was carried out right after the earthquake to investigate its faulting mechanisms and rupture process. Six boreholes were drilled along the rupture zones with depths ranging from 600 to 2400 m. WFSD-1 and WFSD-2 are located at the Bajiaomiao area, the southern segment of the Yingxiu-Beichuan rupture zone, while WFSD-4 and WFSD-4S are in the Nanba town area, in the northern part of the rupture zone. Detailed research showed that ~1 mm thick Principal Slip Zone (PSZ) of the Wenchuan earthquake is located at ~589 m-depth in the WFSD-1 cores. Graphite present in the PSZ indicates a low fault strength. Long-term temperature monitoring shows an extremely low fault friction coefficient during the earthquake. Recently, another possible PSZ was found in WFSD-1 cores at ~732 m-depth, with a ~2 mm thick melt layer in the fault gouge, where feldspar was melted but quartz was not, indicating that the frictional melting temperature was 1230°C < T < 1720°C. These two PSZs at depth may correspond to the two co-seismic surface rupture zones. Besides, the Wenchuan earthquake PSZ was also recognized in the WFSD-4S cores, at ~1084 m-depth. About 200-400 μm thick melt layer (fault vein, mainly feldspar), as well as melt injection veins, were observed in the slip zone, where oblique distinct striations were visible on the slip surface. Therefore, there are two PSZs in the shallow

  1. A 3000-year record of ground-rupturing earthquakes along the central North Anatolian fault near Lake Ladik, Turkey

    USGS Publications Warehouse

    Fraser, J.; Pigati, J.S.; Hubert-Ferrari, A.; Vanneste, K.; Avsar, U.; Altinok, S.

    2009-01-01

    The North Anatolian fault (NAF) is a ???1500 km long, arcuate, dextral strike-slip fault zone in northern Turkey that extends from the Karliova triple junction to the Aegean Sea. East of Bolu, the fault zone exhibits evidence of a sequence of large (Mw >7) earthquakes that occurred during the twentieth century that displayed a migrating earthquake sequence from east to west. Prolonged human occupation in this region provides an extensive, but not exhaustive, historical record of large earthquakes prior to the twentieth century that covers much of the last 2000 yr. In this study, we extend our knowledge of rupture events in the region by evaluating the stratigraphy and chronology of sediments exposed in a paleoseismic trench across a splay of the NAF at Destek, ???6:5 km east of Lake Ladik (40.868?? N, 36.121?? E). The trenched fault strand forms an uphill-facing scarp and associated sediment trap below a small catchment area. The trench exposed a narrow fault zone that has juxtaposed a sequence of weakly defined paleosols interbedded with colluvium against highly fractured bedrock. We mapped magnetic susceptibility variations on the trench walls and found evidence for multiple visually unrecognized colluvial wedges. This technique was also used to constrain a predominantly dip-slip style of displacement on this fault splay. Sediments exposed in the trench were dated using both charcoal and terrestrial gastropod shells to constrain the timing of the earthquake events. While the gastropod shells consistently yielded 14 C ages that were too old (by ???900 yr), we obtained highly reliable 14 C ages from the charcoal by dating multiple components of the sample material. Our radiocarbon chronology constrains the timing of seven large earthquakes over the past 3000 yr prior to the 1943 Tosya earthquake, including event ages of (2?? error): A.D. 1437-1788, A.D. 1034-1321, A.D. 549-719, A.D. 17-585 (1-3 events), 35 B.C.-A.D. 28, 700-392 B.C., 912-596 B.C. Our results

  2. Rupture distribution of the 1977 western Argentina earthquake

    USGS Publications Warehouse

    Langer, C.J.; Hartzell, S.

    1996-01-01

    Teleseismic P and SH body waves are used in a finite-fault, waveform inversion for the rupture history of the 23 November 1977 western Argentina earthquake. This double event consists of a smaller foreshock (M0 = 5.3 ?? 1026 dyn-cm) followed about 20 s later by a larger main shock (M0 = 1.5 ?? 1027 dyn-cm). Our analysis indicates that these two events occurred on different fault segments: with the foreshock having a strike, dip, and average rake of 345??, 45??E, and 50??, and the main shock 10??, 45??E, and 80??, respectively. The foreshock initiated at a depth of 17 km and propagated updip and to the north. The main shock initiated at the southern end of the foreshock zone at a depth of 25 to 30 km, and propagated updip and unilaterally to the south. The north-south separation of the centroids of the moment release for the foreshock and main shock is about 60 km. The apparent triggering of the main shock by the foreshock is similar to other earthquakes that have involved the failure of multiple fault segments, such as the 1992 Landers, California, earthquake. Such occurrences argue against the use of individual, mapped, surface fault or fault-segment lengths in the determination of the size and frequency of future earthquakes.

  3. Active faulting in the central Betic Cordillera (Spain): Palaeoseismological constraint of the surface-rupturing history of the Baza Fault (Central Betic Cordillera, Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castro, J.; Martin-Rojas, I.; Medina-Cascales, I.; García-Tortosa, F. J.; Alfaro, P.; Insua-Arévalo, J. M.

    2018-06-01

    This paper on the Baza Fault provides the first palaeoseismic data from trenches in the central sector of the Betic Cordillera (S Spain), one of the most tectonically active areas of the Iberian Peninsula. With the palaeoseismological data we constructed time-stratigraphic OxCal models that yield probability density functions (PDFs) of individual palaeoseismic event timing. We analysed PDF overlap to quantitatively correlate the walls and site events into a single earthquake chronology. We assembled a surface-rupturing history of the Baza Fault for the last ca. 45,000 years. We postulated six alternative surface rupturing histories including 8-9 fault-wide earthquakes. We calculated fault-wide earthquake recurrence intervals using Monte Carlo. This analysis yielded a 4750-5150 yr recurrence interval. Finally, compared our results with the results from empirical relationships. Our results will provide a basis for future analyses of more of other active normal faults in this region. Moreover, our results will be essential for improving earthquake-probability assessments in Spain, where palaeoseismic data are scarce.

  4. Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana

    NASA Astrophysics Data System (ADS)

    Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.

    2010-12-01

    Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.

  5. Could offset cluster reveal strong earthquake pattern?——case study from Haiyuan Fault

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Zhang, Z.; Chen, T.; Yin, J.; Zhang, P. Z.; Zheng, W.; Zhang, H.; Li, C.

    2016-12-01

    Since 1990s, researchers tried to use offset clusters to study strong earthquake patterns. However, due to the limitation of quantity of offset data, it was not widely used until recent years with the rapid development of high-resolution topographic data, such as remote sensing images, LiDAR. In this study, we use airborne LiDAR data to re-evaluate the cumulative offsets and co-seismic offset of the 1920 Haiyuan Ms 8.5 earthquake along the western and middle segments of the co-seismic surface rupture zone. Our LiDAR data indicate the offset observations along both the western and middle segments fall into five groups. The group with minimum slip amount is associated with the 1920 Haiyuan Ms 8.5 earthquake, which ruptured both the western and middle segments. Our research highlights two new interpretations: firstly, the previously reported maximum displacement of the 1920 Earthquake is likely to be produced by at least two earthquakes; secondly, Our results reveal that the Cumulative Offset Probability Density (COPD) peaks of same offset amount on western segment and middles segment did not corresponding to each other one by one. The ages of the paleoearthquakes indicate the offsets are not accumulated during same period. We suggest that any discussion of the rupture pattern of a certain fault based on the offset data should also consider fault segmentation and paleoseismological data; Therefore, using the COPD peaks for studying the number of palaeo-events and their rupture patterns, the COPD peaks should be computed and analyzed on fault sub-sections and not entire fault zones. Our results reveal that the rupture pattern on the western and middle segment of the Haiyuan Fault is different from each other, which provide new data for the regional seismic potential analysis.

  6. SURFACE RUPTURE OF THE NORMAL SEISMIC FAULTS AND SLOPE FAILURES APPEARED IN APRIL 11th, 2011 FUKUSHIMA-PREFECTURE HAMADOORI EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Kazmi, Zaheer Abbas; Konagai, Kazuo; Kyokawa, Hiroyuki; Tetik, Cigdem

    On April 11th, 2011, Iwaki region of Fukushima prefecture was jolted by Fukushima-Prefecture Hamadoori Earthquake. Surface ruptures were observed along causative Idosawa and Yunotake normal faults. In addition to numerous small slope failures, a coherent landslide and building structures of Tabito Junior High School, bisected by Idosawa Fault, were found along the causative faults. A precise digital elevation model of the coherent landslide was obtained through the ground and air-born LiDAR surveys. The measurements of perimeters of the gymnasium building and the swimming pool of Tabito Junior High School have shown that ground undergoes a slow and steady/continual deformation.

  7. 3D dynamic rupture simulation and local tomography studies following the 2010 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Douilly, Roby

    The 2010 M7.0 Haiti earthquake was the first major earthquake in southern Haiti in 250 years. As this event could represent the beginning of a new period of active seismicity in the region, and in consideration of how vulnerable the population is to earthquake damage, it is important to understand the nature of this event and how it has influenced seismic hazards in the region. Most significantly, the 2010 earthquake occurred on the secondary Leogâne thrust fault (two fault segments), not the Enriquillo Fault, the major strike-slip fault in the region, despite it being only a few kilometers away. We first use a finite element model to simulate rupture along the Leogâne fault. We varied friction and background stress to investigate the conditions that best explain observed surface deformations and why the rupture did not to jump to the nearby Enriquillo fault. Our model successfully replicated rupture propagation along the two segments of the Leogâne fault, and indicated that a significant stress increase occurred on the top and to the west of the Enriquillo fault. We also investigated the potential ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake were to occur on the Enriquillo fault. We used a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for the segment of the Enriquillo fault closer to the capital. The high-frequency ground motion components were calculated using the specific barrier model, and the hybrid synthetics were obtained by combining the low-frequencies ( 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince (the capital), has a value of 0.35g. Finally, we investigated the 3D local tomography of this region. We considered 897 high-quality records from the earthquake catalog as recorded by

  8. Seismicity in the source areas of the 1896 and 1933 Sanriku earthquakes and implications for large near-trench earthquake faults

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Nakamura, Yasuyuki; Fujie, Gou; Kodaira, Shuichi; Kaiho, Yuka; Yamamoto, Yojiro; Miura, Seiichi

    2018-03-01

    In the northern part of the Japan Trench, the 1933 Showa-Sanriku earthquake (Mw 8.4), an outer-trench, normal-faulting earthquake, occurred 37 yr after the 1896 Meiji-Sanriku tsunami earthquake (Mw 8.0), a shallow, near-trench, plate-interface rupture. Tsunamis generated by both earthquakes caused severe damage along the Sanriku coast. Precise locations of earthquakes in the source areas of the 1896 and 1933 earthquakes have not previously been obtained because they occurred at considerable distances from the coast in deep water beyond the maximum operational depth of conventional ocean bottom seismographs (OBSs). In 2015, we incorporated OBSs designed for operation in deep water (ultradeep OBSs) in an OBS array during two months of seismic observations in the source areas of the 1896 and 1933 Sanriku earthquakes to investigate the relationship of seismicity there to outer-rise normal-faulting earthquakes and near-trench tsunami earthquakes. Our analysis showed that seismicity during our observation period occurred along three roughly linear trench-parallel trends in the outer-trench region. Seismic activity along these trends likely corresponds to aftershocks of the 1933 Showa-Sanriku earthquake and the Mw 7.4 normal-faulting earthquake that occurred 40 min after the 2011 Tohoku-Oki earthquake. Furthermore, changes of the clarity of reflections from the oceanic Moho on seismic reflection profiles and low-velocity anomalies within the oceanic mantle were observed near the linear trends of the seismicity. The focal mechanisms we determined indicate that an extensional stress regime extends to about 40 km depth, below which the stress regime is compressional. These observations suggest that rupture during the 1933 Showa-Sanriku earthquake did not extend to the base of the oceanic lithosphere and that compound rupture of multiple or segmented faults is a more plausible explanation for that earthquake. The source area of the 1896 Meiji-Sanriku tsunami earthquake is

  9. Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Carluccio, Roberto; Papadimitriou, Eleftheria; Karakostas, Vassilis

    2015-01-01

    The characteristic earthquake hypothesis is the basis of time-dependent modeling of earthquake recurrence on major faults. However, the characteristic earthquake hypothesis is not strongly supported by observational data. Few fault segments have long historical or paleoseismic records of individually dated ruptures, and when data and parameter uncertainties are allowed for, the form of the recurrence distribution is difficult to establish. This is the case, for instance, of the Corinth Gulf Fault System (CGFS), for which documents about strong earthquakes exist for at least 2000 years, although they can be considered complete for M ≥ 6.0 only for the latest 300 years, during which only few characteristic earthquakes are reported for individual fault segments. The use of a physics-based earthquake simulator has allowed the production of catalogs lasting 100,000 years and containing more than 500,000 events of magnitudes ≥ 4.0. The main features of our simulation algorithm are (1) an average slip rate released by earthquakes for every single segment in the investigated fault system, (2) heuristic procedures for rupture growth and stop, leading to a self-organized earthquake magnitude distribution, (3) the interaction between earthquake sources, and (4) the effect of minor earthquakes in redistributing stress. The application of our simulation algorithm to the CGFS has shown realistic features in time, space, and magnitude behavior of the seismicity. These features include long-term periodicity of strong earthquakes, short-term clustering of both strong and smaller events, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the higher-magnitude range.

  10. Role of stress triggering in earthquake migration on the North Anatolian fault

    USGS Publications Warehouse

    Stein, R.S.; Dieterich, J.H.; Barka, A.A.

    1996-01-01

    Ten M???6.7 earthquakes ruptured 1,000 km of the North Anatolian fault (Turkey) during 1939-92, providing an unsurpassed opportunity to study how one large shock sets up the next. Calculations of the change in Coulomb failure stress reveal that 9 out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 5 bars, equivalent to 20 years of secular stressing. We translate the calculated stress changes into earthquake probabilities using an earthquake-nucleation constitutive relation, which includes both permanent and transient stress effects. For the typical 10-year period between triggering and subsequent rupturing shocks in the Anatolia sequence, the stress changes yield an average three-fold gain in the ensuing earthquake probability. Stress is now calculated to be high at several isolated sites along the fault. During the next 30 years, we estimate a 15% probability of a M???6.7 earthquake east of the major eastern center of Erzincan, and a 12% probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere. ?? 1997 Elsevier Science Ltd.

  11. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    NASA Astrophysics Data System (ADS)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike

  12. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  13. Rupture history of the 1997 Cariaco, Venezuela, earthquake from teleseismic P waves

    USGS Publications Warehouse

    Mendoza, C.

    2000-01-01

    A two-step finite-fault waveform inversion scheme is applied to the broadband teleseismic P waves recorded for the strike-slip, Cariaco, Venezuela, earthquake of 9 July 1997 to recover the distribution of mainshock slip. The earthquake is first analyzed using a long narrow fault with a maximum rise time of 20 sec. This line-source analysis indicates that slip propagated to the west with a constant rupture velocity and a relatively short rise time. The results are then used to constrain a second inversion of the P waveforms using a 60-km by 20-km two-dimensional fault. The rupture shows a zone of large slip (1.3-m peak) near the hypocenter and a second, broader source extending updip and to the west at depths shallower than 5 km. The second source has a peak slip of 2.1 meters and accounts for most of the moment of 1.1 × 1026 dyne-cm (6.6 Mww) estimated from the P waves. The inferred rupture pattern is consistent with macroseismic effects observed in the epicentral area.

  14. Mapping of the surface rupture induced by the M 7.3 Kumamoto Earthquake along the Eastern segment of Futagawa fault using image correlation techniques

    NASA Astrophysics Data System (ADS)

    Ekhtari, N.; Glennie, C. L.; Fielding, E. J.; Liang, C.

    2016-12-01

    Near field surface deformation is vital to understanding the shallow fault physics of earthquakes but near-field deformation measurements are often sparse or not reliable. In this study, we use the Co-seismic Image Correlation (COSI-Corr) technique to map the near-field surface deformation caused by the M 7.3 April 16, 2016 Kumamoto Earthquake, Kyushu, Japan. The surface rupture around the Eastern segment of Futagawa fault is mapped using a pair of panchromatic 1.5 meter resolution SPOT 7 images. These images were acquired on January 16 and April 29, 2016 (3 months before and 13 days after the earthquake respectively) with close to nadir (less than 1.5 degree off nadir) viewing angle. The two images are ortho-rectified using SRTM Digital Elevation Model and further co-registered using tie points far away from the rupture field. Then the COSI-Corr technique is utilized to produce an estimated surface displacement map, and a horizontal displacement vector field is calculated which supplies a seamless estimate of near field displacement measurements along the Eastern segment of the Futagawa fault. The COSI-Corr estimated displacements are then compared to other existing displacement observations from InSAR, GPS and field observations.

  15. 3-D Dynamic rupture simulation for the 2016 Kumamoto, Japan, earthquake sequence: Foreshocks and M6 dynamically triggered event

    NASA Astrophysics Data System (ADS)

    Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.

    2016-12-01

    A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an

  16. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults

    NASA Astrophysics Data System (ADS)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.

    2011-12-01

    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here

  17. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments

    USGS Publications Warehouse

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.

    2013-01-01

    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  18. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults

    NASA Astrophysics Data System (ADS)

    Norbeck, Jack H.; Horne, Roland N.

    2018-05-01

    The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.

  19. Using Paleoseismic Trenching and LiDAR Analysis to Evaluate Rupture Propagation Through Segment Boundaries of the Central Wasatch Fault Zone, Utah

    NASA Astrophysics Data System (ADS)

    Bennett, S. E. K.; DuRoss, C. B.; Reitman, N. G.; Devore, J. R.; Hiscock, A.; Gold, R. D.; Briggs, R. W.; Personius, S. F.

    2014-12-01

    Paleoseismic data near fault segment boundaries constrain the extent of past surface ruptures and the persistence of rupture termination at segment boundaries. Paleoseismic evidence for large (M≥7.0) earthquakes on the central Holocene-active fault segments of the 350-km-long Wasatch fault zone (WFZ) generally supports single-segment ruptures but also permits multi-segment rupture scenarios. The extent and frequency of ruptures that span segment boundaries remains poorly known, adding uncertainty to seismic hazard models for this populated region of Utah. To address these uncertainties we conducted four paleoseismic investigations near the Salt Lake City-Provo and Provo-Nephi segment boundaries of the WFZ. We examined an exposure of the WFZ at Maple Canyon (Woodland Hills, UT) and excavated the Flat Canyon trench (Salem, UT), 7 and 11 km, respectively, from the southern tip of the Provo segment. We document evidence for at least five earthquakes at Maple Canyon and four to seven earthquakes that post-date mid-Holocene fan deposits at Flat Canyon. These earthquake chronologies will be compared to seven earthquakes observed in previous trenches on the northern Nephi segment to assess rupture correlation across the Provo-Nephi segment boundary. To assess rupture correlation across the Salt Lake City-Provo segment boundary we excavated the Alpine trench (Alpine, UT), 1 km from the northern tip of the Provo segment, and the Corner Canyon trench (Draper, UT) 1 km from the southern tip of the Salt Lake City segment. We document evidence for six earthquakes at both sites. Ongoing geochronologic analysis (14C, optically stimulated luminescence) will constrain earthquake chronologies and help identify through-going ruptures across these segment boundaries. Analysis of new high-resolution (0.5m) airborne LiDAR along the entire WFZ will quantify latest Quaternary displacements and slip rates and document spatial and temporal slip patterns near fault segment boundaries.

  20. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Schwartz, David P.; Dawson, Timothy E.; Stenner, Heidi D.; Lienkaemper, James J.; Sherrod, Brian; Cinti, Francesca R.; Montone, Paola; Craw, Patricia; Crone, Anthony J.; Personius, Stephen F.

    2004-01-01

    The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slip-distribution data can be used to infer moment release along other active fault traces.

  1. Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault

    USGS Publications Warehouse

    Thomas, Amanda M.; Beroza, Gregory C.; Shelly, David R.

    2016-01-01

    Low-frequency earthquakes (LFEs) are small repeating earthquakes that occur in conjunction with deep slow slip. Like typical earthquakes, LFEs are thought to represent shear slip on crustal faults, but when compared to earthquakes of the same magnitude, LFEs are depleted in high-frequency content and have lower corner frequencies, implying longer duration. Here we exploit this difference to estimate the duration of LFEs on the deep San Andreas Fault (SAF). We find that the M ~ 1 LFEs have typical durations of ~0.2 s. Using the annual slip rate of the deep SAF and the average number of LFEs per year, we estimate average LFE slip rates of ~0.24 mm/s. When combined with the LFE magnitude, this number implies a stress drop of ~104 Pa, 2 to 3 orders of magnitude lower than ordinary earthquakes, and a rupture velocity of 0.7 km/s, 20% of the shear wave speed. Typical earthquakes are thought to have rupture velocities of ~80–90% of the shear wave speed. Together, the slow rupture velocity, low stress drops, and slow slip velocity explain why LFEs are depleted in high-frequency content relative to ordinary earthquakes and suggest that LFE sources represent areas capable of relatively higher slip speed in deep fault zones. Additionally, changes in rheology may not be required to explain both LFEs and slow slip; the same process that governs the slip speed during slow earthquakes may also limit the rupture velocity of LFEs.

  2. Detection of postseismic fault-zone collapse following the Landers earthquake

    USGS Publications Warehouse

    Massonnet, D.; Thatcher, W.; Vadon, H.

    1996-01-01

    Stress changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone.

  3. Static Rupture Model of the 2010 M7.2 El Mayor-Cucapah Earthquake from ALOS, ENVISAT, SPOT and GPS Data

    NASA Astrophysics Data System (ADS)

    Fialko, Y.; Gonzalez, A.; Gonzalez-Garcia, J. J.; Barbot, S.; Leprince, S.; Sandwell, D. T.; Agnew, D. C.

    2010-12-01

    The April 4, 2010 "Easter Sunday" earthquake on the US-Mexico border was the largest event to strike Southern California in the last 18 years. The earthquake occurred on a northwest trending fault close to, but not coincident with the identified 1892 Laguna Salada rupture. We investigate coseismic deformation due to the 2010 El Mayor-Cucapah earthquake using Synthetic Aperture Radar (SAR) imagery form ENVISAT and ALOS satellites, optical imagery from SPOT-5 satellite, and continuous and campaign GPS data. The earliest campaign postseismic GPS survey was conducted within days after the earthquake, and provided the near-field cosesmic offsets. Along-track SAR interferograms and amplitude cross-correlation of optical images reveal a relatively simple continuous fault trace with maximum offsets of the order of 3 meters. This is in contrast to the results of geological mapping that portrayed a complex broad zone of distributed faulting. Also, SAR data indicate that the rupture propagated bi-laterally from the epicenter near the town of Durango both to the North-West into the Cucapah mountains and to the South-East into the Mexically valley. The inferred South-East part of the rupture was subsequently field-checked and associated with several fresh scarps, although overall the earthquake fault does not have a conspicuous surface trace South-East of the hypocenter. It is worth noting that the 2010 earthquake propagated into stress shadows of prior events - the Laguna Salada earthquake that ruptured the North-West part of the fault in 1892, and several M6+ earthquakes that ruptured the South-East part of the fault over the last century. Analysis of the coseismic displacement field at the Earth's surface (in particular, the full 3-component displacement field retrieved from SAR and optical imagery) shows a pronounced asymmetry in horizontal displacements across both nodal planes. The maximum displacements are observed in the North-Eastern and South-Western quadrants. This

  4. The 2017 Mw = 8.2 Tehuantepec earthquake: a slab bending or slab pull rupture?

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Gombert, B.; Simons, M.; Fielding, E. J.; Rivera, L. A.; Bekaert, D. P.; Jiang, J.; Liang, C.; Moore, A. W.; Liu, Z.

    2017-12-01

    On September 8th 2017, a regionally destructive Mw 8.2 intra-slab earthquake struck Mexico in the Gulf of Tehuantepec. While large intermediate depth intra-slab earthquakes are a major hazard, we have only a limited knowledge of the strain budgets within subducting slabs. Several mechanisms have been proposed to explain intraplate earthquakes in subduction zones. Bending stresses might cause the occurrence of seismic events located at depths where the slab dip changes abruptly. However, an alternative explanation is needed if the ruptures are found to propagate through the entire lithosphere. Depending on the coupling of the subduction interface, intraplate earthquakes occurring updip or downdip of the locked zone could also be caused by the negative buoyancy of the sinking slab (i.e., slab pull). The increasing availability of near-fault data provides a unique opportunity to better constrain the seismogenic behavior of large intra-slab earthquakes. Teleseismic analyses of the 2017 Tehuantepec earthquake lead to contrasting statements about the depth extent of the rupture: while most of long period centroid moment tensor inversions yield fairly large centroid depths (>40 km), some finite-fault models suggest much shallower slip concentrated at depths less than 30 km. In this study, we analyze GPS, InSAR, tsunami and seismological data to constrain the earthquake location, fault geometry and slip distribution. We use a Bayesian approach devoid of significant spatial smoothing to characterize the range of allowable rupture depths. In addition, to cope with potential artifacts in centroid depth estimates due to unmodeled lateral heterogeneities, we also analyze long-period seismological data using a full 3D Earth model. Preliminary results suggest a fairly deep rupture consistent with a slab-pull process breaking a significant proportion of the lithosphere and potentially reflecting at least local detachment of the slab.

  5. Diverse rupture modes for surface-deforming upper plate earthquakes in the southern Puget Lowland of Washington State

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Sherrod, Brian L.; Kelsey, Harvey M.; Johnson, Samuel Y.; Bradley, Lee-Ann; Wells, Ray E.

    2014-01-01

    Earthquake prehistory of the southern Puget Lowland, in the north-south compressive regime of the migrating Cascadia forearc, reflects diverse earthquake rupture modes with variable recurrence. Stratigraphy and Bayesian analyses of previously reported and new 14C ages in trenches and cores along backthrust scarps in the Seattle fault zone restrict a large earthquake to 1040–910 cal yr B.P. (2σ), an interval that includes the time of the M 7–7.5 Restoration Point earthquake. A newly identified surface-rupturing earthquake along the Waterman Point backthrust dates to 940–380 cal yr B.P., bringing the number of earthquakes in the Seattle fault zone in the past 3500 yr to 4 or 5. Whether scarps record earthquakes of moderate (M 5.5–6.0) or large (M 6.5–7.0) magnitude, backthrusts of the Seattle fault zone may slip during moderate to large earthquakes every few hundred years for periods of 1000–2000 yr, and then not slip for periods of at least several thousands of years. Four new fault scarp trenches in the Tacoma fault zone show evidence of late Holocene folding and faulting about the time of a large earthquake or earthquakes inferred from widespread coseismic subsidence ca. 1000 cal yr B.P.; 12 ages from 8 sites in the Tacoma fault zone limit the earthquakes to 1050–980 cal yr B.P. Evidence is too sparse to determine whether a large earthquake was closely predated or postdated by other earthquakes in the Tacoma basin, but the scarp of the Tacoma fault was formed by multiple earthquakes. In the northeast-striking Saddle Mountain deformation zone, along the western limit of the Seattle and Tacoma fault zones, analysis of previous ages limits earthquakes to 1200–310 cal yr B.P. The prehistory clarifies earthquake clustering in the central Puget Lowland, but cannot resolve potential structural links among the three Holocene fault zones.

  6. Systematic observations of the slip pulse properties of large earthquake ruptures

    USGS Publications Warehouse

    Melgar, Diego; Hayes, Gavin

    2017-01-01

    In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of faults and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture; however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7–M9 processed in a uniform manner and show the magnitude scaling properties of these slip pulses indicates self-similarity. Further, we find that large and very large events are statistically distinguishable relatively early (at ~15 s) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.

  7. Fault interaction and stress triggering of twentieth century earthquakes in Mongolia

    USGS Publications Warehouse

    Pollitz, F.; Vergnolle, M.; Calais, E.

    2003-01-01

    A cluster of exceptionally large earthquakes in the interior of Asia occurred from 1905 to 1967: the 1905 M7.9 Tsetserleg and M8.4 Bolnai earthquakes, the 1931 M8.0 Fu Yun earthquake, the 1957 M8.1 Gobi-Altai earthquake, and the 1967 M7.1 Mogod earthquake (sequence). Each of the larger (M ??? 8) earthquakes involved strike-slip faulting averaging more than 5 m and rupture lengths of several hundred kilometers. Available geologic data indicate that recurrence intervals on the major source faults are several thousands of years and distances of about 400 km separate the respective rupture areas. We propose that the occurrences of these and many smaller earthquakes are related and controlled to a large extent by stress changes generated by the compounded static deformation of the preceding earthquakes and subsequent viscoelastic relaxation of the lower crust and upper mantle beneath Mongolia. We employ a spherically layered viscoelastic model constrained by the 1994-2002 GPS velocity field in western Mongolia [Vergnolle et al., 2003]. Using the succession of twentieth century earthquakes as sources of deformation, we then analyze the time-dependent change in Coulomb failure stress (????f). At remote interaction distances, static ????f values are small. However, modeled postseismic stress changes typically accumulate to several tenths of a bar over time intervals of decades. Almost all significant twentieth century regional earthquakes (M ??? 6) with well-constrained fault geometry lie in positive ????f lobes of magnitude about +0.5 bar. Our results suggest that significant stress transfer is possible among continental faults separated by hundreds of kilometers and on timescales of decades. Copyright 2003 by the American Geophysical Union.

  8. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji

    2013-04-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping

  9. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.

    2012-12-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping

  10. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    NASA Astrophysics Data System (ADS)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  11. Rupture Speed and Dynamic Frictional Processes for the 1995 ML4.1 Shacheng, Hebei, China, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Liu, B.; Shi, B.

    2010-12-01

    An earthquake with ML4.1 occurred at Shacheng, Hebei, China, on July 20, 1995, followed by 28 aftershocks with 0.9≤ML≤4.0 (Chen et al, 2005). According to ZÚÑIGA (1993), for the 1995 ML4.1 Shacheng earthquake sequence, the main shock is corresponding to undershoot, while aftershocks should match overshoot. With the suggestion that the dynamic rupture processes of the overshoot aftershocks could be related to the crack (sub-fault) extension inside the main fault. After main shock, the local stresses concentration inside the fault may play a dominant role in sustain the crack extending. Therefore, the main energy dissipation mechanism should be the aftershocks fracturing process associated with the crack extending. We derived minimum radiation energy criterion (MREC) following variational principle (Kanamori and Rivera, 2004)(ES/M0')min≧[3M0/(ɛπμR3)](v/β)3, where ES and M0' are radiated energy and seismic moment gained from observation, μ is the modulus of fault rigidity, ɛ is the parameter of ɛ=M0'/M0,M0 is seismic moment and R is rupture size on the fault, v and β are rupture speed and S-wave speed. From II and III crack extending model, we attempt to reconcile a uniform expression for calculate seismic radiation efficiency ηG, which can be used to restrict the upper limit efficiency and avoid the non-physics phenomenon that radiation efficiency is larger than 1. In ML 4.1 Shacheng earthquake sequence, the rupture speed of the main shock was about 0.86 of S-wave speed β according to MREC, closing to the Rayleigh wave speed, while the rupture speeds of the remained 28 aftershocks ranged from 0.05β to 0.55β. The rupture speed was 0.9β, and most of the aftershocks are no more than 0.35β using II and III crack extending model. In addition, the seismic radiation efficiencies for this earthquake sequence were: for the most aftershocks, the radiation efficiencies were less than 10%, inferring a low seismic efficiency, whereas the radiation efficiency

  12. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a

  13. A Benchmarking setup for Coupled Earthquake Cycle - Dynamic Rupture - Tsunami Simulations

    NASA Astrophysics Data System (ADS)

    Behrens, Joern; Bader, Michael; van Dinther, Ylona; Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Uphoff, Carsten; Vater, Stefan; Wollherr, Stephanie; van Zelst, Iris

    2017-04-01

    We developed a simulation framework for coupled physics-based earthquake rupture generation with tsunami propagation and inundation on a simplified subduction zone system for the project "Advanced Simulation of Coupled Earthquake and Tsunami Events" (ASCETE, funded by the Volkswagen Foundation). Here, we present a benchmarking setup that can be used for complex rupture models. The workflow begins with a 2D seismo-thermo-mechanical earthquake cycle model representing long term deformation along a planar, shallowly dipping subduction zone interface. Slip instabilities that approximate earthquakes arise spontaneously along the subduction zone interface in this model. The absolute stress field and material properties for a single slip event are used as initial conditions for a dynamic earthquake rupture model.The rupture simulation is performed with SeisSol, which uses an ADER discontinuous Galerkin discretization scheme with an unstructured tetrahedral mesh. The seafloor displacements resulting from this rupture are transferred to the tsunami model with a simple coastal run-up profile. An adaptive mesh discretizing the shallow water equations with a Runge-Kutta discontinuous Galerkin (RKDG) scheme subsequently allows for an accurate and efficient representation of the tsunami evolution and inundation at the coast. This workflow allows for evaluation of how the rupture behavior affects the hydrodynamic wave propagation and coastal inundation. We present coupled results for differing earthquake scenarios. Examples include megathrust only ruptures versus ruptures with splay fault branching off the megathrust near the surface. Coupling to the tsunami simulation component is performed either dynamically (time dependent) or statically, resulting in differing tsunami wave and inundation behavior. The simplified topographical setup allows for systematic parameter studies and reproducible physical studies.

  14. Aftershock source properties of events following the 2013 Craig Earthquake: new evidence for structural heterogeneity on the northern Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; Walton, M. A. L.; Ruppert, N. A.; Gulick, S. P. S.; Christeson, G. L.; Haeussler, P. J.

    2014-12-01

    In January 2013, a Mw 7.5 earthquake ruptured a segment of the Queen Charlotte Fault offshore the town of Craig in southeast Alaska. The region of the fault that slipped during the Craig earthquake is adjacent to and possibly overlapping with the northern extent of the 1949 M 8.1 Queen Charlotte earthquake rupture (Canada's largest recorded earthquake), and is just south of the rupture area of the 1972 M 7.6 earthquake near Sitka, Alaska. Here we present aftershock locations and focal mechanisms for events that occurred four months following the mainshock using data recorded on an Ocean Bottom Seismometer (OBS) array that was deployed offshore of Prince of Wales Island. This array consisted of 9 short period instruments surrounding the fault segment, and recorded hundreds of aftershocks during the months of April and May, 2013. In addition to highlighting the primary mainshock rupture plane, aftershocks also appear to be occurring along secondary fault structures adjacent to the main fault trace, illuminating complicated structure, particularly toward the northern extent of the Craig rupture. Focal mechanisms for the larger events recorded during the OBS deployment show both near-vertical strike slip motion consistent with the mainshock mechanism, as well as events with varying strike and a component of normal faulting. Although fault structure along this northern segment of the QCF appears to be considerably simpler than to the south, where a higher degree of oblique convergence leads to sub-parallel compressional deformation structures, secondary faulting structures apparent in legacy seismic reflection data near the Craig rupture may be consistent with the observed seismicity patterns. In combination, these data may help to characterize structural heterogeneity along the northern segment of the Queen Charlotte Fault that contributes to rupture segmentation during large strike slip events.

  15. Breaking barriers and halting rupture: the 2016 Amatrice-Visso-Castelluccio earthquake sequence, central Italy

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Walters, R. J.; Wedmore, L. N. J.; Craig, T. J.; McCaffrey, K. J. W.; Wilkinson, M. W.; Livio, F.; Michetti, A.; Goodall, H.; Li, Z.; Chen, J.; De Martini, P. M.

    2017-12-01

    In 2016 the Central Italian Apennines was struck by a sequence of normal faulting earthquakes that ruptured in three separate events on the 24th August (Mw 6.2), the 26th Oct (Mw 6.1), and the 30th Oct (Mw 6.6). We reveal the complex nature of the individual events and the time-evolution of the sequence using multiple datasets. We will present an overview of the results from field geology, satellite geodesy, GNSS (including low-cost short baseline installations), and terrestrial laser scanning (TLS). Sequences of earthquakes of mid to high magnitude 6 are common in historical and seismological records in Italy and other similar tectonic settings globally. Multi-fault rupture during these sequences can occur in seconds, as in the M 6.9 1980 Irpinia earthquake, or can span days, months, or years (e.g. the 1703 Norcia-L'Aquila sequence). It is critical to determine why the causative faults in the 2016 sequence did not rupture simultaneously, and how this relates to fault segmentation and structural barriers. This is the first sequence of this kind to be observed using modern geodetic techniques, and only with all of the datasets combined can we begin to understand how and why the sequence evolved in time and space. We show that earthquake rupture both broke through structural barriers that were thought to exist, but was also inhibited by a previously unknown structure. We will also discuss the logistical challenges in generating datasets on the time-evolving sequence, and show how rapid response and international collaboration within the Open EMERGEO Working Group was critical for gaining a complete picture of the ongoing activity.

  16. The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault

    NASA Technical Reports Server (NTRS)

    Talebian, M.; Fielding, E. J.; Funning, G. J.; Ghorashi, M.; Jackson, J.; Nazari, H.; Parsons, B.; Priestley, K.; Rosen, P. A.; Walker, R.; hide

    2004-01-01

    A magnitude 6.5 earthquake devastated the town of Bam in southeast Iran on 26 December 2003. Surface displacements and decorrelation effects, mapped using Envisat radar data, reveal that over 2 m of slip occurred at depth on a fault that had not previously been identified. It is common for earthquakes to occur on blind faults which, despite their name, usually produce long-term surface effects by which their existence may be recognised. However, in this case there is a complete absence of morphological features associated with the seismogenic fault that destroyed Bam.

  17. Can diligent and extensive mapping of faults provide reliable estimates of the expected maximum earthquakes at these faults? No. (Invited)

    NASA Astrophysics Data System (ADS)

    Bird, P.

    2010-12-01

    The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt

  18. Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Ting-To; Fernàndez, Josè; Rundle, John B.

    1998-03-01

    Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.

  19. Rupture, waves and earthquakes.

    PubMed

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  20. Rupture, waves and earthquakes

    PubMed Central

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  1. A New Correlation of Large Earthquakes Along the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Scharer, K. M.; Weldon, R. J.; Biasi, G. P.

    2010-12-01

    There are now three sites on the southern San Andreas fault (SSAF) with records of 10 or more dated ground rupturing earthquakes (Frazier Mountain, Wrightwood and Pallett Creek) and at least seven other sites with 3-5 dated events. Numerous sites have related information including geomorphic offsets caused by 1 to a few earthquakes, a known amount of slip spanning a specific interval of time or number of earthquakes, or the number (but not necessarily the exact ages) of earthquakes in an interval of time. We use this information to construct a record of recent large earthquakes on the SSAF. Strongly overlapping C-14 age ranges, especially between closely spaced sites like Pallett Creek and Wrightwood on the Mojave segment and Thousand Palms, Indio, Coachella and Salt Creek on the southernmost 100 kms of the fault, and overlap between the more distant Frazier Mountain and Bidart Fan sites on the northernmost part of the fault suggest that the paleoseismic data are robust and can be explained by a relatively small number of events that span substantial portions of the fault. This is consistent with the extent of rupture of the two historic events (1857 was ~300 km long and 1812 was 100-200 km long); slip per event data that averages 3-5 m per event at most sites; and the long historical hiatus since 1857. While some sites have smaller offsets for individual events, correlation between sites suggests that many small offsets are near the end of long ruptures. While the long event series on the Mojave are quasi-periodic, individual intervals range about an order of magnitude, from a few decades up to ~200 years. This wide range of intervals and the apparent anti-slip predictable behavior of ruptures (small intervals are not followed by small events) suggest weak clustering or periods of time spanning multiple intervals when strain release is higher low lower than average. These properties defy the application of simple hazard analysis but need to be understood to

  2. Complex surface rupturing and related formation mechanisms in the Xiaoyudong area for the 2008 Mw 7.9 Wenchuan Earthquake, China

    NASA Astrophysics Data System (ADS)

    Tan, Xi-bin; Yuan, Ren-mao; Xu, Xi-wei; Chen, Gui-hua; Klinger, Yann; Chang, Chung-Pai; Ren, Jun-jie; Xu, Chong; Li, Kang

    2012-09-01

    The large oblique reverse slip shock of the 2008 Mw = 7.9 Wenchuan earthquake, China, produced one of the longest and most complicated surface ruptures ever known. The complexity is particularly evident in the Xiaoyudong area, where three special phenomena occurred: the 7 km long Xiaoyudong rupture perpendicular to the Beichuan-Yingxiu fault; the occurrence of two parallel faults rupturing simultaneously, and apparent discontinuity of the Beichuan-Yingxiu rupture. This paper systematically documents these co-seismic rupture phenomena for the Xiaoyudong area. The discussion and results are based on field investigations and analyses of faulting mechanisms and prevalent stress conditions. The results show that the Beichuan-Yingxiu fault formed a 3.5 km wide restraining stepover at the Xiaoyudong area. The Xiaoyudong fault is not a tear fault suggested by previous researches, but a frontal reverse fault induced by the oblique compression at this stepover; it well accommodates the 'deformation gap' of the Beichuan-Yingxiu fault in the Xiaoyudong area. Further, stress along the Peng-Guan fault plane doubles due to a change in dip angle of the Beichuan-Yingxiu fault across the Xiaoyudong restraining stepover. This resulted in two faults rupturing the ground's surface simultaneously, to the north of the Xiaoyudong area. These results are helpful in deepening our understanding of the dynamic processes that produced surface ruptures during the Wenchuan earthquake. Furthermore, the results suggest more attention be focused on the influence of dextral slip component, the change of the control fault's attitude, and property differences in rocks on either side of faults when discussing the formation mechanism of surface ruptures.

  3. Estimating the Maximum Magnitude of Induced Earthquakes With Dynamic Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Gilmour, E.; Daub, E. G.

    2017-12-01

    Seismicity in Oklahoma has been sharply increasing as the result of wastewater injection. The earthquakes, thought to be induced from changes in pore pressure due to fluid injection, nucleate along existing faults. Induced earthquakes currently dominate central and eastern United States seismicity (Keranen et al. 2016). Induced earthquakes have only been occurring in the central US for a short time; therefore, too few induced earthquakes have been observed in this region to know their maximum magnitude. The lack of knowledge regarding the maximum magnitude of induced earthquakes means that large uncertainties exist in the seismic hazard for the central United States. While induced earthquakes follow the Gutenberg-Richter relation (van der Elst et al. 2016), it is unclear if there are limits to their magnitudes. An estimate of the maximum magnitude of the induced earthquakes is crucial for understanding their impact on seismic hazard. While other estimates of the maximum magnitude exist, those estimates are observational or statistical, and cannot take into account the possibility of larger events that have not yet been observed. Here, we take a physical approach to studying the maximum magnitude based on dynamic ruptures simulations. We run a suite of two-dimensional ruptures simulations to physically determine how ruptures propagate. The simulations use the known parameters of principle stress orientation and rupture locations. We vary the other unknown parameters of the ruptures simulations to obtain a large number of rupture simulation results reflecting different possible sets of parameters, and use these results to train a neural network to complete the ruptures simulations. Then using a Markov Chain Monte Carlo method to check different combinations of parameters, the trained neural network is used to create synthetic magnitude-frequency distributions to compare to the real earthquake catalog. This method allows us to find sets of parameters that are

  4. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available

  5. The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault

    USGS Publications Warehouse

    Barka, A.; Akyuz, H.S.; Altunel, E.; Sunal, G.; Cakir, Z.; Dikbas, A.; Yerli, B.; Armijo, R.; Meyer, B.; De Chabalier, J. B.; Rockwell, Thomas; Dolan, J.R.; Hartleb, R.; Dawson, Tim; Christofferson, S.; Tucker, A.; Fumal, T.; Langridge, Rob; Stenner, H.; Lettis, William; Bachhuber, J.; Page, W.

    2002-01-01

    The 17 August 1999 İzmit earthquake occurred on the northern strand of the North Anatolian fault zone. The earthquake is associated with a 145-km-long surface rupture that extends from southwest of Düzce in the east to west of Hersek delta in the west. Detailed mapping of the surface rupture shows that it consists of five segments separated by releasing step-overs; herein named the Hersek, Karamürsel-Gölcük, İzmit-Sapanca Lake, Sapanca-Akyazi, and Karadere segments from west to east, respectively. The Hersek segment, which cuts the tip of a large delta plain in the western end of the rupture zone, has an orientation of N80°. The N70°-80°E-trending Karamürsel-Gölcük segment extends along the linear southern coasts of the İzmit Gulf between Karamürsel and Gölcük and produced the 470-cm maximum displacement in Gölcük. The northwest-southeast-striking Gölcük normal fault between the Karamürsel-Gölcük and İzmit-Sapanca segments has 2.3-m maximum vertical displacement. The maximum dextral offset along the İzmit-Sapanca Lake segment was measured to be about 3.5 m, and its trend varies between N80°E and east-west. The Sapanca-Akyazi segment trends N75°-85°W and expresses a maximum displacement of 5.2 m. The Karadere segment trends N65°E and produced up to 1.5-m maximum displacement. The Karadere and Sapanca-Akyazi segments form fan-shape or splaying ruptures near their eastern ends where the displacement also diminished.

  6. Earthquake geology along the North Anatoli Fault Zone in the Marmara Sea

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Cormier, M.-H.; Seeber, L.; Cagatay, M. N.; Capotondi, L.; Polonia, A.; Lozefski, G.

    2003-04-01

    The feasibility of conducting submarine earthquake geology along the North Anatolia Fault Zone (NAFZ) was evaluated from sediment cores and geophysical data (multibeam bathymetry and high-resolution CHIRP) recently collected from the Marmara Sea. We have successfully begun to characterize the Holocene earthquake record of the NAFZ in a small basin along the Ganos fault east of the Gelibolu peninsula, and in Izmit Gulf (west of the Hersek promontory and in the Karamürsel basin). Evidence for seismic activity was derived from mass-wasting and gravity flow deposits including homogenites (deposits >10cm thick containing turbidites with resuspended sediment above) identified from core x-rays, grain size, organic carbon, and mineralogical analyses. Deposits were correlated to the historical earthquake record of the Marmara Sea region by chronology derived from 14C, 210Pb and 137Cs. The basin near Ganos is ideal for the study of earthquake-related activity. It is deep (>50m), bisected by the fault, and isolated from other basins and distal from fluvial and alluvial fan input that may include weather-related events. Yet, its sedimentation rates are very high (>2m/1000 years). Homogenites, have been tentatively correlated to the 1912 Ganos earthquake and to the mid-1960's and mid-1800's Saros Gulf earthquakes. The Ganos earthquake ruptured the entire 50km long segment across the Gelibolu peninsula plus submarine portions on either side. If the timing of these events is correct, it suggests frequent seismic activity for this region. On the Gulf of Izmit, west of Hersek, sandy-mass flows containing soft sediment deformation such as recumbent folds and sand injections have been linked to the 1509 earthquake. Historical records indicate that the segment of the NAFZ in the Hersek Peninsula ruptured during this earthquake and our findings suggest that the rupture may have continued beneath the Izmit Gulf. In the eastern portion of the Karamürsel basin, sandy turbidites have

  7. Afterslip, tremor, and the Denali fault earthquake

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie; Ruppert, Natalia

    2012-01-01

    We tested the hypothesis that afterslip should be accompanied by tremor using observations of seismic and aseismic deformation surrounding the 2002 M 7.9 Denali fault, Alaska, earthquake (DFE). Afterslip happens more frequently than spontaneous slow slip and has been observed in a wider range of tectonic environments, and thus the existence or absence of tremor accompanying afterslip may provide new clues about tremor generation. We also searched for precursory tremor, as a proxy for posited accelerating slip leading to rupture. Our search yielded no tremor during the five days prior to the DFE or in several intervals in the three months after. This negative result and an array of other observations all may be explained by rupture penetrating below the presumed locked zone into the frictional transition zone. While not unique, such an explanation corroborates previous models of megathrust and transform earthquake ruptures that extend well into the transition zone.

  8. Delineation of Rupture Propagation of Large Earthquakes Using Source-Scanning Algorithm: A Control Study

    NASA Astrophysics Data System (ADS)

    Kao, H.; Shan, S.

    2004-12-01

    Determination of the rupture propagation of large earthquakes is important and of wide interest to the seismological research community. The conventional inversion method determines the distribution of slip at a grid of subfaults whose orientations are predefined. As a result, difference choices of fault geometry and dimensions often result in different solutions. In this study, we try to reconstruct the rupture history of an earthquake using the newly developed Source-Scanning Algorithm (SSA) without imposing any a priori constraints on the fault's orientation and dimension. The SSA identifies the distribution of seismic sources in two steps. First, it calculates the theoretical arrival times from all grid points inside the model space to all seismic stations by assuming an origin time. Then, the absolute amplitudes of the observed waveforms at the predicted arrival times are added to give the "brightness" of each time-space pair, and the brightest spots mark the locations of sources. The propagation of the rupture is depicted by the migration of the brightest spots throughout a prescribed time window. A series of experiments are conducted to test the resolution of the SSA inversion. Contrary to the conventional wisdom that seismometers should be placed as close as possible to the fault trace to give the best resolution in delineating rupture details, we found that the best results are obtained if the seismograms are recorded at a distance about half of the total rupture length away from the fault trace. This is especially true when the rupture duration is longer than ~10 s. A possible explanation is that the geometric spreading effects for waveforms from different segments of the rupture are about the same if the stations are sufficiently away from the fault trace, thus giving a uniform resolution to the entire rupture history.

  9. Conditional Probabilities of Large Earthquake Sequences in California from the Physics-based Rupture Simulator RSQSim

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.

    2017-12-01

    Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.

  10. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  11. The 1954 and 1980 Algerian earthquakes: implications for the characteristic-displacement model of fault behavior

    USGS Publications Warehouse

    Dewey, J.W.

    1991-01-01

    Joint epicenter determination of earthquakes that occurred in northern Algeria near Ech Cheliff (named Orleansville in 1954 and El Asnam in 1980) shows that the earthquake of 9 September 1954 (M=6.5) occurred at nearly the same location as the earthquake of 10 October 1980 (M=7.3). The 1954 main shock and earliest aftershocks were concentrated close to the boundaries of segment B (nomenclature of Deschamps et al., 1982; King and Yielding, 1984) of the 1980 fault system, which was to experience approximately 8 m of slip in the 1980 earthquake. Later aftershocks of the 1954 earthquake were spread over a broad area, notably in a region north of the 1980 fault system that also experienced many aftershocks to the 1980 earthquake. The closeness of the 1954 main shock and earliest aftershocks to the 1980 segment B implies that the 1954 earthquake involved either 1) rupture of segment B proper, or 2) rupture of a distinct fault in the hanging wall of footwall block of segment B. -from Author

  12. Repeated fault rupture recorded by paleoenvironmental changes in a wetland sedimentary sequence ponded against the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Clark, K.; Berryman, K. R.; Cochran, U. A.; Bartholomew, T.; Turner, G. M.

    2010-12-01

    At Hokuri Creek, in south Westland, New Zealand, an 18 m thickness of Holocene sediments has accumulated against the upthrown side of the Alpine Fault. Recent fluvial incision has created numerous exposures of this sedimentary sequence. At a decimetre to metre scale there are two dominant types of sedimentary units: clastic-dominated, grey silt packages, and organic-dominated, light brown peaty-silt units. These units represent repeated alternations of the paleoenvironment due to fault rupture over the past 7000 years. We have located the event horizons within the sedimentary sequence, and identified evidence to support earthquake-driven paleoenvironmental change (rather than climatic variability), and developed a model of paleoenvironmental changes over a typical seismic cycle. To quantitatively characterise the sediments we use high resolution photography, x-ray imaging, magnetic-susceptibility and total carbon analysis. To understand the depositional environment we used diatom and pollen studies. The organic-rich units have very low magnetic susceptibility and density values, with high greyscale and high total carbon values. Diatoms indicate these units represent stable wetland environments with standing water and predominantly in-situ organic material deposition. The clastic-rich units are characterised by higher magnetic susceptibility and density values, with low greyscale and total carbon. The clastic-rich units represent environments of flowing water and deep pond settings that received predominantly catchment-derived silt and sand. The event horizon is located at the upper contact of the organic-rich horizons. The event horizon contact marks a drastic change in hydrologic regime as fault rupture changed the stream base level and there was a synchronous influx of clastic sediment as the catchment responded to earthquake shaking. During the interseismic period the flowing-water environment gradually stabilised and returned to an organic-rich wetland. Such

  13. High-resolution electrical resistivity and aeromagnetic imaging reveal the causative fault of the 2009 Mw 6.0 Karonga, Malawi earthquake

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-05-01

    Seismic events of varying magnitudes have been associated with ruptures along unknown or incompletely mapped buried faults. The 2009 Mw 6.0 Karonga, Malawi earthquake caused a surface rupture length of 14-18 km along a single W-dipping fault [St. Mary Fault (SMF)] on the hanging wall of the North Basin of the Malawi Rift. Prior to this earthquake, there was no known surface expression or knowledge of the presence of this fault. Although the earthquake damage zone is characterized by surface ruptures and coseismic liquefaction-induced sand blows, the origin of the causative fault and the near-surface structure of the rupture zone are not known. We used high-resolution aeromagnetic and electrical resistivity data to elucidate the relationship between surface rupture locations and buried basement structures. We also acquired electrical resistivity tomography (ERT) profiles along and across the surface rupture zone to image the near-surface structure of the damaged zone. We applied mathematical derivative filters to the aeromagnetic data to enhance basement structures underlying the rupture zone and surrounding areas. Although several magnetic lineaments are visible in the basement, mapped surface ruptures align with a single 37 km long, 148°-162°—striking magnetic lineament, and is interpreted as the ruptured normal fault. Inverted ERT profiles reveal three regional geoelectric layers which consist of 15 m thick layer of discontinuous zones of high and low resistivity values, underlain by a 27 m thick zone of high electrical resistivity (up to 100 Ω m) and a basal layer of lower resistivity (1.0-6.0 Ω m) extending from 42 m depth downwards (the maximum achieved depth of investigation). The geoelectric layers are truncated by a zone of electrical disturbance (electrical mélange) coinciding with areas of coseismic surface rupturing and sediment liquefaction along the ruptured. Our study shows that the 2009 Karonga earthquake was associated with the partial

  14. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.

    2004-01-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought

  15. GPS and seismic constraints on the M = 7.3 2009 Swan Islands earthquake: implications for stress changes along the Motagua fault and other nearby faults

    NASA Astrophysics Data System (ADS)

    Graham, Shannon E.; DeMets, Charles; DeShon, Heather R.; Rogers, Robert; Maradiaga, Manuel Rodriguez; Strauch, Wilfried; Wiese, Klaus; Hernandez, Douglas

    2012-09-01

    We use measurements at 35 GPS stations in northern Central America and 25 seismometers at teleseismic distances to estimate the distribution of slip, source time function and Coulomb stress changes of the Mw = 7.3 2009 May 28, Swan Islands fault earthquake. This event, the largest in the region for several decades, ruptured the offshore continuation of the seismically hazardous Motagua fault of Guatemala, the site of the destructive Ms = 7.5 earthquake in 1976. Measured GPS offsets range from 308 millimetres at a campaign site in northern Honduras to 6 millimetres at five continuous sites in El Salvador. Separate inversions of geodetic and seismic data both indicate that up to ˜1 m of coseismic slip occurred along a ˜250-km-long rupture zone between the island of Roatan and the eastern limit of the 1976 M = 7.5 Motagua fault earthquake in Guatemala. Evidence for slip ˜250 km west of the epicentre is corroborated independently by aftershocks recorded by a local seismic network and by the high concentration of damage to structures in areas of northern Honduras adjacent to the western limit of the rupture zone. Coulomb stresses determined from the coseismic slip distribution resolve a maximum of 1 bar of stress transferred to the seismically hazardous Motagua fault and further indicate unclamping of normal faults along the northern shore of Honduras, where two M > 5 normal-faulting earthquakes and numerous small earthquakes were triggered by the main shock.

  16. Empirical Relationships Among Magnitude and Surface Rupture Characteristics of Strike-Slip Faults: Effect of Fault (System) Geometry and Observation Location, Dervided From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Arrowsmith, J.

    2007-12-01

    In order to determine the magnitude of pre-historic earthquakes, surface rupture length, average and maximum surface displacement are utilized, assuming that an earthquake of a specific size will cause surface features of correlated size. The well known Wells and Coppersmith (1994) paper and other studies defined empirical relationships between these and other parameters, based on historic events with independently known magnitude and rupture characteristics. However, these relationships show relatively large standard deviations and they are based only on a small number of events. To improve these first-order empirical relationships, the observation location relative to the rupture extent within the regional tectonic framework should be accounted for. This however cannot be done based on natural seismicity because of the limited size of datasets on large earthquakes. We have developed the numerical model FIMozFric, based on derivations by Okada (1992) to create synthetic seismic records for a given fault or fault system under the influence of either slip- or stress boundary conditions. Our model features A) the introduction of an upper and lower aseismic zone, B) a simple Coulomb friction law, C) bulk parameters simulating fault heterogeneity, and D) a fault interaction algorithm handling the large number of fault patches (typically 5,000-10,000). The joint implementation of these features produces well behaved synthetic seismic catalogs and realistic relationships among magnitude and surface rupture characteristics which are well within the error of the results by Wells and Coppersmith (1994). Furthermore, we use the synthetic seismic records to show that the relationships between magntiude and rupture characteristics are a function of the observation location within the regional tectonic framework. The model presented here can to provide paleoseismologists with a tool to improve magnitude estimates from surface rupture characteristics, by incorporating the

  17. Broadband simulations for Mw 7.8 southern san andreas earthquakes: Ground motion sensitivity to rupture speed

    USGS Publications Warehouse

    Graves, R.W.; Aagaard, Brad T.; Hudnut, K.W.; Star, L.M.; Stewart, J.P.; Jordan, T.H.

    2008-01-01

    Using the high-performance computing resources of the Southern California Earthquake Center, we simulate broadband (0-10 Hz) ground motions for three Mw 7.8 rupture scenarios of the southern San Andreas fault. The scenarios incorporate a kinematic rupture description with the average rupture speed along the large slip portions of the fault set at 0.96, 0.89, and 0.84 times the local shear wave velocity. Consistent with previous simulations, a southern hypocenter efficiently channels energy into the Los Angeles region along the string of basins south of the San Gabriel Mountains. However, we find the basin ground motion levels are quite sensitive to the prescribed rupture speed, with peak ground velocities at some sites varying by over a factor of two for variations in average rupture speed of about 15%. These results have important implications for estimating seismic hazards in Southern California and emphasize the need for improved understanding of earthquake rupture processes. Copyright 2008 by the American Geophysical Union.

  18. Segmentation and supercycles: A catalog of earthquake cycle complexities from the Sumatran Sunda Megathrust and other well-studied faults worldwide

    NASA Astrophysics Data System (ADS)

    Philibosian, B.; Meltzner, A. J.; Sieh, K.

    2017-12-01

    Understanding earthquake cycle processes is key to both seismic hazard and fault mechanics. A concept that has come into focus recently is that rupture segmentation and cyclicity can be complex, and that simple models of periodically repeating similar earthquakes are inadequate. The term "supercycle" has been used to describe repeating longer periods of strain accumulation that involve multiple fault ruptures. However, this term has become broadly applied, lumping together several distinct phenomena that likely have disparate underlying causes. Earthquake recurrence patterns have often been described as "clustered," but this term is also imprecise. It is necessary to develop a terminology framework that consistently and meaningfully describes all types of behavior that are observed. We divide earthquake cycle patterns into four major classes, each having different implications for seismic hazard and fault mechanics: 1) quasi-periodic similar ruptures, 2) temporally clustered similar ruptures, 3) temporally clustered complementary ruptures, also known as rupture cascades, in which neighboring fault patches fail sequentially, and 4) superimposed cycles in which neighboring fault patches have cycles with different recurrence intervals, but may occasionally rupture together. Rupture segmentation is classified as persistent, frequent, or transient depending on how reliably ruptures terminate in a given area. We discuss the paleoseismic and historical evidence currently available for each of these types of behavior on subduction zone megathrust faults worldwide. Due to the unique level of paleoseismic and paleogeodetic detail provided by the coral microatoll technique, the Sumatran Sunda megathrust provides one of the most complete records over multiple seismic cycles. Most subduction zones with sufficient data exhibit examples of persistent and frequent segmentation, with cycle patterns 1, 3, and 4 on different segments. Pattern 2 is generally confined to overlap zones

  19. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering

    USGS Publications Warehouse

    Stein, R.S.; Barka, A.A.; Dieterich, J.H.

    1997-01-01

    10 M ??? 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939-1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1-10 bar, equivalent to 3-30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ??? 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.

  20. Detection of postseismic fault-zone collapse following the Landers earthquake

    NASA Astrophysics Data System (ADS)

    Massonnet, Didier; Thatcher, Wayne; Vadon, Hélèna

    1996-08-01

    STRESS changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events1-4. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses2,5-7, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements2, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone6-8.

  1. Did stress triggering cause the large off-fault aftershocks of the 25 March 1998 MW=8.1 Antarctic plate earthquake?

    USGS Publications Warehouse

    Toda, S.; Stein, R.S.

    2000-01-01

    The 1998 Antarctic plate earthquake produced clusters of aftershocks (MW ??? 6.4) up to 80 km from the fault rupture and up to 100 km beyond the end of the rupture. Because the mainshock occurred far from the nearest plate boundary and the nearest recorded earthquake, it is unusually isolated from the stress perturbations caused by other earthquakes, making it a good candidate for stress transfer analysis despite the absence of near-field observations. We tested whether the off-fault aftershocks lie in regions brought closer to Coulomb failure by the main rupture. We evaluated four published source models for the main rupture. In fourteen tests using different aftershocks sets and allowing the rupture sources to be shifted within their uncertainties, 6 were significant at ??? 99% confidence, 3 at > 95% confidence, and 5 were not significant (< 95% level). For the 9 successful tests, the stress at the site of the aftershocks was typically increased by 1-2 bars (0.1-0.2 MPa). Thus the Antarctic plate event, together with the 1992 MW=7.3 Landers and its MW=6.5 Big Bear aftershock 40 km from the main fault, supply evidence that small stress changes might indeed trigger large earthquakes far from the main fault rupture.

  2. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    zones or branched faults. Studying the interplay of stress conditions and angle dependence of neighbouring branches including inelastic material behaviour and its effects on rupture jumps and seismic activation helps to advance our understanding of earthquake source processes. An application is the simulation of a real large-scale subduction zone scenario including plasticity to validate the coupling of our dynamic rupture calculations to a tsunami model in the framework of the ASCETE project (http://www.ascete.de/). Andrews, D. J. (2005): Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307. Heinecke, A. (2014), A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, K. Vaidyanathan, M. Smelyanskiy and P. Dubey: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Supercomputing 2014, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, November 2014. Roten, D. (2014), K. B. Olsen, S.M. Day, Y. Cui, and D. Fäh: Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity, Geophys. Res. Lett., 41, 2769-2777.

  3. Evaluating the Possibility of a joint San Andreas-Imperial Fault Rupture in the Salton Trough Region

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Meltzner, A. J.; Rockwell, T. K.

    2016-12-01

    A geodynamic investigation of possible earthquakes in a given region requires both field data and numerical simulations. In particular, the investigation of past earthquakes is also a fundamental part of understanding the earthquake potential of the Salton Trough region. Geological records from paleoseismic trenches inform us of past ruptures (length, magnitude, timing), while dynamic rupture models allow us to evaluate numerically the mechanics of such earthquakes. The two most recent events (Mw 6.4 1940 and Mw 6.9 1979) on the Imperial fault (IF) both ruptured up to the northern end of the mapped fault, giving the impression that rupture doesn't propagate further north. This result is supported by small displacements, 20 cm, measured at the Dogwood site near the end of the mapped rupture in each event. However, 3D paleoseismic data from the same site corresponding to the most recent pre-1940 event (1710 CE) and 5th (1635 CE) and 6th events back revealed up to 1.5 m of slip in those events. Since we expect the surface displacement to decrease toward the termination of a rupture, we postulate that in these earlier cases the rupture propagated further north than in 1940 or 1979. Furthermore, paleoseismic data from the Coachella site (Philibosian et al., 2011) on the San Andreas fault (SAF) indicates slip events ca. 1710 CE and 1588-1662 CE. In other words, the timing of two large paleoseismic displacements on the IF cannot be distinguished from the timing of the two most recent events on the southern SAF, leaving a question: is it possible to have through-going rupture in the Salton Trough? We investigate this question through 3D dynamic finite element rupture modeling. In our work, we considered two scenarios: rupture initiated on the IF propagating northward, and rupture initiated on the SAF propagating southward. Initial results show that, in the first case, rupture propagates north of the mapped northern terminus of the IF only under certain pre

  4. Implications of fault constitutive properties for earthquake prediction

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance D(c), apparent fracture energy at a rupture front, time- dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of D, apply to faults in nature. However, scaling of D(c) is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  5. Implications of fault constitutive properties for earthquake prediction.

    PubMed Central

    Dieterich, J H; Kilgore, B

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks. Images Fig. 3 PMID:11607666

  6. Implications of fault constitutive properties for earthquake prediction.

    PubMed

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  7. Continuous borehole strain in the San Andreas fault zone before, during, and after the 28 June 1992, MW 7.3 Landers, California, earthquake

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Agnew, D.C.

    1994-01-01

    High-precision strain was observed with a borehole dilational strainmeter in the Devil's Punchbowl during the 11:58 UT 28 June 1992 MW 7.3 Landers earthquake and the large Big Bear aftershock (MW 6.3). The strainmeter is installed at a depth of 176 m in the fault zone approximately midway between the surface traces of the San Andreas and Punchbowl faults and is about 100 km from the 85-km-long Landers rupture. We have questioned whether unusual amplified strains indicating precursive slip or high fault compliance occurred on the faults ruptured by the Landers earthquake, or in the San Andreas fault zone before and during the earthquake, whether static offsets for both the Landers and Big Bear earthquakes agree with expectation from geodetic and seismologic models of the ruptures and with observations from a nearby two-color geodimeter network, and whether postseismic behavior indicated continued slip on the Landers rupture or local triggered slip on the San Andreas. We show that the strain observed during the earthquake at this instrument shows no apparent amplification effects. There are no indications of precursive strain in these strain data due to either local slip on the San Andreas or precursive slip on the eventual Landers rupture. The observations are generally consistent with models of the earthquake in which fault geometry and slip have the same form as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. Finally, there are some indications of minor postseismic behavior, particularly during the month following the earthquake.

  8. Rupture geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China earthquake

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2017-12-01

    On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.

  9. Reevaluation of 1935 M 7.0 earthquake fault, Miaoli-Taichung Area, western Taiwan: a DEM and field study

    NASA Astrophysics Data System (ADS)

    Lin, Y. N.; Chen, Y.; Ota, Y.

    2003-12-01

    A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault

  10. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    USGS Publications Warehouse

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (<15  km depth), and the deep fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  11. Intra-caldera active fault: An example from the Mw 7.0 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Toda, S.; Murakami, T.; Takahashi, N.

    2017-12-01

    A NE-trending 30-km-long surface rupture with up to 2.4 m dextral slip emerged during the Mw=7.0 16 April 2016 Kumamoto earthquake along the previously mapped Futagawa and northern Hinagu fault systems. The 5-km-long portion of the northeast rupture end, which was previously unidentified, crossed somma and extended to the 20-km-diameter Aso Caldera, one of the major active volcanoes, central Kyushu. We here explore geologic exposures of interplays of active faulting and active volcanism, and then argue the Futagawa fault system has been influenced by the ring fault system associated with the caldera forming gigantic eruptions since 270 ka, last of which occurred 90 ka ejecting a huge amount of ignimbrite. To understand the interplays, together with the mapping of the 2016 rupture, we employed an UAV to capture numerous photos of the exposures along the canyon and developed 3D orthochromatic topographic model using PhotoScan. One-hundred-meter-deep Kurokawa River canyon by the Aso Caldera rim exposes two lava flow units of 50 ka vertically offset by 10 m by the Futatawa fault system. Reconstructions of the collapsed bridges across the Kurokawa River also reveal cross sections of a 30-meter-high tectonic bulge and 10-m-scale negative flower structure deformed by the frequent fault movements. We speculate two fault developing models across the Aso Caldera. One is that the NE edge of the Futagawa fault system was cut and reset by the caldera forming ring fault, which indicates the 3-km-long rupture extent within the Aso Caldera would be a product of the fault growth since the last Aso-4 eruption of 90 ka. It enables us to estimate the 33 mm/yr of the fault propagation speed. An alternative model is that subsurface rupture of the Kumamoto earthquake extended further to the NE rim, the other side of the caldera edge, which is partially supported by the geodetic and seismic inversions. With respect to the model, the clear surface rupture of the 2016 Kumamoto earthquake

  12. Evidence for large earthquakes on the San Andreas fault at the Wrightwood, California paleoseismic site: A.D. 500 to present

    USGS Publications Warehouse

    Fumal, T.E.; Weldon, R.J.; Biasi, G.P.; Dawson, T.E.; Seitz, G.G.; Frost, W.T.; Schwartz, D.P.

    2002-01-01

    We present structural and stratigraphic evidence from a paleoseismic site near Wrightwood, California, for 14 large earthquakes that occurred on the southern San Andreas fault during the past 1500 years. In a network of 38 trenches and creek-bank exposures, we have exposed a composite section of interbedded debris flow deposits and thin peat layers more than 24 m thick; fluvial deposits occur along the northern margin of the site. The site is a 150-m-wide zone of deformation bounded on the surface by a main fault zone along the northwest margin and a secondary fault zone to the southwest. Evidence for most of the 14 earthquakes occurs along structures within both zones. We identify paleoearthquake horizons using infilled fissures, scarps, multiple rupture terminations, and widespread folding and tilting of beds. Ages of stratigraphic units and earthquakes are constrained by historic data and 72 14C ages, mostly from samples of peat and some from plant fibers, wood, pine cones, and charcoal. Comparison of the long, well-resolved paleoseimic record at Wrightwood with records at other sites along the fault indicates that rupture lengths of past earthquakes were at least 100 km long. Paleoseismic records at sites in the Coachella Valley suggest that each of the past five large earthquakes recorded there ruptured the fault at least as far northwest as Wrightwood. Comparisons with event chronologies at Pallett Creek and sites to the northwest suggests that approximately the same part of the fault that ruptured in 1857 may also have failed in the early to mid-sixteenth century and several other times during the past 1200 years. Records at Pallett Creek and Pitman Canyon suggest that, in addition to the 14 earthquakes we document, one and possibly two other large earthquakes ruptured the part of the fault including Wrightwood since about A.D. 500. These observations and elapsed times that are significantly longer than mean recurrence intervals at Wrightwood and sites to

  13. The 1868 Hayward fault, California, earthquake: Implications for earthquake scaling relations on partially creeping faults

    USGS Publications Warehouse

    Hough, Susan E.; Martin, Stacey

    2015-01-01

    The 21 October 1868 Hayward, California, earthquake is among the best-characterized historical earthquakes in California. In contrast to many other moderate-to-large historical events, the causative fault is clearly established. Published magnitude estimates have been fairly consistent, ranging from 6.8 to 7.2, with 95% confidence limits including values as low as 6.5. The magnitude is of particular importance for assessment of seismic hazard associated with the Hayward fault and, more generally, to develop appropriate magnitude–rupture length scaling relations for partially creeping faults. The recent reevaluation of archival accounts by Boatwright and Bundock (2008), together with the growing volume of well-calibrated intensity data from the U.S. Geological Survey “Did You Feel It?” (DYFI) system, provide an opportunity to revisit and refine the magnitude estimate. In this study, we estimate the magnitude using two different methods that use DYFI data as calibration. Both approaches yield preferred magnitude estimates of 6.3–6.6, assuming an average stress drop. A consideration of data limitations associated with settlement patterns increases the range to 6.3–6.7, with a preferred estimate of 6.5. Although magnitude estimates for historical earthquakes are inevitably uncertain, we conclude that, at a minimum, a lower-magnitude estimate represents a credible alternative interpretation of available data. We further discuss implications of our results for probabilistic seismic-hazard assessment from partially creeping faults.

  14. Dynamic ruptures on faults of complex geometry: insights from numerical simulations, from large-scale curvature to small-scale fractal roughness

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.

    2016-12-01

    The geometry of faults is subject to a large degree of uncertainty. As buried structures being not directly observable, their complex shapes may only be inferred from surface traces, if available, or through geophysical methods, such as reflection seismology. As a consequence, most studies aiming at assessing the potential hazard of faults rely on idealized fault models, based on observable large-scale features. Yet, real faults are known to be wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. The influence of roughness on the earthquake rupture process is currently a driving topic in the computational seismology community. From the numerical point of view, rough faults problems are challenging problems that require optimized codes able to run efficiently on high-performance computing infrastructure and simultaneously handle complex geometries. Physically, simulated ruptures hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Incorporating fault geometry on all scales may thus be crucial to model realistic earthquake source processes and to estimate more accurately seismic hazard. In this study, we use the software package SeisSol, based on an ADER-Discontinuous Galerkin scheme, to run our numerical simulations. SeisSol allows solving the spontaneous dynamic earthquake rupture problem and the wave propagation problem with high-order accuracy in space and time efficiently on large-scale machines. In this study, the influence of fault roughness on dynamic rupture style (e.g. onset of supershear transition, rupture front coherence, propagation of self-healing pulses, etc) at different length scales is investigated by analyzing ruptures on faults of varying roughness spectral content. In particular, we investigate the existence of a minimum roughness length scale in terms of rupture inherent length scales below which the rupture

  15. A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake

    NASA Astrophysics Data System (ADS)

    Ruppert, Stanley D.; Yomogida, Kiyoshi

    1992-09-01

    Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.

  16. Mapping the rupture process of moderate earthquakes by inverting accelerograms

    USGS Publications Warehouse

    Hellweg, M.; Boatwright, J.

    1999-01-01

    We present a waveform inversion method that uses recordings of small events as Green's functions to map the rupture growth of moderate earthquakes. The method fits P and S waveforms from many stations simultaneously in an iterative procedure to estimate the subevent rupture time and amplitude relative to the Green's function event. We invert the accelerograms written by two moderate Parkfield earthquakes using smaller events as Green's functions. The first earthquake (M = 4.6) occurred on November 14, 1993, at a depth of 11 km under Middle Mountain, in the assumed preparation zone for the next Parkfield main shock. The second earthquake (M = 4.7) occurred on December 20, 1994, some 6 km to the southeast, at a depth of 9 km on a section of the San Andreas fault with no previous microseismicity and little inferred coseismic slip in the 1966 Parkfield earthquake. The inversion results are strikingly different for the two events. The average stress release in the 1993 event was 50 bars, distributed over a geometrically complex area of 0.9 km2. The average stress release in the 1994 event was only 6 bars, distributed over a roughly elliptical area of 20 km2. The ruptures of both events appear to grow spasmodically into relatively complex shapes: the inversion only constrains the ruptures to grow more slowly than the S wave velocity but does not use smoothness constraints. Copyright 1999 by the American Geophysical Union.

  17. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    USGS Publications Warehouse

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  18. Investigating the rupture direction of induced earthquakes in the Central US using empirical Green's functions

    NASA Astrophysics Data System (ADS)

    Lui, S. K. Y.; Huang, Y.

    2017-12-01

    A clear understanding of the source physics of induced seismicity is the key to effective seismic hazard mitigation. In particular, resolving their rupture processes can shed lights on the stress state prior to the main shock, as well as ground motion response. Recent numerical models suggest that, compared to their tectonic counterpart, induced earthquake rupture is more prone to propagate unilaterally toward the injection well where fluid pressure is high. However, this is also dependent on the location of the injection relative to the fault and yet to be compared with field data. In this study, we utilize the rich pool of seismic data in the central US to constrain the rupture processes of major induced earthquakes. By implementing a forward-modeling method, we take smaller earthquake recordings as empirical Green's functions (eGf) to simulate the rupture direction of the beginning motion generated by large events. One advantage of the empirical approach is to bypass the fundamental difficulty in resolving path and site effects. We selected eGf events that are close to the target events both in space and time. For example, we use a Mw 3.6 aftershock approximately 3 km from the 2011 Mw 5.7 earthquake in Prague, OK as its eGf event. Preliminary results indicate a southwest rupture for the Prague main shock, which possibly implies a higher fluid pressure concentration on the northeast end of the fault prior to the rupture. We will present further results on other Mw > 4.5 earthquakes in the States of Oklahoma and Kansas. With additional seismic stations installed in the past few years, events such as the 2014 Mw 4.9 Milan earthquake and the 2016 Mw 5.8 Pawnee earthquake are potential candidates with useful eGfs, as they both have good data coverage and a substantial number of aftershocks nearby. We will discuss the implication of our findings for the causative relationships between the injection operations and the induced rupture process.

  19. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

    USGS Publications Warehouse

    Bizzarri, A.; Dunham, Eric M.; Spudich, P.

    2010-01-01

    We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation

  20. Rupture complexity of the Mw 8.3 sea of okhotsk earthquake: Rapid triggering of complementary earthquakes?

    USGS Publications Warehouse

    Wei, Shengji; Helmberger, Don; Zhan, Zhongwen; Graves, Robert

    2013-01-01

    We derive a finite slip model for the 2013 Mw 8.3 Sea of Okhotsk Earthquake (Z = 610 km) by inverting calibrated teleseismic P waveforms. The inversion shows that the earthquake ruptured on a 10° dipping rectangular fault zone (140 km × 50 km) and evolved into a sequence of four large sub-events (E1–E4) with an average rupture speed of 4.0 km/s. The rupture process can be divided into two main stages. The first propagated south, rupturing sub-events E1, E2, and E4. The second stage (E3) originated near E2 with a delay of 12 s and ruptured northward, filling the slip gap between E1 and E2. This kinematic process produces an overall slip pattern similar to that observed in shallow swarms, except it occurs over a compressed time span of about 30 s and without many aftershocks, suggesting that sub-event triggering for deep events is significantly more efficient than for shallow events.

  1. 3D fault curvature and fractal roughness: Insights for rupture dynamics and ground motions using a Discontinous Galerkin method

    NASA Astrophysics Data System (ADS)

    Ulrich, Thomas; Gabriel, Alice-Agnes

    2017-04-01

    Natural fault geometries are subject to a large degree of uncertainty. Their geometrical structure is not directly observable and may only be inferred from surface traces, or geophysical measurements. Most studies aiming at assessing the potential seismic hazard of natural faults rely on idealised shaped models, based on observable large-scale features. Yet, real faults are wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. Dynamic rupture simulations aim to capture the observed complexity of earthquake sources and ground-motions. From a numerical point of view, incorporating rough faults in such simulations is challenging - it requires optimised codes able to run efficiently on high-performance computers and simultaneously handle complex geometries. Physics-based rupture dynamics hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Moreover, the simulated ground-motions present many similarities with observed ground-motions records. Thus, such simulations may foster our understanding of earthquake source processes, and help deriving more accurate seismic hazard estimates. In this presentation, the software package SeisSol (www.seissol.org), based on an ADER-Discontinuous Galerkin scheme, is used to solve the spontaneous dynamic earthquake rupture problem. The usage of tetrahedral unstructured meshes naturally allows for complicated fault geometries. However, SeisSol's high-order discretisation in time and space is not particularly suited for small-scale fault roughness. We will demonstrate modelling conditions under which SeisSol resolves rupture dynamics on rough faults accurately. The strong impact of the geometric gradient of the fault surface on the rupture process is then shown in 3D simulations. Following, the benefits of explicitly modelling fault curvature and roughness, in distinction to prescribing heterogeneous initial

  2. Simulate earthquake cycles on the oceanic transform faults in the framework of rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Wei, M.

    2016-12-01

    Progress towards a quantitative and predictive understanding of the earthquake behavior can be achieved by improved understanding of earthquake cycles. However, it is hindered by the long repeat times (100s to 1000s of years) of the largest earthquakes on most faults. At fast-spreading oceanic transform faults, the typical repeating time ranges from 5-20 years, making them a unique tectonic environment for studying the earthquake cycle. One important observation on OTFs is the quasi-periodicity and the spatial-temporal clustering of large earthquakes: same fault segment ruptured repeatedly at a near constant interval and nearby segments ruptured during a short time period. This has been observed on the Gofar and Discovery faults in the East Pacific Rise. Between 1992 and 2014, five clusters of M6 earthquakes occurred on the Gofar and Discovery fault system with recurrence intervals of 4-6 years. Each cluster consisted of a westward migration of seismicity from the Discovery to Gofar segment within a 2-year period, providing strong evidence for spatial-temporal clustering of large OTFs earthquakes. I simulated earthquake cycles of oceanic transform fault in the framework of rate-and-state friction, motivated by the observations at the Gofar and Discovery faults. I focus on a model with two seismic segments, each 20 km long and 5 km wide, separated by an aseismic segment of 10 km wide. This geometry is set based on aftershock locations of the 2008 M6.0 earthquake on Gofar. The repeating large earthquake on both segments are reproduced with similar magnitude as observed. I set the state parameter differently for the two seismic segments so initially they are not synchornized. Results also show that synchronization of the two seismic patches can be achieved after several earthquake cycles when the effective normal stress or the a-b parameter is smaller than surrounding aseismic areas, both having reduced the resistance to seismic rupture in the VS segment. These

  3. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  4. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten

    2018-05-01

    The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results

  5. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  6. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    USGS Publications Warehouse

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  7. The 2016 Mw7.0 Kumamoto, Japan earthquake: the rupture propagation under extensional stress

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shan, X.; Zhang, G.; Gong, W.

    2016-12-01

    On April 16, 2016, the Kumamoto city was hit by an Mw7.0 earthquake, the largest earthquake since 1900 in the central part of Kyushu Island in Japan. It is an event with two foreshocks and rather complex source faults and surface rupture scarps. The Mw7.0 Kumamoto earthquake and its foreshocks and aftershocks occurred on the Futagawa and Hinagu faults, which are previously mapped and formed the southwest portion of the median tectonic line on Kyushu Island. These faults are mainly controlled by extensional and right-lateral shear stress. In this study, we obtained the deformation filed of the Kumamoto earthquake using both of descending and ascending Sentinel-1A data. We then invert the fault slip distribution based on the displacements obtained by InSAR. A three-segment fault model is established by trial and error. We analyze the rupture propagation and the conclusions are listed as following: The Mw 7.0 earthquake is a right-lateral striking event with a slight normal component. Most of the slip distributed on the Futagawa fault segment, with a maximum slip of 4.9 m at 5 km depth below the surface. The energy released on this Futagawa fault segment is equivalent to an Mw6.9 event. The slip distribution on the Hinagu fault segment is also right-lateral, but with a maximum slip of 2 m. Compared to the southern two segments, the northern source fault segment has the steepest dipping segment, which is almost vertical, with a dip as high as 80°; The normal component of the Kumamoto event is controlled by extensional stress due to the tectonic background. The Beppu-Shimabara half graben is the largest extensional structure on Kyushu Island and its formation could strongly be affected by Philippine Sea slab (PHS) convergence and Okinawa Trough extension, so we argue the Kumamoto event maybe exhibits the concrete manifestation of Okinawa Trough extension to Kyushu Island; Continuous surface rupture trace is observed from InSAR coseismic deformation and field

  8. Stress Interactions Between the 1976 Magnitude 7.8 Tangshan Earthquake and Adjacent Fault Systems in Northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Lin, J.; Chen, Y. J.

    2004-12-01

    The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for

  9. Improving the resolution of the 2010 Haiti earthquake fault geometry using temporary seismometer deployments

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Haase, J. S.; Ellsworth, W. L.; Bouin, M.; Calais, E.; Armbruster, J. G.; Mercier De Lepinay, B. F.; Deschamps, A.; Saint Louis, M.; Meremonte, M. E.; Hough, S. E.

    2011-12-01

    Haiti has several active faults that are capable of producing large earthquakes such as the 2010 Mw 7.0 Haiti earthquake. This earthquake was not unexpected, given geodetic measurements showing strain accumulation on the Enriquillo Plantain Garden Fault Zone, the major fault system in southern Haiti (Manaker et al. 2008). GPS and INSAR data (Calais et al., 2010) show, however, that this rupture occurred on the previously unmapped Léogâne fault, a 60° north dipping oblique blind thrust located immediately north of the Enriquillo Fault. Following the earthquake, several groups installed temporary seismic stations to record aftershocks. Natural Resources Canada installed three broadband seismic stations, Géoazur installed 21 ocean bottom seismometers, L'Institut de Physique du Globe de Paris installed 5 broadband seismometers, and the United States Geological Survey deployed 17 short period and strong motion seismometers in and around Port-au-Prince. We use data from this complete set of stations, along with data from permanent regional stations, to relocate all of the events from March 17 to June 24, to determine the regional one-dimensional crustal structure and determine focal mechanisms. The aftershock locations from the combined data set clearly delineate the Léogâne fault. The strike and dip closely agrees with that of the global centroid moment tensor solution, but appears to be more steeply dipping than the finite fault inversions. The aftershocks also delineate a flat structure on the west side of the rupture zone and may indicate triggered seismicity on the Trois Baies fault, although the depths of these events are not as well constrained. There is no clear evidence for aftershocks on the other rupture segments inferred in the Hayes et al. (2010) mainshock rupture model. There is a cluster of aftershocks in the hanging wall near the western patch of high slip identified by Calais et al. (2010) and Meng et al. (2011), or central patch in the Hayes et al

  10. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  11. Laboratory investigations of earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Xia, Kaiwen

    In this thesis this will be attempted through controlled laboratory experiments that are designed to mimic natural earthquake scenarios. The earthquake dynamic rupturing process itself is a complicated phenomenon, involving dynamic friction, wave propagation, and heat production. Because controlled experiments can produce results without assumptions needed in theoretical and numerical analysis, the experimental method is thus advantageous over theoretical and numerical methods. Our laboratory fault is composed of carefully cut photoelastic polymer plates (Homahte-100, Polycarbonate) held together by uniaxial compression. As a unique unit of the experimental design, a controlled exploding wire technique provides the triggering mechanism of laboratory earthquakes. Three important components of real earthquakes (i.e., pre-existing fault, tectonic loading, and triggering mechanism) correspond to and are simulated by frictional contact, uniaxial compression, and the exploding wire technique. Dynamic rupturing processes are visualized using the photoelastic method and are recorded via a high-speed camera. Our experimental methodology, which is full-field, in situ, and non-intrusive, has better control and diagnostic capacity compared to other existing experimental methods. Using this experimental approach, we have investigated several problems: dynamics of earthquake faulting occurring along homogeneous faults separating identical materials, earthquake faulting along inhomogeneous faults separating materials with different wave speeds, and earthquake faulting along faults with a finite low wave speed fault core. We have observed supershear ruptures, subRayleigh to supershear rupture transition, crack-like to pulse-like rupture transition, self-healing (Heaton) pulse, and rupture directionality.

  12. Imaging of earthquake faults using small UAVs as a pathfinder for air and space observations

    USGS Publications Warehouse

    Donnellan, Andrea; Green, Joseph; Ansar, Adnan; Aletky, Joseph; Glasscoe, Margaret; Ben-Zion, Yehuda; Arrowsmith, J. Ramón; DeLong, Stephen B.

    2017-01-01

    Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Geodetic and topographic imaging provide measurements of transient and long-term crustal deformation needed to monitor fault zones and understand earthquakes. Earthquake-induced strain and rupture characteristics are expressed in topographic features imprinted on the landscapes of fault zones. Small UAVs provide an efficient and flexible means to collect multi-angle imagery to reconstruct fine scale fault zone topography and provide surrogate data to determine requirements for and to simulate future platforms for air- and space-based multi-angle imaging.

  13. Earthquake Nucleation and Fault Slip: Possible Experiments on a Natural Fault

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Murdoch, L. C.; Garagash, D.; Reches, Z.; Martel, S. J.; Johnston, M. J.; Ebenhack, J.; Gwaba, D.

    2011-12-01

    High-resolution deformation and seismic observations are usually made only near the Earths' surface, kilometers away from where earthquake nucleate on active faults and are limited by inverse-cube-distance attenuation and ground noise. We have developed an experimental approach that aims at reactivating faults in-situ using thermal techniques and fluid injection, which modify in-situ stresses and the fault strength until the fault slips. Mines where in-situ stresses are sufficient to drive faulting present an opportunity to conduct such experiments. The former Homestake gold mine in South Dakota is a good example. During our recent field work in the Homestake mine, we found a large fault that intersects multiple mine levels. The size and distinct structure of this fault make it a promising target for in-situ reactivation, which would likely to be localized on a crack-like patch. Slow patch propagation, moderated by the injection rate and the rate of change of the background stresses, may become unstable, leading to the nucleation of a dynamic earthquake rupture. Our analyses for the Homestake fault conditions indicate that this transition occurs for a patch size ~1 m. This represents a fundamental limitation for laboratory experiments and necessitates larger-scale field tests ~10-100 m. The opportunity to observe earthquake nucleation on the Homestake Fault is feasible because slip could be initiated at a pre-defined location and time with instrumentation placed as close as a few meters from the nucleation site. Designing the experiment requires a detailed assessment of the state-of-stress in the vicinity of the fault. This is being conducted by simulating changes in pore pressure and effective stresses accompanying dewatering of the mine, and by evaluating in-situ stress measurements in light of a regional stress field modified by local perturbations caused by the mine workings.

  14. Impact of a Large San Andreas Fault Earthquake on Tall Buildings in Southern California

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Ji, C.; Komatitsch, D.; Tromp, J.

    2004-12-01

    In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 300~km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had a significant long-period content (2--8~s). If such motions were to happen today, they could have a serious impact on tall buildings in Southern California. In order to study the effects of large San Andreas fault earthquakes on tall buildings in Southern California, we use the finite source of the magnitude 7.9 2001 Denali fault earthquake in Alaska and map it onto the San Andreas fault with the rupture originating at Parkfield and proceeding southward over a distance of 290~km. Using the SPECFEM3D spectral element seismic wave propagation code, we simulate a Denali-like earthquake on the San Andreas fault and compute ground motions at sites located on a grid with a 2.5--5.0~km spacing in the greater Southern California region. We subsequently analyze 3D structural models of an existing tall steel building designed in 1984 as well as one designed according to the current building code (Uniform Building Code, 1997) subjected to the computed ground motion. We use a sophisticated nonlinear building analysis program, FRAME3D, that has the ability to simulate damage in buildings due to three-component ground motion. We summarize the performance of these structural models on contour maps of carefully selected structural performance indices. This study could benefit the city in laying out emergency response strategies in the event of an earthquake on the San Andreas fault, in undertaking appropriate retrofit measures for tall buildings, and in formulating zoning regulations for new construction. In addition, the study would provide risk data associated with existing and new construction to insurance companies, real estate developers, and

  15. Limit on slip rate and timing of recent seismic ground-ruptures on the Jinghong fault, SE of the eastern Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Shi, Xuhua; Weldon, Ray; Liu-Zeng, Jing; Wang, Yu; Weldon, Elise; Sieh, Kerry; Li, Zhigang; Zhang, Jinyu; Yao, Wenqian; Li, Zhanfei

    2018-06-01

    Quantifying slip rates and earthquake occurrence of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to assessing the seismic hazard and understanding the kinematics and geodynamics of this region. Most previous estimates of slip rates are averaged over either many millions of years using offset geological markers or decades using GPS. Well-constrained millennial slip rates of these faults remain sparse and constraints on recurrence rates of damaging earthquakes exist only for a few faults. Here we investigate the millennial slip rate and timing of recent earthquakes on the Jinghong fault, one of the geomorphically most significant sinistral-slip faults on the central Shan Plateau. We map and reconstruct fault offset (18 ± 5 m) of alluvial fan features at Manpa on the central Jinghong fault, using a 0.1 m-resolution digital surface model obtained from an unmanned aerial vehicle survey. We establish a slip rate, ≤2.5 ± 0.7 mm/yr over the past 7000 years, using pit-exposed stratigraphy. This millennial slip rate is consistent with rates averaged over both decadal and million-year timescales. Excavations at three sites near the town of Gelanghe on the northeastern Jinghong fault demonstrate 1) that the last seismic ground-rupture occurred between 482 and 889 cal yr BP, most likely in the narrower window 824-767 cal yr BP, if the lack of large earthquakes in the historical earthquake record is reliable, and 2) that multiple fault ruptures have occurred since 3618 cal yr BP. Combining this finding with a lack of large earthquakes in the 800-year-long Chinese historic record in this region, we suggest an average recurrence interval of seismic ground-ruptures on the order of 1000 years. This recurrence interval is consistent with the slip rate of the Jinghong fault and the size and earthquake frequency on other sinistral faults on the Shan Plateau.

  16. Landslides triggered by the 2002 Denali fault, Alaska, earthquake and the inferred nature of the strong shaking

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2004-01-01

    The 2002 M7.9 Denali fault, Alaska, earthquake triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 15 ?? 106 m3. The pattern of landsliding was unusual; the number of slides was less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone 30-km wide that straddled the fault rupture over its entire 300-km length. The large rock avalanches all clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong shaking characteristics drawn from the interpretation of the landslide distribution are consistent with results of recent inversion modeling that indicate high-frequency energy generation was greatest in the western part of the fault rupture zone and decreased markedly to the east. ?? 2004, Earthquake Engineering Research Institute.

  17. The 7.9 Denali Fault, Alaska Earthquake of November 3, 2002: Aftershock Locations, Moment Tensors and Focal Mechanisms from the Regional Seismic Network Data

    NASA Astrophysics Data System (ADS)

    Ratchkovski, N. A.; Hansen, R. A.; Kore, K. R.

    2003-04-01

    The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 earthquake on October 23. This earlier earthquake and its zone of aftershocks were located ~20 km to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. The geologists mapped a ~300-km-long rupture and measured maximum offsets of 8.8 meters. The 7.9 event ruptured three different faults. The rupture began on the northeast trending Susitna Glacier Thrust fault, a splay fault south of the Denali fault. Then the rupture transferred to the Denali fault and propagated eastward for 220 km. At about 143W the rupture moved onto the adjacent southeast-trending Totschunda fault and propagated for another 55 km. The cumulative length of the 6.7 and 7.9 aftershock zones along the Denali and Totschunda faults is about 380 km. The earthquakes were recorded and processed by the Alaska Earthquake Information Center (AEIC). The AEIC acquires and processes data from the Alaska Seismic Network, consisting of over 350 seismograph stations. Nearly 40 of these sites are equipped with the broad-band sensors, some of which also have strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary seismic network of 6 instruments following the 6.7 earthquake and an additional 20 stations following the 7.9 earthquake. Prior to the 7.9 Denali Fault event, the AEIC was locating 35 to 50 events per day. After the event, the processing load increased to over 300 events per day during the first week following the event. In this presentation, we will present and interpret the aftershock location patterns, first motion focal mechanism solutions, and regional seismic

  18. The influence of topographic stresses on faulting, emphasizing the 2008 Wenchuan, China earthquake rupture

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.; Zhang, G.

    2013-12-01

    The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip

  19. A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast

    USGS Publications Warehouse

    Field, Edward; Milner, Kevin R.; Hardebeck, Jeanne L.; Page, Morgan T.; van der Elst, Nicholas; Jordan, Thomas H.; Michael, Andrew J.; Shaw, Bruce E.; Werner, Maximillan J.

    2017-01-01

    We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequence (ETAS) component to the previously published time‐independent and long‐term time‐dependent forecasts. This combined model, referred to as UCERF3‐ETAS, collectively represents a relaxation of segmentation assumptions, the inclusion of multifault ruptures, an elastic‐rebound model for fault‐based ruptures, and a state‐of‐the‐art spatiotemporal clustering component. It also represents an attempt to merge fault‐based forecasts with statistical seismology models, such that information on fault proximity, activity rate, and time since last event are considered in OEF. We describe several unanticipated challenges that were encountered, including a need for elastic rebound and characteristic magnitude–frequency distributions (MFDs) on faults, both of which are required to get realistic triggering behavior. UCERF3‐ETAS produces synthetic catalogs of M≥2.5 events, conditioned on any prior M≥2.5 events that are input to the model. We evaluate results with respect to both long‐term (1000 year) simulations as well as for 10‐year time periods following a variety of hypothetical scenario mainshocks. Although the results are very plausible, they are not always consistent with the simple notion that triggering probabilities should be greater if a mainshock is located near a fault. Important factors include whether the MFD near faults includes a significant characteristic earthquake component, as well as whether large triggered events can nucleate from within the rupture zone of the mainshock. Because UCERF3‐ETAS has many sources of uncertainty, as

  20. Evidence for Late Holocene earthquakes on the Utsalady Point fault, Northern Puget Lowland, Washington

    USGS Publications Warehouse

    Johnson, S.Y.; Nelson, A.R.; Personius, S.F.; Wells, R.E.; Kelsey, H.M.; Sherrod, B.L.; Okumura, K.; Koehler, R.; Witter, R.C.; Bradley, L.A.; Harding, D.J.

    2004-01-01

    Trenches across the Utsalady Point fault in the northern Puget Lowland of Washington reveal evidence of at least one and probably two late Holocene earthquakes. The "Teeka" and "Duffers" trenches were located along a 1.4-km-long, 1-to 4-m-high, northwest-trending, southwest-facing, topographic scarp recognized from Airborne Laser Swath Mapping. Glaciomarine drift exposed in the trenches reveals evidence of about 95 to 150 cm of vertical and 200 to 220 cm of left-lateral slip in the Teeka trench. Radiocarbon ages from a buried soil A horizon and overlying slope colluvium along with the historical record of earthquakes suggest that this faulting occurred 100 to 400 calendar years B.P. (A.D. 1550 to 1850). In the Duffers trench, 370 to 450 cm of vertical separation is accommodated by faulting (???210 cm) and folding (???160 to 240 cm), with probable but undetermined amounts of lateral slip. Stratigraphic relations and radiocarbon ages from buried soil, colluvium, and fissure fill in the hanging wall suggest the deformation at Duffers is most likely from two earthquakes that occurred between 100 to 500 and 1100 to 2200 calendar years B.P., but deformation during a single earthquake is also possible. For the two-earthquake hypothesis, deformation at Teeka trench in the first event involved folding but not faulting. Regional relations suggest that the earthquake(s) were M ??? ???6.7 and that offshore rupture may have produced tsunamis. Based on this investigation and related recent studies, the maximum recurrence interval for large ground-rupturing crustal-fault earthquakes in the Puget Lowland is about 400 to 600 years or less.

  1. Evidence for two surface ruptures in the past 500 years on the San Andreas fault at Frazier Mountain, California

    USGS Publications Warehouse

    Lindvall, S.C.; Rockwell, T.K.; Dawson, T.E.; Helms, J.G.; Bowman, K.W.

    2002-01-01

    We conducted paleoseismic studies in a closed depression along the San Andreas fault on the north flank of Frazier Mountain near Frazier Park, California. We recognized two earthquake ruptures in our trench exposure and interpreted the most recent rupture, event 1, to represent the historical 1857 earthquake. We also exposed evidence of an earlier surface rupture, event 2, along an older group of faults that did not rerupture during event 1. Radiocarbon dating of the stratigraphy above and below the earlier event constrains its probable age to between A.D. 1460 and 1600. Because we documented continuous, unfaulted stratigraphy between the earlier event horizon and the youngest event horizon in the portion of the fault zone exposed, we infer event 2 to be the penultimate event. We observed no direct evidence of an 1812 earthquake in our exposures. However, we cannot preclude the presence of this event at our site due to limited age control in the upper part of the section and the possibility of other fault strands beyond the limits of our exposures. Based on overlapping age ranges, event 2 at Frazier Mountain may correlate with event B at the Bidart fan site in the Carrizo Plain to the northwest and events V and W4 at Pallett Creek and Wrightwood, respectively, to the southeast. If the events recognized at these multiple sites resulted from the same surface rupture, then it appears that the San Andreas fault has repeatedly failed in large ruptures similar in extent to 1857.

  2. A plate boundary earthquake record from a wetland adjacent to the Alpine fault in New Zealand refines hazard estimates

    NASA Astrophysics Data System (ADS)

    Cochran, U. A.; Clark, K. J.; Howarth, J. D.; Biasi, G. P.; Langridge, R. M.; Villamor, P.; Berryman, K. R.; Vandergoes, M. J.

    2017-04-01

    Discovery and investigation of millennial-scale geological records of past large earthquakes improve understanding of earthquake frequency, recurrence behaviour, and likelihood of future rupture of major active faults. Here we present a ∼2000 year-long, seven-event earthquake record from John O'Groats wetland adjacent to the Alpine fault in New Zealand, one of the most active strike-slip faults in the world. We linked this record with the 7000 year-long, 22-event earthquake record from Hokuri Creek (20 km along strike to the north) to refine estimates of earthquake frequency and recurrence behaviour for the South Westland section of the plate boundary fault. Eight cores from John O'Groats wetland revealed a sequence that alternated between organic-dominated and clastic-dominated sediment packages. Transitions from a thick organic unit to a thick clastic unit that were sharp, involved a significant change in depositional environment, and were basin-wide, were interpreted as evidence of past surface-rupturing earthquakes. Radiocarbon dates of short-lived organic fractions either side of these transitions were modelled to provide estimates for earthquake ages. Of the seven events recognised at the John O'Groats site, three post-date the most recent event at Hokuri Creek, two match events at Hokuri Creek, and two events at John O'Groats occurred in a long interval during which the Hokuri Creek site may not have been recording earthquakes clearly. The preferred John O'Groats-Hokuri Creek earthquake record consists of 27 events since ∼6000 BC for which we calculate a mean recurrence interval of 291 ± 23 years, shorter than previously estimated for the South Westland section of the fault and shorter than the current interseismic period. The revised 50-year conditional probability of a surface-rupturing earthquake on this fault section is 29%. The coefficient of variation is estimated at 0.41. We suggest the low recurrence variability is likely to be a feature of

  3. Active faulting in apparently stable peninsular India: Rift inversion and a Holocene-age great earthquake on the Tapti Fault

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, R. Alastair; Gaonkar, Sharad; Reynolds, Kirsty

    2014-08-01

    We present observations of active faulting within peninsular India, far from the surrounding plate boundaries. Offset alluvial fan surfaces indicate one or more magnitude 7.6-8.4 thrust-faulting earthquakes on the Tapti Fault (Maharashtra, western India) during the Holocene. The high ratio of fault displacement to length on the alluvial fan offsets implies high stress-drop faulting, as has been observed elsewhere in the peninsula. The along-strike extent of the fan offsets is similar to the thickness of the seismogenic layer, suggesting a roughly equidimensional fault rupture. The subsiding footwall of the fault is likely to have been responsible for altering the continental-scale drainage pattern in central India and creating the large west flowing catchment of the Tapti river. A preexisting sedimentary basin in the uplifting hanging wall implies that the Tapti Fault was active as a normal fault during the Mesozoic and has been reactivated as a thrust, highlighting the role of preexisting structures in determining the rheology and deformation of the lithosphere. The slip sense of faults and earthquakes in India suggests that deformation south of the Ganges foreland basin is driven by the compressive force transmitted between India and the Tibetan Plateau. The along-strike continuation of faulting to the east of the Holocene ruptures we have studied represents a significant seismic hazard in central India.

  4. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  5. Numerical simulation of faulting in the Sunda Trench shows that seamounts may generate megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Chan, C. H.; Tapponnier, P.

    2017-12-01

    The role of seamounts in generating earthquakes has been debated, with some studies suggesting that seamounts could be truncated to generate megathrust events, while other studies indicate that the maximum size of megathrust earthquakes could be reduced as subducting seamounts could lead to segmentation. The debate is highly relevant for the seamounts discovered along the Mentawai patch of the Sunda Trench, where previous studies have suggested that a megathrust earthquake will likely occur within decades. In order to model the dynamic behavior of the Mentawai patch, we simulated forearc faulting caused by seamount subducting using the Discrete Element Method. Our models show that rupture behavior in the subduction system is dominated by stiffness of the overriding plate. When stiffness is low, a seamount can be a barrier to rupture propagation, resulting in several smaller (M≤8.0) events. If, however, stiffness is high, a seamount can cause a megathrust earthquake (M8 class). In addition, we show that a splay fault in the subduction environment could only develop when a seamount is present, and a larger offset along a splay fault is expected when stiffness of the overriding plate is higher. Our dynamic models are not only consistent with previous findings from seismic profiles and earthquake activities, but the models also better constrain the rupture behavior of the Mentawai patch, thus contributing to subsequent seismic hazard assessment.

  6. Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data

    USGS Publications Warehouse

    Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.

    2015-01-01

    We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.

  7. The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault

    NASA Astrophysics Data System (ADS)

    Avouac, Jean-Philippe; Ayoub, Francois; Wei, Shengji; Ampuero, Jean-Paul; Meng, Lingsen; Leprince, Sebastien; Jolivet, Romain; Duputel, Zacharie; Helmberger, Don

    2014-04-01

    We analyse the Mw 7.7 Balochistan earthquake of 09/24/2013 based on ground surface deformation measured from sub-pixel correlation of Landsat-8 images, combined with back-projection and finite source modeling of teleseismic waveforms. The earthquake nucleated south of the Chaman strike-slip fault and propagated southwestward along the Hoshab fault at the front of the Kech Band. The rupture was mostly unilateral, propagated at 3 km/s on average and produced a 200 km surface fault trace with purely strike-slip displacement peaking to 10 m and averaging around 6 m. The finite source model shows that slip was maximum near the surface. Although the Hoshab fault is dipping by 45° to the North, in accordance with its origin as a thrust fault within the Makran accretionary prism, slip was nearly purely strike-slip during that earthquake. Large seismic slip on such a non-optimally oriented fault was enhanced possibly due to the influence of the free surface on dynamic stresses or to particular properties of the fault zone allowing for strong dynamic weakening. Strike-slip faulting on thrust fault within the eastern Makran is interpreted as due to eastward extrusion of the accretionary prism as it bulges out over the Indian plate. Portions of the Makran megathrust, some thrust faults in the Kirthar range and strike-slip faults within the Chaman fault system have been brought closer to failure by this earthquake. Aftershocks cluster within the Chaman fault system north of the epicenter, opposite to the direction of rupture propagation. By contrast, few aftershocks were detected in the area of maximum moment release. In this example, aftershocks cannot be used to infer earthquake characteristics.

  8. A global search inversion for earthquake kinematic rupture history: Application to the 2000 western Tottori, Japan earthquake

    USGS Publications Warehouse

    Piatanesi, A.; Cirella, A.; Spudich, P.; Cocco, M.

    2007-01-01

    We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green's functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth. Copyright 2007 by the American Geophysical Union.

  9. Effects of Bounded Fault on Seismic Radiation and Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yang, H.

    2016-12-01

    It has been suggested that narrow rectangle fault may emit stopping phases that can largely affect seismic radiation and thus rupture propagation, e.g., generation of short-duration pulse-like ruptures. Here we investigate the effects of narrow along-dip rectangle fault (analogously to 2015 Nepal earthquake with 200 km * 40 km) on seismic radiation and rupture propagation through numerical modeling in the framework of the linear slip-weakening friction law. First, we found the critical slip-weakening distance Dc may largely affect the seismic radiation and other source parameters, such as rupture speed, final slip and stress drop. Fixing all other uniform parameters, decreasing Dc could decrease the duration time of slip rate and increase the peak slip rate, thus increase the seismic radiation energy spectrum of slip acceleration. In addition, smaller Dc could lead to larger rupture speed (close to S wave velocity), but smaller stress drop and final slip. The results show that Dc may control the efficiency of far-field radiation. Furthermore, the duration time of slip rate at locations close to boundaries is 1.5 - 4 s less than that in the center of the fault. Such boundary effect is especially remarkable for smaller Dc due to the smaller average duration time of slip rate, which could increase the high-frequency radiation energy and impede low-frequency component near the boundaries from the analysis of energy spectrum of slip acceleration. These results show high frequency energy tends to be radiated near the fault boundaries as long as Dc is small enough. In addition, ruptures are fragile and easy to self-arrest if the width of the seismogenic zone is very narrow. In other words, the sizes of nucleation zone need to be larger to initiate runaway ruptures. Our results show the critical sizes of nucleation zones increase as the widths of seismogenic zones decrease.

  10. The rupture process of the Manjil, Iran earthquake of 20 june 1990 and implications for intraplate strike-slip earthquakes

    USGS Publications Warehouse

    Choy, G.L.; Zednik, J.

    1997-01-01

    In terms of seismically radiated energy or moment release, the earthquake of 20 January 1990 in the Manjil Basin-Alborz Mountain region of Iran is the second largest strike-slip earthquake to have occurred in an intracontinental setting in the past decade. It caused enormous loss of life and the virtual destruction of several cities. Despite a very large meizoseismal area, the identification of the causative faults has been hampered by the lack of reliable earthquake locations and conflicting field reports of surface displacement. Using broadband data from global networks of digitally recording seismographs, we analyse broadband seismic waveforms to derive characteristics of the rupture process. Complexities in waveforms generated by the earthquake indicate that the main shock consisted of a tiny precursory subevent followed in the next 20 seconds by a series of four major subevents with depths ranging from 10 to 15 km. The focal mechanisms of the major subevents, which are predominantly strike-slip, have a common nodal plane striking about 285??-295??. Based on the coincidence of this strike with the dominant tectonic fabric of the region we presume that the EW striking planes are the fault planes. The first major subevent nucleated slightly south of the initial precursor. The second subevent occurred northwest of the initial precursor. The last two subevents moved progressively southeastward of the first subevent in a direction collinear with the predominant strike of the fault planes. The offsets in the relative locations and the temporal delays of the rupture subevents indicate heterogeneous distribution of fracture strength and the involvement of multiple faults. The spatial distribution of teleseismic aftershocks, which at first appears uncorrelated with meizoseismal contours, can be decomposed into stages. The initial activity, being within and on the periphery of the rupture zone, correlates in shape and length with meizoseismal lines. In the second stage

  11. 3-D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi; Kubo, Hisahiko

    2017-11-01

    Using 3-D dynamic rupture simulations, we investigated the 2016 Mw7.1 Kumamoto, Japan, earthquake to elucidate why and how the rupture of the main shock propagated successfully, assuming a complicated fault geometry estimated on the basis of the distributions of the aftershocks. The Mw7.1 main shock occurred along the Futagawa and Hinagu faults. Within 28 h before the main shock, three M6-class foreshocks occurred. Their hypocenters were located along the Hinagu and Futagawa faults, and their focal mechanisms were similar to that of the main shock. Therefore, an extensive stress shadow should have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of the relocated aftershock hypocenters. We then evaluated the static stress changes on the main shock fault plane that were due to the occurrence of the three foreshocks, assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that Coulomb failure stress change (ΔCFS) was positive just below the hypocenter of the main shock, while the ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the propagation of the rupture toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes caused by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we computed 3-D dynamic rupture by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges that could reproduce the characteristic features of the main shock rupture revealed by seismic waveform analyses. We also

  12. 3-D Spontaneous Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi

    2017-04-01

    We investigated the M7.3 Kumamoto, Japan, earthquake to illuminate why and how the rupture of the main shock propagated successfully by 3-D dynamic rupture simulations, assuming a complicated fault geometry estimated based on the distributions of aftershocks. The M7.3 main shock occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred. Their hypocenters were located along by the Hinagu and Futagawa faults and their focal mechanisms were similar to those of the main shock; therefore, an extensive stress shadow can have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of relocated aftershock hypocenters. Then, we evaluated static stress changes on the main shock fault plane due to the occurrence of the three foreshocks assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that the hypocenter of the main shock is located on the region with positive Coulomb failure stress change (ΔCFS) while ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we conducted 3-D dynamic rupture simulations by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges to reproduce the rupture propagation of the main shock consistent with those revealed by seismic waveform analyses. We also demonstrated that the free surface encouraged

  13. The Loma Prieta, California, Earthquake of October 17, 1989: Earthquake Occurrence

    USGS Publications Warehouse

    Coordinated by Bakun, William H.; Prescott, William H.

    1993-01-01

    Professional Paper 1550 seeks to understand the M6.9 Loma Prieta earthquake itself. It examines how the fault that generated the earthquake ruptured, searches for and evaluates precursors that may have indicated an earthquake was coming, reviews forecasts of the earthquake, and describes the geology of the earthquake area and the crustal forces that affect this geology. Some significant findings were: * Slip during the earthquake occurred on 35 km of fault at depths ranging from 7 to 20 km. Maximum slip was approximately 2.3 m. The earthquake may not have released all of the strain stored in rocks next to the fault and indicates a potential for another damaging earthquake in the Santa Cruz Mountains in the near future may still exist. * The earthquake involved a large amount of uplift on a dipping fault plane. Pre-earthquake conventional wisdom was that large earthquakes in the Bay area occurred as horizontal displacements on predominantly vertical faults. * The fault segment that ruptured approximately coincided with a fault segment identified in 1988 as having a 30% probability of generating a M7 earthquake in the next 30 years. This was one of more than 20 relevant earthquake forecasts made in the 83 years before the earthquake. * Calculations show that the Loma Prieta earthquake changed stresses on nearby faults in the Bay area. In particular, the earthquake reduced stresses on the Hayward Fault which decreased the frequency of small earthquakes on it. * Geological and geophysical mapping indicate that, although the San Andreas Fault can be mapped as a through going fault in the epicentral region, the southwest dipping Loma Prieta rupture surface is a separate fault strand and one of several along this part of the San Andreas that may be capable of generating earthquakes.

  14. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  15. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault

    USGS Publications Warehouse

    Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.

    2010-01-01

    It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.

  16. Dynamic modeling of normal faults of the 2016 Central Italy earthquake sequence

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo

    2017-04-01

    The earthquake sequence of the Central Italy in 2016 are characterized mainly by the Mw6.0 24th August, Mw5.9 26th October and Mw6.4 30th October as well as two Mw5.4 earthquakes (24th August, 26th October) (catalogue INGV). They all show normal faulting mechanisms corresponding to the Apennines's tectonics. They are aligned briefly along NNW-SSE axis, and they may not be on a single continuous fault plane. Therefore, dynamic rupture modeling of sequences should be carried out supposing co-planar normal multiple segments. We apply a Boundary Domain Method (BDM, Goto and Bielak, GJI, 2008) coupling a boundary integral equation method and a domain-based method, namely a finite difference method in this study. The Mw6.0 24th August earthquake is modeled. We use the basic information of hypocenter position, focal mechanism and potential ruptured dimension from the INGV catalogue and Tinti et al., GRL, 2016), and begin with a simple condition (homogeneous boundary condition). From our preliminary simulations, it is shown that a uniformly extended rupture model does not fit the near-field ground motions and localized heterogeneity would be required.

  17. Fault Interaction and Stress Accumulation in Chaman Fault System, Balouchistan, Pakistan, Since 1892

    NASA Astrophysics Data System (ADS)

    Riaz, M. S.; Shan, B.; Xiong, X.; Xie, Z.

    2017-12-01

    The curved-shaped left-lateral Chaman fault is the Western boundary of the Indian plate, which is approximately 1000 km long. The Chaman fault is an active fault and also locus of many catastrophic earthquakes. Since the inception of strike-slip movement at 20-25Ma along the western collision boundary between Indian and Eurasian plates, the average geologically constrained slip rate of 24 to 35 mm/yr accounts for a total displacement of 460±10 km along the Chaman fault system (Beun et al., 1979; Lawrence et al., 1992). Based on earthquake triggering theory, the change in Coulomb Failure Stress (DCFS) either halted (shadow stress) or advances (positive stress) the occurrence of subsequent earthquakes. Several major earthquakes occurred in Chaman fault system, and this region is poorly studied to understand the earthquake/fault interaction and hazard assessment. In order to do so, we have analyzed the earthquakes catalog and collected significant earthquakes with M ≥6.2 since 1892. We then investigate the evolution of DCFS in the Chaman fault system is computed by integration of coseismic static and postseismic viscoelastic relaxation stress transfer since the 1892, using the codePSGRN/PSCMP (Wang et al., 2006). Moreover, for postseismic stress transfer simulation, we adopted linear Maxwell rheology to calculate the viscoelastic effects in this study. Our results elucidate that three out of four earthquakes are triggered by the preceding earthquakes. The 1892-earthquake with magnitude Mw6.8, which occurred on the North segment of Chaman fault has not influence the 1935-earthquake which occurred on Ghazaband fault, a parallel fault 20km east to Chaman fault. The 1935-earthquake with magnitude Mw7.7 significantly loaded the both ends of rupture with positive stress (CFS ≥0.01 Mpa), which later on triggered the 1975-earthquake with 23% of its rupture length where CFS ≥0.01 Mpa, on Chaman fault, and 1990-earthquke with 58% of its rupture length where CFS ≥0

  18. Co-seismic strike-slip surface rupture and displacement produced by the 2010 Mw 6.9 Yushu earthquake, China, and implications for Tibetan tectonics

    NASA Astrophysics Data System (ADS)

    Lin, A.; Rao, G.; Jia, D.; Wu, X.; Yan, B.; Ren, Z.

    2010-12-01

    The magnitude (Mw) 6.9 (Ms 7.1) Yushu earthquake occurred on 14 April 2010 in the Yushu area, central Tibetan Plateau, killing approximately 3000 people (including 270 missing) and causing widespread damage in the high mountain regions of the central Tibetan Plateau. The Yushu earthquake is comparable with the 1997 Mw 7.6 Manyi earthquake, the 2001 Mw 7.8 Kunlun earthquake, and the 2008 Mw 7.9 Wenchuan earthquake, which all occurred in the northern and eastern Tibetan Plateau, in terms of their magnitude and seismotectonic environment, related to the eastward extrusion of the Tibetan Plateau in response to continental collision between the Indian and Eurasian plates. Although some prompt reports related to ground deformation and the focal mechanism were published in the Chinese literature soon after the Yushu earthquake, there are scarce data related to the nature of co-seismic strike-slip rupturing structures and displacement distributions because the co-seismic surface ruptures were produced mainly in remote, high mountain regions of the Tibetan Plateau (average elevation >4000 m) and roads to the epicentral area were damaged, which made it difficult to gain access to the area and to undertake fieldwork immediately after the earthquake. Field investigations reveal that the earthquake produced a 33-km-long surface rupture zone, with dominantly left-lateral strike-slip along the Yushu Fault of the pre-existing strike-slip Ganzi-Yushu Fault Zone. The co-seismic surface ruptures are characterized by discontinuous shear faults, right-stepping en echelon tensional cracks, and left-stepping mole track structures that indicate a left-lateral strike-slip shear sense for the seismic fault. Field measurements indicate co-seismic left-lateral strike-slip displacements of approximately 0.3-3.2 m (typically 1-2 m), accompanied by a minor vertical component of <0.6 m. The present results show that (i) the Yushu earthquake occurred upon the pre-existing active Ganzi-Yushu Fault

  19. Distribution of stress drop, stiffness, and fracture energy over earthquake rupture zones

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2006-01-01

    Using information provided by slip models and the methodology of McGarr and Fletcher (2002), we map static stress drop, stiffness (k = ????/u, where ???? is static stress drop and u is slip), and fracture energy over the slip surface to investigate the earthquake rupture process and energy budget. For the 1994 M6.7 Northridge, 1992 M7.3 Landers, and 1995 M6.9 Kobe earthquakes, the distributions of static stress drop show strong heterogeneity, emphasizing the importance of asperities in the rupture process. Average values of static stress drop are 17, 11, and 4 Mpa for Northridge, Landers, and Kobe, respectively. These values are substantially higher than estimates based on simple crack models, suggesting that the failure process involves the rupture of asperities within the larger fault zone. Stress drop as a function of depth for the Northridge and Landers earthquakes suggests that stress drops are limited by crustal strength. For these two earthquakes, regions of high slip are surrounded by high values of stiffness. Particularly for the Northridge earthquake, the prominent patch of high slip in the central part of the fault is bordered by a ring of high stiffness and is consistent with expectations based on the failure of an asperity loaded at its edge due to exterior slip. Stiffness within an asperity is inversely related to its dimensions. Estimates of fracture energy, based on static stress drop, slip, and rupture speed, were used to investigate the nature of slip weakening at four locations near the hypocenter of the Kobe earthquake for comparison with independent results based on a dynamic model of this earthquake. One subfault updip and to the NE of the hypocenter has a fracture energy of 1.1 MJ/m2 and a slip-weakening distance, Dc, of 0.66 m. Right triangles, whose base and height are Dc and the dynamic stress drop, respectively, approximately overlie the slip-dependent stress given by Ide and Takeo (1997) for the same locations near the hypocenter. The

  20. Simulation of broad-band strong ground motion for a hypothetical Mw 7.1 earthquake on the Enriquillo Fault in Haiti

    NASA Astrophysics Data System (ADS)

    Douilly, Roby; Mavroeidis, George P.; Calais, Eric

    2017-10-01

    The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground

  1. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Principal fault displacements -

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Tonagi, M.

    2016-12-01

    The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault

  2. 2014 M=6.0 South Napa earthquake triggered widespread aftershocks and stressed several major faults and exotic fault clusters

    USGS Publications Warehouse

    Toda, Shinji; Stein, Ross

    2015-01-01

    The strongest San Francisco Bay area earthquake since the 1989 Mw 7.0 Loma Prieta shock struck near Napa on 24 August 2014. Field mapping (Dawson et al., 2014; Earthquake Engineering Research Institute [EERI], 2014; Brocher et al., 2015) and seismic and geodetic source inversions (Barnhart et al., 2015; Dreger et al., 2015; Wei et al., 2015) indicate that a 15-km-long northwest-trending section of the West Napa Valley fault ruptured in the earthquake. Remarkably, it was the first indisputable surface rupture in the Bay area since 1906. The Napa event, along with other smaller earthquakes such as the 1980 Mw 5.8 Livermore and 1984 Mw 6.2 Morgan Hill events on the Calaveras and Hayward faults over the past 3–4 decades, may indicate that the Bay area region is emerging from the stress shadow of the 1906 Mw 7.8 San Francisco earthquake (Harris and Simpson, 1998; Pollitz et al., 2004). Since 1979, there has been a 140% increase in the rate of Mw≥4.1 shocks (Fig. 1) in the broader Bay area, with most concentrated in a corridor extending north from the 1989 Loma Prieta aftershock zone through the Calaveras, Greenville, Green Valley, Napa, and Rodgers Creek faults east of the San Francisco Bay (Fig. 1a). This corridor roughly coincides with the 1906 stress shadow that is being eroded away by more than a century of stress reaccumulation. The Napa event, as well as the surrounding faults on which we calculate the resulting hazard increases, all lie within this zone.

  3. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  4. The 2017 Jiuzhaigou Earthquake: A Complicated Event Occurred in a Young Fault System

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Yue, Han; Shen, Zhengkang; Fang, Lihua; Zhan, Yan; Sun, Xiangyu

    2018-03-01

    The Minshan Uplift Zone (MUZ) is located at the eastern margin of the Tibetan Plateau, which is the junction of three tectonic terranes. The observed discrepancy between a high uplifting and low shortening rate over the MUZ is attributed to the intrusion of a viscous lower crust. In the last 50 years, several significant earthquakes occurred at the boundaries of the MUZ, that is, the Huya and Mingjiang faults. On 8 August 2017, the Jiuzhaigou earthquake (Mw 6.5) occurred on the northern extension of the Huya fault. We adopt a joint inversion of the interferometric synthetic aperture radar and teleseismic body wave data to investigate the rupture process of this event. The obtained slip model is dominated by left-lateral strike slips on a subvertical fault presenting significant shallow slip deficit. The rupture initiation is composed of both thrust and strike-slip mechanisms producing a non-double-couple solution. We also resolve a secondary fault branch forming an obtuse angle with the main fault plane at its northern end. These phenomena indicate that the northern Huya fault is a young (less mature) fault system. Focal mechanisms of the regional earthquakes demonstrate that the northern and southern Huya faults present different combinations of strike-slip and reversed motion. We attribute such discrepancy to the lateral extension of the viscous lower crust, which appears to extrude to the east beyond the northern Huya fault, in comparison with that confined under the MUZ near the southern Huya fault. This conceptual model is also supported by geomorphological and magnetotelluric observations.

  5. Co-seismic and cumulative slip along the Kokoxili Mw 7.9 earthquake rupture (Kunlun Fault, northeastern Tibet)

    NASA Astrophysics Data System (ADS)

    van der Woerd, J.; Klinger, Y.; Xu, X.; Ledortz, K.; Tapponnier, P.; Li, H.; King, G.; Ma, W.; Chen, W.

    2009-04-01

    Co-seismic slip values along a strike-slip rupture are found to be very irregular with variations up to one order of magnitude. Data usually scattered and sparse, are more dense and continuous with slip functions derived from InSAR or image correlations. Whether the fast variations in slip along strike reveals long-lived structures of the fault plane at depth, only incomplete slip at the surface or inelastic accommodation of slip remains debated. In addition, how these slip disparities are accommodated with time is unclear. The surface breaks of the Kokoxili Mw 7.9 event sytematically follow the geomorphic trace of the fault, which bears evidence for cumulative displacements. In the epicentral area, the rupture steps along the highest ice-capped summit of the region, the Buka Daban Feng. Evidence for normal fault breaks, left-lateral ruptures and steep triangular facets indicate that the Buka Daban Feng, a 40 km-long range reaching about 6800 m a.s.l. formed as a result of continuous oblique left-normal faulting. Normal faulting is attested by hanging glaciers, a steep southeastern flank and hot springs along coseismic and cumulative surface ruptures. Left-lateral movement along the main oblique normal fault has displaced the distal frontal moraines of almost all glacial valleys. West of the Buka Daban Feng, the western most ruptured strand is continuous between Kushiwan and Tayang lakes (about 60 km long) with coseismic left-lateral offsets reaching 4-5 m. To the east, at one site, the rupture splays into 4 main, N90°E-striking strands across a 1200x300m pull-apart. Three strands show right-stepping scarps with maximum throws of 1 m. The northern strand shows 3 m of purely normal throw. On NS profiles, the coseismic subsidence of the pull-apart floor was about 2 m, 1/10th of its 20 m depth, consistent with the repetition of 10 comparable earthquakes. East of the pull-apart 5 +/- 0.2 m sinistral slip are measured on the single stranded rupture. A similar coseismic

  6. Study on conditional probability of surface rupture: effect of fault dip and width of seismogenic layer

    NASA Astrophysics Data System (ADS)

    Inoue, N.

    2017-12-01

    The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source

  7. Irregular earthquake recurrence patterns and slip variability on a plate-boundary Fault

    NASA Astrophysics Data System (ADS)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.

    2015-12-01

    The Dead Sea fault in the Levant represents a simple, segmented plate boundary from the Gulf of Aqaba northward to the Sea of Galilee, where it changes its character into a complex plate boundary with multiple sub-parallel faults in northern Israel, Lebanon and Syria. The studied Jordan Gorge (JG) segment is the northernmost part of the simple section, before the fault becomes more complex. Seven fault-crossing buried paleo-channels, offset by the Dead Sea fault, were investigated using paleoseismic and geophysical methods. The mapped offsets capture the long-term rupture history and slip-rate behavior on the JG fault segment for the past 4000 years. The ~20 km long JG segment appears to be more active (in term of number of earthquakes) than its neighboring segments to the south and north. The rate of movement on this segment varies considerably over the studied period: the long-term slip-rate for the entire 4000 years is similar to previously observed rates (~4 mm/yr), yet over shorter time periods the rate varies from 3-8 mm/yr. Paleoseismic data on both timing and displacement indicate a high COV >1 (clustered) with displacement per event varying by nearly an order of magnitude. The rate of earthquake production does not produce a time predictable pattern over a period of 2 kyr. We postulate that the seismic behavior of the JG fault is influenced by stress interactions with its neighboring faults to the north and south. Coulomb stress modelling demonstrates that an earthquake on any neighboring fault will increase the Coulomb stress on the JG fault and thus promote rupture. We conclude that deriving on-fault slip-rates and earthquake recurrence patterns from a single site and/or over a short time period can produce misleading results. The definition of an adequately long time period to resolve slip-rate is a question that needs to be addressed and requires further work.

  8. M≥7 Earthquake rupture forecast and time-dependent probability for the Sea of Marmara region, Turkey

    USGS Publications Warehouse

    Murru, Maura; Akinci, Aybige; Falcone, Guiseppe; Pucci, Stefano; Console, Rodolfo; Parsons, Thomas E.

    2016-01-01

    We forecast time-independent and time-dependent earthquake ruptures in the Marmara region of Turkey for the next 30 years using a new fault-segmentation model. We also augment time-dependent Brownian Passage Time (BPT) probability with static Coulomb stress changes (ΔCFF) from interacting faults. We calculate Mw > 6.5 probability from 26 individual fault sources in the Marmara region. We also consider a multisegment rupture model that allows higher-magnitude ruptures over some segments of the Northern branch of the North Anatolian Fault Zone (NNAF) beneath the Marmara Sea. A total of 10 different Mw=7.0 to Mw=8.0 multisegment ruptures are combined with the other regional faults at rates that balance the overall moment accumulation. We use Gaussian random distributions to treat parameter uncertainties (e.g., aperiodicity, maximum expected magnitude, slip rate, and consequently mean recurrence time) of the statistical distributions associated with each fault source. We then estimate uncertainties of the 30-year probability values for the next characteristic event obtained from three different models (Poisson, BPT, and BPT+ΔCFF) using a Monte Carlo procedure. The Gerede fault segment located at the eastern end of the Marmara region shows the highest 30-yr probability, with a Poisson value of 29%, and a time-dependent interaction probability of 48%. We find an aggregated 30-yr Poisson probability of M >7.3 earthquakes at Istanbul of 35%, which increases to 47% if time dependence and stress transfer are considered. We calculate a 2-fold probability gain (ratio time-dependent to time-independent) on the southern strands of the North Anatolian Fault Zone.

  9. Fan-head shear rupture mechanism as a source of off-fault tensile cracking

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone

  10. Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: fault movement investigation and seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongshan; Huang, Dingfa; Yuan, Linguo; Hassan, Abubakr; Zhang, Lupeng; Yang, Zhongrong

    2018-04-01

    The 2016 moment magnitude (Mw) 7.8 Kaikoura earthquake demonstrated that multiple fault segments can undergo rupture during a single seismic event. Here, we employ Global Positioning System (GPS) observations and geodetic modeling methods to create detailed images of coseismic slip and postseismic afterslip associated with the Kaikoura earthquake. Our optimal geodetic coseismic model suggests that rupture not only occurred on shallow crustal faults but also to some extent at the Hikurangi subduction interface. The GPS-inverted moment release during the earthquake is equivalent to a Mw 7.9 event. The near-field postseismic deformation is mainly derived from right-lateral strike-slip motions on shallow crustal faults. The afterslip did not only significantly extend northeastward on the Needles fault but also appeared at the plate interface, slowly releasing energy over the past 6 months, equivalent to a Mw 7.3 earthquake. Coulomb stress changes induced by coseismic deformation exhibit complex patterns and diversity at different depths, undoubtedly reflecting multi-fault rupture complexity associated with the earthquake. The Coulomb stress can reach several MPa during coseismic deformation, which can explain the trigger mechanisms of afterslip in two high-slip regions and the majority of aftershocks. Based on the deformation characteristics of the Kaikoura earthquake, interseismic plate coverage, and historical earthquakes, we conclude that Wellington is under higher seismic threat after the earthquake and great attention should be paid to potential large earthquake disasters in the near future.[Figure not available: see fulltext.

  11. Seafloor seismological/geodetic observations in the rupture area of the 2011 Tohoku-oki Earthquake

    NASA Astrophysics Data System (ADS)

    Hino, Ryota; Shinohara, Masanao; Ito, Yoshihiro

    2016-04-01

    A number of important aspects of the 2011 Tohoku-oki earthquake (Mw 9.0) were clarified by the seafloor seismological and geodetic observation above the rupture area of the earthquake. Besides the extraordinarily large coseismic displacements, various kinds of slow slip phenomena associated with intensive micro-seismicity on the plate boundary fault were identified by near field ocean bottom seismographs and seafloor geodetic observation networks. The Tohoku-oki earthquake was preceded by evident foreshock activity with a spatial expansion of this seismicity. The activity became significantly intense after the occurrence of the largest foreshock two days before the mainshock rupture. During the period, clear continuous seafloor deformation was identified caused by the aseismic slip following the largest foreshock. Another different type of aseismic slip event had occurred before this pre-imminent activity had started about a month before the largest foreshock happened. The observed increased seismicity associated with aseismic slip suggests that there must have been some chain reaction like interplay of seismic and interseismic slips before the large earthquake broke out. However, no evident deformation signals were observed indicating acceleration of fault slip immediately before the mainshock. Seafloor geodetic measurements reveals that the postseismic deformation around the rupture area of the Tohoku-oki earthquake shows complex spatial pattern and the complexity is mostly due to significant viscoelastic relaxation induced by the huge coseismic slip. The effects of viscoelastic deformation makes it difficult to identify the deformation associated with the after slip or regaining of interplate coupling and requires us to enhance the abilities of seafloor monitoring to detect the slip activities on the fault. We started an array of seismometer arrays observation including broad-band seismographs to detect and locate slow-slip events and low-frequency tremors

  12. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    USGS Publications Warehouse

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  13. Wasatch fault zone, Utah - segmentation and history of Holocene earthquakes

    USGS Publications Warehouse

    Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.

    1991-01-01

    The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. The authors have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a-1, recurrence intervals of ???10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ?? 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. Evidence has been found that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval.

  14. Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2013-12-01

    Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller

  15. The Elizabeth Lake paleoseismic site: Rupture pattern constraints for the past ~800 years for the Mojave section of the south-central San Andreas Fault

    USGS Publications Warehouse

    Bemis, Sean; Scharer, Katherine M.; Dolan, James F.; Rhodes, Ed

    2016-01-01

    The southern San Andreas Fault in California has hosted two historic surface-rupturing earthquakes, the ~M7 1812 Wrightwood earthquake and the ~M7.9 1857 Fort Tejon earthquake (e.g., Sieh, 1978; Jacoby et al., 1988). Numerous paleoseismic studies have established chronologies of historic and prehistoric earthquakes at sites along the full length of the 1857 rupture (e.g., Sieh, 1978; Scharer et al., 2014). These studies provide an unparalleled opportunity to examine patterns of recent ruptures; however, at least two significant spatial gaps in high-quality paleoseismic sites remain. At ~100 km long each, these gaps contribute up to 100 km of uncertainty to paleo-rupture lengths and could also permit a surface rupture from an earthquake up to ~M7.2 to go undetected [using scaling relationships of Wells and Coppersmith (1994)]. Given the known occurrence of an ~M7 earthquake on this portion of the SAF (1812), it is critical to fill these gaps in order to better constrain paleo-rupture lengths and to increase the probability of capturing the full spatial record of surface rupturing earthquakes.   In this study, we target a new site within the 100 km long stretch of the San Andreas Fault between the Frazier Mountain and Pallett Creek paleoseismic sites (Figure 1), near Elizabeth Lake, California. Prior excavations at the site during 1998-1999 encountered promising stratigraphy but these studies were hindered by shallow groundwater throughout the site. We began our current phase of investigations in 2012, targeting the northwestern end of a 40 x 350 m fault-parallel depression that defines the site (Figure 2). Subsequent investigations in 2013 and 2014 focused on the southeastern end of the depression where the fault trace is constrained between topographic highs and is proximal to an active drainage. In total, our paleoseismic investigations consist of 10 fault-perpendicular trenches that cross the depression (Figure 2) and expose a >2000 year depositional record

  16. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  17. Spatiotemporal earthquake clusters along the North Anatolian fault zone offshore Istanbul

    USGS Publications Warehouse

    Bulut, Fatih; Ellsworth, William L.; Bohnhoff, Marco; Aktar, Mustafa; Dresen, Georg

    2011-01-01

    We investigate earthquakes with similar waveforms in order to characterize spatiotemporal microseismicity clusters within the North Anatolian fault zone (NAFZ) in northwest Turkey along the transition between the 1999 ??zmit rupture zone and the Marmara Sea seismic gap. Earthquakes within distinct activity clusters are relocated with cross-correlation derived relative travel times using the double difference method. The spatiotemporal distribution of micro earthquakes within individual clusters is resolved with relative location accuracy comparable to or better than the source size. High-precision relative hypocenters define the geometry of individual fault patches, permitting a better understanding of fault kinematics and their role in local-scale seismotectonics along the region of interest. Temporal seismic sequences observed in the eastern Sea of Marmara region suggest progressive failure of mostly nonoverlapping areas on adjacent fault patches and systematic migration of microearthquakes within clusters during the progressive failure of neighboring fault patches. The temporal distributions of magnitudes as well as the number of events follow swarmlike behavior rather than a mainshock/aftershock pattern.

  18. Constraints on recent earthquake source parameters, fault geometry and aftershock characteristics in Oklahoma

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H.; Herrmann, R. B.; Bergman, E. A.; McMahon, N. D.; Aster, R. C.

    2014-12-01

    In late 2009, the seismicity of Oklahoma increased dramatically. The largest of these earthquakes was a series of three damaging events (Mw 4.8, 5.6, 4.8) that occurred over a span of four days in November 2011 near the town of Prague in central Oklahoma. Studies suggest that these earthquakes were induced by reactivation of the Wilzetta fault due to the disposal of waste water from hydraulic fracturing ("fracking") and other oil and gas activities. The Wilzetta fault is a northeast trending vertical strike-slip fault that is a well known structural trap for oil and gas. Since the November 2011 Prague sequence, thousands of small to moderate (M2-M4) earthquakes have occurred throughout central Oklahoma. The most active regions are located near the towns of Stillwater and Medford in north-central Oklahoma, and Guthrie, Langston and Jones near Oklahoma City. The USGS, in collaboration with the Oklahoma Geological Survey and the University of Oklahoma, has responded by deploying numerous temporary seismic stations in the region in order to record the vigorous aftershock sequences. In this study we use data from the temporary seismic stations to re-locate all Oklahoma earthquakes in the USGS National Earthquake Information Center catalog using a multiple-event approach known as hypo-centroidal decomposition that locates earthquakes with decreased uncertainty relative to one another. Modeling from this study allows us to constrain the detailed geometry of the reactivated faults, as well as source parameters (focal mechanisms, stress drop, rupture length) for the larger earthquakes. Preliminary results from the November 2011 Prague sequence suggest that subsurface rupture lengths of the largest earthquakes are anomalously long with very low stress drop. We also observe very high Q (~1000 at 1 Hz) that explains the large felt areas and we find relatively low b-value and a rapid decay of aftershocks.

  19. Thermodynamic method for generating random stress distributions on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  20. The Wasatch fault zone, utah—segmentation and history of Holocene earthquakes

    NASA Astrophysics Data System (ADS)

    Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.

    The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a -1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a -1 recurrence intervals of ≥10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene; latest Pleistocene (14-15 ka) deposits commonly have scarps as much as 15-20 m in height. Segments identified from paleoseismological studies of other major late Quaternary normal faults in the northern Basin and Range province are 20-25 km long, or about half of that proposed for the medial segments of the WFZ. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ± 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. This pattern of temporal clustering is similar to that of the central Nevada—eastern California Seismic Belt in the western part of the Basin and Range province, where 11 earthquakes of M > 6.5 have occurred since 1860. Although the time scale of the clustering is different—130 years vs 1100 years—we consider the central Nevada—eastern California Seismic Belt to be a historic analog for movement on

  1. Map showing surface ruptures associated with the Mammoth Lakes, California, earthquakes of May 1980

    USGS Publications Warehouse

    Clark, M.M.; Yount, J.C.; Vaughn, P.R.; Zepeda, R.L.

    1982-01-01

    This map shows surface ruptures associated with the M 6 Mammoth Lakes earthquakes of May 25-27, 1980 (Sherburne, 1980). The ruptures were mapped during USGS field investigations May 28 to June 4 and July 14-19, 1980. The map also includes some of the ruptures recorded by California Division of Mines and Geology investigators May 26-31, June 26-27, and July 7-11, 1980 (Taylor and Bryant, 1980). Because most of the surface ruptures developed in either unconsolidated pumice, alluvium, or till (and many were on slopes of scarps created by earlier faulting), wind, rain and animals quickly erased many of the ruptures. In places, the minimum detectable slip was 3-10 mm. Thus the lines on the map do not record all of the ruptures that formed at the time of the earthquake. Many of the areas were we show gaps between lines on the map probably had cracks originally. 

  2. Paleoseismic history and slip rate along the Sapanca-Akyazı segment of the 1999 İzmit earthquake rupture (Mw = 7.4) of the North Anatolian Fault (Turkey)

    NASA Astrophysics Data System (ADS)

    Dikbaş, Aynur; Akyüz, H. Serdar; Meghraoui, Mustapha; Ferry, Matthieu; Altunel, Erhan; Zabcı, Cengiz; Langridge, Robert; Yalçıner, Cahit Çağlar

    2018-07-01

    The Sapanca-Akyazı segment (SAS) is located on western part of the North Anatolian Fault (NAF) of Turkey. It was ruptured together with four other segments during the 17th August 1999 İzmit earthquake (Mw = 7.4) which caused 145-km-long surface rupture in the east Marmara region. We conducted geomorphological investigations and 2D-3D paleoseismic trenching at 3 different sites near the Sakarya River along the SAS to obtain new data for the timing of past earthquakes and slip rate of this section of the NAF. Detailed investigations using Ground Penetrating Radar on the western bank of the Sakarya River reveal 18.5 ± 0.5 m of right-lateral cumulative offset of an alluvial terrace dated as 850 ± 11 years BP using Optically Stimulated Luminescence. The analysis of trench data from the three different sites of the SAS indicates the occurrence of four surface rupturing past earthquakes including the 1999 İzmit earthquake. According to the radiocarbon dating, these paleo-earthquakes can be correlated with the 1719 CE, 1567 CE, and 1037 CE historical earthquakes and suggest an average recurrence period between 273 and 322 years. The total dextral offset, the age of trench units and the terrace deposits together suggest a 22 ± 3 mm/yr slip rate for this portion of the NAF.

  3. Contradicting Estimates of Location, Geometry, and Rupture History of Highly Active Faults in Central Japan

    NASA Astrophysics Data System (ADS)

    Okumura, K.

    2011-12-01

    Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku

  4. Poroelastic rebound along the Landers 1992 earthquake surface rupture

    USGS Publications Warehouse

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1998-01-01

    Maps of surface displacement following the 1992 Landers, California, earthquake, generated by interferometric processing of ERS-1 synthetic aperture radar (SAR) images, reveal effects of various postseismic deformation processes along the 1992 surface rupture. The large-scale pattern of the postseismic displacement field includes large lobes, mostly visible on the west side of the fault, comparable in shape with the lobes observed in the coseismic displacement field. This pattern and the steep displacement gradient observed near the Emerson-Camp Rock fault cannot be simply explained by afterslip on deep sections of the 1992 rupture. Models show that horizontal slip occurring on a buried dislocation in a Poisson's material produces a characteristic quadripole pattern in the surface displacement field with several centimeters of vertical motion at distances of 10-20 km from the fault, yet this pattern is not observed in the postseismic interferograms. As previously proposed to explain local strain in the fault step overs [Peltzer et al., 1996b], we argue that poroelastic rebound caused by pore fluid flow may also occur over greater distances from the fault, compensating the vertical ground shift produced by fault afterslip. Such a rebound is explained by the gradual change of the crustal rocks' Poisson's ratio value from undrained (coseismic) to drained (postseismic) conditions as pore pressure gradients produced by the earthquake dissipate. Using the Poisson's ratio values of 0.27 and 0.31 for the drained and undrained crustal rocks, respectively, elastic dislocation models show that the combined contributions of afterslip on deep sections of the fault and poroelastic rebound can account for the range change observed in the SAR data and the horizontal displacement measured at Global Positioning System (GPS) sites along a 60-km-long transect across the Emerson fault [Savage and Svarc, 1997]. Using a detailed surface slip distribution on the Homestead Valley, Kickapoo

  5. Modeling 3D Dynamic Rupture on Arbitrarily-Shaped faults by Boundary-Conforming Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.

    2008-12-01

    We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.

  6. The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes: A triggered normal faulting sequence

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen M.; Stein, Ross S.; King, Geoffrey C. P.

    1996-11-01

    In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M = 7.2, December 12, 1954) followed two events in the Rainbow Mountains (M = 6.2, July 6, and M = 6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M = 6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence.

  7. The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes: A triggered normal faulting sequence

    USGS Publications Warehouse

    Hodgkinson, K.M.; Stein, R.S.; King, G.C.P.

    1996-01-01

    In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M=7.2, December 12, 1954) followed two events in the Rainbow Mountains (M=6.2, July 6, and M=6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M=6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence. Copyright 1996 by the American Geophysical Union.

  8. Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab

    NASA Astrophysics Data System (ADS)

    Arai, Ryuta; Kodaira, Shuichi; Yamada, Tomoaki; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki; Nishizawa, Azusa; Oikawa, Mitsuhiro

    2017-06-01

    The role of seamounts on interplate earthquakes has been debated. However, its impact on intraslab deformation is poorly understood. Here we present unexpected evidence for large normal-fault earthquakes intersecting the slab just ahead of a subducting seamount. In 1995, a series of earthquakes with maximum magnitude of 7.1 occurred in northern Ryukyu where oceanic plateaus are subducting. The aftershock distribution shows that conjugate faults with an unusually high dip angle of 70-80° ruptured the entire subducting crust. Seismic reflection images reveal that the plate interface is displaced over 1 km along one of the fault planes of the 1995 events. These results suggest that a lateral variation in slab buoyancy can produce sufficient differential stress leading to near-vertical normal-fault earthquakes within the slab. On the contrary, the upper surface of the seamount (plate interface) may correspond to a weakly coupled region, reflecting the dual effects of seamounts/plateaus on subduction earthquakes.

  9. Seismogeodesy of the 2014 Mw6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault

    NASA Astrophysics Data System (ADS)

    Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.

    2015-07-01

    Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

  10. Near-Fault Strong Ground Motions during the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.

    2016-12-01

    The 2016 Kumamoto mainshock (Mw7.0) produced a surface ruptured fault of about 20km long with maximum 2m offset, and identified as a surface ruptured event. Two strong motion records were observed near the surface ruptured fault at Mashiki town hall and Nishihara village hall. We investigated characteristics of those strong ground motions. As the acceleration records consisted of the baseline errors caused by nonzero initial acceleration and tilting of the accelerograph, we carefully removed the baseline errors (c.f. Chiu, 2001, Boore and Bommer, 2005) so as to obtain velocity and displacements. The observed permanent displacements were about 1.2m in horizontal direction and about 0.7m sinking in vertical direction at Mashiki town hall, and about 1.7m and 1.8m, respectively, at Nishihara village hall. Those permanent displacements almost coincide to results by GNSS and InSAR analysis (e.g., GSI, 2016). It takes about only 3 s to reach the permanent displacement. Somerville (2003) pointed out that ground motions from earthquakes producing large surface ruptures appeared to have systematically weaker ground motions than ground motions from earthquakes whose rupture were confined to the subsurface using the Ground Motion Prediction Equation (GMPE) for response spectra (Abrahamson and Silva, 1997). We calculated the response spectra of those records, compared them to the GMPE with the same manner and found two records were systematically larger than the expected from the GMPE in the period range of 0.3 s to 5 s. We need to re-consider the working hypothesis that the near-fault ground motions are weaker and to separate the near-fault and site effects on ground motions. Strong motions in the longer period range would be mainly caused by the near-fault (near-field term) effect.We used the acceleration data of the Kumamoto seismic intensity information network, provided by JMA.

  11. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Rizza, M.; Ritz, J.-F.; Braucher, R.; Vassallo, R.; Prentice, C.; Mahan, S.; McGill, S.; Chauvet, A.; Marco, S.; Todbileg, M.; Demberel, S.; Bourles, D.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans-particularly well preserved in the arid environment of the Gobi region-allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is ~1 mm yr-1 along the WIB and EIB segments and ~0.5 mm yr-1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78-7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of ~2500-5200 yr for past

  12. Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Key, K.; Atekwana, E. A.

    2016-12-01

    Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.

  13. Constraints on the rupture process of the 17 August 1999 Izmit earthquake

    NASA Astrophysics Data System (ADS)

    Bouin, M.-P.; Clévédé, E.; Bukchin, B.; Mostinski, A.; Patau, G.

    2003-04-01

    Kinematic and static models of the 17 August 1999 Izmit earthquake published in the literature are quite different from one to each other. In order to extract the characteristic features of this event, we determine the integral estimates of the geometry, source duration and rupture propagation of this event. Those estimates are given by the stress glut moments of total degree 2 inverting long period surface wave (LPSW) amplitude spectra (Bukchin, 1995). We draw comparisons with the integral estimates deduced from kinematic models obtained by inversion of strong motion data set and/or teleseismic body wave (Bouchon et al, 2002; Delouis et al., 2000; Yagi and Kukuchi, 2000; Sekiguchi and Iwata, 2002). While the equivalent rupture zone and the eastward directivity are consistent among all models, the LPSW solution displays a strong unilateral character of the rupture associated with a short rupture duration that is not compatible with the solutions deduced from the published models. Using a simple equivalent kinematic model, we reproduce the integral estimates of the rupture process by adjusting a few free parameters controlling the western and eastern parts of the rupture. We show that the LPSW solution strongly suggest that: - There was significant moment released on the eastern segment of the activated fault system during the Izmit earthquake; - The rupture velocity decreases on this segment. We will discuss how these results allow to enlighten the scattering of source process published for this earthquake.

  14. Pre-Earthquake Paleoseismic Trenching in 2014 Along a Mapped Trace of the West Napa Fault

    NASA Astrophysics Data System (ADS)

    Rubin, R. S.; Dawson, T. E.; Mareschal, M.

    2014-12-01

    Paleoseismic trenching in July 2014 across a previously mapped trace of the West Napa fault in eastern Alston Park (EAP) was undertaken with NEHRP funding as part of an effort to better characterize activity of the fault for regional seismic hazard assessments, and as part of an Alquist-Priolo Earthquake Fault Zoning (APEFZ) evaluation. The trench was excavated across a prominent escarpment that had been interpreted by others to represent evidence of Holocene fault activity, based on faults logged in an ~1-m-deep natural drainage exposure. Our trench was located ~3 m south of the drainage exposure and encompassed the interpreted fault zone, and beyond. The trench exposed the same surficial units as the natural exposure, as well as additional Pleistocene and older stratigraphy at depth. Escarpment parallel channeling was evident within deposits along the base of the slope. Faulting was not encountered, and is precluded by unbroken depositional contacts. Our preferred interpretation is that the escarpment in EAP is a result of fluvial and differential erosion, which is consistent with existence of channels along the base of the escarpment and a lack of faulting. The location of surface rupture of the South Napa Earthquake (SNE) of 8/24/14 occurred on fault strands south and west of this study and crosses Alston Park approximately 800 m west of our trench site, at its nearest point. Pre- and post-earthquake UAVSAR from NASA's JPL been useful in identifying major and minor ruptures of the SNE. Based on the imagery, a subtle lineament has been interpreted upslope from the trench. However, field observations along this feature yielded no visible surface deformation and the origin of this lineament is uncertain. The fault rupture pattern expressed by the SNE, as reflected by detailed field mapping and UAVSAR imagery, provides a unique opportunity to better understand the complex nature of the West Napa fault. Our study illustrates the value of subsurface investigations as

  15. A New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations.

    PubMed

    Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum

    2015-07-10

    On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 10(18) Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment.

  16. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

    PubMed Central

    Dixon, Timothy H.; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-01-01

    The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  17. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    PubMed

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-02

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

  18. The aftershock signature of supershear earthquakes.

    PubMed

    Bouchon, Michel; Karabulut, Hayrullah

    2008-06-06

    Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault.

  19. The 2016 central Italy earthquake sequence: surface effects, fault model and triggering scenarios

    NASA Astrophysics Data System (ADS)

    Chatzipetros, Alexandros; Pavlides, Spyros; Papathanassiou, George; Sboras, Sotiris; Valkaniotis, Sotiris; Georgiadis, George

    2017-04-01

    The results of fieldwork performed during the 2016 earthquake sequence around the karstic basins of Norcia and La Piana di Castelluccio, at an altitude of 1400 m, on the Monte Vettore (altitude 2476 m) and Vettoretto, as well as the three mapped seismogenic faults, striking NNW-SSW, are presented in this paper. Surface co-seismic ruptures were observed in the Vettore and Vettoretto segment of the fault for several kilometres ( 7 km) in the August earthquakes at high altitudes, and were re-activated and expanded northwards during the October earthquakes. Coseismic ruptures and the neotectonic Mt. Vettore fault zone were modelled in detail using images acquired from specifically planned UAV (drone) flights. Ruptures, typically with displacement of up to 20 cm, were observed after the August event both in the scree and weathered mantle (elluvium), as well as the bedrock, consisting mainly of fragmented carbonate rocks with small tectonic surfaces. These fractures expanded and new ones formed during the October events, typically of displacements of up to 50 cm, although locally higher displacements of up to almost 2 m were observed. Hundreds of rock falls and landslides were mapped through satellite imagery, using pre- and post- earthquake Sentinel 2A images. Several of them were also verified in the field. Based on field mapping results and seismological information, the causative faults were modelled. The model consists of five seismogenic sources, each one associated with a strong event in the sequence. The visualisation of the seismogenic sources follows INGV's DISS standards for the Individual Seismogenic Sources (ISS) layer, while strike, dip and rake of the seismic sources are obtained from selected focal mechanisms. Based on this model, the ground deformation pattern was inferred, using Okada's dislocation solution formulae, which shows that the maximum calculated vertical displacement is 0.53 m. This is in good agreement with the statistical analysis of the

  20. M ≥ 7.0 earthquake recurrence on the San Andreas fault from a stress renewal model

    USGS Publications Warehouse

    Parsons, Thomas E.

    2006-01-01

     Forecasting M ≥ 7.0 San Andreas fault earthquakes requires an assessment of their expected frequency. I used a three-dimensional finite element model of California to calculate volumetric static stress drops from scenario M ≥ 7.0 earthquakes on three San Andreas fault sections. The ratio of stress drop to tectonic stressing rate derived from geodetic displacements yielded recovery times at points throughout the model volume. Under a renewal model, stress recovery times on ruptured fault planes can be a proxy for earthquake recurrence. I show curves of magnitude versus stress recovery time for three San Andreas fault sections. When stress recovery times were converted to expected M ≥ 7.0 earthquake frequencies, they fit Gutenberg-Richter relationships well matched to observed regional rates of M ≤ 6.0 earthquakes. Thus a stress-balanced model permits large earthquake Gutenberg-Richter behavior on an individual fault segment, though it does not require it. Modeled slip magnitudes and their expected frequencies were consistent with those observed at the Wrightwood paleoseismic site if strict time predictability does not apply to the San Andreas fault.

  1. Seismic rupture process of the 2010 Haiti Earthquake (Mw7.0) inferred from seismic and SAR data

    NASA Astrophysics Data System (ADS)

    Santos, Rúben; Caldeira, Bento; Borges, José; Bezzeghoud, Mourad

    2013-04-01

    On January 12th 2010 at 21:53, the Port-au-Prince - Haiti region was struck by an Mw7 earthquake, the second most deadly of the history. The last seismic significant events in the region occurred in November 1751 and June 1770 [1]. Geodetic and geological studies, previous to the 2010 earthquake [2] have warned to the potential of the destructive seismic events in that region and this event has confirmed those warnings. Some aspects of the source of this earthquake are nonconsensual. There is no agreement in the mechanism of rupture or correlation with the fault that should have it generated [3]. In order to better understand the complexity of this rupture, we combined several techniques and data of different nature. We used teleseismic body-wave and Synthetic Aperture Radar data (SAR) based on the following methodology: 1) analysis of the rupture process directivity [4] to determine the velocity and direction of rupture; 2) teleseismic body-wave inversion to obtain the spatiotemporal fault slip distribution and a detailed rupture model; 3) near field surface deformation modeling using the calculated seismic rupture model and compared with the measured deformation field using SAR data of sensor Advanced Land Observing Satellite - Phased Array L-band SAR (ALOS-PALSAR). The combined application of seismic and geodetic data reveals a complex rupture that spread during approximately 12s mainly from WNW to ESE with average velocity of 2,5km/s, on a north-dipping fault plane. Two main asperities are obtained: the first (and largest) occurs within the first ~ 5sec and extends for approximately 6km around the hypocenter; the second one, that happens in the remaining 6s, covers a near surface rectangular strip with about 12km long by 3km wide. The first asperity is compatible with a left lateral strike-slip motion with a small reverse component; the mechanism of second asperity is predominantly reverse. The obtained rupture process allows modeling a coseismic deformation

  2. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks.

    PubMed

    Chen, Xiaowei; Nakata, Nori; Pennington, Colin; Haffener, Jackson; Chang, Jefferson C; He, Xiaohui; Zhan, Zhongwen; Ni, Sidao; Walter, Jacob I

    2017-07-10

    The Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011. It ruptured a previously unmapped fault and triggered aftershocks along a complex conjugate fault system. With a high-resolution earthquake catalog, we observe propagating foreshocks leading to the mainshock within 0.5 km distance, suggesting existence of precursory aseismic slip. At approximately 100 days before the mainshock, two M ≥ 3.5 earthquakes occurred along a mapped fault that is conjugate to the mainshock fault. At about 40 days before, two earthquakes clusters started, with one M3 earthquake occurred two days before the mainshock. The three M ≥ 3 foreshocks all produced positive Coulomb stress at the mainshock hypocenter. These foreshock activities within the conjugate fault system are near-instantaneously responding to variations in injection rates at 95% confidence. The short time delay between injection and seismicity differs from both the hypothetical expected time scale of diffusion process and the long time delay observed in this region prior to 2016, suggesting a possible role of elastic stress transfer and critical stress state of the fault. Our results suggest that the Pawnee earthquake is a result of interplay among injection, tectonic faults, and foreshocks.

  3. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  4. The Non-Regularity of Earthquake Recurrence in California: Lessons From Long Paleoseismic Records in Simple vs Complex Fault Regions (Invited)

    NASA Astrophysics Data System (ADS)

    Rockwell, T. K.

    2010-12-01

    A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern

  5. S-wave attenuation in northeastern Sonora, Mexico, near the faults that ruptured during the earthquake of 3 May 1887 Mw 7.5.

    PubMed

    Villalobos-Escobar, Gina P; Castro, Raúl R

    2014-01-01

    We used a new data set of relocated earthquakes recorded by the Seismic Network of Northeastern Sonora, Mexico (RESNES) to characterize the attenuation of S-waves in the fault zone of the 1887 Sonora earthquake (M w 7.5). We determined spectral attenuation functions for hypocentral distances (r) between 10 and 140 km using a nonparametric approach and found that in this fault zone the spectral amplitudes decay slower with distance at low frequencies (f < 4 Hz) compared to those reported in previous studies in the region using more distant recordings. The attenuation functions obtained for 23 frequencies (0.4 ≤ f ≤ 63.1 Hz) permit us estimating the average quality factor Q S  = (141 ± 1.1 )f ((0.74 ± 0.04)) and a geometrical spreading term G(r) = 1/r (0.21). The values of Q estimated for S-wave paths traveling along the fault system that rupture during the 1887 event, in the north-south direction, are considerably lower than the average Q estimated using source-station paths from multiple stations and directions. These results indicate that near the fault zone S waves attenuate considerably more than at regional scale, particularly at low frequencies. This may be the result of strong scattering near the faults due to the fractured upper crust and higher intrinsic attenuation due to stress concentration near the faults.

  6. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  7. Rupture process of the 2013 Okhotsk deep mega earthquake from iterative backprojection and compress sensing methods

    NASA Astrophysics Data System (ADS)

    Qin, W.; Yin, J.; Yao, H.

    2013-12-01

    On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for

  8. Rapid changes in the electrical state of the 1999 Izmit earthquake rupture zone

    PubMed Central

    Honkura, Yoshimori; Oshiman, Naoto; Matsushima, Masaki; Barış, Şerif; Kemal Tunçer, Mustafa; Bülent Tank, Sabri; Çelik, Cengiz; Çiftçi, Elif Tolak

    2013-01-01

    Crustal fluids exist near fault zones, but their relation to the processes that generate earthquakes, including slow-slip events, is unclear. Fault-zone fluids are characterized by low electrical resistivity. Here we investigate the time-dependent crustal resistivity in the rupture area of the 1999 Mw 7.6 Izmit earthquake using electromagnetic data acquired at four sites before and after the earthquake. Most estimates of apparent resistivity in the frequency range of 0.05 to 2.0 Hz show abrupt co-seismic decreases on the order of tens of per cent. Data acquired at two sites 1 month after the Izmit earthquake indicate that the resistivity had already returned to pre-seismic levels. We interpret such changes as the pressure-induced transition between isolated and interconnected fluids. Some data show pre-seismic changes and this suggests that the transition is associated with foreshocks and slow-slip events before large earthquakes. PMID:23820970

  9. The Physics of Earthquakes: In the Quest for a Unified Theory (or Model) That Quantitatively Describes the Entire Process of an Earthquake Rupture, From its Nucleation to the Dynamic Regime and to its Arrest

    NASA Astrophysics Data System (ADS)

    Ohnaka, M.

    2004-12-01

    For the past four decades, great progress has been made in understanding earthquake source processes. In particular, recent progress in the field of the physics of earthquakes has contributed substantially to unraveling the earthquake generation process in quantitative terms. Yet, a fundamental problem remains unresolved in this field. The constitutive law that governs the behavior of earthquake ruptures is the basis of earthquake physics, and the governing law plays a fundamental role in accounting for the entire process of an earthquake rupture, from its nucleation to the dynamic propagation to its arrest, quantitatively in a unified and consistent manner. Therefore, without establishing the rational constitutive law, the physics of earthquakes cannot be a quantitative science in a true sense, and hence it is urgent to establish the rational constitutive law. However, it has been controversial over the past two decades, and it is still controversial, what the constitutive law for earthquake ruptures ought to be, and how it should be formulated. To resolve the controversy is a necessary step towards a more complete, unified theory of earthquake physics, and now the time is ripe to do so. Because of its fundamental importance, we have to discuss thoroughly and rigorously what the constitutive law ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid evidence. There are prerequisites for the constitutive formulation. The brittle, seismogenic layer and individual faults therein are characterized by inhomogeneity, and fault inhomogeneity has profound implications for earthquake ruptures. In addition, rupture phenomena including earthquakes are inherently scale dependent; indeed, some of the physical quantities inherent in rupture exhibit scale dependence. To treat scale-dependent physical quantities inherent in the rupture over a broad scale range quantitatively in a unified and consistent manner, it is critical to

  10. Source Rupture Process of the 2016 Kumamoto, Japan, Earthquake Inverted from Strong-Motion Records

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Zheng, Ao

    2017-04-01

    On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84˚ and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60˚ respectively. And for the southern one, they are N205°E, 72˚ respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.

  11. Large earthquake rupture process variations on the Middle America megathrust

    NASA Astrophysics Data System (ADS)

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo

    2013-11-01

    The megathrust fault between the underthrusting Cocos plate and overriding Caribbean plate recently experienced three large ruptures: the August 27, 2012 (Mw 7.3) El Salvador; September 5, 2012 (Mw 7.6) Costa Rica; and November 7, 2012 (Mw 7.4) Guatemala earthquakes. All three events involve shallow-dipping thrust faulting on the plate boundary, but they had variable rupture processes. The El Salvador earthquake ruptured from about 4 to 20 km depth, with a relatively large centroid time of ˜19 s, low seismic moment-scaled energy release, and a depleted teleseismic short-period source spectrum similar to that of the September 2, 1992 (Mw 7.6) Nicaragua tsunami earthquake that ruptured the adjacent shallow portion of the plate boundary. The Costa Rica and Guatemala earthquakes had large slip in the depth range 15 to 30 km, and more typical teleseismic source spectra. Regional seismic recordings have higher short-period energy levels for the Costa Rica event relative to the El Salvador event, consistent with the teleseismic observations. A broadband regional waveform template correlation analysis is applied to categorize the focal mechanisms for larger aftershocks of the three events. Modeling of regional wave spectral ratios for clustered events with similar mechanisms indicates that interplate thrust events have corner frequencies, normalized by a reference model, that increase down-dip from anomalously low values near the Middle America trench. Relatively high corner frequencies are found for thrust events near Costa Rica; thus, variations along strike of the trench may also be important. Geodetic observations indicate trench-parallel motion of a forearc sliver extending from Costa Rica to Guatemala, and low seismic coupling on the megathrust has been inferred from a lack of boundary-perpendicular strain accumulation. The slip distributions and seismic radiation from the large regional thrust events indicate relatively strong seismic coupling near Nicoya, Costa

  12. The ADER-DG method for seismic wave propagation and earthquake rupture dynamics

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Gabriel, Alice; Ampuero, Jean-Paul; de la Puente, Josep; Käser, Martin

    2013-04-01

    We will present the Arbitrary high-order DERivatives Discontinuous Galerkin (ADER-DG) method for solving the combined elastodynamic wave propagation and dynamic rupture problem. The ADER-DG method enables high-order accuracy in space and time while being implemented on unstructured tetrahedral meshes. A tetrahedral element discretization provides rapid and automatized mesh generation as well as geometrical flexibility. Features as mesh coarsening and local time stepping schemes can be applied to reduce computational efforts without introducing numerical artifacts. The method is well suited for parallelization and large scale high-performance computing since only directly neighboring elements exchange information via numerical fluxes. The concept of fluxes is a key ingredient of the numerical scheme as it governs the numerical dispersion and diffusion properties and allows to accommodate for boundary conditions, empirical friction laws of dynamic rupture processes, or the combination of different element types and non-conforming mesh transitions. After introducing fault dynamics into the ADER-DG framework, we will demonstrate its specific advantages in benchmarking test scenarios provided by the SCEC/USGS Spontaneous Rupture Code Verification Exercise. An important result of the benchmark is that the ADER-DG method avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping, filtering or other modifications of the produced synthetic seismograms. To demonstrate the capabilities of the proposed scheme we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes branching and curved fault segments. Furthermore, topography is respected in the discretized model to capture the surface waves correctly. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in

  13. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    NASA Astrophysics Data System (ADS)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active

  14. Earthquake mechanism and predictability shown by a laboratory fault

    USGS Publications Warehouse

    King, C.-Y.

    1994-01-01

    Slip events generated in a laboratory fault model consisting of a circulinear chain of eight spring-connected blocks of approximately equal weight elastically driven to slide on a frictional surface are studied. It is found that most of the input strain energy is released by a relatively few large events, which are approximately time predictable. A large event tends to roughen stress distribution along the fault, whereas the subsequent smaller events tend to smooth the stress distribution and prepare a condition of simultaneous criticality for the occurrence of the next large event. The frequency-size distribution resembles the Gutenberg-Richter relation for earthquakes, except for a falloff for the largest events due to the finite energy-storage capacity of the fault system. Slip distributions, in different events are commonly dissimilar. Stress drop, slip velocity, and rupture velocity all tend to increase with event size. Rupture-initiation locations are usually not close to the maximum-slip locations. ?? 1994 Birkha??user Verlag.

  15. Theoretical Constraints on Properties of Dynamic Ruptures Implied by Pulverized Fault Zone Rocks

    NASA Astrophysics Data System (ADS)

    Xu, S.; Ben-Zion, Y.

    2016-12-01

    Prominent belts of Pulverized Fault Zone Rocks (PFZR) have been observed adjacent to several major strike-slip faults that separate different crustal blocks. They consist of 100-200m wide zones of highly damaged rock products, primarily of crystalline origin, that were mechanically shattered to sub-micron scale while preserving most of their original fabric with little evidence of shear. PFZR are strongly asymmetric with respect to the fault trace, existing primarily on the side with higher seismic velocity at depth, and their fabric suggests volumetric deformation with tensile cracks in all directions (e.g., Dor et al., 2006; Rockwell et al., 2009; Mitchell et al., 2011). Generating with split Hopkinson pressure bar in intact cm-scale sample microstructures similar to those observed in PFZR requires strain-rates higher than 150/s (e.g., Doan and Gary, 2009; Yuan et al., 2011). Using samples with preexisting damage reduces the strain-rate required for pulverization by 50% (Doan and d'Hour, 2012). These laboratory observations support earlier suggestions that PFZR are produced by dynamic stress fields at the tip of earthquake ruptures (e.g., Ben-Zion and Shi, 2005; Reches and Dewers, 2005). To clarify the conditions associated with generation of PFZR, we discuss theoretical results based on Linear Elastic Fracture Mechanics and simulations of Mode-II dynamic ruptures on frictional faults (Xu and Ben-Zion, 2016). We consider subshear and supershear ruptures along faults between similar and dissimilar solids. The results indicate that strain-rates higher than 150/s can be generated at distance of about 100m from the fault by either subshear ruptures on a bimaterial interface or supershear ruptures between similar and dissimilar solids. The dynamic fields of subshear bimaterial ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks that have no preferred orientation, in agreement with observations. In contrast

  16. Deformation of conjugate compliant fault zones induced by the 2013 Mw7.7 Baluchistan (Pakistan) earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, Rishabh; Wang, Teng; Feng, Guangcai; Harrington, Jonathan; Vasyura-Bathke, Hannes; Jónsson, Sigurjón

    2017-04-01

    Strain localizations in compliant fault zones (with elastic moduli lower than the surrounding rocks) induced by nearby earthquakes have been detected using geodetic observations in a few cases in the past. Here we observe small-scale changes in interferometric Synthetic Aperture Radar (InSAR) measurements along multiple conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake. After removing the main coseismic deformation signal in the interferograms and correcting them for topography-related phase, we observe 2-3 cm signal along several conjugate faults that are 15-30 km from the mainshock fault rupture. These conjugate compliant faults have strikes of N30°E and N45°W. The sense of motion indicates left-lateral deformation across the N30°E faults and right-lateral deformation across the N45°W faults, which suggests the conjugate faults were subjected to extensional coseismic stresses along the WSW-ENE direction. The spacing between the different sets of faults is around 5 to 8 km. We explain the observed strain localizations as an elastic response of the compliant conjugate faults induced by the Baluchistan earthquake. Using 3D Finite Element models (FEM), we impose coseismic static displacements due to the earthquake along the boundaries of the FEM domain to reproduce the coseismic stress changes acting across the compliant faults. The InSAR measurements are used to constrain the geometry and rigidity variations of the compliant faults with respect to the surrounding rocks. The best fitting models show the compliant fault zones to have a width of 0.5 km to 2 km and a reduction of the shear modulus by a factor of 3 to 4. Our study yields similar values as were found for compliant fault zones near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localization is occurring on more complex conjugate sets of faults.

  17. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake

    NASA Astrophysics Data System (ADS)

    Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois; Sammis, Charles G.

    2015-05-01

    Coseismic surface deformation in large earthquakes is typically measured using field mapping and with a range of geodetic methods (e.g., InSAR, lidar differencing, and GPS). Current methods, however, either fail to capture patterns of near-field coseismic surface deformation or lack preevent data. Consequently, the characteristics of off-fault deformation and the parameters that control it remain poorly understood. We develop a standardized method to fully measure the surface, near-field, coseismic deformation patterns at high resolution using the COSI-Corr program by correlating pairs of aerial photographs taken before and after the 1992 Mw 7.3 Landers earthquake. COSI-Corr offers the advantage of measuring displacement across the entire zone of surface deformation and over a wider aperture than that available to field geologists. For the Landers earthquake, our measured displacements are systematically larger than the field measurements, indicating the presence of off-fault deformation. We show that 46% of the total surface displacement occurred as off-fault deformation, over a mean deformation width of 154 m. The magnitude and width of off-fault deformation along the rupture is primarily controlled by the macroscopic structural complexity of the fault system, with a weak correlation with the type of near-surface materials through which the rupture propagated. Both the magnitude and width of distributed deformation are largest in stepovers, bends, and at the southern termination of the surface rupture. We find that slip along the surface rupture exhibits a consistent degree of variability at all observable length scales and that the slip distribution is self-affine fractal with dimension of 1.56.

  18. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500

  19. Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2016-12-01

    Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.

  20. 1957 Gobi-Altay, Mongolia, earthquake as a prototype for southern California's most devastating earthquake

    USGS Publications Warehouse

    Bayarsayhan, C.; Bayasgalan, A.; Enhtuvshin, B.; Hudnut, K.W.; Kurushin, R.A.; Molnar, P.; Olziybat, M.

    1996-01-01

    The 1957 Gobi-Altay earthquake was associated with both strike-slip and thrust faulting, processes similar to those along the San Andreas fault and the faults bounding the San Gabriel Mountains just north of Los Angeles, California. Clearly, a major rupture either on the San Andreas fault north of Los Angeles or on the thrust faults bounding the Los Angeles basin poses a serious hazard to inhabitants of that area. By analogy with the Gobi-Altay earthquake, we suggest that simultaneous rupturing of both the San Andreas fault and the thrust faults nearer Los Angeles is a real possibility that amplifies the hazard posed by ruptures on either fault system separately.

  1. Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work

    USGS Publications Warehouse

    Weldon, R.; Scharer, K.; Fumal, T.; Biasi, G.

    2004-01-01

    The concept of the earthquake cycle is so well established that one often hears statements in the popular media like, "the Big One is overdue" and "the longer it waits, the bigger it will be." Surprisingly, data to critically test the variability in recurrence intervals, rupture displacements, and relationships between the two are almost nonexistent. To generate a long series of earthquake intervals and offsets, we have conducted paleoseismic investigations across the San Andreas fault near the town of Wrightwood, California, excavating 45 trenches over 18 years, and can now provide some answers to basic questions about recurrence behavior of large earthquakes. To date, we have characterized at least 30 prehistoric earthquakes in a 6000-yr-long record, complete for the past 1500 yr and for the interval 3000-1500 B.C. For the past 1500 yr, the mean recurrence interval is 105 yr (31-165 yr for individual intervals) and the mean slip is 3.2 m (0.7-7 m per event). The series is slightly more ordered than random and has a notable cluster of events, during which strain was released at 3 times the long-term average rate. Slip associated with an earthquake is not well predicted by the interval preceding it, and only the largest two earthquakes appear to affect the time interval to the next earthquake. Generally, short intervals tend to coincide with large displacements and long intervals with small displacements. The most significant correlation we find is that earthquakes are more frequent following periods of net strain accumulation spanning multiple seismic cycles. The extent of paleoearthquake ruptures may be inferred by correlating event ages between different sites along the San Andreas fault. Wrightwood and other nearby sites experience rupture that could be attributed to overlap of relatively independent segments that each behave in a more regular manner. However, the data are equally consistent with a model in which the irregular behavior seen at Wrightwood

  2. Fault geometry and slip distribution of the 2008 Mw 7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Wan, Yongge; Shen, Zheng-Kang; Bürgmann, Roland; Sun, Jianbao; Wang, Min

    2017-02-01

    We revisit the problem of coseismic rupture of the 2008 Mw7.9 Wenchuan earthquake. Precise determination of the fault structure and slip distribution provides critical information about the mechanical behaviour of the fault system and earthquake rupture. We use all the geodetic data available, craft a more realistic Earth structure and fault model compared to previous studies, and employ a nonlinear inversion scheme to optimally solve for the fault geometry and slip distribution. Compared to a homogeneous elastic half-space model and laterally uniform layered models, adopting separate layered elastic structure models on both sides of the Beichuan fault significantly improved data fitting. Our results reveal that: (1) The Beichuan fault is listric in shape, with near surface fault dip angles increasing from ˜36° at the southwest end to ˜83° at the northeast end of the rupture. (2) The fault rupture style changes from predominantly thrust at the southwest end to dextral at the northeast end of the fault rupture. (3) Fault slip peaks near the surface for most parts of the fault, with ˜8.4 m thrust and ˜5 m dextral slip near Hongkou and ˜6 m thrust and ˜8.4 m dextral slip near Beichuan, respectively. (4) The peak slips are located around fault geometric complexities, suggesting that earthquake style and rupture propagation were determined by fault zone geometric barriers. Such barriers exist primarily along restraining left stepping discontinuities of the dextral-compressional fault system. (5) The seismic moment released on the fault above 20 km depth is 8.2×1021 N m, corresponding to an Mw7.9 event. The seismic moments released on the local slip concentrations are equivalent to events of Mw7.5 at Yingxiu-Hongkou, Mw7.3 at Beichuan-Pingtong, Mw7.2 near Qingping, Mw7.1 near Qingchuan, and Mw6.7 near Nanba, respectively. (6) The fault geometry and kinematics are consistent with a model in which crustal deformation at the eastern margin of the Tibetan plateau is

  3. Rupture characteristics of the 2016 Meinong earthquake revealed by the back projection and directivity analysis of teleseismic broadband waveforms

    NASA Astrophysics Data System (ADS)

    Jian, Pei-Ru; Hung, Shu-Huei; Meng, Lingsen; Sun, Daoyuan

    2017-04-01

    The 2016 Mw 6.4 Meinong earthquake struck a previously unrecognized fault zone in midcrust beneath south Taiwan and inflicted heavy causalities in the populated Tainan City about 30 km northwest of the epicenter. Because of its relatively short rupture duration and P wave trains contaminated by large-amplitude depth phases and reverberations generated in the source region, accurate characterization of the rupture process and source properties for such a shallow strong earthquake remains challenging. Here we present a first high-resolution MUltiple SIgnal Classification back projection source image by using both P and depth-phase sP waves recorded at two large and dense arrays to understand the source behavior and consequent hazards of this peculiar catastrophic event. The results further corroborated by the directivity analysis indicate a unilateral rupture propagating northwestward and slightly downward on the shallow NE-dipping fault plane. The source radiation process is primarily characterized by one single peak, 7 s duration, with a total rupture length of 17 km and average rupture speed of 2.4 km/s. The rupture terminated immediately east of the prominent off-fault aftershock cluster about 20 km northwest of the hypocenter. Synergistic amplification of ground shaking by the directivity and strong excitation of sP and reverberations mainly caused the destruction concentrated in the area further to the northwest away from the rupture zone.

  4. Paleoseismic investigations in the Santa Cruz mountains, California: Implications for recurrence of large-magnitude earthquakes on the San Andreas fault

    USGS Publications Warehouse

    Schwartz, D.P.; Pantosti, D.; Okumura, K.; Powers, T.J.; Hamilton, J.C.

    1998-01-01

    Trenching, microgeomorphic mapping, and tree ring analysis provide information on timing of paleoearthquakes and behavior of the San Andreas fault in the Santa Cruz mountains. At the Grizzly Flat site alluvial units dated at 1640-1659 A.D., 1679-1894 A.D., 1668-1893 A.D., and the present ground surface are displaced by a single event. This was the 1906 surface rupture. Combined trench dates and tree ring analysis suggest that the penultimate event occurred in the mid-1600s, possibly in an interval as narrow as 1632-1659 A.D. There is no direct evidence in the trenches for the 1838 or 1865 earthquakes, which have been proposed as occurring on this part of the fault zone. In a minimum time of about 340 years only one large surface faulting event (1906) occurred at Grizzly Flat, in contrast to previous recurrence estimates of 95-110 years for the Santa Cruz mountains segment. Comparison with dates of the penultimate San Andreas earthquake at sites north of San Francisco suggests that the San Andreas fault between Point Arena and the Santa Cruz mountains may have failed either as a sequence of closely timed earthquakes on adjacent segments or as a single long rupture similar in length to the 1906 rupture around the mid-1600s. The 1906 coseismic geodetic slip and the late Holocene geologic slip rate on the San Francisco peninsula and southward are about 50-70% and 70% of their values north of San Francisco, respectively. The slip gradient along the 1906 rupture section of the San Andreas reflects partitioning of plate boundary slip onto the San Gregorio, Sargent, and other faults south of the Golden Gate. If a mid-1600s event ruptured the same section of the fault that failed in 1906, it supports the concept that long strike-slip faults can contain master rupture segments that repeat in both length and slip distribution. Recognition of a persistent slip rate gradient along the northern San Andreas fault and the concept of a master segment remove the requirement that

  5. Frequency-Dependent Rupture Processes for the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Miyake, H.

    2012-12-01

    The 2011 Tohoku earthquake is characterized by frequency-dependent rupture process [e.g., Ide et al., 2011; Wang and Mori, 2011; Yao et al., 2011]. For understanding rupture dynamics of this earthquake, it is extremely important to investigate wave-based source inversions for various frequency bands. The above frequency-dependent characteristics have been derived from teleseismic analyses. This study challenges to infer frequency-dependent rupture processes from strong motion waveforms of K-NET and KiK-net stations. The observations suggested three or more S-wave phases, and ground velocities at several near-source stations showed different arrivals of their long- and short-period components. We performed complex source spectral inversions with frequency-dependent phase weighting developed by Miyake et al. [2002]. The technique idealizes both the coherent and stochastic summation of waveforms using empirical Green's functions. Due to the limitation of signal-to-noise ratio of the empirical Green's functions, the analyzed frequency bands were set within 0.05-10 Hz. We assumed a fault plane with 480 km in length by 180 km in width with a single time window for rupture following Koketsu et al. [2011] and Asano and Iwata [2012]. The inversion revealed source ruptures expanding from the hypocenter, and generated sharp slip-velocity intensities at the down-dip edge. In addition to test the effects of empirical/hybrid Green's functions and with/without rupture front constraints on the inverted solutions, we will discuss distributions of slip-velocity intensity and a progression of wave generation with increasing frequency.

  6. Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2006-01-01

    The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.

  7. Composite Megathrust Rupture From Deep Interplate to Trench of the 2016 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Lin, Tzu-Chi; Feng, Kuan-Fu; Liu, Ting-Yu

    2018-01-01

    The deep plate boundary has usually been recognized as an aseismic area, with few large earthquakes occurring at the 60-100 km depth interface. In contrast, we use a finite-fault rupture model to demonstrate that large slip in the 2016 M7.9 Solomon Islands earthquake may have originated from the deep subduction interface and propagated all the way up to the trench. The initial rupture occurred at a depth of about 100 km, forming a deep asperity and then propagating updip to the middle-depth large coseismic slip area. Our proposed source model indicates that the depth-varying rupture characteristics of this event could shift to deeper depths with respect to other subduction zones. This result also implied that the deep subducting plate boundary could also be seismogenic, which might trigger rupture at the typical middle-depth stress-locked zone and develop into rare composite megathrust events.

  8. Relation between energy radiation ratio and rupture speed in numerically simulated earthquakes

    NASA Astrophysics Data System (ADS)

    Noda, H.; Lapusta, N.; Kanamori, H.

    2011-12-01

    One of the prominent questions in seismology is energy partitioning during an earthquake. Venkataraman and Kanamori [2004] discussed radiation ratio η_R, the ratio of radiated energy E_R to partial strain energy change ΔW_0 which is the total released strain energy minus the energy that would have been dissipated if a fault had slipped at the final stress. They found positive correlation between η_R and rupture speed in large earthquakes, and compared these data with theoretical estimates from simplified models. The relation between η_R and rupture speed is of great interest since both quantities can be estimated independently although there are large uncertainties. We conduct numerical simulations of dynamic ruptures and study the obtained energy partitioning (and η_R) and averaged rupture speeds V_r. So far, we have considered problems based on TPV103 from the SCEC/USGS Spontaneous Rupture Code Verification Project [Harris et al., 2009, http://scecdata.usc.edu/cvws/], which is a 3-D problem with the possibility of remarkable rate weakening at coseismic slip rates caused by flash heating of microscopic asperities [Rice, 1999]. We study the effect of background shear stress level τ_b and the manner in which rupture is arrested, either in rate-strengthening or unbreakable areas of the fault. Note that rupture speed at each fault point is defined when the rupture is still in progress, while η_R is defined after all dynamic processes such as propagation of a rupture front, healing fronts, and seismic waves have been completed. Those complexities may cause a difference from the theoretical estimates based on simple models, an issue we explore in this study. Overall, our simulations produce the relation between η_R and V_r broadly consistent with the study of Venkataraman and Kanamori (2004) for natural earthquakes and the corresponding theoretical estimates. The model by Mott [1948] agrees best with the cases studied so far, although it is not rigorously

  9. Comparative study of two active faults in different stages of the earthquake cycle in central Japan -The Atera fault (with 1586 Tensho earthquake) and the Nojima fault (with 1995 Kobe earthquake)-

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Omura, K.; Ikeda, R.

    2003-12-01

    rupture occurred. It is more than 10 km long with 1-2 m offset along the Nojima fault. About one year after the earthquake, NIED drilled a borehole (the Hirabayashi NIED borehole) and penetrated the Nojima fault. The Hirabayashi NIED borehole was drilled to a depth of 1838 m and recovered the drill core. The main types of rock intersected by the borehole are granodiorite and cataclastic fault rocks. Three fracture zones were recognized in cores at approximate depth of 1140 m, 1300 m and 1800 m. There is remarkable foliated blue-gray gouge at a depth of 1140 m. We investigate chemical compositions by XRF analysis in the fracture zone. The amounts of H20+ are about from 1.0 to 15.0 weight percent. We investigate mineral assemblage in both drilling cores by X-ray powder diffraction analysis. From the results, we can_ft recognize so difference between the two faults. But the amount of H2O+ is very different. In the Hirabayashi NIED core at a depth of 1140 m, there is about ten times as much as the average of the Kawaue core. This is probably due to the greater degree of wall-rock fracturing in the fracture zone. We suggest that this characteristic is associated with the fault activity at the time of the 1995 Kobe earthquake and the nature of fluid-rock interactions in the fracture zone.

  10. New insights into seismic faulting during the 2008 Mw7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Si, J.; Sun, Z.; Pei, J.; Lei, Z.; He, X.

    2017-12-01

    The WFSD project was implemented promptly after the 2008 Mw 7.9 Wenchuan earthquake. A series of research results on the seismogenic structure, fault deformation, sliding mechanism and fault healing have been obtained, which provide new insights into seismic faulting and mechanisms of the Wenchuan earthquake. The WFSD-1 and -2 drilling core profiles reveal that the Longmen Shan thrust belt is composed of multiple thrust sheets. The 2008 Wenchuan earthquake took place in such tectonic setting with strong horizontal shortening. The two ruptured faults have different deformation mechanisms. The Yingxiu-Beichuan fault (YBF) is a stick-slip fault characterized by fault gouge with high magnetic susceptibility, Guanxian-Anxian fault (GAF) with creeping features and characterized by fault gouge with low magnetic susceptibility. Two PSZs were found in WFSD-1 and -2 cores in the southern segment of YBF. The upper PSZ1 is a low-angle thrust fault characterized by coseisimc graphitization with an extremely low frictional coefficient. The lower PSZ2 is an oblique dextral-slip thrust fault characterized by frictional melt lubrication. In the northern segment of YBF, the PSZ in WFSD-4S cores shows a high-angle thrust feature with fresh melt as well. Therefore, the oblique dextral-slip thrust faulting with frictional melt lubrication is the main faulting of Wenchuan earthquake. Fresh melt with quenching texture was formed in Wenchuan earthquake implying vigorous fluid circulation occurred during the earthquake, which quenched high-temperature melt, hamper the aftermost fault slip and welding seismic fault. Therefore, fluids in the fault zone not only promotes fault weakening, but also suppress slipping in theWenchuan earthquake. The YBF has an extremely high hydraulic diffusivity (2.4×10-2 m2s-1), implying a vigorous fluid circulation in the Wenchuan fault zone. the permeability of YBF has reduced 70% after the shock, reflecting a rapid healing for the YBF. However, the water

  11. New investigations of the October 1999 Hector Mine Earthquake surface rupture

    NASA Astrophysics Data System (ADS)

    Sousa, F.; Harvey, J. C.; Hudnut, K. W.; Akciz, S. O.; Stock, J. M.

    2013-12-01

    We report on new field and computer based investigation of the surface rupture of the October 16, 1999 Hector Mine Earthquake. In cooperation with the United States Marine Corps Air Ground Combat Center Twentynine Palms (MCAGCC), our team was allowed ground and aerial access to the extent of the surface rupture for limited times during October - December 2012. As far as we know, this was the first scientific access granted to the entire surface rupture since the immediate aftermath of the earthquake, and the first scientific access of any kind to some parts of the maximum slip zone since before the event. This locale is an excellent natural laboratory for detailed study of a major earthquake surface rupture because: 1) complete circumscription within the boundaries of MCAGCC severely limit both past and future human disruption of the rupture, particularly in the mountainous maximum slip zone; 2) groundbreaking aerial LiDAR survey carried out six months after the earthquake was followed up by a higher density, wider swath LiDAR survey in May 2012, making the temporal evolution of this rupture perhaps the most completely physically documented of any major rupture; and 3) field investigation immediately following the event was followed up by computer based offset measurements using the April 2000 LiDAR dataset, providing a database of published offset measurements. Due to time constraints imposed by MCAGGC we focused our new research effort along the ~8 km long maximum slip zone of the rupture, roughly corresponding to the zone of >4 m dextral offset. Our investigation includes 1) walking this entire section of the fault and making >30 measurements of dextral slip while photo documenting the current state of the rupture; 2) creating a difference raster for the entire 8 km maximum slip zone from exactly congruent DEM's made from the 2000 and 2012 LiDAR data sets; 3) documenting the fault traces with a Trimble GeoXH high precision handheld GPS unit (+/- 10 cm); 4

  12. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    NASA Astrophysics Data System (ADS)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are <span class="hlt">earthquakes</span> on the southern San Andreas <span class="hlt">Fault</span>? The answer to this question depends on whether or not the <span class="hlt">earthquake</span> is contained only along individual <span class="hlt">fault</span> sections, such as the Coachella Valley section north of Palm Springs, or the <span class="hlt">rupture</span> crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of <span class="hlt">faulted</span> stream deposits within the San Gorgonio Pass to document slip rates of these <span class="hlt">faults</span> over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with <span class="hlt">faulted</span> geomorphic surfaces, imply that large magnitude <span class="hlt">earthquakes</span> must occasionally <span class="hlt">rupture</span> a 300 km length of the San Andreas <span class="hlt">Fault</span> from the Salton Sea to the Mojave Desert. Although many ( 65%) <span class="hlt">earthquakes</span> along the southern San Andreas <span class="hlt">Fault</span> likely do not <span class="hlt">rupture</span> through the pass, our new results suggest that large >Mw 7.5 <span class="hlt">earthquakes</span> are possible</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1145/ofr20161145.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1145/ofr20161145.pdf"><span><span class="hlt">Faulting</span>, damage, and intensity in the Canyondam <span class="hlt">earthquake</span> of May 23, 2013</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chapman, K.; Gold, M.B.; Boatwright, John; Sipe, J.; Quitoriano, V.; Dreger, D.; Hardebeck, Jeanne</p> <p>2016-09-23</p> <p>On Thursday evening, May 23, 2013 (0347 May 24 UTC), a moment magnitude (Mw) = 5.7 <span class="hlt">earthquake</span> occurred northeast of Canyondam, California. A two-person team of U.S. Geological Survey scientists went to the area to search for surface <span class="hlt">rupture</span> and to canvass damage in the communities around Lake Almanor. While the causative <span class="hlt">fault</span> had not been identified at the time of the field survey, surface <span class="hlt">rupture</span> was expected to have occurred just south of Lake Almanor, approximately 2–4 kilometers south of the epicenter. No surface <span class="hlt">rupture</span> was discovered. Felt intensity among the communities around Lake Almanor appeared to vary significantly. Lake Almanor West (LAW), Lake Almanor Country Club (LACC), and Hamilton Branch (HB) experienced Modified Mercalli Intensity (MMI) ≥7, whereas other communities around the lake experienced MMI ≤6; the maximum observed intensity was MMI 8, in LAW. Damage in the high intensity areas consisted of broken and collapsed chimneys, <span class="hlt">ruptured</span> pipes, and some damage to foundations and to structural elements within houses. Although this shaking damage is not usually expected for an Mw 5.7 <span class="hlt">earthquake</span>, the intensities at Lake Almanor Country Club correlate with the peak ground acceleration (38 percent g) and peak ground velocity (30 centimeters per second) recorded by the California Strong Motion Instrumentation Program accelerometer located at the nearby Lake Almanor Fire Station. The intensity distribution for the three hardest hit areas (LAW, LACC, and HB) appears to increase as the azimuth from epicenter to the intensity sites approaches the <span class="hlt">fault</span> strike. The small communities of Almanor and Prattville on the southwestern shore of Lake Almanor experienced somewhat lower intensities. The town of Canyondam experienced a lower intensity as well, despite its location up-dip of the <span class="hlt">earthquake</span> <span class="hlt">rupture</span>. This report contains information on the <span class="hlt">earthquake</span> itself, the search for surface <span class="hlt">rupture</span>, and the damage we observed and compiled from other sources. </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035188','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035188"><span>Potential <span class="hlt">earthquake</span> <span class="hlt">faults</span> offshore Southern California, from the eastern Santa Barbara Channel south to Dana Point</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fisher, M.A.; Sorlien, C.C.; Sliter, R.W.</p> <p>2009-01-01</p> <p>Urban areas in Southern California are at risk from major <span class="hlt">earthquakes</span>, not only quakes generated by long-recognized onshore <span class="hlt">faults</span> but also ones that occur along poorly understood offshore <span class="hlt">faults</span>. We summarize recent research findings concerning these lesser known <span class="hlt">faults</span>. Research by the U.S. Geological Survey during the past five years indicates that these <span class="hlt">faults</span> from the eastern Santa Barbara Channel south to Dana Point pose a potential <span class="hlt">earthquake</span> threat. Historical seismicity in this area indicates that, in general, offshore <span class="hlt">faults</span> can unleash <span class="hlt">earthquakes</span> having at least moderate (M 5-6) magnitude. Estimating the <span class="hlt">earthquake</span> hazard in Southern California is complicated by strain partitioning and by inheritance of structures from early tectonic episodes. The three main episodes are Mesozoic through early Miocene subduction, early Miocene crustal extension coeval with rotation of the Western Transverse Ranges, and Pliocene and younger transpression related to plate-boundary motion along the San Andreas <span class="hlt">Fault</span>. Additional complication in the analysis of <span class="hlt">earthquake</span> hazards derives from the partitioning of tectonic strain into strike-slip and thrust components along separate but kinematically related <span class="hlt">faults</span>. The eastern Santa Barbara Basin is deformed by large active reverse and thrust <span class="hlt">faults</span>, and this area appears to be underlain regionally by the north-dipping Channel Islands thrust <span class="hlt">fault</span>. These <span class="hlt">faults</span> could produce moderate to strong <span class="hlt">earthquakes</span> and destructive tsunamis. On the Malibu coast, <span class="hlt">earthquakes</span> along offshore <span class="hlt">faults</span> could have left-lateral-oblique focal mechanisms, and the Santa Monica Mountains thrust <span class="hlt">fault</span>, which underlies the oblique <span class="hlt">faults</span>, could give rise to large (M ??7) <span class="hlt">earthquakes</span>. Offshore <span class="hlt">faults</span> near Santa Monica Bay and the San Pedro shelf are likely to produce both strike-slip and thrust <span class="hlt">earthquakes</span> along northwest-striking <span class="hlt">faults</span>. In all areas, transverse structures, such as lateral ramps and tear <span class="hlt">faults</span>, which crosscut the main <span class="hlt">faults</span>, could</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T53B2715W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T53B2715W"><span>"The Big One" in Taipei: Numerical Simulation Study of the Sanchiao <span class="hlt">Fault</span> <span class="hlt">Earthquake</span> Scenarios</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Lee, S.; Ng, S.</p> <p>2012-12-01</p> <p>Sanchiao <span class="hlt">fault</span> is a western boundary <span class="hlt">fault</span> of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. According to the report of Central Geological Survey, the terrestrial portion of the Sanchiao <span class="hlt">fault</span> can be divided into north and south segments. The south segment is about 13 km and north segment is about 21 km. Recent study demonstrated that there are about 40 km of the <span class="hlt">fault</span> trace that extended to the marine area offshore of northern Taiwan. Combined with the marine and terrestrial parts, the total <span class="hlt">fault</span> length of Sanchiao <span class="hlt">fault</span> could be nearly 70 kilometers. Based on the recipe proposed by IRIKURA and Miyake (2010), we estimate the Sanchiao <span class="hlt">fault</span> has the potential to produce an <span class="hlt">earthquake</span> with moment magnitude larger than Mw 7.2. The total area of <span class="hlt">fault</span> <span class="hlt">rupture</span> is about 1323 km2, asperity to the total <span class="hlt">fault</span> plane is 22%, and the slips of the asperity and background are 2.8 m and 1.6 m respectively. Use the characteristic source model based on this assumption, the 3D spectral-element method simulation results indicate that Peak ground acceleration (PGA) is significantly stronger along the surface <span class="hlt">fault-rupture</span>. The basin effects play an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. It is worth noting that, when the <span class="hlt">rupture</span> starts from the southern tip of the <span class="hlt">fault</span>, i.e. the hypocenter locates in the basin, the impact of the Sanchiao <span class="hlt">fault</span> <span class="hlt">earthquake</span> to the Taipei metropolitan area will be the most serious. The strong shaking can cover the entire Taipei city, and even across the basin that extended to eastern-most part of northern Taiwan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2018/1093/ofr20181093.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2018/1093/ofr20181093.pdf"><span>Reexamination of the subsurface <span class="hlt">fault</span> structure in the vicinity of the 1989 moment-magnitude-6.9 Loma Prieta <span class="hlt">earthquake</span>, central California, using steep-reflection, <span class="hlt">earthquake</span>, and magnetic data</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, Edward; Fuis, Gary S.; Catchings, Rufus D.; Scheirer, Daniel S.; Goldman, Mark; Bauer, Klaus</p> <p>2018-06-13</p> <p>We reexamine the geometry of the causative <span class="hlt">fault</span> structure of the 1989 moment-magnitude-6.9 Loma Prieta <span class="hlt">earthquake</span> in central California, using seismic-reflection, <span class="hlt">earthquake</span>-hypocenter, and magnetic data. Our study is prompted by recent interpretations of a two-part dip of the San Andreas <span class="hlt">Fault</span> (SAF) accompanied by a flower-like structure in the Coachella Valley, in southern California. Initially, the prevailing interpretation of <span class="hlt">fault</span> geometry in the vicinity of the Loma Prieta <span class="hlt">earthquake</span> was that the mainshock did not <span class="hlt">rupture</span> the SAF, but rather a secondary <span class="hlt">fault</span> within the SAF system, because network locations of aftershocks defined neither a vertical plane nor a <span class="hlt">fault</span> plane that projected to the surface trace of the SAF. Subsequent waveform cross-correlation and double-difference relocations of Loma Prieta aftershocks appear to have clarified the <span class="hlt">fault</span> geometry somewhat, with steeply dipping <span class="hlt">faults</span> in the upper crust possibly connecting to the more moderately southwest-dipping mainshock <span class="hlt">rupture</span> in the middle crust. Examination of steep-reflection data, extracted from a 1991 seismic-refraction profile through the Loma Prieta area, reveals three robust <span class="hlt">fault</span>-like features that agree approximately in geometry with the clusters of upper-crustal relocated aftershocks. The subsurface geometry of the San Andreas, Sargent, and Berrocal <span class="hlt">Faults</span> can be mapped using these features and the aftershock clusters. The San Andreas and Sargent <span class="hlt">Faults</span> appear to dip northeastward in the uppermost crust and change dip continuously toward the southwest with depth. Previous models of gravity and magnetic data on profiles through the aftershock region also define a steeply dipping SAF, with an initial northeastward dip in the uppermost crust that changes with depth. At a depth 6 to 9 km, upper-crustal <span class="hlt">faults</span> appear to project into the moderately southwest-dipping, planar mainshock <span class="hlt">rupture</span>. The change to a planar dipping <span class="hlt">rupture</span> at 6–9 km is similar to <span class="hlt">fault</span> geometry seen in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016367','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016367"><span>The Wasatch <span class="hlt">fault</span> zone, utah-segmentation and history of Holocene <span class="hlt">earthquakes</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Machette, M.N.; Personius, S.F.; Nelson, A.R.; Schwartz, D.P.; Lund, W.R.</p> <p>1991-01-01</p> <p>The Wasatch <span class="hlt">fault</span> zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal <span class="hlt">fault</span> (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest <span class="hlt">earthquake</span> risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface <span class="hlt">ruptures</span>, late Quaternary slip rates of 6.5 have occurred since 1860. Although the time scale of the clustering is different-130 years vs 1100 years-we consider the central Nevada-eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-<span class="hlt">rupturing</span> events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not <span class="hlt">ruptured</span> in the past 3600 years-a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-<span class="hlt">rupturing</span> <span class="hlt">earthquakes</span> in the region suggests that <span class="hlt">earthquakes</span> having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)-each associated with tens of kilometers of surface <span class="hlt">rupture</span> and several meters of normal dip slip-have occurred about every four centuries during the Holocene and should be expected in the future. ?? 1991.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.earthquakegeology.com/index.php?page=publications&s=6','USGSPUBS'); return false;" href="http://www.earthquakegeology.com/index.php?page=publications&s=6"><span>Testing geomorphology-derived <span class="hlt">rupture</span> histories against the paleoseismic record of the southern San Andreas <span class="hlt">fault</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Weldon, Ray; Bemis, Sean</p> <p>2016-01-01</p> <p>Evidence for the 340-km-long Fort Tejon <span class="hlt">earthquake</span> of 1857 is found at each of the high-resolution paleoseismic sites on the southern San Andreas <span class="hlt">Fault</span>. Using trenching data from these sites, we find that the assemblage of dated paleoearthquakes recurs quasi-periodically (coefficient of variation, COV, of 0.6, Biasi, 2013) and requires ~80% of <span class="hlt">ruptures</span> were shorter than the 1857 <span class="hlt">rupture</span> with an average of Mw7.5. In contrast, paleorupture lengths reconstructed from preserved geomorphic offsets extracted from lidar are longer and have repeating displacements that are quite regular (COV=0.2; Zielke et al., 2015). Direct comparison shows that paleoruptures determined from geomorphic offset populations cannot be reconciled with dated paleoearthquakes. Our study concludes that the 1857 <span class="hlt">rupture</span> was larger than average, average displacements must be < 5 m, and suggests that <span class="hlt">fault</span> geometry may play a role in <span class="hlt">fault</span> behavior.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G22A..08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G22A..08F"><span>Imaging Complex <span class="hlt">Fault</span> Slip of the 2016 MeiNong and Kumamoto <span class="hlt">Earthquakes</span> with Sentinel-1 InSAR and Other Geodetic and Seismic Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fielding, E. J.; Huang, M. H.; Liang, C.; Yue, H.; Agram, P. S.; Simons, M.; Fattahi, H.; Tung, H.; Hu, J. C.; Huang, C.</p> <p>2016-12-01</p> <p>We map complex <span class="hlt">fault</span> <span class="hlt">ruptures</span> of the February 2016 MeiNong <span class="hlt">earthquake</span> in Taiwan and the April 2016 Kumamoto <span class="hlt">earthquake</span> sequence in Japan by analysis of Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1A (S1A) satellite operated by the European Space Agency and the Advanced Land Observation Satellite-2 (ALOS-2) satellite operated by the Japanese Aerospace Exploration Agency (JAXA). Our analysis shows that the MeiNong main <span class="hlt">rupture</span> at lower crustal depth triggered slip on another <span class="hlt">fault</span> at upper crustal depth and shallow slip on several <span class="hlt">faults</span> in the upper few km. The Kumamoto <span class="hlt">earthquake</span> sequence <span class="hlt">ruptured</span> two major <span class="hlt">fault</span> systems over two days and triggered shallow slip on a large number of shallow <span class="hlt">faults</span>. We combine less precise analysis of large scale displacements from the SAR images of the two satellites by pixel offset tracking or sub-pixel correlation, including the along-track component of surface motion, with the more precise SAR interferometry (InSAR) measurements in the radar line-of-sight direction to estimate all three components of the surface displacement for the events. Data was processed with customized workflows based on modules in the InSAR Scientific Computing Environment (ISCE). Joint inversion of S1A and ALOS-2 InSAR, GPS, and strong motion seismograms for the Mw6.4 MeiNong <span class="hlt">earthquake</span> shows that the main thrust <span class="hlt">rupture</span> with N61°W strike and 15° dip at 15-20 km depth explains nearly all of the seismic waveforms but leaves a substantial uplift residual in the InSAR and GPS offsets estimated 4 hours after the <span class="hlt">earthquake</span>. We model this residual with slip on a N8°E-trending thrust <span class="hlt">fault</span> dipping 30° at depths between 5-10 km. This <span class="hlt">fault</span> strike is parallel to surface <span class="hlt">faults</span> and we interpret it as <span class="hlt">fault</span> slip within a mid-crustal duplex that was triggered by the main <span class="hlt">rupture</span> within 4 hours of the mainshock. In addition, InSAR shows sharp discontinuities at many locations that are likely due to shallow triggered slip, but the timing of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541906','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541906"><span>A New Perspective on <span class="hlt">Fault</span> Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 <span class="hlt">Earthquake</span> from InSAR Observations</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum</p> <p>2015-01-01</p> <p>On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was <span class="hlt">ruptured</span> by an Mw 6.3 <span class="hlt">earthquake</span>. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the <span class="hlt">earthquake</span> <span class="hlt">fault</span> <span class="hlt">rupture</span> does not reach to the earth’s surface. We then propose a four-segmented <span class="hlt">fault</span> model to investigate the coseismic deformation by determining the <span class="hlt">fault</span> parameters, followed by inverting slip distribution. The preferred <span class="hlt">fault</span> model shows that the <span class="hlt">rupture</span> depths for all four <span class="hlt">fault</span> planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the <span class="hlt">fault</span> plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 1018 Nm (Mw 6.36). The 2009 event may <span class="hlt">rupture</span> from the northwest to the southeast unilaterally, reaching the maximum at the central segment. PMID:26184210</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030235','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030235"><span>12 May 2008 M = 7.9 Wenchuan, China, <span class="hlt">earthquake</span> calculated to increase failure stress and seismicity rate on three major <span class="hlt">fault</span> systems</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Toda, S.; Lin, J.; Meghraoui, M.; Stein, R.S.</p> <p>2008-01-01</p> <p>The Wenchuan <span class="hlt">earthquake</span> on the Longmen Shan <span class="hlt">fault</span> zone devastated cities of Sichuan, claiming at least 69,000 lives. We calculate that the <span class="hlt">earthquake</span> also brought the Xianshuihe, Kunlun and Min Jiang <span class="hlt">faults</span> 150-400 km from the mainshock <span class="hlt">rupture</span> in the eastern Tibetan Plateau 0.2-0.5 bars closer to Coulomb failure. Because some portions of these stressed <span class="hlt">faults</span> have not <span class="hlt">ruptured</span> in more than a century, the <span class="hlt">earthquake</span> could trigger or hasten additional M > 7 <span class="hlt">earthquakes</span>, potentially subjecting regions from Kangding to Daofu and Maqin to Rangtag to strong shaking. We use the calculated stress changes and the observed background seismicity to forecast the rate and distribution of damaging shocks. The <span class="hlt">earthquake</span> probability in the region is estimated to be 57-71% for M ??? 6 shocks during the next decade, and 8-12% for M ??? 7 shocks. These are up to twice the probabilities for the decade before the Wenchuan <span class="hlt">earthquake</span> struck. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.733....4L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.733....4L"><span>A review of the <span class="hlt">rupture</span> characteristics of the 2011 Tohoku-oki Mw 9.1 <span class="hlt">earthquake</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lay, Thorne</p> <p>2018-05-01</p> <p>The 2011 March 11 Tohoku-oki great (Mw 9.1) <span class="hlt">earthquake</span> <span class="hlt">ruptured</span> the plate boundary megathrust <span class="hlt">fault</span> offshore of northern Honshu with estimates of shallow slip of 50 m and more near the trench. Non-uniform slip extended 220 km across the width and 400 km along strike of the subduction zone. Extensive data provided by regional networks of seismic and geodetic stations in Japan and global networks of broadband seismic stations, regional and global ocean bottom pressure sensors and sea level measurement stations, seafloor GPS/Acoustic displacement sites, repeated multi-channel reflection images, extensive coastal runup and inundation observations, and in situ sampling of the shallow <span class="hlt">fault</span> zone materials and temperature perturbation, make the event the best-recorded and most extensively studied great <span class="hlt">earthquake</span> to date. An effort is made here to identify the more robust attributes of the <span class="hlt">rupture</span> as well as less well constrained, but likely features. Other issues involve the degree to which the <span class="hlt">rupture</span> corresponded to geodetically-defined preceding slip-deficit regions, the influence of re-<span class="hlt">rupture</span> of slip regions for large events in the past few centuries, and relationships of coseismic slip to precursory slow slip, foreshocks, aftershocks, afterslip, and relocking of the megathrust. Frictional properties associated with the slip heterogeneity and in situ measurements of frictional heating of the shallow <span class="hlt">fault</span> zone support low stress during shallow sliding and near-total shear stress drop of 10-30 MPa in large-slip regions in the shallow megathrust. The roles of <span class="hlt">fault</span> morphology, sediments, fluids, and dynamical processes in the <span class="hlt">rupture</span> behavior continue to be examined; consensus has not yet been achieved. The possibility of secondary sources of tsunami excitation such as inelastic deformation of the sedimentary wedge or submarine slumping remains undemonstrated; dislocation models in an elastic continuum appear to sufficiently account for most mainshock observations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188465','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188465"><span>Pulsed strain release on the Altyn Tagh <span class="hlt">fault</span>, northwest China</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gold, Ryan D.; Cowgill, Eric; Arrowsmith, J. Ramón; Friedrich, Anke M.</p> <p>2017-01-01</p> <p><span class="hlt">Earthquake</span> recurrence models assume that major surface-<span class="hlt">rupturing</span> <span class="hlt">earthquakes</span> are followed by periods of reduced <span class="hlt">rupture</span> probability as stress rebuilds. Although purely periodic, time- or slip-predictable <span class="hlt">rupture</span> models are known to be oversimplifications, a paucity of long records of <span class="hlt">fault</span> slip clouds understanding of <span class="hlt">fault</span> behavior and <span class="hlt">earthquake</span> recurrence over multiple <span class="hlt">ruptures</span>. Here, we report a 16 kyr history of <span class="hlt">fault</span> slip—including a pulse of accelerated slip from 6.4 to 6.0 ka—determined using a Monte Carlo analysis of well-dated offset landforms along the central Altyn Tagh strike-slip <span class="hlt">fault</span> (ATF) in northwest China. This pulse punctuates a median rate of 8.1+1.2/−0.9 mm/a and likely resulted from either a flurry of temporally clustered ∼Mw 7.5 ground-<span class="hlt">rupturing</span> <span class="hlt">earthquakes</span> or a single large >Mw 8.2 <span class="hlt">earthquake</span>. The clustered <span class="hlt">earthquake</span> scenario implies rapid re-<span class="hlt">rupture</span> of a <span class="hlt">fault</span> reach >195 km long and indicates decoupled rates of elastic strain energy accumulation versus dissipation, conceptualized as a crustal stress battery. If the pulse reflects a single event, slip-magnitude scaling implies that it <span class="hlt">ruptured</span> much of the ATF with slip similar to, or exceeding, the largest documented historical <span class="hlt">ruptures</span>. Both scenarios indicate <span class="hlt">fault</span> <span class="hlt">rupture</span> behavior that deviates from classic time- or slip-predictable models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSAES..71...54R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSAES..71...54R"><span>Determination of the <span class="hlt">fault</span> plane and <span class="hlt">rupture</span> size of the 2013 Santa Cruz <span class="hlt">earthquake</span>, Bolivia, 5.2 Mw, by relative location of the aftershocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivadeneyra-Vera, C.; Assumpção, M.; Minaya, E.; Aliaga, P.; Avila, G.</p> <p>2016-11-01</p> <p>The Central Andes of southern Bolivia is a highly seismic region with many active <span class="hlt">faults</span>, that could generate <span class="hlt">earthquakes</span> up to 8.9 Mw. In 2013, an <span class="hlt">earthquake</span> of 5.2 Mw occurred in Santa Cruz de la Sierra, in the sub-Andean belt, close to the Mandeyapecua <span class="hlt">fault</span>, one of the most important reverse <span class="hlt">faults</span> in Bolivia. Five larger aftershocks were reported by the International Seismological Centre (ISC) and 33 smaller aftershocks were recorded by the San Calixto Observatory (OSC) in the two months after the mainshock. Distances between epicenters of the events were up to 36 km, which is larger than expected for an <span class="hlt">earthquake</span> of this magnitude. Using data from South American regional stations and the relative location technique with Rayleigh waves, the epicenters of the five larger aftershocks of the Santa Cruz series were determined in relation to the mainshock. This method enabled to achieve epicentral locations with uncertainties smaller than 1 km. Additionally, using data of three Bolivian stations (MOC, SIV and LPAZ) eight smaller aftershocks, recorded by the OSC, were relocated through correlation of P and S waves. The results show a NNW-SSE trend of epicenters and suggest an E dipping plane. The maximum distance between the aftershocks is 14 km, which is not consistent with the expected subsurface <span class="hlt">rupture</span> length, in accordance with the magnitude of the mainshock. The events are located away from the Mandeyapecua <span class="hlt">fault</span> and show an opposite dip, demonstrating that these events were generated by another <span class="hlt">fault</span> in the area, that had not been well studied yet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JSeis..11..311A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JSeis..11..311A"><span>Revised seismic history of the El Pilar <span class="hlt">fault</span>, Northeastern Venezuela, from the Cariaco 1997 <span class="hlt">earthquake</span> and recent preliminary paleoseismic results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audemard, Franck A.</p> <p>2007-07-01</p> <p>In light of the July 9, 1997, Cariaco <span class="hlt">earthquake</span>, it is clearly understood now that damage in the city of Cumaná located in northeastern Venezuela and frequently destroyed by the largest <span class="hlt">earthquakes</span> since the first recorded event in 1530 is strongly enhanced by poor soil conditions that, in turn, are responsible for site amplification and widespread <span class="hlt">earthquake</span>-induced effects. Therefore, most previous macroseismic studies of historical <span class="hlt">earthquakes</span> must be revaluated because those localized high-intensity values at Cumaná surely led to the misestimation of past epicenters. Preliminary paleoseismic results, gathered at three exploratory trenches dug across the surface break of the Cariaco 1997 <span class="hlt">earthquake</span> in 1998, allow us to associate the 1684 <span class="hlt">earthquake</span> with this recently <span class="hlt">ruptured</span> <span class="hlt">fault</span> segment that extends between the towns of San Antonio del Golfo and Río Casanay (roughly between the two gulfs of Cariaco and Paria, state of Sucre). Other major results from the reassessment of the seismic history of this <span class="hlt">fault</span> are: (a) the 1766 event seems to have generated in a different source to the El Pilar <span class="hlt">fault</span> because the size of the felt area suggests that it is an intermediate-depth <span class="hlt">earthquake</span>; (b) damage to Cumaná produced by the 1797 event suggests that this was a local <span class="hlt">earthquake</span>, perhaps equivalent to the 1929 <span class="hlt">earthquake</span>, which <span class="hlt">ruptured</span> for some 30 km just east of Cumaná into the Gulf of Cariaco; and (c) seismogenic association of the 1530 and 1853 <span class="hlt">earthquakes</span> still remains unclear but it is very likely that these <span class="hlt">ruptures</span> occurred offshore, as suggested by the rather large tsunami waves that both events have generated, placing their hypocenters west of Cumaná in the Cariaco Trough. This reassessment also sheds light into the El Pilar <span class="hlt">fault</span> segmentation and the behavior of its seismogenic barriers through time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1165/pdf/ofr2013-1165.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1165/pdf/ofr2013-1165.pdf"><span>Uniform California <span class="hlt">earthquake</span> <span class="hlt">rupture</span> forecast, version 3 (UCERF3): the time-independent model</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,</p> <p>2013-01-01</p> <p>In this report we present the time-independent component of the Uniform California <span class="hlt">Earthquake</span> <span class="hlt">Rupture</span> Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging <span class="hlt">earthquakes</span> in California. The primary achievements have been to relax <span class="hlt">fault</span> segmentation assumptions and to include multifault <span class="hlt">ruptures</span>, both limitations of the previous model (UCERF2). The rates of all <span class="hlt">earthquakes</span> are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (<span class="hlt">fault</span> slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on <span class="hlt">faults</span> previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual <span class="hlt">faults</span>. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S21B4449V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S21B4449V"><span><span class="hlt">Rupture</span> Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-<span class="hlt">Earthquakes</span> in a Shale Reservoir</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viegas, G. F.; Urbancic, T.; Baig, A. M.</p> <p>2014-12-01</p> <p>In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and <span class="hlt">rupture</span> parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and <span class="hlt">rupture</span> velocity to investigate the <span class="hlt">rupture</span> dynamics and scaling relations of micro-<span class="hlt">earthquakes</span> induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the <span class="hlt">rupture</span> process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-<span class="hlt">earthquakes</span> were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow <span class="hlt">rupture</span> velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating <span class="hlt">faults</span> and decreasing friction resistance. Events occurring in deeper formations tend to have faster <span class="hlt">rupture</span> velocities and are more efficient in radiating energy. Variations in <span class="hlt">rupture</span> velocity tend to correlate with variation in depth, <span class="hlt">fault</span> azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, <span class="hlt">rupture</span> velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041795','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041795"><span>Significant <span class="hlt">earthquakes</span> on the Enriquillo <span class="hlt">fault</span> system, Hispaniola, 1500-2010: Implications for seismic hazard</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bakun, William H.; Flores, Claudia H.; ten Brink, Uri S.</p> <p>2012-01-01</p> <p>Historical records indicate frequent seismic activity along the north-east Caribbean plate boundary over the past 500 years, particularly on the island of Hispaniola. We use accounts of historical <span class="hlt">earthquakes</span> to assign intensities and the intensity assignments for the 2010 Haiti <span class="hlt">earthquakes</span> to derive an intensity attenuation relation for Hispaniola. The intensity assignments and the attenuation relation are used in a grid search to find source locations and magnitudes that best fit the intensity assignments. Here we describe a sequence of devastating <span class="hlt">earthquakes</span> on the Enriquillo <span class="hlt">fault</span> system in the eighteenth century. An intensity magnitude MI 6.6 <span class="hlt">earthquake</span> in 1701 occurred near the location of the 2010 Haiti <span class="hlt">earthquake</span>, and the accounts of the shaking in the 1701 <span class="hlt">earthquake</span> are similar to those of the 2010 <span class="hlt">earthquake</span>. A series of large <span class="hlt">earthquakes</span> migrating from east to west started with the 18 October 1751 MI 7.4–7.5 <span class="hlt">earthquake</span>, probably located near the eastern end of the <span class="hlt">fault</span> in the Dominican Republic, followed by the 21 November 1751 MI 6.6 <span class="hlt">earthquake</span> near Port-au-Prince, Haiti, and the 3 June 1770 MI 7.5 <span class="hlt">earthquake</span> west of the 2010 <span class="hlt">earthquake</span> <span class="hlt">rupture</span>. The 2010 Haiti <span class="hlt">earthquake</span> may mark the beginning of a new cycle of large <span class="hlt">earthquakes</span> on the Enriquillo <span class="hlt">fault</span> system after 240 years of seismic quiescence. The entire Enriquillo <span class="hlt">fault</span> system appears to be seismically active; Haiti and the Dominican Republic should prepare for future devastating <span class="hlt">earthquakes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.2734C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.2734C"><span>Potential for larger <span class="hlt">earthquakes</span> in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras <span class="hlt">Faults</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chaussard, E.; Bürgmann, R.; Fattahi, H.; Nadeau, R. M.; Taira, T.; Johnson, C. W.; Johanson, I.</p> <p>2015-04-01</p> <p>The Hayward and Calaveras <span class="hlt">Faults</span>, two strike-slip <span class="hlt">faults</span> of the San Andreas System located in the East San Francisco Bay Area, are commonly considered independent structures for seismic hazard assessment. We use Interferometric Synthetic Aperture RADAR to show that surface creep on the Hayward <span class="hlt">Fault</span> continues 15 km farther south than previously known, revealing new potential for <span class="hlt">rupture</span> and damage south of Fremont. The extended trace of the Hayward <span class="hlt">Fault</span>, also illuminated by shallow repeating micro-<span class="hlt">earthquakes</span>, documents a surface connection with the Calaveras <span class="hlt">Fault</span>. At depths greater than 3-5 km, repeating micro-<span class="hlt">earthquakes</span> located 10 km north of the surface connection highlight the 3-D wedge geometry of the junction. Our new model of the Hayward and Calaveras <span class="hlt">Faults</span> argues that they should be treated as a single system with potential for <span class="hlt">earthquake</span> <span class="hlt">ruptures</span> generating events with magnitudes greater than 7, posing a higher seismic hazard to the East San Francisco Bay Area than previously considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.731..131X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.731..131X"><span>Sentinel-1 observation of the 2017 Sangsefid <span class="hlt">earthquake</span>, northeastern Iran: <span class="hlt">Rupture</span> of a blind reserve-slip <span class="hlt">fault</span> near the Eastern Kopeh Dagh</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Guangyu; Xu, Caijun; Wen, Yangmao</p> <p>2018-04-01</p> <p>New satellites are now revealing InSAR-based surface deformation within a week after natural hazard events. Quick hazard responses will be more publically accessible and provide information to responding agencies. Here we used Sentinel-1 interferometric synthetic aperture radar (InSAR) data to investigate coseismic deformation associated with the 2017 Sangsefid <span class="hlt">earthquake</span>, which occurred in the southeast margin of the Kopeh Dagh <span class="hlt">fault</span> system. The ascending and descending interferograms indicate thrust-dominated slip, with the maximum line-of-sight displacement of 10.5 and 13.7 cm, respectively. The detailed slip-distribution of the 2017 Sangsefid Mw6.1 <span class="hlt">earthquake</span> inferred from geodetic data is presented here for the first time. Although the InSAR interferograms themselves do not uniquely constrain what the primary slip surface is, we infer that the source <span class="hlt">fault</span> dips to southwest by analyzing the 2.5 D displacement field decomposed from the InSAR observations. The determined uniform slip <span class="hlt">fault</span> model shows that the dip angle of the seimogenic <span class="hlt">fault</span> is approximately 40°, with a strike of 120° except for a narrower <span class="hlt">fault</span> width than that predicted by the empirical scaling law. We suggest that geometric complexities near the Kopeh Dagh <span class="hlt">fault</span> system obstruct the <span class="hlt">rupture</span> propagation, resulting in high slip occurred within a small area and much higher stress drop than global estimates. The InSAR-determined moment is 1.71 × 1018 Nm with a shear modulus of 3.32 × 1010 N/m2, equivalent to Mw 6.12, which is consistent with seismological results. The finite <span class="hlt">fault</span> model (the west-dipping <span class="hlt">fault</span> plane) reveals that the peak slip of 0.90 m occurred at a depth of 6.3 km, with substantial slip at a depth of 4-10 km and a near-uniform slip of 0.1 m at a depth of 0-2.5 km. We suggest that the Sangsefid <span class="hlt">earthquake</span> occurred on an unknown blind reverse <span class="hlt">fault</span> dipping southwest, which can also be recognised through observing the long-term surface effects due to the existence of the blind</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192224','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192224"><span>3D ground‐motion simulations of Mw 7 <span class="hlt">earthquakes</span> on the Salt Lake City segment of the Wasatch <span class="hlt">fault</span> zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic <span class="hlt">rupture</span> parameters</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.</p> <p>2017-01-01</p> <p>We examine the variability of long‐period (T≥1  s) <span class="hlt">earthquake</span> ground motions from 3D simulations of Mw 7 <span class="hlt">earthquakes</span> on the Salt Lake City segment of the Wasatch <span class="hlt">fault</span> zone, Utah, from a set of 96 <span class="hlt">rupture</span> models with varying slip distributions, <span class="hlt">rupture</span> speeds, slip velocities, and hypocenter locations. <span class="hlt">Earthquake</span> <span class="hlt">ruptures</span> were prescribed on a 3D <span class="hlt">fault</span> representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood <span class="hlt">faults</span>. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the <span class="hlt">fault</span>. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic <span class="hlt">rupture</span> parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic <span class="hlt">rupture</span> parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.478..234T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.478..234T"><span>3D geometry of a plate boundary <span class="hlt">fault</span> related to the 2016 Off-Mie <span class="hlt">earthquake</span> in the Nankai subduction zone, Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku</p> <p>2017-11-01</p> <p>We used recent seismic data and advanced techniques to investigate 3D <span class="hlt">fault</span> geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie <span class="hlt">earthquake</span> (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 <span class="hlt">rupture</span> plane was similar to that of a formerly active splay <span class="hlt">fault</span> system in the accretionary prism. Thus, the <span class="hlt">fault</span> planes of the 2016 <span class="hlt">earthquake</span> and its aftershocks were influenced by the geometry of the plate interface as well as splay <span class="hlt">faulting</span>. The 2016 <span class="hlt">earthquake</span> occurred within the <span class="hlt">rupture</span> area of large interplate <span class="hlt">earthquakes</span> such as the 1944 Tonankai <span class="hlt">earthquake</span> (Mw8.1), although the 2016 <span class="hlt">rupture</span> area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 <span class="hlt">earthquake</span> was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great <span class="hlt">earthquake</span> hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of <span class="hlt">fault</span> geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T42A..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T42A..07D"><span>Repetition of large stress drop <span class="hlt">earthquakes</span> on Wairarapa <span class="hlt">fault</span>, New Zealand, revealed by LiDAR data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delor, E.; Manighetti, I.; Garambois, S.; Beaupretre, S.; Vitard, C.</p> <p>2013-12-01</p> <p> of 15 × 2 m at the ground surface. Our results thus confirm that the Wairarapa <span class="hlt">fault</span> breaks in remarkably large stress drop <span class="hlt">earthquakes</span>. Those repeating large <span class="hlt">earthquakes</span> share both similar (<span class="hlt">rupture</span> length, slip-length distribution, location of maximum slip) and distinct (maximum slip amplitudes) characteristics. Furthermore, the seismic behavior of the Wairarapa <span class="hlt">fault</span> is markedly different from that of nearby large strike-slip <span class="hlt">faults</span> (Wellington, Hope). The reasons for those differences in <span class="hlt">rupture</span> behavior might reside in the intrinsic properties of the broken <span class="hlt">faults</span>, especially in their structural maturity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS33A1630W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS33A1630W"><span>Heterogeneous <span class="hlt">Rupture</span> in the Great Cascadia <span class="hlt">Earthquake</span> of 1700 Inferred from Coastal Subsidence Estimates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, P.; Wang, K.; Hawkes, A.; Horton, B. P.; Engelhart, S. E.; Nelson, A. R.; Witter, R. C.</p> <p>2011-12-01</p> <p>Abrupt coastal subsidence induced by the great AD 1700 Cascadia <span class="hlt">earthquake</span> has been estimated from paleoseismic evidence of buried soils and overlying mud and associated tsunamis deposits. These records have been modeled using a rather uniform <span class="hlt">rupture</span> model, a mirror image of the uniform interseismic <span class="hlt">fault</span> locking based on modern GPS observations. However, as seen in other megathrust <span class="hlt">earthquakes</span> such as at Sumatra, Chile, and Alaska, the <span class="hlt">rupture</span> must have had multiple patches of concentrated slip. Variable moment release is also seen in the 2011 Tohoku-Oki <span class="hlt">earthquake</span> in Japan, although there is only one patch. The use of a uniform <span class="hlt">rupture</span> scenario for Cascadia is due mainly to the poor resolving power of the previous paleoseismic data. In this work, we invoke recently obtained more precise data from detailed microfossil studies to better constrain the slip distribution. Our 3-D elastic dislocation model allows the <span class="hlt">fault</span> slip to vary along strike. Along any profile in the dip direction, we assume a bell-shaped slip distribution with the peak value scaling with local <span class="hlt">rupture</span> width, consistent with <span class="hlt">rupture</span> mechanics. We found that the coseismic slip is large in central Cascadia, and areas of high moment release are separated by areas of low moment release. The amount of slip in northern and southern Cascadia is poorly constrained. Although data uncertainties are large, the coastal variable subsidence can be explained with multiple slip patches. For example, there is an area near Alsea Bay, Oregon (about 44.5°N) that, in accordance with the minimum coseismic subsidence estimated by the microfossil data, had very little slip in the 1700 event. This area approximately coincides with a segment boundary previously defined on the basis of gravity anomalies. There is also reported evidence for the presence of a subducting seamount in this area, and the seamount might be responsible for impeding <span class="hlt">rupture</span> during large <span class="hlt">earthquakes</span>. The nature of this <span class="hlt">rupture</span> barrier and whether</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031643','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031643"><span>The most recent large <span class="hlt">earthquake</span> on the Rodgers Creek <span class="hlt">fault</span>, San Francisco bay area</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hecker, S.; Pantosti, D.; Schwartz, D.P.; Hamilton, J.C.; Reidy, L.M.; Powers, T.J.</p> <p>2005-01-01</p> <p>The Rodgers Creek <span class="hlt">fault</span> (RCF) is a principal component of the San Andreas <span class="hlt">fault</span> system north of San Francisco. No evidence appears in the historical record of a large <span class="hlt">earthquake</span> on the RCF, implying that the most recent <span class="hlt">earthquake</span> (MRE) occurred before 1824, when a Franciscan mission was built near the <span class="hlt">fault</span> at Sonoma, and probably before 1776, when a mission and presidio were built in San Francisco. The first appearance of nonnative pollen in the stratigraphic record at the Triangle G Ranch study site on the south-central reach of the RCF confirms that the MRE occurred before local settlement and the beginning of livestock grazing. Chronological modeling of <span class="hlt">earthquake</span> age using radiocarbon-dated charcoal from near the top of a <span class="hlt">faulted</span> alluvial sequence at the site indicates that the MRE occurred no earlier than A.D. 1690 and most likely occurred after A.D. 1715. With these age constraints, we know that the elapsed time since the MRE on the RCF is more than 181 years and less than 315 years and is probably between 229 and 290 years. This elapsed time is similar to published recurrence-interval estimates of 131 to 370 years (preferred value of 230 years) and 136 to 345 years (mean of 205 years), calculated from geologic data and a regional <span class="hlt">earthquake</span> model, respectively. Importantly, then, the elapsed time may have reached or exceeded the average recurrence time for the <span class="hlt">fault</span>. The age of the MRE on the RCF is similar to the age of prehistoric surface <span class="hlt">rupture</span> on the northern and southern sections of the Hayward <span class="hlt">fault</span> to the south. This suggests possible <span class="hlt">rupture</span> scenarios that involve simultaneous <span class="hlt">rupture</span> of the Rodgers Creek and Hayward <span class="hlt">faults</span>. A buried channel is offset 2.2 (+ 1.2, - 0.8) m along one side of a pressure ridge at the Triangle G Ranch site. This provides a minimum estimate of right-lateral slip during the MRE at this location. Total slip at the site may be similar to, but is probably greater than, the 2 (+ 0.3, - 0.2) m measured previously at the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036311','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036311"><span>Ground-motion modeling of Hayward <span class="hlt">fault</span> scenario <span class="hlt">earthquakes</span>, part II: Simulation of long-period and broadband ground motions</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.</p> <p>2010-01-01</p> <p>We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario <span class="hlt">earthquakes</span> (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek <span class="hlt">faults</span>. For <span class="hlt">rupture</span> on the Hayward <span class="hlt">fault</span>, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario <span class="hlt">earthquakes</span> generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland <span class="hlt">earthquake</span> and the 2007 Mw 5.45 Alum Rock <span class="hlt">earthquake</span> show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward <span class="hlt">fault</span> <span class="hlt">earthquakes</span>, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the <span class="hlt">rupture</span> length (or magnitude), hypocenter (or <span class="hlt">rupture</span> directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and <span class="hlt">rupture</span> speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of <span class="hlt">rupture</span> directivity with period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28676691','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28676691"><span>Near-field <span class="hlt">fault</span> slip of the 2016 Vettore Mw 6.6 <span class="hlt">earthquake</span> (Central Italy) measured using low-cost GNSS.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilkinson, Maxwell W; McCaffrey, Ken J W; Jones, Richard R; Roberts, Gerald P; Holdsworth, Robert E; Gregory, Laura C; Walters, Richard J; Wedmore, Luke; Goodall, Huw; Iezzi, Francesco</p> <p>2017-07-04</p> <p>The temporal evolution of slip on surface <span class="hlt">ruptures</span> during an <span class="hlt">earthquake</span> is important for assessing <span class="hlt">fault</span> displacement, defining seismic hazard and for predicting ground motion. However, measurements of near-field surface displacement at high temporal resolution are elusive. We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30 th October 2016 M w 6.6 Vettore <span class="hlt">earthquake</span> (Central Italy), using low-cost Global Navigation Satellite System (GNSS) receivers located in the footwall and hangingwall of the Mt. Vettore - Mt. Bove <span class="hlt">fault</span> system, close to new surface <span class="hlt">ruptures</span>. We observe a clear temporal and spatial link between our near-field record and InSAR, far-field GPS data, regional measurements from the Italian Strong Motion and National Seismic networks, and field measurements of surface <span class="hlt">ruptures</span>. Comparison of these datasets illustrates that the observed surface <span class="hlt">ruptures</span> are the propagation of slip from depth on a surface <span class="hlt">rupturing</span> (i.e. capable) <span class="hlt">fault</span> array, as a direct and immediate response to the 30 th October <span class="hlt">earthquake</span>. Large near-field displacement ceased within 6-8 seconds of the origin time, implying that shaking induced gravitational processes were not the primary driving mechanism. We demonstrate that low-cost GNSS is an accurate monitoring tool when installed as custom-made, short-baseline networks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007IJEaS..96..911P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007IJEaS..96..911P"><span>Static stress changes associated with normal <span class="hlt">faulting</span> <span class="hlt">earthquakes</span> in South Balkan area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.</p> <p>2007-10-01</p> <p>Activation of major <span class="hlt">faults</span> in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring <span class="hlt">faults</span> or <span class="hlt">fault</span> segments. <span class="hlt">Fault</span> interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which <span class="hlt">ruptured</span> distinct or adjacent normal <span class="hlt">fault</span> segments. We compute stress perturbations caused by <span class="hlt">earthquake</span> dislocations in a homogeneous half-space. The stress change calculations were performed for <span class="hlt">faults</span> of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal <span class="hlt">faults</span> in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that <span class="hlt">earthquakes</span> can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong <span class="hlt">earthquakes</span> and the slow tectonic stress buildup associated with major <span class="hlt">fault</span> segments. We evaluate if these stress changes brought a given strong <span class="hlt">earthquake</span> closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal <span class="hlt">faults</span>. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong <span class="hlt">earthquakes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.S21E..10L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.S21E..10L"><span>Irregularities in Early Seismic <span class="hlt">Rupture</span> Propagation for Large Events in a Crustal <span class="hlt">Earthquake</span> Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lapusta, N.; Rice, J. R.; Rice, J. R.</p> <p>2001-12-01</p> <p>We study early seismic propagation of model <span class="hlt">earthquakes</span> in a 2-D model of a vertical strike-slip <span class="hlt">fault</span> with depth-variable rate and state friction properties. Our model <span class="hlt">earthquakes</span> are obtained in fully dynamic simulations of sequences of instabilities on a <span class="hlt">fault</span> subjected to realistically slow tectonic loading (Lapusta et al., JGR, 2000). This work is motivated by results of Ellsworth and Beroza (Science, 1995), who observe that for many <span class="hlt">earthquakes</span>, far-field velocity seismograms during initial stages of dynamic <span class="hlt">rupture</span> propagation have irregular fluctuations which constitute a "seismic nucleation phase". In our simulations, we find that such irregularities in velocity seismograms can be caused by two factors: (1) <span class="hlt">rupture</span> propagation over regions of stress concentrations and (2) partial arrest of <span class="hlt">rupture</span> in neighboring creeping regions. As <span class="hlt">rupture</span> approaches a region of stress concentration, it sees increasing background stress and its moment acceleration (to which velocity seismographs in the far field are proportional) increases. After the peak in stress concentration, the <span class="hlt">rupture</span> sees decreasing background stress and moment acceleration decreases. Hence a fluctuation in moment acceleration is created. If <span class="hlt">rupture</span> starts sufficiently far from a creeping region, then partial arrest of <span class="hlt">rupture</span> in the creeping region causes a decrease in moment acceleration. As the other parts of <span class="hlt">rupture</span> continue to develop, moment acceleration then starts to grow again, and a fluctuation again results. Other factors may cause the irregularities in moment acceleration, e.g., phenomena such as branching and/or intermittent <span class="hlt">rupture</span> propagation (Poliakov et al., submitted to JGR, 2001) which we have not studied here. Regions of stress concentration are created in our model by arrest of previous smaller events as well as by interactions with creeping regions. One such region is deep in the <span class="hlt">fault</span> zone, and is caused by the temperature-induced transition from seismogenic to creeping</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T31B0623I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T31B0623I"><span>Scissoring <span class="hlt">Fault</span> <span class="hlt">Rupture</span> Properties along the Median Tectonic Line <span class="hlt">Fault</span> Zone, Southwest Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.</p> <p>2017-12-01</p> <p>The Median Tectonic Line <span class="hlt">fault</span> zone (hereinafter MTLFZ) is the longest and most active <span class="hlt">fault</span> zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip <span class="hlt">fault</span> accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex <span class="hlt">fault</span> geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring <span class="hlt">fault</span> properties". We can point out two main factors to form scissoring <span class="hlt">fault</span> properties along the MTLFZ. One is a regional stress condition, and another is a preexisting <span class="hlt">fault</span>. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The <span class="hlt">fault</span> style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting <span class="hlt">fault</span> being, the <span class="hlt">rupture</span> does not completely conform to Anderson's theory for a newly formed <span class="hlt">fault</span>, as the theory would require either purely dip-slip motion on the 45° dipping <span class="hlt">fault</span> or strike-slip motion on a vertical <span class="hlt">fault</span>. The <span class="hlt">fault</span> <span class="hlt">rupture</span> of the 2013 Barochistan <span class="hlt">earthquake</span> in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping <span class="hlt">fault</span> (thrust <span class="hlt">fault</span>), though many strike-slip <span class="hlt">faults</span> have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031600','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031600"><span>The persistence of directivity in small <span class="hlt">earthquakes</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Boatwright, J.</p> <p>2007-01-01</p> <p>We derive a simple inversion of peak ground acceleration (PGA) or peak ground velocity (PGV) for <span class="hlt">rupture</span> direction and <span class="hlt">rupture</span> velocity and then test this inversion on the peak motions obtained from seven 3.5 ??? M ??? 4.1 <span class="hlt">earthquakes</span> that occurred in two clusters in November 2002 and February 2003 near San Ramon, California. These clusters were located on two orthogonal strike-slip <span class="hlt">faults</span> so that the events share the same approximate focal mechanism but not the same <span class="hlt">fault</span> plane. Three <span class="hlt">earthquakes</span> exhibit strong directivity, but the other four <span class="hlt">earthquakes</span> exhibit relatively weak directivity. We use the residual PGAs and PGVs from the other six events to determine station corrections for each <span class="hlt">earthquake</span>. The inferred <span class="hlt">rupture</span> directions unambiguously identify the <span class="hlt">fault</span> plane for the three <span class="hlt">earthquakes</span> with strong directivity and for three of the four <span class="hlt">earthquakes</span> with weak directivity. The events with strong directivity have fast <span class="hlt">rupture</span> velocities (0.63????? v ??? 0.87??); the events with weak directivity either <span class="hlt">rupture</span> more slowly (0.17????? v ???0.35??) or bilaterally. The simple unilateral inversion cannot distinguish between slow and bilateral <span class="hlt">ruptures</span>: adding a bilateral <span class="hlt">rupture</span> component degrades the fit of the <span class="hlt">rupture</span> directions to the <span class="hlt">fault</span> planes. By comparing PGAs from the events with strong and weak directivity, we show how an up-dip <span class="hlt">rupture</span> in small events can distort the attenuation of peak ground motion with distance. When we compare the <span class="hlt">rupture</span> directions of the <span class="hlt">earthquakes</span> to the location of aftershocks in the two clusters, we find than almost all the aftershocks of the three <span class="hlt">earthquakes</span> with strong directivity occur within 70?? of the direction of <span class="hlt">rupture</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33E..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33E..04W"><span>Stress drop variation of M > 4 <span class="hlt">earthquakes</span> on the Blanco oceanic transform <span class="hlt">fault</span> using a phase coherence method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, J. R.; Hawthorne, J.; Rost, S.; Wright, T. J.</p> <p>2017-12-01</p> <p><span class="hlt">Earthquakes</span> on oceanic transform <span class="hlt">faults</span> often show unusual behaviour. They tend to occur in swarms, have large numbers of foreshocks, and have high stress drops. We estimate stress drops for approximately 60 M > 4 <span class="hlt">earthquakes</span> along the Blanco oceanic transform <span class="hlt">fault</span>, a right-lateral <span class="hlt">fault</span> separating the Juan de Fuca and Pacific plates offshore of Oregon. We find stress drops with a median of 4.4±19.3MPa and examine how they vary with <span class="hlt">earthquake</span> moment. We calculate stress drops using a recently developed method based on inter-station phase coherence. We compare seismic records of co-located <span class="hlt">earthquakes</span> at a range of stations. At each station, we apply an empirical Green's function (eGf) approach to remove phase path effects and isolate the relative apparent source time functions. The apparent source time functions at each <span class="hlt">earthquake</span> should vary among stations at periods shorter than a P wave's travel time across the <span class="hlt">earthquake</span> <span class="hlt">rupture</span> area. Therefore we compute the <span class="hlt">rupture</span> length of the larger <span class="hlt">earthquake</span> by identifying the frequency at which the relative apparent source time functions start to vary among stations, leading to low inter-station phase coherence. We determine a stress drop from the <span class="hlt">rupture</span> length and moment of the larger <span class="hlt">earthquake</span>. Our initial stress drop estimates increase with increasing moment, suggesting that <span class="hlt">earthquakes</span> on the Blanco <span class="hlt">fault</span> are not self-similar. However, these stress drops may be biased by several factors, including depth phases, trace alignment, and source co-location. We find that the inclusion of depth phases (such as pP) in the analysis time window has a negligible effect on the phase coherence of our relative apparent source time functions. We find that trace alignment must be accurate to within 0.05 s to allow us to identify variations in the apparent source time functions at periods relevant for M > 4 <span class="hlt">earthquakes</span>. We check that the alignments are accurate enough by comparing P wave arrival times across groups of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041801','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041801"><span>Testing long-period ground-motion simulations of scenario <span class="hlt">earthquakes</span> using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-<span class="hlt">fault</span> <span class="hlt">rupture</span> characterization and 3D seismic velocity models</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graves, Robert W.; Aagaard, Brad T.</p> <p>2011-01-01</p> <p>Using a suite of five hypothetical finite-<span class="hlt">fault</span> <span class="hlt">rupture</span> models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario <span class="hlt">earthquakes</span> to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah <span class="hlt">earthquake</span>. The hypothetical <span class="hlt">ruptures</span> are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the <span class="hlt">fault</span> location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each <span class="hlt">rupture</span> model, two Southern California <span class="hlt">Earthquake</span> Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a <span class="hlt">rupture</span> that has significant shallow slip (<5 km depth), whereas the variance in the residuals is greatest for <span class="hlt">ruptures</span> with large asperities below 10 km depth. Overall, these results are encouraging and provide confidence in the predictive capabilities of the simulation methodology, while also suggesting some regions in which the seismic velocity models may need improvement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S53G..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S53G..01R"><span>Persistency of <span class="hlt">rupture</span> directivity in moderate-magnitude <span class="hlt">earthquakes</span> in Italy: Implications for seismic hazard</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rovelli, A.; Calderoni, G.</p> <p>2012-12-01</p> <p>A simple method based on the EGF deconvolution in the frequency domain is applied to detect the occurrence of unilateral <span class="hlt">ruptures</span> in recent damaging <span class="hlt">earthquakes</span> in Italy. The spectral ratio between event pairs with different magnitudes at individual stations shows large azimuthal variations above corner frequency when the target event is affected by source directivity and the EGF is not or vice versa. The analysis is applied to seismograms and accelerograms recorded during the seismic sequence following the 20 May 2012, Mw 5.6 main shock in Emilia, northern Italy, the 6 April 2009, Mw 6.1 <span class="hlt">earthquake</span> of L'Aquila, central Italy, and the 26 September 1997, Mw 5.7 and 6.0 shocks in Umbria-Marche, central Italy. Events of each seismic sequence are selected as having consistent focal mechanisms, and the station selection obeys to the constraint of a similar source-to-receiver path for the event pairs. The analyzed data set of L'Aquila consists of 962 broad-band seismograms relative to 69 normal-<span class="hlt">faulting</span> <span class="hlt">earthquakes</span> (3.3 ≤ MW ≤ 6.1, according to Herrmann et al., 2011), stations are selected in the distance range 100 to 250 km to minimize differences in propagation paths. The seismogram analysis reveals that a strong along-strike (toward SE) source directivity characterized all of the three Mw > 5.0 shocks. Source directivity was also persistent up to the smallest magnitudes: 65% of <span class="hlt">earthquakes</span> under study showed evidence of directivity toward SE whereas only one (Mw 3.7) event showed directivity in the opposite direction. Also the Mw 5.6 main shock of the 20 May 2012 in Emilia result in large azimuthal spectral variations indicating unilateral <span class="hlt">rupture</span> propagation toward SE. According to the reconstructed geometry of the trust-<span class="hlt">fault</span> plane, the inferred directivity direction suggests top-down <span class="hlt">rupture</span> propagation. The analysis over the Emilia aftershock sequence is in progress. The third seismic sequence, dated 1997-1998, occurred in the northern Apennines and, similarly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S23A4483H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S23A4483H"><span>Possible Interactions between the 2012 Mw 7.8 Haida Gwaii Subduction <span class="hlt">Earthquake</span> and the Transform Queen Charlotte <span class="hlt">Fault</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobbs, T. E.; Cassidy, J. F.; Dosso, S. E.</p> <p>2014-12-01</p> <p>This paper examines the effect of the October 2012 Mw 7.8 Haida Gwaii <span class="hlt">earthquake</span> on aftershock nodal planes and the neighboring Queen Charlotte <span class="hlt">Fault</span> (QCF) through Coulomb modeling and directivity analysis. The Haida Gwaii <span class="hlt">earthquake</span> was the largest thrust event recorded in this region and <span class="hlt">ruptured</span> an area of ~150 by 40 km on a gently NE-dipping <span class="hlt">fault</span> off the west coast of Moresby Island, British Columbia. It is particularly interesting as it is located just to the west of the QCF, the predominantly right-lateral strike-slip <span class="hlt">fault</span> separating the Pacific and North American plates. The QCF was the site of the largest recorded <span class="hlt">earthquake</span> in Canada: the 1949 Ms 8.1 strike-slip <span class="hlt">earthquake</span> whose <span class="hlt">rupture</span> extended as far south as this 2012 event and roughly as far north as an Mw7.5 strike slip event at Craig, Alaska, which occurred just two months later in January 2013. The 75 km long portion of the QCF south of the 1949 <span class="hlt">rupture</span> has not had a large (M ≥ 7) <span class="hlt">earthquake</span> in over 116 years, representing a significant seismic gap. Coulomb stress transfer analysis is performed using finite <span class="hlt">fault</span> models which incorporate seismic and geodetic data. Static stress changes are projected onto aftershock nodal planes and the QCF, including an inferred southern seismic gap. We find up to 86% of aftershocks are consistent with triggering, and as high as 96% for normal <span class="hlt">faulting</span> events. The QCF experiences static stress changes greater than the empirically-determined threshold for triggering, with positive stress changes predicted for roughly half of the seismic gap region. Added stress from the mainshock and a lack of post-mainshock events make this seismic gap a likely location for future <span class="hlt">earthquakes</span>. Empirical Green's function and directivity analyses are also performed to constrain <span class="hlt">rupture</span> kinematics of the mainshock using systematic azimuthal variations in relative source time functions. Results indicate <span class="hlt">rupture</span> progressed mainly to the northwest within 15o of the direction of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.G23B0820G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.G23B0820G"><span>Implications for stress changes along the Motagua <span class="hlt">fault</span> and other nearby <span class="hlt">faults</span> using GPS and seismic constraints on the M=7.3 2009 Swan Islands <span class="hlt">earthquake</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, S. E.; Rodriguez, M.; Rogers, R. D.; Strauch, W.; Hernandez, D.; Demets, C.</p> <p>2010-12-01</p> <p>The May 28, 2009 M=7.3 Swan Islands <span class="hlt">earthquake</span> off the north coast of Honduras caused significant damage in the northern part of the country, including seven deaths. This event, the largest in the region for several decades, <span class="hlt">ruptured</span> the offshore continuation of the Motagua-Polochic <span class="hlt">fault</span> system, whose 1976 <span class="hlt">earthquake</span> (located several hundred kilometers to the southwest of the 2009 epicenter) caused more than 23,000 deaths in Central America and left homeless 20% of Guatemala’s population. We use elastic half-space modeling of coseismic offsets measured at 39 GPS stations in Honduras, El Salvador, and Guatemala to better understand the slip source of the recent Swan Islands <span class="hlt">earthquake</span>. Measured offsets range from .32 meters at a campaign site near the Motagua <span class="hlt">fault</span> in northern Honduras to 4 millimeters at five continuous sites in El Salvador. Coulomb stress calculations based on the estimated distribution of coseismic slip will be presented and compared to <span class="hlt">earthquake</span> focal mechanisms and aftershock locations determined from a portable seismic network that was installed in northern Honduras after the main shock. Implications of the Swan Islands <span class="hlt">rupture</span> for the seismically hazardous Motagua-Polochic <span class="hlt">fault</span> system will be described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.733..148C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.733..148C"><span>Global catalog of <span class="hlt">earthquake</span> <span class="hlt">rupture</span> velocities shows anticorrelation between stress drop and <span class="hlt">rupture</span> velocity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise</p> <p>2018-05-01</p> <p>Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent <span class="hlt">earthquakes</span> with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the <span class="hlt">rupture</span> direction and average <span class="hlt">rupture</span> velocity Vr, when unilateral <span class="hlt">rupture</span> propagation dominates. The approach is applied to all the shallow (z < 120 km) <span class="hlt">earthquakes</span> of the catalog over the 1992-2015 time period. After a careful validation process, <span class="hlt">rupture</span> properties for a catalog of 96 <span class="hlt">earthquakes</span> are obtained. The subsequent analysis of this catalog provides several insights about the seismic <span class="hlt">rupture</span> process. We first report that up-dip <span class="hlt">ruptures</span> are more abundant than down-dip <span class="hlt">ruptures</span> for shallow subduction interface <span class="hlt">earthquakes</span>, which can be understood as a consequence of the material contrast between the slab and the overriding crust. <span class="hlt">Rupture</span> velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no <span class="hlt">earthquakes</span> propagate over long distances with <span class="hlt">rupture</span> velocity approaching the P wave velocity. Among the 23 <span class="hlt">ruptures</span> faster than 3100 m/s, we observe both documented supershear <span class="hlt">ruptures</span> (e.g. the 2001 Kunlun <span class="hlt">earthquake</span>), and undocumented <span class="hlt">ruptures</span> that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S32D..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S32D..03M"><span>Nucleation and kinematic <span class="hlt">rupture</span> of the 2017 Mw 8.2 Chiapas Mexico <span class="hlt">earthquake</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meng, L.; Huang, H.; Xie, Y.; Feng, T.; Dominguez, L. A.; Han, J.; Davis, P. M.</p> <p>2017-12-01</p> <p>Integrated geophysical observations from the 2017 Mw 8.2 Oaxaca, Mexico <span class="hlt">earthquake</span> allow the exploration of one of the largest recorded normal <span class="hlt">faulting</span> events inside a subducting slab. In this study, we collect seismic data from regional and teleseismic stations, and regional tsunami recordings to better understand the preparation and <span class="hlt">rupture</span> processes. The mainshock occurred on the steeply dipping plane of a mega-normal <span class="hlt">fault</span>, confirmed by time reversal analysis of tsunami waves. We utilize a template matching approach to detect possible missing <span class="hlt">earthquakes</span> within a 2-month period before the Oaxaca mainshock. The seismicity rate (M > 3.7) shows an abrupt increase in the last day within 30 km around the mainshock hypocenter. The largest one is a M 4.6 event with similar normal <span class="hlt">faulting</span> as the mainshock located at about 18 km updip from the hypocenter. The waveforms of the subsequent foreshocks are not similar, supporting the diversity of their locations or focal mechanisms. The nucleation process can be explained by a cascading process which eventually triggers the mainshock. Back-projection using the USArray network in Alaska reveals that the mainshock <span class="hlt">rupture</span> propagated northwestward unilaterally at a speed of 3.1 km/s, for about 200 km and terminated near the Tehuantepec Fracture Zone. We also document the tectonic fabric of bending related <span class="hlt">faulting</span> of the incoming Cocos plate. The mainshock is likely a reactivation of subducted outer rise <span class="hlt">faults</span>, supported by the similarity of the strike angle between the mainshock and the outer rise <span class="hlt">faults</span>. The surprisingly large magnitude is consistent with the exceedingly large dimensions of outer rise <span class="hlt">faulting</span> in this particular segment of the central Mexican trench.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S53A2482D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S53A2482D"><span>Forecasting the <span class="hlt">Rupture</span> Directivity of Large <span class="hlt">Earthquakes</span>: Centroid Bias of the Conditional Hypocenter Distribution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donovan, J.; Jordan, T. H.</p> <p>2012-12-01</p> <p>Forecasting the <span class="hlt">rupture</span> directivity of large <span class="hlt">earthquakes</span> is an important problem in probabilistic seismic hazard analysis (PSHA), because directivity is known to strongly influence ground motions. We describe how <span class="hlt">rupture</span> directivity can be forecast in terms of the "conditional hypocenter distribution" or CHD, defined to be the probability distribution of a hypocenter given the spatial distribution of moment release (<span class="hlt">fault</span> slip). The simplest CHD is a uniform distribution, in which the hypocenter probability density equals the moment-release probability density. For <span class="hlt">rupture</span> models in which the <span class="hlt">rupture</span> velocity and rise time depend only on the local slip, the CHD completely specifies the distribution of the directivity parameter D, defined in terms of the degree-two polynomial moments of the source space-time function. This parameter, which is zero for a bilateral <span class="hlt">rupture</span> and unity for a unilateral <span class="hlt">rupture</span>, can be estimated from finite-source models or by the direct inversion of seismograms (McGuire et al., 2002). We compile D-values from published studies of 65 large <span class="hlt">earthquakes</span> and show that these data are statistically inconsistent with the uniform CHD advocated by McGuire et al. (2002). Instead, the data indicate a "centroid biased" CHD, in which the expected distance between the hypocenter and the hypocentroid is less than that of a uniform CHD. In other words, the observed directivities appear to be closer to bilateral than predicted by this simple model. We discuss the implications of these results for <span class="hlt">rupture</span> dynamics and <span class="hlt">fault</span>-zone heterogeneities. We also explore their PSHA implications by modifying the CyberShake simulation-based hazard model for the Los Angeles region, which assumed a uniform CHD (Graves et al., 2011).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S43A2033S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S43A2033S"><span>Anomalies of <span class="hlt">rupture</span> velocity in deep <span class="hlt">earthquakes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, M.; Yagi, Y.</p> <p>2010-12-01</p> <p>Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of <span class="hlt">earthquakes</span> with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep <span class="hlt">earthquakes</span> are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep <span class="hlt">earthquakes</span>, the source parameters for individual deep <span class="hlt">earthquakes</span> are quite varied [Frohlich, 2006]. <span class="hlt">Rupture</span> velocities for deep <span class="hlt">earthquakes</span> estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow <span class="hlt">earthquakes</span>. The uncertainty of seismic source models prevents us from determining the main characteristics of the <span class="hlt">rupture</span> process and understanding the physical mechanisms of deep <span class="hlt">earthquakes</span>. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep <span class="hlt">earthquakes</span> (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep <span class="hlt">earthquakes</span>. By imaging the seismic <span class="hlt">rupture</span> process for a set of recent deep <span class="hlt">earthquakes</span>, we found that the <span class="hlt">rupture</span> velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29404404','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29404404"><span>Areas prone to slow slip events impede <span class="hlt">earthquake</span> <span class="hlt">rupture</span> propagation and promote afterslip.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne</p> <p>2018-01-01</p> <p>At subduction zones, transient aseismic slip occurs either as afterslip following a large <span class="hlt">earthquake</span> or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate <span class="hlt">fault</span> areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 M w (moment magnitude) 7.8 Ecuador <span class="hlt">earthquake</span> reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the <span class="hlt">earthquake</span>, these areas appear to persistently release stress by aseismic slip throughout the <span class="hlt">earthquake</span> cycle and outline the seismic <span class="hlt">rupture</span>, an observation potentially leading to a better anticipation of future large <span class="hlt">earthquakes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5796792','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5796792"><span>Areas prone to slow slip events impede <span class="hlt">earthquake</span> <span class="hlt">rupture</span> propagation and promote afterslip</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne</p> <p>2018-01-01</p> <p>At subduction zones, transient aseismic slip occurs either as afterslip following a large <span class="hlt">earthquake</span> or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate <span class="hlt">fault</span> areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador <span class="hlt">earthquake</span> reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the <span class="hlt">earthquake</span>, these areas appear to persistently release stress by aseismic slip throughout the <span class="hlt">earthquake</span> cycle and outline the seismic <span class="hlt">rupture</span>, an observation potentially leading to a better anticipation of future large <span class="hlt">earthquakes</span>. PMID:29404404</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.S51B0496J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.S51B0496J"><span>Nonlinear Inversion for Dynamic <span class="hlt">Rupture</span> Parameters from the 2004 Mw6.0 Parkfield <span class="hlt">Earthquake</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jimenez, R. M.; Olsen, K. B.</p> <p>2007-12-01</p> <p>The Parkfield section of the San Andreas <span class="hlt">Fault</span> has produced repeated moderate-size <span class="hlt">earthquakes</span> at fairly regular intervals and is therefore an important target for investigations of <span class="hlt">rupture</span> initiation, propagation and arrest, which could eventually lead to clues on <span class="hlt">earthquake</span> prediction. The most recent member of the Parkfield series of <span class="hlt">earthquakes</span>, the 2004 Mw6.0 event, produced a considerable amount of high-resolution strong motion data, and provides an ideal test bed for analysis of the dynamic <span class="hlt">rupture</span> propagation. Here, we use a systematic nonlinear direct-search method to invert strong-ground motion data (less than 1 Hz) at 37 stations to obtain models of the slip weakening distance and spatially-varying stress drop (8 by 4 subfaults) on the (vertical) causative segment of the San Andreas <span class="hlt">fault</span> (40 km long by 15 km wide), along with spatial-temporal coseismic slip distributions. The <span class="hlt">rupture</span> and wave propagation modeling is performed by a three-dimensional finite-difference method with a slip- weakening friction law and the stress-glut dynamic-<span class="hlt">rupture</span> formulation (Andrews, 1999), and the inversion is carried out by a neighborhood algorithm (Sambridge, 1999), minimizing the least-squares misfit between the calculated and observed seismograms. The dynamic <span class="hlt">rupture</span> is nucleated artificially by lowering the yield stress in a 3 km by 3 km patch centered at the location of the hypocenter estimated from strong motion data. Outside the nucleation patch the yield stress is kept constant (5-10 MPa), and we constrain the slip-weakening distance to values less than 1 m. We compare the inversion results for two different velocity models: (1) a 3-D model based on the P-wave velocity structure by Thurber (2006), with S-wave and density relations based on Brocher (2005), and (2) a combination of two different 1-D layered velocity structures on either side of the <span class="hlt">fault</span>, as proposed by Liu et al. (2006). Due to the non-uniqueness of the problem, the inversion provides an ensemble</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024799','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024799"><span>Primary surface <span class="hlt">rupture</span> associated with the Mw 7.1 16 October 1999 Hector Mine <span class="hlt">earthquake</span>, San Bernardino County, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Treiman, J.A.; Kendrick, K.J.; Bryant, W.A.; Rockwell, T.K.; McGill, S.F.</p> <p>2002-01-01</p> <p>The Mw 7.1 Hector Mine <span class="hlt">earthquake</span> occurred within the Mojave Desert portion of the eastern California shear zone and was accompanied by 48 km of dextral surface <span class="hlt">rupture</span>. Complex northward <span class="hlt">rupture</span> began on two branches of the Lavic Lake <span class="hlt">fault</span> in the northern Bullion Mountains and also propagated southward onto the Bullion <span class="hlt">fault</span>. Lesser amounts of <span class="hlt">rupture</span> occurred across two right steps to the south. Surface <span class="hlt">rupture</span> was mapped using postearthquake, 1:10,000-scale aerial photography. Field mapping provided additional detail and more than 400 <span class="hlt">fault-rupture</span> observations; of these, approximately 300 measurements were used to characterize the slip distribution. En echelon surface <span class="hlt">rupture</span> predominated in areas of thick alluvium, whereas in the bedrock areas, <span class="hlt">rupture</span> was more continuous and focused within a narrower zone. Measured dextral offsets were relatively symmetrical about the epicentral region, with a maximum displacement of 5.25 ?? 0.85 m. Vertical slip was a secondary component and was variable, with minor west-side-down displacements predominat.ing in the Bullion Mountains. Field and aerial photographic evidence indicates that most of the <span class="hlt">faults</span> that <span class="hlt">ruptured</span> in 1999 had had prior late-Quaternary displacement, although only limited sections of the <span class="hlt">rupture</span> show evidence for prior Holocene displacement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178253','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178253"><span>Tearing the terroir: Details and implications of surface <span class="hlt">rupture</span> and deformation from the 24 August 2014 M6.0 South Napa <span class="hlt">earthquake</span>, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>DeLong, Stephen B.; Donnellan, Andrea; Ponti, Daniel J.; Rubin, Ron S.; Lienkaemper, James J.; Prentice, Carol S.; Dawson, Timothy E.; Seitz, Gordon G.; Schwartz, David P.; Hudnut, Kenneth W.; Rosa, Carla M.; Pickering, Alexandra J; Parker, Jay W.</p> <p>2016-01-01</p> <p>The Mw 6.0 South Napa <span class="hlt">earthquake</span> of 24 August 2014 caused slip on several active <span class="hlt">fault</span> strands within the West Napa <span class="hlt">Fault</span> Zone (WNFZ). Field mapping identified 12.5 km of surface <span class="hlt">rupture</span>. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a ~7 km section north of the epicenter, the surface <span class="hlt">rupture</span> is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The <span class="hlt">rupture</span> continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main <span class="hlt">rupture</span> trace with total slip 1 year postevent approaching 0.5 m at locations where only a few centimeters were measured the day of the <span class="hlt">earthquake</span>. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along <span class="hlt">fault</span> traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the <span class="hlt">fault</span>, perhaps indicating secondary structures <span class="hlt">ruptured</span> as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed <span class="hlt">faulting</span>, and this was generally borne out by the complex 2014 <span class="hlt">rupture</span> pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface <span class="hlt">rupture</span> in areas of complex topography, especially where multiple potentially Quaternary-active <span class="hlt">fault</span> strands can be mapped.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Tectp.493...58S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Tectp.493...58S"><span>Temporal evolution of surface <span class="hlt">rupture</span> deduced from coseismic multi-mode secondary fractures: Insights from the October 8, 2005 (Mw 7.6) Kashmir <span class="hlt">earthquake</span>, NW Himalaya</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sayab, Mohammad; Khan, Muhammad Asif</p> <p>2010-10-01</p> <p>Detailed <span class="hlt">rupture</span>-fracture analyses of some of the well-studied <span class="hlt">earthquakes</span> have revealed that the geometrical arrangement of secondary <span class="hlt">faults</span> and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir <span class="hlt">earthquake</span>, NW Himalaya, surface <span class="hlt">rupture</span> provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the <span class="hlt">fault</span> scarp. The main <span class="hlt">fault</span> scarp is clearly thrust-type, <span class="hlt">rupture</span> length is ~ 75 ± 5 km and the overall trend of the <span class="hlt">rupture</span> is NW-SE. We present the results of our detailed structural mapping of secondary <span class="hlt">faults</span> and fractures at 1:100 scale, on the hanging wall of the southern end of the <span class="hlt">rupture</span> in the vicinity of the Sar Pain. Secondary <span class="hlt">ruptures</span> can be broadly classified as two main types, 1) normal <span class="hlt">faults</span> and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal <span class="hlt">faults</span> are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal <span class="hlt">faults</span> is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal <span class="hlt">faults</span> on the hanging wall of the thrust <span class="hlt">fault</span>. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal <span class="hlt">faults</span>. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal <span class="hlt">faults</span> and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock <span class="hlt">faulting</span>. The interpretation is consistent with the thrust <span class="hlt">fault</span> plane solution with minor right-lateral strike-slip component.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S21B2722F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S21B2722F"><span>3-D Dynamic <span class="hlt">Rupture</span> Simulations of the 2016 Kumamoto, Japan, <span class="hlt">Earthquake</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukuyama, E.; Urata, Y.; Yoshida, K.</p> <p>2016-12-01</p> <p>On April 16, 2016 at 01:25 (JST), an M7.3 main shock of the 2016 Kumamoto, Japan, <span class="hlt">earthquake</span> sequence occurred along the Futagawa and Hinagu <span class="hlt">faults</span>. A few days before, three M6-class foreshocks occurred: M6.5 on April 14 at 21:26, M5.8 on April 14 at 22:27, and M6.4 on April 15 at 00:03 (JST). The focal mechanisms of the first and third foreshocks were similar to those of the main shock; therefore, the extensive stress shadow should have been generated on the <span class="hlt">fault</span> plane of the main shock. The purpose of this study is to illuminate why the <span class="hlt">rupture</span> of the main shock propagated successfully under such stress conditions by 3-D dynamic <span class="hlt">rupture</span> simulations, assuming the <span class="hlt">fault</span> planes estimated by the distributions of aftershocks.First, we investigated time evolution of aftershock hypocenters relocated by the Double Difference method (Waldhauser & Ellsworth, 2000). The result showed that planar distribution of the hypocenters was formed after each M6 event. It allows us to estimate <span class="hlt">fault</span> planes of the three foreshocks and the main shock.Then, we evaluated stress changes on the <span class="hlt">fault</span> planes of the main shock due to the three foreshocks. We obtained the slip distributions of the foreshocks by using Eshelby (1957)'s solution, assuming elliptical cracks with constant stress drops on the estimated <span class="hlt">fault</span> planes. The stress changes on the <span class="hlt">fault</span> planes of the main shock were calculated by using Okada (1992)'s solution. The obtained stress change distribution showed that the hypocenter of the main shock existed on the region with positive ΔCFF while ΔCFF in the shallower regions than the hypocenter was negative. Therefore, the foreshocks could encourage the initiation of the main shock <span class="hlt">rupture</span> and could hinder the <span class="hlt">rupture</span> propagating toward the shallow region.Finally, we conducted 3-D dynamic <span class="hlt">rupture</span> simulations (Hok and Fukuyama, 2011) of the main shock under the initial stresses, which were the sum of the stress changes by these foreshocks and the regional stress field</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188799','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188799"><span>Evidence for slip partitioning and bimodal slip behavior on a single <span class="hlt">fault</span>: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan <span class="hlt">earthquake</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin</p> <p>2015-01-01</p> <p>Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip <span class="hlt">faults</span> in continental settings of oblique plate convergence. As a corollary, individual <span class="hlt">faults</span> tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting <span class="hlt">faults</span> in a new deformation regime. In this study, we show that a single continental <span class="hlt">fault</span> may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent <span class="hlt">fault</span> slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan <span class="hlt">earthquake</span> to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab <span class="hlt">fault</span>. We find that the 2013 <span class="hlt">earthquake</span>, which involved a ∼6:1 strike-slip to dip-slip ratio, <span class="hlt">ruptured</span> a structurally segmented <span class="hlt">fault</span>. Quaternary geomorphic indicators of gross <span class="hlt">fault</span>-zone morphology reveal both reverse-slip and strike-slip deformation in the <span class="hlt">rupture</span> area of the 2013 <span class="hlt">earthquake</span> that varies systematically along <span class="hlt">fault</span> strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab <span class="hlt">fault</span> accommodates a substantial reverse component of <span class="hlt">fault</span> slip in the Quaternary, especially along the southern section of the 2013 <span class="hlt">rupture</span>. We surmise that Quaternary bimodal slip along the Hoshab <span class="hlt">fault</span> is promoted by a combination of the arcuate geometry of the Hoshab <span class="hlt">fault</span>, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent <span class="hlt">earthquakes</span> and plate interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.420....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.420....1B"><span>Evidence for slip partitioning and bimodal slip behavior on a single <span class="hlt">fault</span>: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan <span class="hlt">earthquake</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.</p> <p>2015-06-01</p> <p>Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip <span class="hlt">faults</span> in continental settings of oblique plate convergence. As a corollary, individual <span class="hlt">faults</span> tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting <span class="hlt">faults</span> in a new deformation regime. In this study, we show that a single continental <span class="hlt">fault</span> may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent <span class="hlt">fault</span> slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan <span class="hlt">earthquake</span> to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab <span class="hlt">fault</span>. We find that the 2013 <span class="hlt">earthquake</span>, which involved a ∼6:1 strike-slip to dip-slip ratio, <span class="hlt">ruptured</span> a structurally segmented <span class="hlt">fault</span>. Quaternary geomorphic indicators of gross <span class="hlt">fault</span>-zone morphology reveal both reverse-slip and strike-slip deformation in the <span class="hlt">rupture</span> area of the 2013 <span class="hlt">earthquake</span> that varies systematically along <span class="hlt">fault</span> strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab <span class="hlt">fault</span> accommodates a substantial reverse component of <span class="hlt">fault</span> slip in the Quaternary, especially along the southern section of the 2013 <span class="hlt">rupture</span>. We surmise that Quaternary bimodal slip along the Hoshab <span class="hlt">fault</span> is promoted by a combination of the arcuate geometry of the Hoshab <span class="hlt">fault</span>, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent <span class="hlt">earthquakes</span> and plate interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2153X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2153X"><span>Continuous Record of Permeability inside the Wenchuan <span class="hlt">Earthquake</span> <span class="hlt">Fault</span> Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Lian; Li, Haibing; Brodsky, Emily</p> <p>2013-04-01</p> <p><span class="hlt">Faults</span> are complex hydrogeological structures which include a highly permeable damage zone with fracture-dominated permeability. Since fractures are generated by <span class="hlt">earthquakes</span>, we would expect that in the aftermath of a large <span class="hlt">earthquake</span>, the permeability would be transiently high in a <span class="hlt">fault</span> zone. Over time, the permeability may recover due to a combination of chemical and mechanical processes. However, the in situ <span class="hlt">fault</span> zone hydrological properties are difficult to measure and have never been directly constrained on a <span class="hlt">fault</span> zone immediately after a large <span class="hlt">earthquake</span>. In this work, we use water level response to solid Earth tides to constrain the hydraulic properties inside the Wenchuan <span class="hlt">Earthquake</span> <span class="hlt">Fault</span> Zone. The transmissivity and storage determine the phase and amplitude response of the water level to the tidal loading. By measuring phase and amplitude response, we can constrain the average hydraulic properties of the damage zone at 800-1200 m below the surface (~200-600 m from the principal slip zone). We use Markov chain Monte Carlo methods to evaluate the phase and amplitude responses and the corresponding errors for the largest semidiurnal Earth tide M2 in the time domain. The average phase lag is ~ 30o, and the average amplitude response is 6×10-7 strain/m. Assuming an isotropic, homogenous and laterally extensive aquifer, the average storage coefficient S is 2×10-4 and the average transmissivity T is 6×10-7 m2 using the measured phase and the amplitude response. Calculation for the hydraulic diffusivity D with D=T/S, yields the reported value of D is 3×10-3 m2/s, which is two orders of magnitude larger than pump test values on the Chelungpu <span class="hlt">Fault</span> which is the site of the Mw 7.6 Chi-Chi <span class="hlt">earthquake</span>. If the value is representative of the <span class="hlt">fault</span> zone, then this means the hydrology processes should have an effect on the <span class="hlt">earthquake</span> <span class="hlt">rupture</span> process. This measurement is done through continuous monitoring and we could track the evolution for hydraulic properties</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157149','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157149"><span>LiDAR and field observations of slip distribution for the most recent surface <span class="hlt">ruptures</span> along the central San Jacinto <span class="hlt">fault</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>J.B. Salisbury,; T.K. Rockwell,; T.J. Middleton,; Hudnut, Kenneth W.</p> <p>2012-01-01</p> <p>We measured offsets on tectonically displaced geomorphic features along 80 km of the Clark strand of the San Jacinto <span class="hlt">fault</span> (SJF) to estimate slip‐per‐event for the past several surface <span class="hlt">ruptures</span>. We identify 168 offset features from which we make over 490 measurements using B4 light detection and ranging (LiDAR) imagery and field observations. Our results suggest that LiDAR technology is an exemplary supplement to traditional field methods in slip‐per‐event studies. Displacement estimates indicate that the most recent surface‐<span class="hlt">rupturing</span> event (MRE) produced an average of 2.5–2.9 m of right‐lateral slip with maximum slip of nearly 4 m at Anza, a Mw 7.2–7.5 <span class="hlt">earthquake</span>. Average multiple‐event offsets for the same 80 kms are ∼5.5  m, with maximum values of 3 m at Anza for the penultimate event. Cumulative displacements of 9–10 m through Anza suggest the third event was also similar in size. Paleoseismic work at Hog Lake dates the most recent surface <span class="hlt">rupture</span> event at ca. 1790. A poorly located, large <span class="hlt">earthquake</span> occurred in southern California on 22 November 1800; we relocate this event to the Clark <span class="hlt">fault</span> based on the MRE at Hog Lake. We also recognize the occurrence of a younger <span class="hlt">rupture</span> along ∼15–20  km of the <span class="hlt">fault</span> in Blackburn Canyon with ∼1.25  m of average displacement. We attribute these offsets to the 21 April 1918 Mw 6.9 event. These data argue that much or all of the Clark <span class="hlt">fault</span>, and possibly also the Casa Loma <span class="hlt">fault</span>, fail together in large <span class="hlt">earthquakes</span>, but that shorter sections may fail in smaller events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5013/sir20175013ah_v1.1.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5013/sir20175013ah_v1.1.pdf"><span>The HayWired <span class="hlt">Earthquake</span> Scenario—<span class="hlt">Earthquake</span> Hazards</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Detweiler, Shane T.; Wein, Anne M.</p> <p>2017-04-24</p> <p>The HayWired scenario is a hypothetical <span class="hlt">earthquake</span> sequence that is being used to better understand hazards for the San Francisco Bay region during and after an <span class="hlt">earthquake</span> of magnitude 7 on the Hayward <span class="hlt">Fault</span>. The 2014 Working Group on California <span class="hlt">Earthquake</span> Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) <span class="hlt">earthquake</span> occurring on the Hayward <span class="hlt">Fault</span> within three decades. A large Hayward <span class="hlt">Fault</span> <span class="hlt">earthquake</span> will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent <span class="hlt">fault</span> slip, known as afterslip, and <span class="hlt">earthquakes</span>, known as aftershocks. The most recent large <span class="hlt">earthquake</span> on the Hayward <span class="hlt">Fault</span> occurred on October 21, 1868, and it <span class="hlt">ruptured</span> the southern part of the <span class="hlt">fault</span>. The 1868 magnitude-6.8 <span class="hlt">earthquake</span> occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the <span class="hlt">earthquake</span> still caused significant building damage and loss of life. The next large Hayward <span class="hlt">Fault</span> <span class="hlt">earthquake</span> is anticipated to affect thousands of structures and disrupt the lives of millions of people. <span class="hlt">Earthquake</span> risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta <span class="hlt">earthquake</span>. To build on efforts to reduce <span class="hlt">earthquake</span> risk in the San Francisco Bay region, the HayWired <span class="hlt">earthquake</span> scenario comprehensively examines the <span class="hlt">earthquake</span> hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large <span class="hlt">earthquake</span>, The HayWired <span class="hlt">Earthquake</span> Scenario—<span class="hlt">Earthquake</span> Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S11B0570A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S11B0570A"><span><span class="hlt">Earthquake</span> bursts and <span class="hlt">fault</span> branching: lessons from the Carmel <span class="hlt">fault</span> branch (CFB) of the Dead Sea Transform (DST)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agnon, A.; Rockwell, T. K.; Stein, S.; Raphael, K.</p> <p>2017-12-01</p> <p>The DST, accommodating most of the displacement across the boundary zone between the Arabian and Sinai plates, is an ideal plate boundary on which to study <span class="hlt">earthquake</span> sequences because of 1) a long (>2 kyr) record of historical <span class="hlt">earthquakes</span> (corroborated and extended several millennia back with ancient ruins); 2) deformed sediments and rockfalls, offering datable archives of strong shaking at various distances from the <span class="hlt">fault</span>, spanning 300 kyr; 3) a moderate <span class="hlt">fault</span> slip rate, allowing separation and dating of individual <span class="hlt">earthquakes</span> for comparison to the historical record, and 4) a growing body of paleoseismic trench data on both timing and displacement across some sectors of the <span class="hlt">fault</span>. Here we explore the role of a secondary <span class="hlt">fault</span> branch on clustering using a new approach for the analysis of <span class="hlt">earthquake</span> bursts. The CFZ is a ≥100 km long shear zone, branching northwestward from the N-S trending Jordan Valley segment of the DST. GPS monitoring of the CFZ indicates a slip rate of <1 mm/yr, absorbing up to 20% of the slip between Arabia Plate and the Sinai-Levant Block across the DST. CFZ seismicity is recorded by three datasets with different time scales and maximum magnitudes: 1) Instrumental seismicity, M≤5.3 (1984); 2) Historic documents suggesting a M>6 event in 363 CE, with ruins distributed up to 100 km from the CFZ; 3) 5 ka cave deposits showing damage greater than from any subsequent <span class="hlt">earthquake</span>, implying 6The CFZ branch events interact with <span class="hlt">ruptures</span> on the main DST. At 5 ka destruction was widespread along the DST. The 363 CE <span class="hlt">earthquake</span> was accompanied by another event in the Arava Valley. The pair skipped the 100 km long Dead Sea segment of the DST. An earlier pair in the northern Levant preceded that pair by several decades: 303 & 347 CE, following a two-century long quiescence, and a harbinger for a shaky millennium. We suggest that the 363 CE pair reflects a rare state that enables a CFZ <span class="hlt">rupture</span>. This oblique branch is unfavorably oriented for slip under</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211647F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211647F"><span>Scale-Dependent Friction and Damage Interface law: implications for effective <span class="hlt">earthquake</span> <span class="hlt">rupture</span> dynamics and radiation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Festa, Gaetano; Vilotte, Jean-Pierre; Raous, Michel; Henninger, Carole</p> <p>2010-05-01</p> <p>Propagation and radiation of an <span class="hlt">earthquake</span> <span class="hlt">rupture</span> is commonly considered as a friction dominated process on <span class="hlt">fault</span> surfaces. Friction laws, such as the slip weakening and the rate-and-state laws are widely used in the modeling of the <span class="hlt">earthquake</span> <span class="hlt">rupture</span> process. These laws prescribe the traction evolution versus slip, slip rate and potentially other internal variables. They introduce a finite cohesive length scale over which the fracture energy is released. However <span class="hlt">faults</span> are finite-width interfaces with complex internal structures, characterized by highly damaged zones embedding a very thin principal slip interface where most of the dynamic slip localizes. Even though the <span class="hlt">rupture</span> process is generally investigated at wavelengths larger than the <span class="hlt">fault</span> zone thickness, which should justify a formulation based upon surface energy, a consistent homogeneization, a very challenging problem, is still missing. Such homogeneization is however be required to derive the consistent form of an effective interface law, as well as the appropriate physical variables and length scales, to correctly describe the coarse-grained dissipation resulting from surface and volumetric contributions at the scale of the <span class="hlt">fault</span> zone. In this study, we investigate a scale-dependent law, introduced by Raous et al. (1999) in the context of adhesive material interfaces, that takes into account the transition between a damage dominated and a friction dominated state. Such a phase-field formalism describes this transition through an order parameter. We first compare this law to standard slip weakening friction law in terms of the <span class="hlt">rupture</span> nucleation. The problem is analyzed through the representation of the solution of the quasi-static elastic problem onto the Chebyshev polynomial basis, generalizing the Uenishi-Rice solution. The nucleation solutions, at the onset of instability, are then introduced as initial conditions for the study of the dynamic <span class="hlt">rupture</span> propagation, in the case of in-plane <span class="hlt">rupture</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G22A..06Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G22A..06Z"><span><span class="hlt">Rupture</span> geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China <span class="hlt">earthquake</span> inferred from Sentinel-1A InSAR measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Y.</p> <p>2016-12-01</p> <p>On 21 January 2016, an Ms6.4 <span class="hlt">earthquake</span> stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan <span class="hlt">earthquake</span> occurred near the left-lateral Lenglongling <span class="hlt">fault</span>. However, the focal mechanism suggests that the <span class="hlt">earthquake</span> should take place on a thrust <span class="hlt">fault</span>. In addition, field investigation indicates that the <span class="hlt">earthquake</span> did not <span class="hlt">rupture</span> the ground surface. Therefore, the <span class="hlt">rupture</span> geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for <span class="hlt">earthquake</span> source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer <span class="hlt">fault</span> geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan <span class="hlt">earthquake</span> <span class="hlt">ruptured</span> a blind thrust <span class="hlt">fault</span> with a strike of 124°and a dip angle of 41°. This blind <span class="hlt">fault</span> was never investigated before and intersects with the left-lateral Lenglongling <span class="hlt">fault</span>, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817588V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817588V"><span>Upper crustal <span class="hlt">fault</span> reactivation and the potential of triggered <span class="hlt">earthquakes</span> on the Atacama <span class="hlt">Fault</span> System, N-Chile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken</p> <p>2016-04-01</p> <p>The Atacama <span class="hlt">Fault</span> System (AFS) is an active trench-parallel <span class="hlt">fault</span> system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 <span class="hlt">earthquakes</span> in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore <span class="hlt">fault</span> activation and reactivation patterns through time and to investigate the triggering potential of upper crustal <span class="hlt">faults</span>. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past <span class="hlt">earthquakes</span> for any given segment of the <span class="hlt">fault</span> system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past <span class="hlt">earthquake</span> <span class="hlt">rupture</span> of upper plate <span class="hlt">faults</span> which is potentially linked to large subduction zone <span class="hlt">earthquakes</span>. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of <span class="hlt">fault</span> displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the <span class="hlt">fault</span> with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the <span class="hlt">fault</span> do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote <span class="hlt">earthquakes</span>. The 2014 Mw=8.2 Pisagua <span class="hlt">Earthquake</span>, located close to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148278','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148278"><span>Near-field tsunami edge waves and complex <span class="hlt">earthquake</span> <span class="hlt">rupture</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geist, Eric L.</p> <p>2013-01-01</p> <p>The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a <span class="hlt">fault</span> with geometry similar to that of the M w = 8.8 2010 Chile <span class="hlt">earthquake</span>. Crack-like <span class="hlt">ruptures</span> that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. <span class="hlt">Ruptures</span> located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like <span class="hlt">ruptures</span> for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple <span class="hlt">earthquake</span> characterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.131...81Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.131...81Y"><span>Distributions of strong ground motion due to dynamic <span class="hlt">ruptures</span> across a bimaterial <span class="hlt">fault</span>: Implications for seismic hazard analyses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Jie; Zhu, Shoubiao</p> <p>2016-12-01</p> <p>We perform 2-D finite element calculations of mode II <span class="hlt">rupture</span> along a bimaterial interface governed by regularized rate- and state-dependent friction law, with the goal of understanding how the bimaterial interface influences the strong ground motion. By comparison with properties of <span class="hlt">rupture</span> in a homogeneous solid, we found that bimaterial mechanism is important for <span class="hlt">earthquake</span> <span class="hlt">ruptures</span> and influences the strong ground motion significantly. The simulated results show that mode II <span class="hlt">rupture</span> evolves with propagation distance along a bimaterial interface to a unilateral wrinkle-like pulse in the direction of slip on the compliant side of the <span class="hlt">fault</span>, namely in the positive direction. Strong ground motion caused by seismic waves emanated from the <span class="hlt">rupture</span> propagation is asymmetrically distributed in space. The computed peak ground acceleration (PGA) is high in the near-<span class="hlt">fault</span> region. Particularly, PGA is much larger in the region on the side in the positive direction. In addition, it is greater in the more compliant area of the model than that in the stiffer area with corresponding locations. Moreover, the differential PGA due to bimaterial effect increases with increasing degree of material contrast across the <span class="hlt">fault</span>. It is hoped that the results obtained in this investigation will provide some implications for seismic hazard assessment and <span class="hlt">fault</span> <span class="hlt">rupture</span> mechanics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994PApGe.142..101R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994PApGe.142..101R"><span><span class="hlt">Rupture</span> process of large <span class="hlt">earthquakes</span> in the northern Mexico subduction zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruff, Larry J.; Miller, Angus D.</p> <p>1994-03-01</p> <p> the focal mechanisms allows us to state that all five <span class="hlt">earthquakes</span> occurred on <span class="hlt">fault</span> planes with the same strike (N65°W to N70°W) and dip (15±3°), except for the smaller Playa Azul event at the down-dip edge which has a steeper dip angle of 20 to 25°. However, the Petatlan <span class="hlt">earthquake</span> does “prefer” a <span class="hlt">fault</span> plane that is rotated to a more east-west orientation—one explanation may be that this <span class="hlt">earthquake</span> is located near the crest of the subducting Orozco fracture zone. The slip vectors of all five <span class="hlt">earthquakes</span> are similar and generally consistent with the NUVEL-predicted Cocos-North America convergence direction of N33°E for this segment. The most important deviation is the more northerly slip direction for the Petatlan <span class="hlt">earthquake</span>. Also, the slip vectors from the Harvard CMT solutions for large and small events in this segment prefer an overall convergence direction of about N20°E to N25°E. All five <span class="hlt">earthquakes</span> share a common feature in the <span class="hlt">rupture</span> process: each <span class="hlt">earthquake</span> has a small initial precursory arrival followed by a large pulse of moment release with a distinct onset. The delay time varies from 4 s for the Playa Azul event to 8 s for the Colima event. While there is some evidence of spatial concentration of moment release for each event, our overall asperity distribution for the northern Mexico segment consists of one clear asperity, in the epicentral region of the 1973 Colima <span class="hlt">earthquake</span>, and then a scattering of diffuse and overlapping regions of high moment release for the remainder of the segment. This character is directly displayed in the overlapping of <span class="hlt">rupture</span> zones between the 1979 Petatlan event and the 1985 Michoacan aftershock. This character of the asperity distribution is in contrast to the widely spaced distinct asperities in the northern Japan-Kuriles Islands subduction zone, but is somewhat similar to the asperity distributions found in the central Peru and Santa Cruz Islands subduction zones. Subduction of the Orozco fracture zone may</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.5185F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.5185F"><span>Paleo-<span class="hlt">earthquake</span> timing on the North Anatolian <span class="hlt">Fault</span>: Where, when, and how sure are we?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fraser, J.; Vanneste, K.; Hubert-Ferrari, A.</p> <p>2009-04-01</p> <p>The North Anatolian <span class="hlt">Fault</span> (NAF) traces from the Karilova Triple Junction in the east 1400km into the Aegean Sea in the west, forming a northwardly convex arch across northern Turkey. In the 20th century the NAF <span class="hlt">ruptured</span> in an approximate east to west migrating sequence of large, destructive and deadly <span class="hlt">earthquakes</span>. This migrating sequence suggests a simple relationship between crustal loading and <span class="hlt">fault</span> <span class="hlt">rupture</span>. A primary question remains unclear: Does the NAF always <span class="hlt">rupture</span> in episodic bursts? To address this question we have reanalysed selected pre-existing paleoseismic investigations (PIs), from along the NAF, using Bayesian statistical modelling to determine a standardised record of the temporal probability distribution of <span class="hlt">earthquakes</span>. A wealth of paleoseismic records have accumulated over recent years concerning the NAF although sadly much research remains un-published. A significant output of this study is tabulated results from all of the existing published paleoseismic studies on the NAF with recalibration of the radiocarbon ages using standardized methodology and standardized error reporting by determining the <span class="hlt">earthquake</span> probability rather than using errors associated with individual bounding dates. We followed the approach outlined in Biasi & Weldon (1994) and in Biasi et al. (2002) to calculate the actual probability density distributions for the timing of paleoseismic events and for the recurrence intervals. Our implementation of these algorithms is reasonably fast and yields PDFs that are comparable to but smoother than those obtained by Markov Chain Monte Carlo type simulations (e.g., OxCal, Bronk-Ramsey, 2007). Additionally we introduce three new <span class="hlt">earthquake</span> records from PIs we have conducted in spatial gaps in the existing data. By presenting all of this <span class="hlt">earthquake</span> data we hope to focus further studies and help to define the distribution of <span class="hlt">earthquake</span> risk. Because of the long historical record of <span class="hlt">earthquakes</span> in Turkey, we can begin to address some</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..365...62L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..365...62L"><span>Sedimentary evidence of historical and prehistorical <span class="hlt">earthquakes</span> along the Venta de Bravo <span class="hlt">Fault</span> System, Acambay Graben (Central Mexico)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón</p> <p>2018-03-01</p> <p>The Venta de Bravo normal <span class="hlt">fault</span> is one of the longest structures in the intra-arc <span class="hlt">fault</span> system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores <span class="hlt">Fault</span>, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo <span class="hlt">Fault</span> and provide new paleoseismological information, evaluate its <span class="hlt">earthquake</span> history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface <span class="hlt">faulting</span> offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive <span class="hlt">earthquakes</span> along this <span class="hlt">fault</span>, we found evidence of at least eight <span class="hlt">earthquakes</span> during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself <span class="hlt">earthquakes</span> with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-<span class="hlt">fault</span> <span class="hlt">rupture</span> of the Venta de Bravo <span class="hlt">Fault</span> together with other <span class="hlt">faults</span> of the Acambay Graben could result in a MW > 7 <span class="hlt">earthquake</span>. These new slip rates, <span class="hlt">earthquake</span> recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo <span class="hlt">Fault</span> and provide new parameters for further hazard assessment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.S21A0239G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.S21A0239G"><span>Segmentation of the Calaveras-Hayward <span class="hlt">Fault</span> System Based on 3-D Geometry and Geology at Large-<span class="hlt">Earthquake</span> Depth</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graymer, R. W.; Simpson, R. W.; Jachens, R. C.; Ponce, D. A.; Phelps, G. A.; Watt, J. T.; Wentworth, C. M.</p> <p>2007-12-01</p> <p>For the purpose of estimating seismic hazard, the Calaveras and Hayward <span class="hlt">Faults</span> have been considered as separate structures and analyzed and segmented based largely on their surface-trace geometry and the extent of the 1868 Hayward <span class="hlt">Fault</span> <span class="hlt">earthquake</span>. Recent relocations of <span class="hlt">earthquakes</span> and 3-D geologic mapping have shown, however, that at depths associated with large <span class="hlt">earthquakes</span> (>5 km) the <span class="hlt">fault</span> geology and geometry is quite different than that at the surface. Using deep <span class="hlt">fault</span> geometry inferred from these studies we treat the Hayward and Calaveras <span class="hlt">Faults</span> as a single system and divide the system into segments that differ from the previously accepted segments as follows: 1. The Hayward <span class="hlt">Fault</span> connects directly to the central Calaveras <span class="hlt">Fault</span> at depth, as opposed to the 5 km wide restraining stepover zone of multiple imbricate oblique right-lateral reverse <span class="hlt">faults</span> at the surface east of Fremont and San Jose (between about 37.25°-37.6°N). 2. The segment boundary between the Hayward, central Calaveras, and northern Calaveras is based on their Y- shaped intersection at depth near 37.40°N, 121.76°W (Cherry Flat Reservoir), about 8 km south of the previously accepted central-northern Calaveras <span class="hlt">Fault</span> segment boundary. 3. The central Calaveras <span class="hlt">Fault</span> is divided near 37.14°N, 121.56°W (southern end of Anderson Lake) into two subsegments based on a large discontinuity at depth seen in relocated seismicity. 4. The Hayward <span class="hlt">Fault</span> is divided near 37.85°N, 122.23°W (Lake Temescal) into two segments based on a large contrast in <span class="hlt">fault</span> face geology. This segmentation is similar to that based on the extent of 1868 <span class="hlt">fault</span> <span class="hlt">rupture</span>, but is now related to an underlying geologic cause. The direct connection of the Hayward and central Calaveras <span class="hlt">Faults</span> at depth suggests that <span class="hlt">earthquakes</span> larger than those previously modeled should be considered (~M6.9 for the southern Hayward, ~M7.2 for the southern Hayward plus northern central Calaveras). A NEHRP study by Witter and others (2003; NEHRP 03</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048647','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048647"><span>The Mw 5.8 Mineral, Virginia, <span class="hlt">earthquake</span> of August 2011 and aftershock sequence: constraints on <span class="hlt">earthquake</span> source parameters and <span class="hlt">fault</span> geometry</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McNamara, Daniel E.; Benz, H.M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul; Meltzer, Anne; Withers, Mitch; Chapman, Martin</p> <p>2014-01-01</p> <p>The Mw 5.8 <span class="hlt">earthquake</span> of 23 August 2011 (17:51:04 UTC) (moment, M0 5.7×1017  N·m) occurred near Mineral, Virginia, within the central Virginia seismic zone and was felt by more people than any other <span class="hlt">earthquake</span> in United States history. The U.S. Geological Survey (USGS) received 148,638 felt reports from 31 states and 4 Canadian provinces. The USGS PAGER system estimates as many as 120,000 people were exposed to shaking intensity levels of IV and greater, with approximately 10,000 exposed to shaking as high as intensity VIII. Both regional and teleseismic moment tensor solutions characterize the <span class="hlt">earthquake</span> as a northeast‐striking reverse <span class="hlt">fault</span> that nucleated at a depth of approximately 7±2  km. The distribution of reported macroseismic intensities is roughly ten times the area of a similarly sized <span class="hlt">earthquake</span> in the western United States (Horton and Williams, 2012). Near‐source and far‐field damage reports, which extend as far away as Washington, D.C., (135 km away) and Baltimore, Maryland, (200 km away) are consistent with an <span class="hlt">earthquake</span> of this size and depth in the eastern United States (EUS). Within the first few days following the <span class="hlt">earthquake</span>, several government and academic institutions installed 36 portable seismograph stations in the epicentral region, making this among the best‐recorded aftershock sequences in the EUS. Based on modeling of these data, we provide a detailed description of the source parameters of the mainshock and analysis of the subsequent aftershock sequence for defining the <span class="hlt">fault</span> geometry, area of <span class="hlt">rupture</span>, and observations of the aftershock sequence magnitude–frequency and temporal distribution. The observed slope of the magnitude–frequency curve or b‐value for the aftershock sequence is consistent with previous EUS studies (b=0.75), suggesting that most of the accumulated strain was released by the mainshock. The aftershocks define a <span class="hlt">rupture</span> that extends between approximately 2–8 km in depth and 8–10 km along</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.T11F..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.T11F..05L"><span>3-D kinematics analysis of surface <span class="hlt">ruptures</span> on an active creeping <span class="hlt">fault</span> at Chihshang, Eastern Taiwan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, J.; Angelier, J.; Chen, H.; Chu, H.; Hu, J.</p> <p>2003-12-01</p> <p>The Chihshang <span class="hlt">fault</span> is one of the most active segments of the Longitudinal Valley <span class="hlt">Fault</span>, the plate suture between the converging Philippine and Eurasian plates. A destructive <span class="hlt">earthquake</span> of M 7.1 with substantial surface scarps resulted from <span class="hlt">rupturing</span> of the Chihshang <span class="hlt">fault</span> in 1951. From that on, no big <span class="hlt">earthquake</span> greater than M 5.5 occurred in this area. Instead, the Chihshang <span class="hlt">fault</span> reveals a creeping behavior at a rapid rate of about 20 mm/yr at least during the past 20 years. The surface breaks of the creeping Chihshang <span class="hlt">fault</span> can be observed at the several places. A typical feature is reverse-<span class="hlt">fault</span>-like fractures on the retaining wall. We deployed small geodetic networks across the <span class="hlt">fault</span> zone at five sites. Each network comprises of 5 to 15 benchmarks. Trilateration measurements including angles and distances as well as leveling among the benchmarks have been carried out on an annual basis or twice a year since 1998. Compared to previous other measurements which have shown the first order creep rate for the entire <span class="hlt">fault</span> zone, the present geodetic data provides the detailed information of the surface movements across the <span class="hlt">fault</span> zone which usually composed of more than one <span class="hlt">fault</span> strands and folds structures. According to our data from the local geodetic networks, we are able to reconstruct the 3-D kinematics of surface deformation across the Chihshang <span class="hlt">fault</span> zone. Multiple <span class="hlt">fault</span> strands are common along the Chihshang <span class="hlt">fault</span>. Oblique shortening occurred at all sites and was characterized by a combination of thrusts, backthrust and surface warps. Strike-slip motion can also be distinguished on some <span class="hlt">fault</span> strands. It is worth to note that the cultural feature, such as concrete basement of strong resistance, sometimes acted as deflection of surface <span class="hlt">ruptures</span>. It should be taken into consideration for mitigation against seismic hazards.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044050','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044050"><span><span class="hlt">Rupture</span> history of the 2008 Mw 7.9 Wenchuan, China, <span class="hlt">earthquake</span>: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter</p> <p>2013-01-01</p> <p>An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the <span class="hlt">rupture</span> history of the 2008 Wenchuan, China, <span class="hlt">earthquake</span>. A linear multiple-time-window approach is used to parameterize the <span class="hlt">rupture</span>. Because of the complexity of the Wenchuan <span class="hlt">faulting</span>, three separate planes are used to represent the <span class="hlt">rupturing</span> surfaces. This <span class="hlt">earthquake</span> clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper <span class="hlt">faulting</span> and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple <span class="hlt">fault</span> planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of <span class="hlt">rupture</span> from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan <span class="hlt">rupture</span>. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. <span class="hlt">Rupture</span> initiates on the southern end of the Pengguan <span class="hlt">fault</span> and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong <span class="hlt">fault</span>, <span class="hlt">rupture</span> of the adjacent Beichuan <span class="hlt">fault</span> starts at this juncture and proceeds bilaterally to the northeast and southwest.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020550','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020550"><span>Absence of <span class="hlt">earthquake</span> correlation with Earth tides: An indication of high preseismic <span class="hlt">fault</span> stress rate</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vidale, J.E.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H.</p> <p>1998-01-01</p> <p>Because the rate of stress change from the Earth tides exceeds that from tectonic stress accumulation, tidal triggering of <span class="hlt">earthquakes</span> would be expected if the final hours of loading of the <span class="hlt">fault</span> were at the tectonic rate and if <span class="hlt">rupture</span> began soon after the achievement of a critical stress level. We analyze the tidal stresses and stress rates on the <span class="hlt">fault</span> planes and at the times of 13,042 <span class="hlt">earthquakes</span> which are so close to the San Andreas and Calaveras <span class="hlt">faults</span> in California that we may take the <span class="hlt">fault</span> plane to be known. We find that the stresses and stress rates from Earth tides at the times of <span class="hlt">earthquakes</span> are distributed in the same way as tidal stresses and stress rates at random times. While the rate of <span class="hlt">earthquakes</span> when the tidal stress promotes failure is 2% higher than when the stress does not, this difference in rate is not statistically significant. This lack of tidal triggering implies that preseismic stress rates in the nucleation zones of <span class="hlt">earthquakes</span> are at least 0.15 bar/h just preceding seismic failure, much above the long-term tectonic stress rate of 10-4 bar/h.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26552964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26552964"><span>Fast-moving dislocations trigger flash weakening in carbonate-bearing <span class="hlt">faults</span> during <span class="hlt">earthquakes</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio</p> <p>2015-11-10</p> <p><span class="hlt">Rupture</span> fronts can cause <span class="hlt">fault</span> displacement, reaching speeds up to several ms(-1) within a few milliseconds, at any distance away from the <span class="hlt">earthquake</span> nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in <span class="hlt">fault</span> frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to <span class="hlt">earthquakes</span> propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic <span class="hlt">rupture</span> in carbonate-bearing <span class="hlt">fault</span> patches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4639853','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4639853"><span>Fast-moving dislocations trigger flash weakening in carbonate-bearing <span class="hlt">faults</span> during <span class="hlt">earthquakes</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio</p> <p>2015-01-01</p> <p><span class="hlt">Rupture</span> fronts can cause <span class="hlt">fault</span> displacement, reaching speeds up to several ms−1 within a few milliseconds, at any distance away from the <span class="hlt">earthquake</span> nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in <span class="hlt">fault</span> frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to <span class="hlt">earthquakes</span> propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic <span class="hlt">rupture</span> in carbonate-bearing <span class="hlt">fault</span> patches. PMID:26552964</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.4774X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.4774X"><span>Finite-<span class="hlt">fault</span> slip model of the 2016 Mw 7.5 Chiloé <span class="hlt">earthquake</span>, southern Chile, estimated from Sentinel-1 data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Wenbin</p> <p>2017-05-01</p> <p>Subduction <span class="hlt">earthquakes</span> have been widely studied in the Chilean subduction zone, but <span class="hlt">earthquakes</span> occurring in its southern part have attracted less research interest primarily due to its lower rate of seismic activity. Here I use Sentinel-1 interferometric synthetic aperture radar (InSAR) data and range offset measurements to generate coseismic crustal deformation maps of the 2016 Mw 7.5 Chiloé <span class="hlt">earthquake</span> in southern Chile. I find a concentrated crustal deformation with ground displacement of approximately 50 cm in the southern part of the Chiloé island. The best fitting <span class="hlt">fault</span> model shows a pure thrust-<span class="hlt">fault</span> motion on a shallow dipping plane orienting 4° NNE. The InSAR-determined moment is 2.4 × 1020 Nm with a shear modulus of 30 GPa, equivalent to Mw 7.56, which is slightly lower than the seismic moment. The model shows that the slip did not reach the trench, and it reruptured part of the <span class="hlt">fault</span> that <span class="hlt">ruptured</span> in the 1960 Mw 9.5 <span class="hlt">earthquake</span>. The 2016 event has only released a small portion of the accumulated strain energy on the 1960 <span class="hlt">rupture</span> zone, suggesting that the seismic hazard of future great <span class="hlt">earthquakes</span> in southern Chile is high.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.191.1215C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.191.1215C"><span>Long-period spectral features of the Sumatra-Andaman 2004 <span class="hlt">earthquake</span> <span class="hlt">rupture</span> process</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clévédé, E.; Bukchin, B.; Favreau, P.; Mostinskiy, A.; Aoudia, A.; Panza, G. F.</p> <p>2012-12-01</p> <p>The goal of this study is to investigate the spatial variability of the seismic radiation spectral content of the Sumatra-Andaman 2004 <span class="hlt">earthquake</span>. We determine the integral estimates of source geometry, duration and <span class="hlt">rupture</span> propagation given by the stress glut moments of total degree 2 of different source models. These models are constructed from a single or a joint use of different observations including seismology, geodesy, altimetry and tide gauge data. The comparative analysis shows coherency among the different models and no strong contradictions are found between the integral estimates of geodetic and altimetric models, and those retrieved from very long period seismic records (up to 2000-3000 s). The comparison between these results and the integral estimates derived from observed surface wave spectra in period band from 500 to 650 s suggests that the northern part of the <span class="hlt">fault</span> (to the north of 8°N near Nicobar Islands) did not radiate long period seismic waves, that is, period shorter than 650 s at least. This conclusion is consistent with the existing composite short and long rise time tsunami model: with short rise time of slip in the southern part of the <span class="hlt">fault</span> and very long rise time of slip at the northern part. This complex space-time slip evolution can be reproduced by a simple dynamic model of the <span class="hlt">rupture</span> assuming a crude phenomenological mechanical behaviour of the <span class="hlt">rupture</span> interface at the <span class="hlt">fault</span> scales combining an effective slip-controlled exponential weakening effect, related to possible friction and damage breakdown processes of the <span class="hlt">fault</span> zone, and an effective linear viscous strengthening effect, related to possible interface lubrication processes. While the <span class="hlt">rupture</span> front speed remains unperturbed with initial short slip duration, a slow creep wave propagates behind the <span class="hlt">rupture</span> front in the case of viscous effects accounting for the long slip duration and the radiation characteristics in the northern segment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>