Sample records for earthquake induced landslides

  1. Toward a comprehensive areal model of earthquake-induced landslides

    USGS Publications Warehouse

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    This paper provides a review of regional-scale modeling of earthquake-induced landslide hazard with respect to the needs for disaster risk reduction and sustainable development. Based on this review, it sets out important research themes and suggests computing with words (CW), a methodology that includes fuzzy logic systems, as a fruitful modeling methodology for addressing many of these research themes. A range of research, reviewed here, has been conducted applying CW to various aspects of earthquake-induced landslide hazard zonation, but none facilitate comprehensive modeling of all types of earthquake-induced landslides. A new comprehensive areal model of earthquake-induced landslides (CAMEL) is introduced here that was developed using fuzzy logic systems. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL is highly modifiable and adaptable; new knowledge can be easily added, while existing knowledge can be changed to better match local knowledge and conditions. As such, CAMEL should not be viewed as a complete alternative to other earthquake-induced landslide models. CAMEL provides an open framework for incorporating other models, such as Newmark's displacement method, together with previously incompatible empirical and local knowledge. ?? 2009 ASCE.

  2. Distant, delayed and ancient earthquake-induced landslides

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Torgoev, Almaz; Braun, Anika; Schlögel, Romy; Micu, Mihai

    2016-04-01

    On the basis of a new classification of seismically induced landslides we outline particular effects related to the delayed and distant triggering of landslides. Those cannot be predicted by state-of-the-art methods. First, for about a dozen events the 'predicted' extension of the affected area is clearly underestimated. The most problematic cases are those for which far-distant triggering of landslides had been reported, such as for the 1988 Saguenay earthquake. In Central Asia reports for such cases are known for areas marked by a thick cover of loess. One possible contributing effect could be a low-frequency resonance of the thick soils induced by distant earthquakes, especially those in the Pamir - Hindu Kush seismic region. Such deep focal and high magnitude (>>7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this area and others in Central Asia we computed landslide event sizes related to scenario earthquakes with M>7.5. The second particular and challenging type of triggering is the one delayed with respect to the main earthquake event: case histories have been reported for the Racha earthquake in 1991 when several larger landslides only started moving 2 or 3 days after the main shock. Similar observations were also made after other earthquake events in the U.S., such as after the 1906 San Francisco, the 1949 Tacoma, the 1959 Hebgen Lake and the 1983 Bora Peak earthquakes. Here, we will present a series of detailed examples of (partly monitored) mass movements in Central Asia that mainly developed after earthquakes, some even several weeks after the main shock: e.g. the Tektonik and Kainama landslides triggered in 1992 and 2004, respectively. We believe that the development of the massive failures is a consequence of the opening of tension cracks during the seismic shaking and their filling up with water during precipitations that followed the earthquakes. The third particular aspect analysed here is the use of large

  3. Investigating Earthquake-induced Landslides­a Historical Review

    NASA Astrophysics Data System (ADS)

    Keefer, D. K.; Geological Survey, Us; Park, Menlo; Usa, Ca

    Although earthquake-induced landslides have been described in documents for more than 3700 years, accounts from earthquakes before the late eighteenth century are incomplete concerning landslide numbers and vague concerning landslide character- istics. They are thus typically misleading concerning the true abundance of landslides and range of landslide characteristics. Beginning with studies of the 1783 Calabria, Italy earthquake, more complete and precise data concerning the occurrence of land- slides in earthquakes have become available. The historical development of knowl- edge concerning landslides triggered by earthquakes can be divided into several peri- ods. The first period, from 1783 until the first application of aerial photography, was characterized by ground-based studies of earthquake effects, typically carried out by formal scientific commissions. These formal studies typically identified a large, but not necessarily comprehensive, sampling of localities where landslides had occurred. In some, but not all cases, landslide characteristics were also described in enough de- tail that the general range of landslide characteristics could begin to be determined. More recently, some nineteenth to mid-twentieth century earthquakes have been stud- ied using retrospective analyses, in which the landslide occurrences associated with the event are inferred years to decades later, using contemporary accounts, mapping from aerial photographs, statistical studies, and (or) geotechnical analyses. The first use of aerial photographs to map earthquake effects immediately after the event prob- ably occurred in 1948. Since that time, the use of aerial photography has greatly facil- itated the compilation of post-earthquake landslide inventories, although because of the limitations of aerial photography, ground-based field studies continue to be cru- cial in preparing accurate and comprehensive landslide maps. Beginning with a small California earthquake in 1957

  4. Combining historical and geomorphological information to investigate earthquake induced landslides

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Ferrari, G.; Galli, M.; Guidoboni, E.; Guzzetti, F.

    2003-04-01

    Landslides are caused by many different triggers, including earthquakes. In Italy, a detailed new generation catalogue of information on historical earthquakes for the period 461 B.C to 1997 is available (Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997, ING-SGA 2000). The catalogue lists 548 earthquakes and provides information on a total of about 450 mass-movements triggered by 118 seismic events. The information on earthquake-induced landslides listed in the catalogue was obtained through the careful scrutiny of historical documents and chronicles, but was rarely checked in the field. We report on an attempt to combine the available historical information on landslides caused by earthquakes with standard geomorphological techniques, including the interpretation of aerial photographs and field surveys, to better determine the location, type and distribution of seismically induced historical slope failures. We present four examples in the Central Apennines. The first example describes a rock slide triggered by the 1279 April 30 Umbria-Marche Apennines earthquake (Io = IX) at Serravalle, along the Chienti River (Central Italy). The landslide is the oldest known earthquake-induced slope failure in Italy. The second example describes the location of 2 large landslides triggered by the 1584 September 10 earthquake (Io = IX) at San Piero in Bagno, along the Savio River (Northern Italy). The landslides were subsequently largely modified by mass movements occurred on 1855 making the recognition of the original seismically induced failures difficult, if not impossible. In the third example we present the geographical distribution of the available information on landslide events triggered by 8 earthquakes in Central Valnerina, in the period 1703 to 1979. A comparison with the location of landslides triggered by the September-October 1997 Umbria-Marche earthquake sequence is presented. The fourth example describes the geographical distribution of the available

  5. A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad; van der Meijde, Mark; Khan, M. Asif

    2016-03-01

    The 8th October 2005 Kashmir earthquake, in northern Pakistan has triggered thousands of landslides, which was the second major factor in the destruction of the build-up environment, after earthquake-induced ground shaking. Subsequent to the earthquake, several researchers from home and abroad applied a variety of remote sensing techniques, supported with field observations, to develop inventories of the earthquake-triggered landslides, analyzed their spatial distribution and subsequently developed landslide-susceptibility maps. Earthquake causative fault rupture, geology, anthropogenic activities and remote sensing derived topographic attributes were observed to have major influence on the spatial distribution of landslides. These were subsequently used to develop a landslide susceptibility map, thereby demarcating the areas prone to landsliding. Temporal studies monitoring the earthquake-induced landslides shows that the earthquake-induced landslides are stabilized, contrary to earlier belief, directly after the earthquake. The biggest landslide induced dam, as a result of the massive Hattian Bala landslide, is still posing a threat to the surrounding communities. It is observed that remote sensing data is effectively and efficiently used to assess the landslides triggered by the Kashmir earthquake, however, there is still a need of more research to understand the mechanism of intensity and distribution of landslides; and their continuous monitoring using remote sensing data at a regional scale. This paper, provides an overview of remote sensing and GIS applications, for the Kashmir-earthquake triggered landslides, derived outputs and discusses the lessons learnt, advantages, limitations and recommendations for future research.

  6. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    NASA Astrophysics Data System (ADS)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  7. Correlation between hypocenter depth, antecedent precipitation and earthquake-induced landslide spatial distribution

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Watanabe, Eisuke

    2017-04-01

    Since Keefer published the paper on earthquake magnitude and affected area, maximum epicentral/fault distance of induced landslide distribution in 1984, showing the envelope of plots, a lot of studies on this topic have been conducted. It has been generally supposed that landslides have been triggered by shallow quakes and more landslides are likely to occur with heavy rainfalls immediately before the quake. In order to confirm this, we have collected 22 case records of earthquake-induced landslide distribution in Japan and examined the effect of hypocenter depth and antecedent precipitation. Earthquake magnitude by JMA (Japan Meteorological Agency) of the cases are from 4.5 to 9.0. Analysis on hycpocenter depth showed the deeper quake cause wider distribution. Antecedent precipitation was evaluated using the Soil Water Index (SWI), which was developed by JMA for issuing landslide alert. We could not find meaningful correlation between SWI and the earthquake-induced landslide distribution. Additionally, we found that smaller minimum size of collected landslides results in wider distribution especially between 1,000 to 100,000 m2.

  8. Comprehensive Areal Model of Earthquake-Induced Landslides: Technical Specification and User Guide

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2007-01-01

    This report describes the complete design of a comprehensive areal model of earthquakeinduced landslides (CAMEL). This report presents the design process, technical specification of CAMEL. It also provides a guide to using the CAMEL source code and template ESRI ArcGIS map document file for applying CAMEL, both of which can be obtained by contacting the authors. CAMEL is a regional-scale model of earthquake-induced landslide hazard developed using fuzzy logic systems. CAMEL currently estimates areal landslide concentration (number of landslides per square kilometer) of six aggregated types of earthquake-induced landslides - three types each for rock and soil.

  9. Investigating landslides caused by earthquakes - A historical review

    USGS Publications Warehouse

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  10. Investigating Landslides Caused by Earthquakes A Historical Review

    NASA Astrophysics Data System (ADS)

    Keefer, David K.

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  11. Prediction of earthquake-triggered landslide event sizes

    NASA Astrophysics Data System (ADS)

    Braun, Anika; Havenith, Hans-Balder; Schlögel, Romy

    2016-04-01

    Seismically induced landslides are a major environmental effect of earthquakes, which may significantly contribute to related losses. Moreover, in paleoseismology landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes and thus allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. We present here a review of factors contributing to earthquake triggered slope failures based on an "event-by-event" classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, 'Intensity', 'Fault', 'Topographic energy', 'Climatic conditions' and 'Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. The relative weight of these factors was extracted from published data for numerous past earthquakes; topographic inputs were checked in Google Earth and through geographic information systems. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be cross-checked. One of our main findings is that the 'Fault' factor, which is based on characteristics of the fault, the surface rupture and its location with respect to mountain areas, has the most important

  12. Evaluation of CAMEL - comprehensive areal model of earthquake-induced landslides

    USGS Publications Warehouse

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    A new comprehensive areal model of earthquake-induced landslides (CAMEL) has been developed to assist in planning decisions related to disaster risk reduction. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using fuzzy logic systems and geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL has been empirically evaluated with respect to disrupted landslides (Category I) using a case study of the 1989 M = 6.9 Loma Prieta, CA earthquake. In this case, CAMEL performs best in comparison to disrupted slides and falls in soil. For disrupted rock fall and slides, CAMEL's performance was slightly poorer. The model predicted a low occurrence of rock avalanches, when none in fact occurred. A similar comparison with the Loma Prieta case study was also conducted using a simplified Newmark displacement model. The area under the curve method of evaluation was used in order to draw comparisons between both models, revealing improved performance with CAMEL. CAMEL should not however be viewed as a strict alternative to Newmark displacement models. CAMEL can be used to integrate Newmark displacements with other, previously incompatible, types of knowledge. ?? 2008 Elsevier B.V.

  13. Geological control of earthquake induced landslide in El Salvador

    NASA Astrophysics Data System (ADS)

    Tsige Aga, Meaza

    2010-05-01

    Geological control of earthquake induced landslides in El Salvador. M., Tsige(1), I., Garcia-Flórez(1), R., Mateos(2) (1)Universidad Complutense de Madrid, Facultad de Geología, Madrid, Spain, (meaza@geo.ucm.es) (2)IGME, Mallorca El Salvador is located at one of the most seismically active areas en Central America, and suffered severe damage and loss of life in historical and recent earthquakes, as a consequence of earthquake induced landslides. The most common landslides were shallow disrupted soil-slides on steep slopes and were particularly dense in the central part of the country. Most of them are cited in the recent mechanically weak volcanic pyroclastic deposits known as "Tierra Blanca" and "Tierra Color Café" which are prone to seismic wave amplification and are supposed to have contributed to the triggering of some of the hundreds of landslides related to the 2001 (Mw = 7.6 and Mw = 6.7), seismic events. The earthquakes also triggered numerous deep large scale landslides responsible for the enormous devastation of villages and towns and are the source for the current high seismic hazard as well. Many of these landslides are located at distances more than 50 and 100 km from the focal distance, although some of them occurred at near field. Until now there has been little effort to explain the causes and concentration of the deep large-scale landslides especially their distribution, failure mechanism and post-rapture behavior of the landslide mass (long run-out). It has been done a field investigation of landslides, geological materiales and interpretation of aerial photographs taken before and after the two 2001 (Mw= 7.6 and Mw= 6.7) El Salvador earthquakes. The result of the study showed that most of the large-scale landslides occured as coherent block slides with the sliding surface parallel to a pre-existing fractures and fault planes (La Leona, Barriolera, El Desague, Jiboa landslides). Besides that the pre-existing fractures are weak zones controlling

  14. The susceptibility analysis of landslides induced by earthquake in Aso volcanic area, Japan, scoping the prediction

    NASA Astrophysics Data System (ADS)

    Kubota, Tetsuya; Takeda, Tsuyoshi

    2017-04-01

    Kumamoto earthquake on April 16th 2016 in Kumamoto prefecture, Kyushu Island, Japan with intense seismic scale of M7.3 (maximum acceleration = 1316 gal in Aso volcanic region) yielded countless instances of landslide and debris flow that induced serious damages and causalities in the area, especially in the Aso volcanic mountain range. Hence, field investigation and numerical slope stability analysis were conducted to delve into the characteristics or the prediction factors of the landslides induced by this earthquake. For the numerical analysis, Finite Element Method (FEM) and CSSDP (Critical Slip Surface analysis by Dynamic Programming theory based on limit equilibrium method) were applied to the landslide slopes with seismic acceleration observed. These numerical analysis methods can automatically detect the landslide slip surface which has minimum Fs (factor of safety). The various results and the information obtained through this investigation and analysis were integrated to predict the landslide susceptible slopes in volcanic area induced by earthquakes and rainfalls of their aftermath, considering geologic-geomorphologic features, geo-technical characteristics of the landslides and vegetation effects on the slope stability. Based on the FEM or CSSDP results, the landslides occurred in this earthquake at the mild gradient slope on the ridge have the safety factor of slope Fs=2.20 approximately (without rainfall nor earthquake, and Fs>=1.0 corresponds to stable slope without landslide) and 1.78 2.10 (with the most severe rainfall in the past) while they have approximately Fs=0.40 with the seismic forces in this earthquake (horizontal direction 818 gal, vertical direction -320 gal respectively, observed in the earthquake). It insists that only in case of earthquakes the landslide in volcanic sediment apt to occur at the mild gradient slopes as well as on the ridges with convex cross section. Consequently, the following results are obtained. 1) At volcanic

  15. Failure of a massive earthquake-induced landslide dam in Papua New Guinea

    USGS Publications Warehouse

    King, J. P.; Loveday, I. C.; Schuster, R.L.

    1987-01-01

    This article discusses the recent occurrence of a large earthquake-induced landslide that dammed the Bairaman River in the interior of hte island of New Britian, Papua New Guinea, and the subsequent overtopping and failure of this landslide dam. 

  16. Large landslides induced by the 2008 Wenchuan earthquake and their precursory gravitational slope deformation

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Wu, Xiyong; Wang, Gonghui; Uchida, Osamu

    2010-05-01

    2008 Wenchuan earthquake induced numerous large landslides, of which many large landslides had been preceded by gravitational deformation. The deformation could be detected by linear depressions and convex slopes observed on satellite images taken before the earthquake. Ground truth survey after the earthquake also found the gravitational deformation of rocks, which could be predated before the earthquake. The Daguanbao landslide, the largest landslide induced by this earthquake, occurred on a slope of bedded carbonate rocks. The area of the landslide, based on measurements made from the ALOS/PRISM images is 7.353 km2. Its volume is estimated to be 0.837 km3 based on the comparison of the PRISM data and the SRTM DEM. It had an open V-shaped main scarp, of which one linear part was along a high angle fault and the other was approximately parallel to the bedding strike. The upslope edge of the V-shaped main scarp was observed as 2- km long linear depressions along the ridge-top on satellite image before the landslide. This indicates that this slope had been already destabilized and small movement occurred along the bedding planes and along the fault before the event. The Wenchuan earthquake pulled the final trigger of this landslide. The major sliding surface was along the bedding plane, which was observed to dip 35° or slightly gentler. It was warped convex upward and the beds were fractured, which suggests that the beds were slightly buckled before the landslide. This deformation may correspond to the formation of the linear depression. The Tangjiashan landslide in Beichuan, which produced the largest landslide dam during the earthquake, occurred on a dip slope of shale and slate. The geologic structures of the landslide was observed on the side flanks of the landslide, which indicated that the beds had been buckled gravitationally beforehand and the sliding surface was made along the bedding plane and a joint parallel to the slope surface. The buckling

  17. Frequency-area distribution of earthquake-induced landslides

    NASA Astrophysics Data System (ADS)

    Tanyas, H.; Allstadt, K.; Westen, C. J. V.

    2016-12-01

    Discovering the physical explanations behind the power-law distribution of landslides can provide valuable information to quantify triggered landslide events and as a consequence to understand the relation between landslide causes and impacts in terms of environmental settings of landslide affected area. In previous studies, the probability of landslide size was utilized for this quantification and the developed parameter was called a landslide magnitude (mL). The frequency-area distributions (FADs) of several landslide inventories were modelled and theoretical curves were established to identify the mL for any landslide inventory. In the observed landslide inventories, a divergence from the power-law distribution was recognized for the small landslides, referred to as the rollover, and this feature was taken into account in the established model. However, these analyses are based on a relatively limited number of inventories, each with a different triggering mechanism. Existing definition of the mL include some subjectivity, since it is based on a visual comparison between the theoretical curves and the FAD of the medium and large landslides. Additionally, the existed definition of mL introduces uncertainty due to the ambiguity in both the physical explanation of the rollover and its functional form. Here we focus on earthquake-induced landslides (EQIL) and aim to provide a rigorous method to estimate the mL and total landslide area of EQIL. We have gathered 36 EQIL inventories from around the globe. Using these inventories, we have evaluated existing explanations of the rollover and proposed an alternative explanation given the new data. Next, we propose a method to define the EQIL FAD curves, mL and to estimate the total landslide area. We utilize the total landslide areas obtained from inventories to compare them with our estimations and to validate our methodology. The results show that we calculate landslide magnitudes more accurately than previous methods.

  18. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake

    PubMed Central

    Mahmood, Irfan; Qureshi, Shahid Nadeem; Tariq, Shahina; Atique, Luqman; Iqbal, Muhammad Farooq

    2015-01-01

    Introduction: The October 2005, Kashmir earthquake main event was triggered along the Balakot-Bagh Fault which runs from Bagh to Balakot, and caused more damages in and around these areas. Major landslides were activated during and after the earthquake inflicting large damages in the area, both in terms of infrastructure and casualties. These landslides were mainly attributed to the minimum threshold of the earthquake, geology of the area, climatologic and geomorphologic conditions, mudflows, widening of the roads without stability assessment, and heavy rainfall after the earthquake. These landslides were mainly rock and debris falls. Hattian Bala rock avalanche was largest landslide associated with the earthquake which completely destroyed a village and blocked the valley creating a lake. Discussion: The present study shows that the fault rupture and fault geometry have direct influence on the distribution of landslides and that along the rupture zone a high frequency band of landslides was triggered. There was an increase in number of landslides due to 2005 earthquake and its aftershocks and that most of earthquakes have occurred along faults, rivers and roads. It is observed that the stability of landslide mass is greatly influenced by amplitude, frequency and duration of earthquake induced ground motion. Most of the slope failures along the roads resulted from the alteration of these slopes during widening of the roads, and seepages during the rainy season immediately after the earthquake. Conclusion: Landslides occurred mostly along weakly cemented and indurated rocks, colluvial sand and cemented soils. It is also worth noting that fissures and ground crack which were induced by main and after shock are still present and they pose a major potential threat for future landslides in case of another earthquake activity or under extreme weather conditions. PMID:26366324

  19. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake.

    PubMed

    Mahmood, Irfan; Qureshi, Shahid Nadeem; Tariq, Shahina; Atique, Luqman; Iqbal, Muhammad Farooq

    2015-08-26

    The October 2005, Kashmir earthquake main event was triggered along the Balakot-Bagh Fault which runs from Bagh to Balakot, and caused more damages in and around these areas. Major landslides were activated during and after the earthquake inflicting large damages in the area, both in terms of infrastructure and casualties. These landslides were mainly attributed to the minimum threshold of the earthquake, geology of the area, climatologic and geomorphologic conditions, mudflows, widening of the roads without stability assessment, and heavy rainfall after the earthquake. These landslides were mainly rock and debris falls. Hattian Bala rock avalanche was largest landslide associated with the earthquake which completely destroyed a village and blocked the valley creating a lake. The present study shows that the fault rupture and fault geometry have direct influence on the distribution of landslides and that along the rupture zone a high frequency band of landslides was triggered. There was an increase in number of landslides due to 2005 earthquake and its aftershocks and that most of earthquakes have occurred along faults, rivers and roads. It is observed that the stability of landslide mass is greatly influenced by amplitude, frequency and duration of earthquake induced ground motion. Most of the slope failures along the roads resulted from the alteration of these slopes during widening of the roads, and seepages during the rainy season immediately after the earthquake.  Landslides occurred mostly along weakly cemented and indurated rocks, colluvial sand and cemented soils. It is also worth noting that fissures and ground crack which were induced by main and after shock are still present and they pose a major potential threat for future landslides in case of another earthquake activity or under extreme weather conditions.

  20. Urban Landslides Induced by the 2004 Niigata-Chuetsu Earthquake

    NASA Astrophysics Data System (ADS)

    Kamai, T.; Trandafir, A. C.; Sidle, R. C.

    2005-05-01

    Landslides triggered by the Chuetsu earthquake occurred in artificial slopes of some new developments in suburban Nagaoka, the largest city in the affected area. The landslides occurred in hilly terrain of the eastern part of Nagaoka between the alluvial plain and Tertiary folded mountains of Yamakoshi. Although the extent of landslides in urban Nagaoka was small compared with landslides on natural slopes (especially near Yamakoshi), they represent an important case study for urban landslide disasters. Slope instabilities in urban residential areas were classified as: A) landslides in steep embankments; B) landslides in gently sloping artificial valley fills; C) re-activation of old landslides; and D) liquefaction in deep artificial valley fills. All these failures occurred in relatively uniform suburban landscapes, which were significantly modified from the original landforms. Recent destructive earthquakes in Japan caused similar types of slope failures in urban regions, suggesting that lessons from past earthquakes were not implemented. The greatest damage due to type-A failures occurred in the 25-yr old Takamachi residential area, where about 70 of 522 homes were judged to be uninhabitable. Before development, this area was an isolated hill (90 m elevation) with an adjacent terrace (60 m elevation) consisting of gravel, sand, and silt of the lower to middle Pleistocene deposits. Development earthworks removed the hill crest and created a wide plateau (70 m elevation); excavated soil was placed on the perimeter as an embankment. During the earthquake, the embankment slope collapsed, including retaining walls, perimeter road, and homes. The most serious damage occurred in five places around the margin of the plateau corresponding to shallow valley fills (5 to 8 m thick). Earthquake response analyses using an equivalent linear model indicated the amplification of seismic waves at the surface of embankment slopes, and the peak earthquake acceleration exceeded 1 G

  1. Earthquake induced landslide hazard field observatory in the Avcilar peninsula

    NASA Astrophysics Data System (ADS)

    Bigarre, Pascal; Coccia, Stella; Theoleyre, Fiona; Ergintav, Semih; Özel, Oguz; Yalçinkaya, Esref; Lenti, Luca; Martino, Salvatore; Gamba, Paolo; Zucca, Francesco; Moro, Marco

    2015-04-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. The MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest among which the Cekmece-Avcilar peninsula, located westwards of Istanbul, as a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. A multidisciplinary research program based on pre-existing studies has been designed with objectives and tasks linked to constrain and tackle progressively some challenging issues related to data integration, modeling, monitoring and mapping technologies. Since the start of the project, progress has been marked on several important points as follows. The photogeological interpretation and analysis of ENVISAT-ERS DIn

  2. Classification of Earthquake-triggered Landslide Events - Review of Classical and Particular Cases

    NASA Astrophysics Data System (ADS)

    Braun, A.; Havenith, H. B.; Schlögel, R.

    2016-12-01

    Seismically induced landslides often contribute to a significant degree to the losses related to earthquakes. The identification of possible extends of landslide affected areas can help to target emergency measures when an earthquake occurs or improve the resilience of inhabited areas and critical infrastructure in zones of high seismic hazard. Moreover, landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes in paleoseismic studies, allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. Inspired by classical reviews of earthquake induced landslides, e.g. by Keefer or Jibson, we present here a review of factors contributing to earthquake triggered slope failures based on an `event-by-event' classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, `Intensity', `Fault', `Topographic energy', `Climatic conditions' and `Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be crosschecked. We present cases where our prediction model performs well and discuss particular cases

  3. Segmentation and Classification of Nepal Earthquake Induced Landslides Using SENTINEL-1 Product

    NASA Astrophysics Data System (ADS)

    Kunwar, Saket

    2016-06-01

    On April 26, 2015, an earthquake of magnitude 7.8 on the Richter scale occurred, with epicentre at Barpak (28°12'20''N,84°44'19''E), Nepal. Landslides induced due to the earthquake and its aftershock added to the natural disaster claiming more than 9000 lives. Landslides represented as lines that extend from the head scarp to the toe of the deposit were mapped by the staff of the British Geological Survey and is available freely under Open Data Commons Open Database License(ODC-ODbL) license at the Humanitarian Data Exchange Program. This collection of 5578 landslides is used as preliminary ground truth in this study with the aim of producing polygonal delineation of the landslides from the polylines via object oriented segmentation. Texture measures from Sentinel-1a Ground Range Detected (GRD) Amplitude data and eigenvalue-decomposed Single Look Complex (SLC) polarimetry product are stacked for this purpose. This has also enabled the investigation of landslide properties in the H-Alpha plane, while developing a classification mechanism for identifying the occurrence of landslides.

  4. Typhoon-driven landsliding induces earthquakes: example of the 2009 Morakot typhoon

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Jeandet, Louise; Cubas, Nadaya; Marc, Odin; Meunier, Patrick; Hovius, Niels; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.; Liang, Wen-Tzong; Theunissen, Thomas; Chiang, Shou-Hao

    2017-04-01

    Extreme rainfall events can trigger numerous landslides in mountainous areas and a prolonged increase of river sediment load. The resulting mass transfer at the Earth surface in turn induces stress changes at depth, which could be sufficient to trigger shallow earthquakes. The 2009 Morakot typhoon represents a good case study as it delivered 3 m of precipitation in 3 days and caused some of the most intense erosion ever recorded. Analysis of seismicity time-series before and after the Morakot typhoon reveals a systematic increase of shallow (i.e. 0-15 km of depth) earthquake frequency in the vicinity of the areas displaying a high spatial density of landslides. This step-like increase in frequency lasts for at least 2-3 years and does not follow an Omori-type aftershock sequence. Rather, it is associated to a step change of the Gutenberg-Richter b-value of the earthquake catalog. Both changes occurred in mountainous areas of southwest Taiwan, where typhoon Morakot caused extensive landsliding. These spatial and temporal correlations strongly suggest a causal relationship between the Morakot-triggered landslides and the increase of earthquake frequency and their associated b-value. We propose that the progressive removal of landslide materials from the steep mountain landscape by river sediment transport acts as an approximately constant increase of the stress rate with respect to pre-typhoon conditions, and that this in turn causes a step-wise increase in earthquake frequency. To test this hypothesis, we investigate the response of a rate-and-state fault to stress changes using a 2-D continuum elasto-dynamic model. Consistent with the results of Ader et al. (2013), our preliminary results show a step-like increase of earthquake frequency in response to a step-like decrease of the fault normal stress. We also investigate the sensitivity of the amplitude and time-scale of the earthquake frequency increase to the amplitude of the normal stress change and to

  5. Landslides Triggered by the 2015 Gorkha, Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Xu, C.

    2018-04-01

    The 25 April 2015 Gorkha Mw 7.8 earthquake in central Nepal caused a large number of casualties and serious property losses, and also induced numerous landslides. Based on visual interpretation of high-resolution optical satellite images pre- and post-earthquake and field reconnaissance, we delineated 47,200 coseismic landslides with a total distribution extent more than 35,000 km2, which occupy a total area about 110 km2. On the basis of a scale relationship between landslide area (A) and volume (V), V = 1.3147 × A1.2085, the total volume of the coseismic landslides is estimated to be about 9.64 × 108 m3. Calculation yields that the landslide number density, area density, and volume density are 1.32 km-2, 0.31 %, and 0.027 m, respectively. The spatial distribution of these landslides is consistent with that of the mainshock and aftershocks and the inferred causative fault, indicating the effect of the earthquake energy release on the pattern on coseismic landslides. This study provides a new, more detailed and objective inventory of the landslides triggered by the Gorkha earthquake, which would be significant for further study of genesis of coseismic landslides, hazard assessment and the long-term impact of the slope failure on the geological environment in the earthquake-scarred region.

  6. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions

    USGS Publications Warehouse

    Keefer, D.K.

    1994-01-01

    This paper describes a general method for determining the amount of earthquake-induced landsliding that occurs in a seismically active region over time; this determination can be used as a quantitative measure of the long-term hazard from seismically triggered landslides as well as a measure of the importance of this process to regional slope-erosion rates and landscape evolution. The method uses data from historical earthquakes to relate total volume of landslide material dislodged by an earthquake to the magnitude, M, and seismic moment, M0, of the earthquake. From worldwide data, a linear-regression relation between landslide volume, V, and M0 is determined as: V = M0/1018.9(?? 0.13), where V is measured in m3 and M0 is in dyn-cm. To determine the amount of earthquake-generated landsliding over time, this relation is combined with data on seismic-moment release for a particular region, which may be derived from either earthquake-history or fault-slip data. The form of the M0-V relation allows the rate of production of earthquake-induced landslides over time to be determined from total rate of seismic-moment release without regard to the distribution of individual events, thus simplifying and generalizing the determination. Application of the method to twelve seismically active regions, with areas ranging from 13,275 to 2,308,000 km2, shows that erosion rates from earthquake-induced landslides vary significantly from region to region. Of the regions studied, the highest rates were determined for the island of Hawaii, New Zealand, western New Guinea, and the San Francisco Bay region of California. Significantly lower rates were determined for Iran, Tibet, the Sierra Nevada-Great Basin region of California, and central Japan (for the time period from 715 AD to the present). Intermediate rates were determined for Peru, southern California, onshore California, Turkey, and central Japan (for the time period from 1586 AD to the present). To determine the relative, long

  7. Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories

    NASA Astrophysics Data System (ADS)

    Tanyaş, Hakan; van Westen, Cees J.; Allstadt, Kate E.; Anna Nowicki Jessee, M.; Görüm, Tolga; Jibson, Randall W.; Godt, Jonathan W.; Sato, Hiroshi P.; Schmitt, Robert G.; Marc, Odin; Hovius, Niels

    2017-10-01

    Earthquake-induced landslide (EQIL) inventories are essential tools to extend our knowledge of the relationship between earthquakes and the landslides they can trigger. Regrettably, such inventories are difficult to generate and therefore scarce, and the available ones differ in terms of their quality and level of completeness. Moreover, access to existing EQIL inventories is currently difficult because there is no centralized database. To address these issues, we compiled EQIL inventories from around the globe based on an extensive literature study. The database contains information on 363 landslide-triggering earthquakes and includes 66 digital landslide inventories. To make these data openly available, we created a repository to host the digital inventories that we have permission to redistribute through the U.S. Geological Survey ScienceBase platform. It can grow over time as more authors contribute their inventories. We analyze the distribution of EQIL events by time period and location, more specifically breaking down the distribution by continent, country, and mountain region. Additionally, we analyze frequency distributions of EQIL characteristics, such as the approximate area affected by landslides, total number of landslides, maximum distance from fault rupture zone, and distance from epicenter when the fault plane location is unknown. For the available digital EQIL inventories, we examine the underlying characteristics of landslide size, topographic slope, roughness, local relief, distance to streams, peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity. Also, we present an evaluation system to help users assess the suitability of the available inventories for different types of EQIL studies and model development.

  8. Presentation and analysis of a worldwide database of earthquake-induced landslide inventories

    USGS Publications Warehouse

    Tanyas, Hakan; van Westen, Cees J.; Allstadt, Kate E.; Nowicki Jessee, M. Anna; Gorum, Tolga; Jibson, Randall W.; Godt, Jonathan W.; Sato, Hiroshi P.; Schmitt, Robert G.; Marc, Odin; Hovius, Niels

    2017-01-01

    Earthquake-induced landslide (EQIL) inventories are essential tools to extend our knowledge of the relationship between earthquakes and the landslides they can trigger. Regrettably, such inventories are difficult to generate and therefore scarce, and the available ones differ in terms of their quality and level of completeness. Moreover, access to existing EQIL inventories is currently difficult because there is no centralized database. To address these issues, we compiled EQIL inventories from around the globe based on an extensive literature study. The database contains information on 363 landslide-triggering earthquakes and includes 66 digital landslide inventories. To make these data openly available, we created a repository to host the digital inventories that we have permission to redistribute through the U.S. Geological Survey ScienceBase platform. It can grow over time as more authors contribute their inventories. We analyze the distribution of EQIL events by time period and location, more specifically breaking down the distribution by continent, country, and mountain region. Additionally, we analyze frequency distributions of EQIL characteristics, such as the approximate area affected by landslides, total number of landslides, maximum distance from fault rupture zone, and distance from epicenter when the fault plane location is unknown. For the available digital EQIL inventories, we examine the underlying characteristics of landslide size, topographic slope, roughness, local relief, distance to streams, peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity. Also, we present an evaluation system to help users assess the suitability of the available inventories for different types of EQIL studies and model development.

  9. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; Harty, K.M.

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocenemore » Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.« less

  10. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    NASA Astrophysics Data System (ADS)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    ) with head scarps near mountain tops and close to faults is similar to the one of large mass movements for which a seismic origin is proved (such as in the Tien Shan, Pamir, Longmenshan, etc.). Thus, correlations between landslide occurrence and combined seismotectonic and climatic factors are needed to support a regional multi-hazard risk assessment. The purpose of this paper is to harmonize for the first time at a regional scale the landslide predisposing factors and seismotectonic triggers and to present a first qualitative insight into the earthquake-induced landslide susceptibility for the Vrancea Seismic Region in terms of a GIS-based analysis of Newmark displacement (ND). In this way, it aims at better defining spatial and temporal distribution patterns of earthquake-triggered landslides. Arias Intensity calculation involved in the assessment considers both regional seismic hazard aspects and singular earthquake scenarios (adjusted by topography amplification factors). The known distribution of landslides mapped through digital stereographic interpretation of high-resolution aerial photos is compared with digital active fault maps and the computed ND maps to statistically outline the seismotectonic influence on slope stability in the study area. The importance of this approach resides in two main outputs. The fist one, of a fundamental nature, by providing the first regional insight into the seismic landslides triggering framework, is allowing us to understand if deep-focus earthquakes may trigger massive slope failures in an area with a relatively smooth relief (compared to the high mountain regions in Central Asia, the Himalayas), considering possible geologic and topographic site effects. The second one, more applied, will allow a better accelerometer instrumentation and monitoring of slopes and also will provide a first correlation of different levels of seismic shaking with precipitation recurrences, an important relationship within a multi-hazard risk

  11. Composite mechanism of the Büyükçekmece (Turkey) landslide as conditioning factor for earthquake-induced mobility

    NASA Astrophysics Data System (ADS)

    Martino, S.; Lenti, L.; Bourdeau, C.

    2018-05-01

    Earthquake-induced displacements of landslides are significantly conditioned by their 1D and 2D interactions with seismic waves, as currently proven by several studies. Nevertheless, the role of a more complex geological setting, responsible for a heterogeneous composition of the landslide mass, can significantly influence these phenomena. The heterogeneity can also depend on multiple phases of the landslide activity, responsible for dislodging the whole landslide mass into submasses, each one delimited by secondary scarps and characterized by individual mobility. Hence, in the framework of the European project "MARSite - Marmara Supersite: new directions in seismic hazard assessment through focused Earth observation in the Marmara Supersite", the Büyükçekmece landslide, located approximately 30 km W of Istanbul (Turkey), was considered as a case study. This landslide involves a large mass of approximately 140 million cubic metres, composed of silty clays, tuffs and sands ascribable to Cenozoic geological formations. The landslide is characterized by multiple phases of activity with a composite rototranslational mechanism, which created seven submasses delimited by secondary scarps. The scheme of water circulation in the landslide slope, based on piezometer data as well as on a geological survey, accounts for two flow nets: the first, shallower flow net is located in superficial sandy deposits, outcropping in the dislodged landslide submasses; the second, deeper flow net is located in the main sliding surface. A slope stability analysis following a global limit equilibrium approach provided a distribution of the pseudostatic coefficient vs. pore water pressure. The results show that the stability of the landslide submasses increases moving downslope, and reactivations are expected in the case of earthquakes with a return period between 475 and 2475 yr, according to the local seismic hazard. Dynamic numerical modelling was also performed using the stress

  12. Landscape scale prediction of earthquake-induced landsliding based on seismological and geomorphological parameters.

    NASA Astrophysics Data System (ADS)

    Marc, O.; Hovius, N.; Meunier, P.; Rault, C.

    2017-12-01

    In tectonically active areas, earthquakes are an important trigger of landslides with significant impact on hillslopes and river evolutions. However, detailed prediction of landslides locations and properties for a given earthquakes remain difficult.In contrast we propose, landscape scale, analytical prediction of bulk coseismic landsliding, that is total landslide area and volume (Marc et al., 2016a) as well as the regional area within which most landslide must distribute (Marc et al., 2017). The prediction is based on a limited number of seismological (seismic moment, source depth) and geomorphological (landscape steepness, threshold acceleration) parameters, and therefore could be implemented in landscape evolution model aiming at engaging with erosion dynamics at the scale of the seismic cycle. To assess the model we have compiled and normalized estimates of total landslide volume, total landslide area and regional area affected by landslides for 40, 17 and 83 earthquakes, respectively. We have found that low landscape steepness systematically leads to overprediction of the total area and volume of landslides. When this effect is accounted for, the model is able to predict within a factor of 2 the landslide areas and associated volumes for about 70% of the cases in our databases. The prediction of regional area affected do not require a calibration for the landscape steepness and gives a prediction within a factor of 2 for 60% of the database. For 7 out of 10 comprehensive inventories we show that our prediction compares well with the smallest region around the fault containing 95% of the total landslide area. This is a significant improvement on a previously published empirical expression based only on earthquake moment.Some of the outliers seems related to exceptional rock mass strength in the epicentral area or shaking duration and other seismic source complexities ignored by the model. Applications include prediction on the mass balance of earthquakes and

  13. Landslides and Earthquake Lakes from the Wenchuan, China Earthquake - Can it Happen in the U.S.?

    NASA Astrophysics Data System (ADS)

    Stenner, H.; Cydzik, K.; Hamilton, D.; Cattarossi, A.; Mathieson, E.

    2008-12-01

    The May 12, 2008 M7.9 Wenchuan, China earthquake destroyed five million homes and schools, causing over 87,650 deaths. Landslides, a secondary effect of the shaking, caused much of the devastation. Debris flows buried homes, rock falls crushed cars, and landslides dammed rivers. Blocked roads greatly impeded emergency access, delaying response. Our August 2008 field experience in the affected area reminded us that the western United States faces serious risks posed by earthquake-induced landslides. The topography of the western U.S. is less extreme than that near Wenchuan, but earthquakes may still cause devastating landslides, damming rivers and blocking access to affected areas. After the Wenchuan earthquake, lakes rapidly rose behind landslide dams, threatening millions of lives. One landslide above Beichuan City created Tangjiashan Lake, a massive body of water upstream of Mianyang, an area with 5.2 million people, 30,000 of whom were killed in the quake. Potential failure of the landslide dam put thousands more people at risk from catastrophic flooding. In 1959, the M7.4 Hebgen Lake earthquake in Montana caused a large landslide, which killed 19 people and dammed the Madison River. The Army Corps excavated sluices to keep the dam from failing catastrophically. The Hebgen Lake earthquake ultimately caused 28 deaths, mostly from landslides, but the affected region was sparsely populated. Slopes prone to strong earthquake shaking and landslides in California, Washington, and Oregon have much larger populations at risk. Landslide hazards continue after the earthquake due to the effect strong shaking has on hillslopes, particularly when subjected to subsequent rain. These hazards must be taken into account. Once a landslide blocks a river, rapid and thoughtful action is needed. The Chinese government quickly and safely mitigated landslide dams that posed the greatest risk to people downstream. It took expert geotechnical advice, the speed and resources of the army

  14. Statiscal analysis of an earthquake-induced landslide distribution - The 1989 Loma Prieta, California event

    USGS Publications Warehouse

    Keefer, D.K.

    2000-01-01

    The 1989 Loma Prieta, California earthquake (moment magnitude, M=6.9) generated landslides throughout an area of about 15,000 km2 in central California. Most of these landslides occurred in an area of about 2000 km2 in the mountainous terrain around the epicenter, where they were mapped during field investigations immediately following the earthquake. The distribution of these landslides is investigated statistically, using regression and one-way analysisof variance (ANOVA) techniques to determine how the occurrence of landslides correlates with distance from the earthquake source, slope steepness, and rock type. The landslide concentration (defined as the number of landslide sources per unit area) has a strong inverse correlation with distance from the earthquake source and a strong positive correlation with slope steepness. The landslide concentration differs substantially among the various geologic units in the area. The differences correlate to some degree with differences in lithology and degree of induration, but this correlation is less clear, suggesting a more complex relationship between landslide occurrence and rock properties. ?? 2000 Elsevier Science B.V. All rights reserved.

  15. Earthquake induced landslide hazard: a multidisciplinary field observatory in the Marmara SUPERSITE

    NASA Astrophysics Data System (ADS)

    Bigarré, Pascal

    2014-05-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. As one of the three SUPERSITE concept FP7 projects dealing with long term high level monitoring of major natural hazards at the European level, the MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 1999 Earthquake caused extensive landslides while tsunami effects were observed during the post-event surveys in several places along the coasts of the Izmit bay. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest. First, the Cekmece-Avcilar peninsula, located westwards of Istanbul, is a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. Second, the off-shore entrance of the Izmit Gulf, close to the termination of the surface rupture of the 1999 earthquake

  16. Landslides Induced by 2015 Gorkha Earthquake and Their Continuous Evolution Post 2015 and 2016-Monsoon

    NASA Astrophysics Data System (ADS)

    Spear, B.; Haritashya, U. K.; Kargel, J. S.

    2017-12-01

    Gorkha Nepal has been a hot bed of landslide activity since the 7.8 magnitude earthquake that occurred on April 25th 2015. Even though previous studies have mapped and analyzed the landslides that were directly related to the earthquake, this research maps and analyzes the landslides that occurred during monsoon or after monsoon season in 2015 and 2016. Specifically, our objectives included monitoring post-earthquake landslide evolution and reactivation. We also observed landslides which occurred in the steep side slopes of various small rivers and threatened to block the flow of river. Consequently, we used Landsat, Sentinel, ASTER and images available at Google Earth Engine to locate, map, and analyze these landslides. Our preliminary result indicates 5,270 landslides, however 957 of these landslides occurred significantly after the earthquake. Of the 957 landslides, 508 of them occurred during the monsoon season of 2015 and 48 in the 2016 monsoon season. As well as locating and mapping these landslides, we were able to identify that there were 22 landslides blocking rivers and 24 were reactivated. Our result and landslide density maps clearly identifies zones that are prone to landslides. For example, the steepest areas, such as the Helambu or Langtang region, have a very high concentration of landslides since the earthquake. Furthermore, landslides with the largest area were often nearby each other in very steep regions. This research can be used to determine which areas in the Gorkha Nepal region are safe to use and which areas are high risk.

  17. Instrumental shaking thresholds for seismically induced landslides and preliminary report on landslides triggered by the October 17, 1989, Loma Prieta, California earthquake

    USGS Publications Warehouse

    Harp, E.L.

    1993-01-01

    The generation of seismically induced landslide depends on the characteristics of shaking as well as mechanical properties of geologic materials. A very important parameter in the study of seismically induced landslide is the intensity based on a strong-motion accelerogram: it is defined as Arias intensity and is proportional to the duration of the shaking record as well as the amplitude. Having a theoretical relationship between Arias intensity, magnitude and distance it is possible to predict how far away from the seismic source landslides are likely to occur for a given magnitude earthquake. Field investigations have established that the threshold level of Arias intensity depends also on site effects, particularly the fracture characteristics of the outcrops present. -from Author

  18. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  19. Connectivity of earthquake-triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Li, Gen; West, A. Joshua; Densmore, Alexander L.; Hammond, Douglas E.; Jin, Zhangdong; Zhang, Fei; Wang, Jin; Hilton, Robert G.

    2016-04-01

    Evaluating the influence of earthquakes on erosion, landscape evolution, and sediment-related hazards requires understanding fluvial transport of material liberated in earthquake-triggered landslides. The location of landslides relative to river channels is expected to play an important role in postearthquake sediment dynamics. In this study, we assess the position of landslides triggered by the Mw 7.9 Wenchuan earthquake, aiming to understand the relationship between landslides and the fluvial network of the steep Longmen Shan mountain range. Combining a landslide inventory map and geomorphic analysis, we quantify landslide-channel connectivity in terms of the number of landslides, landslide area, and landslide volume estimated from scaling relationships. We observe a strong spatial variability in landslide-channel connectivity, with volumetric connectivity (ξ) ranging from ~20% to ~90% for different catchments. This variability is linked to topographic effects that set local channel densities, seismic effects (including seismogenic faulting) that regulate landslide size, and substrate effects that may influence both channelization and landslide size. Altogether, we estimate that the volume of landslides connected to channels comprises 43 + 9/-7% of the total coseismic landslide volume. Following the Wenchuan earthquake, fine-grained (<~0.25 mm) suspended sediment yield across the Longmen Shan catchments is positively correlated to catchment-wide landslide density, but this correlation is statistically indistinguishable whether or not connectivity is considered. The weaker-than-expected influence of connectivity on suspended sediment yield may be related to mobilization of fine-grained landslide material that resides in hillslope domains, i.e., not directly connected to river channels. In contrast, transport of the coarser fraction (which makes up >90% of the total landslide volume) may be more significantly affected by landslide locations.

  20. Prediction of the area affected by earthquake-induced landsliding based on seismological parameters

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Meunier, Patrick; Hovius, Niels

    2017-07-01

    We present an analytical, seismologically consistent expression for the surface area of the region within which most landslides triggered by an earthquake are located (landslide distribution area). This expression is based on scaling laws relating seismic moment, source depth, and focal mechanism with ground shaking and fault rupture length and assumes a globally constant threshold of acceleration for onset of systematic mass wasting. The seismological assumptions are identical to those recently used to propose a seismologically consistent expression for the total volume and area of landslides triggered by an earthquake. To test the accuracy of the model we gathered geophysical information and estimates of the landslide distribution area for 83 earthquakes. To reduce uncertainties and inconsistencies in the estimation of the landslide distribution area, we propose an objective definition based on the shortest distance from the seismic wave emission line containing 95 % of the total landslide area. Without any empirical calibration the model explains 56 % of the variance in our dataset, and predicts 35 to 49 out of 83 cases within a factor of 2, depending on how we account for uncertainties on the seismic source depth. For most cases with comprehensive landslide inventories we show that our prediction compares well with the smallest region around the fault containing 95 % of the total landslide area. Aspects ignored by the model that could explain the residuals include local variations of the threshold of acceleration and processes modulating the surface ground shaking, such as the distribution of seismic energy release on the fault plane, the dynamic stress drop, and rupture directivity. Nevertheless, its simplicity and first-order accuracy suggest that the model can yield plausible and useful estimates of the landslide distribution area in near-real time, with earthquake parameters issued by standard detection routines.

  1. Coupling of Sentinel-1, Sentinel-2 and ALOS-2 to assess coseismic deformation and earthquake-induced landslides following 26 June, 2016 earthquake in Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Motagh, Mahdi; Wetzel, Hans-Ulrich; Teshebaeva, Kanayim

    2017-04-01

    The active deformation in Kyrgyzstan results from the collision between Indian and Asia tectonic plates at a rate of 29 ± 1 mm/yr. This collision is accommodated by deformation on prominent faults, which can be ruptured coseismically and trigger other hazards like landslides. Many earthquake and earthquake-induced landslides in Kyrgyzstan occur in mountainous areas, where limited accessibility makes ground-based measurements for the assessment of their impact a challenging task. In this context, remote sensing measurements are extraordinary useful as they improve our knowledge about coseismic rupture process and provide information on other types of hazards that are triggered during and/or after the earthquakes. This investigation aims to use L-band ALOS/PALSAR, C-band Sentinel-1, Sentinel-2 data to evaluate fault slip model and coseismic-induced landslides related to 26 June 2016 Sary-Tash earthquake, southwest Kyrgyzstan. First we implement three methods to measure coseismic surface motion using radar data including Interferometric SAR (InSAR) analysis, SAR tracking technique and multiple aperture InSAR (MAI), followed by using Genetic Algorithm (GA) to invert the final displacement field to infer combination of orientation, location and slip on rectangular uniform slip fault plane. Slip distribution analysis is done by applying Tikhonov regularization to solve the constrained least-square method with Laplacian smoothing approach. The estimated coseismic slip model suggests a nearly W-E thrusting fault ruptured during the earthquake event in which the main rupture occurred at a depth between 11 and 14 km. Second, the local phase shifts related to landslides are inferred by detailed analysis pre-seismic, coseismic and postseismic C-band and L-band interferograms and the results are compared with the interpretations derived from Sentinel-2 data acquired before and after the earthquake.

  2. Export Time of Earthquake-Derived Landslides in Active Mountain Ranges

    NASA Astrophysics Data System (ADS)

    Croissant, T.; Lague, D.; Steer, P.; Davy, P.

    2016-12-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment deposits which are eroded and transported along the river network, causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and for landscape dynamics at the timescale of the seismic cycle. Although the export time of suspended sediments from landslides triggered by large-magnitude earthquakes has been extensively studied, the processes and time scales associated to bedload transport remains poorly studied. Here, we study the sediment export of large landslides with the 2D morphodynamic model, Eros. This model combines: (i) an hydrodynamic model, (ii) a sediment transport and deposition model and (iii) a lateral erosion model. Eros is particularly well suited for this issue as it accounts for the complex retro-actions between sediment transport and fluvial geometry for rivers submitted to external forcings such as abrupt sediment supply increase. Using a simplified synthetic topography we systematically study the influence of pulse volume (Vs) and channel transport capacity (QT) on the export time of landslides. The range of simulated river behavior includes landslide vertical incision, its subsequent removal by lateral erosion and the river morphology modifications induced by downstream sediment propagation. The morphodynamic adaptation of the river increases its transport capacity along the channel and tends to accelerate the landslide evacuation. Our results highlight two regimes: (i) the export time is linearly related to Vs/QT when the sediment pulse introduced in the river does not affect significantly the river hydrodynamic (low Vs/QT) and (ii) the export time is a non-linear function of Vs/QT when the pulse undergoes significant morphodynamic modifications during its

  3. Landslide Distribution, Damage and Land Use Interactions During the 2004 Chuetsu Earthquake

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.; Trandafir, A. C.; Kamai, T.

    2005-05-01

    A series of earthquakes struck Niigata Prefecture, Japan, on 23 October 2004 killing about 40 people and injuring about 3000. These earthquakes were characterized by a shallow focal depth (13 km) that generated strong levels of ground motion, resulting in extensive damage and thousands of landslides throughout the region. Most landslides on natural slopes occurred in the regional geological structure consisting of sandy siltstone and thin-bedded alternations of sandstone and siltstone. Earthquakes exacerbate such potential instabilities by the ground motion induced and the enhancement of pore water pressure in wet regoliths. The three strongest earthquakes occurred within a period of less than 40 minutes, and had sequential magnitudes (JMA) of 6.8, 6.3, and 6.5. The highest density of landslides (12/km2) was mapped within a 2.9 km radius of the M6.5 epicenter near Yamakoshi village; about 4 times higher density compared to the other epicenters located to the east and west. This higher density may be a consequence of the cumulative shaking effects associated with the two earlier earthquakes of M6.8 and 6.5, in addition to the topographic and geologic factors controlling the stability of the region. Roads, residential fills, agricultural terraces on hillslopes, and other earthworks increased the susceptibility of sites to slope failure. Numerous earthquake-induced failures in terraces and adjacent hillslopes around rice paddy fields occurred near Yamakoshi village. A housing development in Nagaoka city constructed on an old earthflow suffered from severe damage to fill slopes during the earthquake. Nearly saturated conditions in these deep fills together with poor drainage systems contributed to the landslide damages. Clearly, land use activities in rural and urban areas exacerbated the extent of earthquake-triggered landslides.

  4. Identifying slow-moving landslides using LiDAR DEM and SAR interferometry: An Example of 2006 Meinong Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Lin, C. W.; Hsu, Y. J.; Zhang, L.; Liang, H. Y.

    2017-12-01

    The February 6 Meinong Earthquake of 2016 (ML=6.4; at 23.85ºN, 120.81ºE), with a focal depth of 16.7 km, was triggered by an unknown blind thrust in southern Taiwan. The earthquake not only induced coseismic crustal deformation, but also triggered slow-moving landslides nearby the Longchuan active fault. In this study, high-resolution LiDAR derived DEM of 2010 is used to recognize locations of previous slow-moving landslides according to their topographic signatures, such as main escarpment, trench, double ridge, and crown cracks. Within an area of 4.5 km x 1.8 km along Longchuan fault near the ridge of Longchuan mountain, over 50 sites with landslide signatures are recognized, and three of them are over 10 ha. These earthquake-induced landslide deformations are detected from InSAR (synthetic aperture radar interferometry) images using Advanced Land Observing Satellite ALOS2/Phased-array L band and Sentinel 1 C-band SAR (PALSAR) data taken before and after the earthquake; some significant landslide deformation are even overlapped with areas where previous slow moving landslides were identified on the LiDAR DEM. Additionally, field investigation right after the earthquake in the study area also support that these previously identified landslides reactivated in the earthquake. Although these landslides do not cause serious damage due to their minor displacement in the Meinong Earthquake, the study results prove that LiDAR DEM is a powerful tool to identify and continuously monitor slow-motion landslides for preventing catastrophic failures that may be caused by hazardous earthquake or heavy rainfall.

  5. Preliminary results on earthquake triggered landslides for the Haiti earthquake (January 2010)

    NASA Astrophysics Data System (ADS)

    van Westen, Cees; Gorum, Tolga

    2010-05-01

    This study presents the first results on an analysis of the landslides triggered by the Ms 7.0 Haiti earthquake that occurred on January 12, 2010 in the boundary region of the Pacific Plate and the North American plate. The fault is a left lateral strike slip fault with a clear surface expression. According to the USGS earthquake information the Enriquillo-Plantain Garden fault system has not produced any major earthquake in the last 100 years, and historical earthquakes are known from 1860, 1770, 1761, 1751, 1684, 1673, and 1618, though none of these has been confirmed in the field as associated with this fault. We used high resolution satellite imagery available for the pre and post earthquake situations, which were made freely available for the response and rescue operations. We made an interpretation of all co-seismic landslides in the epicentral area. We conclude that the earthquake mainly triggered landslide in the northern slope of the fault-related valley and in a number of isolated area. The earthquake apparently didn't trigger many visible landslides within the slum areas on the slopes in the southern part of Port-au-Prince and Carrefour. We also used ASTER DEM information to relate the landslide occurrences with DEM derivatives.

  6. Analysis of post-earthquake landslide activity and geo-environmental effects

    NASA Astrophysics Data System (ADS)

    Tang, Chenxiao; van Westen, Cees; Jetten, Victor

    2014-05-01

    Large earthquakes can cause huge losses to human society, due to ground shaking, fault rupture and due to the high density of co-seismic landslides that can be triggered in mountainous areas. In areas that have been affected by such large earthquakes, the threat of landslides continues also after the earthquake, as the co-seismic landslides may be reactivated by high intensity rainfall events. Earthquakes create Huge amount of landslide materials remain on the slopes, leading to a high frequency of landslides and debris flows after earthquakes which threaten lives and create great difficulties in post-seismic reconstruction in the earthquake-hit regions. Without critical information such as the frequency and magnitude of landslides after a major earthquake, reconstruction planning and hazard mitigation works appear to be difficult. The area hit by Mw 7.9 Wenchuan earthquake in 2008, Sichuan province, China, shows some typical examples of bad reconstruction planning due to lack of information: huge debris flows destroyed several re-constructed settlements. This research aim to analyze the decay in post-seismic landslide activity in areas that have been hit by a major earthquake. The areas hit by the 2008 Wenchuan earthquake will be taken a study area. The study will analyze the factors that control post-earthquake landslide activity through the quantification of the landslide volume changes well as through numerical simulation of their initiation process, to obtain a better understanding of the potential threat of post-earthquake landslide as a basis for mitigation planning. The research will make use of high-resolution stereo satellite images, UAV and Terrestrial Laser Scanning(TLS) to obtain multi-temporal DEM to monitor the change of loose sediments and post-seismic landslide activities. A debris flow initiation model that incorporates the volume of source materials, vegetation re-growth, and intensity-duration of the triggering precipitation, and that evaluates

  7. Distribution and features of landslides induced by the 2008 Wengchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Xiyong, W.; Inokuchi, T.; Gonghui, W.

    2009-04-01

    2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. The NE-trending Longmenshan fault zone runs along the boundary between the mountains on the west and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. There were several types of landslides ranging from small, shallow rockslide, rockfall, debris slide, deep rockslide, and debris flows. Shallow rockslide, rock fall, and debris slide were most common and occurred on convex slopes or ridge tops. When we approached the epicentral area, first appearing landslides were of this type and the most conspicuous was a failure of isolated ridge-tops, where earthquake shaking would be amplified. As for rock types, slopes of granitic rocks, hornfels, and carbonate rocks failed in wide areas to the most. They are generally hard and their fragments apparently collided and repelled to each other and detached from the slopes. Alternating beds of sandstone and mudstone failed on many slopes near the fault ruptures, including Yinghsiuwan near the epicenter. Many rockfalls occurred on cliffs, which had taluses on their feet. The fallen rocks tumbled down and mostly stopped within the talus surfaces, which is quite reasonable because taluses generally develop by this kind of processes. Many rockslides occurred on slopes of carbonate rocks, in which dolostone or dolomitic limestone prevails. Deep-seated rockslide occurred on outfacing slopes and shallow rockslide and rockfall

  8. Can earthquake fissures predispose hillslopes to landslides? - Evidence from Central and East Asia

    NASA Astrophysics Data System (ADS)

    Sidle, Roy C.; Gomi, Takashi; Rajapbaev, Muslim; Chyngozhoev, Nurstan

    2017-04-01

    Factors affecting earthquake-initiated landslides include earthquake magnitude, focal depth, and seismic wave propagation and attenuation. In contrast to rainfall-initiated landslides, earthquake-induced landslides often occur on convex slopes and near ridgelines. Here we present evidence from Fergana Basin, Kyrgyzstan and Kumamoto, Japan on how fissures developed during earthquakes may promote subsequent initiation of rainfall-triggered landslides. More than 1800 recent major landslides in hilly terrain and soft sediments of the Fergana Basin have been largely attributed to accumulation of heavy rainfall and snowmelt. While no large earthquakes have occurred in the Fergana Basin, smaller earthquakes have generated fissures near ridgelines and on convex slopes. The connection of fissures, developed years or decades before slope failure, with preferential transport of rainwater and runoff into the soil has not been previously investigated. Fissures have been observed to expand with time, particularly during subsequent minor earthquakes, further promoting preferential infiltration. Because the soil mantle does not have large contrasts in permeability that would define a slip plane for landslides, it appears that the position and depth of these fissures may control the location and depth of failures. Zones in the soil where surficial inputs of water are preferentially transported, augment natural subsurface accumulation of antecedent rainfall. Many landslides in the eastern Fergana Basin occur after several months of accumulated precipitation and groundwater has been observed emerging on critical hillside locations (near ridgelines and on convex slopes) prior to slope failure. During the 2016 Kumamoto Earthquake (M 7.3), many landslides were triggered in forest and grassland hillslopes near Mount Aso. All of these earthquakes were shallow (focal depths about 10 km), causing high shaking intensity and ground rupturing. Because soils were relatively dry during these

  9. Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes

    USGS Publications Warehouse

    ten Brink, Uri S.; Lee, H.J.; Geist, E.L.; Twichell, D.

    2009-01-01

    Submarine landslides along the continental slope of the U.S. Atlantic margin are potential sources for tsunamis along the U.S. East coast. The magnitude of potential tsunamis depends on the volume and location of the landslides, and tsunami frequency depends on their recurrence interval. However, the size and recurrence interval of submarine landslides along the U.S. Atlantic margin is poorly known. Well-studied landslide-generated tsunamis in other parts of the world have been shown to be associated with earthquakes. Because the size distribution and recurrence interval of earthquakes is generally better known than those for submarine landslides, we propose here to estimate the size and recurrence interval of submarine landslides from the size and recurrence interval of earthquakes in the near vicinity of the said landslides. To do so, we calculate maximum expected landslide size for a given earthquake magnitude, use recurrence interval of earthquakes to estimate recurrence interval of landslide, and assume a threshold landslide size that can generate a destructive tsunami. The maximum expected landslide size for a given earthquake magnitude is calculated in 3 ways: by slope stability analysis for catastrophic slope failure on the Atlantic continental margin, by using land-based compilation of maximum observed distance from earthquake to liquefaction, and by using land-based compilation of maximum observed area of earthquake-induced landslides. We find that the calculated distances and failure areas from the slope stability analysis is similar or slightly smaller than the maximum triggering distances and failure areas in subaerial observations. The results from all three methods compare well with the slope failure observations of the Mw = 7.2, 1929 Grand Banks earthquake, the only historical tsunamigenic earthquake along the North American Atlantic margin. The results further suggest that a Mw = 7.5 earthquake (the largest expected earthquake in the eastern U

  10. Comparison of the Structurally Controlled Landslides Numerical Model Results to the M 7.2 2013 Bohol Earthquake Co-seismic Landslides

    NASA Astrophysics Data System (ADS)

    Macario Galang, Jan Albert; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2015-04-01

    The M 7.2 October 15, 2013 Bohol earthquake is the most destructive earthquake to hit the Philippines since 2012. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". Its name, taken after the barangay (village) where the fault is best exposed and was first seen. The earthquake resulted in 209 fatalities and over 57 billion USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparedness against this type of landslide therefore, relies heavily on the identification of fracture-related unstable slopes. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations or discontinuity sets were mapped in the field with the aid of a 2012 IFSAR Digital Terrain Model (DTM) with 5-meter pixel resolution and < 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. The results were compared to a post-earthquake landslide inventory of 456 landslides. Out the total number of landslides identified from post-earthquake high-resolution imagery, 366 or 80% intersect the structural-controlled hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow paths, located structurally-controlled unstable zones can be used to mark unsafe areas for settlement. The

  11. Evidences of landslide earthquake triggering due to self-excitation process

    NASA Astrophysics Data System (ADS)

    Bozzano, F.; Lenti, L.; Martino, Salvatore; Paciello, A.; Scarascia Mugnozza, G.

    2011-06-01

    The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0-10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake ( M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress-strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3-6 Hz). The frequency peaks of the resulting amplification functions ( A( f)) fit well the H/ V spectral ratios from ambient noise and the H/ H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz

  12. Geological Investigation and analysis in response to Earthquake Induced Landslide in West Sumatra

    NASA Astrophysics Data System (ADS)

    Karnawati, D.; Wilopo, W.; Salahudin, S.; Sudarno, I.; Burton, P.

    2009-12-01

    Substantial socio-economical loss occurred in response to the September 30. 2009 West Sumatra Earthquake with magnitude of 7.6. Damage of houses and engineered structures mostly occurred at the low land of alluvium sediments due to the ground amplification, whilst at the high land of mountain slopes several villages were buried by massive debris of rocks and soils. It was recorded that 1115 people died due to this disasters. Series of geological investigation was carried out by Geological Engineering Department of Gadjah Mada University, with the purpose to support the rehabilitation program. Based on this preliminary investigation it was identified that most of the house and engineered structural damages at the alluvial deposits mainly due to by the poor quality of such houses and engineered structures, which poorly resist the ground amplification, instead of due to the control of geological conditions. On the other hand, the existence and distribution of structural geology (faults and joints) at the mountaineous regions are significant in controlling the distribution of landslides, with the types of rock falls, debris flows and debris falls. Despite the landslide susceptibility mapping conducted by Geological Survey of Indonesia, more detailed investigation is required to be carried out in the region surrounding Maninjau Lake, in order to provide safer places for village relocation. Accordingly Gadjah Mada University in collaboration with the local university (Andalas University) as well as with the local Government of Agam Regency and the Geological Survey of Indonesia, serve the mission for conducting rather more detailed geological and landslide investigation. It is also crucial that the investigation (survey and mapping) on the social perception and expectation of local people living in this landslide susceptible area should also be carried out, to support the mitigation effort of any future potential earthquake induced landslides.

  13. Landslides triggered by the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Harp, E.L.; Jibson, R.W.

    1996-01-01

    The 17 January 1994 Northridge, California, earthquake (Mw, = 6.7) triggered more than 11,000 landslides over an area of about 10,000 km2. Most of the landslides were concentrated in a 1000-km2 area that included the Santa Susana Mountains and the mountains north of the Santa Clara River valley. We mapped landslides triggered by the earthquake in the field and from 1:60,000-nominal-scale aerial photography provided by the U.S. Air Force and taken the morning of the earthquake; these mapped landslides were subsequently digitized and plotted in a GIS-based format. Most of the triggered landslides were shallow (1- to 5-m thick), highly disrupted falls and slides within weakly cemented Tertiary to Pleistocene clastic sediment. Average volumes of these types of landslides were less than 1000 m3, but many had volumes exceeding 100,000 m3. The larger disrupted slides commonly had runout paths of more than 50 m, and a few traveled as far as 200 m from the bases of steep parent slopes. Deeper (>5-m thick) rotational slumps and block slides numbered in the tens to perhaps hundreds, a few of which exceeded 100,000 m3 in volume. Most of these were reactivations of previously existing landslides. The largest single landslide triggered by the earthquake was a rotational slump/block slide having a volume of 8 ?? 106 m3. Analysis of the mapped landslide distribution with respect to variations in (1) landslide susceptibility and (2) strong shaking recorded by hundreds of instruments will form the basis of a seismic landslide hazard analysis of the Los Angeles area.

  14. Spatial distribution of landslides triggered from the 2007 Niigata Chuetsu–Oki Japan Earthquake

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert E.; Tanaka, Yasuo

    2012-01-01

    Understanding the spatial distribution of earthquake-induced landslides from specific earthquakes provides an opportunity to recognize what to expect from future events. The July 16, 2007 Mw 6.6 (MJMA 6.8) Niigata Chuetsu–Oki Japan earthquake triggered hundreds of landslides in the area surrounding the coastal city of Kashiwazaki and provides one such opportunity to evaluate the impacts of an offshore, magnitude 6 + earthquake on a steep coastal region. As part of a larger effort to document all forms of geotechnical damage from this earthquake, we performed landslide inventory mapping throughout the epicentral area and analyzed the resulting data for spatial, seismic-motion, and geologic correlations to describe the pattern of landsliding. Coupled with examination of a third-party, aerial-photo-based landslide inventory, our analyses reveal several areas of high landslide concentration that are not readily explained by either traditional epicentral and fault–plane-distance metrics or by recorded and inferred ground-motions. Whereas average landslide concentrations averaged less than 1 landslide per square kilometer (LS/km2), some areas reached up to 2 LS/km2 in the Nishiyama Hills to the northeast of Kashiwazaki and between 2 and 11 LS/km2 in coastal areas to the north and south of the city. Correlation with seismometer-based and monument overturning back-calculated ground motions suggests that a minimum peak ground acceleration (PGA) of approximately 0.2 g was necessary for landsliding throughout the region, but does not explain the subregional areas of high landslide concentration. However, analysis of topographic slope and the distribution of generally weak, dip-slope, geologic units does sufficiently explain why, on a sub-regional scale, high landslide concentrations occurred where they did. These include: (1) an inland region of steep, dip-slope, anticlinal sedimentary strata with associated fold belt compression and uplift of the anticline and (2

  15. Landslides from the February 4, 1976, Guatemala earthquake

    USGS Publications Warehouse

    Harp, Edwin L.; Wilson, Raymond C.; Wieczorek, Gerald F.

    1981-01-01

    The M (Richter magnitude) = 7.5 Guatemala earthquake of February 4, 1976, generated more than 10,000 landslides throughout an area of approximately 16,000 km2. These landslides caused hundreds of fatalities as well as extensive property damage. Landslides disrupted both highways and the railroad system and thus severely hindered early rescue efforts. In Guatemala City, extensive property damage and loss of life were due to ground failure beneath dwellings built too close to the edges of steeply incised canyons. We have recorded the distribution of landslides from this earthquake by mapping individual slides at a scale of 1:50,000 for most of the landslide-affected area, using high-altitude aerial photography. The highest density of landslides was in the highlands west of Guatemala City. The predominant types of earthquake-triggered landslides were rock falls and debris slides of less than 15,000 m3 volume; in addition to these smaller landslides, 11 large landslides had volumes of more than 100,000 m3. Several of these large landslides posed special hazards to people and property from lakes impounded by the landslide debris and from the ensuing floods that occurred upon breaching and rapid erosion of the debris. The regional landslide distribution was observed to depend on five major factors: (1) seismic intensity; (2) lithology: 90 percent of all landslides were within Pleistocene pumice deposits; (3) slope steepness; (4) topographic amplification of seismic ground motion; and (5) regional fractures. The presence of preearthquake landslides had no apparent effect on the landslide distribution, and landslide concentration in the Guatemala City area does not correlate with local seismic-intensity data. The landslide concentration, examined at this scale, appears to be governed mainly by lithologic differences within the pumice deposits, preexisting fractures, and amplification of ground motion by topography-all factors related to site conditions.

  16. Reactivation of slow-moving landslides by earthquakes, kinematics measurements and mechanical implications

    NASA Astrophysics Data System (ADS)

    Lacroix, Pascal; Perfettini, Hugo; Berthier, Etienne; Taipe, Edu; Guillier, Bertrand

    2015-04-01

    Major earthquakes in mountainous areas often trigger landslides. The impact of earthquakes on slow-moving landslides is however not well constrained due to few co-seismic measurements of landslide motion. We document the first time-series of a landslide reactivation by an earthquake (Mw6.0, distance 20 km), using continuous GPS measurements over the Maca landslide (Peru). Our survey shows a coseismic response of the landslide of about 2 cm, followed by a relaxation period of 5 weeks during which postseismic slip is three times greater than the coseismic displacement itself. Our results confirm the coseismic activation of landslides and provide the first observation of a post seismic displacement. Finally, a multi-temporal survey using images from the very high resolution Pléiades optical satellite, allowed us to detect 9 active slow-moving landslides over the whole valley. Their pattern of motion show they have been reactivated by the same earthquake. We analyze this small but comprehensive database of landslides reactivated by the earthquake. We find that the landslide motion due to the earthquake is function of the shaking intensity, suggesting a friction at the basal interface dependent on the earthquake solicitation. These various observations are consistent with a mechanical model where slip on the landslide basal interface is governed by rate and state friction, analogous to the mechanics of creeping tectonic faults.

  17. Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China

    USGS Publications Warehouse

    Wang, F.; Cheng, Q.; Highland, L.; Miyajima, M.; Wang, Hongfang; Yan, C.

    2009-01-01

    The M s 8.0 Wenchuan earthquake or "Great Sichuan Earthquake" occurred at 14:28 p.m. local time on 12 May 2008 in Sichuan Province, China. Damage by earthquake-induced landslides was an important part of the total earthquake damage. This report presents preliminary observations on the Hongyan Resort slide located southwest of the main epicenter, shallow mountain surface failures in Xuankou village of Yingxiu Town, the Jiufengchun slide near Longmenshan Town, the Hongsong Hydro-power Station slide near Hongbai Town, the Xiaojiaqiao slide in Chaping Town, two landslides in Beichuan County-town which destroyed a large part of the town, and the Donghekou and Shibangou slides in Qingchuan County which formed the second biggest landslide lake formed in this earthquake. The influences of seismic, topographic, geologic, and hydro-geologic conditions are discussed. ?? 2009 Springer-Verlag.

  18. Effect of water content on stability of landslides triggered by earthquakes

    NASA Astrophysics Data System (ADS)

    Beyabanaki, S.; Bagtzoglou, A. C.; Anagnostou, E. N.

    2013-12-01

    Earthquake- triggered landslides are one of the most important natural hazards that often result in serious structural damage and loss of life. They are widely studied by several researchers. However, less attention has been focused on soil water content. Although the effect of water content has been widely studied for rainfall- triggered landslides [1], much less attention has been given to it for stability analysis of earthquake- triggered landslides. We developed a combined hydrology and stability model to investigate effect of soil water content on earthquake-triggered landslides. For this purpose, Bishop's method is used to do the slope stability analysis and Richard's equation is employed to model infiltration. Bishop's method is one the most widely methods used for analyzing stability of slopes [2]. Earthquake acceleration coefficient (EAC) is also considered in the model to analyze the effect of earthquake on slope stability. Also, this model is able to automatically determine geometry of the potential landslide. In this study, slopes with different initial water contents are simulated. First, the simulation is performed in the case of earthquake only with different EACs and water contents. As shown in Fig. 1, initial water content has a significant effect on factor of safety (FS). Greater initial water contents lead to less FS. This impact is more significant when EAC is small. Also, when initial water content is high, landslides can happen even with small earthquake accelerations. Moreover, in this study, effect of water content on geometry of landslides is investigated. For this purpose, different cases of landslides triggered by earthquakes only and both rainfall and earthquake for different initial water contents are simulated. The results show that water content has more significant effect on geometry of landslides triggered by rainfall than those triggered by an earthquake. Finally, effect of water content on landslides triggered by earthquakes

  19. Gradual decay of elevated landslide rates after a large earthquake in the Finisterre Mountains, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Hovius, N.; Marc, O.

    2013-12-01

    Large earthquakes can cause widespread mass wasting and landslide rates can stay high after a seismic event. The rate of decay of seismically enhanced mass wasting determines the total erosional effect of an earthquake. It is also an important term in the post-seismic redevelopment of epicentral areas. Using a time series of Landsat images spanning 1990-2010, we have determined the evolution of landslide rates in the western Finisterre Mountains, Papua New Guinea. There, two earthquakes with Mw 6.7and 6.9 occurred at depth of about 20 km on the range-bounding Ramu-Markam fault in 1993. These earthquakes triggered landslides with a total volume of about 0.15 km3. Landslide rates were up to four orders of magnitude higher after the earthquakes than in preceding years, decaying to background values over a period of 2-3 years. Due to this short decay time, seismically induced landslides added only 5% to the volume of co-seismic landslides. This contrasts with another well-documented example, the 1999 Chi-Chi earthquake in Taiwan, where post-seismic landsliding may have increased the total eroded volume by a factor 3-5. In the Finisterre case, landslide rates may have been slightly less than normal for up to a decade after the decay period, but this effect is partially obscured by the impact of a smaller earthquake in 1997. Regardless, the rate of decay of landslide incidence was unrelated to both the seismic moment release in aftershocks and local precipitation. A control on this decay rate has not yet been identified.

  20. Rainfall Induced Landslides in Puerto Rico (Invited)

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Kamal, S.; Arnone, E.; Noto, V.; Shanahan, P.; Bras, R. L.

    2009-12-01

    Landslides are a major geologic hazard in the United States, typically triggered by rainfall, earthquakes, volcanoes and human activity. Rainfall-induced landslides are the most common type in the island of Puerto Rico, with one or two large events per year. We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model capable of simulating landslides, tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. .Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides, which is used to predict the dynamic susceptibility of the basin to landslides.

  1. Seismically induced landslides: current research by the US Geological Survey.

    USGS Publications Warehouse

    Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.

    1986-01-01

    We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors

  2. Comparison of Structurally Controlled Landslide Hazard Simulation to the Co-seismic Landslides Caused by the M 7.2 2013 Bohol Earthquake.

    NASA Astrophysics Data System (ADS)

    Galang, J. A. M. B.; Eco, R. C.; Lagmay, A. M. A.

    2014-12-01

    The M_w 7.2 October 15, 2013 Bohol earthquake is one of the more destructive earthquake to hit the Philippines in the 21st century. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". The earthquake resulted in 209 fatalities and over 57 million USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparations for this type of landslides rely heavily on the identification of fracture-related slope instability. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations of discontinuity sets were mapped using remote sensing techniques with the aid of a Digital Terrain Model (DTM) obtained in 2012. The DTM used is an IFSAR derived image with a 5-meter pixel resolution and approximately 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. Separately, a manually derived landslide inventory has been performed using post-earthquake satellite images and LIDAR. The results were compared to the landslide inventory which identified at least 873 landslides. Out of the 873 landslides identified through the inventory, 786 or 90% intersect the simulated structural-controlled landslide hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow

  3. Advancements in near real time mapping of earthquake and rainfall induced landslides in the Avcilar Peninsula, Marmara Region

    NASA Astrophysics Data System (ADS)

    Coccia, Stella

    2014-05-01

    Stella COCCIA (1), Fiona THEOLEYRE (1), Pascal BIGARRE(1) , Semih ERGINTAV(2), Oguz OZEL(3) and Serdar ÖZALAYBEY(4) (1) National Institute of Industrial Environment and Risks (INERIS) Nancy, France, (2) Kandilli Observatory and Earthquake Research Institute (KOERI), Istanbul, Turkey, (3) Istanbul University (IU), Istanbul, Turkey, (4) TUBITAK MAM, Istanbul, Turkey The European Project MARsite (http://marsite.eu/), started in 2012 and leaded by the KOERI, aims to improve seismic risk evaluation and preparedness to face the next dreadful large event expected for the next three decades. MARsite is thus expected to move a "step forward" the most advanced monitoring technologies, and offering promising open databases to the worldwide scientific community in the frame of other European environmental large-scale infrastructures, such as EPOS (http://www.epos-eu.org/ ). Among the 11 work packages (WP), the main aim of the WP6 is to study seismically-induced landslide hazard, by using and improving observing and monitoring systems in geological, hydrogeotechnical and seismic onshore and offshore areas. One of the WP6 specific study area is the Avcilar Peninsula, situated between Kucukcekmece and Buyukcekmece Lakes in the north-west of the region of Marmara. There, more than 400 landslides are located. According to geological and geotechnical investigations and studies, soil movements of this area are related to underground water and pore pressure changes, seismic forces arising after earthquakes and decreasing sliding strength in fissured and heavily consolidated clays. The WP6 includes various tasks and one of these works on a methodology to develop a dynamic system to create combined earthquake and rainfall induced landslides hazard maps at near real time and automatically. This innovative system could be used to improve the prevention strategy as well as in disaster management and relief operations. Base on literature review a dynamic GIS platform is used to combine

  4. Rainfall-induced landslides in Puerto Rico: An overview

    USGS Publications Warehouse

    Pando, M.A.; Ruiz, M.E.; Larsen, M.C.

    2005-01-01

    Rainfall-induced landslides are common in Puerto Rico (PR). The presence of steep slopes in mountainous terrain, coupled with weathered soils and intense rainfall, leads to severe slope-stability problems throughout the island. Episodic triggering events such as hurricanes and earthquakes further exacerbate these problems. All physiographic provinces of the island have experienced landslides. The stability of natural and man-made slopes is a serious concern for government authorities and the civil engineering community in Puerto Rico. This paper presents an overview of the rainfall induced landslide problem in PR, a summary of literature published on this subject, and proposes a rainfall intensity landslide threshold based on landslide events data from 1959 to 2003. This threshold can be used as part of a potential landslide warning system.

  5. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics

    NASA Astrophysics Data System (ADS)

    West, A. Joshua; Hetzel, Ralf; Li, Gen; Jin, Zhangdong; Zhang, Fei; Hilton, Robert G.; Densmore, Alexander L.

    2014-06-01

    The concentration of 10Be in detrital quartz (10Beqtz) from river sediments is now widely used to quantify catchment-wide denudation rates but may also be sensitive to inputs from bedrock landslides that deliver sediment with low 10Beqtz. Major landslide-triggering events can provide large amounts of low-concentration material to rivers in mountain catchments, but changes in river sediment 10Beqtz due to such events have not yet been measured directly. Here we examine the impact of widespread landslides triggered by the 2008 Wenchuan earthquake on 10Beqtz in sediment samples from the Min Jiang river basin, in Sichuan, China. Landslide deposit material associated with the Wenchuan earthquake has consistently lower 10Beqtz than in river sediment prior to the earthquake. River sediment 10Beqtz decreased significantly following the earthquake downstream of areas of high coseismic landslide occurrence (i.e., with greater than ∼0.3% of the upstream catchment area affected by landslides), because of input of the 10Be-depleted landslide material, but showed no systematic changes where landslide occurrence was low. Changes in river sediment 10Beqtz concentration were largest in small first-order catchments but were still significant in large river basins with areas of 104-105 km. Spatial and temporal variability in river sediment 10Beqtz has important implications for inferring representative denudation rates in tectonically active, landslide-dominated environments, even in large basins. Although the dilution of 10Beqtz in river sediment by landslide inputs may complicate interpretation of denudation rates, it also may provide a possible opportunity to track the transport of landslide sediment. The associated uncertainties are large, but in the Wenchuan case, calculations based on 10Be mixing proportions suggest that river sediment fluxes in the 2-3 years following the earthquake increased by a similar order of magnitude in the 0.25-1 mm and the <0.25 mm size fractions

  6. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Landslides

    USGS Publications Warehouse

    Keefer, David K.

    1998-01-01

    Central California, in the vicinity of San Francisco and Monterey Bays, has a history of fatal and damaging landslides, triggered by heavy rainfall, coastal and stream erosion, construction activity, and earthquakes. The great 1906 San Francisco earthquake (MS=8.2-8.3) generated more than 10,000 landslides throughout an area of 32,000 km2; these landslides killed at least 11 people and caused substantial damage to buildings, roads, railroads, and other civil works. Smaller numbers of landslides, which caused more localized damage, have also been reported from at least 20 other earthquakes that have occurred in the San Francisco Bay-Monterey Bay region since 1838. Conditions that make this region particularly susceptible to landslides include steep and rugged topography, weak rock and soil materials, seasonally heavy rainfall, and active seismicity. Given these conditions and history, it was no surprise that the 1989 Loma Prieta earthquake generated thousands of landslides throughout the region. Landslides caused one fatality and damaged at least 200 residences, numerous roads, and many other structures. Direct damage from landslides probably exceeded $30 million; additional, indirect economic losses were caused by long-term landslide blockage of two major highways and by delays in rebuilding brought about by concern over the potential long-term instability of some earthquake-damaged slopes.

  7. Environmental impact of the landslides caused by the 12 May 2008, Wenchuan, China earthquake

    USGS Publications Warehouse

    Highland, Lynn; Sun, Ping; Edited by Margottini, Claudio; Canuti, Paolo; Sassa, Kyoji

    2013-01-01

    The magnitude 7.9 (Mw) Wenchuan, China, earthquake of May 12, 2008 caused at least 88,000 deaths of which one third are estimated to be due to the more than 56,000 earthquake-induced landslides. The affected area is mountainous, featuring densely-vegetated, steep slopes through which narrowly confined rivers and streams flow. Numerous types of landslides occurred in the area, including rock avalanches, rock falls, translational and rotational slides, lateral spreads and debris flows. Some landslides mobilized hundreds of million cubic meters of material, often resulting in the damming of rivers and streams, impacting river ecosystems and morphology. Through an extensive search of both Chinese- and English-language publications we provide a summary of pertinent research on environmental effects, emphasizing key findings. Environmental effects caused by landslides include the alteration of agriculture, changes to natural ecosystems, changes in river morphology due to landslide dams and other effects such as sedimentation and flooding. Damage by landslides to the giant panda reserve infrastructure and habitat, was severe, threatening the survival of one of the world’s rarest species. The Panda reserves are of national significance to China, and to the vital tourism economy of the region. One of the major impacts to both the natural and built environment is the complete relocation of some human populations and infrastructure to new areas, resulting in the abandonment of towns and other areas that were damaged by the earthquake and landslides. The landslide effects have affected the biodiversity of the affected area, and it has been hypothesized that strict forest preservation measures taken in the years preceding the earthquake resulted in a reduction of the environmental damage to the area.

  8. Geomorphic and Geologic Controls of Geohazards induced by Nepal's 2015 Gorkha Earthquake

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Leonard, G. J.; Shugar, D. H.; Haritashya, U.K.; Bevington, A.; Fielding, E. J.; Fujita, K.; Geertsema, M.; Miles, E. S.; Steiner, J.; hide

    2015-01-01

    The Gorkha earthquake (Magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing approx.9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

  9. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth

    USGS Publications Warehouse

    Sato, H.P.; Harp, E.L.

    2009-01-01

    The 12 May 2008 M7.9 Wenchuan earthquake in the People's Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool. ?? 2009 Springer-Verlag.

  10. Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip

    NASA Astrophysics Data System (ADS)

    Tatard, L.; Grasso, J. R.

    2013-06-01

    compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.

  11. Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake.

    PubMed

    Kargel, J S; Leonard, G J; Shugar, D H; Haritashya, U K; Bevington, A; Fielding, E J; Fujita, K; Geertsema, M; Miles, E S; Steiner, J; Anderson, E; Bajracharya, S; Bawden, G W; Breashears, D F; Byers, A; Collins, B; Dhital, M R; Donnellan, A; Evans, T L; Geai, M L; Glasscoe, M T; Green, D; Gurung, D R; Heijenk, R; Hilborn, A; Hudnut, K; Huyck, C; Immerzeel, W W; Liming, Jiang; Jibson, R; Kääb, A; Khanal, N R; Kirschbaum, D; Kraaijenbrink, P D A; Lamsal, D; Shiyin, Liu; Mingyang, Lv; McKinney, D; Nahirnick, N K; Zhuotong, Nan; Ojha, S; Olsenholler, J; Painter, T H; Pleasants, M; Pratima, K C; Yuan, Q I; Raup, B H; Regmi, D; Rounce, D R; Sakai, A; Donghui, Shangguan; Shea, J M; Shrestha, A B; Shukla, A; Stumm, D; van der Kooij, M; Voss, K; Xin, Wang; Weihs, B; Wolfe, D; Lizong, Wu; Xiaojun, Yao; Yoder, M R; Young, N

    2016-01-08

    The Gorkha earthquake (magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9000 people and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes' induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision-makers. We mapped 4312 coseismic and postseismic landslides. We also surveyed 491 glacier lakes for earthquake damage but found only nine landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions. Copyright © 2016, American Association for the Advancement of Science.

  12. Optimized volume models of earthquake-triggered landslides

    PubMed Central

    Xu, Chong; Xu, Xiwei; Shen, Lingling; Yao, Qi; Tan, Xibin; Kang, Wenjun; Ma, Siyuan; Wu, Xiyan; Cai, Juntao; Gao, Mingxing; Li, Kang

    2016-01-01

    In this study, we proposed three optimized models for calculating the total volume of landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake. First, we calculated the volume of each deposit of 1,415 landslides triggered by the quake based on pre- and post-quake DEMs in 20 m resolution. The samples were used to fit the conventional landslide “volume-area” power law relationship and the 3 optimized models we proposed, respectively. Two data fitting methods, i.e. log-transformed-based linear and original data-based nonlinear least square, were employed to the 4 models. Results show that original data-based nonlinear least square combining with an optimized model considering length, width, height, lithology, slope, peak ground acceleration, and slope aspect shows the best performance. This model was subsequently applied to the database of landslides triggered by the quake except for two largest ones with known volumes. It indicates that the total volume of the 196,007 landslides is about 1.2 × 1010 m3 in deposit materials and 1 × 1010 m3 in source areas, respectively. The result from the relationship of quake magnitude and entire landslide volume related to individual earthquake is much less than that from this study, which reminds us the necessity to update the power-law relationship. PMID:27404212

  13. Optimized volume models of earthquake-triggered landslides.

    PubMed

    Xu, Chong; Xu, Xiwei; Shen, Lingling; Yao, Qi; Tan, Xibin; Kang, Wenjun; Ma, Siyuan; Wu, Xiyan; Cai, Juntao; Gao, Mingxing; Li, Kang

    2016-07-12

    In this study, we proposed three optimized models for calculating the total volume of landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake. First, we calculated the volume of each deposit of 1,415 landslides triggered by the quake based on pre- and post-quake DEMs in 20 m resolution. The samples were used to fit the conventional landslide "volume-area" power law relationship and the 3 optimized models we proposed, respectively. Two data fitting methods, i.e. log-transformed-based linear and original data-based nonlinear least square, were employed to the 4 models. Results show that original data-based nonlinear least square combining with an optimized model considering length, width, height, lithology, slope, peak ground acceleration, and slope aspect shows the best performance. This model was subsequently applied to the database of landslides triggered by the quake except for two largest ones with known volumes. It indicates that the total volume of the 196,007 landslides is about 1.2 × 10(10) m(3) in deposit materials and 1 × 10(10) m(3) in source areas, respectively. The result from the relationship of quake magnitude and entire landslide volume related to individual earthquake is much less than that from this study, which reminds us the necessity to update the power-law relationship.

  14. Landslides triggered by the Minxian-Zhangxian, China, Mw 5.9 earthquake of 22 July 2013

    NASA Astrophysics Data System (ADS)

    Xu, Chong; Xu, Xiwei; Shyu, J. Bruce H.

    2014-05-01

    On July 22, 2013, an earthquake of Ms 6.6 occurred at the junction area of Minxian and Zhangxian counties, Gansu Province, China. This earthquake triggered many landslides of various types, dominated by small-scale soil falls, slides, and topples on loess scarps. There were also some deep-seated landslides, large-scale soil avalanches, and fissure-developing slopes. In this paper, an inventory of landslides triggered by this event is prepared based on field investigations and visual interpretation of high-resolution satellite images. The spatial distribution of the landslides is then analyzed. The inventory indicates that at least 2,330 landslides were triggered by the earthquake. A correlation statistics of the landslides with topographic, geologic, and earthquake factors is performed based on the GIS platform. The results show that the largest number of landslides and the highest landslide density are at 2,400m-2,600m of absolute elevation, and 200m-300m of relative elevation, respectively. The landslide density does not always increase with slope gradient as previously suggested. The slopes most prone to landslides are in S, SW, W, and NW directions. Concave slopes register higher landslide density and larger number of landslides than convex slopes. The largest number of landslides occurs on topographic position with middle slopes, whereas the highest landslide density corresponds to valleys and lower slopes. The underlying bedrocks consisting of conglomerate and sandstone of Lower Paleogene (Eb) register both the largest number of landslides and the highest landslide density value. There is no clear relationship between PGA and the co-seismic landslides. Correlations of landslide number and landslide density with perpendicular- and along-strike distance from the epicenter show an obvious spatial intensifying character of the co-seismic landslides. The spatial pattern of the co-seismic landslides is strongly controlled by a branch of the Lintan-Dangchang fault

  15. Development of Tools for the Rapid Assessment of Landslide Potential in Areas Exposed to Intense Storms, Earthquakes, and Other Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Highland, Lynn

    2014-05-01

    Landslides frequently occur in connection with other types of hazardous phenomena such as earthquake or volcanic activity and intense rainstorms. Strong shaking, for example, often triggers extensive landslides in mountainous areas, which can then complicate response and compound socio-economic impacts over shaking losses alone. The U.S. Geological Survey (USGS) is exploring different ways to add secondary hazards to its Prompt Assessment of Global Earthquakes for Response (PAGER) system, which has been developed to deliver rapid earthquake impact and loss assessments following significant global earthquakes. The PAGER team found that about 22 percent of earthquakes with fatalities have deaths due to secondary causes, and the percentage of economic losses they incur has not been widely studied, but is probably significant. The current approach for rapid assessment and reporting of the potential and distribution of secondary earthquake-induced landslides involves empirical models that consider ground acceleration, slope, and rock-strength. A complementary situational awareness tool being developed is a region-specific landslide database for the U.S. The latter will be able to define, in a narrative form, the landslide types (debris flows, rock avalanches, shallow versus deep) that generally occur in each area, along with the type of soils, geology and meteorological effects that could have a bearing on soil saturation, and thus susceptibility. When a seismic event occurs in the U.S. and the PAGER system generates web-based earthquake information, these landslide narratives will simultaneously be made available, which will help in the assessment of the nature of landslides in that particular region. This landslide profile database could also be applied to landslide events that are not triggered by earthquake shaking, in conjunction with National Weather Service Alerts and other landslide/debris-flow alerting systems. Currently, prototypes are being developed for both

  16. Are landslides in the New Madrid Seismic Zone the result of the 1811-1812 earthquake sequence or multiple prehistoric earthquakes?

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Williams, Robert; Jibson, Randall

    2014-05-01

    Previous research indicates that deep translational and rotational landslides along the bluffs east of the Mississippi River in western Tennessee were triggered by the M7-8 1811-1812 New Madrid earthquake sequence. Analysis of recently acquired airborne LiDAR data suggests the possibility of multiple generations of landslides, possibly triggered by older, similar magnitude earthquake sequences, which paleoliquifaction studies show occurred circa 1450 and about 900 A.D. Using these LiDAR data, we have remapped recent landslides along two sections of the bluffs: a northern section near Reelfoot Lake and a southern section near Meeman-Shelby State Park (20 km north of Memphis, Tennessee). The bare-earth, digital-elevation models derived from these LiDAR data have a resolution of 0.5 m and reveal valuable details of topography given the region's dense forest canopy. Our mapping confirms much of the previous landslide mapping, refutes a few previously mapped landslides, and reveals new, undetected landslides. Importantly, we observe that the landslide deposits in the Reelfoot region are characterized by rotated blocks with sharp uphill-facing scarps and steep headwall scarps, indicating youthful, relatively recent movement. In comparison, landslide deposits near Meeman-Shelby are muted in appearance, with headwall scarps and rotated blocks that are extensively dissected by gullies, indicating they might be an older generation of landslides. Because of these differences in morphology, we hypothesize that the landslides near Reelfoot Lake were triggered by the 1811-1812 earthquake sequence and that landslides near Meeman-Shelby resulted from shaking associated with earlier earthquake sequences. To test this hypothesis, we will evaluate differences in bluff height, local geology, vegetation, and proximity to known seismic sources. Furthermore, planned fieldwork will help evaluate whether the observed landslide displacements occurred in single earthquakes or if they might

  17. Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry

    NASA Astrophysics Data System (ADS)

    Saito, Hitoshi; Uchiyama, Shoichiro; Hayakawa, Yuichi S.; Obanawa, Hiroyuki

    2018-12-01

    Unmanned aerial systems (UASs) and structure-from-motion multi-view stereo (SfM-MVS) photogrammetry have attracted a tremendous amount of interest for use in the creation of high-definition topographic data for geoscientific studies. By using these techniques, this study examined the topographic characteristics of coseismic landslides triggered by the 2016 Kumamoto earthquake (Mw 7.1) in the Sensuikyo area (1.0 km2) at Aso volcano, Japan. The study area has frequently experienced rainfall-induced landslide events, such as those in 1990, 2001, and 2012. We obtained orthorectified images and digital surface models (DSMs) with a spatial resolution of 0.06 m before and after the 2016 Kumamoto earthquake. By using these high-definition images and DSMs, we detected a total of 54 coseismic landslides with volumes of 9.1-3994.6 m3. These landslides, many of which initiated near topographic ridges, were typically located on upside hillslopes of previous rainfall-induced landslide scars that formed in 2012. This result suggests that the topographic effect on seismic waves, i.e., amplification of ground acceleration, was important for coseismic landslide initiation in the study area. The average depth of the coseismic landslides was 1.5 m, which is deeper than the depth of the rainfall-induced landslides prior to these. The total sediment production of the coseismic landslides reached 2.5 × 104 m3/km2, which is of the same order as the sediment production triggered by the previous single heavy rainfall event. This result indicates that the effects of the 2016 Kumamoto earthquake in terms of sediment production and topographic changes were similar to those of the rainfall-induced landslide event in the study area.

  18. Landslide Hazards After the 2005 Kashmir Earthquake

    NASA Astrophysics Data System (ADS)

    Bulmer, Mark; Farquhar, Tony; Roshan, Masud; Akhtar, Sadar Saeed; Wahla, Sajjad Karamat

    2007-01-01

    The 8 October 2005 Kashmir earthquake killed 87,300 people and disrupted the lives of several million more. By current estimates, 30,000 still live in camps sited more in accordance with short term expedience than with freedom from risk of natural hazards. In December 2006, the international aid community expressed fears that 50,000 people in Northwest Frontier Province may leave their mountain homes this winter as landslides and avalanches block access roads. As the focus of humanitarian assistance shifts toward restoration of Kashmir's infrastructure, it is important that the persistent hazard of landslides within the earthquake affected region be understood and recognized.

  19. Specific Signature of Seismic Shaking in Landslide Inventories: Case of the Chichi Earthquake

    NASA Astrophysics Data System (ADS)

    Meunier, P.; Rault, C.; Marc, O.; Hovius, N.

    2017-12-01

    The 1999 Chichi earthquake triggered 10 000 landslides in its epicentral area. In addition to coseismic landsliding, directly induced by the shaking, the hillslopes response extended to several years after the main shock, during which landslide susceptibility remained higher than during the pre-seismic period. We attribute this elevated rate to weakening effects caused by the shaking. The characteristics of the coseismic landslide catalogues (clustering,slope and azimuth distribution) bears the signature of the seismic triggering. Extended landslide mapping (1994-2004) allows to track changes in these signatures in order to better interpret them. We present a summary of the change of these signatures through time and space. At the scale of the epicentral area, we show that coseismic landslide clustering did clearly occur along the fault where the shaking is strong. In 3 sub-catchments of the Choshui river, a finer analysis of the landslide time series reveals a mixed signature of both geology and shaking. Pre-quake rain-induced landslides preferentially occurred down slope and along the bedding planes while coseismic landslides locate higher in the landscape, on slopes strongly affected by site effects. However, during the post seismic period, the signature of the shaking is not present while landslide rate remains high, suggesting that weakening effects seemed homogeneously distributed in the landscape.

  20. Specific signature of seismic shaking in landslide catalogues: Case of the Chichi earthquake

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Rault, Claire; Marc, Odin; Hovius, Niels

    2017-04-01

    The 1999 Chichi earthquake triggered 10 000 landslides in its epicentral area. In addition to coseismic landsliding, directly induced by the shaking, the hillslopes response extended to several years after the main shock, during which landslide susceptibility remained higher than during the pre-seismic period. We attribute this elevated rate to weakening effects caused by the shaking. The characteristics of the coseismic landslide catalogues (clustering, slope and azimuth distribution) bears the signature of the seismic triggering. Extended landslide mapping (1994-2004) allows to track changes in these signatures in order to better interpret them. We present a summary of the change of these signatures through time and space. At the scale of the epicentral area, we show that coseismic landslide clustering did clearly occur along the fault where the shaking is strong. In 3 sub-catchments of the Choshui river, a finer analysis of the landslide time series reveals a mixed signature of both geology and shaking. Pre-quake rain-induced landslides preferentially occurred down slope and along the bedding planes while coseismic landslides locate higher in the landscape, on slopes strongly affected by site effects. However, during the post seismic period, the signature of the shaking is not present while landslide rate remains high, suggesting that weakening effects seemed homogeneously distributed in the landscape.

  1. The Pliocene Horcón Formation, Central Chile: a case study of earthquake-induced landslide susceptibility

    NASA Astrophysics Data System (ADS)

    Valdivia, D.; Elgueta, S.; Hodgkin, A.; Marquardt, C.; del Valle, F.; Yáñez Morroni, G.

    2017-12-01

    Stability slope analysis is typically focused on modeling using cohesion and friction angle parameters but in earthquake-induced landslides, susceptibility is correlated more to lithological and stratigraphic parameters. In sedimentary deposits whose cohesion and diagenesis are very low, the risk of landslides increases. The Horcón Formation, which crops out continuously along cliffs in Central Chile between 32.5° and 33°S, is a Miocene-Pliocene well preserved, horizontally stratified unit composed of marine strata which overlies Paleozoic-Mesozoic igneous basement. During the Quaternary, the sequence was tectonically uplifted 80 meters and covered by unconsolidated eolian deposits. Given that Seismotectonic and Barrier-Asperity models suggest the occurrence of a forthcoming megathrust earthquake in a segment which includes this area, the Horcón Formation constitutes a good case study to characterize the susceptibility of this type of sediment for mass movements triggered by earthquakes. Field mapping, stratigraphic and sedimentological studies, including petrographic analyses to determine lithological composition and paragenesis of diagenetic events, have been carried out along with limited gravimetric profiling and CPTU drill tests. High resolution digital elevation modeling has also been applied. This work has led to the recognition of a shallow marine lithofacies association composed of weakly lithified fossiliferous and bioturbated medium to fine grained litharenite, mudstone, and fine conglomerate. The low grade of diagenesis in the sedimentary deposits was in response to a short period of burial and a subsequent accelerated uplift evidenced along the coast of Chile during the Quaternary. We have generated a predictive model of landslide susceptibility for the Horcón Formation and for the overlying Quaternary eolian deposits incorporating variables such as composition and diagenesis of lithofacies, slope, structures, weathering and landcover. The model

  2. Landslide mobility and connectivity with fluvial networks during earthquakes

    NASA Astrophysics Data System (ADS)

    Clark, M. K.; West, A. J.; Li, G.; Roback, K.; Zekkos, D.

    2016-12-01

    In some tectonically active mountain belts, coseismic landslide events displace sediment volumes equal to long-term erosion rates when averaged over typical seismic cycles. However, the contribution of landsliding to total erosional budgets depends critically on the export of landslide debris, which in turn is thought to depend on connectivity of landslides with fluvial channels and the sediment transport capacity of fluvial systems. From the 2015 Mw7.8 Gorkha event in central Nepal, we present connectivity data based on a mapped inventory of nearly 25,000 landslides and compare these results to those from the 2008 Mw7.9 Wenchuan earthquake in China. Landslide runout length in Nepal scales with landslide volume, and has a strong association with slope, elevation and relief. Connectivity is greatest for larger landslides in the high-relief, high-elevation part of the High Himalaya, suggesting that these slope failures may have the most immediate impact on sediment dynamics and cascading hazards, such as landslide reactivation by monsoon rainfall and outburst floods that pose immediate threat to communities far down stream. Although more rare than landslides at lower elevation, large high-elevation landslides that cause outburst flooding due to failure of landslide dams in the upper reaches of large Himalayan rivers may also enhance river incision downstream. The overall high fluvial connectivity (i.e. high percentage of landslide volumes directly intersecting the stream network) of coseismic landsliding in the Gorkha event suggests coupling between the earthquake cycle and sediment/geochemical budgets of fluvial systems in the steep topography of the Himalaya.

  3. Regional patterns of earthquake-triggered landslides and their relation to ground motion

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Hovius, Niels; Haines, A. John

    2007-10-01

    We have documented patterns of landsliding associated with large earthquakes on three thrust faults: the Northridge earthquake in California, Chi-Chi earthquake in Taiwan, and two earthquakes on the Ramu-Markham fault bounding the Finisterre Mountains of Papua New Guinea. In each case, landslide densities are shown to be greatest in the area of strongest ground acceleration and to decay with distance from the epicenter. In California and Taiwan, the density of co-seismic landslides is linearly and highly correlated with both the vertical and horizontal components of measured peak ground acceleration. Based on this observation, we derive an expression for the spatial variation of landslide density analogous with regional seismic attenuation laws. In its general form, this expression applies to our three examples, and we determine best fit values for individual cases. Our findings open a window on the construction of shake maps from geomorphic observations for earthquakes in non-instrumented regions.

  4. Extraordinary distance limits of landslides triggered by the 2011 Mineral, Virginia, earthquake

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.

    2012-01-01

    The 23 August 2011 Mineral, Virginia, earthquake (Mw 5.8) was the largest to strike the eastern U.S. since 1897 and was felt over an extraordinarily large area. Although no large landslides occurred, the shaking did trigger many rock and soil falls from steep river banks and natural cliffs in the epicentral area and from steep road cuts along, and northwest of, the Blue Ridge Parkway. We mapped the occurrence of rock falls to determine distance limits that could be compared with those from other documented earthquakes. Studies of previous earthquakes indicated a maximum epicentral distance limit for landsliding of ~60  km for an M 5.8 earthquake; the maximum distance limit for the 2011 earthquake was 245 km, the largest exceedance of the historical limit ever recorded. Likewise, the previous maximum area affected by landslides for this magnitude was 1500  km2; the area affected by landslides in the 2011 earthquake was 33,400  km2. These observations provide physical evidence that attenuation of strong shaking for eastern U.S. earthquakes is significantly lower than for plate‐boundary earthquakes. Also, distance limits parallel to the regional structural trend are greater than those that transect the structure, which suggests anisotropic attenuation related to the regional geologic structure. Peak ground acceleration (PGA) at the landslide distance limits is estimated to have been about 0.02–0.04g.

  5. The kinematics and initiation mechanisms of the earthquake-triggered Daguangbao landslide

    NASA Astrophysics Data System (ADS)

    Yang, Che-Ming; Cheng, Hui-Yun; Tsao, Chia-Che; Wu, Wen-Jie; Dong, Jia-Jyun; Lee, Chyi-Tyi; Lin, Ming-Lang; Zhang, Wei-Fong; Pei, Xiang-Jun; Wang, Gong-Hui; Huang, Run-Qiu

    2015-04-01

    The Daguangbao (DGB) landslide is one of the largest earthquake-triggered landslides induced by the 2008 Wenchuan earthquake in the world over the past century. Based on remote sensing images, topography analysis and field investigation, this landslide was speculated a gigantic atypical wedge failure with the folded bedding plane and a zigzag stepping-out joint system, which outcropped at the south and north, respectively. With the inferred failure surfaces, the volume of the DGB landslide is about 1,051 Mm3. The frequently adopted Rigid Wedge Method (RWM), which assumed zero shear stress on the sliding surface along the vectors perpendicular to the intersection line when evaluating the wedge stability, could not be valid for this super large DGB wedge. Under an assumption that the shear strength is fully mobilized on the sliding surface along the vectors perpendicular to the intersection line, this study proposed to use a Maximum Shear Stress Method (MSSM) to calculate the factor of safety (FOS) of the DGB wedge. Based on the assumptions of the two methods, the FOS of the RWM and MSSM are the upper and lower bounds for the wedge stability analysis. Based on the rotary shear tests, the averaged friction coefficients of the representative materials of the two sliding surfaces are 0.79 (bedding parallel fault gauges) and 0.71 (dolomite joints). Without external force, the FOSs of the DGB landslide are 4.14 and 2.51 by the RWM and MSSM, respectively. Restate, the wedge is stable before the 2008 Wenchuan earthquake. However, DGB landslide can be triggered at 35.7 sec based on the ground acceleration records of strong motion station MZQP during the 2008 Wenchuan earthquake and the pseudo-static stability analysis incorporated into MSSM (Acceleration: EW=0.272g, NS=0.152g, Vertical=0.244g). Moreover, using the friction coefficient of the representative materials under large shear displacement under shear velocity of 1.3 m/s (0.16 for bedding parallel fault gouges and 0

  6. Map of landslides triggered by the January 12, 2010, Haiti earthquake

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.; Schmitt, Robert G.

    2016-04-12

    The magnitude (M) 7.0 Haiti earthquake of January 12, 2010, triggered landslides throughout much of Haiti on the island of Hispaniola in the Caribbean Sea. The epicenter of the quake was located at 18.44°N., 72.57°W. at a depth of 13 kilometers (km) approximately 25 km southwest of the capital, Port-au-Prince. Although estimates vary widely, the most reliable surveys of casualties indicate that the earthquake caused 158,679 fatalities and more than 300,000 injuries. The U.S. Geological Survey compared publicly available satellite imagery acquired both before and after the earthquake and mapped 23,567 landslides that were triggered by the strong shaking. Our mapping from aerial photography and satellite imagery was augmented by field observations.Most of the landslides triggered by the earthquake were south of the Léogâne fault on the footwall and were fairly shallow falls and slides in weathered limestone (2–5 meters [m] thick) and volcanic rock and soil (generally <1 m thick). Landslides extended from the north to the south coasts of the southwestern peninsula (southwest of Port-au-Prince) and almost 60 km to the east and west of the epicenter. The highest concentration of landslides was on the steep limestone slopes of incised river valleys, but large numbers of landslides also occurred on gentler slopes in weathered volcanic rocks. Although some high landslide concentrations did occur near areas of maximum fault slip, the overall distribution of landslides appears to involve complex interactions between geology, topography, and strong shaking with limited spatial correlation between fault slip and landslides.

  7. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region

    NASA Astrophysics Data System (ADS)

    Kamp, Ulrich; Growley, Benjamin J.; Khattak, Ghazanfar A.; Owen, Lewis A.

    2008-11-01

    The Mw 7.6 October 8, 2005 Kashmir earthquake triggered several thousand landslides throughout the Himalaya of northern Pakistan and India. These were concentrated in six different geomorphic-geologic-anthropogenic settings. A spatial database, which included 2252 landslides, was developed and analyzed using ASTER satellite imagery and geographical information system (GIS) technology. A multi-criterion evaluation was applied to determine the significance of event-controlling parameters in triggering the landslides. The parameters included lithology, faults, slope gradient, slope aspect, elevation, land cover, rivers and roads. The results showed four classes of landslide susceptibility. Furthermore, they indicated that lithology had the strongest influence on landsliding, particularly when the rock is highly fractured, such as in shale, slate, clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides to faults, rivers, and roads was also an important factor in helping to initiate failures. In addition, landslides occurred particularly in moderate elevations on south facing slopes. Shrub land, grassland, and also agricultural land were highly susceptible to failures, while forested slopes had few landslides. One-third of the study area was highly or very highly susceptible to future landsliding and requires immediate mitigation action. The rest of the region had a low or moderate susceptibility to landsliding and remains relatively stable. This study supports the view that (1) earthquake-triggered landslides are concentrated in specific zones associated with event-controlling parameters; and (2) in the western Himalaya deforestation and road construction contributed significantly to landsliding during and shortly after earthquakes.

  8. Inventory of landslides triggered by the 1994 Northridge, California earthquake

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.

    1995-01-01

    The 17 January 1994 Northridge, California, earthquake (M=6.7) triggered more than 11,000 landslides over an area of about 10,000 km?. Most of the landslides were concentrated in a 1,000-km? area that includes the Santa Susana Mountains and the mountains north of the Santa Clara River valley. We mapped landslides triggered by the earthquake in the field and from 1:60,000-scale aerial photography provided by the U.S. Air Force and taken the morning of the earthquake; these were subsequently digitized and plotted in a GIS-based format, as shown on the accompanying maps (which also are accessible via Internet). Most of the triggered landslides were shallow (1-5 m), highly disrupted falls and slides in weakly cemented Tertiary to Pleistocene clastic sediment. Average volumes of these types of landslides were less than 1,000 m?, but many had volumes exceeding 100,000 m?. Many of the larger disrupted slides traveled more than 50 m, and a few moved as far as 200 m from the bases of steep parent slopes. Deeper ( >5 m) rotational slumps and block slides numbered in the hundreds, a few of which exceeded 100,000 m? in volume. The largest triggered landslide was a block slide having a volume of 8X10E06 m?. Triggered landslides damaged or destroyed dozens of homes, blocked roads, and damaged oil-field infrastructure. Analysis of landslide distribution with respect to variations in (1) landslide susceptibility and (2) strong shaking recorded by hundreds of instruments will form the basis of a seismic landslide hazard analysis of the Los Angeles area.

  9. The role of the 2008 Mw 7.9 Wenchuan earthquake in topographic evolution: seismically induced landslides and the associated isostatic response

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Zhang, Z.; Zhang, H.; Zheng, W.; Zhang, P. Z.

    2017-12-01

    The widely held understanding that reverse-faulting earthquakes play an important role in building mountains has been challenged by recent studies suggesting that co-seismic landslides of the 2008 Mw 7.9 Wenchuan earthquake led to a net co-seismic lowering of surface height. We use precise estimates of co-seismic landslide volumes to calculate the long-term isostatic response to landsliding during the 2008 Wenchuan earthquake. The total isostatic respond volume is 2.0 km3 which did not change much associated with thickness of Te, however, the distribution of the rebound changes associated with thickness of Te. The total co-seismic mass change could be 1.8 km3. The maximum isostatic response due to Wenchuan earthquake may have been as high as 0.9 meters in the highest Pengguan massif of the central Longmen Shan. We also find that the average net uplift is 0.16 meters within the total landslide region due to the Wenchuan earthquake. Our findings suggest that the local topographic evolution of the middle Longmen Shan region is closely related to repeated tectonic events such as the 2008 Wenchuan Earthquake.

  10. Coseismic landsliding associated with the 2015 April 25th Gorkha earthquake, Nepal

    NASA Astrophysics Data System (ADS)

    Clark, Marin; Zekkos, Dimitrios; West, A. Joshua; Gallen, Sean; Roback, Kevin; Chamlagain, Deepak; Athanasopoulos-Zekkos, Adda; Greenwood, William; Bateman, Julie; Partenio, Michael; Li, Gen; Cook, Kristen; Godt, Jonathan; Howat, Ian; Morin, Paul

    2016-04-01

    The characteristics of earthquake-triggered landslides have the potential to inform us about the ground motions during large earthquakes and the rock properties of the near surface environment. From the recent Mw7.8 2015 Gorkha earthquake in Nepal, we use satellite imagery to identify over 20,000 landslides that are associated with the main shock. While most landslides are located on steep hillslopes, we also present field measurements of alluvial terraces that have either failed or remained stable during the earthquake. We show how both hillslope and terrace failures can be used to better understand the earthquake. These local, site-specific surveys and analyses of alluvial terraces can be used to constrain co-seismic peak ground acceleration (PGA) and large landslide inventories can be used to gain insight into regional patterns of strong ground motion. Our regional landslide mapping reveals two principal patterns: (1) landslides are concentrated in the steep Greater Himalaya in the north, with conspicuously fewer landslides in the moderately-steep Lesser Himalaya in the south, and (2) within the Greater Himalaya, landslide density increases from west to east across the rupture area. We have compared our observed map of landslide occurrence to predictions from forward models using hillslope angles, average rock strength, and PGA estimated from ground motion prediction equations (GMPE). The higher concentration of landslides in the Greater Himalaya compared to the Lesser Himalaya can be predicted by the models and explained by the steeper topography of the Greater Himalaya. However, these forward models do not reproduce the east to west variation in observed landslide density, which is lower than model predictions near the epicenter, and greater than model predictions toward the eastern limit of the rupture. From limit equilibrium stability analysis of both failed and stable fluvial terraces, we constrain local PGA values in the eastern region of dense landsliding

  11. A landslide susceptibility prediction on a sample slope in Kathmandu Nepal associated with the 2015's Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Kubota, Tetsuya; Prasad Paudel, Prem

    2016-04-01

    In 2013, some landslides induced by heavy rainfalls occurred in southern part of Kathmandu, Nepal which is located southern suburb of Kathmandu, the capital. These landslide slopes hit by the strong Gorkha Earthquake in April 2015 and seemed to destabilize again. Hereby, to clarify their susceptibility of landslide in the earthquake, one of these landslide slopes was analyzed its slope stability by CSSDP (Critical Slip Surface analysis by Dynamic Programming based on limit equilibrium method, especially Janbu method) against slope failure with various seismic acceleration observed around Kathmandu in the Gorkha Earthquake. The CSSDP can detect the landslide slip surface which has minimum Fs (factor of safety) automatically using dynamic programming theory. The geology in this area mainly consists of fragile schist and it is prone to landslide occurrence. Field survey was conducted to obtain topological data such as ground surface and slip surface cross section. Soil parameters obtained by geotechnical tests with field sampling were applied. Consequently, the slope has distinctive characteristics followings in terms of slope stability: (1) With heavy rainfall, it collapsed and had a factor of safety Fs <1.0 (0.654 or more). (2) With seismic acceleration of 0.15G (147gal) observed around Kathmandu, it has Fs=1.34. (3) With possible local seismic acceleration of 0.35G (343gal) estimated at Kathmandu, it has Fs=0.989. If it were very shallow landslide and covered with cedars, it could have Fs =1.055 due to root reinforcement effect to the soil strength. (4) Without seismic acceleration and with no rainfall condition, it has Fs=1.75. These results can explain the real landslide occurrence in this area with the maximum seismic acceleration estimated as 0.15G in the vicinity of Kathmandu by the Gorkha Earthquake. Therefore, these results indicate landslide susceptibility of the slopes in this area with strong earthquake. In this situation, it is possible to predict

  12. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake

    USGS Publications Warehouse

    Kargel, J.S.; Leonard, G.J.; Shugar, D. H.; Haritashya, U. K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E. S.; Steiner, J.; Anderson, E.; Bajracharya, S.; Bawden, G.W.; Breashears, D. F.; Byers, A.; Collins, B.; Dhital, M. R.; Donnellan, A.; Evans, T. L.; Geai, M. L.; Glasscoe, M. T.; Green, D.; Gurung, D. R.; Heijenk, R.; Hilborn, A.; Hudnut, K.; Huyck, C.; Immerzeel, W. W.; Liming, Jiang; Jibson, R.; Kaab, A.; Khanal, N. R.; Kirschbaum, D.; Kraaijenbrink, P. D. A.; Lamsal, D.; Shiyin, Liu; Mingyang, Lv; McKinney, D.; Nahirnick, N. K.; Zhuotong, Nan; Ojha, S.; Olsenholler, J.; Painter, T.H.; Pleasants, M.; Pratima, K. C.; Yuan, Q. I.; Raup, B.H.; Regmi, D.; Rounce, D. R.; Sakai, A.; Donghui, Shangguan; Shea, J. M.; Shrestha, A. B.; Shukla, A.; Stumm, D.; van der Kooij, M.; Voss, K.; Xin, Wang; Weihs, B.; Lizong, Wu; Xiaojun, Yao; Yoder, M. R.; Young, N.

    2016-01-01

    The Gorkha earthquake (magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9000 people and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision-makers. We mapped 4312 coseismic and postseismic landslides. We also surveyed 491 glacier lakes for earthquake damage but found only nine landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

  13. Landslides triggered by the January 12, 2010 Port-au-Prince, Haiti Mw 7.0 earthquake

    NASA Astrophysics Data System (ADS)

    Xu, Chong

    2014-05-01

    The January 12, 2010 Port-au-Prince, Haiti earthquake (Mw 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate correlations of the occurrence of landslides and its erosion thickness with topographic factors, seismic parameters, and distance from roads. A total of 30,828 landslides triggered by the earthquake cover a total area of 15.736 km2, and the volume of landslide accumulation materials is estimated to be about 30,000,000 m3, and throughout an area more than 3,000 km2. These landslides are of various types, mainly in shallow disrupted landslides and rock falls, and also including coherent deep-seated landslides, shallow disrupted landslides, rock falls, and rock slides. These landslides were delineated using pre- and post-earthquake high-resolutions satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were respectively constructed in order to more intuitive to discover the spatial distribution patterns of the co-seismic landslides. Statistics of size distribution and morphometric parameters of the co-seismic landslides were carried out and were compared with other earthquake events. Four proxies of co-seismic landslides abundances, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate the co-seismic landslides with various landslide controlling parameters. These controlling parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, stratum/lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). Comparing of controls of impact parameters on co-seismic landslides show that slope angle is the strongest impact parameter on co-seismic landslides

  14. Landslide maps and seismic noise: Rockmass weakening caused by shallow earthquakes

    NASA Astrophysics Data System (ADS)

    Uchida, Tara; Marc, Odin; Sens-Schönfelder, Christoph; Sawazaki, Kaoru; Hobiger, Manuel; Hovius, Niels

    2015-04-01

    Some studies have suggested that the shaking and deformation associated with earthquake would result in a temporary increased hillslope erodibility. However very few data have been able to clarify such effect. We present integrated geomorphic data constraining an elevated landslide rate following 4 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999), the Mw 6.6 Niigata (2004) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We constrained the magnitude, the recovery time and somewhat the mechanism at the source of this higher landslide risk. We provide some evidences excluding aftershocks or rain forcing intensity as possible mechanism and leaving subsurface weakening as the most likely. The landslide data suggest that this ground strength weakening is not limited to the soil cover but also affect the shallow bedrock. Additionally, we used ambient noise autocorrelation techniques to monitor shallow subsurface seismic velocity within the epicentral area of three of those earthquakes. For most stations we observe a velocity drop followed by a recovery processes of several years in fair agreement with the recovery time estimated based on landslide observation. Thus a common processes could alter the strength of the first 10m of soil/rock and simultaneously drive the landslide rate increase and the seismic velocity drop. The ability to firmly demonstrate this link require additional constraints on the seismic signal interpretation but would provide a very useful tool for post-earthquake risk managment.

  15. Landslides and the Fault Surface Ruptures during the 2008 Wengchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Xiyong, Wu; Takashi, Inokuchi; Gonghui, Wang

    2009-04-01

    2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). In order to clarify the distribution of these landslides and to characterize them, we interpreted satellite images and made field investigation for 3 weeks by using these images. We used satellite ALOS images taken by the sensors AVNIR II with a resolution of 10 m and PRISM with a resolution of 2.5 m, both of which were taken on 4th in June. We also used satellite images of before and after the earthquake provided by Google Earth. The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. Ridges and valleys are generally trending NE parallel to the trends of the geologic structures, while large rivers, such as the Minjiang River, and the Fujiang River are flowing from the north or northwest to the south or southeast, crossing these trends. The NE-trending Longmenshan fault zone runs along the boundary between the mountains and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. (Geologic map of China). Landslide distribution areas were mainly of two types: One was the area along the fault that generated this earthquake, and another was along the steep slopes of inner valleys along the Minjian River. Landslides were concentrated on the hanging wall of the earthquake fault, which appeared for more than 180 km along the Longmenshan fault zone. The distribution area of landslides was wider around the middle and the southwest parts of the surface rupture trace and became narrower to the northeast. The directions of the

  16. Landslides triggered by the 8 October 2005 Kashmir earthquake

    USGS Publications Warehouse

    Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A.

    2008-01-01

    The 8 October 2005 Kashmir earthquake triggered several thousand landslides. These were mainly rock falls and debris falls, although translational rock and debris slides also occurred. In addition, a sturzstrom (debris avalanche) comprising ??? 80??million m3 buried four villages and blocked streams to create two lakes. Although landsliding occurred throughout the region, covering an area of > 7500??km2, the failures were highly concentrated, associated with six geomorphic-geologic-anthropogenic settings, including natural failures in (1) highly fractured carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake fault; (2) Tertiary siliciclastic rocks along antecedent drainages that traverse the Hazara-Kashmir Syntaxis; (3) steep (> 50??) slopes comprising Precambrian and Lower Paleozoic rocks; (4) very steep (?? 50??) lower slopes of fluvially undercut Quaternary valley fills; and (5) ridges and spur crests. The sixth setting was associated with road construction. Extensive fissuring in many of the valley slopes together with the freshly mobilized landslide debris constitutes a potential hazard in the coming snowmelt and monsoon seasons. This study supports the view that earthquake-triggered landslides are highly concentrated in specific zones associated with the lithology, structure, geomorphology, topography, and human presence. ?? 2007 Elsevier B.V. All rights reserved.

  17. Hydro-mechanical mechanism and thresholds of rainfall-induced unsaturated landslides

    NASA Astrophysics Data System (ADS)

    Yang, Zongji; Lei, Xiaoqin; Huang, Dong; Qiao, Jianping

    2017-04-01

    The devastating Ms 8 Wenchuan earthquake in 2008 created the greatest number of co-seismic mountain hazards ever recorded in China. However, the dynamics of rainfall induced mass remobilization and transport deposits after giant earthquake are not fully understood. Moreover, rainfall intensity and duration (I-D) methods are the predominant early warning indicators of rainfall-induced landslides in post-earthquake region, which are a convenient and straight-forward way to predict the hazards. However, the rainfall-based criteria and thresholds are generally empirical and based on statistical analysis,consequently, they ignore the failure mechanisms of the landslides. This study examines the mechanism and hydro-mechanical behavior and thresholds of these unsaturated deposits under the influence of rainfall. To accomplish this, in situ experiments were performed in an instrumented landslide deposit, The field experimental tests were conducted on a natural co-seismic fractured slope to 1) simulate rainfall-induced shallow failures in the depression channels of a debris flow catchment in an earthquake-affected region, 2)explore the mechanisms and transient processes associated with hydro-mechanical parameter variations in response to the infiltration of rainfall, and 3) identify the hydrologic parameter thresholds and critical criteria of gravitational erosion in areas prone to mass remobilization as a source of debris flows. These experiments provided instrumental evidence and directly proved that post-earthquake rainfall-induced mass remobilization occurred under unsaturated conditions in response to transient rainfall infiltration, and revealed the presence of transient processes and the dominance of preferential flow paths during rainfall infiltration. A hydro-mechanical method was adopted for the transient hydrologic process modelling and unsaturated slope stability analysis. and the slope failures during the experimental test were reproduced by the model

  18. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    PubMed Central

    Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-01-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam. PMID:29657755

  19. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  20. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China.

    PubMed

    Zhao, Bo; Wang, Yun-Sheng; Luo, Yong-Hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  1. Landslides Triggered by the 12 May 2008, M 7.9 Wenchuan, China Earthquake

    NASA Astrophysics Data System (ADS)

    Harp, E.; Jibson, R.; Godt, J.

    2009-04-01

    The 12 May 2008, M 7.9 Wenchuan earthquake in eastern Sichuan Province of China triggered tens of thousands of rock falls, rock slides, rock avalanches, and deep, complex, landslides. Of the approximately 87,000 deaths caused by the earthquake, more than 20,000 have been attributed to landsides. Numerous villages were buried by large landslides. Air-blasts resulting from the rapid failure and movement of landslides were observed and documented from numerous eye-witness accounts. More than 100 landslide-dammed lakes were created by the earthquake, 33 of which were evaluated to determine if spillway construction was necessary to minimize flooding by future breaching of the landslide dams. Spillways were ultimately constructed on at least 16 landslide dams. Preliminary observations in the field and from satellite imagery indicate that the most common types of landslides were rock falls and rock slides that ranged in size from several hundred cubic meters to several hundred thousand cubic meters in volume. There were hundreds to perhaps as many as one thousand landslides exceeding 1 million cubic meters in volume. The largest landslide identified using Jaxa's Alos/Prism satellite imagery (2.5 m resolution) is nearly 1 billion cubic meters in volume and is located approximately 12 km north-northeast of the city of Hanwang. This landslide appears to have resulted from the failure of a 1.5-km section of ridge crest that now occupies most of the adjacent valley to the northeast; its toe spills over the next ridge crest to the northeast. The satellite imagery of 4 June 2008 shows two small lakes dammed by the slide debris. Within the mountainous areas in the near-field zone of shaking, rock slides dammed chains of lakes in many drainages. Sections of streams 2-3 km long have been completely covered by rock debris as of the 4 June imagery The debris from the triggered landslides is being redistributed rapidly by post-earthquake rainfall. A 100-year rainstorm in September

  2. Landslides triggered by earthquakes in the central Mississippi Valley, Tennessee and Kentucky

    USGS Publications Warehouse

    Jibson, Randall W.; Keefer, David K.

    1988-01-01

    We mapped 221 large (more than 200 ft across) landslides of three morphologically distinct types on the bluffs bordering the Mississippi alluvial plain in western Tennessee and Kentucky Old coherent slides (146 landslides, or 66 percent of the total) include translational block slides and single and multiple-block rotational slumps, all of which are covered by mature vegetation and have eroded features; no active analogs exist in the area. Earth flows (51 landslides, or 23 percent of the total) are also largely revegetated and eroded, though a few active earth flows are present on bluffs that have been cleared of vegetation. Young rotational slumps (24 landslides, or 11 percent of the total) form solely along actively eroding near-river bluffs and are the only active or recently active landslides in the area. Two investigations conducted around 1900 indicate that the old coherent slides, in at least part of the area, formed during the 1811-12 earthquakes. The present investigation uses dendrochronology, geomorphology, historic topographic maps, local historical accounts, and comparisons with landslides triggered by other earthquakes to show that most or all of the old coherent slides and earth flows formed during the 1811-12 New Madrid earthquakes. Evidence clearly indicates that the only large, aseismic landslide activity in the area results from fluvial undercutting of near-river bluffs. This erosion of the base of the bluffs triggers slumps that are morphologically distinct from the old slumps on bluffs away from the river. Our conclusions are consistent with the findings of other recent investigations of the same landslides that indicate extensive seismic triggering of coherent slides and earth flows during the 1811-12 New Madrid earthquakes.

  3. Into the complexity of coseismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Uchida, Taro; Hovius, Niels

    2014-05-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides are more uniformly distributed on hillslopes [1]. In theory, rainfall induced landslides should even occur downslope preferentially, where pore pressure induced by groundwater flows is the highest. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial variation of the landslide position (on hillslopes) within the epicentral area for the cases of the 1999 Chichi, the 2004 Niigata and the 2008 Iwate earthquakes. We show that landslide clustering is not uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232.

  4. Rapid field-based landslide hazard assessment in response to post-earthquake emergency

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Gambini, Stefano; Cancelliere, Giorgio

    2016-04-01

    On April 25, 2015 a Mw 7.8 earthquake occurred 80 km to the northwest of Kathmandu (Nepal). The largest aftershock, occurred on May 12, 2015, was the Mw 7.3 Nepal earthquake (SE of Zham, China), 80 km to the east of Kathmandu. . The earthquakes killed ~9000 people and severely damaged a 10,000 sqkm region in Nepal and neighboring countries. Several thousands of landslides have been triggered during the event, causing widespread damages to mountain villages and the evacuation of thousands of people. Rasuwa was one of the most damaged districts. This contribution describes landslide hazard analysis of the Saramthali, Yarsa and Bhorle VDCs (122 km2, Rasuwa district). Hazard is expressed in terms of qualitative classes (low, medium, high), through a simple matrix approach that combines frequency classes and magnitude classes. The hazard analysis is based primarily on the experience gained during a field survey conducted in September 2014. During the survey, local knowledge has been systematically exploited through interviews with local people that have experienced the earthquake and the coseismic landslides. People helped us to recognize fractures and active deformations, and allowed to reconstruct a correct chronicle of landslide events, in order to assign the landslide events to the first shock, the second shock, or the post-earthquake 2015 monsoon. The field experience was complemented with a standard analysis of the relationship between potential controlling factors and the distribution of landslides reported in Kargel et al (2016). This analysis allowed recognizing the most important controlling factor. This information was integrated with the field observations to verify the mapped units and to complete the mapping in area not accessible for field activity. Finally, the work was completed with the analysis and the use of a detailed landslide inventory produced by the University of Milano Bicocca that covers most of the area affected by coseismic landslides in

  5. Engineering-geological model of the landslide of Güevejar (S Spain) reactivated by historical earthquakes

    NASA Astrophysics Data System (ADS)

    Delgado, José; García-Tortosa, Francisco J.; Garrido, Jesús; Giner, José; Lenti, Luca; López-Casado, Carlos; Martino, Salvatore; Peláez, José A.; Sanz de Galdeano, Carlos; Soler, Juan L.

    2015-04-01

    Landslides are a common ground effect induced by earthquakes of moderate to large magnitude. Most of them correspond to first-time instabilities induced by the seismic event, being the reactivation of pre-existing landslides less frequent in practice. The landslide of Güevejar (Granada province, S Spain) represents a case study of landslide that was reactivated, at least, two times by far field earthquakes: the Mw 8.7, 1755, Lisbon earthquake (with estimated epicentral distance of 680 km), and the Mw 6.5, 1884, Andalucia event (estimated epicentral distance of 45 km), but not by near field events of moderate magnitude (Mw < 6.0 and epicentral distances lower than 25 km). To study the seismic response of this landslide, a study has been conducted to elaborate an engineering-geological model. For this purpose, field work done included the elaboration of a detailed geological map (1:1000) of the landslide and surrounding areas, drilling of deep boreholes (80 m deep), down-hole measurement of both P and S wave velocities in the boreholes drilled, piezometric control of water table, MASW and ReMi profiles for determining the underlying structure of the sites tested (soil profile stratigraphy and the corresponding S-wave velocity of each soil level) and undisturbed sampling of the materials affected by the landslide. These samples were then tested in laboratory according to standard procedures for determination of both static (among which soil density, soil classification and shear strength) and dynamic properties (degradation curves for shear modulus and damping ratio with shear strain) of the landslide-involved materials. The model proposed corresponds to a complex landslide that combines a rototranslational mechanism with an earth-flow at its toe, which is characterized by a deep (> 50 m) sliding surface. The engineering-geological model constitutes the first step in an ongoing research devoted to understand how it could be reactivated during far field events. The

  6. Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan

    USGS Publications Warehouse

    Khattak, G.A.; Owen, L.A.; Kamp, U.; Harp, E.L.

    2010-01-01

    The influence of the 08 October 2005 Kashmir earthquake and subsequent snow melt and monsoon rainfall on slope stability was evaluated using repeat photography in the Kashmir Himalaya of northern Pakistan. Sixty-eight landslide-affected locations were selected and photographed in November 2005, May/June 2006, June 2007, and August 2007 to evaluate all potential geomorphic changes. Eighty percent of the locations showed no or very little change, 11% of the locations showed a partial vegetation recovery on the slopes, while 9% showed an increase in the landslide area. All those locations that showed an increase in landsliding were located along rivers and/or roads. The small change in landslide extent is remarkable given that the region experienced one of the heaviest monsoon seasons in the last decade and is counter to earlier predictions of accelerated slope erosion by landsliding in the immediate years following the earthquake. Extensive fissures and ground cracks at many localities, however, still present a potential of future landsliding under wetter conditions. ?? 2009 Elsevier B.V. All rights reserved.

  7. Possible worst-case tsunami scenarios around the Marmara Sea from combined earthquake and landslide sources

    NASA Astrophysics Data System (ADS)

    Latcharote, Panon; Suppasri, Anawat; Imamura, Fumihiko; Aytore, Betul; Yalciner, Ahmet Cevdet

    2016-12-01

    This study evaluates tsunami hazards in the Marmara Sea from possible worst-case tsunami scenarios that are from submarine earthquakes and landslides. In terms of fault-generated tsunamis, seismic ruptures can propagate along the North Anatolian Fault (NAF), which has produced historical tsunamis in the Marmara Sea. Based on the past studies, which consider fault-generated tsunamis and landslide-generated tsunamis individually, future scenarios are expected to generate tsunamis, and submarine landslides could be triggered by seismic motion. In addition to these past studies, numerical modeling has been applied to tsunami generation and propagation from combined earthquake and landslide sources. In this study, tsunami hazards are evaluated from both individual and combined cases of submarine earthquakes and landslides through numerical tsunami simulations with a grid size of 90 m for bathymetry and topography data for the entire Marmara Sea region and validated with historical observations from the 1509 and 1894 earthquakes. This study implements TUNAMI model with a two-layer model to conduct numerical tsunami simulations, and the numerical results show that the maximum tsunami height could reach 4.0 m along Istanbul shores for a full submarine rupture of the NAF, with a fault slip of 5.0 m in the eastern and western basins of the Marmara Sea. The maximum tsunami height for landslide-generated tsunamis from small, medium, and large of initial landslide volumes (0.15, 0.6, and 1.5 km3, respectively) could reach 3.5, 6.0, and 8.0 m, respectively, along Istanbul shores. Possible tsunamis from submarine landslides could be significantly higher than those from earthquakes, depending on the landslide volume significantly. These combined earthquake and landslide sources only result in higher tsunami amplitudes for small volumes significantly because of amplification within the same tsunami amplitude scale (3.0-4.0 m). Waveforms from all the coasts around the Marmara Sea

  8. Earthquake-induced ground failures in Italy from a reviewed database

    NASA Astrophysics Data System (ADS)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2013-05-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground-level changes triggered by earthquakes of Mercalli intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (URL: http://www.ceri.uniroma1.it/cn/index.do?id=230&page=55) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the "Sapienza" University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground-level changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  9. Earthquake-induced ground failures in Italy from a reviewed database

    NASA Astrophysics Data System (ADS)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  10. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  11. Landslides caused by the M 7.6 Tecomán, Mexico earthquake of January 21, 2003

    USGS Publications Warehouse

    Keefer, David K.; Wartman, Joseph; Navarro, Ochoa C.; Rodriguez-Marek, Adrian; Wieczorek, Gerald F.

    2006-01-01

    In contrast to the coastal cordilleras, the volcanic rocks to the north were more susceptible to the occurrence of seismically triggered landslides. The greatest number and concentrations of landslides occurred there, and the landslides were larger than those in the coastal cordilleras, even though this volcanic terrain was farther from the earthquake source. Here, stretches of river bluffs several hundred meters long had been stripped of vegetation and surficial material by coalescing landslides, and several days after the main shock, thousands of small rock falls were still occurring each day, indicating an ongoing hazard. The high susceptibility of volcanic materials to earthquake-generated landslides conforms to findings in other recent earthquakes.

  12. Impact of Landslides Induced by Earthquake on Hydrologic Response in a Mountainous Catchment

    NASA Astrophysics Data System (ADS)

    Qian, Q.; Su, D.; Ran, Q.

    2013-12-01

    The changes of the underlying surface conditions (topography, vegetation cover rate, etc.), which were caused by the numerous landslides in the Wenchuan earthquake, may influence the hydrologic response and then change the flash flood or other kinds of the disaster risk in the affected areas. The Jianpinggou catchment, located in Sichuan China, is selected as the study area for this paper. It is a steep-slope mountainous catchment, flash flood is the main disaster, and sometimes causes the debris flow. The distribution of the landslides in this catchment is obtained from the remote sensing image data. The changes of topography are obtained from the comparisons among the different periods of digital elevation models (DEMs). A physical-based model, the Integrated Hydrology Model (InHM), is used to simulate the hydrologic response before and after the landslide, respectively. The influence of the underlying surface conditions is then discussed based on the output data, such as the hydrograph, distributed water depth and local runoff. The study leads to the following generalized conclusions: 1) the impact of the landslides on hydrologic response does exist, and the greater the proportion of surface flow in the total runoff is, the greater the impact will be; 2) the peak flow from the outlet increased after the landslide, but the shape of the hydrograph has little change; 3) the effect of the landslides on the local runoff is relatively obvious, and this elevates the local flash floods risk; 4) the difference of hydrologic responses between the two periods (before and after the landslide occurring) becomes larger with the increasing rainfall, with a threshold of rapid growth at the rainfall frequencies of once in every 50 years, but there is a limit. The improved understanding of the impact of landslides on the hydrologic response in Jianpinggou catchment provides valuable theoretical support for the storm flood forecast.

  13. Development of a globally applicable model for near real-time prediction of seismically induced landslides

    USGS Publications Warehouse

    Nowicki, M. Anna; Wald, David J.; Hamburger, Michael W.; Hearne, Mike; Thompson, Eric M.

    2014-01-01

    Substantial effort has been invested to understand where seismically induced landslides may occur in the future, as they are a costly and frequently fatal threat in mountainous regions. The goal of this work is to develop a statistical model for estimating the spatial distribution of landslides in near real-time around the globe for use in conjunction with the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system. This model uses standardized outputs of ground shaking from the USGS ShakeMap Atlas 2.0 to develop an empirical landslide probability model, combining shaking estimates with broadly available landslide susceptibility proxies, i.e., topographic slope, surface geology, and climate parameters. We focus on four earthquakes for which digitally mapped landslide inventories and well-constrainedShakeMaps are available. The resulting database is used to build a predictive model of the probability of landslide occurrence. The landslide database includes the Guatemala (1976), Northridge (1994), Chi-Chi (1999), and Wenchuan (2008) earthquakes. Performance of the regression model is assessed using statistical goodness-of-fit metrics and a qualitative review to determine which combination of the proxies provides both the optimum prediction of landslide-affected areas and minimizes the false alarms in non-landslide zones. Combined with near real-time ShakeMaps, these models can be used to make generalized predictions of whether or not landslides are likely to occur (and if so, where) for earthquakes around the globe, and eventually to inform loss estimates within the framework of the PAGER system.

  14. Landslides triggered by the October 8, 2005, Pakistan earthquake and associated landslide-dammed reservoirs

    USGS Publications Warehouse

    Harp, Edwin L.; Crone, Anthony J.

    2006-01-01

    The October 8, 2005, Kashmir earthquake (M 7.6) triggered several thousand landslides, mainly rock falls and rock slides, in the epicentral area near the cities of Muzafarrabad and Balakot, Pakistan. Most of these were shallow, coalescing rock slides emanating from highly sheared and deformed limestone and dolomite of the Precambrian Muzafarrabad Formation. The largest landslide triggered by the earthquake is located approximately 32 kilometers southeast of Muzafarrabad in a tributary valley of the Jhelum River. This landslide is a debris avalanche of approximately 80 million cubic meters volume within the Miocene Murree Formation consisting of mixed sandstone, mudstone, shale, and limestone. The avalanche buried the village of Dandbeh and resulted in approximately 1,000 fatalities, according to local residents. The avalanche deposit traveled approximately 1.5 kilometers downslope and 300 meters or more up the opposite slope in the adjacent Karli stream drainage and also extended into the Tang stream drainage where the Tang stream joins the Karli drainage. The landslide mass has impounded two lakes within the blocked drainages. The lake in the Karli drainage was approximately 800 meters long and 20 meters deep as of December 19, 2005. The lake in the Tang drainage was approximately 400 meters long and 10 meters deep as of this same date. Downstream populations are at risk from possible flash flooding when these debris dams are overtopped by the reservoir water. The closest village, Hattian, is 2.8 kilometers downstream at the junction of the Jhelum River and the landslide-dammed Karli tributary. Other populations along the Jhelum River may also be at risk. Pakistan military engineers are preparing to construct a spillway within the landslide deposits to lessen the severity of the flood if the lake in the Karli stream drainage breaches the landslide dam catastrophically.

  15. Geological, Geophysical, and Stochastic Factors in Nepal's Gorkha Earthquake-Triggered Landslide Distribution

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Shugar, D. H.; Haritashya, U. K.; Leonard, G. J.; Fielding, E. J.; Hudnut, K. W.; Jibson, R.; Collins, B. D.

    2015-12-01

    On 25 April 2015, a magnitude 7.8 earthquake struck Nepal. Subsequently many large aftershocks shook the region, including one of magnitude 7.3. Much damage and over 4300 landslides were triggered. The landslides were mapped by a volunteer group who self organized to undertake an emergency response to the earthquake disaster. The number of landslides is fewer than expected based on total released seismic energy. This may be because of lack of a surface rupture and possibly also because of high surface-wave attenuation due to rugged surface topography or to the geological and geophysical characteristics of the upper crust. The observed landslides were primarily in the southern half of the Himalaya in areas where the steepest slopes occur and where peak ground accelerations were relatively high. The landslides are also concentrated on the tectonically downdropped block. However, the distribution is complex and varies dramatically from valley to valley. Furthermore, different types of landslides are concentrated in different geologic materials, which suggests local factors control the valley-scale attenuation or amplification of seismic waves or the way wave disturbances couple to the local geologic materials. Across the earthquake-affected zone on the regional scale, wave attenuation and also net downdrop and uplift may also explain as much about the distribution of landslides as slopes and distance from large slips on the fault. We will offer the regional distribution results and some specific case studies to illustrate a set of possible controlling factors.

  16. Geomodels of coseismic landslides environments in Central Chile.

    NASA Astrophysics Data System (ADS)

    Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.

    2017-12-01

    Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion

  17. A seismic landslide susceptibility rating of geologic units based on analysis of characterstics of landslides triggered by the 17 January, 1994 Northridge, California earthquake

    USGS Publications Warehouse

    Parise, M.; Jibson, R.W.

    2000-01-01

    One of the most significant effects of the 17 January, 1994 Northridge, California earthquake (M=6.7) was the triggering of thousands of landslides over a broad area. Some of these landslides damaged and destroyed homes and other tructures, blocked roads, disrupted pipelines, and caused other serious damage. Analysis of the distribution and characteristics of these landslides is important in understanding what areas may be susceptible to landsliding in future earthquakes. We analyzed the frequency, distribution, and geometries of triggered landslides in the Santa Susana 7.5??? quadrangle, an area of intense seismic landslide activity near the earthquake epicenter. Landslides occured primarily in young (Late Miocene through Pleistocene) uncemented or very weakly cemented sediment that has been repeatedly folded, faulted, and uplifted in the past 1.5 million years. The most common types of landslide triggered by the earthquake were highly disrupted, shallow falls and slides of rock and debris. Far less numerous were deeper, more coherent slumps and block slides, primarily occuring in more cohesive or competent materials. The landslides in the Santa Susana quadrangle were divided into two samples: single landslides (1502) and landslide complexes (60), which involved multiple coalescing failures of surficial material. We described landslide, morphologies by computing simple morphometric parameters (area, length, width, aspect ratio, slope angle). To quantify and rank the relative susceptibility of each geologic unit to seismic landsliding, we calculated two indices: (1) the susceptibility index, which is the ratio (given as a percentage) of the area covered by landslide sources within a geologic unit to the total outcrop area of that unit: and (2) the frequency index [given in landslides per square kilometer (ls/km2)], which is the total number of landslides within each geologic unit divided by the outcrop area of that unit. Susceptibility categories include very high

  18. Logistic Regression for Seismically Induced Landslide Predictions: Using Uniform Hazard and Geophysical Layers as Predictor Variables

    NASA Astrophysics Data System (ADS)

    Nowicki, M. A.; Hearne, M.; Thompson, E.; Wald, D. J.

    2012-12-01

    Seismically induced landslides present a costly and often fatal threats in many mountainous regions. Substantial effort has been invested to understand where seismically induced landslides may occur in the future. Both slope-stability methods and, more recently, statistical approaches to the problem are described throughout the literature. Though some regional efforts have succeeded, no uniformly agreed-upon method is available for predicting the likelihood and spatial extent of seismically induced landslides. For use in the U. S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, we would like to routinely make such estimates, in near-real time, around the globe. Here we use the recently produced USGS ShakeMap Atlas of historic earthquakes to develop an empirical landslide probability model. We focus on recent events, yet include any digitally-mapped landslide inventories for which well-constrained ShakeMaps are also available. We combine these uniform estimates of the input shaking (e.g., peak acceleration and velocity) with broadly available susceptibility proxies, such as topographic slope and surface geology. The resulting database is used to build a predictive model of the probability of landslide occurrence with logistic regression. The landslide database includes observations from the Northridge, California (1994); Wenchuan, China (2008); ChiChi, Taiwan (1999); and Chuetsu, Japan (2004) earthquakes; we also provide ShakeMaps for moderate-sized events without landslide for proper model testing and training. The performance of the regression model is assessed with both statistical goodness-of-fit metrics and a qualitative review of whether or not the model is able to capture the spatial extent of landslides for each event. Part of our goal is to determine which variables can be employed based on globally-available data or proxies, and whether or not modeling results from one region are transferrable to

  19. The Springdale, Utah, landslide: An extraordinary event

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.

    1996-01-01

    The most dramatic geologic effect of the M-5.7 St. George, Utah earthquake of 2 September 1992 was the triggering of the 14,000,000-m3 Springdale, Utah landslide. The roughly 10 m of landslide movement destroyed three houses, threatened several condominiums, disrupted utility lines, and temporarily closed the southwest entrance to Zion National Park. The seismic triggering of this landslide is puzzling because its distance from the earthquake epicenter, 44 km, is much greater than the farthest distance (18 km) at which similar landslides have been triggered in worldwide earthquakes of the same magnitude. Other Colorado Plateau earthquakes also have produced landslides far beyond worldwide distance limits, which suggests that regional variations in ground-shaking attenuation may require different landslide-triggering distance limits for different seismotectonic regions. Slope stability analysis and historical records of landslide movement suggest that the Springdale landslide was only slightly above limit-equilibrium conditions at the time of the earthquake. Dynamic stability analysis using Newmark's permanent-displacement method indicates coseismic landslide displacement of only 1-8 cm; this rather modest displacement probably induced enough deformation in the montmorillonitic clays along the failure surface to reduce shear strength and destabilize the slide, which continued to move for several hours after the earthquake.

  20. Preliminary assessment of landslide-induced wave hazards, Tidal Inlet, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Jakob, Matthias; Motyka, Roman J.; Zirnheld, Sandra L.; Craw, Patricia

    2003-01-01

    A large potential rock avalanche above the northern shore of Tidal Inlet, Glacier Bay National Park, Alaska, was investigated to determine hazards and risks of landslide-induced waves to cruise ships and other park visitors. Field and photographic examination revealed that the 5 to 10 million cubic meter landslide moved between AD 1892 and 1919 after the retreat of Little Ice Age glaciers from Tidal Inlet by AD 1890. The timing of landslide movement and the glacial history suggest that glacial debuttressing caused weakening of the slope and that the landslide could have been triggered by large earthquakes of 1899-1900 in Yakutat Bay. Evidence of recent movement includes fresh scarps, back-rotated blocks, and smaller secondary landslide movements. However, until there is evidence of current movement, the mass is classified as a dormant rock slump. An earthquake on the nearby active Fairweather fault system could reactivate the landslide and trigger a massive rock slump and debris avalanche into Tidal Inlet. Preliminary analyses show that waves induced by such a landslide could travel at speeds of 45 to 50 m/s and reach heights up to 76 m with wave runups of 200 m on the opposite shore of Tidal Inlet. Such waves would not only threaten vessels in Tidal Inlet, but would also travel into the western arm of Glacier Bay endangering large cruise ships and their passengers.

  1. Rapid Extraction of Landslide and Spatial Distribution Analysis after Jiuzhaigou Ms7.0 Earthquake Based on Uav Images

    NASA Astrophysics Data System (ADS)

    Jiao, Q. S.; Luo, Y.; Shen, W. H.; Li, Q.; Wang, X.

    2018-04-01

    Jiuzhaigou earthquake led to the collapse of the mountains and formed lots of landslides in Jiuzhaigou scenic spot and surrounding roads which caused road blockage and serious ecological damage. Due to the urgency of the rescue, the authors carried unmanned aerial vehicle (UAV) and entered the disaster area as early as August 9 to obtain the aerial images near the epicenter. On the basis of summarizing the earthquake landslides characteristics in aerial images, by using the object-oriented analysis method, landslides image objects were obtained by multi-scale segmentation, and the feature rule set of each level was automatically built by SEaTH (Separability and Thresholds) algorithm to realize the rapid landslide extraction. Compared with visual interpretation, object-oriented automatic landslides extraction method achieved an accuracy of 94.3 %. The spatial distribution of the earthquake landslide had a significant positive correlation with slope and relief and had a negative correlation with the roughness, but no obvious correlation with the aspect. The relationship between the landslide and the aspect was not found and the probable reason may be that the distance between the study area and the seismogenic fault was too far away. This work provided technical support for the earthquake field emergency, earthquake landslide prediction and disaster loss assessment.

  2. New Insights on co-seismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Hovius, Niels

    2015-04-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides should occur downslope preferentially, where pore pressure induced by groundwater flows is the highest [1]. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial and temporal variations of the landslide position (on hillslopes) within the epicentral area of the 1994 Northridge, the 1999 Chichi, the 2004 Niigata, the 2008 Iwate and the 2008 Wenchuan earthquakes. We show that crest clustering is not systematic, non uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232

  3. Characteristics of Landslides Triggered by Mw 7.8 2015 Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Dhital, Smriti

    The Mw 7.8 Gorkha earthquake struck central Nepal on April 25, 2015 and brought about a huge loss of life and property. The quake was also responsible for the generation of a large number of landslides. They blocked highways, devastated villages, and temporarily dammed some rivers. About 14,670 landslips were triggered off by the main shock and its numerous large aftershocks. Among the detected failures, about 23% had an area greater than 100 m2. Since such failures can directly affect people's life and property, they are considered for further investigation in this study. A comparison of these coseismic landslides with the 29 historical failures reveals that these landslides slightly exceed in number from those expected for the peak ground acceleration observed due to these earthquakes. The landslides seem to be concentrated within the area of the fault rupture surface. About 90% of the detected landslips could be classified as earth falls. The areas having relatively soft rocks, such as slates, shales, schists and phyllites of the Lesser Himalaya, suffered from a greater number of failures. The landslides had a strong correlation with the peak ground acceleration and they also showed a positive correlation with some landslide-susceptible geological formations composing the study area.

  4. Development of a global slope dataset for estimation of landslide occurrence resulting from earthquakes

    USGS Publications Warehouse

    Verdin, Kristine L.; Godt, Jonathan W.; Funk, Christopher C.; Pedreros, Diego; Worstell, Bruce; Verdin, James

    2007-01-01

    Landslides resulting from earthquakes can cause widespread loss of life and damage to critical infrastructure. The U.S. Geological Survey (USGS) has developed an alarm system, PAGER (Prompt Assessment of Global Earthquakes for Response), that aims to provide timely information to emergency relief organizations on the impact of earthquakes. Landslides are responsible for many of the damaging effects following large earthquakes in mountainous regions, and thus data defining the topographic relief and slope are critical to the PAGER system. A new global topographic dataset was developed to aid in rapidly estimating landslide potential following large earthquakes. We used the remotely-sensed elevation data collected as part of the Shuttle Radar Topography Mission (SRTM) to generate a slope dataset with nearly global coverage. Slopes from the SRTM data, computed at 3-arc-second resolution, were summarized at 30-arc-second resolution, along with statistics developed to describe the distribution of slope within each 30-arc-second pixel. Because there are many small areas lacking SRTM data and the northern limit of the SRTM mission was lat 60?N., statistical methods referencing other elevation data were used to fill the voids within the dataset and to extrapolate the data north of 60?. The dataset will be used in the PAGER system to rapidly assess the susceptibility of areas to landsliding following large earthquakes.

  5. Scenario-Based Tsunami Hazard Assessment from Earthquake and Landslide Sources for Eastern Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Armigliato, A.; Pagnoni, G.; Paparo, M. A.; Zaniboni, F.

    2016-12-01

    Eastern Sicily was theatre of the most damaging tsunamis that ever struck Italy, such as the 11 January 1693 and the 28 December 1908 tsunamis. Tectonic studies and paleotsunami investigations extended historical records of tsunami occurrence back of several thousands of years. Tsunami sources relevant for eastern Sicily are both local and remote, the latter being located in the Ionian Greece and in the Western Hellenic Arc. Here in 365 A.D. a large earthquake generated a tsunami that was seen in the whole eastern and central Mediterranean including the Sicilian coasts. The objective of this study is the evaluation of tsunami hazard along the coast of eastern Sicily, central Mediterranean, Italy via a scenario-based technique, which has been preferred to the PTHA approach because, when dealing with tsunamis induced by landslides, uncertainties are usually so large to undermine the PTHA results. Tsunamis of earthquake and landslide origin are taken into account for the entire coast of Sicily, from the Messina to the Siracusa provinces. Landslides are essentially local sources and can occur underwater along the unstable flanks of the Messina Straits or along the steep slopes of the Hyblaean-Malta escarpment. The method is based on a two-step procedure. After a preliminary step where very many earthquake and landslide sources are taken into account and tsunamis are computed on a low-resolution grid, the worst-case scenarios are selected and tsunamis are simulated on a finer-resolution grid allowing for a better calculation of coastal wave height and tsunami penetration. The final result of our study is given in the form of aggregate fields computed from individual scenarios. Also interesting is the contribution of the various tsunami sources in different localities along the coast. It is found that the places with the highest level of hazard are the low lands of La Playa south of Catania and of the Bay of Augusta, which is in agreement also with historical

  6. A new concept in seismic landslide hazard analysis for practical application

    NASA Astrophysics Data System (ADS)

    Lee, Chyi-Tyi

    2017-04-01

    A seismic landslide hazard model could be constructed using deterministic approach (Jibson et al., 2000) or statistical approach (Lee, 2014). Both approaches got landslide spatial probability under a certain return-period earthquake. In the statistical approach, our recent study found that there are common patterns among different landslide susceptibility models of the same region. The common susceptibility could reflect relative stability of slopes at a region; higher susceptibility indicates lower stability. Using the common susceptibility together with an earthquake event landslide inventory and a map of topographically corrected Arias intensity, we can build the relationship among probability of failure, Arias intensity and the susceptibility. This relationship can immediately be used to construct a seismic landslide hazard map for the region that the empirical relationship built. If the common susceptibility model is further normalized and the empirical relationship built with normalized susceptibility, then the empirical relationship may be practically applied to different region with similar tectonic environments and climate conditions. This could be feasible, when a region has no existing earthquake-induce landslide data to train the susceptibility model and to build the relationship. It is worth mentioning that a rain-induced landslide susceptibility model has common pattern similar to earthquake-induced landslide susceptibility in the same region, and is usable to build the relationship with an earthquake event landslide inventory and a map of Arias intensity. These will be introduced with examples in the meeting.

  7. Identifying a large landslide with small displacements in a zone of coseismic tectonic deformation; the Villa Del Monte landslide triggered by the 1989 Loma Prieta, California, earthquake

    USGS Publications Warehouse

    Keefer, David K.; Harp, Edwin L.; Griggs, Gary B.; Evans, Stephen G.; DeGraff, Jerome V.

    2002-01-01

    The Villa Del Monte landslide was one of 20 large and complex landslides triggered by the 1989 LomaPrieta, California, earthquake in a zone of pervasive coseismicground cracking near the fault rupture. The landslide was approximately 980 m long, 870 m wide, and encompassed an area of approximately 68 ha. Drilling data suggested that movement may have extended to depths as great as 85 m below the ground surface. Even though the landslide moved <1 m, it caused substantial damage to numerous dwellings and other structures, primarily as a result of differential displacements and internal Assuring. Surface cracks, scarps, and compression features delineating the Villa Del Monte landslide were discontinuous, probably because coseismic displacements were small; such discontinuous features were also characteristic of the other large, coseismic landslides in the area, which also moved only short distances during the earthquake. Because features marking landslide boundaries were discontinuous and because other types of coseismic ground cracks were widespread in the area, identification of the landslides required detailed mapping and analysis. Recognition that landslides such as that at Villa Del Monte may occur near earthquake-generating fault ruptures should aid in future hazard evaluations of areas along active faults.

  8. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal

    NASA Astrophysics Data System (ADS)

    Roback, Kevin; Clark, Marin K.; West, A. Joshua; Zekkos, Dimitrios; Li, Gen; Gallen, Sean F.; Chamlagain, Deepak; Godt, Jonathan W.

    2018-01-01

    Coseismic landslides pose immediate and prolonged hazards to mountainous communities, and provide a rare opportunity to study the effect of large earthquakes on erosion and sediment budgets. By mapping landslides using high-resolution satellite imagery, we find that the 25 April 2015 Mw7.8 Gorkha earthquake and aftershock sequence produced at least 25,000 landslides throughout the steep Himalayan Mountains in central Nepal. Despite early reports claiming lower than expected landslide activity, our results show that the total number, area, and volume of landslides associated with the Gorkha event are consistent with expectations, when compared to prior landslide-triggering earthquakes around the world. The extent of landsliding mimics the extent of fault rupture along the east-west trace of the Main Himalayan Thrust and increases eastward following the progression of rupture. In this event, maximum modeled Peak Ground Acceleration (PGA) and the steepest topographic slopes of the High Himalaya are not spatially coincident, so it is not surprising that landslide density correlates neither with PGA nor steepest slopes on their own. Instead, we find that the highest landslide density is located at the confluence of steep slopes, high mean annual precipitation, and proximity to the deepest part of the fault rupture from which 0.5-2 Hz seismic energy originated. We suggest that landslide density was determined by a combination of earthquake source characteristics, slope distributions, and the influence of precipitation on rock strength via weathering and changes in vegetation cover. Determining the relative contribution of each factor will require further modeling and better constrained seismic parameters, both of which are likely to be developed in the coming few years as post-event studies evolve. Landslide mobility, in terms of the ratio of runout distance to fall height, is comparable to small volume landslides in other settings, and landslide volume-runout scaling is

  9. Landslides triggered by the 14 November 2016 Mw 7.8 Kaikōura Earthquake, New Zealand

    USGS Publications Warehouse

    Massey, C.; Townsend, D.; Rathje, Ellen M.; Allstadt, Kate E.; Lukovic, B.; Kaneko, Yoshihiro; Bradley, Brendon A.; Wartman, J.; Jibson, Randall W.; Petley, D. N.; Horspool, Nick; Hamling, I.; Carey, J.; Cox, S.; Davidson, John; Dellow, S.; Godt, Jonathan W.; Holden, Christopher; Jones, Katherine D.; Kaiser, Anna E.; Little, M.; Lyndsell, B.; McColl, S.; Morgenstern, R.; Rengers, Francis K.; Rhoades, D.; Rosser, B.; Strong, D.; Singeisen, C.; Villeneuve, M.

    2018-01-01

    The 14 November 2016 Mw">MwMw 7.8 Kaikōura earthquake generated more than 10,000 landslides over a total area of about 10,000  km2">10,000  km210,000  km2, with the majority concentrated in a smaller area of about 3600  km2">3600  km23600  km2. The largest landslide triggered by the earthquake had an approximate volume of 20(±2)  M m3">20(±2)  M m320(±2)  M m3, with a runout distance of about 2.7 km, forming a dam on the Hapuku River. In this article, we present version 1.0 of the landslide inventory we have created for this event. We use the inventory presented in this article to identify and discuss some of the controls on the spatial distribution of landslides triggered by the Kaikōura earthquake. Our main findings are (1) the number of medium to large landslides (source area ≥10,000  m2">≥10,000  m2≥10,000  m2) triggered by the Kaikōura earthquake is smaller than for similar‐sized landslides triggered by similar magnitude earthquakes in New Zealand; (2) seven of the largest eight landslides (from 5 to 20  M m3">20  M m320  M m3) occurred on faults that ruptured to the surface during the earthquake; (3) the average landslide density within 200 m of a mapped surface fault rupture is three times that at a distance of 2500 m or more from a mapped surface fault rupture; (4) the “distance to fault” predictor variable, when used as a proxy for ground‐motion intensity, and when combined with slope angle, geology, and elevation variables, has more power in predicting landslide probability than the modeled peak ground acceleration or peak ground velocity; and (5) for the same slope angles, the coastal slopes have landslide point densities that are an order of magnitude greater than those in similar materials on the inland slopes, but their source areas are significantly smaller.

  10. GIS-based landslide hazard evaluation at the regional scale: some critical points in the permanent displacement approach for seismically-induced landslide maps

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna; Parise, Mario

    2013-04-01

    local practitioners. Seismically-induced landslide hazard maps have been drawn using the aforementioned three expressions. The preliminary results show Quaternary deposits (including alluvium deposits, slope wash, and terrace deposits) as the lithologies most affected by permanent displacement. Moreover, Towsley and Modelo formations, that are stiffer than the previous rock units, and consist mostly of shales, siltstones and subordinate sandstones, show high hazard value where the slopes increase. The relevant role of local slope in permanent displacement extent is evident where lithologies are characterized by both cohesive and frictional resistance components. Finally, a comparison among the maps produced by using the three expressions for permanent displacements is discussed. References Ambraseys N.N. and Menu J.M. (1988) Earthquake-induced ground displacements. Earthquake Engineering and Structural Dynamics, 16: 985-1006. Harp E.L. and Jibson R.W. (1995) Inventory of landslides triggered by the 1994 Northridge, California earthquake. US Geol. Surv. Open-File Rep. 95-213 17 pp. Jibson R. (2007) Regression models for estimating coseismic landslide displacement. Engineering Geology, 91: 209-218. Luzi L. and Pergalani F. (2000) A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy). Soil Dynamics and Earthquake Engineering, 20: 301-313. Newmark N.M. (1965) Effects of earthquakes on dams and embankments. Geotechnique 965, 15(2): 139-160. Parise M. and Jibson R.W. (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Engineering Geology, 58: 251-270. Romeo R. (2000) Seismically induced landslide displacements: a predictive model. Engineering Geology, 58: 337-351.

  11. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China

    NASA Astrophysics Data System (ADS)

    Xu, Chong; Dai, Fuchu; Xu, Xiwei; Lee, Yuan Hsi

    2012-04-01

    Support vector machine (SVM) modeling is based on statistical learning theory. It involves a training phase with associated input and target output values. In recent years, the method has become increasingly popular. The main purpose of this study is to evaluate the mapping power of SVM modeling in earthquake triggered landslide-susceptibility mapping for a section of the Jianjiang River watershed using a Geographic Information System (GIS) software. The river was affected by the Wenchuan earthquake of May 12, 2008. Visual interpretation of colored aerial photographs of 1-m resolution and extensive field surveys provided a detailed landslide inventory map containing 3147 landslides related to the 2008 Wenchuan earthquake. Elevation, slope angle, slope aspect, distance from seismogenic faults, distance from drainages, and lithology were used as the controlling parameters. For modeling, three groups of positive and negative training samples were used in concert with four different kernel functions. Positive training samples include the centroids of 500 large landslides, those of all 3147 landslides, and 5000 randomly selected points in landslide polygons. Negative training samples include 500, 3147, and 5000 randomly selected points on slopes that remained stable during the Wenchuan earthquake. The four kernel functions are linear, polynomial, radial basis, and sigmoid. In total, 12 cases of landslide susceptibility were mapped. Comparative analyses of landslide-susceptibility probability and area relation curves show that both the polynomial and radial basis functions suitably classified the input data as either landslide positive or negative though the radial basis function was more successful. The 12 generated landslide-susceptibility maps were compared with known landslide centroid locations and landslide polygons to verify the success rate and predictive accuracy of each model. The 12 results were further validated using area-under-curve analysis. Group 3 with

  12. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal

    USGS Publications Warehouse

    Roback, Kevin; Clark, Marin K.; West, A. Joshua; Zekkos, Dimitrios; Li, Gen; Gallen, Sean F.; Chamlagain, Deepak; Godt, Jonathan W.

    2018-01-01

    Coseismic landslides pose immediate and prolonged hazards to mountainous communities, and provide a rare opportunity to study the effect of large earthquakes on erosion and sediment budgets. By mapping landslides using high-resolution satellite imagery, we find that the 25 April 2015 Mw7.8 Gorkha earthquake and aftershock sequence produced at least 25,000 landslides throughout the steep Himalayan Mountains in central Nepal. Despite early reports claiming lower than expected landslide activity, our results show that the total number, area, and volume of landslides associated with the Gorkha event are consistent with expectations, when compared to prior landslide-triggering earthquakes around the world. The extent of landsliding mimics the extent of fault rupture along the east-west trace of the Main Himalayan Thrust and increases eastward following the progression of rupture. In this event, maximum modeled Peak Ground Acceleration (PGA) and the steepest topographic slopes of the High Himalaya are not spatially coincident, so it is not surprising that landslide density correlates neither with PGA nor steepest slopes on their own. Instead, we find that the highest landslide density is located at the confluence of steep slopes, high mean annual precipitation, and proximity to the deepest part of the fault rupture from which 0.5–2 Hz seismic energy originated. We suggest that landslide density was determined by a combination of earthquake source characteristics, slope distributions, and the influence of precipitation on rock strength via weathering and changes in vegetation cover. Determining the relative contribution of each factor will require further modeling and better constrained seismic parameters, both of which are likely to be developed in the coming few years as post-event studies evolve. Landslide mobility, in terms of the ratio of runout distance to fall height, is comparable to small volume landslides in other settings, and landslide volume-runout scaling

  13. Earthquake-triggered landslides along the Hyblean-Malta Escarpment (off Augusta, eastern Sicily, Italy) - assessment of the related tsunamigenic potential

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano

    2017-02-01

    Eastern Sicily is affected by earthquakes and tsunamis of local and remote origin, which is known through numerous historical chronicles. Recent studies have put emphasis on the role of submarine landslides as the direct cause of the main local tsunamis, envisaging that earthquakes (in 1693 and 1908) did produce a tsunami, but also that they triggered mass failures that were able to generate an even larger tsunami. The debate is still open, and though no general consensus has been found among scientists so far, this research had the merit to attract attention on possible generation of tsunamis by landslides off Sicily. In this paper we investigate the tsunami potential of mass failures along one sector of the Hyblean-Malta Escarpment (HME). facing Augusta. The HME is the main offshore geological structure of the region running almost parallel to the coast, off eastern Sicily. Here, bottom morphology and slope steepness favour soil failures. In our work we study slope stability under seismic load along a number of HME transects by using the Minimun Lithostatic Deviation (MLD) method, which is based on the limit-equilibrium theory. The main goal is to identify sectors of the HME that could be unstable under the effect of realistic earthquakes. We estimate the possible landslide volume and use it as input for numerical codes to simulate the landslide motion and the consequent tsunami. This is an important step for the assessment of the tsunami hazard in eastern Sicily and for local tsunami mitigation policies. It is also important in view of tsunami warning system since it can help to identify the minimum earthquake magnitude capable of triggering destructive tsunamis induced by landslides, and therefore to set up appropriate knowledge-based criteria to launch alert to the population.

  14. Application and evaluation of a rapid response earthquake-triggered landslide model to the 25 April 2015 Mw 7.8 Gorkha earthquake, Nepal

    USGS Publications Warehouse

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.; Roback, Kevin; Niemi, Nathan A

    2017-01-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake produced strong ground motions across an approximately 250 km by 100 km swath in central Nepal. To assist disaster response activities, we modified an existing earthquake-triggered landslide model based on a Newmark sliding block analysis to estimate the extent and intensity of landsliding and landslide dam hazard. Landslide hazard maps were produced using Shuttle Radar Topography Mission (SRTM) digital topography, peak ground acceleration (PGA) information from the U.S. Geological Survey (USGS) ShakeMap program, and assumptions about the regional rock strength based on end-member values from previous studies. The instrumental record of seismicity in Nepal is poor, so PGA estimates were based on empirical Ground Motion Prediction Equations (GMPEs) constrained by teleseismic data and felt reports. We demonstrate a non-linear dependence of modeled landsliding on aggregate rock strength, where the number of landslides decreases exponentially with increasing rock strength. Model estimates are less sensitive to PGA at steep slopes (> 60°) compared to moderate slopes (30–60°). We compare forward model results to an inventory of landslides triggered by the Gorkha earthquake. We show that moderate rock strength inputs over estimate landsliding in regions beyond the main slip patch, which may in part be related to poorly constrained PGA estimates for this event at far distances from the source area. Directly above the main slip patch, however, the moderate strength model accurately estimates the total number of landslides within the resolution of the model (landslides ≥ 0.0162 km2; observed n = 2214, modeled n = 2987), but the pattern of landsliding differs from observations. This discrepancy is likely due to the unaccounted for effects of variable material strength and local topographic amplification of strong ground motion, as well as other simplifying assumptions about source characteristics and their

  15. Rock falls landslides in Abruzzo (Central Italy) after recent earthquakes: morphostructural control

    NASA Astrophysics Data System (ADS)

    Piacentini, T.; Miccadei, E.; Di Michele, R.; Esposito, G.

    2012-04-01

    Recent earthquakes show that damages due to collateral effects could, in some cases exceed the economic and social losses directly connected to the seismic shaking. The earthquake heavily damaged urban areas and villages and induced several coseismic deformations and geomorphologic effects, including different types of instability such as: rock falls, debris falls, sink holes, ground collapses, liquefaction, etc. Among the effects induced by the seismic energy release, landslides are one of the most significant in terms of hazard and related risk, owing to the occurrence of exposed elements. This work analyzes the geomorphological effects, and particularly the rock falls, which occurred in the L'Aquila area during and immediately after the April 2009 earthquake. The analysis is focused mainly on the rock fall distribution related to the local morphostructural setting. Rock falls occurred mostly on calcareous bedrock slopes or on scarps developed on conglomerates and breccias of Quaternary continental deposits. Geological and geomorphological surveys have outlined different types of rock falls on different morpho-structural settings, which can be summarized as follow: 1)rock falls on calcareous faulted homoclinal ridges; 2)rock falls on calcareous rock slopes of karst landforms; 3)rock falls on structural scarps on conglomerates and breccias of Quaternary continental deposits. The first type of rockfall occurred particularly along main gorges carved on calcareous rocks and characterised by very steep fault slopes and structural slopes (i.e. San Venanzio Gorges, along the Aterno river). In these cases already unstable slopes due to lithological and structural control were triggered as rockfalls also at high distance from the epicentre area. These elements provide useful indications both at local scale, for seismic microzonation studies and seismic risk prevention, and at regional scale, for updating studies and inventory of landslides.

  16. The Geometric Characteristics and Initiation Mechanisms of the Earthquake- Triggered Daguangbao Landslide

    NASA Astrophysics Data System (ADS)

    Dong, J. J.; Tsao, C. C.; Yang, C. M.; Wu, W. J.; Lee, C. T.; Lin, M. L.; Zhang, W. F.; Pei, X. J.; Wang, G. H.; Huang, R.

    2014-12-01

    Recently, catastrophic landslides are getting considerable attentions not only from natural hazard but also from geo-material science. In the past century, the Daguangbao (DGB) landslide which triggered by the Wenchuan earthquake is one of the largest earthquake- triggered landslides. Our main goal is to characterize the geometry of DGB landslide to better determine the initiation mechanisms. Based on the remote sensing images analysis and field investigation, we proposed an atypical wedge model of DGB landslide compose of a folded strata and a zigzag stepping-out joint system, which outcropped at the south and north of the landslide site, respectively. The intersection line of wedge is curved, counterclockwise rotated and daylighted, which fit the pre- and post- position of the mining tent with 1.9 km displacements. The volume of sliding mass was evaluated to 10.51×108 m3 by the atypical wedge model. The identified slip zone of DGB landslide consists of the breccia and gouge layers in the dolomite strata. The rotary-shear tests were performed with the intact dolomite rocks near the slip zone and the gouges in the slip zone to determine the strength of slip surface. The peak and the steady-state friction coefficient of the tested dry dolomite discontinuities, wet gouges are 0.52~0.96, 0.73~0.86 and 0.1~0.57, 0.16~0.63, respectively. Although the result of static wedge stability analysis shows that the slope is quite stable (F.S. = 4), but the result of pseudo-static wedge stability analysis with seismic coefficient will trigger the gigantic wedge by the Wenchuan earthquake. Moreover, the friction coefficient of the tested gouges after long slip displacements as shear velocity exceeds 1.3 m/s will lower than 0.25 (=tan(14°); the intersection line plunged 14°). Therefore, the gigantic wedge can be accelerated by the inertial force and keep moving rapidly with long run-out. According to the calculations of simple one dimensional particle motion model, DGB landslide

  17. Probabilistic, Seismically-Induced Landslide Hazard Mapping of Western Oregon

    NASA Astrophysics Data System (ADS)

    Olsen, M. J.; Sharifi Mood, M.; Gillins, D. T.; Mahalingam, R.

    2015-12-01

    Earthquake-induced landslides can generate significant damage within urban communities by damaging structures, obstructing lifeline connection routes and utilities, generating various environmental impacts, and possibly resulting in loss of life. Reliable hazard and risk maps are important to assist agencies in efficiently allocating and managing limited resources to prepare for such events. This research presents a new methodology in order to communicate site-specific landslide hazard assessments in a large-scale, regional map. Implementation of the proposed methodology results in seismic-induced landslide hazard maps that depict the probabilities of exceeding landslide displacement thresholds (e.g. 0.1, 0.3, 1.0 and 10 meters). These maps integrate a variety of data sources including: recent landslide inventories, LIDAR and photogrammetric topographic data, geology map, mapped NEHRP site classifications based on available shear wave velocity data in each geologic unit, and USGS probabilistic seismic hazard curves. Soil strength estimates were obtained by evaluating slopes present along landslide scarps and deposits for major geologic units. Code was then developed to integrate these layers to perform a rigid, sliding block analysis to determine the amount and associated probabilities of displacement based on each bin of peak ground acceleration in the seismic hazard curve at each pixel. The methodology was applied to western Oregon, which contains weak, weathered, and often wet soils at steep slopes. Such conditions have a high landslide hazard even without seismic events. A series of landslide hazard maps highlighting the probabilities of exceeding the aforementioned thresholds were generated for the study area. These output maps were then utilized in a performance based design framework enabling them to be analyzed in conjunction with other hazards for fully probabilistic-based hazard evaluation and risk assessment. a) School of Civil and Construction

  18. The effect of complex fault rupture on the distribution of landslides triggered by the 12 January 2010, Haiti earthquake

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.; Dart, Richard L.; Margottini, Claudio; Canuti, Paolo; Sassa, Kyoji

    2013-01-01

    The MW 7.0, 12 January 2010, Haiti earthquake triggered more than 7,000 landslides in the mountainous terrain south of Port-au-Prince over an area that extends approximately 50 km to the east and west from the epicenter and to the southern coast. Most of the triggered landslides were rock and soil slides from 25°–65° slopes within heavily fractured limestone and deeply weathered basalt and basaltic breccia. Landslide volumes ranged from tens of cubic meters to several thousand cubic meters. Rock slides in limestone typically were 2–5 m thick; slides within soils and weathered basalt typically were less than 1 m thick. Twenty to thirty larger landslides having volumes greater than 10,000 m3 were triggered by the earthquake; these included block slides and rotational slumps in limestone bedrock. Only a few landslides larger than 5,000 m3 occurred in the weathered basalt. The distribution of landslides is asymmetric with respect to the fault source and epicenter. Relatively few landslides were triggered north of the fault source on the hanging wall. The densest landslide concentrations lie south of the fault source and the Enriquillo-Plantain-Garden fault zone on the footwall. Numerous landslides also occurred along the south coast west of Jacmél. This asymmetric distribution of landsliding with respect to the fault source is unusual given the modeled displacement of the fault source as mainly thrust motion to the south on a plane dipping to the north at approximately 55°; landslide concentrations in other documented thrust earthquakes generally have been greatest on the hanging wall. This apparent inconsistency of the landslide distribution with respect to the fault model remains poorly understood given the lack of any strong-motion instruments within Haiti during the earthquake.

  19. Landslides triggered by the 12 January 2010 Mw 7.0 Port-au-Prince, Haiti, earthquake: visual interpretation, inventory compiling and spatial distribution statistical analysis

    NASA Astrophysics Data System (ADS)

    Xu, C.; Shyu, J. B. H.; Xu, X.-W.

    2014-02-01

    The 12 January 2010 Port-au-Prince, Haiti, earthquake (Mw 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate the correlations of the occurrence of landslides and their erosion thicknesses with topographic factors, seismic parameters, and their distance from roads. A total of 30 828 landslides triggered by the earthquake covered a total area of 15.736 km2, distributed in an area more than 3000 km2, and the volume of landslide accumulation materials is estimated to be about 29 700 000 m3. These landslides are of various types, mostly belonging to shallow disrupted landslides and rock falls, but also include coherent deep-seated landslides and rock slides. These landslides were delineated using pre- and post-earthquake high-resolutions satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were constructed in order to analyze the spatial distribution patterns of co-seismic landslides. Statistics of size distribution and morphometric parameters of co-seismic landslides were carried out and were compared with other earthquake events in the world. Four proxies of co-seismic landslide abundance, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate co-seismic landslides with various landslide controlling parameters. These controlling parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). A comparison of these impact parameters on co-seismic landslides shows that slope angle is the strongest impact parameter on co-seismic landslide occurrence. Our co-seismic landslide inventory is much more

  20. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China?

    NASA Astrophysics Data System (ADS)

    Guo, Changbao; Zhang, Yongshuang; Montgomery, David R.; Du, Yuben; Zhang, Guangze; Wang, Shifeng

    2016-04-01

    In the Tibetan Plateau, active tectonic deformation triggers frequent earthquakes, and giant landslides associated with active faults produce serious consequences. A study of the characteristics and mechanism of a historical long-runout landslide in Luanshibao (LSB), Tibetan Plateau, China, finds a maximum sliding distance (L) of 3.83 km with an elevation drop (H) of 820 m. The landslide volume (V) was ~ 0.64-0.94 × 108 m3, and it produced a long-runout (H/L = 0.21). Recent surface offset along the sinistral strike-slip Litang-Dewu fault passes through the middle part of the landslide, which initiated on the hanging wall of the fault. Geological mapping, geophysical prospecting, trenching, and 14C dating together indicate that the LSB landslide occurred in jointed granite ca. 1980 ± 30 YBP, probably triggered by a large earthquake. Compilation of volume and runout distance data for this landslide and other previously published data for volcanic and nonvolcanic long-runout landslides yields a composite runout length-volume relation (L = 12.52V0.37) that closely predicts runout of the LSB landslide, although substantial variation is noted in runout length around the central tendency.

  1. Preliminary results on landslides triggered by the Mw 7.8 Kaikoura earthquake of 14 November 2016 in northeast South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Gorum, Tolga; Yildirim, Cengiz

    2017-04-01

    This study presents the first results on analysis of the landslides triggered by the Mw 7.8 Kaikoura earthquake that occurred on November 14, 2016 in the region between the Hikurangi subduction system of the North Island and the oblique collisional regime of the South Island (Alpine Fault). The earthquake ruptured several faults that expand into two different tectonic domains which are compose of the strike-slip Marlborough fault system and the compressional North Canterbury Fault Zone. Here we present the preliminary mapping results of the distribution of landslides triggered by the earthquake. An extensive landslide interpretation was carried out using sets of optical high resolution satellite images (e.g. Sentinel-2 and Göktürk-2) for both the pre- and post-earthquake situation. The landslides were identified and mapped as polygons using multi-temporal visual image interpretation based on satellite imagery and morphological elements of landslide diagnostic indicators. Nearly 8,500 individual landslides with different sizes and types were mapped. The distribution pattern of the mapped coseismic landslides shows that the slope failures are highly concentrated along the ruptured faults and side slopes of the structurally controlled major rivers such as Hapuku and Clarence Rivers that drain the northeastern slopes of the region. Our spatial analysis of landslide occurrences with ground acceleration, lithology, slope, topographic relief and surface deformation indicated extensive control of steep slope and high topographic relief on landslides with ground acceleration as the trigger. We show that spatial distribution of slope failures shows decreasing frequency away from the earthquake faults up to 25 km towards east, and abundance of landslides spatially coincides with the coseismic fault geometries and aftershock distributions. We conclude that combined effect of complex rupture dynamics and topography primarily control the distribution pattern of the landslides

  2. Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, Mw = 7.0 earthquake: visual interpretation, inventory compiling, and spatial distribution statistical analysis

    NASA Astrophysics Data System (ADS)

    Xu, C.; Shyu, J. B. H.; Xu, X.

    2014-07-01

    The 12 January 2010 Port-au-Prince, Haiti, earthquake (Mw= 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate the correlations of the occurrence of landslides and the thicknesses of their erosion with topographic, geologic, and seismic parameters. A total of 30 828 landslides triggered by the earthquake covered a total area of 15.736 km2, distributed in an area more than 3000 km2, and the volume of landslide accumulation materials is estimated to be about 29 700 000 m3. These landslides are of various types, mostly belonging to shallow disrupted landslides and rock falls, but also include coherent deep-seated landslides and rock slides. These landslides were delineated using pre- and post-earthquake high-resolution satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were constructed in order to analyze the spatial distribution patterns of co-seismic landslides. Statistics of size distribution and morphometric parameters of co-seismic landslides were carried out and were compared with other earthquake events in the world. Four proxies of co-seismic landslide abundance, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate co-seismic landslides with various environmental parameters. These parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). A comparison of these impact parameters on co-seismic landslides shows that slope angle is the strongest impact parameter on co-seismic landslide occurrence. Our co-seismic landslide inventory is much more detailed than other inventories in several

  3. Structural controls on the large landslides triggered by the 14 November 2016, MW 7.8 Earthquake, Kaikoura, New Zealand

    NASA Astrophysics Data System (ADS)

    Massey, Chris

    2017-04-01

    The Kaikoura earthquake generated tens of thousands of landslides over a total area of about 10,000 km2, with the majority concentrated in a smaller area of about 3,500 km2. A noteworthy aspect of this event is the large number of landslides that occurred on the steep coastal cliffs south of Ward and extending to Oaro, north of Christchurch, which led to the closure of state highway routes. Another noteworthy feature of this earthquake is the large number (more than 190) of valley blocking landslides it generated. This was partly due to the presence of steep and confined slopes in areas of strong ground shaking. The largest valley blocking landslide has an approximate volume of 12(±2) M m3 and the debris travelled about 2.7 km down slope forming a dam on the Hapuku River. Given the sparse population in the vicinity of the landslides, only a few homes were impacted and there were no recorded deaths due to landslides. However, the long-term stability of cracked slopes and landslide "dams" from future strong earthquakes and significant rain events are an ongoing concern to central and local government agencies responsible for rebuilding homes and infrastructure. A particular concern is the potential for debris floods to affect downstream residences and infrastructure should some of the landslide dams breach catastrophically. The mapped landslide distribution reflects the complexity of the earthquake rupture—at least 13 faults ruptured to the ground surface or sea floor. The majority of landslides occurred in two geological and geotechnically distinct materials: Neogene sedimentary rocks (sandstones, limestones and siltstones) where first-time and reactivated rock-slides were the dominant landslide type, and Torlesse "basement" rocks (greywacke sandstones and argillite) where first-time rock and debris avalanches dominated. The largest landslides triggered by the earthquake are located either on or adjacent to faults that ruptured to the ground surface and so they

  4. Landslides triggered by the 2002 Denali fault, Alaska, earthquake and the inferred nature of the strong shaking

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2004-01-01

    The 2002 M7.9 Denali fault, Alaska, earthquake triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 15 ?? 106 m3. The pattern of landsliding was unusual; the number of slides was less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone 30-km wide that straddled the fault rupture over its entire 300-km length. The large rock avalanches all clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong shaking characteristics drawn from the interpretation of the landslide distribution are consistent with results of recent inversion modeling that indicate high-frequency energy generation was greatest in the western part of the fault rupture zone and decreased markedly to the east. ?? 2004, Earthquake Engineering Research Institute.

  5. Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion

    USGS Publications Warehouse

    Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.

    2014-01-01

    The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.

  6. Landslides and liquefaction triggered by the M 7.9 denali fault earthquake of 3 November 2002

    USGS Publications Warehouse

    Harp, E.L.; Jibson, R.W.; Kayen, R.E.; Keefer, D.K.; Sherrod, B.L.; Carver, G.A.; Collins, B.D.; Moss, R.E.S.; Sitar, N.

    2003-01-01

    The moment magnitude (M) 7.9 Denali Fault earthquake in Alaska of 3 November 2002 triggered an unusual pattern of landslides and liquefaction effects. The landslides were primarily rock falls and rock slides that ranged in volume from a few cubic meters to the 40 million-cubic-meter rock avalanche that covered much of the McGinnis Glacier. Landslides were concentrated in a narrow zone ???30 km wide that straddled the fault rupture zone over its entire 300 km length. Large rock avalanches all clustered at the western end of the rupture zone where acceleration levels are reported to have been the highest. Liquefaction effects, consisting of sand blows, lateral spreads, and settlement, were widespread within susceptible alluvial deposits extending from Fairbanks eastward several hundred kilometers. The liquefaction effects displayed a pattern of increasing concentration and severity from west to east and extended well beyond the zone of landslides, which is unusual. The contrasting patterns formed by the distributions of landslides and liquefaction effects initially seemed to be inconsistent; however, preliminary analyses of strong-motion records from the earthquake offer a possible explanation for the unusual ground-failure patterns that are related to three subevents that have been discerned from the earthquake records.

  7. Landslide inventories: The essential part of seismic landslide hazard analyses

    USGS Publications Warehouse

    Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H.

    2011-01-01

    A detailed and accurate landslide inventory is an essential part of seismic landslide hazard analysis. An ideal inventory would cover the entire area affected by an earthquake and include all of the landslides that are possible to detect down to sizes of 1-5. m in length. The landslides must also be located accurately and mapped as polygons depicting their true shapes. Such mapped landslide distributions can then be used to perform seismic landslide hazard analysis and other quantitative analyses. Detailed inventory maps of landslide triggered by earthquakes began in the early 1960s with the use of aerial photography. In recent years, advances in technology have resulted in the accessibility of satellite imagery with sufficiently high resolution to identify and map all but the smallest of landslides triggered by a seismic event. With this ability to view any area of the globe, we can acquire imagery for any earthquake that triggers significant numbers of landslides. However, a common problem of incomplete coverage of the full distributions of landslides has emerged along with the advent of high resolution satellite imagery. ?? 2010.

  8. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    . The model is then applied to a high resolution (5-10 m) digital elevation model of the Poerua catchment in New Zealand which has been impacted by the effect of a large landslide during the last 15 years. We investigate several plausible Alpine Faults earthquake scenarios to study the propagation of the sediment along a complex river network. We characterize and quantify the sediment pulse export time and mechanism for this river configuration and show its impact on the alluvial plain evolution. Our findings have strong implications for the understanding of aggradation rates and the temporal persistence of induced hazards in the alluvial plain as well as of sediment transfers in active mountain belts.

  9. Extreme rainfall-induced landslide changes based on landslide susceptibility in China, 1998-2015

    NASA Astrophysics Data System (ADS)

    Li, Weiyue; Liu, Chun; Hong, Yang

    2017-04-01

    Nowadays, landslide has been one of the most frequent and seriously widespread natural hazards all over the world. Rainfall, especially heavy rainfall is a trigger to cause the landslide occurrence, by increasing soil pore water pressures. In China, rainfall-induced landslides have risen up over to 90% of the total number. Rainfall events sometimes generate a trend of extremelization named rainfall extremes that induce the slope failure suddenly and severely. This study shows a method to simulate the rainfall-induced landslide spatio-temporal distribution on the basis of the landslide susceptibility index. First, the study on landslide susceptibility in China is introduced. We set the values of the index to the range between 0 and 1. Second, we collected TRMM 3B42 precipitation products spanning the years 1998-2015 and extracted the daily rainfall events greater than 50mm/day as extreme rainfall. Most of the rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate extreme rainfall-induced landslide distribution and illustrate the changes in 17 years. This study shows a useful tool to be part of rainfall-induced landslide simulation methodology for landslide early warning.

  10. Detection of rainfall-induced landslides on regional seismic networks

    NASA Astrophysics Data System (ADS)

    Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo

    2017-04-01

    Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For

  11. Detection of the 2015 Gorkha earthquake-induced landslide surface deformation in Kathmandu using InSAR images from PALSAR-2 data

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi P.; Une, Hiroshi

    2016-03-01

    Previous studies reported that the 2015 Gorkha earthquake (Mw 7.8), which occurred in Nepal, triggered landslides in mountainous areas. In Kathmandu, earthquake-induced land subsidence was identified by interpreting local phase changes in interferograms produced from Advanced Land Observing Satellite-2/Phased Array type L-band Synthetic Aperture Radar-2 data. However, the associated ground deformation was not discussed in detail. We studied line-of-sight (LoS) changes from InSAR images in the SE area of Tribhuvan International Airport, Kathmandu. To obtain the change in LoS caused only by local, short-wavelength surface deformation, we subtracted the change in LoS attributed to coseismic deformation from the original change in LoS. The resulting change in LoS showed that the river terrace was driven to the bottom of the river valley. We also studied the changes in LoS in both ascending and descending InSAR images of the area along the Bishnumati River and performed 2.5D analysis. Removing the effect of coseismic deformation revealed east-west and up-down components of local surface deformation, indicating that the river terrace deformed eastward and subsided on the western riverbank of the river. On the east riverbank, the river terrace deformed westward and subsided. However, in the southern part of the river basin, the river terrace deformed westward and was uplifted. The deformation data and field survey results indicate that local surface deformation in these two areas was not caused by land subsidence but by a landslide (specifically, lateral spread).

  12. Swellable clay minerals in weathering products of volcanic sediments related to landslides by 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Torii, M.

    2016-12-01

    2016 Kumamoto Earthquake triggered numerous landslides in Aso caldera area, Japan and incurred heavy casualties. Landslides occurred not only on steep slopes at the caldera cliffs or the barranco but also on relatively gradual slopes at the side of the central cones in the Aso caldera. The Aso volcano is a volcanic complex with huge caldera formed by catastrophic eruption at approximately 90ka and central cones formed by subsequent activities to recent years. The central cones are volcanic peaks contain various rocks including basaltic, andesitic and rhoyolitic lavas and pyroclastic materials. In this study, we analyzed the samples collected from the bottom surface of landslides occurred at the gradual hillside on the western flank of the Aso central cones. The subsurface geology of the site is Takanoobane rhyolite lava, 51ka, covered by dark silty or pelitic tuffs and black soil strata including Kusasenri pumice layer, 31ka. The bottom plane of the landslides can be seen as flat surfaces at boundaries between units in the Kusasenri pumice or bottom of the Kusasenri pumice on the pelitic tuff with charcoaled plants. The Kusasenri pumice layer is a coarse grained and highly permeable but poorly continuous. X-ray diffraction analysis revealed that the main component of the samples is halloysite (10Å). Halloysite (10Å) is alteration product of fine grained volcanic ash, and swellable clay with interlayer water molecules which bring sticky and deformable characteristics. The landslides caused by 2016 Kumamoto Earthquake occurred without precipitation within a week. Strong earthquake may fluidize swellable clay layers in gradual slopes and triggered heavy landslides.

  13. Large-scale mapping of landslides in the epicentral area Loma Prieta earthquake of October 17, 1989, Santa Cruz County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spittler, T.E.; Sydnor, R.H.; Manson, M.W.

    1990-01-01

    The Loma Prieta earthquake of October 17, 1989 triggered landslides throughout the Santa Cruz Mountains in central California. The California Department of Conservation, Division of Mines and Geology (DMG) responded to a request for assistance from the County of Santa Cruz, Office of Emergency Services to evaluate the geologic hazard from major reactivated large landslides. DMG prepared a set of geologic maps showing the landslide features that resulted from the October 17 earthquake. The principal purpose of large-scale mapping of these landslides is: (1) to provide county officials with regional landslide information that can be used for timely recovery ofmore » damaged areas; (2) to identify disturbed ground which is potentially vulnerable to landslide movement during winter rains; (3) to provide county planning officials with timely geologic information that will be used for effective land-use decisions; (4) to document regional landslide features that may not otherwise be available for individual site reconstruction permits and for future development.« less

  14. Regional coseismic landslide hazard assessment without historical landslide inventories: A new approach

    NASA Astrophysics Data System (ADS)

    Kritikos, Theodosios; Robinson, Tom R.; Davies, Tim R. H.

    2015-04-01

    Currently, regional coseismic landslide hazard analyses require comprehensive historical landslide inventories as well as detailed geotechnical data. Consequently, such analyses have not been possible where these data are not available. A new approach is proposed herein to assess coseismic landslide hazard at regional scale for specific earthquake scenarios in areas without historical landslide inventories. The proposed model employs fuzzy logic and geographic information systems to establish relationships between causative factors and coseismic slope failures in regions with well-documented and substantially complete coseismic landslide inventories. These relationships are then utilized to estimate the relative probability of landslide occurrence in regions with neither historical landslide inventories nor detailed geotechnical data. Statistical analyses of inventories from the 1994 Northridge and 2008 Wenchuan earthquakes reveal that shaking intensity, topography, and distance from active faults and streams are the main controls on the spatial distribution of coseismic landslides. Average fuzzy memberships for each factor are developed and aggregated to model the relative coseismic landslide hazard for both earthquakes. The predictive capabilities of the models are assessed and show good-to-excellent model performance for both events. These memberships are then applied to the 1999 Chi-Chi earthquake, using only a digital elevation model, active fault map, and isoseismal data, replicating prediction of a future event in a region lacking historic inventories and/or geotechnical data. This similarly results in excellent model performance, demonstrating the model's predictive potential and confirming it can be meaningfully applied in regions where previous methods could not. For such regions, this method may enable a greater ability to analyze coseismic landslide hazard from specific earthquake scenarios, allowing for mitigation measures and emergency response plans

  15. Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model

    NASA Astrophysics Data System (ADS)

    García-Rodríguez, M. J.; Malpica, J. A.

    2010-06-01

    This paper presents an approach for assessing earthquake-triggered landslide susceptibility using artificial neural networks (ANNs). The computational method used for the training process is a back-propagation learning algorithm. It is applied to El Salvador, one of the most seismically active regions in Central America, where the last severe destructive earthquakes occurred on 13 January 2001 (Mw 7.7) and 13 February 2001 (Mw 6.6). The first one triggered more than 600 landslides (including the most tragic, Las Colinas landslide) and killed at least 844 people. The ANN is designed and programmed to develop landslide susceptibility analysis techniques at a regional scale. This approach uses an inventory of landslides and different parameters of slope instability: slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness. The information obtained from ANN is then used by a Geographic Information System (GIS) to map the landslide susceptibility. In a previous work, a Logistic Regression (LR) was analysed with the same parameters considered in the ANN as independent variables and the occurrence or non-occurrence of landslides as dependent variables. As a result, the logistic approach determined the importance of terrain roughness and soil type as key factors within the model. The results of the landslide susceptibility analysis with ANN are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone. Finally, a comparative analysis of the ANN and LR models are made. The advantages and disadvantages of both approaches are discussed using Receiver Operating Characteristic (ROC) curves.

  16. Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression

    NASA Astrophysics Data System (ADS)

    García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.; Díaz, M.

    2008-03-01

    This work has evaluated the probability of earthquake-triggered landslide occurrence in the whole of El Salvador, with a Geographic Information System (GIS) and a logistic regression model. Slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness are the predictor variables used to determine the dependent variable of occurrence or non-occurrence of landslides within an individual grid cell. The results illustrate the importance of terrain roughness and soil type as key factors within the model — using only these two variables the analysis returned a significance level of 89.4%. The results obtained from the model within the GIS were then used to produce a map of relative landslide susceptibility.

  17. Methodologies for the assessment of earthquake-triggered landslides hazard. A comparison of Logistic Regression and Artificial Neural Network models.

    NASA Astrophysics Data System (ADS)

    García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.

    2009-04-01

    In recent years, interest in landslide hazard assessment studies has increased substantially. They are appropriate for evaluation and mitigation plan development in landslide-prone areas. There are several techniques available for landslide hazard research at a regional scale. Generally, they can be classified in two groups: qualitative and quantitative methods. Most of qualitative methods tend to be subjective, since they depend on expert opinions and represent hazard levels in descriptive terms. On the other hand, quantitative methods are objective and they are commonly used due to the correlation between the instability factors and the location of the landslides. Within this group, statistical approaches and new heuristic techniques based on artificial intelligence (artificial neural network (ANN), fuzzy logic, etc.) provide rigorous analysis to assess landslide hazard over large regions. However, they depend on qualitative and quantitative data, scale, types of movements and characteristic factors used. We analysed and compared an approach for assessing earthquake-triggered landslides hazard using logistic regression (LR) and artificial neural networks (ANN) with a back-propagation learning algorithm. One application has been developed in El Salvador, a country of Central America where the earthquake-triggered landslides are usual phenomena. In a first phase, we analysed the susceptibility and hazard associated to the seismic scenario of the 2001 January 13th earthquake. We calibrated the models using data from the landslide inventory for this scenario. These analyses require input variables representing physical parameters to contribute to the initiation of slope instability, for example, slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness, while the occurrence or non-occurrence of landslides is considered as dependent variable. The results of the landslide susceptibility analysis are checked using landslide

  18. Causes of unusual distribution of coseismic landslides triggered by the Mw 6.1 2014 Ludian, Yunnan, China earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-li; Liu, Chun-guo; Wang, Ming-ming; Zhou, Qing

    2018-06-01

    The Mw 6.1 2014 Ludian, Yunnan, China earthquake triggered numerous coseismic landslides that do not appear to be associated with any previously known seismogenic fault. Traditional models of triggering for seismically generated landslides do not provide a reasonable explanation for the landslide pattern observed here. Here the Newmark method is applied to a grid to calculate the minimum accelerations required for slope failures throughout the affected region. The results demonstrate that for much of the study area, the distribution of failure prone slopes is similar to the actual pattern of coseismic landslides, however there are some areas where the model predicts considerably fewer failures than occurred. We suggest that this is a result of the complex source faults that generated the Ludian earthquake, which produced a half-conjugate rupture on nearly EW- and NNW trending faults at depth. The rupture directed much of its seismic moment southeast of the epicenter, increasing ground shaking and the number of resulting landslides.

  19. Vegetation recovery patterns assessment at landslides caused by catastrophic earthquake: a case study in central Taiwan.

    PubMed

    Chou, Wen-Chieh; Lin, Wen-Tzu; Lin, Chao-Yuan

    2009-05-01

    The catastrophic earthquake, 7.3 on the Richter scale, occurred on September 21, 1999 in Central Taiwan. Much of standing vegetation on slopes was eliminated and massive, scattered landslides were induced at the Jou-Jou Mountain area of the Wu-Chi basin in Nantou County. We evaluated three methods for assessing landslide hazard and vegetation recovery conditions. (1) Self-organizing map (SOM) neural network coupled with fuzzy technique was used to quickly extract the landslide. (2) The NDVI-based vegetation recovery index derived from multi-temporal SPOT satellite images was used to evaluate vegetation recovery rate in the denudation sites. (3) The spatial distribution index (SDI) based on land-cover topographic location was employed to analyze vegetation recovery patterns, including the invading, surviving and mixed patterns at the Jou-Jou Mountain area. On September 27, 1999, there were 849.20 ha of landslide area extracted using the self-organizing map and fuzzy technique combined model. After six years of natural vegetation succession, the landslide has gradually restored, and vegetation recovery rate reached up to 86%. On-site observation shows that many native pioneer plants have invaded onto the denudation sites even if disturbed by several typhoons. Two native surviving plants, Arundo formosana Hack and Pinus taiwanensis Hayata, play a vital role in natural vegetation succession in this area, especially for the sites on ridgeline and steep slopes.

  20. Evidence for earthquake triggering of large landslides in coastal Oregon, USA

    USGS Publications Warehouse

    Schulz, W.H.; Galloway, S.L.; Higgins, J.D.

    2012-01-01

    Landslides are ubiquitous along the Oregon coast. Many are large, deep slides in sedimentary rock and are dormant or active only during the rainy season. Morphology, observed movement rates, and total movement suggest that many are at least several hundreds of years old. The offshore Cascadia subduction zone produces great earthquakes every 300–500 years that generate tsunami that inundate the coast within minutes. Many slides and slide-prone areas underlie tsunami evacuation and emergency response routes. We evaluated the likelihood of existing and future large rockslides being triggered by pore-water pressure increase or earthquake-induced ground motion using field observations and modeling of three typical slides. Monitoring for 2–9 years indicated that the rockslides reactivate when pore pressures exceed readily identifiable levels. Measurements of total movement and observed movement rates suggest that two of the rockslides are 296–336 years old (the third could not be dated). The most recent great Cascadia earthquake was M 9.0 and occurred during January 1700, while regional climatological conditions have been stable for at least the past 600 years. Hence, the estimated ages of the slides support earthquake ground motion as their triggering mechanism. Limit-equilibrium slope-stability modeling suggests that increased pore-water pressures could not trigger formation of the observed slides, even when accompanied by progressive strength loss. Modeling suggests that ground accelerations comparable to those recorded at geologically similar sites during the M 9.0, 11 March 2011 Japan Trench subduction-zone earthquake would trigger formation of the rockslides. Displacement modeling following the Newmark approach suggests that the rockslides would move only centimeters upon coseismic formation; however, coseismic reactivation of existing rockslides would involve meters of displacement. Our findings provide better understanding of the dynamic coastal bluff

  1. Earthquakes drive focused denudation along a tectonically active mountain front

    NASA Astrophysics Data System (ADS)

    Li, Gen; West, A. Joshua; Densmore, Alexander L.; Jin, Zhangdong; Zhang, Fei; Wang, Jin; Clark, Marin; Hilton, Robert G.

    2017-08-01

    Earthquakes cause widespread landslides that can increase erosional fluxes observed over years to decades. However, the impact of earthquakes on denudation over the longer timescales relevant to orogenic evolution remains elusive. Here we assess erosion associated with earthquake-triggered landslides in the Longmen Shan range at the eastern margin of the Tibetan Plateau. We use the Mw 7.9 2008 Wenchuan and Mw 6.6 2013 Lushan earthquakes to evaluate how seismicity contributes to the erosional budget from short timescales (annual to decadal, as recorded by sediment fluxes) to long timescales (kyr to Myr, from cosmogenic nuclides and low temperature thermochronology). Over this wide range of timescales, the highest rates of denudation in the Longmen Shan coincide spatially with the region of most intense landsliding during the Wenchuan earthquake. Across sixteen gauged river catchments, sediment flux-derived denudation rates following the Wenchuan earthquake are closely correlated with seismic ground motion and the associated volume of Wenchuan-triggered landslides (r2 > 0.6), and to a lesser extent with the frequency of high intensity runoff events (r2 = 0.36). To assess whether earthquake-induced landsliding can contribute importantly to denudation over longer timescales, we model the total volume of landslides triggered by earthquakes of various magnitudes over multiple earthquake cycles. We combine models that predict the volumes of landslides triggered by earthquakes, calibrated against the Wenchuan and Lushan events, with an earthquake magnitude-frequency distribution. The long-term, landslide-sustained "seismic erosion rate" is similar in magnitude to regional long-term denudation rates (∼0.5-1 mm yr-1). The similar magnitude and spatial coincidence suggest that earthquake-triggered landslides are a primary mechanism of long-term denudation in the frontal Longmen Shan. We propose that the location and intensity of seismogenic faulting can contribute to

  2. Possible Dual Earthquake-Landslide Source of the 13 November 2016 Kaikoura, New Zealand Tsunami

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Mohammad; Satake, Kenji

    2017-10-01

    A complicated earthquake ( M w 7.8) in terms of rupture mechanism occurred in the NE coast of South Island, New Zealand, on 13 November 2016 (UTC) in a complex tectonic setting comprising a transition strike-slip zone between two subduction zones. The earthquake generated a moderate tsunami with zero-to-crest amplitude of 257 cm at the near-field tide gauge station of Kaikoura. Spectral analysis of the tsunami observations showed dual peaks at 3.6-5.7 and 5.7-56 min, which we attribute to the potential landslide and earthquake sources of the tsunami, respectively. Tsunami simulations showed that a source model with slip on an offshore plate-interface fault reproduces the near-field tsunami observation in terms of amplitude, but fails in terms of tsunami period. On the other hand, a source model without offshore slip fails to reproduce the first peak, but the later phases are reproduced well in terms of both amplitude and period. It can be inferred that an offshore source is necessary to be involved, but it needs to be smaller in size than the plate interface slip, which most likely points to a confined submarine landslide source, consistent with the dual-peak tsunami spectrum. We estimated the dimension of the potential submarine landslide at 8-10 km.

  3. Seismic Landslide Hazard for the Cities of Oakland and Piedmont, California

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2001-01-01

    This map describes the possible hazard from earthquake-induced landslides for the cities of Oakland and Piedmont, CA. The hazard depicted by this map was modeled for a scenario corresponding to an M=7.1 earthquake on the Hayward, CA fault. This scenario magnitude is associated with complete rupture of the northern and southern segments of the Hayward fault, an event that has an estimated return period of about 500 years. The modeled hazard also corresponds to completely saturated ground-water conditions resulting from an extreme storm event or series of storm events. This combination of earthquake and ground-water scenarios represents a particularly severe state of hazard for earthquake-induced landslides. For dry ground-water conditions, overall hazard will be less, while relative patterns of hazard are likely to change.

  4. ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations

    USGS Publications Warehouse

    Cauzzi, Carlo; Fah, Donat; Wald, David J.; Clinton, John; Losey, Stephane; Wiemer, Stefan

    2018-01-01

    In Switzerland, nearly all historical Mw ~ 6 earthquakes have induced damaging landslides, rockslides and snow avalanches that, in some cases, also resulted in damage to infrastructure and loss of lives. We describe the customisation to Swiss conditions of a globally calibrated statistical approach originally developed to rapidly assess earthquake-induced landslide likelihoods worldwide. The probability of occurrence of such earthquake-induced effects is modelled through a set of geospatial susceptibility proxies and peak ground acceleration. The predictive model is tuned to capture the observations from past events and optimised for near-real-time estimates based on USGS-style ShakeMaps routinely produced by the Swiss Seismological Service. Our emphasis is on the use of high-resolution geospatial datasets along with additional local information on ground failure susceptibility. Even if calibrated on historic events with moderate magnitudes, the methodology presented in this paper yields sensible results also for low-magnitude recent events. The model is integrated in the Swiss ShakeMap framework. This study has a high practical relevance to many Swiss ShakeMap stakeholders, especially those managing lifeline systems, and to other global users interested in conducting a similar customisation for their region of interest.

  5. The Sasso Pizzuto landslide dam and seismically induced rockfalls along the Nera River gorge (Central Italy).

    NASA Astrophysics Data System (ADS)

    Romeo, Saverio; Di Matteo, Lucio; Melelli, Laura; Cencetti, Corrado; Dragoni, Walter; Fredduzzi, Andrea; De Rosa, Pierluigi

    2017-04-01

    The seismically induced landslides are among the most destructive and dangerous effects of an earthquake. In the Italian contest, this is also documented by a national catalogue that collects data related to earthquake-induced ground failures in the last millennium (CEDIT database). In particular, Central Italy has been affected by several historical landslides triggered by significant earthquakes, the last of which occurred in August-October 2016, representing the Italian strongest event after the 1980 Irpinia earthquake (Mw 6.9). The study presents the effects of recent seismically induced rockfalls occurred within the Central Italy seismic sequence (October 30, 2016) along the Nera River gorge between Umbria and Marche. The study area is completely included in the Monti Sibillini National Park, where the highest mountain chain in the Umbrian-Marchean Apennine is located. Most of rockfalls have affected the "Maiolica" formation, a stratified and fractured pelagic limestone dating to the Early Cretaceous. The seismic sequence produced diffuse instabilities along the SP 209 road within the Nera River gorge: boulders, debris accumulations and diffuse rockfalls have been mapped. Most of boulders have size ranging from 0.3 to 2.0 m in diameter. Although several strong quakes (Mw > 5) occurred during the August-October sequence, only the main quake triggered the Sasso Pizzuto rockfall producing a landslide dam along the Nera River. The landslide appears to have originated as a wedge failure, which evolved to free fall when the rock block lost the contact with the stable rock mass. In other words, the quake produced the "explosion" of the rock wall allowing the rockfall process. Once the rock mass reached the toe of the slope, it was broken triggering a rock avalanche that obstructed both the Nera River and SP 209 road. With the aim to estimate the total volume of involved rock, a field survey was carried out by using a laser rangefinder. Remote measures were acquired

  6. Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach

    NASA Astrophysics Data System (ADS)

    Peduzzi, P.

    2010-04-01

    The growing concern for loss of services once provided by natural ecosystems is getting increasing attention. However, the accelerating rate of natural resources destruction calls for rapid and global action. With often very limited budgets, environmental agencies and NGOs need cost-efficient ways to quickly convince decision-makers that sound management of natural resources can help to protect human lives and their welfare. The methodology described in this paper, is based on geospatial and statistical analysis, involving simple Geographical Information System (GIS) and remote sensing algorithms. It is based on free or very low-cost data. It aims to scientifically assess the potential role of vegetation in mitigating landslides triggered by earthquakes by normalising for other factors such as slopes and distance from active fault. The methodology was applied to the 2005 North Pakistan/India earthquake which generated a large number of victims and hundreds of landslides. The study shows that if slopes and proximity from active fault are the main susceptibility factors for post landslides triggered by earthquakes in this area, the results clearly revealed that areas covered by denser vegetation suffered less and smaller landslides than areas with thinner (or devoid of) vegetation cover. Short distance from roads/trails and rivers also proved to be pertinent factors in increasing landslides susceptibility. This project is a component of a wider initiative involving the Global Resource Information Database Europe from the United Nations Environment Programme, the International Union for Conservation of Nature, the Institute of Geomatics and Risk Analysis from the University of Lausanne and the "institut universitaire d'études du développement" from the University of Geneva.

  7. Precursory landforms and geologic structures of catastrophic landslides induced by typhoon Talas 2011 Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Matsushi, Y.; Tsou, C.

    2013-12-01

    Our experience of catastrophic landslides induced by rainstorms and earthquakes in recent years suggests that many of them are preceded by deep-seated gravitational slope deformation. Deep-seated gravitational slope deformation continues slowly and continually and some of them transform into catastrophic failures, which cause devastating damage in wide areas. Some other types, however, do not change into catastrophic failure. Deep-seated gravitational slope deformation that preceded catastrophic failures induced by typhoon Talas 2011 Japan, had been surveyed with airborne laser scanner beforehand, of which high-resolution DEMs gave us an important clue to identify which type of topographic features of gravitational slope deformation is susceptible to catastrophic failure. We found that 26 of 39 deep-seated catastrophic landslides had small scarps along the heads of future landslides. These scarps were caused by gravitational slope deformation that preceded the catastrophic failure. Although the scarps may have been enlarged by degradation, their sizes relative to the whole slopes suggest that minimal slope deformation had occurred in the period immediately before the catastrophic failure. The scarp ratio, defined as the ratio of length of a scarp to that of the whole slope both measured along the slope line, ranged from 1% to 23%. 38% of the landslides with small scarps had scarp ratios less than 4%, and a half less than 8%. This fact suggests that the gravitational slope deformation preceded catastrophic failure was relatively small and may suggest that those slopes were under critical conditions just before catastrophic failure. The above scarp ratios may be characteristic to accretional complex with undulating, anastomosing thrust faults, which were major sliding surfaces of the typhoon-induced landslides. Eleven of the remaining 13 landslides occurred in landslide scars of previous landslides or occurred as an extension of landslide scars at the lower parts of

  8. A review of mechanisms and modelling procedures for landslide tsunamis

    NASA Astrophysics Data System (ADS)

    Løvholt, Finn; Harbitz, Carl B.; Glimsdal, Sylfest

    2017-04-01

    Landslides, including volcano flank collapses or volcanically induced flows, constitute the second-most important cause of tsunamis after earthquakes. Compared to earthquakes, landslides are more diverse with respect to how they generation tsunamis. Here, we give an overview over the main tsunami generation mechanisms for landslide tsunamis. In the presentation, a mix of results using analytical models, numerical models, laboratory experiments, and case studies are used to illustrate the diversity, but also to point out some common characteristics. Different numerical modelling techniques for the landslide evolution, and the tsunami generation and propagation, as well as the effect of frequency dispersion, are also briefly discussed. Basic tsunami generation mechanisms for different types of landslides, including large submarine translational landslide, to impulsive submarine slumps, and violent subaerial landslides and volcano flank collapses, are reviewed. The importance of the landslide kinematics is given attention, including the interplay between landslide acceleration, landslide velocity to depth ratio (Froude number) and dimensions. Using numerical simulations, we demonstrate how landslide deformation and retrogressive failure development influence tsunamigenesis. Generation mechanisms for subaerial landslides, are reviewed by means of scaling relations from laboratory experiments and numerical modelling. Finally, it is demonstrated how the different degree of complexity in the landslide tsunamigenesis needs to be reflected by increased sophistication in numerical models.

  9. An Account of Preliminary Landslide Damage and Losses Resulting from the February 28, 2001, Nisqually, Washington, Earthquake

    USGS Publications Warehouse

    Highland, Lynn M.

    2003-01-01

    The February 28, 2001, Nisqually, Washington, earthquake (Mw = 6.8) damaged an area of the northwestern United States that previously experienced two major historical earthquakes, in 1949 and in 1965. Preliminary estimates of direct monetary losses from damage due to earthquake-induced landslides is approximately $34.3 million. However, this figure does not include costs from damages to the elevated portion of the Alaskan Way Viaduct, a major highway through downtown Seattle, Washington that will be repaired or rebuilt, depending on the future decision of local and state authorities. There is much debate as to the cause of the damage to this viaduct with evaluations of cause ranging from earthquake shaking and liquefaction to lateral spreading to a combination of these effects. If the viaduct is included in the costs, the losses increase to $500+ million (if it is repaired) or to more than $1+ billion (if it is replaced). Preliminary estimate of losses due to all causes of earthquake damage is approximately $2 billion, which includes temporary repairs to the Alaskan Way Viaduct. These preliminary dollar figures will no doubt increase when plans and decisions regarding the Viaduct are completed.

  10. Evaluation of Tsunami Hazards in Kuwait from Possible Earthquake and Landslide Sources considering Effect of Natural Tide

    NASA Astrophysics Data System (ADS)

    Latcharote, P.

    2016-12-01

    Kuwait is one of the most important oil producers to the world and most of population and many vital facilities are located along the coasts. However, even with low or unknown tsunami risk, it is important to investigate tsunami hazards in this country to ensure safety of life and sustain the global economy. This study aimed to evaluate tsunami hazards along the coastal areas of Kuwait from both earthquake and landslide sources using numerical modeling. Tsunami generation and propagation was simulated using the two-layer model and the TUNAMI model. Four cases of earthquake scenarios are expected to generate tsunami along the Makran Subduction Zone (MSZ) based on historical events and worst cases possible to simulate tsunami propagation to the coastal areas of the Arabian Gulf. Case 1 (Mw 8.3) and Case 2 (Mw 8.3) are the replication of the 1945 Makran earthquake, whereas Case 3 (Mw 8.6) and Case 4 (Mw 9.0) are the worst-case scenarios. Tsunami numerical simulation was modelled with mesh size 30 arc-second using bathymetry and topography data from GEBCO. Preliminary results suggested that tsunamis generated by Case 1 and Case 2 will impose very small effects to Kuwait (< 0.1 m) while Case 3 and Case 4 can generate maximum tsunami amplitude up to 0.3 m to 1.0 m after 12 hours from the earthquake. In addition, this study considered tsunamis generated by landslide along the opposite Iranian coast of Kuwait bay. To preliminarily assess tsunami hazards, coastal landslides were assumed occurred at the volume of 1.0-2.0 km3 at three possible locations from their topographic features. The preliminary results revealed that tsunami generated by coastal landslides could impose a significant tsunami impact to Kuwait having maximum tsunami amplitude at the Falika Island in front of Kuwait bay and Azzour power and desalination plant about 0.5 m- 1.1 m depending on landslide volume and energy dissipation. Future works will include more accuracy of tsunami numerical simulation with

  11. An Atlas of ShakeMaps for Landslide and Liquefaction Modeling

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Nowicki, M. A.; Mah, R. T.; Garcia, D.; Harp, E. L.; Godt, J. W.; Lin, K.; Wald, D. J.

    2012-12-01

    The human consequences of a seismic event are often a result of subsequent hazards induced by the earthquake, such as landslides. While the United States Geological Survey (USGS) ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER) systems are, in conjunction, capable of estimating the damage potential of earthquake shaking in near-real time, they do not currently provide estimates for the potential of further damage by secondary processes. We are developing a sound basis for providing estimates of the likelihood and spatial distribution of landslides for any global earthquake under the PAGER system. Here we discuss several important ingredients in this effort. First, we report on the development of a standardized hazard layer from which to calibrate observed landslide distributions; in contrast, prior studies have used a wide variety of means for estimating the hazard input. This layer now takes the form of a ShakeMap, a standardized approach for computing geospatial estimates for a variety of shaking metrics (both peak ground motions and shaking intensity) from any well-recorded earthquake. We have created ShakeMaps for about 20 historical landslide "case history" events, significant in terms of their landslide occurrence, as part of an updated release of the USGS ShakeMap Atlas. We have also collected digitized landslide data from open-source databases for many of the earthquake events of interest. When these are combined with up-to-date topographic and geologic maps, we have the basic ingredients for calibrating landslide probabilities for a significant collection of earthquakes. In terms of modeling, rather than focusing on mechanistic models of landsliding, we adopt a strictly statistical approach to quantify landslide likelihood. We incorporate geology, slope, peak ground acceleration, and landslide data as variables in a logistic regression, selecting the best explanatory variables given the standardized new hazard layers (see Nowicki

  12. Regional analysis of distribution of pre and post 2015 Nepal Earthquake landslides

    NASA Astrophysics Data System (ADS)

    Valagussa, Andrea; Frattini, Paolo; Crosta, Giovanni; Valbuzzi, Elena

    2016-04-01

    A magnitude 7.8 earthquake struck Nepal on April 25, 2015. Three landslide inventories have been prepared in four districts: Dhading (1885 km2), Sindhupalchok (2488 km2), Rasuwa (1522 km2) and Nuwakot (1194 km2), that are located north of Kathmandu. These inventories extend 14 to 138 km SE from the epicenter of the main shock (April 25, 2015), 4.5 to 143 km NW from the epicenter of the main aftershock (May 12, 2015), and 34 to 136 km from the Main Frontal Thrust. The first inventory is a coseismic and post-seismic landslide inventory based on multi-temporal images (Google Earth, Google Crisis maps, Bing maps), and helicopter-based video. The second one is a pre-event shallow landslide inventory. In these two inventories the most abundant landslide types are: debris flows, shallow translational slides, and rockfalls. The third is a deep seated landslide inventory, in which the most represented landslide types are rock avalanches, slumps, rockslides and deep-seated gravitational slope deformations (DSGSD). All the landslides have been mapped as individual polygons. For the analysis we focus our attention on four districts: First we studied how the landslide frequency density changes as a function of topographic parameters (i.e. slope gradient, slope aspect, and elevation). The analyses have been based on the ASTER Global Digital Elevation Model (ASTER GDEM). For coseismic and post-seismic landslides we observed that the mean slope gradient at which the landslide occurs is higher with respect to the two other inventories (50° and 30/40° respectively). The slope aspect of coseismic and post-seismic landslides is also different, with a larger frequency of landslides towards SW, whereas in pre-event landslides the most common slope aspect is SE. This could be related to the direction of the seismic wave. At least the coseismic and post-seismic landslides occur, in mean, at an elevation lower than the pre-event landslides. We also analyzed the relationship between the

  13. Recognition of Earthquake-Induced Damage in the Abakainon Necropolis (NE Sicily): Results From Geomorphological, Geophysical and Numerical Analyses

    NASA Astrophysics Data System (ADS)

    Bottari, C.; Albano, M.; Capizzi, P.; D'Alessandro, A.; Doumaz, F.; Martorana, R.; Moro, M.; Saroli, M.

    2018-01-01

    Seismotectonic activity and slope instability are a permanent threat in the archaeological site of Abakainon and in the nearby village of Tripi in NE Sicily. In recent times, signs of an ancient earthquake have been identified in the necropolis of Abakainon which dating was ascertained to the first century AD earthquake. The site is located on a slope of Peloritani Mts. along the Tindari Fault Line and contains evidence for earthquake-induced landslide, including fallen columns and blocks, horizontal shift and counter slope tilting of the tomb basements. In this paper, we used an integrated geomorphological and geophysical analysis to constrain the landslide. The research was directed to the acquisition of deep geological data for the reconstruction of slope process and the thickness of mobilized materials. The applied geophysical techniques included seismic refraction tomography and electrical resistivity tomography. The surveys were performed to delineate the sliding surface and to assess approximately the thickness of mobilized materials. The geophysical and geomorphologic data confirmed the presence of different overlapped landslides in the studied area. Moreover, a numerical simulation of the slope under seismic loads supports the hypothesis of a mobilization of the landslide mass in case of strong earthquakes (PGA > 0.3 g). However, numerical results highlight that the main cause of destruction for the Abakainon necropolis is the amplification of the seismic waves, occasionally accompanied by surficial sliding.

  14. Study of rainfall-induced landslide: a review

    NASA Astrophysics Data System (ADS)

    Tohari, A.

    2018-02-01

    Rainfall-induced landslides pose a substantial risk to people and infrastructure. For this reason, there have been numerous studies to understand the landslide mechanism. Most of them were performed on the numerical analysis and laboratory experiment. This paper presents a review of existing research on field hydrological condition of soil slopes leading to the initiation of rainfall-induced landslide. Existing methods to study field hydrological response of slopes are first reviewed, emphasizing their limitations and suitability of application. The typical hydrological response profiles in the slope are then discussed. Subsequently, some significant findings on hydrological condition leading to rainfall-induced landslides are summarized and discussed. Finally, several research topics are recommended for future study.

  15. Initiation and runaway process of Tsaoling landslide, triggered by the 1999 Taiwan Chi-Chi earthquake, as studied by high-velocity friction experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Togo, T.; Shimamoto, T.; Dong, J.; Lee, C.

    2013-12-01

    disaggregation, in order to prevent the complete mixing of broken-up pieces that would have given no chance for survival. This work partly justifies our experimental approach for understanding the Tsaoling landslide. We performed a series of oscillatory slip experiments on the crushed siltstone gouge at a normal stress of 3 MPa that corresponds to the overburden pressure at the base of about 150-meter thick landslide mass, using a rotary-shear low to high-velocity friction apparatus at Hiroshima University. The slip rate was increased linearly to the maximum velocity of 0.33-1.3 m/s and was decreased linearly to zero with oscillation frequencies ranging 0.3-1.2 Hz. Results indicate that the accelerating and decelerating motions cause weakening and strengthening, respectively, at each oscillation cycle and that the gouge undergoes overall weakening with the repeated oscillation cycles. The overall weakening of the gouge depends on the maximum velocity, but not on the oscillation frequency. When the maximum velocity is 1.0 and 1.3 m/s, the friction coefficient decreases from about 0.8 to below 0.25 (or friction angle of 14 degree) after a few to several oscillations to initiate a runaway sliding of the landslide mass and the friction coefficient reduces to 0.1-0.2. Our results are consistent with the delayed onset and the high speed of the Tsaoling landslide. Our experiments will provide a way of evaluating the potential danger for earthquake-induced catastrophic landslides.

  16. Evaluation of Rainfall-induced Landslide Potential

    NASA Astrophysics Data System (ADS)

    Chen, Y. R.; Tsai, K. J.; Chen, J. W.; Chue, Y. S.; Lu, Y. C.; Lin, C. W.

    2016-12-01

    Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assessed rainfall-induced landslide potential and spatial distribution in some watersheds of Southern Taiwan to configure reasonable assessment process and methods for landslide potential. This study focused on the multi-year multi-phase heavy rainfall events after 2009 Typhoon Morakot and applied the analysis techniques for the classification of satellite images of research region before and after rainfall to obtain surface information and hazard log data. GIS and DEM were employed to obtain the ridge and water system and to explore characteristics of landslide distribution. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various hazard factors. Furthermore, the interaction between rainfall characteristic, slope disturbance and landslide mechanism was analyzed. The results of image classification show that the values of coefficient of agreement are at medium-high level. The agreement of landslide potential map is at around 80% level compared with historical disaster sites. The relations between landslide potential level, slope disturbance degree, and the ratio of number and area of landslide increment corresponding heavy rainfall events are positive. The ratio of landslide occurrence is proportional to the value of instability index. Moreover, for each rainfall event, the number and scale of secondary landslide sites are much more than those of new landslide sites. The greater the slope land disturbance, the more likely it is that the scale of secondary landslide become greater. The spatial distribution of landslide depends on the interaction of rainfall patterns, slope, and elevation of the research area.

  17. Co-seismic landslide topographic analysis based on multi-temporal DEM-A case study of the Wenchuan earthquake.

    PubMed

    Ren, Zhikun; Zhang, Zhuqi; Dai, Fuchu; Yin, Jinhui; Zhang, Huiping

    2013-01-01

    Hillslope instability has been thought to be one of the most important factors for landslide susceptibility. In this study, we apply geomorphic analysis using multi-temporal DEM data and shake intensity analysis to evaluate the topographic characteristics of the landslide areas. There are many geomorphologic analysis methods such as roughness, slope aspect, which are also as useful as slope analysis. The analyses indicate that most of the co-seismic landslides occurred in regions with roughness, hillslope and slope aspect of >1.2, >30, and between 90 and 270, respectively. However, the intersection regions from the above three methods are more accurate than that derived by applying single topographic analysis method. The ground motion data indicates that the co-seismic landslides mainly occurred on the hanging wall side of Longmen Shan Thrust Belt within the up-down and horizontal peak ground acceleration (PGA) contour of 150 PGA and 200 gal, respectively. The comparisons of pre- and post-earthquake DEM data indicate that the medium roughness and slope increased, the roughest and steepest regions decreased after the Wenchuan earthquake. However, slope aspects did not even change. Our results indicate that co-seismic landslides mainly occurred at specific regions of high roughness, southward and steep sloping areas under strong ground motion. Co-seismic landslides significantly modified the local topography, especially the hillslope and roughness. The roughest relief and steepest slope are significantly smoothed; however, the medium relief and slope become rougher and steeper, respectively.

  18. Analysis of landslide hazard area in Ludian earthquake based on Random Forests

    NASA Astrophysics Data System (ADS)

    Xie, J.-C.; Liu, R.; Li, H.-W.; Lai, Z.-L.

    2015-04-01

    With the development of machine learning theory, more and more algorithms are evaluated for seismic landslides. After the Ludian earthquake, the research team combine with the special geological structure in Ludian area and the seismic filed exploration results, selecting SLOPE(PODU); River distance(HL); Fault distance(DC); Seismic Intensity(LD) and Digital Elevation Model(DEM), the normalized difference vegetation index(NDVI) which based on remote sensing images as evaluation factors. But the relationships among these factors are fuzzy, there also exists heavy noise and high-dimensional, we introduce the random forest algorithm to tolerate these difficulties and get the evaluation result of Ludian landslide areas, in order to verify the accuracy of the result, using the ROC graphs for the result evaluation standard, AUC covers an area of 0.918, meanwhile, the random forest's generalization error rate decreases with the increase of the classification tree to the ideal 0.08 by using Out Of Bag(OOB) Estimation. Studying the final landslides inversion results, paper comes to a statistical conclusion that near 80% of the whole landslides and dilapidations are in areas with high susceptibility and moderate susceptibility, showing the forecast results are reasonable and adopted.

  19. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    USGS Publications Warehouse

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  20. Landslides - Cause and effect

    USGS Publications Warehouse

    Radbruch-Hall, D. H.; Varnes, D.J.

    1976-01-01

    Landslides can cause seismic disturbances; landslides can also result from seismic disturbances, and earthquake-induced slides have caused loss of life in many countries. Slides can cause disastrous flooding, particularly when landslide dams across streams are breached, and flooding may trigger slides. Slope movement in general is a major process of the geologic environment that places constraints on engineering development. In order to understand and foresee both the causes and effects of slope movement, studies must be made on a regional scale, at individual sites, and in the laboratory. Areal studies - some embracing entire countries - have shown that certain geologic conditions on slopes facilitate landsliding; these conditions include intensely sheared rocks; poorly consolidated, fine-grained clastic rocks; hard fractured rocks underlain by less resistant rocks; or loose accumulations of fine-grained surface debris. Field investigations as well as mathematical- and physical-model studies are increasing our understanding of the mechanism of slope movement in fractured rock, and assist in arriving at practical solutions to landslide problems related to all kinds of land development for human use. Progressive failure of slopes has been studied in both soil and rock mechanics. New procedures have been developed to evaluate earthquake response of embankments and slopes. The finite element method of analysis is being extensively used in the calculation of slope stability in rock broken by joints, faults, and other discontinuities. ?? 1976 International Association of Engineering Geology.

  1. Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings

    NASA Astrophysics Data System (ADS)

    Vega, Johnny Alexander; Hidalgo, Cesar Augusto

    2016-11-01

    This paper outlines a framework for risk assessment of landslides triggered by earthquakes and rainfall in urban buildings in the city of Medellín - Colombia, applying a model that uses a geographic information system (GIS). We applied a computer model that includes topographic, geological, geotechnical and hydrological features of the study area to assess landslide hazards using the Newmark's pseudo-static method, together with a probabilistic approach based on the first order and second moment method (FOSM). The physical vulnerability assessment of buildings was conducted using structural fragility indexes, as well as the definition of damage level of buildings via decision trees and using Medellin's cadastral inventory data. The probability of occurrence of a landslide was calculated assuming that an earthquake produces horizontal ground acceleration (Ah) and considering the uncertainty of the geotechnical parameters and the soil saturation conditions of the ground. The probability of occurrence was multiplied by the structural fragility index values and by the replacement value of structures. The model implemented aims to quantify the risk caused by this kind of disaster in an area of the city of Medellín based on different values of Ah and an analysis of the damage costs of this disaster to buildings under different scenarios and structural conditions. Currently, 62% of ;Valle de Aburra; where the study area is located is under very low condition of landslide hazard and 38% is under low condition. If all buildings in the study area fulfilled the requirements of the Colombian building code, the costs of a landslide would be reduced 63% compared with the current condition. An earthquake with a return period of 475 years was used in this analysis according to the seismic microzonation study in 2002.

  2. Do submarine landslides and turbidites provide a faithful record of large magnitude earthquakes in the Western Mediterranean?

    NASA Astrophysics Data System (ADS)

    Clare, Michael

    2016-04-01

    Large earthquakes and associated tsunamis pose a potential risk to coastal communities. Earthquakes may trigger submarine landslides that mix with surrounding water to produce turbidity currents. Recent studies offshore Algeria have shown that earthquake-triggered turbidity currents can break important communication cables. If large earthquakes reliably trigger landslides and turbidity currents, then their deposits can be used as a long-term record to understand temporal trends in earthquake activity. It is important to understand in which settings this approach can be applied. We provide some suggestions for future Mediterranean palaeoseismic studies, based on learnings from three sites. Two long piston cores from the Balearic Abyssal Plain provide long-term (<150 ka) records of large volume turbidites. The frequency distribution form of turbidite recurrence indicates a constant hazard rate through time and is similar to the Poisson distribution attributed to large earthquake recurrence on a regional basis. Turbidite thickness varies in response to sea level, which is attributed to proximity and availability of sediment. While mean turbidite recurrence is similar to the seismogenic El Asnam fault in Algeria, geochemical analysis reveals not all turbidites were sourced from the Algerian margin. The basin plain record is instead an amalgamation of flows from Algeria, Sardinia, and river fed systems further to the north, many of which were not earthquake-triggered. Thus, such distal basin plain settings are not ideal sites for turbidite palaoeseimology. Boxcores from the eastern Algerian slope reveal a thin silty turbidite dated to ~700 ya. Given its similar appearance across a widespread area and correlative age, the turbidite is inferred to have been earthquake-triggered. More recent earthquakes that have affected the Algerian slope are not recorded, however. Unlike the central and western Algerian slopes, the eastern part lacks canyons and had limited sediment

  3. Preliminary ground response of the Diezma landslide (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, José; García-Tortosa, Francisco J.; Garrido, Jesús; Lenti, Luca; López-Casado, Carlos; Martino, Salvatore; Peláez, José A.; Sanz de Galdeano, Carlos

    2015-04-01

    expected PGA values for a return period of 475 years in the area. The landslide stability varies depending on the frecuency values of seismic waves, so the earthquake-induced effects are related to the characteristic period of them and landslide geometry (thickness and length). The temporary seismic network installed in the landslide slope will allow constraining the co-seismic displacements in the landslide and the possible damages to the highway. The authors would like to thank the ERDF of European Union for financial support via project "Monitorización sísmica de deslizamientos. Criterios de reactivación y alerta temprana" of the "Programa Operativo FEDER de Andalucía 2007-2015". We also thank all Public Works Agency and Ministry of Public Works and Housing of the Regional Government of Andalusia.

  4. Structures of Xishan village landslide in Li County, Sichuan, China, inferred from high-frequency receiver functions of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wei, Z.; Chu, R.

    2017-12-01

    Teleseismic receiver function methods are widely used to study the deep structural information beneath the seismic station. However, teleseismic waveforms are difficult to extract the high-frequency receiver function, which are insufficient to constrain the shallow structure because of the inelastic attenuation effect of the earth. In this study, using the local earthquake waveforms collected from 3 broadband stations deployed on the Xishan village landslide in Li County in Sichuan Province, we used the high-frequency receiver function method to study the shallow structure beneath the landslide. We developed the Vp-k (Vp/Vs) staking method of receiver functions, and combined with the H-k stacking and waveform inversion methods of receiver functions to invert the landslide's thickness, S-wave velocity and average Vp/Vs ratio beneath these stations, and compared the thickness with the borehole results. Our results show small-scale lateral variety of velocity structure, a 78-143m/s lower S-wave velocity in the bottom layer and 2.4-3.1 Vp/Vs ratio in the landslide. The observed high Vp/Vs ratio and low S-wave velocity in the bottom layer of the landslide are consistent with low electrical resistivity and water-rich in the bottom layer, suggesting a weak shear strength and potential danger zone in landslide h1. Our study suggest that the local earthquake receiver function can obtain the shallow velocity structural information and supply some seismic constrains for the landslide catastrophe mitigation.

  5. The Ust'-Kamchatsk "Tsunami Earthquake" of 13 April 1923: A Slow Event and a Probable Landslide

    NASA Astrophysics Data System (ADS)

    Salaree, A.; Okal, E.

    2016-12-01

    Among the "tsunami earthquakes" having generated a larger tsunami than expected from their seismic magnitudes, the large aftershock of the great Kamchatka earthquake of 1923 remains an intriguing puzzle since waves reaching 11 m were reported by Troshin & Diagilev (1926), in the vicinity of the mouth of the Kamchatka River near the coastal settlement of Ust'-Kamchatsk. Our relocation attempts based on ISS-listed travel times would put the earthquake epicenter in Ozernoye Bay, North of the Kamchatka Peninsula, suggesting that it was triggered by stress transfer beyond the plate junction at the Kamchatka corner. Mantle magnitudes obtained from Golitsyn records at De Bilt suggest a long-period moment of 2-3 times 1027 dyn*cm, with a strong increase of moment with period, suggestive of a slow source. However, tsunami simulations based on resulting models of the earthquake source, both North and South of the Kamchatka Peninsula, fail to account for the reported run-up values. On the other hand, the model of an underwater landslide, which would have been triggered by the earthquake, can explain the general amplitude and distribution of reported run-up. This model is supported by the presence of steep bathymetry offshore of Ust'-Kamchatsk, near the area of discharge of the Kamchatka River, and the abundance of subaerial landslides along the nearby coasts of the Kamchatka Peninsula. While the scarcity of scientific data for this ancient earthquake, and of historical reports in a sparsely populated area, keep this interpretation tentative, this study contributes to improving our knowledge of the challenging family of "tsunami earthquakes".

  6. Water and soil loss from landslide deposits as a function of gravel content in the Wenchuan earthquake area, China, revealed by artificial rainfall simulations.

    PubMed

    Gan, Fengling; He, Binghui; Wang, Tao

    2018-01-01

    A large number of landslides were triggered by the Mw7.9 Wenchuan earthquake which occurred on 12th May 2008. Landslides impacted extensive areas along the Mingjiang River and its tributaries. In the landslide deposits, soil and gravel fragments generally co-exist and their proportions may influence the hydrological and erosion processes on the steep slopes of the deposit surface. Understanding the effects of the mixtures of soil and gravels in landslide deposits on erosion processes is relevant for ecological reconstruction and water and soil conservation in Wenchuan earthquake area. Based on field surveys, indoor artificial rainfall simulation experiments with three rainfall intensities (1.0, 1.5 and 2.0 mm·min-1) and three proportions of gravel (50%, 66.7% and 80%) were conducted to measure how the proportion of gravel affected soil erosion and sediment yield in landslide sediments and deposits. Where the proportion of gravel was 80%, no surface runoff was produced during the 90 minute experiment under all rainfall intensities. For the 66.7% proportion, no runoff was generated at the lowest rainfall intensity (1.0 mm·min-1). As a result of these interactions, the average sediment yield ranked as 50> 66.6> 80% with different proportions of gravel. In addition, there was a positive correlation between runoff generation and sediment yield, and the sediment yield lagging the runoff generation. Together, the results demonstrate an important role of gravel in moderating the mobilization of landslide sediment produced by large earthquakes, and could lay the foundation for erosion models which provide scientific guidance for the control of landslide sediment in the Wenchuan earthquake zone, China.

  7. Water and soil loss from landslide deposits as a function of gravel content in the Wenchuan earthquake area, China, revealed by artificial rainfall simulations

    PubMed Central

    Gan, Fengling; Wang, Tao

    2018-01-01

    A large number of landslides were triggered by the Mw7.9 Wenchuan earthquake which occurred on 12th May 2008. Landslides impacted extensive areas along the Mingjiang River and its tributaries. In the landslide deposits, soil and gravel fragments generally co-exist and their proportions may influence the hydrological and erosion processes on the steep slopes of the deposit surface. Understanding the effects of the mixtures of soil and gravels in landslide deposits on erosion processes is relevant for ecological reconstruction and water and soil conservation in Wenchuan earthquake area. Based on field surveys, indoor artificial rainfall simulation experiments with three rainfall intensities (1.0, 1.5 and 2.0 mm·min-1) and three proportions of gravel (50%, 66.7% and 80%) were conducted to measure how the proportion of gravel affected soil erosion and sediment yield in landslide sediments and deposits. Where the proportion of gravel was 80%, no surface runoff was produced during the 90 minute experiment under all rainfall intensities. For the 66.7% proportion, no runoff was generated at the lowest rainfall intensity (1.0 mm·min-1). As a result of these interactions, the average sediment yield ranked as 50> 66.6> 80% with different proportions of gravel. In addition, there was a positive correlation between runoff generation and sediment yield, and the sediment yield lagging the runoff generation. Together, the results demonstrate an important role of gravel in moderating the mobilization of landslide sediment produced by large earthquakes, and could lay the foundation for erosion models which provide scientific guidance for the control of landslide sediment in the Wenchuan earthquake zone, China. PMID:29723279

  8. Landslides in the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jibson, R.W.; Keefer, D.K.

    1985-01-01

    During the New Madrid earthquakes of 1811-12, bluffs bordering the Mississippi alluvial plain in the epicentral region underwent large-scale landsliding. Between Cairo, Illinois and Memphis, Tennessee, the authors mapped 221 large landslides of three types: (1) old, eroded, coherent block slides and slumps; (2) old earth flows; and (3) young, fresh slumps that occur only along near-river bluffs and are the only landslides present along such bluffs. Historical accounts and field evidence indicate that most or all old coherent slides and earth flows date to the 1811-12 earthquakes and that the only currently active, large-scale landsliding in the area occursmore » along bluffs bordering the river. Analysis of old coherent slides and earth flows indicates that landslide distribution is most strongly affected by slope height, but that proximity to the hypocenters of the 1811-12 earthquakes also has a significant effect. Slope-stability analyses of an old coherent slide and an earth flow selected as representative of the principal kinds of landslides present indicate that both were stable in aseismic conditions even when water tables were at highest possible levels. However, a dynamic Newmark displacement analysis shows that ground shaking such as that in 1811-12 would cause large displacements leading to catastrophic failure in both slides. These results indicate that in large earthquakes landsliding in much of the study are is likely. Moderate earthquakes may also trigger landslides at some locations.« less

  9. Observations and recommendations regarding landslide hazards related to the January 13, 2001 M-7.6 El Salvador earthquake

    USGS Publications Warehouse

    Jibson, Randall W.; Crone, Anthony J.

    2001-01-01

    The January 13, 2001 earthquake (M-7.6) off the coast of El Salvador triggered widespread damaging landslides in many parts of the El Salvador. In the aftermath of the earthquake, the Salvadoran government requested technical assistance through the U.S. Agency for International Development (USAID); USAID, in turn, requested help from technical experts in landslide hazards from the U.S. Geological Survey. In response to that request, we arrived in El Salvador on January 31, 2001 and worked with USAID personnel and Salvadoran agency counterparts in visiting landslide sites and evaluating present and potential hazards. A preliminary, unofficial report was prepared at the end of our trip (February 9) to provide immediate information and assistance to interested agencies and parties. The current report is an updated and somewhat expanded version of that unofficial report. Because of the brief nature of this report, conclusions and recommendations contained herein should be considered tentative and may be revised in the future.

  10. Earthquake and submarine landslide tsunamis: how can we tell the difference? (Invited)

    NASA Astrophysics Data System (ADS)

    Tappin, D. R.; Grilli, S. T.; Harris, J.; Geller, R. J.; Masterlark, T.; Kirby, J. T.; Ma, G.; Shi, F.

    2013-12-01

    Several major recent events have shown the tsunami hazard from submarine mass failures (SMF), i.e., submarine landslides. In 1992 a small earthquake triggered landslide generated a tsunami over 25 meters high on Flores Island. In 1998 another small, earthquake-triggered, sediment slump-generated tsunami up to 15 meters high devastated the local coast of Papua New Guinea killing 2,200 people. It was this event that led to the recognition of the importance of marine geophysical data in mapping the architecture of seabed sediment failures that could be then used in modeling and validating the tsunami generating mechanism. Seabed mapping of the 2004 Indian Ocean earthquake rupture zone demonstrated, however, that large, if not great, earthquakes do not necessarily cause major seabed failures, but that along some convergent margins frequent earthquakes result in smaller sediment failures that are not tsunamigenic. Older events, such as Messina, 1908, Makran, 1945, Alaska, 1946, and Java, 2006, all have the characteristics of SMF tsunamis, but for these a SMF source has not been proven. When the 2011 tsunami struck Japan, it was generally assumed that it was directly generated by the earthquake. The earthquake has some unusual characteristics, such as a shallow rupture that is somewhat slow, but is not a 'tsunami earthquake.' A number of simulations of the tsunami based on an earthquake source have been published, but in general the best results are obtained by adjusting fault rupture models with tsunami wave gauge or other data so, to the extent that they can model the recorded tsunami data, this demonstrates self-consistency rather than validation. Here we consider some of the existing source models of the 2011 Japan event and present new tsunami simulations based on a combination of an earthquake source and an SMF mapped from offshore data. We show that the multi-source tsunami agrees well with available tide gauge data and field observations and the wave data from

  11. Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence

    USGS Publications Warehouse

    Collins, Brian D.; Jibson, Randall W.

    2015-07-28

    This report provides a detailed account of assessments performed in May and June 2015 and focuses on valley-blocking landslides because they have the potential to pose considerable hazard to many villages in Nepal. First, we provide a seismological background of Nepal and then detail the methods used for both external and in-country data collection and interpretation. Our results consist of an overview of landsliding extent, a characterization of all valley-blocking landslides identified during our work, and a description of video resources that provide high resolution coverage of approximately 1,000 kilometers (km) of river valleys and surrounding terrain affected by the Gorkha earthquake sequence. This is followed by a description of site-specific landslide-hazard assessments conducted while in Nepal and includes detailed descriptions of five noteworthy case studies. Finally, we assess the expectation for additional landslide hazards during the 2015 summer monsoon season.

  12. New classification of landslide-inducing anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Michoud, C.; Jaboyedoff, M.; Derron, M.-H.; Nadim, F.; Leroi, E.

    2012-04-01

    Although landslides are usually considered typical examples of natural hazards, they can be influenced by human activities. Many examples can be found in the literature about slope instabilities induced by anthropogenic activities, ranging from small superficial landslides to rock avalanches. Research on this topic is of primary importance for understanding and mitigation of landslide risk. Indeed, slope stabilities influenced by human actions contribute significantly to the risk level because, by definition, they are located where elements at risk and people are present. Within the framework of the European project SafeLand "Living with Landslide Risk in Europe", the authors analyzed the landslides induced by anthropogenic factors in Europe and elsewhere (SafeLand deliverable D1.6). During the bibliographical research, it appeared that a complete and illustrated classification on human activities influencing slope stabilities does not yet exist. Therefore, a new classification was introduced by Michoud et al. (2011) about anthropogenic activities affecting slope stability conditions. This classification takes into account conceptual processes leading to landslides (Terzaghi, 1950; Jaboyedoff and Derron, 2005) and the distinction between destabilization factors and triggering factors (Vaunat et al., 1994; Leroueil et al., 1996). The classification was tested and improved through fifty-eight well-documented case studies, even lots of large landslides, such as Elm, Aberfan, Namsos and Rissa landslides, etc. Furthermore, the boundary between natural and "anthropogenic" landslide triggers (e.g. water run-off modified by new land-uses, creating landslides some km farther), and the time during which changes and reactions are to be considered as direct consequences of human activities were highlighted. Finally, anthropogenic influences can also be positive and examples of (non-voluntary) positive human impacts on slope stability are presented. Jaboyedoff, M. and Derron, M

  13. Seismic response of soft deposits due to landslide: The Mission Peak, California, landslide

    USGS Publications Warehouse

    Hartzell, Stephen; Leeds, Alena L.; Jibson, Randall W.

    2017-01-01

    The seismic response of active and intermittently active landslides is an important issue to resolve to determine if such landslides present an elevated hazard in future earthquakes. To study the response of landslide deposits, seismographs were placed on the Mission Peak landslide in the eastern San Francisco Bay region for a period of one year. Numerous local and near‐regional earthquakes were recorded that reveal a complexity of seismic response phenomena using the horizontal‐to‐vertical spectral ratio method. At lower frequencies, a clear spectral peak is observed at 0.5 Hz common to all four stations in the array and is attributed to a surface topographic effect. At higher frequencies, other spectral peaks occur that are interpreted in terms of local deposits and structures. Site amplification from the standard reference site method shows the minimum amplification with a factor of 2, comparing a site on and off the landslide. A site located on relatively homogeneous deposits of loose soils shows a clear spectral peak associated with the thickness of the deposit. Another site on a talus‐filled graben near the headscarp shows possible 2D or 3D effects from subsurface topography or scattering within and between buried sandstone blocks. A third site on a massive partially detached block below the crown of the headscarp shows indications of resonance caused by the reverberation of shear waves within the block. The varied seismic response of different parts of this complex landslide is consistent with other studies which found that, although landslide response is commonly enhanced in the downslope direction of landslide movement, such a response does not occur uniformly or consistently. When it does occur, enhanced site response parallel to the direction of landslide movement would contribute to landslide reactivation during significant earthquakes.

  14. Improving Landslide Susceptibility Modeling Using an Empirical Threshold Scheme for Excluding Landslide Deposition

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Lai, J. S.; Chiang, S. H.

    2015-12-01

    Landslides are frequently triggered by typhoons and earthquakes in Taiwan, causing serious economic losses and human casualties. Remotely sensed images and geo-spatial data consisting of land-cover and environmental information have been widely used for producing landslide inventories and causative factors for slope stability analysis. Landslide susceptibility, on the other hand, can represent the spatial likelihood of landslide occurrence and is an important basis for landslide risk assessment. As multi-temporal satellite images become popular and affordable, they are commonly used to generate landslide inventories for subsequent analysis. However, it is usually difficult to distinguish different landslide sub-regions (scarp, debris flow, deposition etc.) directly from remote sensing imagery. Consequently, the extracted landslide extents using image-based visual interpretation and automatic detections may contain many depositions that may reduce the fidelity of the landslide susceptibility model. This study developed an empirical thresholding scheme based on terrain characteristics for eliminating depositions from detected landslide areas to improve landslide susceptibility modeling. In this study, Bayesian network classifier is utilized to build a landslide susceptibility model and to predict sequent rainfall-induced shallow landslides in the Shimen reservoir watershed located in northern Taiwan. Eleven causative factors are considered, including terrain slope, aspect, curvature, elevation, geology, land-use, NDVI, soil, distance to fault, river and road. Landslide areas detected using satellite images acquired before and after eight typhoons between 2004 to 2008 are collected as the main inventory for training and verification. In the analysis, previous landslide events are used as training data to predict the samples of the next event. The results are then compared with recorded landslide areas in the inventory to evaluate the accuracy. Experimental results

  15. Weights of Evidence Method for Landslide Susceptibility Mapping in Takengon, Central Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Pamela; Sadisun, Imam A.; Arifianti, Yukni

    2018-02-01

    Takengon is an area prone to earthquake disaster and landslide. On July 2, 2013, Central Aceh earthquake induced large numbers of landslides in Takengon area, which resulted in casualties of 39 people. This location was chosen to assess the landslide susceptibility of Takengon, using a statistical method, referred to as the weight of evidence (WoE). This WoE model was applied to indicate the main factors influencing the landslide susceptible area and to derive landslide susceptibility map of Takengon. The 251 landslides randomly divided into two groups of modeling/training data (70%) and validation/test data sets (30%). Twelve thematic maps of evidence are slope degree, slope aspect, lithology, land cover, elevation, rainfall, lineament, peak ground acceleration, curvature, flow direction, distance to river and roads used as landslide causative factors. According to the AUC, the significant factor controlling the landslide is the slope, the slope aspect, peak ground acceleration, elevation, lithology, flow direction, lineament, and rainfall respectively. Analytical result verified by using test data of landslide shows AUC prediction rate is 0.819 and AUC success rate with all landslide data included is 0.879. This result showed the selective factors and WoE method as good models for assessing landslide susceptibility. The landslide susceptibility map of Takengon shows the probabilities, which represent relative degrees of susceptibility for landslide proneness in Takengon area.

  16. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    NASA Astrophysics Data System (ADS)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  17. The evolution of hillslope strength following large earthquakes

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Rosser, Nick; Tunstall, Neil

    2017-04-01

    Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.

  18. Seismic Landslide Hazard for the City of Berkeley, California

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2001-01-01

    This map describes the possible hazard from earthquake-induced landslides for the city of Berkeley, CA. The hazard depicted by this map was modeled for a scenario corresponding to an M=7.1 earthquake on the Hayward, CA fault. This scenario magnitude is associated with complete rupture of the northern and southern segments of the Hayward fault, an event that has an estimated return period of about 500 years. The modeled hazard also corresponds to completely saturated ground-water conditions resulting from an extreme storm event or series of storm events. This combination of earthquake and ground-water scenarios represents a particularly severe state of hazard for earthquake-induced landslides. For dry ground-water conditions, overall hazard will be less, while relative patterns of hazard are likely to change. Purpose: The map is intended as a tool for regional planning. Any site-specific planning or analysis should be undertaken with the assistance of a qualified geotechnical engineer. This hazard map should not be used as a substitute to the State of California Seismic Hazard Zones map for the same area. (See California Department of Conservation, Division of Mines and Geology, 1999). As previously noted for maps of this type by Wieczorek and others (1985), this map should not be used as a basis to determine the absolute risk from seismically triggered landslides at any locality, as the sole justification for zoning or rezoning any parcel, for detailed design of any lifeline, for site-specific hazard-reduction planning, or for setting or modifying insurance rates.

  19. Application of a time probabilistic approach to seismic landslide hazard estimates in Iran

    NASA Astrophysics Data System (ADS)

    Rajabi, A. M.; Del Gaudio, V.; Capolongo, D.; Khamehchiyan, M.; Mahdavifar, M. R.

    2009-04-01

    Iran is a country located in a tectonic active belt and is prone to earthquake and related phenomena. In the recent years, several earthquakes caused many fatalities and damages to facilities, e.g. the Manjil (1990), Avaj (2002), Bam (2003) and Firuzabad-e-Kojur (2004) earthquakes. These earthquakes generated many landslides. For instance, catastrophic landslides triggered by the Manjil Earthquake (Ms = 7.7) in 1990 buried the village of Fatalak, killed more than 130 peoples and cut many important road and other lifelines, resulting in major economic disruption. In general, earthquakes in Iran have been concentrated in two major zones with different seismicity characteristics: one is the region of Alborz and Central Iran and the other is the Zagros Orogenic Belt. Understanding where seismically induced landslides are most likely to occur is crucial in reducing property damage and loss of life in future earthquakes. For this purpose a time probabilistic approach for earthquake-induced landslide hazard at regional scale, proposed by Del Gaudio et al. (2003), has been applied to the whole Iranian territory to provide the basis of hazard estimates. This method consists in evaluating the recurrence of seismically induced slope failure conditions inferred from the Newmark's model. First, by adopting Arias Intensity to quantify seismic shaking and using different Arias attenuation relations for Alborz - Central Iran and Zagros regions, well-established methods of seismic hazard assessment, based on the Cornell (1968) method, were employed to obtain the occurrence probabilities for different levels of seismic shaking in a time interval of interest (50 year). Then, following Jibson (1998), empirical formulae specifically developed for Alborz - Central Iran and Zagros, were used to represent, according to the Newmark's model, the relation linking Newmark's displacement Dn to Arias intensity Ia and to slope critical acceleration ac. These formulae were employed to evaluate

  20. Response of the Laprak Landslide to the 2015 Nepal Earthquake and Implications for the Utility of Simple Infinite Slope Models in Regional Landslide Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Haneberg, W. C.; Gurung, N.

    2016-12-01

    The village of Laprak, located in the Gorkha District of western Nepal, was built on a large colluvium landslide about 10 km from the epicenter of the 25 April 2015 M 7.8 Nepal earthquake. Recent episodic movement began during a wet period in 1999 and continued in at least 2002, 2006, and 2007, destroying 24 homes, removing 23 hectares of land from agricultural production, and claiming 1 life. Reconnaissance mapping, soil sampling and testing, and slope stability analyses undertaken before the 2015 earthquake suggested that the hillside should be stable under dry conditions, unstable to marginally stable under static wet conditions, and wholly unstable under wet seismic conditions. Most of the buildings in Laprak, which were predominantly of dry fitted stone masonry, were destroyed by Intensity IX shaking during the 2015 earthquake. Interpretation of remotely sensed imagery and published photographs shows new landslide features; hence, some downslope movement occurred but the landslide did not mobilize into a long run-out flow. Monte Carlo simulations based upon a pseudostatic infinite slope model and constrained by reasonable distributions of soil shear strength, pore pressure, and slope angle from earlier work and seismic coefficients based upon the observed Intensity IX shaking (and inferred PGA) yield high probabilities of failure for steep portions of the slope above and below the village but moderate probabilities of failure for the more gentle portion of the slope upon which most of the village was constructed. In retrospect, the seismic coefficient selected for the pre-earthquake analysis proved to be remarkably prescient. Similar results were obtained using a first-order, second-moment (FOSM) approach that is convenient for GIS based regional analyses. Predictions of permanent displacement made using a variety of published empirical formulae based upon sliding block analyses range from about 10 cm to about 200 cm, also broadly consistent with the observed

  1. Modelling of Rainfall Induced Landslides in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Sivandran, G.; Noto, L. V.; Bras, R. L.

    2010-12-01

    We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model, Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator with VEGetation Generator for Interactive Evolution (tRIBS-VEGGIE), tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico and validated against in-situ measurements. A slope-failure module has been added to tRIBS-VEGGIE’s framework, after analyzing several failure criterions to identify the most suitable for our application; the module is used to predict the location and timing of landsliding events. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides.

  2. Possible multihazard events (tsunamis, earthquakes, landslides) expected on the North Bulgarian Black sea coast

    NASA Astrophysics Data System (ADS)

    Ranguelov, B.; Gospodinopv, D.

    2009-04-01

    Earthquakes The area is famous with its seismic regime. The region usually shows non regular behavior of the strong events occurrence. There are episodes of activation and between them long periods of seismic quiescence. The most important one is at the I-st century BC when according to the chronicler Strabo, the ancient Greek colony "Bisone sank in the waters of the sea". The seismic source is known as Shabla-Kaliakra zone with the best documented seismic event of 31st March 1901. This event had a magnitude of 7.2 (estimated by the macroseismic transformation formula) with a source depth of about 10-20 km. The epicenter was located in the aquatory of the sea. The observed macroseismic intensity on the land reached the maximum value of X degree MSK. This event produced a number of secondary effects - landslides, rockfalls, subsidence, extensive destruction of the houses located around and tsunami (up to 3 meters height observed at Balchik port. This event is selected as referent one. Tsunamis Such earthquakes (magnitude greater then 7.0) almost always trigger tsunamis. They could be generated by the earthquake rupture process, or more frequently by the secondary triggered phenomena - landslides (submarine or surface) and/or other geodynamic phenomena - rock falls, degradation of gas hydrates, etc. the most famous water level change is described by Strabo - related to the great catastrophe. The area shows also some other expressions about tsunamis - the last one - a non seismic tsunami at 7th May, 2007 with maximum observed amplitudes of about 3 meters water level changes. Landslides The area on the north Bulgarian Black Sea coast is covered by many active landslides. They have different size, depth and activation time. Most of them are located near the coast line thus presenting huge danger about the beaches, tourist infrastructure, population and historical heritage. The most famous landslide (subsidence) is related with the I-st century BC seismic event, when a

  3. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojie; Zhao, Luqiang; Delgado-Tellez, Ricardo; Bao, Hongjun

    2018-03-01

    Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.

  4. Surficial Seismology: Landslides, Glaciers, and Volcanoes in the Pacific Northwest through a Seismic Lens

    NASA Astrophysics Data System (ADS)

    Allstadt, Kate

    The following work is focused on the use of both traditional and novel seismological tools, combined with concepts from other disciplines, to investigate shallow seismic sources and hazards. The study area is the dynamic landscape of the Pacific Northwest and its wide-ranging earthquake, landslide, glacier, and volcano-related hazards. The first chapter focuses on landsliding triggered by earthquakes, with a shallow crustal earthquake in Seattle as a case study. The study demonstrates that utilizing broadband synthetic seismograms and rigorously incorporating 3D basin amplification, 1D site effects, and fault directivity, allows for a more complete assessment of regional seismically induced landslide hazard. The study shows that the hazard is severe for Seattle, and provides a framework for future probabilistic maps and near real-time hazard assessment. The second chapter focuses on landslides that generate seismic waves and how these signals can be harnessed to better understand landslide dynamics. This is demonstrated using two contrasting Pacific Northwest landslides. The 2010 Mount Meager, BC, landslide generated strong long period waves. New full waveform inversion methods reveal the time history of forces the landslide exerted on the earth that is used to quantify event dynamics. Despite having a similar volume (˜107 m3), The 2009 Nile Valley, WA, landslide did not generate observable long period motions because of its smaller accelerations, but pulses of higher frequency waves were valuable in piecing together the complex sequence of events. The final chapter details the difficulties of monitoring glacier-clad volcanoes. The focus is on small, repeating, low-frequency earthquakes at Mount Rainier that resemble volcanic earthquakes. However, based on this investigation, they are actually glacial in origin: most likely stick-slip sliding of glaciers triggered by snow loading. Identification of the source offers a view of basal glacier processes, discriminates

  5. Injection-induced earthquakes

    USGS Publications Warehouse

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  6. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests.

    PubMed

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-08-06

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth.

  7. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests

    PubMed Central

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-01-01

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth. PMID:26258785

  8. Interactive Teaching about Landslides and Triggered Landslide Events

    NASA Astrophysics Data System (ADS)

    Taylor, Faith E.; Malamud, Bruce D.

    2015-04-01

    When we think of a landslide (mass wasting), both the public and scientists often envisage an individual movement of earth material down a slope. Yet, landslides often occur not as individuals, but as parts of a triggered landslide event. This is where a trigger (e.g., an earthquake or heavy rainfall) results in up to tens of thousands of landslides in a region in the minutes to days after the trigger. The sum of the impacts of these landslides may be greater than individual parts. This interactive Prezi poster will present ideas for innovative demonstrations, teaching practicals and projects, ranging from low-cost low-tech to more advanced digital methods, to communicate the ideas of landslides and triggered landslide events to the public and students. We will give live hands-on demonstrations and welcome discussions with other scientists to share ideas and best practices. This paper is aimed at those in secondary school/university education and the public sector looking for examples to interest and inform their respective audiences about landslides, triggered landslide events, and the importance and implications of considering landslides not just as individuals, but as populations.

  9. Innovative Techniques for Teaching about Landslides and Triggered Landslide Events

    NASA Astrophysics Data System (ADS)

    Taylor, F. E.; Malamud, B. D.

    2014-12-01

    When we think of a landslide (mass wasting), both the public and scientists often envisage an individual movement of earth material down a slope. Yet, landslides often occur not as individuals, but as parts of a triggered landslide event. This is where a trigger (e.g., an earthquake or heavy rainfall) results in up to tens of thousands of landslides in a region in the minutes to days after the trigger. In this paper, we will present ideas for innovative demonstrations, teaching practicals and projects, ranging from low-cost low-tech to more advanced digital methods, to communicate the ideas of landslides and triggered landslide events to the public and students. This paper is aimed at those in secondary school/university education and the public sector looking for examples to interest and inform their respective audiences about landslides, triggered landslide events, and the importance and implications of considering landslides not just as individuals, but as populations.

  10. Numerical simulation of the submarine landslides and tsunami occurred at Port Valdez, AK during 1964 Alaska Earthquake with Landslide-HySEA model

    NASA Astrophysics Data System (ADS)

    González-Vida, Jose M.; Ortega, Sergio; Macías, Jorge; Castro, Manuel J.; Escalante, Cipriano

    2017-04-01

    This is a benchmark problem recently proposed in the framework of the Landslide Tsunami Model Benchmarking Workshop organized by the NTHMP (National tsunami Hazard mitigation program -USA-) at Galveston (USA). The benchmark is based on the historical event which occurred at Port Valdez, AK during the Alaska Earthquake of March 27, 1964. The great disaster during the Mw9.2 Alaska Earthquake happened in the dock and harbour area of Port Valdez, where a massive submarine landslide generated a tsunami, inundating the waterfront up to two blocks inland. Then, a second wave crossed the waterfront 10-15 minutes after the first wave, carrying a large amount of the debris. It has been described as a violent surging wave only slightly smaller than the first. It is believed that the second wave which flooded the waterfront was originated at the other side of the Port Valdez near the Shoup Bay moraine. The benchmark consists in simulating with the (GPU based) Landslide-HySEA model the extent of inundation for two slide events, based on before and after bathymetry data, eye-witness observations of the event, and observed runup distribution. First, both landslides have been simulated separately, studying time series of the water waves at determined locations, runups at different areas and the extent of inundation around the first two blocks inland of Port Valdez. Then, the two landslides are triggered at the same time and the joint effect is studied. Obtained results are satisfactory and they agree with the existing observations. References Castro, M. J., Fernández-Nieto, E. D., González-Vida, J. M., Parés, C. (2011). Numerical Treatment of the Loss of Hyperbolicity of the Two-Layer Shallow-Water System. Journal of Scientific Computing, 48(1):16-40. Fernández, E.H., Bouchut, F., Bresh, D., Castro, M.J. and, Mangeney, A. (2008). A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comp. Phys., 227: 7720-7754. Fernández-Nieto, E.D., Castro, M

  11. Ground motions at the outermost limits of seismically triggered landslides

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.

    2016-01-01

    Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high‐resolution aerial‐photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (<1  m3) from the most susceptible slopes that can be identified positively as having been triggered by earthquake shaking. Because we and our colleagues conducted all of these investigations, consistent methodology and criteria were used in determining limits. In the six earthquakes examined, we correlated the outermost landslide limits with peak ground accelerations (PGAs) from ShakeMap models of each earthquake. For the four earthquakes studied by field investigation, the minimum PGA values associated with farthest landslide limits ranged from 0.02g to 0.08g. The range for the two earthquakes investigated using aerial‐photographic interpretations was 0.05–0.11g. Although PGA values at landslide limits depend on several factors, including material strength, topographic amplification, and hydrologic conditions, these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well‐recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground‐motion levels at the mapped limits.

  12. Ground motions at the outermost limits of seismically triggered landslides

    NASA Astrophysics Data System (ADS)

    Jibson, Randall W.; Harp, Edwin L.

    2016-04-01

    Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high-resolution aerial photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (< 1 m^3) from the most susceptible slopes that can be identified positively as having been triggered by earthquake shaking. Because we and our colleagues conducted all of these investigations, consistent methodology and criteria were used in determining limits. In the six earthquakes examined, we correlated the outermost landslide limits with peak ground accelerations (PGA) from ShakeMap models of each earthquake. For the four earthquakes studied by field investigation, the minimum PGA values associated with farthest landslide limits ranged from 0.02-0.08 g. The range for the two earthquakes investigated using aerial photographic interpretations was 0.05-0.11 g. Although PGA values at landslide limits depend on several factors - including material strength, topographic amplification, and hydrologic conditions - these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well-recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground-motion levels at the mapped limits.

  13. Seismic Triggers of Lacustrine Subaqueous Landslides in Lake Champlain, USA

    NASA Astrophysics Data System (ADS)

    Manley, P.; Manley, T.; Ghosh, S. J.; Rosales-Underbrink, P.; Silverhart, P.

    2017-12-01

    Lacustrine slumps and debris flows (landslides) have been identified in Lake Champlain via Multibeam and CHIRP (compressed high intensity radar pulse) seismic profile data. Numerous large landslides studied by Ghosh (2012), Rosales-Underbrink (2015), and Silverhart (2016) have shown that many of these landslides are coeval. All landslides failed on a specific interface between marine Champlain Sea and modern lacustrine Lake Champlain sediments. Utilizing radionuclide dating on sediment from the unfailed slopes or undisturbed sediment above failed deposits, sedimentation rates were determined and used to calculate the approximate failure ages for each of the landslides studied. The northernmost failure, south of the Bouquet River, occurred about 950-1200 cal yr BP and is the first mass wasting event of this age to be recorded on Lake Champlain. The remaining landslides failed about 4500-5200 cal yr BP and agree with nearby Western Quebec Seismic Zone (WQSZ) with clusters of terrestrial landslides occurring at 1000 and 5000 cal yr BP triggered by large earthquakes (Brooks, 2015) along the same interface. The 5000 cal yr BP event has been attributed to a M 6.4 or greater earthquake within the WQSZ. The coeval landslides observed in Lake Champlain were likely triggered by this same earthquake. Lake tsunami models show that these simultaneous landslide failures can generate surface waves wave that can impact the Lake Champlain shoreline within 3-10 minutes after the earthquake.

  14. Prediction of Rainfall-Induced Landslides

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Sandersen, F.

    2009-12-01

    Rainfall-induced landslides can be triggered by two main mechanisms: shear failure due to build-up of pore water pressure and erosion by surface water runoff when flow velocity exceeds a critical value. Field measurements indicate that, in the initial phase, the slip surface of a landslide often occurs along the top of a relatively impermeable layer located at some depth within the soil profile, e.g. at the contact with a shallow underlying bedrock or parent rock. The shear strength along this surface and hence the stability of the slope is governed by the pore water pressure. The pore pressure is in turn controlled by water seepage through the slope, either from infiltrated rain, or from groundwater that follows bedrock joints and soil layers with high permeability. When the infiltration rate of the underlying layer is too low for further downward penetration of water or when a wetting front is produced, pore water pressure builds up, reducing the soil shear strength. During high intensity rainfall, surface water runoff will exert shear stresses on the bed material. De-pending on the grain size distribution and specific gravity of the material, erosion might occur when the flow velocity exceeds a critical value. As erosion progresses and sediment concentration increases, the flow regime may become unstable with heavy erosion at high flow velocity locations triggering a debris flow. In many cases, previous landslides along steep gully walls have fed an abundance of loose soil material into the gullies. Landslides along gully walls that obstruct the water transport may also trigger debris flows when the landslide-dam collapses, creating a surge downstream. Both the long-duration (1 or more days) and short-duration precipitation (of the order of 1 hour) are significant in the triggering of shallow landslides, since the critical short-duration rainfall intensity reduces as the antecedent accumulated rainfall increases. Experiences in Norway indicate that the maxi

  15. The Hungtsaiping landslide:A kinematic model based on morphology

    NASA Astrophysics Data System (ADS)

    Huang, W.-K.; Chu, H.-K.; Lo, C.-M.; Lin, M.-L.

    2012-04-01

    A large and deep-seated landslide at Hungtsaiping was triggered by the 7.3 magnitude 1999 Chi-Chi earthquake. Extensive site investigations of the landslide were conducted including field reconnaissance, geophysical exploration, borehole logs, and laboratory experiments. Thick colluvium was found around the landslide area and indicated the occurrence of a large ancient landslide. This study presents the catastrophic landslide event which occurred during the Chi-Chi earthquake. The mechanism of the 1999 landslide which cannot be revealed by the underground exploration data alone, is clarified. This research include investigations of the landslide kinematic process and the deposition geometry. A 3D discrete element method (program), PFC3D, was used to model the kinematic process that led to the landslide. The proposed procedure enables a rational and efficient way to simulate the landslide dynamic process. Key word: Hungtsaiping catastrophic landslide, kinematic process, deposition geometry, discrete element method

  16. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska

    USGS Publications Warehouse

    Jibson, Randall W.; Michael, John A.

    2009-01-01

    The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =~300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazard zones were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.

  17. Maps showing seismic landslide hazards in Anchorage, Alaska

    USGS Publications Warehouse

    Jibson, Randall W.

    2014-01-01

    The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazards were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.

  18. Cosesimic landslides and their post-quake effects (Invited)

    NASA Astrophysics Data System (ADS)

    Huang, R.; Fan, X.

    2013-12-01

    On May 12, 2008, a devastating earthquake of magnitude Mw 7.9 hit China's Sichuan province. The quake, originating in the Longmen Shan fault zone at the eastern margin of Tibetan Plateau, was the country's largest seismic event in more than 50 years. It triggered more than 60,000 destructive landslides and 828 landslide dams over an area of 35,000 square kilometers, that caused about one third of the total fatalities. The combination of strong and long-lasting ground shaking, steep, rugged topography and a fragile and densely jointed lithology probably controlled the occurrence of landslides during the earthquake, but we found that other two factors (fault type and slip rate during the earthquake), may also have played a role. Landslides were clustered in a much wider corridor along the thrusting part of the Yingxiu-Beichuan fault than the strike-slip part. Large-scale landslides with an area of more than 50,000 m2 were concentrated where fault slip-rates were highest, near the intersections and junctures of individual segments of the fault. After the earthquake, debris flow hazard has become a significant concern. A tremendous amount of loose material from landslides that occurred during the earthquake is suspended on the hillslopes, ready to be eroded and transported by rain. More than 2000 occurrences of debris flow have been recorded by the Land and Resources Department of Sichuan Province following the 2008 quake till 2012. The threshold in hourly rainfall intensity for triggering debris flows was found to be around 60% lower after the earthquake than it had been before, according to the record in Beichuan. How long it will take for the debris flow frequency to return to pre-earthquake levels depends on a large number of factors, including rainfall intensity, natural re-vegetation and self-stabilization processes on slopes. We anticipate that - despite large uncertainties - debris flows that directly result from sediment movement during the 2008 earthquake may

  19. Combined effects of tectonic and landslide-generated Tsunami Runup at Seward, Alaska during the Mw 9.2 1964 earthquake

    USGS Publications Warehouse

    Suleimani, E.; Nicolsky, D.J.; Haeussler, Peter J.; Hansen, R.

    2011-01-01

    We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the Mw 9.2 1964 mega thrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in land sliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5 min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211 million m3 (Haeussler et al. in Submarine mass movements and their consequences, pp 269-278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30 min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local land slide generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et al. in Pure Appl Geophys 166:131-152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559-572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For

  20. New contributions to the debate on the cause of the January 11th, 1693 tsunami in eastern Sicily (Italy): earthquake or offshore landslide source (or may be both)?

    NASA Astrophysics Data System (ADS)

    Armigliato, A.; Tinti, S.; Zaniboni, F.; Pagnoni, G.; Argnani, A.

    2007-12-01

    Eastern Sicily is among the most exposed regions in Italy and in the whole Mediterranean to tsunami hazard and risk. The historical tsunamis recorded here were generally associated to moderate-to-large magnitude earthquakes. The largest tsunami documented in the area occurred on January 11th, 1693. It followed the highest-magnitude earthquake (7.4) of the Italian seismic history. The tsunami, whose first significant motion was a retreat along the entire eastern Sicily coastline, produced the most devastating effects at Augusta (15 meters run-up) and Catania, being relevant at Siracusa and Messina too. A lively debate exists on whether the earthquake was the only source of the tsunami, or other causes (such as submarine landslides, possibly triggered by the earthquake) contributed to the tsunami generation. In the framework of the EC funded project TRANSFER, we investigate both hypotheses, starting from suitable onshore and offshore faults as well as from offshore landslide bodies, and hence simulating numerically the ensuing tsunami and comparing the results with the available historical information. We base on the results obtained during recent offshore surveys, in particular the multichannel seismic survey MESC2001, carried out in year 2001 on board the R/V Urania of the Italian National Council of Researches (CNR), which mapped both active normal faults and a number of possible landslide bodies along the Hyblaean-Malta escarpment, the most prominent tectonic structure found just few kilometres offshore eastern Sicily. From the modelling point of view, the initial condition for the earthquake- generated tsunamis coincides with the vertical coseismic deformation of the seafloor. Instead, the landslide motion is simulated through the Lagrangian block model UBO-BLOCK2, developed at the University of Bologna. Finally, the finite-element code UBO-TSUFE, implemented by the same research team, is used to simulate the tsunami generation and propagation. The main

  1. Geomorphic changes induced by the April-May 2015 earthquake sequence in the Pharak-Khumbu area (Nepal): preliminary assessments.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Landsliding is a common process shaping mountain slopes. There are various potential landslide triggers (rainfall, bank erosion, earthquakes) and their effectiveness depends on their distribution, frequency and magnitude. In a Himalayan context, the effects of monsoon rainfall can be assessed every year whereas the unpredictability and low frequency of large earthquakes make their role in triggering slope instability more obscure. A 7.8 magnitude earthquake struck central Nepal (Gorkha District) on 25 April 2015 and was followed by many aftershocks exceeding magnitude 5, including another strong 7.3 magnitude earthquake on May 12, 2015 (Dolakha District). This seismic crisis provides an exceptional opportunity to assess the disruptions that earthquakes may cause in "regular" geomorphic systems controlled by rainfall. Here we present field observations carried out in the Pharak-Khumbu area (East Nepal, Dudh Kosi catchment) before and after the April-May 2015 earthquakes. The Pharak, a "middle mountains" (2000-4500 m) area, is affected by monsoon rains (3000 m/yr at 2500 m) and characterised by steep hillslopes, shaped by different geomorphic processes according to slope height and aspect, rock type and strength, inherited landforms, stream connectivity and current land use changes. This study focuses on the south of Lukla (Phakding District), and more specifically on the Khari Khola catchment and its surroundings. The area lies at the transition between the Higher Himalayan crystallines and the Lesser Himalayan meta-sediments. On the basis of our diachronic observations (March and November 2015), we surveyed and mapped new earthquake-induced slope instabilities such as rock falls, rockslides, landslides and debris flows and a combination of several of them. Interviews with local people also helped to assess the exact timing of some events. While the first M 7.8 earthquake produced significant impacts in the northern Khumbu area, the M 7.3 aftershock seems to have

  2. Experimental research on the dam-break mechanisms of the Jiadanwan landslide dam triggered by the Wenchuan earthquake in China.

    PubMed

    Xu, Fu-gang; Yang, Xing-guo; Zhou, Jia-wen; Hao, Ming-hui

    2013-01-01

    Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation.

  3. Experimental Research on the Dam-Break Mechanisms of the Jiadanwan Landslide Dam Triggered by the Wenchuan Earthquake in China

    PubMed Central

    Xu, Fu-gang; Yang, Xing-guo; Hao, Ming-hui

    2013-01-01

    Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation. PMID:23844387

  4. Statistical analysis of factors affecting landslide distribution in the new Madrid seismic zone, Tennessee and Kentucky

    USGS Publications Warehouse

    Jibson, R.W.; Keefer, D.K.

    1989-01-01

    and earth flows in the area are spatially related to the 1811-12 earthquake hypocenters and were thus probably triggered by those earthquakes. These results are consistent with findings of other recent investigations of landslides in the area that presented field, historical, and analytical evidence to demonstrate that old landslides in the area formed during the 1811-12 New Madrid earthquakes. Results of the multiple linear regression can also be used to approximate the relative susceptibility of the bluffs in the study area to seismically induced landsliding. ?? 1989.

  5. Meltwater Induced Glacier Landslides - Waxell Ridge, AK

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K. M.; Bratton, D. A.; Keeler, R. H.; Noyles, C.

    2006-12-01

    Within the past year, two large landslides have originated from south-facing peaks on Waxell Ridge, the bedrock massif that separates the Bagley Icefield from Bering Glacier, Alaska. Each involves a near-summit hanging glacier. In each instance, the presence of meltwater appears to be a triggering factor. The largest of the two, which occurred on September 14, 2005, originated from just below the summit of 3,236-m-high Mt Steller and landed on the surface of Bering Glacier, nearly 2,500 m below. The Alaska Volcano Observatory estimated the volume of this landslide, which consisted of rock, glacier ice, and snow, to be approximately 50 million cubic meters. Unlike most large Alaskan glacier-related landslides, this one was not triggered by an earthquake. However, the energy that the slide released was intense enough to generate a seismic signal that was recorded around the world with magnitudes of 3.8 to greater than 5. The slide extended ~10 km down the Bering Glacier from the point of impact. Much of the surface on which the slide occurred had a slope >50 degrees. The second landslide, located ~6 km to the west of Mt Steller, originated from a secondary summit of a 2,500- m-high unnamed peak. The date of its occurrence is unknown, but its toe sits on winter 2005-2006 snow. Both slides have been examined from helicopter and fixed-wing overflights, and with a variety of vertical and oblique aerial photographs. Oblique aerial photographs obtained of the Mt Steller slide on September 15, 2005 depict a 10-15-m-diameter moulin or englacial stream channel in the truncated 30-m-thick glacier ice that comprises the east wall of the landslide scarp. The presence of this unusual glacial-hydrologic feature at an elevation above 3,000 m, suggests that a large volume of water had recently been flowing on Mt Steller's east ridge and that the water might have had a role in triggering the landslide. Similarly, there is evidence of an englacial channel on the west flank of the

  6. Integrating landslide and liquefaction hazard and loss estimates with existing USGS real-time earthquake information products

    USGS Publications Warehouse

    Allstadt, Kate E.; Thompson, Eric M.; Hearne, Mike; Nowicki Jessee, M. Anna; Zhu, J.; Wald, David J.; Tanyas, Hakan

    2017-01-01

    The U.S. Geological Survey (USGS) has made significant progress toward the rapid estimation of shaking and shakingrelated losses through their Did You Feel It? (DYFI), ShakeMap, ShakeCast, and PAGER products. However, quantitative estimates of the extent and severity of secondary hazards (e.g., landsliding, liquefaction) are not currently included in scenarios and real-time post-earthquake products despite their significant contributions to hazard and losses for many events worldwide. We are currently running parallel global statistical models for landslides and liquefaction developed with our collaborators in testing mode, but much work remains in order to operationalize these systems. We are expanding our efforts in this area by not only improving the existing statistical models, but also by (1) exploring more sophisticated, physics-based models where feasible; (2) incorporating uncertainties; and (3) identifying and undertaking research and product development to provide useful landslide and liquefaction estimates and their uncertainties. Although our existing models use standard predictor variables that are accessible globally or regionally, including peak ground motions, topographic slope, and distance to water bodies, we continue to explore readily available proxies for rock and soil strength as well as other susceptibility terms. This work is based on the foundation of an expanding, openly available, case-history database we are compiling along with historical ShakeMaps for each event. The expected outcome of our efforts is a robust set of real-time secondary hazards products that meet the needs of a wide variety of earthquake information users. We describe the available datasets and models, developments currently underway, and anticipated products. 

  7. Using earthquake-triggered landslides as a hillslope-scale shear strength test: Insights into rock strength properties at geomorphically relevant spatial scales in high-relief, tectonically active settings

    NASA Astrophysics Data System (ADS)

    Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine

    2016-04-01

    The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that

  8. Analysis of the effects of geological and geomorphological factors on earthquake triggered landslides using artificial neural networks (ANN)

    NASA Astrophysics Data System (ADS)

    Kawabata, D.; Bandibas, J.

    2007-12-01

    The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic and geologic features, rock types and vegetative cover are important base factors of landslide occurrence. However, determining the relationship between these factors and landslide occurrence is very difficult using conventional mathematical analysis. The use of an advanced computing technique for this kind of analysis is very important. Artificial neural network (ANN) has recently been included in the list of analytical tools for a wide range of applications in the natural sciences research fields. One of the advantages of using ANN for pattern recognition is that it can handle data at any measurement scale ranging from nominal, ordinal to linear and ratio, and any form of data distribution (Wang et al., 1995). In addition, it can easily handle qualitative variables making it widely used in integrated analysis of spatial data from multiple sources for predicting and classification. This study focuses on the definition of the relationship between geological factors and landslide occurrence using artificial neural networks. The study also focuses on the effect of the DTMs (e.g. ASTER DTM, ALSM, digitized from paper map and digital photogrammetric measurement data). The main aim of the study is to generate landslide susceptibility index map using the defined relationship using ANN. Landslide data in the Chuetsu region were used in this research. The 2004 earthquake triggered many landslides in the region. The initial results of the study showed that ANN is more accurate in defining the relationship between geological and geomorphological factors and landslide occurrence. It also determined the best combination of geological and geomorphological factors that is directly related to landslide occurrence.

  9. Rapid post-seismic landslide evacuation boosted by dynamic river width

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Steer, Philippe; Davy, Philippe

    2017-09-01

    Mass wasting caused by large-magnitude earthquakes chokes mountain rivers with several cubic kilometres of sediment. The timescale and mechanisms by which rivers evacuate small to gigantic landslide deposits are poorly known, but are critical for predicting post-seismic geomorphic hazards, interpreting the signature of earthquakes in sedimentary archives and deciphering the coupling between erosion and tectonics. Here, we use a new 2D hydro-sedimentary evolution model to demonstrate that river self-organization into a narrower alluvial channel overlying the bedrock valley dramatically increases sediment transport capacity and reduces export time of gigantic landslides by orders of magnitude compared with existing theory. Predicted export times obey a universal non-linear relationship of landslide volume and pre-landslide valley transport capacity. Upscaling these results to realistic populations of landslides shows that removing half of the total coarse sediment volume introduced by large earthquakes in the fluvial network would typically take 5 to 25 years in various tectonically active mountain belts, with little impact of earthquake magnitude and climate. Dynamic alluvial channel narrowing is therefore a key, previously unrecognized mechanism by which mountain rivers rapidly digest extreme events and maintain their capacity to incise uplifted rocks.

  10. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    USGS Publications Warehouse

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  11. Size distributions and failure initiation of submarine and subaerial landslides

    USGS Publications Warehouse

    ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  12. Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.

    2017-12-01

    There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.

  13. TRMM Applications for Rainfall-Induced Landslide Early Warning

    NASA Astrophysics Data System (ADS)

    Dok, A.; Fukuoka, H.; Hong, Y.

    2012-04-01

    Early warning system (EWS) is the most effective method in saving lives and reducing property damages resulted from the catastrophic landslides if properly implemented in populated areas of landslide-prone nations. For predicting the occurrence of landslides, it requires examination of empirical relationship between rainfall characteristics and past landslide occurrence. In developed countries like Japan and the US, precipitation is monitored by rain radars and ground-based rain gauge matrix. However, in developing regions like Southeast Asian countries, very limited number of rain gauges is available, and there is no implemented methodology for issuing effective warming of landslides yet. Correspondingly, satellite precipitation monitoring could be therefore a possible and promising solution for launching landslide quasi-real-time early warning system in those countries. It is due to the fact that TMPA (TRMM Multi-satellite Precipitation Analysis) can provides a globally calibration-based sequential scheme for combining precipitation estimates from multiple satellites, and gauge analyses where feasible, at fine scales (3-hourly with 0.25°x0.25° spatial resolution). It is available both after and in quasi-real time, calibrated by TRMM Combined Instrument and TRMM Microwave Imager precipitation product. However, validation of ground based rain gauge and TRMM satellite data in the vulnerable regions is still not yet operative. Snake-line/Critical-line and Soil Water Index (SWI) are used for issuing warning of landslide occurrence in Japan; whereas, Caine criterion is preferable in Europe and western nations. Herewith, it presents rainfall behavior which took place in Beichuan city (located on the 2008 Chinese Wenchuan earthquake fault), Hofu and Shobara cities in Japan where localized heavy rainfall attacked in 2009 and 2010, respectively, from TRMM 3B42RT correlated with ground based rain gauge data. The 1-day rainfall intensity and 15-day cumulative rainfall

  14. A Possible Explanation for the Absence of Large Tsunami Following the Earthquake of March 28, 2005 in the Northern Sumatra: No Major Submarine Landslide

    NASA Astrophysics Data System (ADS)

    Lee, S.-M.

    2005-05-01

    In just over three months, two large earthquakes (magnitudes Mw = 9.0 and 8.7), separated only by a few hundred kilometers in epicenter distance, shook the fore-arc region of the northern Sumatra. According to preliminary reports released by USGS (http://neic.usgs.gov), the seismic moment tensor solutions of the two events match quite well, suggesting that the movement of fault blocks that triggered them was similar. Yet the two earthquakes had drastically different consequence: the December 2004 earthquake triggered a catastrophic tsunami whereas the March 2005 earthquake did not. This difference raises an important question that the December 2004 tsunami was not actually triggered by the faulting itself but by submarine landslide. Earthquake-triggered submarine landslides can sometimes be overlooked as the direct cause of major tsunamis because their location often coincides with the fault rupture zones, but are known to be an important source especially along the active margins with high sedimentation rate. Scientists suspect that a similar event happened on July 17, 1998, when a magnitude 7.0 earthquake triggered by low-angle thrust fault caused a submarine slumping, which in turn generated the tsunami that devastated the coastal region in NW Papua New Guinea, killing more than 2000 human lives. If this was the case in Sumatra, it explains why a major tsunami did not occur following the March 2005 earthquake. A large amount of the sediment deposited along the continental margin by the erosion of high mountain ranges of Sumatra had already slid down the continental slope during the earthquake on December 26, 2004, and therefore not much volume of sediment was left to slide down and generate another major tsunami. The submarine topography may have also been a factor as the area around the epicenter of March 2005 earthquake has a longer extent of steep down-slope section compared to that of December 2004. In addition, the region around December 2004 earthquake has

  15. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  16. Landslides in everyday life: An interdisciplinary approach to understanding vulnerability in the Himalayas

    NASA Astrophysics Data System (ADS)

    Sudmeier-Rieux, K.; Breguet, A.; Dubois, J.; Jaboyedoff, M.

    2009-04-01

    Several thousand landslides were triggered by the Kashmir earthquake, scarring the hillside with cracks. Monsoon rains continue to trigger landslides, which have increased the exposure of populations because of lost agricultural lands, blocked roads and annual fatalities due to landslides. The great majority of these landslides are shallow and relatively small but greatly impacting the population. In this region, landslides were a factor before the earthquake, mainly due to road construction and gravel excavation, but the several thousand landslides triggered by the earthquake have completely overwhelmed the local population and authorities. In Eastern Nepal, the last large earthquake to hit this region occurred in 1988, also triggering numerous landslides and cracks. Here, landslides can be considered a more common phenomenon, yet coping capacities amount to local observations of landslide movement, subsequent abandonment of houses and land as they become too dangerous. We present a comparative case study from Kashmir, Pakistan and Eastern Nepal, highlighting an interdisciplinary approach to understanding the complex interactions between land use, landslides and vulnerability. Our approach sets out to understand underlying causes of the massive landslides triggered by the 2005 earthquake in Kashmir, Pakistan, and also the increasing number of landslides in Nepal. By approaching the issue of landslides from multiple angles (risk perceptions, land use, local coping capacities, geological assessment, risk mapping) and multiple research techniques (remote sensing, GIS, geological assessment, participatory mapping, focus groups) we are better able to create a more complete picture of the "hazardscape". We find that by combining participatory social science research with hazard mapping, we obtain a more complete understanding of underlying causes, coping strategies and possible mitigation options, placing natural hazards in the context of everyday life. This method is

  17. Landslides, forest fires, and earthquakes: examples of self-organized critical behavior

    NASA Astrophysics Data System (ADS)

    Turcotte, Donald L.; Malamud, Bruce D.

    2004-09-01

    Per Bak conceived self-organized criticality as an explanation for the behavior of the sandpile model. Subsequently, many cellular automata models were found to exhibit similar behavior. Two examples are the forest-fire and slider-block models. Each of these models can be associated with a serious natural hazard: the sandpile model with landslides, the forest-fire model with actual forest fires, and the slider-block model with earthquakes. We examine the noncumulative frequency-area statistics for each natural hazard, and show that each has a robust power-law (fractal) distribution. We propose an inverse-cascade model as a general explanation for the power-law frequency-area statistics of the three cellular-automata models and their ‘associated’ natural hazards.

  18. Submarine landslides

    USGS Publications Warehouse

    Hampton, M.A.; Lee, H.J.; Locat, J.

    1996-01-01

    Landslides are common on inclined areas of the seafloor, particularly in environments where weak geologic materials such as rapidly deposited, finegrained sediment or fractured rock are subjected to strong environmental stresses such as earthquakes, large storm waves, and high internal pore pressures. Submarine landslides can involve huge amounts of material and can move great distances: slide volumes as large as 20,000 km3 and runout distances in excess of 140 km have been reported. They occur at locations where the downslope component of stress exceeds the resisting stress, causing movement along one or several concave to planar rupture surfaces. Some recent slides that originated nearshore and retrogressed back across the shoreline were conspicuous by their direct impact on human life and activities. Most known slides, however, occurred far from land in prehistoric time and were discovered by noting distinct to subtle characteristics, such as headwall scarps and displaced sediment or rock masses, on acoustic-reflection profiles and side-scan sonar images. Submarine landslides can be analyzed using the same mechanics principles as are used for occurrences on land. However, some loading mechanisms are unique, for example, storm waves, and some, such as earthquakes, can have greater impact. The potential for limited-deformation landslides to transform into sediment flows that can travel exceedingly long distances is related to the density of the slope-forming material and the amount of shear strength that is lost when the slope fails.

  19. An innovative tool for landslide susceptibility mapping in Kyrgyzstan, Central Asia

    NASA Astrophysics Data System (ADS)

    Saponaro, Annamaria; Pilz, Marco; Wieland, Marc; Bindi, Dino; Parolai, Stefano

    2013-04-01

    Kyrgyzstan is among the most exposed countries in the world to landslide susceptibility. The high seismicity of the area, the presence of high mountain ridges and topographic relieves, the geology of the local materials and the occurrence of heavy precipitations represent the main factors responsible for slope failures. In particular, the large variability of material properties and slope conditions as well as the difficulties in forecasting heavy precipitations locally and in quantifying the level of ground shaking call for harmonized procedures for reducing the negative impact of these factors. Several studies have recently been carried out aiming at preparing landslide susceptibility and hazard maps; however, some of them - qualitative-based - suffer from the application of subjective decision rules from experts in the classification of parameters that influence the occurrence of a landslide. On the other hand, statistical methods provide objectivity over qualitative ones since they allow a numerical evaluation of landslide spatial distribution with landslide potential factors. For this reason, we will make use of a bivariate technique known as Weight-Of-Evidence method to evaluate the influence of landslide predictive factors. The aim of this study is to identify areas in Kyrgyzstan being more prone to earthquake-triggered landslides. An innovative approach which exploits the new advances of GIS technology together with statistical concepts is presented. A range of conditioning factors and their potential impact on landslide activation is quantitatively assessed on the basis of landslide spatial distribution and seismic zonation. Results show areas which are more susceptible to landslides induced by earthquakes. Our approach can be used to fill the gap of subjectivity that typically affects already performed qualitative analysis. The resulting landslide susceptibility map represents a potentially supportive tool for disaster management and planning activities

  20. Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Huang, C.-C.; Lee, Y.-H.; Liu, Huaibao P.; Keefer, D.K.; Jibson, R.W.

    2001-01-01

    The 1999 Chi-Chi, Taiwan, earthquake triggered numerous landslides throughout a large area in the Central Range, to the east, southeast, and south of the fault rupture. Among them are two large rock avalanches, at Tsaoling and at Jih-Feng-Erh-Shan. At Jih-Feng-Erh-Shan, the entire thickness (30-50 m) of the Miocene Changhukeng Shale over an area of 1 km2 slid down its bedding plane for a distance of about 1 km. Initial movement of the landslide was nearly purely translational. We investigate the effect of surface-normal acceleration on the initiation of the Jih-Feng-Erh-Shan landslide using a block slide model. We show that this acceleration, currently not considered by dynamic slope-stability analysis methods, significantly influences the initiation of the landslide.

  1. Spatial and temporal variability in rates of landsliding in seismically active mountain ranges

    NASA Astrophysics Data System (ADS)

    Parker, R.; Petley, D.; Rosser, N.; Densmore, A.; Gunasekera, R.; Brain, M.

    2012-04-01

    Where earthquake and precipitation driven disasters occur in steep, mountainous regions, landslides often account for a large proportion of the associated damage and losses. This research addresses spatial and temporal variability in rates of landslide occurrence in seismically active mountain ranges as a step towards developing better regional scale prediction of losses in such events. In the first part of this paper we attempt to explain reductively the variability in spatial rates of landslide occurrence, using data from five major earthquakes. This is achieved by fitting a regression-based conditional probability model to spatial probabilities of landslide occurrence, using as predictor variables proxies for spatial patterns of seismic ground motion and modelled hillslope stability. A combined model for all earthquakes performs well in hindcasting spatial probabilities of landslide occurrence as a function of readily-attainable spatial variables. We present validation of the model and demonstrate the extent to which it may be applied globally to derive landslide probabilities for future earthquakes. In part two we examine the temporal behaviour of rates of landslide occurrence. This is achieved through numerical modelling to simulate the behaviour of a hypothetical landscape. The model landscape is composed of hillslopes that continually weaken, fail and reset in response to temporally-discrete forcing events that represent earthquakes. Hillslopes with different geometries require different amounts of weakening to fail, such that they fail and reset at different temporal rates. Our results suggest that probabilities of landslide occurrence are not temporally constant, but rather vary with time, irrespective of changes in forcing event magnitudes or environmental conditions. Various parameters influencing the magnitude and temporal patterns of this variability are identified, highlighting areas where future research is needed. This model has important

  2. An integrated approach for analysing earthquake-induced surface effects: A case study from the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Castaldini, D.; Genevois, R.; Panizza, M.; Puccinelli, A.; Berti, M.; Simoni, A.

    This paper illustrates research addressing the subject of the earthquake-induced surface effects by means of a multidisciplinary approach: tectonics, neotectonics, seismology, geology, hydrogeology, geomorphology, soil/rock mechanics have been considered. The research is aimed to verify in areas affected by earthquake-triggered landslides a methodology for the identification of potentially unstable areas. The research was organized according to regional and local scale studies. In order to better emphasise the complexity of the relationships between all the parameters affecting the stability conditions of rock slopes in static and dynamic conditions a new integrated approach, Rock Engineering Systems (RES), was applied in the Northern Apennines. In the paper, the different phases of the research are described in detail and an example of the application of RES method in a sample area is reported. A significant aspect of the study can be seen in its attempt to overcome the exclusively qualitative aspects of research into the relationship between earthquakes and induced surface effects, and to advance the idea of beginning a process by which this interaction can be quantified.

  3. Establish susceptibility and risk assessment models for rainfall-induced landslide: A case in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Chunhung; Huang, Jyuntai

    2017-04-01

    Most of the landslide cases in Taiwan were triggered by rainfall or earthquake events. The heavy rainfall in the typhoon seasons, from June to October, causes the landslide hazard more serious. Renai Towhship is of the most large landslide cases after 2009 Typhoon Morakot (from Aug. 5 to Aug. 10, 2009) in Taiwan. Around 2,744 landslides cases with the total landslide area of 21.5 km2 (landslide ratio =1.8%), including 26 large landslide cases, induced after 2009 Typhoon Morakot in Renai Towhship. The area of each large landslides case is more than 0.1 km2, and the area of the largest case is around 0.96 km2. 58% of large landslide cases locate in the area with metamorphosed sandstone. The mean slope of 26 large landslide cases ranges from 15 degree to 56 degree, and the accumulated rainfall during 2009 Typhoon Morakot ranges from 530 mm to 937 mm. Three methods, including frequency ratio method (abbreviated as FR), weights of evidence method (abbreviated as WOE), and logistic regression method (abbreviated as LR), are used in this study to establish the landslides susceptibility in the Renai Township, Nantou County, Taiwan. Eight landslide related-factors, including elevation, slope, aspect, geology, land use, distance to drainage, distance to fault, accumulation rainfall during 2009 Typhoon Morakot, are used to establish the landslide susceptibility models in this study. The landslide inventory after 2009 Typhoon Morakot is also used to test the model performance in this study. The mean accumulated rainfall in Renai Township during 2009 typhoon Morakot was around 735 mm with the maximum 1-hr, 3-hrs, and 6-hrs rainfall intensity of 44 mm/1-hr, 106 mm/3-hrs and 204 mm/6-hrs, respectively. The range of original susceptibility values established by three methods are 4.0 to 20.9 for FR, -33.8 to -16.1 for WOE, and -41.7 to 5.7 for LR, and the mean landslide susceptibility value are 8.0, -24.6 and 0.38, respectively. The AUC values are 0.815 for FR, 0.816 for WOE, and 0

  4. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.

    PubMed

    Gariano, S L; Rianna, G; Petrucci, O; Guzzetti, F

    2017-10-15

    According to the fifth report of the Intergovernmental Panel on Climate Change, an increase in the frequency and the intensity of extreme rainfall is expected in the Mediterranean area. Among different impacts, this increase might result in a variation in the frequency and the spatial distribution of rainfall-induced landslides, and in an increase in the size of the population exposed to landslide risk. We propose a method for the regional-scale evaluation of future variations in the occurrence of rainfall-induced landslides, in response to changes in rainfall regimes. We exploit information on the occurrence of 603 rainfall-induced landslides in Calabria, southern Italy, in the period 1981-2010, and daily rainfall data recorded in the same period in the region. Furthermore, we use high-resolution climate projections based on RCP4.5 and RCP8.5 scenarios. In particular, we consider the mean variations between a 30-year future period (2036-2065) and the reference period 1981-2010 in three variables assumed as proxy for landslide activity: annual rainfall, seasonal cumulated rainfall, and annual maxima of daily rainfall. Based on reliable correlations between landslide occurrence and weather variables estimated in the reference period, we assess future variations in rainfall-induced landslide occurrence for all the municipalities of Calabria. A +45.7% and +21.2% average regional variation in rainfall-induced landslide occurrence is expected in the region for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. We also investigate the future variations in the impact of rainfall-induced landslides on the population of Calabria. We find a +80.2% and +54.5% increase in the impact on the population for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. The proposed method is quantitative and reproducible, thus it can be applied in similar regions, where adequate landslide and rainfall information is available. Copyright © 2017

  5. New imaging of submarine landslides from the 1964 earthquake near Whittier, Alaska, and a comparison to failures in other Alaskan fjords

    USGS Publications Warehouse

    Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee

    2014-01-01

    The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.

  6. Coulomb Mechanics And Landscape Geometry Explain Landslide Size Distribution

    NASA Astrophysics Data System (ADS)

    Jeandet, L.; Steer, P.; Lague, D.; Davy, P.

    2017-12-01

    It is generally observed that the dimensions of large bedrock landslides follow power-law scaling relationships. In particular, the non-cumulative frequency distribution (PDF) of bedrock landslide area is well characterized by a negative power-law above a critical size, with an exponent 2.4. However, the respective role of bedrock mechanical properties, landscape shape and triggering mechanisms on the scaling properties of landslide dimensions are still poorly understood. Yet, unravelling the factors that control this distribution is required to better estimate the total volume of landslides triggered by large earthquakes or storms. To tackle this issue, we develop a simple probabilistic 1D approach to compute the PDF of rupture depths in a given landscape. The model is applied to randomly sampled points along hillslopes of studied digital elevation models. At each point location, the model determines the range of depth and angle leading to unstable rupture planes, by applying a simple Mohr-Coulomb rupture criterion only to the rupture planes that intersect downhill surface topography. This model therefore accounts for both rock mechanical properties, friction and cohesion, and landscape shape. We show that this model leads to realistic landslide depth distribution, with a power-law arising when the number of samples is high enough. The modeled PDF of landslide size obtained for several landscapes match the ones from earthquakes-driven landslides catalogues for the same landscape. In turn, this allows us to invert landslide effective mechanical parameters, friction and cohesion, associated to those specific events, including Chi-Chi, Wenchuan, Niigata and Gorkha earthquakes. The cohesion and friction ranges (25-35 degrees and 5-20 kPa) are in good agreement with previously inverted values. Our results demonstrate that reduced complexity mechanics is efficient to model the distribution of unstable depths, and show the role of landscape variability in landslide size

  7. Landslide susceptibility mapping for a part of North Anatolian Fault Zone (Northeast Turkey) using logistic regression model

    NASA Astrophysics Data System (ADS)

    Demir, Gökhan; aytekin, mustafa; banu ikizler, sabriye; angın, zekai

    2013-04-01

    The North Anatolian Fault is know as one of the most active and destructive fault zone which produced many earthquakes with high magnitudes. Along this fault zone, the morphology and the lithological features are prone to landsliding. However, many earthquake induced landslides were recorded by several studies along this fault zone, and these landslides caused both injuiries and live losts. Therefore, a detailed landslide susceptibility assessment for this area is indispancable. In this context, a landslide susceptibility assessment for the 1445 km2 area in the Kelkit River valley a part of North Anatolian Fault zone (Eastern Black Sea region of Turkey) was intended with this study, and the results of this study are summarized here. For this purpose, geographical information system (GIS) and a bivariate statistical model were used. Initially, Landslide inventory maps are prepared by using landslide data determined by field surveys and landslide data taken from General Directorate of Mineral Research and Exploration. The landslide conditioning factors are considered to be lithology, slope gradient, slope aspect, topographical elevation, distance to streams, distance to roads and distance to faults, drainage density and fault density. ArcGIS package was used to manipulate and analyze all the collected data Logistic regression method was applied to create a landslide susceptibility map. Landslide susceptibility maps were divided into five susceptibility regions such as very low, low, moderate, high and very high. The result of the analysis was verified using the inventoried landslide locations and compared with the produced probability model. For this purpose, Area Under Curvature (AUC) approach was applied, and a AUC value was obtained. Based on this AUC value, the obtained landslide susceptibility map was concluded as satisfactory. Keywords: North Anatolian Fault Zone, Landslide susceptibility map, Geographical Information Systems, Logistic Regression Analysis.

  8. Landslides and Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Densmore, A. L.; Hovius, N.

    2017-12-01

    Landslides have long been recognised as a major hazard, and are a common product of both large earthquakes and rainstorms. Our appreciation for landslides as agents of erosion and land surface evolution, however, is much more recent. Only in the last twenty years have we come to understand the critical role that landslides play at the landscape scale: in allowing hillslopes to keep pace with fluvial incision, in supplying sediment to channel networks and sedimentary basins, in divide migration, and in setting the basic structure of the landscape. This perspective has been made possible in part by repeat remote sensing and new ways of visualising the land surface, and by extending our understanding of failure processes to the landscape scale; but it is also true that the big jumps in our knowledge have been triggered by large events, such as the 1999 Chi-Chi and 2008 Wenchuan earthquakes. Thanks in part to a relative handful of such case studies, we now have a better idea of the spatial distribution of landslides that are triggered in large events, the volume of sediment that they mobilise, the time scales over which that sediment is mobilised and evacuated, and the overall volume balance between erosion and tectonic processes in the growth of mountainous topography. There remain, however, some major challenges that must still be overcome. Estimates of landslide volume remain highly uncertain, as does our ability to predict the evolution of hillslope propensity to failure after a major triggering event, the movement of landslide sediment (especially the coarse fraction that is transported as bedload), and the impact of landslides on both long-term erosion rates and tectonic processes. The limited range of case studies also means that we struggle to predict outcomes for triggering events in different geological settings, such as loess landscapes or massive lithologies. And the perspective afforded by taking a landscape-scale view has yet to be fully reflected in our

  9. Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years

    PubMed Central

    Zhang, Shuai; Zhang, Limin; Lacasse, Suzanne; Nadim, Farrokh

    2016-01-01

    It is increasingly clear that landslides represent a major cause of economic costs and deaths in earthquakes in mountains. In the Wenchuan earthquake case, post-seismic cascading landslides continue to represent a major problem eight years on. Failure to anticipate the impact of cascading landslides could lead to unexpected losses of human lives and properties. Previous studies tended to focus on separate landslide processes, with little attention paid to the quantification of long-term evolution of multiple processes or the evolution of mass movements. The very active mass movements near the epicentre of the Wenchuan earthquake provided us a unique opportunity to understand the complex processes of the evolving cascading landslides after a strong earthquake. This study budgets the mass movements on the hillslopes and in the channels in the first eight years since the Wenchuan earthquake and verify a conservation in mass movements. A system illustrating the evolution and interactions of mass movement after a strong earthquake is proposed. PMID:27824077

  10. Assessment of Rainfall-induced Landslide Potential and Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Chiang, Jie-Lun; Hsieh, Shun-Chieh; Chue, Yung-Sheng

    2016-04-01

    Recently, due to the global climate change, most of the time the rainfall in Taiwan is of short duration but with high intensity. Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assesses rainfall-induced (secondary) landslide potential and spatial distribution in watershed of Southern Taiwan under extreme climate change. The study areas in this research are Baolai and Jianshan villages in the watershed of the Laonongxi River Basin in the Southern Taiwan. This study focused on the 3 years after Typhoon Morakot (2009 to 2011). During this period, the study area experienced six heavy rainfall events including five typhoons and one heavy rainfall. The genetic adaptive neural network, texture analysis and GIS were implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data and to analyze land use change. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various natural environmental and slope development hazard factors. Furthermore, this study established a slope landslide potential assessment model and depicted a slope landslide potential diagram by using the GIS platform. The interaction between (secondary) landslide mechanism, scale, and location was analyzed using association analysis of landslide historical data and regional environmental characteristics. The results of image classification before and after six heavy rainfall events show that the values of coefficient of agreement are at medium-high level. By multivariate hazards evaluation method, geology and the effective accumulative rainfall (EAR) are the most important factors. Slope, distance from fault, aspect, land disturbance

  11. Assessment of landslide hazards resulting from the February 13, 2001, El Salvador earthquake; a report to the government of El Salvador and the U. S. Agency for International Development

    USGS Publications Warehouse

    Baum, Rex L.; Crone, Anthony J.; Escobar, Demetreo; Harp, Edwin L.; Major, Jon J.; Martinez, Mauricio; Pullinger, Carlos; Smith, Mark E.

    2001-01-01

    Quebrada Del Muerto are unlikely to be remobilized during the rainy season; whereas, the sandy and silty landslide debris in the channel of Quebrada El Blanco is susceptible to remobilization as debris flows that could extend into populated areas on the lower slopes of the volcano. Around the northern and eastern shore of Lago de Ilopango, earthquake-induced liquefaction and lateral-spreading landslides caused local damage to homes and other structures; this damage was most prevalent in the village of San Agustin. San Agustin is also potentially threatened by floods because it is located on the alluvial fan of the Quebrada El Chaguite drainage basin, which contains hundreds of landslides that have choked numerous small channels with volcanic tephra. As the easily eroded tephra is transported down the drainage system and deposited on the alluvial fan, it could clog the currently active channel with sediment, divert the stream into a new channel, and possibly direct flow through San Agustin, causing more damage and destruction

  12. Deviation from Power Law Behavior in Landslide Phenomenon

    NASA Astrophysics Data System (ADS)

    Li, L.; Lan, H.; Wu, Y.

    2013-12-01

    Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law

  13. Impact of earthquake-induced tsunamis on public health

    NASA Astrophysics Data System (ADS)

    Mavroulis, Spyridon; Mavrouli, Maria; Lekkas, Efthymios; Tsakris, Athanassios

    2017-04-01

    Tsunamis are caused by rapid sea floor displacement during earthquakes, landslides and large explosive eruptions in marine environment setting. Massive amounts of sea water in the form of devastating surface waves travelling hundreds of kilometers per hour have the potential to cause extensive damage to coastal infrastructures, considerable loss of life and injury and emergence of infectious diseases (ID). This study involved an extensive and systematic literature review of 50 research publications related to public health impact of the three most devastating tsunamis of the last 12 years induced by great earthquakes, namely the 2004 Sumatra-Andaman earthquake (moment magnitude Mw 9.2), the 2009 Samoa earthquake (Mw 8.1) and the 2011 Tōhoku (Japan) earthquake (Mw 9.0) in the Indian, Western Pacific and South Pacific Oceans respectively. The inclusion criteria were literature type comprising journal articles and official reports, natural disaster type including tsunamis induced only by earthquakes, population type including humans, and outcome measure characterized by disease incidence increase. The potential post-tsunami ID are classified into 11 groups including respiratory, pulmonary, wound-related, water-borne, skin, vector-borne, eye, fecal-oral, food-borne, fungal and mite-borne ID. Respiratory infections were detected after all the above mentioned tsunamis. Wound-related, skin and water-borne ID were observed after the 2004 and 2011 tsunamis, while vector-borne, fecal-oral and eye ID were observed only after the 2004 tsunami and pulmonary, food-borne and mite-borne ID were diagnosed only after the 2011 tsunami. Based on available age and genre data, it is concluded that the most vulnerable population groups are males, children (age ≤ 15 years) and adults (age ≥ 65 years). Tetanus and pneumonia are the deadliest post-tsunami ID. The detected risk factors include (1) lowest socioeconomic conditions, poorly constructed buildings and lack of prevention

  14. The Tsaoling 1941 Landslide, New Insight of Numerical Simulation of Discrete Element Model

    NASA Astrophysics Data System (ADS)

    Tang, C.-L.; Hu, J.-C.; Lin, M.-L.

    2009-04-01

    motion to each particle, a force-displacement law to each contact, and a constant updating of wall positions. The physical properties of the particles in the model can be traced in time dominant (i.e. velocity, displacement, force, and stress). During the simulating, we can get the variation of physical properties, so the inter-block change of displacement, force, and stress could be monitored. After the seismic shaking, the result of the PFC model can be divided into three portions, upper (thick), middle (transitional) and lower (thin). The shear displacements of the three parts on the sliding plane are not agreement. The displacement of the lower part block is large than the upper and middle part of the blocks. The shear displacement of middle part is between upper and lower part. During the shaking of the earthquake, the different parts in the block collide with each other, and the upper part of the block was hit back and stayed in origin position or slid a short distance, but the lower part of the block was hit down by the upper block. The collision pushed down a certain length to the lower part of the block. The shear length just lost the strength of the sliding plane and induced the landslide during the 1941 earthquake. The upper part of the block stayed on the slope but revealed unstable. Eight months later, the upper part of the block slid down was induced by a 700 mm downpour in three days.

  15. Prediction of Rainfall-Induced Landslides in Tegucigalpa, Honduras, Using a Hydro-Geotechnical Model

    NASA Astrophysics Data System (ADS)

    Garcia Urquia, Elias; Axelsson, K.

    2010-05-01

    Central America is constantly being affected by natural hazards. Among these events are hurricanes and earthquakes, capable of triggering landslides that can alter the natural landscape, destroy infrastructure and cause the death of people in the most important settlements of the region. Hurricane Mitch in October of 1998 was of particular interest for the region, since it provoked hundreds of rainfall-induced landslides, mainly in 4 different countries. Studies carried out after Hurricane Mitch have allowed researchers to identify the factors that contribute to slope instability in many vulnerable areas. As Tegucigalpa, Honduras was partially destroyed due to the various landslide and flooding events triggered by this devastating hurricane, various research teams have deepened in their investigations and have proposed measures to mitigate the effects of similar future incidents. A model coupling an infinite-slope analysis and a simple groundwater flow approach can serve as a basis to predict the occurrence of landslides in Tegucigalpa, Honduras as a function of topographic, hydrological and soil variables. A safety map showing the rainfall-triggered landslide risk zones for Tegucigalpa, Honduras is to be created. As opposed to previous safety maps in which only steady-state conditions are studied, this analysis is extended and different steady-state and quasi-dynamic scenarios are considered for comparison. For the purpose of the latter settings, a hydrological analysis that determines the rainfall extreme values and their return periods in Tegucigalpa will account for the influence of rainfall on the groundwater flow and strength of soils. It is known that the spatial distribution of various factors that contribute to the risk of landslides (i.e. soil thickness, conductivity and strength properties; rainfall intensity and duration; root strength; subsurface flow orientation) is hard to determine. However, an effort is done to derive correlations for these

  16. Landslides of Palestinian Region

    NASA Astrophysics Data System (ADS)

    Alwahsh, H.

    2013-12-01

    Natural disasters are extreme sudden events caused by environmental and natural actors that take away the lives of many thousands of people each year and damage large amount of properties. They strike anywhere on earth, often without any warning. A risk maps of natural disaster are very useful to identify the places that might be adversely affected in the event of natural disaster. The earthquakes are one of natural disaster that have the greatest hazards and will cause loss of life and properties due to damaging the structures of building, dams, bridges. In addition, it will affect local geology and soil conditions. The site effects play an important role in earthquake risk because of its amplification or damping simulation. Another parameter in developing risk map is landslide, which is also one of the most important topics in site effect hazards. Palestine region has been suffering landslide hazards because of the topographical and geological conditions of this region. Most Palestine consists of mountainous area, which has great steep slopes and the type of soil is mainly grayish to yellowish silty clay (Marl Soil). Due to the above mentioned factors many landslides have been occurred from Negev south to the northern borders of Palestine. An example of huge and destruction landslide in a Palestine authority is the landslide in the White Mountain area in the city of Nablus, which occurred in 1997. The geotechnical and geophysical investigation as well as slope stability analysis should be considered in making landslide maps that are necessary to develop risk levels of the natural disaster. Landslides occurred in slopes that are created naturally or by human beings. Failure of soil mass occurs, and hence landslide of soil mass happen due to sliding of soil mass along a plane or curved surface. In general, the slopes become unstable when the shear stresses (driving force) generated in the soil mass exceed the available shearing resistance on the rupture surface

  17. Security Implications of Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Jha, B.; Rao, A.

    2016-12-01

    The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.

  18. Unraveling earthquake stresses: Insights from dynamically triggered and induced earthquakes

    NASA Astrophysics Data System (ADS)

    Velasco, A. A.; Alfaro-Diaz, R. A.

    2017-12-01

    Induced seismicity, earthquakes caused by anthropogenic activity, has more than doubled in the last several years resulting from practices related to oil and gas production. Furthermore, large earthquakes have been shown to promote the triggering of other events within two fault lengths (static triggering), due to static stresses caused by physical movement along the fault, and also remotely from the passage of seismic waves (dynamic triggering). Thus, in order to understand the mechanisms for earthquake failure, we investigate regions where natural, induced, and dynamically triggered events occur, and specifically target Oklahoma. We first analyze data from EarthScope's USArray Transportable Array (TA) and local seismic networks implementing an optimized (STA/LTA) detector in order to develop local detection and earthquake catalogs. After we identify triggered events through statistical analysis, and perform a stress analysis to gain insight on the stress-states leading to triggered earthquake failure. We use our observations to determine the role of different transient stresses in contributing to natural and induced seismicity by comparing these stresses to regional stress orientation. We also delineate critically stressed regions of triggered seismicity that may indicate areas susceptible to earthquake hazards associated with sustained fluid injection in provinces of induced seismicity. Anthropogenic injection and extraction activity can alter the stress state and fluid flow within production basins. By analyzing the stress release of these ancient faults caused by dynamic stresses, we may be able to determine if fluids are solely responsible for increased seismic activity in induced regions.

  19. Disseminating Landslide Hazard Information for California Local Government

    NASA Astrophysics Data System (ADS)

    Wills, C. J.

    2010-12-01

    Since 1969, the California Geological Survey has produced numerous maps showing landslide features and delineating potential slope-stability problem areas. These maps have been provided to local governments to encourage consideration of landslide hazards in planning and development decisions. Maps produced from 1986 through 1995 under the Landslide Hazard Mapping Act were advisory only, and their use by local government was never consistent. By contrast, maps of Zones of Required Investigation for seismically induced landslides produced under the Seismic Hazard Zoning Act since 1997 come with detailed guidelines and legal requirements. A legislative act that required landslide hazards be mapped and hazard maps disseminated to local government proved ineffective in landslide hazard mitigation. A later act with requirements that the hazard zone maps be used by local government proved more effective. Planning scenarios have proven to be an effective way of transmitting scientific information about natural hazards to emergency response professionals. Numerous earthquake planning scenarios have been prepared and used as the basis for emergency response exercises. An advantage of scenarios that include loss estimates is that the effects can be put in units of measure that everyone understands, principally deaths and dollars. HAZUS software available from FEMA allows calculation of losses for earthquake scenarios, but similar methods for landslides have not been developed. As part of the USGS Multi-Hazard Demonstration Project, we have estimated the landslide losses for a major west-coast winter storm scenario by developing a system based loosely on HAZUS. Data on landslide damage in past storms has been sparse and inconsistent, but a few data sets are available. The most detailed and complete available data on landslide damage was gathered by the City of Los Angeles following the 1978 storms. We extrapolate from that data to the entire state by first generalizing a

  20. Landslide-induced river channel avulsions in mountain catchments of southwest New Zealand

    NASA Astrophysics Data System (ADS)

    Korup, Oliver

    2004-11-01

    Pulsed or chronic supply of landslide debris to valley floors has historically caused substantial aggradation and channel instability in several alpine catchments of SW New Zealand. In this regional investigation of landslide impacts on river morphology, three types of landslide-induced channel avulsion are discerned: (i) upstream/backwater avulsions, (ii) contact avulsions, and (iii) downstream/loading avulsions. The basis for this qualitative geomorphic process-response framework is the principal direction of fluvial response with respect to its position relative to the causative landslide emplacement site. Downstream avulsions have the highest damage potential to land use and infrastructure on unconfined mountain-fringe alluvial fans. In the wake of such events, catastrophic aggradation may obliterate up to several km 2 of mature floodplain forests by burial under several metres within a few decades. Estimates of mean aggradation rates are high (<220 mm year -1) and exceed long-term (10 3 year) trends of fluvial degradation by an order of magnitude. Future potential avulsion routeways may be detected by geomorphic mapping of abandoned channels, which are preferentially reactivated in the wake of landslide-induced sediment waves.

  1. Rapid post-seismic landslide evacuation boosted by dynamic river width and implications for sediment fluxes during the seismic cycle

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Croissant, Thomas; Lague, Dimitri; Davy, Philippe

    2017-04-01

    Mass wasting caused by large magnitude earthquakes choke mountain rivers with several cubic kilometers of sediment. The timescale and mechanisms by which rivers evacuate the coarse fraction of small to gigantic landslide deposits are poorly known, but are critical to predict post-seismic hydro-sedimentary hazards, interpret the signature of earthquakes in sedimentary archives and decipher the coupling between erosion and tectonics. Here, we use a new 2D hydro-sedimentary evolution model to demonstrate that river self-organization into a narrower alluvial channel overlying the bedrock valley dramatically increases sediment transport capacity of coarse sediments and reduces export time of gigantic landslides by orders of magnitude compared to existing theory. Predicted export times obey a universal non-linear relationship function of landslide volume and pre-landslide valley transport capacity. Dynamic alluvial channel narrowing is therefore a key, previously unrecognized, mechanism by which mountain rivers rapidly digest extreme events and maintain their capacity to incise uplifted rocks. Upscaling these results to realistic populations of landslides show that removing half of the total sediment volume introduced by large earthquakes in the fluvial network would typically last 5 to 25 years in various tectonically active mountain belts, with little impact of topography and climate. If several studies indicate a strong dependency of total landslide volume to earthquake magnitude, our study show that the sediment export time of a landslide population is not strongly impacted by earthquake magnitude or by the total volume of the landslide population. Building on these new findings, we then investigate the dynamics of mountainous landscapes submitted to a series of earthquakes, following either a Gutenberg-Richter distribution or a single large magnitude event. We infer the temporal and spatial evolution of the number of active landslide deposits, of the sediment load

  2. Volcanotectonic earthquakes induced by propagating dikes

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2016-04-01

    Volcanotectonic earthquakes are of high frequency and mostly generated by slip on faults. During chamber expansion/contraction earthquakes are distribution in the chamber roof. Following magma-chamber rupture and dike injection, however, earthquakes tend to concentrate around the dike and follow its propagation path, resulting in an earthquake swarm characterised by a number of earthquakes of similar magnitudes. I distinguish between two basic processes by which propagating dikes induce earthquakes. One is due to stress concentration in the process zone at the tip of the dike, the other relates to stresses induced in the walls and surrounding rocks on either side of the dike. As to the first process, some earthquakes generated at the dike tip are related to pure extension fracturing as the tip advances and the dike-path forms. Formation of pure extension fractures normally induces non-double couple earthquakes. There is also shear fracturing in the process zone, however, particularly normal faulting, which produces double-couple earthquakes. The second process relates primarily to slip on existing fractures in the host rock induced by the driving pressure of the propagating dike. Such pressures easily reach 5-20 MPa and induce compressive and shear stresses in the adjacent host rock, which already contains numerous fractures (mainly joints) of different attitudes. In piles of lava flows or sedimentary beds the original joints are primarily vertical and horizontal. Similarly, the contacts between the layers/beds are originally horizontal. As the layers/beds become buried, the joints and contacts become gradually tilted so that the joints and contacts become oblique to the horizontal compressive stress induced by a driving pressure of the (vertical) dike. Also, most of the hexagonal (or pentagonal) columnar joints in the lava flows are, from the beginning, oblique to an intrusive sheet of any attitude. Consequently, the joints and contacts function as potential shear

  3. Microseismic Events Detection on Xishancun Landslide, Sichuan Province, China

    NASA Astrophysics Data System (ADS)

    Sheng, M.; Chu, R.; Wei, Z.

    2016-12-01

    On landslide, the slope movement and the fracturing of the rock mass often lead to microearthquakes, which are recorded as weak signals on seismographs. The distribution characteristics of temporal and spatial regional unstability as well as the impact of external factors on the unstable regions can be understand and analyzed by monitoring those microseismic events. Microseismic method can provide some information inside the landslide, which can be used as supplementary of geodetic methods for monitoring the movement of landslide surface. Compared to drilling on landslide, microseismic method is more economical and safe. Xishancun Landslide is located about 60km northwest of Wenchuan earthquake centroid, it keep deforming after the earthquake, which greatly increases the probability of disasters. In the autumn of 2015, 30 seismometers were deployed on the landslide for 3 months with intervals of 200 500 meters. First, we used regional earthquakes for time correction of seismometers to eliminate the influence of inaccuracy GPS clocks and the subsurface structure of stations. Due to low velocity of the loose medium, the travel time difference of microseismic events on the landslide up to 5s. According to travel time and waveform characteristics, we found many microseismic events and converted them into envelopes as templates, then we used a sliding-window cross-correlation technique based on waveform envelope to detect the other microseismic events. Consequently, 100 microseismic events were detected with the waveforms recorded on all seismometers. Based on the location, we found most of them located on the front of the landslide while the others located on the back end. The bottom and top of the landslide accumulated considerable energy and deformed largely, radiated waves could be recorded by all stations. What's more, the bottom with more events seemed very active. In addition, there were many smaller events happened in middle part of the landslide where released

  4. Effects of gravel on infiltration, runoff, and sediment yield in landslide deposit slope in Wenchuan earthquake area, China.

    PubMed

    Li, Tianyang; He, Binghui; Chen, Zhanpeng; Zhang, Yi; Liang, Chuan; Wang, Renxin

    2016-06-01

    Amounts of landslide deposits were triggered by the Wenchuan earthquake with magnitude 8.0 on May 12, 2008. The landslide deposits were composed of soil and rock fragments, which play important roles in hydrological and erosion processes in the steep slope of landslide deposits. The mixtures of soil and gravels are common in the top layers of landslide deposits, and its processes are obviously different with the soil without gravels. Based on the data of field investigation, a series of simulated scouring flow experiments with four proportion of gravel (0, 25, 33.3, and 50 %) and three scouring flow rates (4, 8, 12 L/min) under two steep slopes (67.5, 72.7 %) were conducted sequentially to know the effects of proportion of gravel on infiltration capacity, runoff generation, and sediment production in the steep slope of landslide deposit. Results indicated that gravel had promoted or reduced effects on infiltration capacity which could affect further the cumulative runoff volume and cumulative sediment mass increase or decrease. The cumulative infiltration volume in 25 % proportion of gravel was less than those in 0, 33.3, and 50 % proportion of gravel. The cumulative runoff volume was in an order of 25 > 0 > 33.3 > 50 % while cumulative sediment mass ranked as 25 > 33.3 > 0 > 50 % with different proportions of gravel. A significant power relationship was found between scouring time and cumulative runoff volume as well as cumulative sediment mass. The relationship between average soil and water loss rate and proportion of gravel was able to express by quadratic function, with a high degree of reliability. The results have important implications for soil and water conservation and modeling in landslide deposit but also provide useful information for the similar conditions.

  5. Management of a typhoon-induced landslide in Otomura (Japan)

    NASA Astrophysics Data System (ADS)

    Fujisawa, Kazunori; Marcato, Gianluca; Nomura, Yasuhiro; Pasuto, Alessandro

    2010-12-01

    Late in January 2004 slope instability evidence such as cracks and subsidence appeared on a retaining wall along National Highway 168, near Otomura (Nara Prefecture, Japan). This road plays a strategic role as a long distance route for passenger vehicles and trucks, therefore detailed investigations and constant surveillance have to be carried out in order to manage the induced risk situations. Six months later, on August 10th, a large landslide occurred due to heavy rainfalls related to typhoons #10 and #11 that hit Japan on the first week of August. Field and aerial surveys of the site were carried out soon after the appearance of the first geomorphologic evidence of landslide movements, and a monitoring system was immediately set up. Landslide displacements have been measured since the early stage of movement and road traffic was strictly controlled in order to minimize possible damage. This paper illustrates the effects of landslide activation and the investigations carried out in order to assess landslide hazard and predict the time of failure. Suitable methods for risk management oriented to increase the public safety and including risk control and crisis mitigation acts are also discussed.

  6. A method for producing digital probabilistic seismic landslide hazard maps

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Michael, J.A.

    2000-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure. ?? 2000 Elsevier Science B.V. All rights reserved.

  7. Submarine landslide as the source for the October 11, 1918 Mona Passage tsunami: Observations and modeling

    USGS Publications Warehouse

    López-Venegas, A.M.; ten Brink, Uri S.; Geist, Eric L.

    2008-01-01

    The October 11, 1918 ML 7.5 earthquake in the Mona Passage between Hispaniola and Puerto Rico generated a local tsunami that claimed approximately 100 lives along the western coast of Puerto Rico. The area affected by this tsunami is now significantly more populated. Newly acquired high-resolution bathymetry and seismic reflection lines in the Mona Passage show a fresh submarine landslide 15 km northwest of Rinćon in northwestern Puerto Rico and in the vicinity of the first published earthquake epicenter. The landslide area is approximately 76 km2 and probably displaced a total volume of 10 km3. The landslide's headscarp is at a water depth of 1200 m, with the debris flow extending to a water depth of 4200 m. Submarine telegraph cables were reported cut by a landslide in this area following the earthquake, further suggesting that the landslide was the result of the October 11, 1918 earthquake. On the other hand, the location of the previously suggested source of the 1918 tsunami, a normal fault along the east wall of Mona Rift, does not show recent seafloor rupture. Using the extended, weakly non-linear hydrodynamic equations implemented in the program COULWAVE, we modeled the tsunami as generated by a landslide with a duration of 325 s (corresponding to an average speed of ~ 27 m/s) and with the observed dimensions and location. Calculated marigrams show a leading depression wave followed by a maximum positive amplitude in agreement with the reported polarity, relative amplitudes, and arrival times. Our results suggest this newly-identified landslide, which was likely triggered by the 1918 earthquake, was the primary cause of the October 11, 1918 tsunami and not the earthquake itself. Results from this study should be useful to help discern poorly constrained tsunami sources in other case studies.

  8. Impact of sea-level rise on earthquake and landslide triggering offshore the Alentejo margin (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Neves, M. C.; Roque, C.; Luttrell, K. M.; Vázquez, J. T.; Alonso, B.

    2016-12-01

    Earthquakes and submarine landslides are recurrent and widespread manifestations of fault activity offshore SW Iberia. The present work tests the effects of sea-level rise on offshore fault systems using Coulomb stress change calculations across the Alentejo margin. Large-scale faults capable of generating large earthquakes and tsunamis in the region, especially NE-SW trending thrusts and WNW-ESE trending dextral strike-slip faults imaged at basement depths, are either blocked or unaffected by flexural effects related to sea-level changes. Large-magnitude earthquakes occurring along these structures may, therefore, be less frequent during periods of sea-level rise. In contrast, sea-level rise promotes shallow fault ruptures within the sedimentary sequence along the continental slope and upper rise within distances of <100 km from the coast. The results suggest that the occurrence of continental slope failures may either increase (if triggered by shallow fault ruptures) or decrease (if triggered by deep fault ruptures) as a result of sea-level rise. Moreover, observations of slope failures affecting the area of the Sines contourite drift highlight the role of sediment properties as preconditioning factors in this region.

  9. Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    NASA Astrophysics Data System (ADS)

    Williams, Jack G.; Rosser, Nick J.; Kincey, Mark E.; Benjamin, Jessica; Oven, Katie J.; Densmore, Alexander L.; Milledge, David G.; Robinson, Tom R.; Jordan, Colm A.; Dijkstra, Tom A.

    2018-01-01

    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response.

  10. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    NASA Astrophysics Data System (ADS)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    Strong shaking by earthquake causes massif landsliding with severe effects on infrastructure and human lives. The distribution of landslides and other hazards are depending on the combination of earthquake and local characteristics which influence the dynamic response of hillslopes. The Himalayas are one of the most active mountain belts with several kilometers of relief and is very prone to catastrophic mass failure. Strong and shallow earthquakes are very common and cause wide spread collapse of hillslopes, increasing the background landslide rate by several magnitude. The Himalaya is facing many small and large earthquakes in the past i.e. earthquakes i.e. Bihar-Nepal earthquake 1934 (Ms 8.2); Large Kangra earthquake of 1905 (Ms 7.8); Gorkha earthquake 2015 (Mw 7.8). The Mw 7.9 Gorkha earthquake has occurred on and around the main Himalayan Thrust with a hypocentral depth of 15 km (GEER 2015) followed by Mw 7.3 aftershock in Kodari causing 8700+ deaths and leaving hundreds of thousands of homeless. Most of the 3000 aftershocks located by National Seismological Center (NSC) within the first 45 days following the Gorkha Earthquake are concentrated in a narrow 40 km-wide band at midcrustal to shallow depth along the strike of the southern slope of the high Himalaya (Adhikari et al. 2015) and the ground shaking was substantially lower in the short-period range than would be expected for and earthquake of this magnitude (Moss et al. 2015). The effect of this earthquake is very unique in affected areas by showing topographic effect, liquefaction and land subsidence. More than 5000 landslides were triggered by this earthquake (Earthquake without Frontiers, 2015). Most of the landslides are shallow and occurred in weathered bedrock and appear to have mobilized primarily as raveling failures, rock slides and rock falls. Majority of landslides are limited to a zone which runs east-west, approximately parallel the lesser and higher Himalaya. There are numerous cracks in

  11. Using a landslide inventory from online news to evaluate the performance of warning models for rainfall-induced landslides in Italy

    NASA Astrophysics Data System (ADS)

    Pecoraro, Gaetano; Calvello, Michele

    2017-04-01

    In Italy rainfall-induced landslides pose a significant and widespread hazard, resulting in a large number of casualties and enormous economic damages. Mitigation of such a diffuse risk cannot be attained with structural measures only. With respect to the risk to life, early warning systems represent a viable and useful tool for landslide risk mitigation over wide areas. Inventories of rainfall-induced landslides are critical to support investigations of where and when landslides have happened and may occur in the future, i.e. to establish reliable correlations between rainfall characteristics and landslide occurrences. In this work a parametric study has been conducted to evaluate the performance of correlation models between rainfall and landslides over the Italian territory using the "FraneItalia" database, an inventory of landslides retrieved from online Italian journalistic news. The information reported for each record of this database always include: the site of occurrence of the landslides, the date of occurrence, the source of the news. Multiple landslides occurring in the same date, within the same province or region, are inventoried together in one single record of the database, in this case also reporting the number of landslides of the event. Each record the database may also include, if the related information is available: hour of occurrence; typology, volume and material of the landslide; activity phase; effects on people, structures, infrastructures, cars or other elements. The database currently contains six complete years of data (2010-2015), including more than 4000 landslide reports, most of them triggered by rainfall. For the aim of this study, different rainfall-landslides correlation models have been tested by analysing the reported landslides, within all the 144 zones identified by the national civil protection for weather-related warnings in Italy, in relation to satellite-based precipitations estimates from the Global Precipitation

  12. A pore-pressure diffusion model for estimating landslide-inducing rainfall

    USGS Publications Warehouse

    Reid, M.E.

    1994-01-01

    Many types of landslide movement are induced by large rainstorms, and empirical rainfall intensity/duration thresholds for initiating movement have been determined for various parts of the world. In this paper, I present a simple pressure diffusion model that provides a physically based hydrologic link between rainfall intensity/duration at the ground surface and destabilizing pore-water pressures at depth. The model approximates rainfall infiltration as a sinusoidally varying flux over time and uses physical parameters that can be determined independently. Using a comprehensive data set from an intensively monitored landslide, I demonstrate that the model is capable of distinguishing movement-inducing rainstorms. -Author

  13. Predictive susceptibility analysis of typhoon induced landslides in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Shou, Keh-Jian; Lin, Zora

    2017-04-01

    Climate change caused by global warming affects Taiwan significantly for the past decade. The increasing frequency of extreme rainfall events, in which concentrated and intensive rainfalls generally cause geohazards including landslides and debris flows. The extraordinary, such as 2004 Mindulle and 2009 Morakot, hit Taiwan and induced serious flooding and landslides. This study employs rainfall frequency analysis together with the atmospheric general circulation model (AGCM) downscaling estimation to understand the temporal rainfall trends, distributions, and intensities in the adopted Wu River watershed in Central Taiwan. To assess the spatial hazard of the landslides, landslide susceptibility analysis was also applied. Different types of rainfall factors were tested in the susceptibility models for a better accuracy. In addition, the routes of typhoons were also considered in the predictive analysis. The results of predictive analysis can be applied for risk prevention and management in the study area.

  14. Induced earthquake magnitudes are as large as (statistically) expected

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran

    2016-01-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  15. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    NASA Astrophysics Data System (ADS)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  16. Experimental Exploration on Rainfall-induced Mass Re-mobilization after Giant Earthquake: A case study in Wenchuan earthquake hit region, China

    NASA Astrophysics Data System (ADS)

    Yang, Zongji; Bogaard, Thom. A.; Qiao, Jianping; Jiang, Yuanjun

    2015-04-01

    Prevention and mitigation of rainfall induced geological hazards after the Ms=8 Wenchuan earthquake on May 12th, 2008 were gained more significance for the rebuild of earthquake hit regions in China. After the Wenchuan earthquake, there were thousands of slopes failure, which were much more susceptible to subsequent heavy rainfall and many even transformed into potential debris flows. An typical example can be found in the catastrophic disaster occurred in Zhongxing County, Chengdu City on 10th July, 2013 in which the unknown fractured slope up the mountain was triggered by a downpour and transformed into subsequent debris flow which wiped the community downstream, about 200 victims were reported in that tragic event. The transform patterns of rainfall-induced mass re-mobilization was categorized into three major type as the erosion of fractured slopes, initiate on loosen deposit and outbreak of landslide (debris flow) dams according to vast field investigation in the earthquake hit region. Despite the widespread and hidden characters,the complexity of the process also demonstrated in the transforms of the mass re-mobilized by the erosion of both gravity and streams in the small watersheds which have never been reported before the giant Wenchuan Earthquake in many regions. As a result, an increasing number of questions for disaster relief and mitigation were proposed including the threshold of early warning and measurement of the volume for the design of mitigation measures on rainfall-induced mass re-mobilization in debris flow gullies. This study is aimed for answer the essential questions about the threshold and amount of mass initiation triggered by the subsequent rainfall in post earthquake time. In this study, experimental tests were carried out for simulating the failure of the rainfall-induced mass re-mobilization in respectively in a natural co-seismic fractured slope outside and the debris flow simulation platform inside the laboratory. A natural

  17. Precursory Seismicity Associated With Landslides, Including the 2017 Tsunamigenic Landslide in the Karrat Fjord, Greenland

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.

    2017-12-01

    On the evening of June 17 2017, a massive landslide fell from the wall of the Karrat Fjord, Greenland, generating a tsunami that caused the deaths of four residents in the nearby village of Nuugaatsiaq. The slide took place at a bluff 30 km from the village, where a broadband seismometer (DK.NUUG) is permanently deployed. The landslide generated a seismic signal initially interpreted as a magnitude 4.1 earthquake, as well as a tsunami that initially reached heights exceeding 100 m. Prior to the large seismic signal, however, station NUUG detected a series of several dozen small pulses, most of which were highly similar in time series. The pulses occur more frequently with time, until they effectively merge with the seismic signal of the landslide. The pulses were not detected on any other seismic stations, so their source locations cannot be calculated, but particle motions suggest that they were coming from an azimuth of 30o, consistent with the location of the landslide relative to Nuugaatsiaq. This particular sequence, in which small, repeating earthquakes occur with increasing frequency prior to a landslide, has been observed in at least four other locations: (1) on Mt. Baker (Washington) during an ice avalanche in 1976 (Weaver and Malone, 1979), (2) repeatedly on Iliamna volcano (Alaska) in association with glacial avalanches (Caplan-Auerbach and Huggel, 2007), (3) on Mt. Stellar (Alaska) prior to a 2006 rockfall (Huggel et al., 2010), and (4) as part of the Kausu landslide (Japan), in 2015 (Yamada et al., 2016). In all cases the precursory events exhibited waveform similarity, indicative of a repeating point of failure. These events represent stick-slip behavior at the landslide base. The precursory sequences last several hours, suggesting that detection of these events could provide a means of warning prior to failure. This may be useful in areas where instabilities or incipient failures are evident.

  18. Climate-induced landslide reactivation at the edge of the Most Basin (Czech Republic) - progress towards better landslide prediction

    NASA Astrophysics Data System (ADS)

    Burda, J.; Hartvich, F.; Valenta, J.; Smítka, V.; Rybář, J.

    2013-02-01

    The catastrophic landslide at Eisenberg in North Bohemia was reactivated during January 2011. This study integrates a range of geoscientific evidence in order to constrain the spatial and temporal development of this reactivation. It has investigated long-term geodetic measurements to assess the morphological development of the site over the last two decades. There is evidence to suggest that, over this period, the site had been subjected to progressive deformation caused by the collapse of an old mine gallery. However, climatic data show that the reactivation itself was triggered by a dramatic rise in the water table induced by rapid snowmelt during a period of winter warming. Furthermore, geomorphological mapping has been used to characterise the morphology of the reactivated landslide and geophysical profiling has been used to analyse its internal structure. The results show that fissures are continuing to develop above the reactivated landslide scarp while highly saturated stiff-fissured claystones provide an incipient slide plane. The application of laser scanning has shown minimal evidence for ongoing landslide activity. It is, however, clear that future landslide events will occur here due to the favourable lithological, structural, and geotechnical conditions. Finally, we propose that future landslide activity at the site may be predicted by the height of water table as this defines theoretical pore pressure at the depth of the shear plane.

  19. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest

  20. Paleoseismic potential of sublacustrine landslide records in a high-seismicity setting (south-central Alaska)

    USGS Publications Warehouse

    Praet, Nore; Moernaut, Jasper; Van Daele, Maarten; Boes, Evelien; Haeussler, Peter J.; Strupler, Michael; Schmidt, Sabine; Loso, Michael G.; De Batist, Marc

    2017-01-01

    Sublacustrine landslide stratigraphy is considered useful for quantitative paleoseismology in low-seismicity settings. However, as the recharging of underwater slopes with sediments is one of the factors that governs the recurrence of slope failures, it is not clear if landslide deposits can provide continuous paleoseismic records in settings of frequent strong shaking. To test this, we selected three lakes in south-central Alaska that experienced a strong historical megathrust earthquake (the 1964 Mw9.2 Great Alaska Earthquake) and exhibit high sedimentation rates in their main basins (0.2 cm yr-1 -1.0 cm yr-1). We present high-resolution reflection seismic data (3.5 kHz) and radionuclide data from sediment cores in order to investigate factors that control the establishment of a reliable landslide record. Seismic stratigraphy analysis reveals the presence of several landslide deposits in the lacustrine sedimentary infill. Most of these landslide deposits can be attributed to specific landslide events, as multiple landslide deposits sourced from different lacustrine slopes occur on a single stratigraphic horizon. We identify numerous events in the lakes: Eklutna Lake proximal basin (14 events), Eklutna Lake distal basin (8 events), Skilak Lake (7 events) and Kenai Lake (7 events). The most recent event in each basin corresponds to the historic 1964 megathrust earthquake. All events are characterized by multiple landslide deposits, which hints at a regional trigger mechanism, such as an earthquake (the synchronicity criterion). This means that the landslide record in each basin represents a record of past seismic events. Based on extrapolation of sedimentation rates derived from radionuclide dating, we roughly estimate a mean recurrence interval in the Eklutna Lake proximal basin, Eklutna Lake distal basin, Skilak Lake and Kenai Lake, at ~ 250 yrs, ~ 450 yrs, ~ 900 yrs and ~ 450 yrs, respectively. This distinct difference in recording can be explained by variations

  1. Sliding-surface-liquefaction of sand-dry ice mixture and submarine landslides

    NASA Astrophysics Data System (ADS)

    Fukuoka, H.; Tsukui, A.

    2010-12-01

    In the historic records of off-shore mega-earthquakes along the subduction zone offshore Japan, there are a lot of witnesses about large-scale burning of flammable gas possibly ejected from sea floor. This gas was supposed to be the dissolved methane hydrates (MH), which have been found in the soundings of IODP and other oceanology projects. Since the vast distribution of the BSR in the continental margins, a lot of papers have been published which pointed out the possibilities of that gasification of those hydrates could have triggered gigantic submarine landslides. Global warming or large earthquake or magma intrusion may trigger extremely deep gigantic landslides in continental margins that which could cause catastrophic tsunami. However, recent triaxial compression tests on artificially prepared sand-MH-mixture samples revealed that the they have slightly higher strength than the ones of only sands and MH’s endothermal characteristics may resist against accelerating shear and large-displacement landslides as well. While, the stress-controlled undrained ring shear apparatuses have been developed by Sassa and Fukuoka at Disaster Prevention Research Institute, Kyoto University to reproduce subaerial landslides induced by earthquakes and rainfalls. Using the apparatuses, they found localized liquefaction phenomenon along the deep saturated potential sliding surface due to excess pore pressure generation during the grain crushing induced bulk volume change. This phenomenon was named as “sliding surface liquefaction.” Similar sudden large pore pressure generation was observed in pore pressure control test simulating rain-induced landslides. In this paper, authors examined the shear behavior of the dry sand-dry ice mixture under constant normal stress and shear speed control tests using the latest ring shear apparatus. Sample was mixture of silica sands and dry-ice pellets (frozen carbon-dioxide). Those mixtures are often used for studying the mechanism of the

  2. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  3. Landslide movement in southwest Colorado triggered by atmospheric tides

    USGS Publications Warehouse

    Schulz, W.H.; Kean, J.W.; Wang, G.

    2009-01-01

    Landslides are among the most hazardous of geological processes, causing thousands of casualties and damage on the order of billions of dollars annually. The movement of most landslides occurs along a discrete shear surface, and is triggered by a reduction in the frictional strength of the surface. Infiltration of water into the landslide from rainfall and snowmelt and ground motion from earthquakes are generally implicated in lowering the frictional strength of this surface. However, solid-Earth and ocean tides have recently been shown to trigger shear sliding in other processes, such as earthquakes and glacial motion. Here we use observations and numerical modelling to show that a similar processatmospheric tidescan trigger movement in an ongoing landslide. The Slumgullion landslide, located in the SanJuan Mountains of Colorado, shows daily movement, primarily during diurnal low tides of the atmosphere. According to our model, the tidal changes in air pressure cause air and water in the sediment pores to flow vertically, altering the frictional stress of the shear surface; upward fluid flow during periods of atmospheric low pressure is most conducive to sliding. We suggest that tidally modulated changes in shear strength may also affect the stability of other landslides, and that the rapid pressure variations associated with some fast-moving storm systems could trigger a similar response. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  4. Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L.

    2018-01-01

    Nowcasting is a new method of statistically classifying seismicity and seismic risk (Rundle et al. 2016). In this paper, the method is applied to the induced seismicity at the Geysers geothermal region in California and the induced seismicity due to fluid injection in Oklahoma. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say M_{λ } ≥ 4, and one small say M_{σ } ≥ 2. The method utilizes the number of small earthquakes that occurs between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that has occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of M_{σ } ≥ 2.75 earthquakes in Oklahoma to nowcast the number of M_{λ } ≥ 4.0 earthquakes in Oklahoma. The applicability of the scaling is illustrated during the rapid build-up of injection-induced seismicity between 2012 and 2016, and the subsequent reduction in seismicity associated with a reduction in fluid injections. The same method is applied to the geothermal-induced seismicity at the Geysers, California, for comparison.

  5. Analysis of Tsunamigenic Coastal Rock Slope Failures Triggered by the 2007 Earthquake in the Chilean Fjordland

    NASA Astrophysics Data System (ADS)

    Sepulveda, S. A.; Serey, A.; Hermanns, R. L.; Redfield, T. F.; Oppikofer, T.; Duhart, P.

    2011-12-01

    The fjordland of the Chilean Patagonia is subject to active tectonics, with large magnitude subduction earthquakes, such as the M 9.5 1960 earthquake, and shallow crustal earthquakes along the regional Liquiñe-Ofqui Fault Zone (LOFZ). One of the latter (M 6.2) struck the Aysen Fjord region (45.5 S) on the 21st of April 2007, triggering dozens of landslides in the epicentral area along the fjord coast and surroundings. The largest rock slides and rock avalanches induced a local tsunami that together with debris flows caused ten fatalities and severely damaged several salmon farms, the most important economic activity of the area. Multi-scale studies of the landslides triggered during the Aysen earthquake have been carried out, including landslide mapping and classification, slope stability back-analyses and structural and geomorphological mapping of the largest failures from field surveys and high-resolution digital surface models created from terrestrial laser scanning. The failures included rock slides, rock avalanches, rock-soil slides, soil slides and debris flows. The largest rock avalanche had a volume of over 20 million cubic metres. The landslides affected steep slopes of intrusive rocks of the North Patagonian batholith covered by a thin layer of volcanic soils, which supports a high forest. The results of geotechnical analyses suggest a site effect due to topographic amplification on the generation of the landslides, with peak ground accelerations that may have reached between about 1.0 and 2.0 g for rock avalanches and between 0.6 and 1.0 g for shallow rock-soil slides, depending on the amount of assumed vertical acceleration and the applied method (limit equilibrium and Newmark). Attenuation relationships for shallow crustal seismicity indicate accelerations below 0.5 g for earthquakes of a similar magnitude and epicentral distances. Detailed field structural analyses of the largest rock avalanche in Punta Cola indicate a key role in the failure

  6. Submarine landslide: A case study from the southwestern of Taiwan offshore

    NASA Astrophysics Data System (ADS)

    Hung, Y. H.; Dong, J. J.

    2016-12-01

    Based on the new multibeam bathymetric data and seismic reflection profiles of the southwestern Taiwan, more and more submarine landslides developed there have been being discovered nowadays. Palm Ridge, located between the boundary of the active and passive margins, is the place where a deformation front passes through. And previous studies suspected that there were old submarine landslides developed here. To learn whether there are old submarine landslides here, a further study is conducted with the collection and analysis of new high-resolution swath-bathymetry and seismic data. Firstly, based on the swath-bathymetry, the topography range of the landslide is mapped and interpreted with the three dimensional model. Then, according to the profile of the mapping, the extending of the sliding surface is predicted. And referred on the properties of soil in adjacent region, the engineering geologic models of the landslide before and after failure are proposed. Thirdly, through a detailed analysis of the seismic data of Taiwan in the past three decades, a magnitude of 7.7 MW is selected as the lower bound of earthquake for the analysis of the trigger of the submarine landslide. And based on the record of earthquakes with 8 MW in the world, some other earthquake magnitudes are also considered in this study. After applying them into STABL 5M, the failure process of the landslide is modeled with its possible deposited ranges being reached. Finally, the sub-bottom and seismic data are used to verify the rationality of the above results. Preliminary result shows that there were at least three landslides occurred in Palm Ridge. The first landslide is largest which covers the approximate range of the study area. The second one is developed in the margin area of the first one, which is resulted by the occurrence of the first one. The third event is caused by the further collapse of the first one due to the loose of its inner structure.

  7. USGS Earthquake Program GPS Use Case : Earthquake Early Warning

    DOT National Transportation Integrated Search

    2015-03-12

    USGS GPS receiver use case. Item 1 - High Precision User (federal agency with Stafford Act hazard alert responsibilities for earthquakes, volcanoes and landslides nationwide). Item 2 - Description of Associated GPS Application(s): The USGS Eart...

  8. Landslide susceptibility and early warning model for shallow landslide in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Ming; Wei, Lun-Wei; Chi, Chun-Chi; Chang, Kan-Tsun; Lee, Chyi-Tyi

    2017-04-01

    This study aims to development a regional susceptibility model and warning threshold as well as the establishment of early warning system in order to prevent and reduce the losses caused by rainfall-induced shallow landslides in Taiwan. For the purpose of practical application, Taiwan is divided into nearly 185,000 slope units. The susceptibility and warning threshold of each slope unit were analyzed as basic information for disaster prevention. The geological characteristics, mechanism and the occurrence time of landslides were recorded for more than 900 cases through field investigation and interview of residents in order to discuss the relationship between landslides and rainfall. Logistic regression analysis was performed to evaluate the landslide susceptibility and an I3-R24 rainfall threshold model was proposed for the early warning of landslides. The validations of recent landslide cases show that the model was suitable for the warning of regional shallow landslide and most of the cases can be warned 3 to 6 hours in advanced. We also propose a slope unit area weighted method to establish local rainfall threshold on landslide for vulnerable villages in order to improve the practical application. Validations of the local rainfall threshold also show a good agreement to the occurrence time reported by newspapers. Finally, a web based "Rainfall-induced Landslide Early Warning System" is built and connected to real-time radar rainfall data so that landslide real-time warning can be achieved. Keywords: landslide, susceptibility analysis, rainfall threshold

  9. A Crowdsourcing-based Taiwan Scientific Earthquake Reporting System

    NASA Astrophysics Data System (ADS)

    Liang, W. T.; Lee, J. C.; Lee, C. F.

    2017-12-01

    To collect immediately field observations for any earthquake-induced ground damages, such as surface fault rupture, landslide, rock fall, liquefaction, and landslide-triggered dam or lake, etc., we are developing an earthquake damage reporting system which particularly relies on school teachers as volunteers after taking a series of training courses organized by this project. This Taiwan Scientific Earthquake Reporting (TSER) system is based on the Ushahidi mapping platform, which has been widely used for crowdsourcing on different purposes. Participants may add an app-like icon for mobile devices to this website at https://ies-tser.iis.sinica.edu.tw. Right after a potential damaging earthquake occurred in the Taiwan area, trained volunteers will be notified/dispatched to the source area to carry out field surveys and to describe the ground damages through this system. If the internet is available, they may also upload some relevant images in the field right away. This collected information will be shared with all public after a quick screen by the on-duty scientists. To prepare for the next strong earthquake, we set up a specific project on TSER for sharing spectacular/remarkable geologic features wherever possible. This is to help volunteers get used to this system and share any teachable material on this platform. This experimental, science-oriented crowdsourcing system was launched early this year. Together with a DYFI-like intensity reporting system, Taiwan Quake-Catcher Network, and some online games and teaching materials, the citizen seismology has been much improved in Taiwan in the last decade. All these constructed products are now either operated or promoted at the Taiwan Earthquake Research Center (TEC). With these newly developed platforms and materials, we are aiming not only to raise the earthquake awareness and preparedness, but also to encourage public participation in earthquake science in Taiwan.

  10. Landslides and mass wasting offshore Sumatra - results from the Sumatra Earthquake HMS Scott survey January-February 2005

    NASA Astrophysics Data System (ADS)

    Tappin, D. R.; Henstock, T.; McNeill, L.; Grilli, S.; Biscontin, G.; Watts, P.

    2005-12-01

    Earthquakes are a commonly cited mechanism for triggering submarine landslides that have the potential to generate damaging tsunamis (e.g. Papua New Guinea 1998). Notwithstanding, the Indian Ocean earthquake of December 26th 2005 has been cited as the cause of both far field and local tsunami runups that have been measured at over 35 metres on the west coast of Sumatra. On the basis of present modelling this seems to be the case. However, if earthquakes are such a common trigger for landslides then the magnitude 9.3 earthquake of December 26th might be expected to have caused numerous seabed failures within the area of rupture that may have contributed to local tsunami runup. This contribution discusses the seabed morphology offshore of Sumatra acquired during the survey carried out by HMS Scott in January and February 2005. Utilising a unique high resolution 12 kHz, 361-beam hull-mounted Sass IV sonar, over 40,000 square kilometres of seabed were mapped. The objective was to identify seabed movements that were the result of the earthquake and to identify submarine slope failures that may have contributed to the tsunami. This paper reports on the results of the survey using Fledermaus imaging software. The area mapped is an accretionary complex formed as the two plates have converged over the past 40 million years. From the data several seabed failure mechanisms of different ages have been identified. Along the plate margin in the west of the survey area the deformation front comprises a series of young thrust folds up to 1000m in elevation and tens of kilometres in length. In places the seaward faces of these folds have failed cohesively and slumped blocks 100's of metres high and up to several kilometres long have been displaced up to 13 kilometres onto the inner trench floor. At other locations older episodes of failure are identified by the presence of displaced slumped blocks located on the crests of the folds; the slumps thus predating uplift. Where young

  11. Earthquake mechanism and seafloor deformation for tsunami generation

    USGS Publications Warehouse

    Geist, Eric L.; Oglesby, David D.; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Tsunamis are generated in the ocean by rapidly displacing the entire water column over a significant area. The potential energy resulting from this disturbance is balanced with the kinetic energy of the waves during propagation. Only a handful of submarine geologic phenomena can generate tsunamis: large-magnitude earthquakes, large landslides, and volcanic processes. Asteroid and subaerial landslide impacts can generate tsunami waves from above the water. Earthquakes are by far the most common generator of tsunamis. Generally, earthquakes greater than magnitude (M) 6.5–7 can generate tsunamis if they occur beneath an ocean and if they result in predominantly vertical displacement. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing seafloor deformation for earthquakes of a given magnitude.

  12. Seismic triggering of landslides, Part A: Field evidence from the Northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Havenith, H.-B.; Strom, A.; Jongmans, D.; Abdrakhmatov, A.; Delvaux, D.; Tréfois, P.

    Landslides triggered by strong earthquakes often caused most of the global damage and most of all casualties related to the events, such as shown by the M = 7.7 Peru earthquake in 1970, by the M = 7.6 El Salvador earthquake in 2001 or by the M = 7.4 Khait (Tajikistan) earthquake in 1949. The obvious impact of a landslide on the population is directly related to its movement. Yet, prediction of future failure potential and hence future risk to population is necessary in order to avoid further catastrophes and involves the analyses of the origin of seismic instability. The seismic landslide potential is mainly determined by the interaction between the regional seismic hazard and local geological conditions. At a local scale, seismic factors interfering with geological conditions can produce site-specific ground motions. The influence of such Site Effects on instability is the principal topic of this paper, which is divided into two parts, A and B. The present Part A is concerned with the correlation of field data with observed instability phenomena. Field data were obtained on mainly three landslide sites in the Northern Tien Shan Mountains in Kyrgyzstan, Central Asia. Geophysical prospecting, earthquake recordings, geological observation, trenching and geotechnical tests were the main investigation tools. The collected information gives an insight in the geological background of the slope failure and allows us to roughly infer failure mechanisms from field evidence. A detailed analysis of the susceptibility of a mechanism to specific geological conditions will be shown in Part B.

  13. Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Sutinen, Raimo; Hyvönen, Eija; Middleton, Maarit; Airo, Meri-Liisa

    2018-01-01

    Kuusamo in eastern Finnish Lapland is characterized by ice-streamlined landforms as well as clusters of historical and recent earthquakes (Mw < 4). Since recent earthquakes are often found to be located on the traces of postglacial faults (PGFs) within the Fennoscandian shield we postulate that some part of the ice-stream landforms have been deformed by the past earthquakes in Kuusamo. Airborne LiDAR (Light Detection And Ranging) DEMs (digital elevation models) revealed significant numbers of postglacial deformations, such as liquefaction deformations, rotational landslides, earth flows as well as kettle holes (craters), on the fluted surfaces within the Kuusamo ice-stream fan. We found these deformations to be a common feature on the Archean granitoid gneisses and within a 20 km wide and NW-SE oriented corridor between the major intrusives, the Iivaara nepheline syenite and the Näränkävaara gabbro. Of the paleolandslides, liquefaction morphologies were generally developed on the distal slopes (1.3-2.8%; 0.75-1.6°) of the streamlined forms. Sedimentary anisotropy, obtained with azimuthal electrical conductivity (σa; skin depth down to 3-6 m), of the deformed flutes significantly deviated from the non-deformed (clean) ones. The fields of the Pulju moraine, a subglacial landform, formed a grounding zone for the ice-streaming SW of the paleolandslide cluster. We therefore propose that both subglacial and postglacial earthquake-induced landforms are present in Kuusamo. No PGFs could be verified in the Kuusamo area, yet gravity, airborne magnetic, and LiDAR morphological lineaments suggest that the old Paleoproterozoic structures have been reactivated as strike-slip faults, due to the lithospheric plate stresses and glacio-isostatic adjustment (GIA).

  14. Submarine landslides of the Southern California Borderland

    USGS Publications Warehouse

    Lee, H.J.; Greene, H. Gary; Edwards, B.D.; Fisher, M.A.; Normark, W.R.

    2009-01-01

    Conventional bathymetry, sidescan-sonar and seismic-reflection data, and recent, multibeam surveys of large parts of the Southern California Borderland disclose the presence of numerous submarine landslides. Most of these features are fairly small, with lateral dimensions less than ??2 km. In areas where multibeam surveys are available, only two large landslide complexes were identified on the mainland slope- Goleta slide in Santa Barbara Channel and Palos Verdes debris avalanche on the San Pedro Escarpment south of Palos Verdes Peninsula. Both of these complexes indicate repeated recurrences of catastrophic slope failure. Recurrence intervals are not well constrained but appear to be in the range of 7500 years for the Goleta slide. The most recent major activity of the Palos Verdes debris avalanche occurred roughly 7500 years ago. A small failure deposit in Santa Barbara Channel, the Gaviota mudflow, was perhaps caused by an 1812 earthquake. Most landslides in this region are probably triggered by earthquakes, although the larger failures were likely conditioned by other factors, such as oversteepening, development of shelf-edge deltas, and high fluid pressures. If a subsequent future landslide were to occur in the area of these large landslide complexes, a tsunami would probably result. Runup distances of 10 m over a 30-km-long stretch of the Santa Barbara coastline are predicted for a recurrence of the Goleta slide, and a runup of 3 m over a comparable stretch of the Los Angeles coastline is modeled for the Palos Verdes debris avalanche. ?? 2009 The Geological Society of America.

  15. Induced seismicity provides insight into why earthquake ruptures stop.

    PubMed

    Galis, Martin; Ampuero, Jean Paul; Mai, P Martin; Cappa, Frédéric

    2017-12-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  16. Induced seismicity provides insight into why earthquake ruptures stop

    PubMed Central

    Galis, Martin; Ampuero, Jean Paul; Mai, P. Martin; Cappa, Frédéric

    2017-01-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures. PMID:29291250

  17. A century of induced earthquakes in Oklahoma?

    USGS Publications Warehouse

    Hough, Susan E.; Page, Morgan T.

    2015-01-01

    Seismicity rates have increased sharply since 2009 in the central and eastern United States, with especially high rates of activity in the state of Oklahoma. Growing evidence indicates that many of these events are induced, primarily by injection of wastewater in deep disposal wells. The upsurge in activity has raised two questions: What is the background rate of tectonic earthquakes in Oklahoma? How much has the rate varied throughout historical and early instrumental times? In this article, we show that (1) seismicity rates since 2009 surpass previously observed rates throughout the twentieth century; (2) several lines of evidence suggest that most of the significant earthquakes in Oklahoma during the twentieth century were likely induced by oil production activities, as they exhibit statistically significant temporal and spatial correspondence with disposal wells, and intensity measurements for the 1952 El Reno earthquake and possibly the 1956 Tulsa County earthquake follow the pattern observed in other induced earthquakes; and (3) there is evidence for a low level of tectonic seismicity in southeastern Oklahoma associated with the Ouachita structural belt. The 22 October 1882 Choctaw Nation earthquake, for which we estimate Mw 4.8, occurred in this zone.

  18. A rapid extraction of landslide disaster information research based on GF-1 image

    NASA Astrophysics Data System (ADS)

    Wang, Sai; Xu, Suning; Peng, Ling; Wang, Zhiyi; Wang, Na

    2015-08-01

    In recent years, the landslide disasters occurred frequently because of the seismic activity. It brings great harm to people's life. It has caused high attention of the state and the extensive concern of society. In the field of geological disaster, landslide information extraction based on remote sensing has been controversial, but high resolution remote sensing image can improve the accuracy of information extraction effectively with its rich texture and geometry information. Therefore, it is feasible to extract the information of earthquake- triggered landslides with serious surface damage and large scale. Taking the Wenchuan county as the study area, this paper uses multi-scale segmentation method to extract the landslide image object through domestic GF-1 images and DEM data, which uses the estimation of scale parameter tool to determine the optimal segmentation scale; After analyzing the characteristics of landslide high-resolution image comprehensively and selecting spectrum feature, texture feature, geometric features and landform characteristics of the image, we can establish the extracting rules to extract landslide disaster information. The extraction results show that there are 20 landslide whose total area is 521279.31 .Compared with visual interpretation results, the extraction accuracy is 72.22%. This study indicates its efficient and feasible to extract earthquake landslide disaster information based on high resolution remote sensing and it provides important technical support for post-disaster emergency investigation and disaster assessment.

  19. Inundation Mapping and Hazard Assessment of Tectonic and Landslide Tsunamis in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Koehler, R. D., III

    2014-12-01

    The Alaska Earthquake Center conducts tsunami inundation mapping for coastal communities in Alaska, and is currently focused on the southeastern region and communities of Yakutat, Elfin Cove, Gustavus and Hoonah. This activity provides local emergency officials with tsunami hazard assessment, planning, and mitigation tools. At-risk communities are distributed along several segments of the Alaska coastline, each having a unique seismic history and potential tsunami hazard. Thus, a critical component of our project is accurate identification and characterization of potential tectonic and landslide tsunami sources. The primary tectonic element of Southeast Alaska is the Fairweather - Queen Charlotte fault system, which has ruptured in 5 large strike-slip earthquakes in the past 100 years. The 1958 "Lituya Bay" earthquake triggered a large landslide into Lituya Bay that generated a 540-m-high wave. The M7.7 Haida Gwaii earthquake of October 28, 2012 occurred along the same fault, but was associated with dominantly vertical motion, generating a local tsunami. Communities in Southeast Alaska are also vulnerable to hazards related to locally generated waves, due to proximity of communities to landslide-prone fjords and frequent earthquakes. The primary mechanisms for local tsunami generation are failure of steep rock slopes due to relaxation of internal stresses after deglaciation, and failure of thick unconsolidated sediments accumulated on underwater delta fronts at river mouths. We numerically model potential tsunami waves and inundation extent that may result from future hypothetical far- and near-field earthquakes and landslides. We perform simulations for each source scenario using the Alaska Tsunami Model, which is validated through a set of analytical benchmarks and tested against laboratory and field data. Results of numerical modeling combined with historical observations are compiled on inundation maps and used for site-specific tsunami hazard assessment by

  20. Precipitation, landsliding, and erosion across the Olympic Mountains, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Smith, Stephen G.; Wegmann, Karl W.

    2018-01-01

    In the Olympic Mountains of Washington State, landsliding is the primary surface process by which bedrock and hillslope regolith are delivered to river networks. However, the relative importance of large earthquakes versus high magnitude precipitation events to the total volume of landslide material transported to valley bottoms remains unknown in part due to the absence of large historical earthquakes. To test the hypothesis that erosion is linked to precipitation, approximately 1000 landslides were mapped from Google Earth imagery between 1990 and 2015 along a 15 km-wide × 85 km-long (1250 km2) swath across the range. The volume of hillslope material moved by each slide was calculated using previously published area-volume scaling relationships, and the spatial distribution of landslide volume was compared to mean annual precipitation data acquired from the PRISM climate group for the period 1981-2010. Statistical analysis reveals a significant correlation (r = 0.55; p < 0.001) between total landslide volume and mean annual precipitation, with 98% of landslide volume occurring along the windward, high-precipitation side of the range during the 25-year interval. Normalized to area, this volume yields a basin-wide erosion rate of 0.28 ± 0.11 mm yr- 1, which is similar to previous time-variable estimates of erosion throughout the Olympic Mountains, including those from river sediment yield, cosmogenic 10Be, fluvial terrace incision, and thermochronometry. The lack of large historic earthquakes makes it difficult to assess the relative contributions of precipitation and seismic shaking to total erosion, but our results suggest that climate, and more specifically a sharp precipitation gradient, plays an important role in controlling erosion and landscape evolution over both short and long timescales across the Olympic Mountains.

  1. Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Pampell-Manis, A.; Horrillo, J.; Shigihara, Y.; Parambath, L.

    2016-01-01

    The devastating consequences of recent tsunamis affecting Indonesia and Japan have prompted a scientific response to better assess unexpected tsunami hazards. Although much uncertainty exists regarding the recurrence of large-scale tsunami events in the Gulf of Mexico (GoM), geological evidence indicates that a tsunami is possible and would most likely come from a submarine landslide triggered by an earthquake. This study customizes for the GoM a first-order probabilistic landslide tsunami hazard assessment. Monte Carlo Simulation (MCS) is employed to determine landslide configurations based on distributions obtained from observational submarine mass failure (SMF) data. Our MCS approach incorporates a Cholesky decomposition method for correlated landslide size parameters to capture correlations seen in the data as well as uncertainty inherent in these events. Slope stability analyses are performed using landslide and sediment properties and regional seismic loading to determine landslide configurations which fail and produce a tsunami. The probability of each tsunamigenic failure is calculated based on the joint probability of slope failure and probability of the triggering earthquake. We are thus able to estimate sizes and return periods for probabilistic maximum credible landslide scenarios. We find that the Cholesky decomposition approach generates landslide parameter distributions that retain the trends seen in observational data, improving the statistical validity and relevancy of the MCS technique in the context of landslide tsunami hazard assessment. Estimated return periods suggest that probabilistic maximum credible SMF events in the north and northwest GoM have a recurrence of 5000-8000 years, in agreement with age dates of observed deposits.

  2. Challenges for operational forecasting and early warning of rainfall induced landslides

    NASA Astrophysics Data System (ADS)

    Guzzetti, Fausto

    2017-04-01

    In many areas of the world, landslides occur every year, claiming lives and producing severe economic and environmental damage. Many of the landslides with human or economic consequences are the result of intense or prolonged rainfall. For this reason, in many areas the timely forecast of rainfall-induced landslides is of both scientific interest and social relevance. In the recent years, there has been a mounting interest and an increasing demand for operational landslide forecasting, and for associated landslide early warning systems. Despite the relevance of the problem, and the increasing interest and demand, only a few systems have been designed, and are currently operated. Inspection of the - limited - literature on operational landslide forecasting, and on the associated early warning systems, reveals that common criteria and standards for the design, the implementation, the operation, and the evaluation of the performances of the systems, are lacking. This limits the possibility to compare and to evaluate the systems critically, to identify their inherent strengths and weaknesses, and to improve the performance of the systems. Lack of common criteria and of established standards can also limit the credibility of the systems, and consequently their usefulness and potential practical impact. Landslides are very diversified phenomena, and the information and the modelling tools used to attempt landslide forecasting vary largely, depending on the type and size of the landslides, the extent of the geographical area considered, the timeframe of the forecasts, and the scope of the predictions. Consequently, systems for landslide forecasting and early warning can be designed and implemented at several different geographical scales, from the local (site or slope specific) to the regional, or even national scale. The talk focuses on regional to national scale landslide forecasting systems, and specifically on operational systems based on empirical rainfall threshold

  3. Hydrological effect of vegetation against rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ollauri, Alejandro; Mickovski, Slobodan B.

    2017-06-01

    The hydrological effect of vegetation on rainfall-induced landslides has rarely been quantified and its integration into slope stability analysis methods remains a challenge. Our goal was to establish a reproducible, novel framework to evaluate the hydrological effect of vegetation on shallow landslides. This was achieved by accomplishing three objectives: (i) quantification in situ of the hydrological mechanisms by which woody vegetation (i.e. Salix sp.) might impact slope stability under wetting and drying conditions; (ii) to propose a new approach to predict plant-derived matric suctions under drying conditions; and (iii) to evaluate the suitability of the unified effective stress principle and framework (UES) to quantify the hydrological effect of vegetation against landslides. The results revealed that plant water uptake was the main hydrological mechanism contributing to slope stability, as the vegetated slope was, on average, 12.84% drier and had matric suctions three times higher than the fallow slope. The plant-related mechanisms under wetting conditions had a minimal effect on slope stability. The plant aerial parts intercepted up to 26.73% of the rainfall and concentrated a further 10.78% of it around the stem. Our approach successfully predicted the plant-derived matric suctions and UES proved to be adequate for evaluating the hydrological effect of vegetation on landslides. Although the UES framework presented here sets the basis for effectively evaluating the hydrological effect of vegetation on slope stability, it requires knowledge of the specific hydro-mechanical properties of plant-soil composites and this in itself needs further investigation.

  4. Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2016-03-01

    Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.

  5. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    NASA Astrophysics Data System (ADS)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally

  6. Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and SOC models

    NASA Astrophysics Data System (ADS)

    Sachs, M. K.; Yoder, M. R.; Turcotte, D. L.; Rundle, J. B.; Malamud, B. D.

    2012-05-01

    Extreme events that change global society have been characterized as black swans. The frequency-size distributions of many natural phenomena are often well approximated by power-law (fractal) distributions. An important question is whether the probability of extreme events can be estimated by extrapolating the power-law distributions. Events that exceed these extrapolations have been characterized as dragon-kings. In this paper we consider extreme events for earthquakes, volcanic eruptions, wildfires, landslides and floods. We also consider the extreme event behavior of three models that exhibit self-organized criticality (SOC): the slider-block, forest-fire, and sand-pile models. Since extrapolations using power-laws are widely used in probabilistic hazard assessment, the occurrence of dragon-king events have important practical implications.

  7. An analysis of on time evolution of landslide

    NASA Astrophysics Data System (ADS)

    Tsai, Chienwei; Lien, Huipang

    2017-04-01

    In recent years, the extreme hydrological phenomenon in Taiwan is obvious. Because the increase of heavy rainfall frequency has resulted in severe landslide disaster, the watershed management is very important and how to make the most effective governance within the limited funds is the key point. In recent years many scholars to develop empirical models said that virtually rainfall factors exist and as long as rainfall conditions are met the minimum requirements of the model, landslide will occur. However, rainfall is one of the elements to the landslide, but not the only one element. Rainfall, geology and earthquake all contributed to the landslide as well. Preliminary research found that many landslides occur at the same location constantly and after repeating landslide, the slope had the characteristic of landslide immunity over time, even if the rainfall exceeded the standard, the landslide could not be triggered in the near term. This study investigated the surface conditions of slope that occur repeated landslide. It is difficult to be the basis of subsequent anti-disaster if making rainfall is the only condition to contribute to the landslide. This study analyzes 50 landslides in 2004 2013. Repeated landslide is defined as existed landslide in satellite images of reference period which it's bare area is shrinking or disappearing gradually but the restoration occur landslide again in some period time. The statistical analysis of the study found that 96% of landslide has repeated landslide and on average repeated landslide occurs 3.4 years in 10 years by one year as the unit. The highest of repeated landslide happened in 2010. It would presume that Typhoon Morakot in 2010 brought torrential rain which suffered southern mountain areas severely so the areas occurred repeated landslide.

  8. A comparison of artifical and natural slope failures: the Santa Barbara earthquake of August 13, 1978.

    USGS Publications Warehouse

    Harp, E.L.; Keefer, D.K.; Wilson, R.C.

    1980-01-01

    The earthquake triggered rockfalls and rockslides from steep road cuts and coastal cliffs. The landslide reconnaissance survey which was carried out is described, with separate comments on each landslide site recorded. The general regional slope response to the earthquake is briefly considered. -R. House

  9. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    The Säntis nappe is a fold-and-thrust structure in eastern Switzerland consisting of numerous tectonic discontinuities that make rocks vulnerable to rock failure. The Sennwald landslide is one of those events that occurred due to the failure of Lower Cretaceous Helvetic limestones. This study reveals the surface exposure age of the event in relation to geological and tectonic setting, earthquake frequency of the Central Alps, and regional scale climate/weather influence. Our study comprises detailed mapping of landform features, thin section analysis of landslide boulder lithologies, landslide volume estimation, numerical DAN-3D run-out modelling, and the spatial and temporal relationship of the event. In the Sennwald landslide, 92 million m3 of limestones detached from the south-eastern wall of the Säntis nappe and slid with a maximum travel distance of ~4'500 m and a "fahrboeschung" angle of 15° along the SE-dipping sliding plane almost parallel to the orientation of the bedding plane. Numerical run-out modelling results match the extent and the thickness of landslide deposits as observed in the field. The original bedrock stratigraphy was preserved as geologically the top layer in the bedrock package travelled the farthest and the bottom layer came to rest closest to the release bedrock wall during the landslide. Velocities of maximum 90 m/s were obtained from the numerical run-out modelling. Total Cl and 36Cl were determined at ETH AMS facility with isotope dilution methods defined in the literature (Ivy-Ochs et al., 2004). Surface exposure ages of landslide deposits in the accumulation area are revealed from twelve boulders. The distribution of limestone boulders in the accumulation area, the exposure ages, and the numerical run-out modelling support the hypothesis that the Sennwald landslide was a single catastrophic event. The event is likely to have been triggered by at least light to moderate earthquakes (Mw=4.0-6.0). The historical and the last 40-year

  10. Impact of landslides induced by 2014 northeast monsoon extreme rain in Malaysia

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Koay, Swee Peng; Sakai, Naoki; Lateh, Habibah

    2016-04-01

    In December 2014, northeast monsoon brought extreme rainfalls to Malaysia, mainly in the eastern coast of Peninsular Malaysia and coastal area in Sabah and Sarawak. In this month, many of the rain gauge records in this area exceeded 1,000 mm, which is about 1/3 of average annual rainfall precipitation (2,850mm/year) in Malaysia. This unexpected heavy rainfall induced landslides and floods which brought about large-scale losses in Malaysia equivalent to several hundred million USD as thousands of residents had evacuated from hometown for months, and factories, schools and business activities were shut down for weeks. Among the major infrastructure of the nation, East-west Highway was subjected to damages by 21 landslides. Two large-scale landslides cut off the highway for a week. Authors had installed landslide monitoring instruments at reactivated landslide sites along the highway at N05° 36.042' E101° 35.546'. Records by in-situ inclinometers showed clear deformation from 17th December to 26th December, associated with certain change in piezometeres record for groundwater level monitoring. Several cracks occurred in the slope.

  11. A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska

    USGS Publications Warehouse

    Brothers, Daniel; Haeussler, Peter J.; Lee Liberty,; David Finlayson,; Geist, Eric L.; Labay, Keith A.; Michael Byerly,

    2016-01-01

    During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost – the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120–360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20–50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake- triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought. 

  12. Tertiary creep test by ring shear apparatus in predicting initiation time of rainfall-induced-shallow landslide

    NASA Astrophysics Data System (ADS)

    Dok, A.; Fukuoka, H.

    2010-12-01

    Landslides are complex geo-disaters that frequently occur due to certain causes, but only one trigger such as earthquake or heavy rainfall or other related natural phenomenas. A slope failure seldom occurs without any creep deformation. Failure time of a slope as found by Fukuzono (1985) and Siato (1965) based on graphical analysis of extensometer monitoring data through large scale flume test for landslide studies, logarithm of acceleration is proportional to the logarithm of velocity of surface displacement immediately before the failure. It is expressed as d2x/dt2 = A(dx/dt)α, where x is surface displacement, t is time, and A and α are constant. And, Fukuzono (1985, 1989) proposed a simple method of predicting the time of falure by the inverse velocity (1/v) mean. The curve of inverse velocity is concave at 1< α<2, linear at α=2, and convex at α>2. Recently, Minamitani (2007) have researched on mechanism of Tertiary Creep deformation for landslide failure time prediction by increasing shear-stress development in order to understand the story behind the empirical relationship found by senior researcher Fukozono. He found a strong relationshp between constants A and α, expressed as α = 0.1781A+ 1.814. For deeper understanding, this study aims at learning in more detail on mechanism of landslides in tropical soils by ring shear apparatus (invented by DPRI, Disaster Prevention Research Institute) based on Tertiary Creep deformation theory in help issue warning on rainfall-induced landslides through back (pore-water) pressure control tests under combined conditions of particular normal stress and shear stress with pore-water pressure changes to simulate the potential sliding surface condition in the heavy rainfall, which no body experiences conducting such a test series, particularly by applying cyclic and actual groundwater change pattern to the soils. To reach the archivement, serie of back pressure control test were implemented by utilising stress

  13. Fostering the uptake of satellite Earth Observation data for landslide hazard understanding: the CEOS Landslide Pilot

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Malet, Jean-Philippe; Roessner, Sigrid

    2017-04-01

    Landslides occur around the world, on every continent, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, it has been estimated that past landslide and landslide potential maps cover less than 1% of the slopes in these landmasses. Systematic information on the type, abundance, and distribution of existing landslides is lacking. Even in countries where landslide information is abundant (e.g. Italy), the vast majority of landslides caused by meteorological (intense or prolonged rainfall, rapid snowmelt) or geophysical (earthquake) triggers go undetected. This paucity of knowledge has consequences on the design of effective remedial and mitigation measures. Systematic use of Earth observation (EO) data and technologies can contribute effectively to detect, map, and monitor landslides, and landslide prone hillsides, in different physiographic and climatic regions. The CEOS (Committee on Earth Observation Satellites) Working Group on Disasters has recently launched a Landslide Pilot (period 2017-2019) with the aim to demonstrate the effective exploitation of satellite EO across the full cycle of landslide disaster risk management, including preparedness, response, and recovery at global, regional, and local scales, with a distinct multi-hazard focus on cascading impacts and risks. The Landslide Pilot is focusing efforts on three objectives: 1. Establish effective practices for merging different Earth Observation data (e.g. optical and radar) to better monitor and map landslide activity over time and space. 2. Demonstrate how landslide products, models, and services can support disaster risk management for multi-hazard and cascading landslide events. 3. Engage and partner with data brokers and end users to understand requirements and user expectations and get feedback through the activities described in objectives 1-2. The Landslide Pilot was endorsed in April 2016 and work

  14. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture

  15. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada

  16. Earthquake-driven erosion of organic carbon at the eastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, G.; West, A. J.; Hara, E. K.; Hammond, D. E.; Hilton, R. G.

    2016-12-01

    Large earthquakes can trigger massive landsliding that erodes particulate organic carbon (POC) from vegetation, soil and bedrocks, potentially linking seismotectonics to the global carbon cycle. Recent work (Wang et al., 2016, Geology) has highlighted a dramatic increase in riverine export of biospheric POC following the 2008 Mw7.9 Wenchuan earthquake, in the steep Longmen Shan mountain range at the eastern margin of the Tibetan Plateau. However, a complete, source-to-sink picture of POC erosion after the earthquake is still missing. Here we track POC transfer across the Longmen Shan range from high mountains to the downstream Zipingpu reservoir where riverine-exported POC has been trapped. Building on the work of Wang et al. (2016), who measured the compositions and fluxes of riverine POC, this study is focused on constraining the source and fate of the eroded POC after the earthquake. We have sampled landslide deposits and river sediment, and we have cored the Zipingpu reservoir, following a source-to-sink sampling strategy. We measured POC compositions and grain size of the sediment samples, mapped landslide-mobilized POC using maps of landslide inventory and biomass, and tracked POC loading from landslides to the reservoir sediment to constrain the fate of eroded OC. Constraints on carbon sources, fluxes and fate provide the foundation for constructing a post-earthquake POC budget. This work highlights the role of earthquakes in the mobilization and burial of POC, providing new insight into mechanisms linking tectonics and the carbon cycle and building understanding needed to interpret past seismicity from sedimentary archives.

  17. Combining heuristic and statistical techniques in landslide hazard assessments

    NASA Astrophysics Data System (ADS)

    Cepeda, Jose; Schwendtner, Barbara; Quan, Byron; Nadim, Farrokh; Diaz, Manuel; Molina, Giovanni

    2014-05-01

    As a contribution to the Global Assessment Report 2013 - GAR2013, coordinated by the United Nations International Strategy for Disaster Reduction - UNISDR, a drill-down exercise for landslide hazard assessment was carried out by entering the results of both heuristic and statistical techniques into a new but simple combination rule. The data available for this evaluation included landslide inventories, both historical and event-based. In addition to the application of a heuristic method used in the previous editions of GAR, the availability of inventories motivated the use of statistical methods. The heuristic technique is largely based on the Mora & Vahrson method, which estimates hazard as the product of susceptibility and triggering factors, where classes are weighted based on expert judgment and experience. Two statistical methods were also applied: the landslide index method, which estimates weights of the classes for the susceptibility and triggering factors based on the evidence provided by the density of landslides in each class of the factors; and the weights of evidence method, which extends the previous technique to include both positive and negative evidence of landslide occurrence in the estimation of weights for the classes. One key aspect during the hazard evaluation was the decision on the methodology to be chosen for the final assessment. Instead of opting for a single methodology, it was decided to combine the results of the three implemented techniques using a combination rule based on a normalization of the results of each method. The hazard evaluation was performed for both earthquake- and rainfall-induced landslides. The country chosen for the drill-down exercise was El Salvador. The results indicate that highest hazard levels are concentrated along the central volcanic chain and at the centre of the northern mountains.

  18. Estimating the empirical probability of submarine landslide occurrence

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger

    2010-01-01

    The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.

  19. Landslide-Generated Waves in a Dam Reservoir: The Effects of Landslide Rheology and Initial Submergence

    NASA Astrophysics Data System (ADS)

    Yavari Ramsheh, S.; Ataie-Ashtiani, B.

    2017-12-01

    Recent studies revealed that landslide-generated waves (LGWs) impose the largest tsunami hazard to our shorelines although earthquake-generated waves (EGWs) occur more often. Also, EGWs are commonly followed by a large number of landslide hazards. Dam reservoirs are more vulnerable to landslide events due to being located in mountainous areas. Accurate estimation of such hazards and their destructive consequences help authorities to reduce their risks by constructive measures. In this regard, a two-layer two-phase Coulomb mixture flow (2LCMFlow) model is applied to investigate the effects of landslide characteristics on LGWs for a real-sized simplification of the Maku dam reservoir, located in the North of Iran. A sensitivity analysis is performed on the role of landslide rheological and constitutive parameters and its initial submergence in LGW characteristics and formation patterns. The numerical results show that for a subaerial (SAL), a semi-submerged (SSL), and a submarine landslide (SML) with the same initial geometry, the SSLs can create the largest wave crest, up to 60% larger than SALs, for dense material. However, SMLs generally create the largest wave troughs and SALs travel the maximum runout distances beneath the water. Regarding the two-phase (solid-liquid) nature of the landslide, when interestial water is isolated from the water layer along the water/landslide interface, a LGW with up to 30% higher wave crest can be created. In this condition, increasing the pore water pressure within the granular layer results in up to 35% higher wave trough and 40% lower wave crest at the same time. These results signify the importance of appropriate description of two-phase nature and rheological behavior of landslides in accurate estimation of LGWs which demands further numerical, physical, and field studies about such phenomena.

  20. The Influence of Increasing Rain and Earthquake Activities on Landslide Slope Stability in Forest Areas

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Aditian, A.

    2014-12-01

    Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.

  1. Some comparisons between mining-induced and laboratory earthquakes

    USGS Publications Warehouse

    McGarr, A.

    1994-01-01

    Although laboratory stick-slip friction experiments have long been regarded as analogs to natural crustal earthquakes, the potential use of laboratory results for understanding the earthquake source mechanism has not been fully exploited because of essential difficulties in relating seismographic data to measurements made in the controlled laboratory environment. Mining-induced earthquakes, however, provide a means of calibrating the seismic data in terms of laboratory results because, in contrast to natural earthquakes, the causative forces as well as the hypocentral conditions are known. A comparison of stick-slip friction events in a large granite sample with mining-induced earthquakes in South Africa and Canada indicates both similarities and differences between the two phenomena. The physics of unstable fault slip appears to be largely the same for both types of events. For example, both laboratory and mining-induced earthquakes have very low seismic efficiencies {Mathematical expression} where ??a is the apparent stress and {Mathematical expression} is the average stress acting on the fault plane to cause slip; nearly all of the energy released by faulting is consumed in overcoming friction. In more detail, the mining-induced earthquakes differ from the laboratory events in the behavior of ?? as a function of seismic moment M0. Whereas for the laboratory events ?????0.06 independent of M0, ?? depends quite strongly on M0 for each set of induced earthquakes, with 0.06 serving, apparently, as an upper bound. It seems most likely that this observed scaling difference is due to variations in slip distribution over the fault plane. In the laboratory, a stick-slip event entails homogeneous slip over a fault of fixed area. For each set of induced earthquakes, the fault area appears to be approximately fixed but the slip is inhomogeneous due presumably to barriers (zones of no slip) distributed over the fault plane; at constant {Mathematical expression}, larger

  2. Global Review of Induced and Triggered Earthquakes

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Wilson, M.; Gluyas, J.; Julian, B. R.; Davies, R. J.

    2016-12-01

    Natural processes associated with very small incremental stress changes can modulate the spatial and temporal occurrence of earthquakes. These processes include tectonic stress changes, the migration of fluids in the crust, Earth tides, surface ice and snow loading, heavy rain, atmospheric pressure, sediment unloading and groundwater loss. It is thus unsurprising that large anthropogenic projects which may induce stress changes of a similar size also modulate seismicity. As human development accelerates and industrial projects become larger in scale and more numerous, the number of such cases is increasing. That mining and water-reservoir impoundment can induce earthquakes has been accepted for several decades. Now, concern is growing about earthquakes induced by activities such as hydraulic fracturing for shale-gas extraction and waste-water disposal via injection into boreholes. As hydrocarbon reservoirs enter their tertiary phases of production, seismicity may also increase there. The full extent of human activities thought to induce earthquakes is, however, much wider than generally appreciated. We have assembled as near complete a catalog as possible of cases of earthquakes postulated to have been induced by human activity. Our database contains a total of 705 cases and is probably the largest compilation made to date. We include all cases where reasonable arguments have been made for anthropogenic induction, even where these have been challenged in later publications. Our database presents the results of our search but leaves judgment about the merits of individual cases to the user. We divide anthropogenic earthquake-induction processes into: a) Surface operations, b) Extraction of mass from the subsurface, c) Introduction of mass into the subsurface, and d) Explosions. Each of these categories is divided into sub-categories. In some cases, categorization of a particular case is tentative because more than one anthropogenic activity may have preceded or been

  3. Perception of flood and landslide risk in Italy: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Salvati, P.; Bianchi, C.; Fiorucci, F.; Giostrella, P.; Marchesini, I.; Guzzetti, F.

    2014-05-01

    Inundations and landslides are widespread phenomena in Italy, where they cause severe damage and pose a threat to the population. Little is known on the perception of the population of landslides and floods. This is surprising, as an accurate perception is important for the successful implementation of many risk reduction or adaptation strategies. In an attempt to fill this gap, we have conducted two national surveys to measure the perception of landslide and flood risk of the population of Italy. The surveys were executed in 2012 and 2013, performing for each survey approximately 3100 computer assisted telephone interviews. The samples of the interviewees were statistically representative for a national scale quantitative assessment. The interviewees were asked questions designed to obtain information on their: (i) perception of natural, environmental, and technological risks, (ii) direct experience or general knowledge on the occurrence of landslides and floods in their municipality, (iii) perception of the possible threat posed by landslides and floods to their safety, (iv) general knowledge on the number of victims caused by landslides or floods, and on (v) the factors that they considered important to control landslide and flood risks in Italy. The surveys revealed that the population of Italy fears technological risks more than natural risks. Of the natural risks, earthquakes were considered more dangerous than floods, landslides, and volcanic eruptions. Examination of the temporal and geographical distribution of the responses revealed that the occurrence of recent damaging events influenced risk perception locally, and that the perception persisted longer for earthquakes and decreased more rapidly for landslides and floods. We justify the differentiation with the diverse consequences of the risks. The interviewees considered inappropriate land management the main cause of landslide and flood risk, followed by illegal construction, abandonment of the

  4. Overview of the geologic effects of the November 14, 2016, Mw 7.8 Kaikoura, New Zealand, earthquake

    USGS Publications Warehouse

    Jibson, Randall W.; Allstadt, Kate E.; Rengers, Francis K.; Godt, Jonathan W.

    2018-03-30

    The November 14, 2016, Kaikoura, New Zealand, earthquake (moment magnitude [Mw] 7.8) triggered more than 10,000 landslides over an area of about 12,000 square kilometers in the northeastern part of the South Island of New Zealand. In collaboration with GNS Science (the Institute of Geological and Nuclear Science Limited), we conducted ground and helicopter reconnaissance of the affected areas and assisted in rapid hazard evaluation. The majority of the triggered landslides were shallow- to moderate-depth (1–10 meters), highly disrupted falls and slides in rock and debris from Lower Cretaceous graywacke sandstone in the Seaward Kaikoura Range. Deeper, more coherent landslides in weak Upper Cretaceous to Neogene sedimentary rock also were numerous in the gentler topography south and inland (west) of the Seaward Kaikoura Range. The principal ground-failure hazards from the earthquake were the hundreds of valley-blocking landslides, many of which impounded lakes and ponds that posed potential downstream flooding hazards. Both large and small landslides also blocked road and rail corridors in many locations, including the main north-south highway (State Highway 1), which was still closed in October 2017. As part of our investigation, we compared post-earthquake field observations to the output of models used to estimate near-real-time landslide probabilities following earthquakes. The models generally over-predicted landslide occurrence and thus need further refinement.

  5. Building rainfall thresholds for large-scales landslides by extracting occurrence time of landslides from seismic records

    NASA Astrophysics Data System (ADS)

    Yen, Hsin-Yi; Lin, Guan-Wei

    2017-04-01

    Understanding the rainfall condition which triggers mass moment on hillslope is the key to forecast rainfall-induced slope hazards, and the exact time of landslide occurrence is one of the basic information for rainfall statistics. In the study, we focused on large-scale landslides (LSLs) with disturbed area larger than 10 ha and conducted a string of studies including the recognition of landslide-induced ground motions and the analyses of different terms of rainfall thresholds. More than 10 heavy typhoons during the periods of 2005-2014 in Taiwan induced more than hundreds of LSLs and provided the opportunity to characterize the rainfall conditions which trigger LSLs. A total of 101 landslide-induced seismic signals were identified from the records of Taiwan seismic network. These signals exposed the occurrence time of landslide to assess rainfall conditions. Rainfall analyses showed that LSLs occurred when cumulative rainfall exceeded 500 mm. The results of rainfall-threshold analyses revealed that it is difficult to distinct LSLs from small-scale landslides (SSLs) by the I-D and R-D methods, but the I-R method can achieve the discrimination. Besides, an enhanced three-factor threshold considering deep water content was proposed as the rainfall threshold for LSLs.

  6. Coseismic and postseismic motion of a landslide: Observations, modeling, and analogy with tectonic faults

    NASA Astrophysics Data System (ADS)

    Lacroix, P.; Perfettini, H.; Taipe, E.; Guillier, B.

    2014-10-01

    We document the first time series of a landslide reactivation by an earthquake using continuous GPS measurements over the Maca landslide (Peru). Our survey shows a coseismic response of the landslide of about 2 cm, followed by a relaxation period of 5 weeks during which postseismic slip is 3 times greater than the coseismic displacement itself. Our results confirm the coseismic activation of landslides and provide the first observation of a postseismic displacement. These observations are consistent with a mechanical model where slip on the landslide basal interface is governed by rate and state friction, analogous to the mechanics of creeping tectonic faults, opening new perspectives to study the mechanics of landslides and active faults.

  7. A Case Study of Geologic Hazards Affecting School Buildings: Evaluating Seismic Structural Vulnerability and Landslide Hazards at Schools in Aizawl, India

    NASA Astrophysics Data System (ADS)

    Perley, M. M.; Guo, J.

    2016-12-01

    India's National School Safety Program (NSSP) aims to assess all government schools in earthquake prone regions of the country. To supplement the Mizoram State Government's recent survey of 141 government schools, we screened an additional 16 private and 4 government schools for structural vulnerabilities due to earthquakes, as well as landslide hazards, in Mizoram's capital of Aizawl. We developed a geomorphologically derived landslide susceptibility matrix, which was cross-checked with Aizawl Municipal Corporation's landslide hazard map (provided by Lettis Consultants International), to determine the geologic hazards at each school. Our research indicates that only 7% of the 22 assessed school buildings are located within low landslide hazard zones; 64% of the school buildings, with approximately 9,500 students, are located within very high or high landslide hazard zones. Rapid Visual Screening (RVS) was used to determine the structural earthquake vulnerability of each school building. RVS is an initial vulnerability assessment procedure used to inventory and rank buildings that may be hazardous during an earthquake. Our study indicates that all of the 22 assessed school buildings have a damageability rating of Grade 3 or higher on the 5-grade EMS scale, suggesting a significant vulnerability and potential for damage in buildings, ranging from widespread cracking of columns and beam column joints to collapse. Additionally, 86% of the schools we visited had reinforced concrete buildings constructed before Aizawl's building regulations were passed in 2007, which can be assumed to lack appropriate seismic reinforcement. Using our findings, we will give recommendations to the Government of Mizoram to prevent unnecessary loss of life by minimizing each school's landslide risk and ensuring schools are earthquake-resistant.

  8. Nucleation speed limit on remote fluid-induced earthquakes.

    PubMed

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-08-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth's crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  9. Nucleation speed limit on remote fluid induced earthquakes

    USGS Publications Warehouse

    Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  10. A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Crozier, M. J.

    2017-10-01

    Multiple-occurrence regional landslide events (MORLEs) consist of hundreds to thousands of shallow landslides occurring more or less simultaneously within defined areas, ranging from tens to thousands of square kilometres. While MORLEs can be triggered by rainstorms and earthquakes, this paper is confined to those landslide events triggered by rainstorms. Globally, MORLEs occur in a range of geological settings in areas of moderate to steep slopes subject to intense rainstorms. Individual landslides in rainstorm-triggered events are dominantly small, shallow debris and earth flows, and debris and earth slides involving regolith or weathered bedrock. The model used to characterise these events assumes that energy distribution within the event area is represented on the land surface by a cell structure; with maximum energy expenditure within an identifiable core and rapid dissipation concentrically away from the centre. The version of the model presented here has been developed for rainfall-triggered landslide events. It proposes that rainfall intensity can be used to determine different critical landslide response zones within the cell (referred to as core, middle, and periphery zones). These zones are most readily distinguished by two conditions: the proportion of the slope that fails and the particular type of the slope stability factor that assumes dominance in determining specific sites of landslide occurrence. The latter condition means that the power of any slope stability factor to distinguish between stable and unstable sites varies throughout the affected area in accordance with the landslide response zones within the cell; certain factors critical for determining the location of landslide sites in one part of the event area have little influence in other parts of the event area. The implication is that landslide susceptibility maps (and subsequently derived mitigation measures) based on conventional slope stability factors may have only limited validity

  11. Landslide Hazards in the Seattle, Washington, Area

    USGS Publications Warehouse

    Baum, Rex; Harp, Ed; Highland, Lynn

    2007-01-01

    The Seattle, Washington, area is known for its livability and its magnificent natural setting. The city and nearby communities are surrounded by an abundance of rivers and lakes and by the bays of Puget Sound. Two majestic mountain ranges, the Olympics and the Cascades, rim the region. These dramatic natural features are products of dynamic forces-landslides, earthquakes, tsunamis, glaciers, volcanoes, and floods. The same processes that formed this beautiful landscape pose hazards to the ever-growing population of the region. Landslides long have been a major cause of damage and destruction to people and property in the Seattle area.

  12. Rainfall infiltration-induced landslides

    USGS Publications Warehouse

    Collins, Brian D.; Znidarcic, Dobroslav

    2011-01-01

    Unfavorable groundwater conditions are often the determining factor in triggering landslides. Whereas regional hydrogeology typically determines overall groundwater conditions, surficial rainfall infiltration into slopes also drives potential instability.

  13. Investigation of landslide potential parameters on Zonguldak-Ereğli Highway and adverse effects of landslides in the region.

    PubMed

    Can, Eray

    2014-04-01

    Landslides are natural phenomena in the same class of natural disasters as earthquakes, floods, hurricanes, erosion, and volcanic eruptions that adversely affect human lives and property. Owing to their widespread occurrence, landslides are easily visible and able to be partially understood by people witnessing them. Nevertheless, to comprehend the detail of their formation and determine their potential, it is necessary to undertake geodetic, geological, and geophysical measurements in regions prone to landslides. By analyzing these measurements, it is possible to better ascertain those regions predisposed to landslides and thus provide the means to prevent loss of life and property. The city of Zonguldak, situated in the Western Black Sea region of Turkey, has a high occurrence of landslides owing to its harsh topography with rugged and steep slopes and rainfall in almost every season. Furthermore, the diurnal temperature ranging up to 10 °C in all seasons, especially in winter, plays a crucial role in rock disintegration in this region. Other factors damage ground composition and trigger landslides, such as underground mining operations, road construction that collapses rocky hills using explosives, and excavation works in steep terrain for building construction. This study gives a detailed account of the causes and adverse effects of landslides and their parameters through examples of landslide occurrences in the region, together with the results and analyses of two periods of geodetic measurements conducted on the Zonguldak-Ereğli Highway in Ilıksu district.

  14. 2016 update on induced earthquakes in the United States

    USGS Publications Warehouse

    Petersen, Mark D.

    2016-01-01

    During the past decade people living in numerous locations across the central U.S. experienced many more small to moderate sized earthquakes than ever before. This earthquake activity began increasing about 2009 and peaked during 2015 and into early 2016. For example, prior to 2009 Oklahoma typically experienced 1 or 2 small earthquakes per year with magnitude greater than 3.0 but by 2015 this number rose to over 900 earthquakes per year of that size and over 30 earthquakes greater than 4.0. These earthquakes can cause damage. In 2011 a magnitude 5.6 earthquake struck near the town of Prague, Oklahoma on a preexisting fault and caused severe damage to several houses and school buildings. During the past 6 years more than 1500 reports of damaging shaking levels were reported in areas of induced seismicity. This rapid increase and the potential for damaging ground shaking from induced earthquakes caused alarm to about 8 million people living nearby and officials responsible for public safety. They wanted to understand why earthquakes were increasing and the potential threats to society and buildings located nearby.

  15. Modeling tsunamis induced by retrogressive submarine landslides

    NASA Astrophysics Data System (ADS)

    Løvholt, F.; Kim, J.; Harbitz, C. B.

    2015-12-01

    Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. Therefore, such landslides may involve a large amount of smaller blocks. As a consequence, the failure mechanisms and release rate of the individual blocks are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, we review the basic effects of retrogression on tsunamigenesis in simple geometries. To this end, two different methods are employed for the landslide motion, a series block with pre-scribed time lags and kinematics, and a dynamic retrogressive model where the inter-block time lag is determined by the model. The effect of parameters such as time lag on wave-height, wave-length, and dispersion are discussed. Finally, we discuss how the retrogressive effects may have influenced the tsunamis due to large landslides such as the Storegga slide. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  16. The Geological Susceptibility of Induced Earthquakes in the Duvernay Play

    NASA Astrophysics Data System (ADS)

    Pawley, Steven; Schultz, Ryan; Playter, Tiffany; Corlett, Hilary; Shipman, Todd; Lyster, Steven; Hauck, Tyler

    2018-02-01

    Presently, consensus on the incorporation of induced earthquakes into seismic hazard has yet to be established. For example, the nonstationary, spatiotemporal nature of induced earthquakes is not well understood. Specific to the Western Canada Sedimentary Basin, geological bias in seismogenic activation potential has been suggested to control the spatial distribution of induced earthquakes regionally. In this paper, we train a machine learning algorithm to systemically evaluate tectonic, geomechanical, and hydrological proxies suspected to control induced seismicity. Feature importance suggests that proximity to basement, in situ stress, proximity to fossil reef margins, lithium concentration, and rate of natural seismicity are among the strongest model predictors. Our derived seismogenic potential map faithfully reproduces the current distribution of induced seismicity and is suggestive of other regions which may be prone to induced earthquakes. The refinement of induced seismicity geological susceptibility may become an important technique to identify significant underlying geological features and address induced seismic hazard forecasting issues.

  17. Broad-band seismic analysis and modeling of the 2015 Taan Fjord, Alaska landslide using Instaseis

    NASA Astrophysics Data System (ADS)

    Gualtieri, Lucia; Ekström, Göran

    2018-06-01

    We carry out a broad-band analysis of the seismic signals generated by a massive landslide that occurred near Icy Bay (Alaska) on 2015 October 17. The event generated seismic signals recorded globally. Using Instaseis, a recently developed tool for rapid computation of complete broad-band synthetic seismograms, we simulate the seismic wave propagation between the event and five seismic stations located around the landslide. By modeling the broad-band seismograms in the period band 5-200 s, we reconstruct by inversion a time-varying point force to characterize the landslide time history. We compute the broad-band spectrum of the landslide force history and find that it has a corner period of about 100 s, corresponding to the duration of sliding. In contrast with standard earthquakes, the landslide force spectrum below the corner frequency decays as ω, while the spectral amplitudes at higher frequencies is proportional to ω-2, similar to the rate of spectral decay seen in earthquakes. From the inverted force history and an estimate of the final run-out distance, we deduce the mass, the trajectory and characteristics of the landslide dynamics associated with the centre of mass, such as acceleration, velocity, displacement and friction. Inferring an effective run-out distance of ˜900 m from a satellite image, we estimate a landslide mass of ˜150 million metric tons.

  18. Maximum magnitude earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.

    2014-01-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  19. Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Gorum, Tolga; van Westen, Cees J.; Korup, Oliver; van der Meijde, Mark; Fan, Xuanmei; van der Meer, Freek D.

    2013-02-01

    The 12 January 2010 Mw 7.0 Haiti earthquake occurred in a complex deformation zone at the boundary between the North American and Caribbean plates. Combined geodetic, geological and seismological data posited that surface deformation was driven by rupture on the Léogâne blind thrust fault, while part of the rupture occurred as deep lateral slip on the Enriquillo-Plantain Garden Fault (EPGF). The earthquake triggered > 4490 landslides, mainly shallow, disrupted rock falls, debris-soil falls and slides, and a few lateral spreads, over an area of ~ 2150 km2. The regional distribution of these slope failures defies those of most similar earthquake-triggered landslide episodes reported previously. Most of the coseismic landslides did not proliferate in the hanging wall of the main rupture, but clustered instead at the junction of the blind Léogâne and EPGF ruptures, where topographic relief and hillslope steepness are above average. Also, low-relief areas subjected to high coseismic uplift were prone to lesser hanging wall slope instability than previous studies would suggest. We argue that a combined effect of complex rupture dynamics and topography primarily control this previously rarely documented landslide pattern. Compared to recent thrust fault-earthquakes of similar magnitudes elsewhere, we conclude that lower static stress drop, mean fault displacement, and blind ruptures of the 2010 Haiti earthquake resulted in fewer, smaller, and more symmetrically distributed landslides than previous studies would suggest. Our findings caution against overly relying on across-the-board models of slope stability response to seismic ground shaking.

  20. Effect of landslides on the structural characteristics of land-cover based on complex networks

    NASA Astrophysics Data System (ADS)

    He, Jing; Tang, Chuan; Liu, Gang; Li, Weile

    2017-09-01

    Landslides have been widely studied by geologists. However, previous studies mainly focused on the formation of landslides and never considered the effect of landslides on the structural characteristics of land-cover. Here we define the modeling of the graph topology for the land-cover, using the satellite images of the earth’s surface before and after the earthquake. We find that the land-cover network satisfies the power-law distribution, whether the land-cover contains landslides or not. However, landslides may change some parameters or measures of the structural characteristics of land-cover. The results show that the linear coefficient, modularity and area distribution are all changed after the occurence of landslides, which means the structural characteristics of the land-cover are changed.

  1. Gas and Dust Phenomena of Mega-earthquakes and the Cause

    NASA Astrophysics Data System (ADS)

    Yue, Z.

    2013-12-01

    dense natural (methane) gas suddenly escaped from deep crust traps along deep fault zones. References Yue, ZQ, 2009. The source of energy power directly causing the May 12 Wenchuan Earthquake: Huge extremely pressurized natural gases trapped in deep Longmen Shan faults. News Journal of China Society of Rock Mechanics and Engineering, 86 (2009 (2)), 45-50. Yue, ZQ, 2010. Features and mechanism of coseismic surface ruptures by Wenchuan Earthquake. in Rock Stress and Earthquake, edited by Furen Xie, Taylor & Francis Group, London, ISBN 978-0-415-60165-8, 761-768. Yue, ZQ, 2013a. Natural gas eruption mechanism for earthquake landslides: illustrated with comparison between Donghekou and Papandayan Rockslide-debris flows. in Earthquake-induced Landslides, K. Ugai et al. (eds.), Springer-Verlage Berlin, Chapter 51: pp. 485-494 Yue ZQ, 2013b. On incorrectness in elastic rebound theory for cause of earthquakes. Paper No. S20-003 of Session S20, Proceedings of the 13th International Conference on Fracture, June 16-21, Beijing. Yue ZQ, 2013c. On nature of earthquakes with cause of compressed methane gas expansion and migration in crustal rocks, in Proceedings of Fifth Biot Conference on Poromechanics in Memory of Karl von Terzaghi (1883-1963), July 10-12, Vienna, edited by C. Hellmich et al, @ASCE, pp. 507-516.

  2. Development of Self-Potential Tomography for Early Warning System of rainfall induced Landslides: Electro-kinetic Effects and Sandbox Experiments

    NASA Astrophysics Data System (ADS)

    Hattori, K.; Yamazaki, T.; Terajima, T.; Huang, Q.

    2017-12-01

    Electro-kinetic effects is one of the possible mechanism for ULF electromagnetic phenomena preceeding landlisdes and large earthquakes. To understand general tendencies of electromagnetic changes related to electro-kinetic effects, we struggle with the integrated research to clarify the coupling among hydrological, geotechnical, and electromagnetic changes. Our final goal is to understand the ULF elecromagnetic phenomena in order to develop a simple technology for earthquake monitoring/forecasting. So, in this paper, we first show the observed waveforms possibly related to the Boso slow slip events in 2003 and 2007 and indoor landslide experiments with artificial rainfall. Then, numerical computations on the self-potential variation by the simulated groundwater flow, and compare the results with those observed by laboratory experiments. In the result, the simulated self-potential variation is consistent with observed one. FInally, we developed self-potential tomography to estimate the ground water condition. And we also characterize the pressure from the self-potential data, and compare the result with observed pressure head that is measured by pore-pressure gauge and found that the inverted pressure head is consistent with observed one. In addition, we apply the self-potential data observed by the flume test. The estimated pressure head from observed self-potential data shows the consistency with observed pressure head. And estimated pressure head also show the characteristic distribution before the landslide occurred. These facts are highly suggestive in effectiveness of the self-potential tomography to monitor groundwater changes associated with landslide. The details will be given in our presentation.

  3. Landslide prediction system in Slovenia (Masprem)

    NASA Astrophysics Data System (ADS)

    Šinigoj, Jasna; Jemec Auflič, Mateja; Krivic, Matija

    2017-04-01

    The landslide prediction system MASPREM has been developed in 2013 to (1) predict rainfall induced landslides on national and local level and (2) inform Civil Protection agency and inhabitants of an increased probability of landslide occurrences. A landslide prediction system on national level integrates three major components: (1) a landslide susceptibility map; (2) landslide triggering rainfall threshold values and (3) precipitation forecasting model's (i.e., ALADIN, INCA). Landslide prediction is also calculated on a local level, including exposure maps of inhabitants, buildings and different types of infrastructure to potential landslide occurrence at a scale of 1: 25,000 for 14 selected municipalities. MASPREM system runs in a 12 hour cycling mode, for 24 hours ahead. The results of the probability of landslide models are classified into five classes, with values ranging from one to five; where class one represents areas with a negligible landslide probability and class five areas with a very high landslide probability. It is a fully automated system based on open source software (PostgreSQL) and web applications for displaying results (Java, GDAL). When precipitation forecasting models are transferred to the GeoZS server the conversion process to raster data starts, stores data in a PostgreSQL database and performs the calculation. Based on final results, the WMS service that is responsible for the distribution of data through the service for download and review of results in a web application is created. In the period, from September 2013 to August 2016, MASPREM gave an alert about the probability of landslide occurrences in 84 cases. While the system has potential to become operational in use after the validation phase, there are also limitations related to the input data that should not be neglected: spatial resolution of the ALADIN model, the incomplete landslide inventory that is important for the validation, defining how many days of antecedent rainfall

  4. Characterization of past landslides and slope susceptibility analysis for Lima and Callao provinces, Peru

    NASA Astrophysics Data System (ADS)

    Tatard, Lucile; Villacorta, Sandra; Metzger, Pascale

    2013-04-01

    85% of people exposed to earthquakes, hurricanes, floods and drought live in developing countries (IPU, 2010). This population is also exposed to the landslide risk as this phenomenon is mainly triggered by earthquakes and rainfall. There is an urgent need to propose methods to evaluate and mitigate the landslide risk for developing countries, where few studies were undergone and data, and information on data, are scarce. In this study, we characterize a landslide inventory set up for the megalopolis of Lima, Peru, by the local geological bureau (INGEMMET). This inventory was set up using satellite images and includes landslides of all ages. It is composed of two landslide types: rockfalls and debris flows (huaycos) that we investigate together and separately. First, we describe qualitatively the landslide occurrences in terms of geology, slope steepness, altitude, etc. We notably find that debris flows occur at altitudes larger than the ones of the rockfalls, probably due to the climatic conditions. Then we find that the rockfalls and debris flows area distributions follow a power law when investigated separately whereas it does not follow a power law when investigated together. This highlights a logical difference of mechanics between the two landslide types. Then, using the dimension of correlation D (Grassberger and Procaccia, 1983) we show that the event spatial occurrences are not uniformly distributed but clustered. It supports the existence of controlling parameters on the spatial occurrence of landslides and the research to identify them. Last, we investigate the relationships between different landslide parameters (geology, altitude, slope steepness, ...) using the linear correlation coefficient r, and we find that all these parameters are independent to each other. This allows us to investigate each parameter separately in terms of landslide susceptibility and to define values for which the landslide susceptibility is low, medium or high for each

  5. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  6. Nucleation speed limit on remote fluid-induced earthquakes

    PubMed Central

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448

  7. Submarine slope failures near Seward, Alaska, during the M9.2 1964 earthquake

    USGS Publications Warehouse

    Haeussler, Peter J.; Lee, H.J.; Ryan, H.F.; Labay, K.; Kayen, R.E.; Hampton, M.A.; Suleimani, E.

    2007-01-01

    Following the 1964 M9.2 megathrust earthquake in southern Alaska, Seward was the only town hit by tsunamis generated from both submarine landslides and tectonic sources. Within 45 seconds of the start of the earthquake, a 1.2-km-long section of waterfront began sliding seaward, and soon after, ~6-8-m high waves inundated the town. Studies soon after the earthquake concluded that submarine landslides along the Seward waterfront generated the tsunamis that occurred immediately after the earthquake. We analyze pre- and post-earthquake bathymetry data to assess the location and extent of submarine mass failures and sediment transport. New NOAA multibeam bathymetry shows the morphology of the entire fjord at 15 m resolution. We also assembled all older soundings from smooth sheets for comparison to the multibeam dataset. We gridded the sounding data, applied corrections for coseismic subsidence, post-seismic rebound, unrecovered co-seismic subsidence, sea-level rise (vertical datum shift), and measurement errors. The difference grids show changes resulting from the 1964 earthquake. We estimate the total volume of slide material to be about 211 million m3. Most of this material was transported to a deep, flat area, which we refer to as “the bathtub”, about 6 to 13 km south of Seward. Sub-bottom profiling of the bathtub shows an acoustically transparent unit, which we interpret as a sediment flow deposit resulting from the submarine landslides. The scale of the submarine landslides and the distance over which sediment was transported is much larger than previously appreciated.

  8. The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides

    NASA Astrophysics Data System (ADS)

    Krøgli, Ingeborg K.; Devoli, Graziella; Colleuille, Hervé; Boje, Søren; Sund, Monica; Engen, Inger Karin

    2018-05-01

    The Norwegian Water Resources and Energy Directorate (NVE) have run a national flood forecasting and warning service since 1989. In 2009, the directorate was given the responsibility of also initiating a national forecasting service for rainfall-induced landslides. Both services are part of a political effort to improve flood and landslide risk prevention. The Landslide Forecasting and Warning Service was officially launched in 2013 and is developed as a joint initiative across public agencies between NVE, the Norwegian Meteorological Institute (MET), the Norwegian Public Road Administration (NPRA) and the Norwegian Rail Administration (Bane NOR). The main goal of the service is to reduce economic and human losses caused by landslides. The service performs daily a national landslide hazard assessment describing the expected awareness level at a regional level (i.e. for a county and/or group of municipalities). The service is operative 7 days a week throughout the year. Assessments and updates are published at the warning portal http://www.varsom.no/ at least twice a day, for the three coming days. The service delivers continuous updates on the current situation and future development to national and regional stakeholders and to the general public. The service is run in close cooperation with the flood forecasting service. Both services are based on the five pillars: automatic hydrological and meteorological stations, landslide and flood historical database, hydro-meteorological forecasting models, thresholds or return periods, and a trained group of forecasters. The main components of the service are herein described. A recent evaluation, conducted on the 4 years of operation, shows a rate of over 95 % correct daily assessments. In addition positive feedbacks have been received from users through a questionnaire. The capability of the service to forecast landslides by following the hydro-meteorological conditions

  9. Coping with earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul S.; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne

    2015-01-01

    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  10. Analysis of shallow landslides and soil erosion induced by rainfall over large areas

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Della Sala, Maria

    2014-05-01

    soil initial suction. On the other hand, the source areas for erosion phenomena depend on rainfall characteristics and soil cover, with simulated eroded areas larger in autumn season. In addition, for a past event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5 cm are comparable with the in-situ evidences if the analysis takes into account high rainfall intensity and a spatially variable soil cover use, thus providing a consistent interpretation of the event. References Acharya, G., Cochrane, T., Davies, T., Bowman, E. (2011). Quantifying and modeling postfailure sediment yields from laboratory-scale soil erosion and shallow landslide experiments with silty loess. Geomorphology 129, 49-58. Cascini L., Cuomo S., Della Sala M. (2011). Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case of Sarno-Quindici, Italy. Geomorphology, 126(1-2), 148-158. Cascini, L., Sorbino, G., Cuomo, S., Ferlisi, S. (2013). Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides, 1-14, DOI: 10.1007/s10346-013-0395-3. Cuomo S., Della Sala M. (2013). Spatially distributed analysis of shallow landslides and soil erosion induced by rainfall. (submitted to Natural Hazards). Fell, R., Corominas J., Bonnard, C., Cascini, L., Leroi E., Savage, W.Z., on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geolology, 102(3-4):85-98. Merritt, W.S., Latcher, R.A., Jakeman, A.J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software 18, 761- 799. Sorbino G., Sica C., Cascini L. (2010). Susceptibility analysis of shallow landslides source areas using physically based models. Natural Hazards, 53(2), 313-332.

  11. Characteristic and Behavior of Rainfall Induced Landslides in Java Island, Indonesia : an Overview

    NASA Astrophysics Data System (ADS)

    Christanto, N.; Hadmoko, D. S.; Westen, C. J.; Lavigne, F.; Sartohadi, J.; Setiawan, M. A.

    2009-04-01

    -E gradient. The minimum annual rainfall occurs in the northern part and in Far East Java, where few landslides can be spotted. Cumulative rainfalls are playing an important role on landslides triggering. Most of shallow landslides can be associated with antecedent rainfall, and rainfall superior on the day of landslide occurrence. There is an inverse relation between antecedent rainfalls and daily rainfall. Indeed heavy instantaneous rainfall can produce a landslide with the help of only low antecedent rainfall. On the contrary we encountered 11 cases of landslides with no rain on the triggering day, but with important antecedent rainfalls. Key words: rainfall induced landslide, spatio-temporal distribution, Java Island, Tropical Region.

  12. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.; Michael, John A.

    1998-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.

  13. ANALYSIS OF LABOUR ACCIDENTS OCCURRING IN DISASTER RESTORATION WORK FOLLOWING THE NIIGATA CHUETSU EARTHQUAKE (2004) AND THE NIIGATA CHUETSU-OKI EARTHQUAKE (2007)

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuya; Noda, Masashi; Kikkawa, Naotaka; Hori, Tomohito; Tamate, Satoshi; Toyosawa, Yasuo; Suemasa, Naoaki

    Labour accidents in disaster-relief and disaster restoration work following the Niigata Chuetsu Earthquake (2004) and the Niigata Chuetsu-oki Earthquake (2007) were analysed and characterised in order to raise awareness of the risks and hazards in such work. The Niigata Chuetsu-oki Earthquake affected houses and buildings rather than roads and railways, which are generally disrupted due to landslides or slope failures caused by earthquakes. In this scenario, the predominant type of accident is a "fall to lower level," which increases mainly due to the fact that labourers are working to repair houses and buildings. On the other hand, landslides and slope failures were much more prevalent in the Niigata Chuetsu Earthquake, resulting in more accidents occurring in geotechnical works rather than in construction works. Therefore, care should be taken in preventing "fall to lower level" accidents associated with repair work on the roofs of low-rise houses, "cut or abrasion" accidents due to the demolition of damaged houses and "caught in or compressed by equipment" accidents in road works and water and sewage works.

  14. Coupling of rainfall-induced landslide triggering model with predictions of debris flow runout distances

    NASA Astrophysics Data System (ADS)

    Lehmann, Peter; von Ruette, Jonas; Fan, Linfeng; Or, Dani

    2014-05-01

    Rapid debris flows initiated by rainfall induced shallow landslides present a highly destructive natural hazard in steep terrain. The impact and run-out paths of debris flows depend on the volume, composition and initiation zone of released material and are requirements to make accurate debris flow predictions and hazard maps. For that purpose we couple the mechanistic 'Catchment-scale Hydro-mechanical Landslide Triggering (CHLT)' model to compute timing, location, and landslide volume with simple approaches to estimate debris flow runout distances. The runout models were tested using two landslide inventories obtained in the Swiss Alps following prolonged rainfall events. The predicted runout distances were in good agreement with observations, confirming the utility of such simple models for landscape scale estimates. In a next step debris flow paths were computed for landslides predicted with the CHLT model for a certain range of soil properties to explore its effect on runout distances. This combined approach offers a more complete spatial picture of shallow landslide and subsequent debris flow hazards. The additional information provided by CHLT model concerning location, shape, soil type and water content of the released mass may also be incorporated into more advanced models of runout to improve predictability and impact of such abruptly-released mass.

  15. Rainfall-induced landslide vulnerability Assessment in urban area reflecting Urban structure and building characteristics

    NASA Astrophysics Data System (ADS)

    Park, C.; Cho, M.; Lee, D.

    2017-12-01

    Landslide vulnerability assessment methodology of urban area is proposed with urban structure and building charateristics which can consider total damage cost of climate impacts. We used probabilistic analysis method for modeling rainfall-induced shallow landslide susceptibility by slope stability analysis and Monte Carlo simulations. And We combined debris flows with considering spatial movements under topographical condition and built environmental condition. Urban vulnerability of landslide is assessed by two categories: physical demages and urban structure aspect. Physical vulnerability is related to buildings, road, other ubran infra. Urban structure vulnerability is considered a function of the socio-economic factors, trigger factor of secondary damage, and preparedness level of the local government. An index-based model is developed to evaluate the life and indirect damage under landslide as well as the resilience ability against disasters. The analysis was performed in a geographic information system (GIS) environment because GIS can deal efficiently with a large volume of spatial data. The results of the landslide susceptibility assessment were compared with the landslide inventory, and the proposed approach demonstrated good predictive performance. The general trend found in this study indicates that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions.

  16. Landslide Mapping Using Imagery Acquired by a Fixed-Wing Uav

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Jhan, J. P.; Lo, C. F.; Lin, Y. S.

    2011-09-01

    In Taiwan, the average annual rainfall is about 2,500 mm, about three times the world average. Hill slopes where are mostly under meta-stable conditions due to fragmented surface materials can easily be disturbed by heavy typhoon rainfall and/or earthquakes, resulting in landslides and debris flows. Thus, an efficient data acquisition and disaster surveying method is critical for decision making. Comparing with satellite and airplane, the unmanned aerial vehicle (UAV) is a portable and dynamic platform for data acquisition. In particularly when a small target area is required. In this study, a fixed-wing UAV that equipped with a consumer grade digital camera, i.e. Canon EOS 450D, a flight control computer, a Garmin GPS receiver and an attitude heading reference system (AHRS) are proposed. The adopted UAV has about two hours flight duration time with a flight control range of 20 km and has a payload of 3 kg, which is suitable for a medium scale mapping and surveying mission. In the paper, a test area with 21.3 km2 in size containing hundreds of landslides induced by Typhoon Morakot is used for landslides mapping. The flight height is around 1,400 meters and the ground sampling distance of the acquired imagery is about 17 cm. The aerial triangulation, ortho-image generation and mosaicking are applied to the acquired images in advance. An automatic landslides detection algorithm is proposed based on the object-based image analysis (OBIA) technique. The color ortho-image and a digital elevation model (DEM) are used. The ortho-images before and after typhoon are utilized to estimate new landslide regions. Experimental results show that the developed algorithm can achieve a producer's accuracy up to 91%, user's accuracy 84%, and a Kappa index of 0.87. It demonstrates the feasibility of the landslide detection algorithm and the applicability of a fixed-wing UAV for landslide mapping.

  17. On the characteristics of landslide tsunamis

    PubMed Central

    Løvholt, F.; Pedersen, G.; Harbitz, C. B.; Glimsdal, S.; Kim, J.

    2015-01-01

    This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. PMID:26392615

  18. A Tool for Modelling the Probability of Landslides Impacting Road Networks

    NASA Astrophysics Data System (ADS)

    Taylor, Faith E.; Santangelo, Michele; Marchesini, Ivan; Malamud, Bruce D.; Guzzetti, Fausto

    2014-05-01

    Triggers such as earthquakes or heavy rainfall can result in hundreds to thousands of landslides occurring across a region within a short space of time. These landslides can in turn result in blockages across the road network, impacting how people move about a region. Here, we show the development and application of a semi-stochastic model to simulate how landslides intersect with road networks during a triggered landslide event. This was performed by creating 'synthetic' triggered landslide inventory maps and overlaying these with a road network map to identify where road blockages occur. Our landslide-road model has been applied to two regions: (i) the Collazzone basin (79 km2) in Central Italy where 422 landslides were triggered by rapid snowmelt in January 1997, (ii) the Oat Mountain quadrangle (155 km2) in California, USA, where 1,350 landslides were triggered by the Northridge Earthquake (M = 6.7) in January 1994. For both regions, detailed landslide inventory maps for the triggered events were available, in addition to maps of landslide susceptibility and road networks of primary, secondary and tertiary roads. To create 'synthetic' landslide inventory maps, landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL. The number of landslide areas selected was based on the observed density of landslides (number of landslides km-2) in the triggered event inventories. Landslide shapes were approximated as ellipses, where the ratio of the major and minor axes varies with AL. Landslides were then dropped over the region semi-stochastically, conditioned by a landslide susceptibility map, resulting in a synthetic landslide inventory map. The originally available landslide susceptibility maps did not take into account susceptibility changes in the immediate vicinity of roads, therefore

  19. Landslide Risk: Economic Valuation in The North-Eastern Zone of Medellin City

    NASA Astrophysics Data System (ADS)

    Vega, Johnny Alexander; Hidalgo, César Augusto; Johana Marín, Nini

    2017-10-01

    Natural disasters of a geodynamic nature can cause enormous economic and human losses. The economic costs of a landslide disaster include relocation of communities and physical repair of urban infrastructure. However, when performing a quantitative risk analysis, generally, the indirect economic consequences of such an event are not taken into account. A probabilistic approach methodology that considers several scenarios of hazard and vulnerability to measure the magnitude of the landslide and to quantify the economic costs is proposed. With this approach, it is possible to carry out a quantitative evaluation of the risk by landslides, allowing the calculation of the economic losses before a potential disaster in an objective, standardized and reproducible way, taking into account the uncertainty of the building costs in the study zone. The possibility of comparing different scenarios facilitates the urban planning process, the optimization of interventions to reduce risk to acceptable levels and an assessment of economic losses according to the magnitude of the damage. For the development and explanation of the proposed methodology, a simple case study is presented, located in north-eastern zone of the city of Medellín. This area has particular geomorphological characteristics, and it is also characterized by the presence of several buildings in bad structural conditions. The proposed methodology permits to obtain an estimative of the probable economic losses by earthquake-induced landslides, taking into account the uncertainty of the building costs in the study zone. The obtained estimative shows that the structural intervention of the buildings produces a reduction the order of 21 % in the total landslide risk.

  20. Reprint of "A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping"

    NASA Astrophysics Data System (ADS)

    Crozier, M. J.

    2018-04-01

    Multiple-occurrence regional landslide events (MORLEs) consist of hundreds to thousands of shallow landslides occurring more or less simultaneously within defined areas, ranging from tens to thousands of square kilometres. While MORLEs can be triggered by rainstorms and earthquakes, this paper is confined to those landslide events triggered by rainstorms. Globally, MORLEs occur in a range of geological settings in areas of moderate to steep slopes subject to intense rainstorms. Individual landslides in rainstorm-triggered events are dominantly small, shallow debris and earth flows, and debris and earth slides involving regolith or weathered bedrock. The model used to characterise these events assumes that energy distribution within the event area is represented on the land surface by a cell structure; with maximum energy expenditure within an identifiable core and rapid dissipation concentrically away from the centre. The version of the model presented here has been developed for rainfall-triggered landslide events. It proposes that rainfall intensity can be used to determine different critical landslide response zones within the cell (referred to as core, middle, and periphery zones). These zones are most readily distinguished by two conditions: the proportion of the slope that fails and the particular type of the slope stability factor that assumes dominance in determining specific sites of landslide occurrence. The latter condition means that the power of any slope stability factor to distinguish between stable and unstable sites varies throughout the affected area in accordance with the landslide response zones within the cell; certain factors critical for determining the location of landslide sites in one part of the event area have little influence in other parts of the event area. The implication is that landslide susceptibility maps (and subsequently derived mitigation measures) based on conventional slope stability factors may have only limited validity

  1. Characteristics of Drainage Divide Migration through Coseismic and Storm-Triggered Landslides

    NASA Astrophysics Data System (ADS)

    Dahlquist, M. P.; West, A. J.; Li, G.

    2016-12-01

    Drainage basin reorganization is a fundamental but poorly understood process in landscape evolution. Capture and loss of drainage area by rivers redistributes erosive power and can drive the response of a landscape to tectonic/climatic forcing. Evidence of discrete capture of tributaries is widespread and common, but study of gradual migration of divides by hillslope processes (e.g. landsliding) has been minimal. Much scholarship is devoted to the geometric characteristics of rivers as they respond to tectonic forces, and divide migration has been proposed to result from contrasts in fluvial channel form. However, fluvial processes do not extend to basin divides, so fluvial controls on drainage reorganization should be mediated by hillslope processes such as slope failure. Here we explore whether the mediating role of hillslopes can be observed over the timescale of a single earthquake or major storm. We examine landslides in steep landscapes caused by three major events in the past decade: the 2008 Mw 7.9 Wenchuan earthquake in Sichuan, China, the 2009 Typhoon Morakot in Taiwan, and the 2015 Mw 7.8 Gorkha earthquake in Nepal. These events generated landslides that cut off ridges, causing area gain and loss in the drainage basins outlined by those ridges. We compare the location of these ridge-cutting landslides to values of Χ, an integral value of upstream drainage area over the length of a river. Comparing the Χ values of rivers which share a drainage divide is thought to show which river is likely to gain area at the expense of the other as the divide migrates, defining an "aggressor" (smaller Χ at divide) and a "victim" (greater Χ). We compute Χ for the rivers draining ridge-cutting landslides and consider whether landslides favor drainage area gain in basins with lower X values. Our preliminary results suggest that divide migration in areas with small to moderate disparities in Χ appears to be stochastic, with divides frequently migrating in the opposite

  2. Landslides Cause Tsunami Waves: Insights From Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Amblas, David; Calafat, Antoni M.; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Batist, Marc De; Daele, Maarten Van; Azpiroz, María.; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier

    2013-08-01

    On 21 April 2007, an Mw 6.2 earthquake produced an unforeseen chain of events in the Aysén fjord (Chilean Patagonia, 45.5°S). The earthquake triggered hundreds of subaerial landslides along the fjord flanks. Some of the landslides eventually involved a subaqueous component that, in turn, generated a series of displacement waves—tsunami-like waves produced by the fast entry of a subaerial landmass into a water body—within the fjord [Naranjo et al., 2009; Sepúlveda and Serey, 2009; Hermanns et al., 2013]. These waves, with run-ups several meters high along the shoreline, caused 10 fatalities. In addition, they severely damaged salmon farms, which constitute the main economic activity in the region, setting free millions of cultivated salmon with still unknown ecological consequences.

  3. On the characteristics of landslide tsunamis.

    PubMed

    Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J

    2015-10-28

    This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.

  4. The October 11, 1918 Mona Passage tsunami modeled using new submarine landslide evidence.

    NASA Astrophysics Data System (ADS)

    López, A. M.; ten Brink, U.; Geist, E.

    2007-12-01

    The October 11, 1918 ML 7.5 earthquake in the Mona Passage betweeen Hispaniola and Puerto Rico generated a local tsunami that claimed approximately 100 lives along the western coast of Puerto Rico. The area affected by this tsunami is now many-fold more populated. Although the exact cause of the tsunami is still unclear, newly-acquired high-resolution bathymetry of the Mona Passage and seismic reflection lines show a fresh submarine landslide 12 km northwest of Rincón in northwestern Puerto Rico and in the vicinity of the earthquake epicenter determined by Doser et al., (2005). The landslide area is approximately 76 km2 and probably displaced a total volume of 10 km3. The landslide's head scarp is at a water depth of 1.2 km, with the debris flow extending down to a water depth of 4.5 km. The seismic profiles and multibeam bathymetry indicate that the previously suggested source of the 1918 tsunami, a normal fault along the east side of Mona Rift (Mercado and McCann, 1998), was not active recently. The fault escarpment along Desecheo Ridge, which is near the Doser et al., (2005) epicenter, and our landslide appear, on the other hand, to be rather fresh. Using the extended, weakly non-linear hydrodynamic equations implemented in the program COULWAVE (Lynett and Liu, 2002), we modeled the tsunami by a landslide with a finite duration and with the observed dimensions and location. Marigrams (time series of sea level) were calculated at locations near to reported locations of runup. The marigrams show a leading depression wave followed by a maximum positive amplitude in good agreement with the reported polarity, relative amplitudes, and arrival times. Our results suggest this newly-identified landslide, which was likely triggered by the 1918 earthquake, was the probable cause of the October 11, 1918 tsunami and not a normal fault rupture as previously suggested.

  5. Analysis of sensor network observations during some simulated landslide experiments

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Lu, P.; Feng, T.; Chen, W.; Wu, H.; Qiao, G.; Liu, C.; Tong, X.; Li, R.

    2012-12-01

    A multi-sensor network was tested during some experiments on a landslide simulation platform established at Tongji University (Shanghai, P.R. China). Here landslides were triggered by means of artificial rainfall (see Figure 1). The sensor network currently incorporates contact sensors and two imaging systems. This represent a novel solution, because the spatial sensor network incorporate either contact sensors and remote sensors (video-cameras). In future, these sensors will be installed on two real ground slopes in Sichuan province (South-West China), where Wenchuan earthquake occurred in 2008. This earthquake caused the immediate activation of several landslide, while other area became unstable and still are a menace for people and properties. The platform incorporates the reconstructed scale slope, sensor network, communication system, database and visualization system. Some landslide simulation experiments allowed ascertaining which sensors could be more suitable to be deployed in Wenchuan area. The poster will focus on the analysis of results coming from down scale simulations. Here the different steps of the landslide evolution can be followed on the basis of sensor observations. This include underground sensors to detect the water table level and the pressure in the ground, a set of accelerometers and two inclinometers. In the first part of the analysis the full data series are investigated to look for correlations and common patterns, as well as to link them to the physical processes. In the second, 4 subsets of sensors located in neighbor positions are analyzed. The analysis of low- and high-speed image sequences allowed to track a dense field of displacement on the slope surface. These outcomes have been compared to the ones obtained from accelerometers for cross-validation. Images were also used for the photogrammetric reconstruction of the slope topography during the experiment. Consequently, volume computation and mass movements could be evaluated on

  6. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    PubMed

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  7. Comparative analysis of rainfall and landslide damage for landslide susceptibility zonation

    NASA Astrophysics Data System (ADS)

    Petrucci, O.; Pasqua, A. A.

    2009-04-01

    In the present work we applied a methodology tested in previous works to a regional sector of Calabria (Southern Italy), aiming to obtain a zonation of this area according to the susceptibility to develop landslides, as inferred from the combined analysis of past landslide events and cumulate rainfall which triggered them. The complete series of both historical landslides and daily rainfall have been organised in two databases. For each landslide event, damage, mainly defined in relation to the reimbursement requests sent to the Department of Public Works, has been quantified using a procedure based on a Local Damage Index. Rainfall has been described by the Maximum Return Period of cumulative rainfall recorded during the landslide events. Damage index and population density, presumed to represent the location of vulnerable elements, have been referred to Thiessen polygons associated to rain gauges working at the time of the event. The procedure allowed us to carry out a classification of the polygons composing the study area according to their susceptibility to damage during DHEs. In high susceptibility polygons, severe damage occurs during rainfall characterised by low return periods; in medium susceptibility polygons, maximum return period rainfall and induced damage show equal levels of exceptionality; in low susceptibility polygons, high return period rainfall induces a low level of damage. The results can prove useful in establishing civil defence plans, emergency management, and prioritizing hazard mitigation measures.

  8. Sichuan Earthquake in China

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams.

    This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  9. The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure

    USGS Publications Warehouse

    Coordinated by Holzer, Thomas L.

    1992-01-01

    Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for

  10. Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; McArdell, Brian; Or, Dani

    2017-03-01

    Debris flows and landslides induced by heavy rainfall represent an ubiquitous and destructive natural hazard in steep mountainous regions. For debris flows initiated by shallow landslides, the prediction of the resulting pathways and associated hazard is often hindered by uncertainty in determining initiation locations, volumes and mechanical state of the mobilized debris (and by model parameterization). We propose a framework for linking a simplified physically-based debris flow runout model with a novel Landslide Hydro-mechanical Triggering (LHT) model to obtain a coupled landslide-debris flow susceptibility and hazard assessment. We first compared the simplified debris flow model of Perla (1980) with a state-of-the art continuum-based model (RAMMS) and with an empirical model of Rickenmann (1999) at the catchment scale. The results indicate that predicted runout distances by the Perla model are in reasonable agreement with inventory measurements and with the other models. Predictions of localized shallow landslides by LHT model provides information on water content of released mass. To incorporate effects of water content and flow viscosity as provided by LHT on debris flow runout, we adapted the Perla model. The proposed integral link between landslide triggering susceptibility quantified by LHT and subsequent debris flow runout hazard calculation using the adapted Perla model provides a spatially and temporally resolved framework for real-time hazard assessment at the catchment scale or along critical infrastructure (roads, railroad lines).

  11. Java Programs for Using Newmark's Method and Simplified Decoupled Analysis to Model Slope Performance During Earthquakes

    USGS Publications Warehouse

    Jibson, Randall W.; Jibson, Matthew W.

    2003-01-01

    Landslides typically cause a large proportion of earthquake damage, and the ability to predict slope performance during earthquakes is important for many types of seismic-hazard analysis and for the design of engineered slopes. Newmark's method for modeling a landslide as a rigid-plastic block sliding on an inclined plane provides a useful method for predicting approximate landslide displacements. Newmark's method estimates the displacement of a potential landslide block as it is subjected to earthquake shaking from a specific strong-motion record (earthquake acceleration-time history). A modification of Newmark's method, decoupled analysis, allows modeling landslides that are not assumed to be rigid blocks. This open-file report is available on CD-ROM and contains Java programs intended to facilitate performing both rigorous and simplified Newmark sliding-block analysis and a simplified model of decoupled analysis. For rigorous analysis, 2160 strong-motion records from 29 earthquakes are included along with a search interface for selecting records based on a wide variety of record properties. Utilities are available that allow users to add their own records to the program and use them for conducting Newmark analyses. Also included is a document containing detailed information about how to use Newmark's method to model dynamic slope performance. This program will run on any platform that supports the Java Runtime Environment (JRE) version 1.3, including Windows, Mac OSX, Linux, Solaris, etc. A minimum of 64 MB of available RAM is needed, and the fully installed program requires 400 MB of disk space.

  12. Constraints on Slow Slip from Landsliding and Faulting

    NASA Astrophysics Data System (ADS)

    Delbridge, Brent Gregory

    The discovery of slow-slip has radically changed the way we understand the relative movement of Earth's tectonic plates and the accumulation of stress in fault zones that fail in large earthquakes. Prior to the discovery of slow-slip, faults were thought to relieve stress either through continuous aseismic sliding, as is the case for continental creeping faults, or in near instantaneous failure. Aseismic deformation reflects fault slip that is slow enough that both inertial forces and seismic radiation are negligible. The durations of observed aseismic slip events range from days to years, with displacements of up to tens of centimeters. These events are not unique to a specific depth range and occur on faults in a variety of tectonic settings. This aseismic slip can sometimes also trigger more rapid slip somewhere else on the fault, such as small embedded asperities. This is thought to be the mechanism generating observed Low Frequency Earthquakes (LFEs) and small repeating earthquakes. I have preformed a series of studies to better understanding the nature of tectonic faulting which are compiled here. The first is entitled "3D surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide", and was originally published in the Journal of Geophysical Research in 2016. In order to understand how landslides respond to environmental forcing, we quantify how the hydro-mechanical forces controlling the Slumgullion Landslide express themselves kinematically in response to the infiltration of seasonal snowmelt. The well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to 2 cm/day is an ideal natural laboratory due to its large spatial extent and rapid deformation rates. The lateral boundaries of the landslide consist of strike-slip fault features, which over time have built up large flank ridges. The second study compiled here is entitled "Temporal variation of intermediate-depth earthquakes

  13. Rainfall-induced Landslide Susceptibility assessment at the Longnan county

    NASA Astrophysics Data System (ADS)

    Hong, Haoyuan; Zhang, Ying

    2017-04-01

    Landslides are a serious disaster in Longnan county, China. Therefore landslide susceptibility assessment is useful tool for government or decision making. The main objective of this study is to investigate and compare the frequency ratio, support vector machines, and logistic regression. The Longnan county (Jiangxi province, China) was selected as the case study. First, the landslide inventory map with 354 landslide locations was constructed. Then landslide locations were then randomly divided into a ratio of 70/30 for the training and validating the models. Second, fourteen landslide conditioning factors were prepared such as slope, aspect, altitude, topographic wetness index (TWI), stream power index (SPI), sediment transport index (STI), plan curvature, lithology, distance to faults, distance to rivers, distance to roads, land use, normalized difference vegetation index (NDVI), and rainfall. Using the frequency ratio, support vector machines, and logistic regression, a total of three landslide susceptibility models were constructed. Finally, the overall performance of the resulting models was assessed and compared using the Receiver operating characteristic (ROC) curve technique. The result showed that the support vector machines model is the best model in the study area. The success rate is 88.39 %; and prediction rate is 84.06 %.

  14. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable

    PubMed Central

    Huang, Yihe; Ellsworth, William L.; Beroza, Gregory C.

    2017-01-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses. PMID:28782040

  15. Developing a methodology for the national-scale assessment of rainfall-induced landslide hazard in a changing climate

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta; Micu, Dana; Sima, Mihaela; Bălteanu, Dan; Bojariu, Roxana; Dumitrescu, Alexandru; Dragotă, Carmen; Micu, Mihai; Senzaconi, Francisc

    2017-04-01

    Landslides together with earthquakes and floods represent the main natural hazards in Romania, causing major impacts to human activities. The RO-RISK (Disaster Risk Evaluation at a National Level) project is a flagship project aimed to strengthen risk prevention and management in Romania, by evaluating - among the specific risks in the country - landslide hazard and risk at a national level. Landslide hazard is defined as "the probability of occurrence within a specified period of time and within a given area of a landslide of a given magnitude" (Varnes 1984; Guzzetti et al. 1999). Nevertheless, most landslide ʿhazardʾ maps only consist in susceptibility (i.e. spatial probability) zonations without considering temporal or magnitude information on the hazard. This study proposes a methodology for the assessment of landslide hazard at the national scale on a scenario basis, while also considering changes in hazard patterns and levels under climate change conditions. A national landslide database consisting of more than 3,000 records has been analyzed against a meteorological observation dataset in order to assess the relationship between precipitation and landslides. Various extreme climate indices were computed in order to account for the different rainfall patterns able to prepare/trigger landslides (e.g. extreme levels of seasonal rainfall, 3-days rainfall or number of consecutive rainy days with different return periods). In order to derive national rainfall thresholds, i.e. valid for diverse climatic environments across the country, values in the parameter maps were rendered comparable by means of normalization with the mean annual precipitation and the rainy-day-normal. A hazard assessment builds on a frequency-magnitude relationship. In the current hazard scenario approach, frequency was kept constant for each single map, while the magnitude of the expected geomorphic event was modeled in relation to the distributed magnitude of the triggering factor. Given

  16. Inversion of deformation fields time-series from optical images, application to the long term kinematics of slow-moving landslides

    NASA Astrophysics Data System (ADS)

    Bontemps, Noélie; Lacroix, Pascal; Doin, Marie-Pierre

    2017-04-01

    Slow-moving landslides are one of the major risks in mountainous areas. They are the cause of a lot of damages, both material and human as they can at any time exhibit sudden acceleration phases and flows that are generally difficult to predict. Landslide kinematic is driven by, inter alia, precipitation and water infiltration, river erosion, earthquakes and human activities. Complex interactions have been observed between climatic forcing and earthquakes. However, observations of these complex interactions on slow-moving landslides are very few, restricting the comprehension that we have on involved mechanisms. In this context, it is necessary to monitor slow-moving landslides over time. We propose to answer this problematic by studying slow-moving landslides over a long time period in the Colca valley, Peru, affected by both earthquakes and rainfalls. We will base our study on the 30-years long SPOT1-7/Pleiades archive, that confronts us with (1) low dynamic of images, (2) difference of pixel resolution between all acquired images and (3) long time span in between images leading to ground surface changes. To overcome these three limitations, this study proposes an adaptation to optical images of a method originally used for InSAR time-series analysis. This method uses the full redundancy of information to derive robust time-series of displacement from deformation fields. The retrieved displacement time-series obtained on the three largest landslides of the area are robust and coherent in time. The developed method allows decreasing the displacement uncertainties by approximately 25%. Eventually, we discuss the impact of the different forcing on the three main landslides of the region.

  17. The threat of silent earthquakes

    USGS Publications Warehouse

    Cervelli, Peter

    2004-01-01

    Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.

  18. The role of shear and tensile failure in dynamically triggered landslides

    USGS Publications Warehouse

    Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.

    2008-01-01

    Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  19. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    USGS Publications Warehouse

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    to the NSHM scenario were developed for the Hilton Creek and Hartley Springs Faults to account for different opinions in how far these two faults extend into Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice: the deterministic seismic hazard analysis program developed by Art Frankel of USGS and three Next Generation Ground Motion Attenuation (NGA) models. Ground motion calculations incorporated the potential amplification of seismic shaking by near-surface soils defined by a map of the average shear wave velocity in the uppermost 30 m (VS30) developed by CGS.In addition to ground shaking and shaking-related ground failure such as liquefaction and earthquake induced landslides, earthquakes cause surface rupture displacement, which can lead to severe damage of buildings and lifelines. For each earthquake scenario, potential surface fault displacements are estimated using deterministic and probabilistic approaches. Liquefaction occurs when saturated sediments lose their strength because of ground shaking. Zones of potential liquefaction are mapped by incorporating areas where loose sandy sediments, shallow groundwater, and strong earthquake shaking coincide in the earthquake scenario. The process for defining zones of potential landslide and rockfall incorporates rock strength, surface slope, and existing landslides, with ground motions caused by the scenario earthquake.Each scenario is illustrated with maps of seismic shaking potential and fault displacement, liquefaction, and landslide potential. Seismic shaking is depicted by the distribution of shaking intensity, peak ground acceleration, and 1.0-second spectral acceleration. One-second spectral acceleration correlates well with structural damage to surface facilities. Acceleration greater than 0.2 g is often associated with strong ground shaking and may cause moderate to heavy damage. The extent of strong shaking is influenced by subsurface fault dip and near

  20. Cross-slope Movement Patterns in Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  1. Sentinel-2 for rapid operational landslide inventory mapping

    NASA Astrophysics Data System (ADS)

    Stumpf, André; Marc, Odin; Malet, Jean-Philippe; Michea, David

    2017-04-01

    Landslide inventory mapping after major triggering events such as heavy rainfalls or earthquakes is crucial for disaster response, the assessment of hazards, and the quantification of sediment budgets and empirical scaling laws. Numerous studies have already demonstrated the utility of very-high resolution satellite and aerial images for the elaboration of inventories based on semi-automatic methods or visual image interpretation. Nevertheless, such semi-automatic methods are rarely used in an operational context after major triggering events; this is partly due to access limitations on the required input datasets (i.e. VHR satellite images) and to the absence of dedicated services (i.e. processing chain) available for the landslide community. Several on-going initiatives allow to overcome these limitations. First, from a data perspective, the launch of the Sentinel-2 mission offers opportunities for the design of an operational service that can be deployed for landslide inventory mapping at any time and everywhere on the globe. Second, from an implementation perspective, the Geohazards Exploitation Platform (GEP) of the European Space Agency (ESA) allows the integration and diffusion of on-line processing algorithms in a high computing performance environment. Third, from a community perspective, the recently launched Landslide Pilot of the Committee on Earth Observation Satellites (CEOS), has targeted the take-off of such service as a main objective for the landslide community. Within this context, this study targets the development of a largely automatic, supervised image processing chain for landslide inventory mapping from bi-temporal (before and after a given event) Sentinel-2 optical images. The processing chain combines change detection methods, image segmentation, higher-level image features (e.g. texture, shape) and topographic variables. Based on a few representative examples provided by a human operator, a machine learning model is trained and

  2. The Church Mountain Sturzstrom (Mega-Landslide), Glacier, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, M.R.; Easterbrook, D.J.

    1993-04-01

    Detailed investigation of an ancient sturzstrom or mega-landslide near Glacier, Washington has revealed it areal extent, approximate volume, age, geomorphology, source area, and possible causes. Stratigraphic and lithologic investigations indicate Church Mountain as the source area; therefore, this mega-landslide has been named the Church Mountain Sturzstrom (CMS). The CMS deposit is approximately 9 km in length, averages about 1 km in width, and has an estimated volume of 3 [times] 10[sup 8] m[sup 3]. Characteristics of the morphology and stratigraphy of the CMS deposit are suggestive of a sturzstrom origin, and may be indicative of sturzstrom elsewhere in the world.more » The overall stratigraphy of the deposit mimics the stratigraphy of the source area. The deposit is very compact, poorly sorted, matrix supported, and composed of highly angular clasts. Over steepening of the mountain due to glacial erosion may have contributed to the cause of failure, although the age of the CMS is at least 7,000 years younger than deglaciation. Four trees were C[sup 14] dated, yielding ages of about 2,700 B.P. for the CMS. Several other mega-landslides have been identified within 5--30 km of the CMS. The close proximity of these mega-landslides to the CMS suggests the possibility that they may have been triggered by an earthquake, although the ages of the other slides are currently unknown. The age of the CMS correlates approximately with age ranges of co-seismic events occurring along the west coast of Washington, further suggesting the possibility of an earthquake triggering mechanism.« less

  3. Modeling the roles of damage accumulation and mechanical healing on rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2014-05-01

    The abrupt release of rainfall-induced shallow landslides is preceded by local failures that may abruptly coalesce and form a continuous failure plane within a hillslope. The mechanical status of hillslopes reflects a competition between the extent of severity of accumulated local damage during prior rainfall events and the rates of mechanically healing (i.e. regaining of strength) by closure of micro-cracks, regrowth of roots, etc. The interplay of these processes affects the initial conditions for landslide modeling and shapes potential failure patterns during future rainfall events. We incorporated these competing mechanical processes in a hydro-mechanical landslide triggering model subjected to a sequence of rainfall scenarios. The model employs the Fiber Bundle Model (FBM) with bonds (fiber bundle) with prescribed threshold linking adjacent soil columns and soil to bedrock. Prior damage was represented by a fraction of broken fibers during previous rainfall events, and the healing of broken fibers was described by strength regaining models for soil and roots at different characteristic time scales. Results show that prior damage and healing introduce highly nonlinear response to landslide triggering. For small prior damage, mechanical bonds at soil-bedrock interface may fail early in next rainfall event but lead to small perturbations onto lateral bonds without triggering a landslide. For more severe damage weakening lateral bonds, excess load due to failure at soil-bedrock interface accumulates at downslope soil columns resulting in early soil failure with patterns strongly correlated with prior damage distribution. Increasing prior damage over the hillslope decreases the volume of first landslide and prolongs the time needed to trigger the second landslide due to mechanical relaxation of the system. The mechanical healing of fibers diminishes effects of prior damage on the time of failure, and shortens waiting time between the first and second landslides

  4. Estimating the Maximum Magnitude of Induced Earthquakes With Dynamic Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Gilmour, E.; Daub, E. G.

    2017-12-01

    Seismicity in Oklahoma has been sharply increasing as the result of wastewater injection. The earthquakes, thought to be induced from changes in pore pressure due to fluid injection, nucleate along existing faults. Induced earthquakes currently dominate central and eastern United States seismicity (Keranen et al. 2016). Induced earthquakes have only been occurring in the central US for a short time; therefore, too few induced earthquakes have been observed in this region to know their maximum magnitude. The lack of knowledge regarding the maximum magnitude of induced earthquakes means that large uncertainties exist in the seismic hazard for the central United States. While induced earthquakes follow the Gutenberg-Richter relation (van der Elst et al. 2016), it is unclear if there are limits to their magnitudes. An estimate of the maximum magnitude of the induced earthquakes is crucial for understanding their impact on seismic hazard. While other estimates of the maximum magnitude exist, those estimates are observational or statistical, and cannot take into account the possibility of larger events that have not yet been observed. Here, we take a physical approach to studying the maximum magnitude based on dynamic ruptures simulations. We run a suite of two-dimensional ruptures simulations to physically determine how ruptures propagate. The simulations use the known parameters of principle stress orientation and rupture locations. We vary the other unknown parameters of the ruptures simulations to obtain a large number of rupture simulation results reflecting different possible sets of parameters, and use these results to train a neural network to complete the ruptures simulations. Then using a Markov Chain Monte Carlo method to check different combinations of parameters, the trained neural network is used to create synthetic magnitude-frequency distributions to compare to the real earthquake catalog. This method allows us to find sets of parameters that are

  5. Combine bivariate statistics analysis and multivariate statistics analysis to assess landslide susceptibility in Chen-Yu-Lan watershed, Nantou, Taiwan.

    NASA Astrophysics Data System (ADS)

    Ngan Nguyen, Thi To; Liu, Cheng-Chien

    2013-04-01

    How landslides occurred and which factors triggered and sped up landslide occurrences were usually asked by researchers in the past decades. Many investigations carried out in many places in the world to finding out methods that predict and prevent damages from landslides phenomena. Chen-Yu-Lan River watershed is reputed as a 'hot pot' of landslide researches in Taiwan by its complicated geological structures with the significant tectonic fault systems and steeply mountainous terrain. Beside annual high precipitation concentration and the abrupt slopes, some natural disaster, as typhoons (Sinlaku-2008, Kalmaegi-2008, and Marakot-2009) and earthquake (Chi-Chi earthquake-1999) are also the triggered factors cause landslides with serious damages in this place. This research expresses the quantitative approaches to generate landslide susceptible map for Chen-Yu-Lan watershed, a mountainous area in the central Taiwan. Landslide inventories data, which were detected from the Formosat-2 imageries for eight years from 2004 to 2011, were applied to carry out landslide susceptibility mapping. Bivariate statistics analysis and multivariate statistics analysis would be applied to calculate susceptible index of landslides. The weights of parameters were computed based on landslide data for eight years from 2004 to 2011. To validate effective levels of factors to landslide occurrences, this method built some multivariate algorithms and compared these results with real landslide occurrences. Besides this method, the historical data of landslides were also used to assess and classify landslide susceptibility levels. From long-term landslide data, relation between landslide susceptibility levels and landslide repetition was assigned. The results demonstrated differently effective levels of potential factors, such as, slope gradient, drainage density, lithology and land use to landslide phenomena. The results also showed logical relationship between weights and characteristics of

  6. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  7. Topographic changes and their driving factors after 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Li, Congrong; Wang, Ming; Liu, Kai; Xie, Jun

    2018-06-01

    The 2008 Wenchuan Earthquake caused topographic change in the stricken areas because of the occurrence of numerous coseismic landslides. The emergence of new landslides and debris flows and movement of loose materials under the driving force of high rainfall could further shape the local topography. Currently, little attention has been paid to continuously monitoring and assessing topographic changes after the major earthquake. In this research, we obtained an elevation dataset (2002, 2010, 2013 and 2015) based on digital elevation model (DEM) data and a DEM extracted from ZY-3 stereo paired images with validation by field measurement. We quantitatively assessed elevation changes in different years and qualitatively analyzed spatiotemporal variation of the terrain and mass movement across the study area. The results show that the earthquake affected area experienced substantial elevation changes caused by seismic forces and subsequent rainfalls. High rainfall after the earthquake have become the biggest driver of elevation reduction, which overwhelmed elevation increase caused by the major earthquake. Increased post-earthquake erosion intensity has caused large amounts of loose materials to accumulate in river channels, and gullies and on upper-middle mountain slopes, which increases the risk of flooding and geo-hazards in the area.

  8. SLAMMER: Seismic LAndslide Movement Modeled using Earthquake Records

    USGS Publications Warehouse

    Jibson, Randall W.; Rathje, Ellen M.; Jibson, Matthew W.; Lee, Yong W.

    2013-01-01

    This program is designed to facilitate conducting sliding-block analysis (also called permanent-deformation analysis) of slopes in order to estimate slope behavior during earthquakes. The program allows selection from among more than 2,100 strong-motion records from 28 earthquakes and allows users to add their own records to the collection. Any number of earthquake records can be selected using a search interface that selects records based on desired properties. Sliding-block analyses, using any combination of rigid-block (Newmark), decoupled, and fully coupled methods, are then conducted on the selected group of records, and results are compiled in both graphical and tabular form. Simplified methods for conducting each type of analysis are also included.

  9. Induced and triggered earthquakes at The Geysers geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Johnson, Lane R.; Majer, Ernest L.

    2017-05-01

    The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.

  10. The 2009 L'Aquila earthquake sequence: technical and scientific activities during the emergency and post-emergency phases

    NASA Astrophysics Data System (ADS)

    Cardinali, Mauro

    2010-05-01

    The Central Apennines of Italy is an area characterized by significant seismic activity. In this area, individual earthquakes and prolonged seismic sequences produce a variety of ground effects, including landslides. The L'Aquila area, in the Abruzzo Region, was affected by an earthquake sequence that started on December 2008, and continued for several months. The main shock occurred on April 6, 2009, with local magnitude m = 6.3, and was followed by two separate earthquakes on April 7 and April 9, each with a local magnitude m > 5.0. The main shocks caused 308 fatalities, injured more than 1500 people, and left in excess of 65,000 people homeless. Damage to the cultural heritage was also severe, with tens of churches and historical buildings severely damaged or destroyed. The main shocks and some of the most severe aftershocks triggered landslides, chiefly rock falls and minor rock slides that caused damage to towns, individual houses, and the transportation network. Beginning in the immediate aftermath of the event, and continuing during the emergency and post-emergency phases, we assisted the Italian national Department for Civil Protection in the evaluation of local landslide and hydrological risk conditions. Technical and scientific activities focused on: (i) mapping the location, type, and severity of the main ground effects produced by the earthquake shaking, (ii) evaluating and selecting sites for potential new settlements and individual buildings, including a preliminary assessment of the local geomorphological and hydrological conditions; (iii) evaluating rock fall hazard at individual sites, (iv) monitoring slope and ground deformations, and (v) designing and implementing a prototype system for the forecast of the possible occurrence of rainfall-induced landslides. To execute these activates, we exploited a wide range of methods, techniques, and technologies, and we performed repeated field surveys, the interpretation of ground and aerial photographs

  11. Monitoring of Landslides using Repeated Kinematics GPS Observables in Sevketiye Town, Biga Peninsula, Çanakkale, NW Turkey

    NASA Astrophysics Data System (ADS)

    Cuneyt Erenoglu, Ramazan; Akcay, Ozgun; Karaca, Zeki; Erenoglu, Oya; Sengul Uluocak, Ebru; Yucel, Mehmet Ali

    2014-05-01

    Landslide is one of the most important natural events, and is also a result of earth's crust movements. Landslides generally result in the outward and downward movement of slope-forming materials consisting soil, rock, artificial fill and etc. Moreover, possible earthquakes are one of the main reasons of triggering landslides in active areas seismically. There have been many studies based on the Global Positioning System (GPS) observables to compute the three dimensional positioning of established sites, and to model landslides precisely. We can monitor landslide with GPS using continuous data collection or the type of campaign surveying. While continuous data collection provide a millimetre-level of accuracy, the accuracy decreases with the shorter sessions, e.g. campaign surveying, due to possible sources of error. The area, located west of the Çanakkale, has been studied to identify the landslide susceptibility and geology. Çanakkale, NW Turkey, is located on the territory of the Biga Peninsula and the Gallipoli Peninsula. The section of remaining at the west of the line from the Gulf of Edremit to the Gulf of Erdek is called Biga Peninsula, and it covers an area of approximately 10 thousand km². In the Biga Peninsula, the main morphological units are at the western, northern and southern of coastal plains, and on their behind the hills, plateaus and mountainous areas of the inland. But at the middle areas, it is often possible to find the tectonic depressions sandwiched between the masses plateau and mountainous. In general, moving down the slope of a rock, soil or debris can be defined as landslides that are ranks second in terms of caused losses after earthquakes in Turkey. Landslides, harm to urbanization as well as loss of lives and economic losses. Moreover they adversely affects to agricultural, forest areas and the quality of the rivers. For example, the gas pipeline connecting Turkey and Greece, which will provide gas to the Southern Europe passes

  12. Monitoring landslide dynamics using timeseries of UAV imagery

    NASA Astrophysics Data System (ADS)

    de Jong, S. M.; Van Beek, L. P.

    2017-12-01

    Landslides are worldwide occurring processes that can have large economic impact and sometimes result in fatalities. Multiple factors are important in landslide processes and can make an area prone to landslide activity. Human factors like drainage and removal of vegetation or land clearing are examples of factors that may cause a landslide. Other environmental factors such as topography and the shear strength of the slope material are more difficult to control. Triggering factors for landslides are typically heavy rainfall events or sometimes by earthquakes or under cutting processes by a river. The collection of data about existing landslides in a given area is important for predicting future landslides in that region. We have setup a monitoring program for landslide using cameras aboard Unmanned Airborne Vehicles. UAV with cameras are able to collect ultra-high resolution images and UAVs can be operated in a very flexible way, they just fit in the back of a car. Here, in this study we used Unmanned Aerial Vehicles to collect a time series of high-resolution images over landslides in France and Australia. The algorithm used to process the UAV images into OrthoMosaics and OrthoDEMs is Structure from Motion (SfM). The process generally results in centimeter precision in the horizontal and vertical direction. Such multi-temporal datasets enable the detection of landslide area, the leading edge slope, temporal patterns and volumetric changes of particular areas of the landslide. We measured and computed surface movement of the landslide using the COSI-Corr image correlation algorithm with ground validation. Our study shows the possibilities of generating accurate Digital Surface Models (DSMs) of landslides using images collected with an Unmanned Aerial Vehicle (UAV). The technique is robust and repeatable such that a substantial time series of datasets can be routinely collected. It is shown that a time-series of UAV images can be used to map landslide movements with

  13. Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2006-01-01

    The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.

  14. Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda

    NASA Astrophysics Data System (ADS)

    Jacobs, Liesbet; Dewitte, Olivier; Poesen, Jean; Maes, Jan; Mertens, Kewan; Sekajugo, John; Kervyn, Matthieu

    2017-10-01

    In many landslide-prone regions, data on landslide characteristics remain poor or inexistent. This is also the case for the Rwenzori Mountains, located on the border of Uganda and the DR Congo. There, landslides frequently occur and cause fatalities and substantial damage to private property and infrastructure. In this paper, we present the results of a field inventory performed in three representative study areas covering 114 km2. A total of 371 landslides were mapped and analyzed for their geomorphological characteristics and their spatial distribution. The average landslide areas varied from less than 0.3 ha in the gneiss-dominated highlands to >1 ha in the rift alluvium of the lowlands. Large landslides (>1.5 ha) are well represented while smaller landslides (<1.5 ha) are underrepresented. The degrees of completeness of the field inventories are comparable to those of similar historical landslide inventories. The diversity of potential mass movements in the Rwenzori is large and depends on the dominant lithological and topographic conditions. A dominance of shallow translational soil slides in gneiss and of deep rotational soil slides in the rift alluvium is observed. Slope angle is the main controlling topographic factor for landslides with the highest landslide concentrations for slope angles above 25-30° in the highlands and 10-15° in the lowlands. The undercutting of slopes by rivers and excavations for construction are important preparatory factors. Rainfall-triggered landslides are the most common in the area, however in the zones of influence of the last two major earthquakes (1966: Mw = 6.6 and 1994: Mw = 6.2), 12 co-seismic landslides were also observed.

  15. Debris flow susceptibility assessment after the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Fan, Xuanmei; van Westen, Cees; Tang, Chenxiao; Tang, Chuan

    2014-05-01

    Due to a tremendous amount of loose material from landslides that occurred during the Wenchuan earthquake, the frequency and magnitude of debris flows have been immensely increased, causing many casualties and economic losses. This study attempts to assess the post-earthquake debris flow susceptibility based on catchment units in the Wenchuan county, one of the most severely damaged county by the earthquake. The post earthquake debris flow inventory was created by RS image interpretation and field survey. According to our knowledge to the field, several relevant factors were determined as indicators for post-earthquake debris flow occurrence, including the distance to fault surface rupture, peak ground acceleration (PGA), coseismic landslide density, rainfall data, internal relief, slope, drainage density, stream steepness index, existing mitigation works etc. These indicators were then used as inputs in a heuristic model that was developed by adapting the Spatial Multi Criteria Evaluation (SMCE) method. The relative importance of the indicators was evaluated according to their contributions to the debris flow events that have occurred after the earthquake. The ultimate goal of this study is to estimate the relative likelihood of debris flow occurrence in each catchment, and use this result together with elements at risk and vulnerability information to assess the changing risk of the most susceptible catchment.

  16. Ground Motion Characteristics of Induced Earthquakes in Central North America

    NASA Astrophysics Data System (ADS)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in

  17. Landslide Hazard Assessment In Mountaneous Area of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Nyazov, R. A.; Nurtaev, B. S.

    Because of the growth of population and caretaking of the flat areas under agricul- ture, mountain areas have been intensively mastered, producing increase of natural and technogenic processes in Uzbekistan last years. The landslides are the most dan- gerous phenomena and 7240 of them happened during last 40 years. More than 50 % has taken place in the term of 1991 - 2000 years. The situation is aggravated be- cause these regions are situated in zones, where disastrous earthquakes with M> 7 occurred in past and are expected in the future. Continuing seismic gap in Uzbek- istan during last 15-20 years and last disastrous earthquakes occurred in Afghanistan, Iran, Turkey, Greece, Taiwan and India worry us. On the basis of long-term observa- tions the criteria of landslide hazard assessment (suddenness, displacement interval, straight-line directivity, kind of residential buildings destruction) are proposed. This methodology was developed on two geographic levels: local (town scale) and regional (region scale). Detailed risk analysis performed on a local scale and extrapolated to the regional scale. Engineering-geologic parameters content of hazard estimation of landslides and mud flows also is divided into regional and local levels. Four degrees of danger of sliding processes are distinguished for compiling of small-scale, medium- and large-scale maps. Angren industrial area in Tien-Shan mountain is characterized by initial seismic intensity of 8-9 (MSC scale). Here the human technological activity (open-cast mining) has initiated the forming of the large landslide that covers more- over 8 square kilometers and corresponds to a volume of 800 billion cubic meters. In turn the landslide influence can become the source of industrial emergencies. On an example of Angren industrial mining region, the different scenarios on safety control of residing of the people and motion of transport, regulating technologies definition of field improvement and exploitation of mountain

  18. Recent damaging earthquakes in Japan, 2003-2008

    USGS Publications Warehouse

    Kayen, Robert E

    2008-01-01

    During the last six years, from 2003-2008, Japan has been struck by three significant and damaging earthquakes: The most recent M6.6 Niigata Chuetsu Oki earthquake of July 16, 2007 off the coast of Kashiwazaki City, Japan; The M6.6 Niigata Chuetsu earthquake of October 23, 2004, located in Niigata Prefecture in the central Uonuma Hills; and the M8.0 Tokachi Oki Earthquake of September 26, 2003 effecting southeastern Hokkaido Prefecture. These earthquakes stand out among many in a very active period of seismicity in Japan. Within the upper 100 km of the crust during this period, Japan experienced 472 earthquakes of magnitude 6, or greater. Both Niigata events affected the south-central region of Tohoku Japan, and the Tokachi-Oki earthquake affected a broad region of the continental shelf and slope southeast of the Island of Hokkaido. This report is synthesized from the work of scores of Japanese and US researchers who led and participated in post-earthquake reconnaissance of these earthquakes: their noteworthy and valuable contributions are listed in an extended acknowledgements section at the end of the paper. During the Niigata Chuetsu Oki event of 2007, damage to the Kashiwazaki-Kariwa nuclear power plant, structures, infrastructure, and ground were primarily the product of two factors: (1) high intensity motions from this moderate-sized shallow event, and (2) soft, poor performing, or liquefiable soils in the coastal region of southwestern Niigata Prefecture. Structural and geotechnical damage along the slopes of dunes was ubiquitous in the Kashiwazaki-Kariwa region. The 2004 Niigata Chuetsu Earthquake was the most significant to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 were injured, and many hundreds of landslides destroyed entire upland villages. Landslides were of all types; some dammed streams, temporarily creating lakes threatening to overtop their new embankments and cause flash floods and mudslides. The numerous

  19. The HayWired Earthquake Scenario—Earthquake Hazards

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  20. LIDAR Helps Identify Source of 1872 Earthquake Near Chelan, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Blakely, R. J.; Weaver, C. S.

    2015-12-01

    One of the largest historic earthquakes in the Pacific Northwest occurred on 15 December 1872 (M6.5-7) near the south end of Lake Chelan in north-central Washington State. Lack of recognized surface deformation suggested that the earthquake occurred on a blind, perhaps deep, fault. New LiDAR data show landslides and a ~6 km long, NW-side-up scarp in Spencer Canyon, ~30 km south of Lake Chelan. Two landslides in Spencer Canyon impounded small ponds. An historical account indicated that dead trees were visible in one pond in AD1884. Wood from a snag in the pond yielded a calibrated age of AD1670-1940. Tree ring counts show that the oldest living trees on each landslide are 130 and 128 years old. The larger of the two landslides obliterated the scarp and thus, post-dates the last scarp-forming event. Two trenches across the scarp exposed a NW-dipping thrust fault. One trench exposed alluvial fan deposits, Mazama ash, and scarp colluvium cut by a single thrust fault. Three charcoal samples from a colluvium buried during the last fault displacement had calibrated ages between AD1680 and AD1940. The second trench exposed gneiss thrust over colluvium during at least two, and possibly three fault displacements. The younger of two charcoal samples collected from a colluvium below gneiss had a calibrated age of AD1665- AD1905. For an historical constraint, we assume that the lack of felt reports for large earthquakes in the period between 1872 and today indicates that no large earthquakes capable of rupturing the ground surface occurred in the region after the 1872 earthquake; thus the last displacement on the Spencer Canyon scarp cannot post-date the 1872 earthquake. Modeling of the age data suggests that the last displacement occurred between AD1840 and AD1890. These data, combined with the historical record, indicate that this fault is the source of the 1872 earthquake. Analyses of aeromagnetic data reveal lithologic contacts beneath the scarp that form an ENE

  1. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy

    USGS Publications Warehouse

    Salciarini, D.; Godt, J.W.; Savage, W.Z.; Conversini, P.; Baum, R.L.; Michael, J.A.

    2006-01-01

    We model the rainfall-induced initiation of shallow landslides over a broad region using a deterministic approach, the Transient Rainfall Infiltration and Grid-based Slope-stability (TRIGRS) model that couples an infinite-slope stability analysis with a one-dimensional analytical solution for transient pore pressure response to rainfall infiltration. This model permits the evaluation of regional shallow landslide susceptibility in a Geographic Information System framework, and we use it to analyze susceptibility to shallow landslides in an area in the eastern Umbria Region of central Italy. As shown on a landslide inventory map produced by the Italian National Research Council, the area has been affected in the past by shallow landslides, many of which have transformed into debris flows. Input data for the TRIGRS model include time-varying rainfall, topographic slope, colluvial thickness, initial water table depth, and material strength and hydraulic properties. Because of a paucity of input data, we focus on parametric analyses to calibrate and test the model and show the effect of variation in material properties and initial water table conditions on the distribution of simulated instability in the study area in response to realistic rainfall. Comparing the results with the shallow landslide inventory map, we find more than 80% agreement between predicted shallow landslide susceptibility and the inventory, despite the paucity of input data.

  2. An integrated system for rainfall induced shallow landslides modeling

    NASA Astrophysics Data System (ADS)

    Formetta, Giuseppe; Capparelli, Giovanna; Rigon, Riccardo; Versace, Pasquale

    2014-05-01

    Rainfall induced shallow landslides (RISL) cause significant damages involving loss of life and properties. Predict susceptible locations for RISL is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, statistic. Usually to accomplish this task two main approaches are used: statistical or physically based model. In this work an open source (OS), 3-D, fully distributed hydrological model was integrated in an OS modeling framework (Object Modeling System). The chain is closed by linking the system to a component for safety factor computation with infinite slope approximation able to take into account layered soils and suction contribution to hillslope stability. The model composition was tested for a case study in Calabria (Italy) in order to simulate the triggering of a landslide happened in the Cosenza Province. The integration in OMS allows the use of other components such as a GIS to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. Finally, model performances were quantified by comparing modelled and simulated trigger time. This research is supported by Ambito/Settore AMBIENTE E SICUREZZA (PON01_01503) project.

  3. Mitigation of landslide area around railway tunnel, South Sumatra Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Toha, M. Taufik; Setiabudidaya, Dedi; Komar, Syamsul; Bochori, Ghadafi, Moamar A.; Adiwarman, Mirza; Rahim, S. E.

    2017-09-01

    Adequate and safe railway line infrastructures as well as facilities are required to support the rail transport system in South Sumatra. The slope stability along railway line of Lahat-Lubuk Linggau South Sumatra were studied during landslide that occured on January 23th, 2016. The landslide occurred on the mouth of railway tunnel in Gunung Gajah Village, Lahat District that causing the railway transportation system had to be stopped for a few days. A comprehensive research was conducted to analyze the causes of the landslide and to identify other landslide risky areas along the railway line Lahat-Lubuk Linggau. The research activities included surveying, sampling, laboratory testing, investigating condition of geology, geotechnics, hydrogeology/hydrology, morphology and land use. The factors that cause landslide in the past studies were found to be morphology, structural geology, physical and mechanical characteristics, hydrogeology, hydrology, external forces (train vibration, earthquake). Results back analysis of slope stability when the landslide occurred showed that the value Safety Factor (SF) = 1, angle of friction = 0°, and cohesion = 0.49 kg/cm2 (49 kPa). Based on the observation and analysis of the condition of the morphology and orientation of the structure of the rock layers, there was a location prone to landslide (labile) in the surrounding area of the landslide. Mitigations to potential landslide in adjacent area were building a retaining wall, draining channels, and shortcrete at the rock wall after landslides and maintaining the land use around the slopes.

  4. Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin

    USGS Publications Warehouse

    Hough, Susan E.; Page, Morgan T.

    2016-01-01

    Recent studies have presented evidence that early to mid‐twentieth‐century earthquakes in Oklahoma and Texas were likely induced by fossil fuel production and/or injection of wastewater (Hough and Page, 2015; Frohlich et al., 2016). Considering seismicity from 1935 onward, Hauksson et al. (2015) concluded that there is no evidence for significant induced activity in the greater Los Angeles region between 1935 and the present. To explore a possible association between earthquakes prior to 1935 and oil and gas production, we first revisit the historical catalog and then review contemporary oil industry activities. Although early industry activities did not induce large numbers of earthquakes, we present evidence for an association between the initial oil boom in the greater Los Angeles area and earthquakes between 1915 and 1932, including the damaging 22 June 1920 Inglewood and 8 July 1929 Whittier earthquakes. We further consider whether the 1933 Mw 6.4 Long Beach earthquake might have been induced, and show some evidence that points to a causative relationship between the earthquake and activities in the Huntington Beach oil field. The hypothesis that the Long Beach earthquake was either induced or triggered by an foreshock cannot be ruled out. Our results suggest that significant earthquakes in southern California during the early twentieth century might have been associated with industry practices that are no longer employed (i.e., production without water reinjection), and do not necessarily imply a high likelihood of induced earthquakes at the present time.

  5. Landslides and megathrust splay faults captured by the late Holocene sediment record of eastern Prince William Sound, Alaska

    USGS Publications Warehouse

    Finn, S.P.; Liberty, Lee M.; Haeussler, Peter J.; Pratt, Thomas L.

    2015-01-01

    We present new marine seismic‐reflection profiles and bathymetric maps to characterize Holocene depositional patterns, submarine landslides, and active faults beneath eastern and central Prince William Sound (PWS), Alaska, which is the eastern rupture patch of the 1964 Mw 9.2 earthquake. We show evidence that submarine landslides, many of which are likely earthquake triggered, repeatedly released along the southern margin of Orca Bay in eastern PWS. We document motion on reverse faults during the 1964 Great Alaska earthquake and estimate late Holocene slip rates for these growth faults, which splay from the subduction zone megathrust. Regional bathymetric lineations help define the faults that extend 40–70 km in length, some of which show slip rates as great as 3.75  mm/yr. We infer that faults mapped below eastern PWS connect to faults mapped beneath central PWS and possibly onto the Alaska mainland via an en echelon style of faulting. Moderate (Mw>4) upper‐plate earthquakes since 1964 give rise to the possibility that these faults may rupture independently to potentially generate Mw 7–8 earthquakes, and that these earthquakes could damage local infrastructure from ground shaking. Submarine landslides, regardless of the source of initiation, could generate local tsunamis to produce large run‐ups along nearby shorelines. In a more general sense, the PWS area shows that faults that splay from the underlying plate boundary present proximal, perhaps independent seismic sources within the accretionary prism, creating a broad zone of potential surface rupture that can extend inland 150 km or more from subduction zone trenches.

  6. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    NASA Astrophysics Data System (ADS)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years

  7. Physically based approaches incorporating evaporation for early warning predictions of rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Reder, Alfredo; Rianna, Guido; Pagano, Luca

    2018-02-01

    In the field of rainfall-induced landslides on sloping covers, models for early warning predictions require an adequate trade-off between two aspects: prediction accuracy and timeliness. When a cover's initial hydrological state is a determining factor in triggering landslides, taking evaporative losses into account (or not) could significantly affect both aspects. This study evaluates the performance of three physically based predictive models, converting precipitation and evaporative fluxes into hydrological variables useful in assessing slope safety conditions. Two of the models incorporate evaporation, with one representing evaporation as both a boundary and internal phenomenon, and the other only a boundary phenomenon. The third model totally disregards evaporation. Model performances are assessed by analysing a well-documented case study involving a 2 m thick sloping volcanic cover. The large amount of monitoring data collected for the soil involved in the case study, reconstituted in a suitably equipped lysimeter, makes it possible to propose procedures for calibrating and validating the parameters of the models. All predictions indicate a hydrological singularity at the landslide time (alarm). A comparison of the models' predictions also indicates that the greater the complexity and completeness of the model, the lower the number of predicted hydrological singularities when no landslides occur (false alarms).

  8. POST Earthquake Debris Management — AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  9. Do moderate magnitude earthquakes generate seismically induced ground effects? The case study of the M w = 5.16, 29th December 2013 Matese earthquake (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Valente, Ettore; Ascione, A.; Ciotoli, G.; Cozzolino, M.; Porfido, S.; Sciarra, A.

    2018-03-01

    Seismically induced ground effects characterize moderate to high magnitude seismic events, whereas they are not so common during seismic sequences of low to moderate magnitude. A low to moderate magnitude seismic sequence with a M w = 5.16 ± 0.07 main event occurred from December 2013 to February 2014 in the Matese ridge area, in the southern Apennines mountain chain. In the epicentral area of the M w = 5.16 main event, which happened on December 29th 2013 in the southeastern part of the Matese ridge, field surveys combined with information from local people and reports allowed the recognition of several earthquake-induced ground effects. Such ground effects include landslides, hydrological variations in local springs, gas flux, and a flame that was observed around the main shock epicentre. A coseismic rupture was identified in the SW fault scarp of a small-sized intermontane basin (Mt. Airola basin). To detect the nature of the coseismic rupture, detail scale geological and geomorphological investigations, combined with geoelectrical and soil gas prospections, were carried out. Such a multidisciplinary study, besides allowing reconstruction of the surface and subsurface architecture of the Mt. Airola basin, and suggesting the occurrence of an active fault at the SW boundary of such basin, points to the gravitational nature of the coseismic ground rupture. Based on typology and spatial distribution of the ground effects, an intensity I = VII-VIII is estimated for the M w = 5.16 earthquake according to the ESI-07 scale, which affected an area of at least 90 km2.

  10. Debris flows associated with the 2015 Gorkha Earthquake in Nepal

    NASA Astrophysics Data System (ADS)

    Dahlquist, M. P.; West, A. J.; Martinez, J.

    2017-12-01

    Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.

  11. On the occurrence of fatal landslides in 2008

    NASA Astrophysics Data System (ADS)

    Petley, D.

    2009-04-01

    This paper represents the latest in an annual review of fatal landslide events worldwide, based upon the Durham Fatal Landslide Database. Landslide events were inevitably dominated by the occurrence of the 12th May Wenchuan Earthquake in Sichuan Province of China, which triggered very extensive landsliding. Whilst it will be very difficult to estimate the true impact of this event in terms of landslides, the Chinese authorities estimate that about 29,000 people were killed by landslides, with several thousand more losing their lives whilst trapped in rubble due to the inability of rescuers to pass through landslide affected areas. Considerable work is needed to understand the reasons for the intensity of the landslide processes. Elsewhere the number of fatal landslides recorded totalled 405 worldwide. These caused 3526 fatalities, giving a total for the year of about 32,526 people. To put this into context, according to the CRED EM-DAT database the recorded number of fatalities from volcanic eruptions in the period 2000 to 2008 inclusive is 221! The distribution of fatal landslides followed the familiar patterns observed in previous years, with distinct clusters in Central China, along the southern edge of the Himalayas, in the Caribbean, in Central America, western S. America, along the western edge of the Philippine Sea plate and in Indonesia, plus a scattering elsewhere. The temporal distribution shows strong seasonality, with the peak occurring during the northern hemisphere summer. Unusually however, the peak month was September (usually it is in July), and there were large numbers of landslide events right through to November. The November landslide clusters occurred in SE. Asia and in Central / S. America, reflecting very heavy rains in these regions at that time. The reasons for this are not clear at present, although may be linked to weakening La Nina conditions that have prevailed through much of the year. An analysis is made of the relationship between

  12. The third hans cloos lecture. Urban landslides: Socioeconomic impacts and overview of mitigative strategies

    USGS Publications Warehouse

    Schuster, R.L.; Highland, L.M.

    2007-01-01

    As a result of population pressures, hillsides in the world's urban areas are being developed at an accelerating rate. This development increases the risk for urban landslides triggered by rainfall or earthquake activity. To counter this risk, four approaches have been employed by landslide managers and urban planners: (1) restricting development in landslide-prone areas; (2) implementing and enforcing excavation, grading, and construction codes; (3) protecting existing developments by physical mitigation measures and (4) developing and installing monitoring and warning systems. Where they have been utilized, these approaches generally have been effective in reducing the risk due to landslide hazards. In addition to these practices, landslide insurance holds promise as a mitigative measure by reducing the financial impact of landslides on individual property owners. Until recently, however, such insurance has not been widely available and, where it is available, it is so expensive that it has been little used. ?? Springer-Verlag 2006.

  13. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  14. Geotechnical aspects of the 2016 MW 6.2, MW 6.0, and MW 7.0 Kumamoto earthquakes

    USGS Publications Warehouse

    Kayen, Robert E.; Dashti, Shideh; Kokusho, T.; Hazarika, H.; Franke, Kevin; Oettle, N. K.; Wham, Brad; Ramirez Calderon, Jenny; Briggs, Dallin; Guillies, Samantha; Cheng, Katherine; Tanoue, Yutaka; Takematsu, Katsuji; Matsumoto, Daisuke; Morinaga, Takayuki; Furuichi, Hideo; Kitano, Yuuta; Tajiri, Masanori; Chaudhary, Babloo; Nishimura, Kengo; Chu, Chu

    2017-01-01

    The 2016 Kumamoto earthquakes are a series of events that began with an earthquake of moment magnitude 6.2 on the Hinagu Fault on April 14, 2016, followed by another foreshock of moment magnitude 6.0 on the Hinagu Fault on April 15, 2016, and a larger moment magnitude 7.0 event on the Futagawa Fault on April 16, 2016 beneath Kumamoto City, Kumamoto Prefecture on Kyushu, Japan. These events are the strongest earthquakes recorded in Kyushu during the modern instrumental era. The earthquakes resulted in substantial damage to infrastructure, buildings, cultural heritage of Kumamoto Castle, roads and highways, slopes, and river embankments due to earthquake-induced landsliding and debris flows. Surface fault rupture produced offset and damage to roads, buildings, river levees, and an agricultural dam. Surprisingly, given the extremely intense earthquake motions, liquefaction occurred only in a few districts of Kumamoto City and in the port areas indicating that the volcanic soils were less susceptible to liquefying than expected given the intensity of earthquake shaking, a significant finding from this event.

  15. A landslide-quake detection algorithm with STA/LTA and diagnostic functions of moving average and scintillation index: A preliminary case study of the 2009 Typhoon Morakot in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Jie; Lin, Guan-Wei

    2017-04-01

    Since 1999, Taiwan has experienced a rapid rise in the number of landslides, and the number even reached a peak after the 2009 Typhoon Morakot. Although it is proved that the ground-motion signals induced by slope processes could be recorded by seismograph, it is difficult to be distinguished from continuous seismic records due to the lack of distinct P and S waves. In this study, we combine three common seismic detectors including the short-term average/long-term average (STA/LTA) approach, and two diagnostic functions of moving average and scintillation index. Based on these detectors, we have established an auto-detection algorithm of landslide-quakes and the detection thresholds are defined to distinguish landslide-quake from earthquakes and background noises. To further improve the proposed detection algorithm, we apply it to seismic archives recorded by Broadband Array in Taiwan for Seismology (BATS) during the 2009 Typhoon Morakots and consequently the discrete landslide-quakes detected by the automatic algorithm are located. The detection algorithm show that the landslide-detection results are consistent with that of visual inspection and hence can be used to automatically monitor landslide-quakes.

  16. Recent extreme rainfall-induced landslides and government countermeasures in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Su-Gon; Hencher, Stephen

    2013-04-01

    During 2011 a large number of landslides occurred in South Korea as a result of heavy rainfall (160~300mm/day) which fell between 19 June and 27 July. Fifty eight people were killed and 200 injured at 11 locations. Almost 80% of the fatal landslides can be attributed at least in part to human activities such as an army camp, pedestrian road, forest road, cemetery, tomb, irrigation for vegetable garden and fruit farm. This paper addresses the anthropogenic influences on recent landslides in Korea. In addition, this paper discusses the Korean government countermeasures related to landslides. Restoration works tends to start immediately without design reports and without investigating the causes of landslides. Restoration works tend to comprise simple erosion control such as hard-covering to failure surfaces and the provision of check dams. These measures are implemented without any input from specialist geotechnical engineers. Persons injured or subject to economic loss as a result of landslides have often taken legal action against the Korean government. The most usual result is that experts appointed by the courts side with Government and simply conclude that the disasters are the natural consequence of heavy rainfall. As a result claimants have generally lost their cases and received no compensation. Furthermore, because of the lack of proper investigations there are no lessons learned from past landslides and no department has been established within the Korean government, tasked with reducing landslide risk.

  17. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides

    PubMed Central

    Handwerger, Alexander L.; Rempel, Alan W.; Skarbek, Rob M.; Roering, Joshua J.; Hilley, George E.

    2016-01-01

    Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length h* that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments. PMID:27573836

  18. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides.

    PubMed

    Handwerger, Alexander L; Rempel, Alan W; Skarbek, Rob M; Roering, Joshua J; Hilley, George E

    2016-09-13

    Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length [Formula: see text] that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments.

  19. Probabilistic clustering of rainfall condition for landslide triggering

    NASA Astrophysics Data System (ADS)

    Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto

    2013-04-01

    Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed

  20. Impact of earthquakes and their secondary environmental effects on public health

    NASA Astrophysics Data System (ADS)

    Mavroulis, Spyridon; Mavrouli, Maria; Lekkas, Efthymios; Tsakris, Athanassios

    2017-04-01

    Earthquakes are among the most impressive geological processes with destructive effects on humans, nature and infrastructures. Secondary earthquake environmental effects (EEE) are induced by the ground shaking and are classified into ground cracks, slope movements, dust clouds, liquefactions, hydrological anomalies, tsunamis, trees shaking and jumping stones. Infectious diseases (ID) emerging during the post-earthquake period are considered as secondary earthquake effects on public health. This study involved an extensive and systematic literature review of 121 research publications related to the public health impact of 28 earthquakes from 1980 to 2015 with moment magnitude (Mw) from 6.1 to 9.2 and their secondary EEE including landslides, liquefaction and tsunamis generated in various tectonic environments (extensional, transform, compressional) around the world (21 events in Asia, 5 in America and one each in Oceania and Europe). The inclusion criteria were the literature type comprising journal articles and official reports, the natural disaster type including earthquakes and their secondary EEE (landslides, liquefaction, tsunamis), the population type including humans and the outcome measures characterized by disease incidence increase. The potential post-earthquake ID are classified into 14 groups including respiratory (detected after 15 of 28 earthquakes, 53.57%), water-borne (15, 53.57%), skin (8, 28.57%), vector-borne (8, 28.57%) wound-related (6, 21.43%), blood-borne (4, 14.29%), pulmonary (4, 14.29%), fecal-oral (3, 10.71%), food-borne (3, 10.71%), fungal (3, 10.71%), parasitic (3, 10.71%), eye (1, 3.57%), mite-borne (1, 3.57%) and soil-borne (1, 3.57%) infections. Based on age and genre data available for 15 earthquakes, the most vulnerable population groups are males, young children (age ≤ 10 years) and adults (age ≥ 65 years). Cholera, pneumonia and tetanus are the deadliest post-earthquake ID. The risk factors leading not only to disease

  1. On the historical account of disastrous landslides in Mexico: the challenge of risk management and disaster prevention

    NASA Astrophysics Data System (ADS)

    Alcántara-Ayala, I.

    2008-01-01

    Landslides disasters in Mexico caused more than 3500 deaths between 1935 and 2006. Such disasters have been mainly associated to intense precipitation events derived from hurricanes, tropical storms and their interactions with cold fronts, although earthquake triggered landslides have also occurred to a lesser extent. The impact of landsliding in Mexico is basically determined by the geomorphic features of mountain ranges and dissected plateaus inhabited by vulnerable communities. The present contribution provides a comprehensive temporal assessment of historical landslide disasters in Mexico. Moreover, it aims at exploring the future directions of risk management and disaster prevention, in order to reduce the impact of landslides on populations as a result of climatic change, urban sprawl, land use change and social vulnerability.

  2. Simulation of Sediment Transport Caused by Landslide at Nanhua Reservoir Watershed in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Huang, Cong-Gi; Lin, Huan-Hsuan

    2016-04-01

    As a result of heavy rainfall, steep topography, young and weak geological formations, earthquakes, loose soils, slope land cultivation and other human disturbance, much area in Taiwan are prone to the occurrence of disastrous mass movements such as landslides and sediment disasters. During recent years, the extreme rainfall events brought huge amounts of rainfall and triggered severe changes in watershed environments. Typhoon Morakot in August 2009 caused severe landslides, debris flow, flooding and sediment disasters induced by record-break rainfall. The maximum rainfall of mountain area in Chiayi, Tainan, Kaohsiung and Pingtung County were over 2,900 mm. The study area is located at Nanhua reservoir watershed in southern Taiwan. The numerical model (HEC-RAS 4.1 and FLO-2D) will be used to simulate the sediment transport caused by landslide and the study will find out the separating location of erosion and deposition in the river, the danger area of riverbank, and the safety of the river terrace village under the return period of 50-year, 100-year and 200-year (such as Typhoon Morakot). The results of this study can provide for the disaster risk management of administrative decisions to lessen the impacts of natural hazards and may also be useful for time-space variation of sediment disasters caused by Climate Change.

  3. Landslides and engineering geology of the Seattle, Washington, area

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Highland, Lynn M.

    2008-01-01

    This volume brings together case studies and summary papers describing the application of state-of-the-art engineering geologic methods to landslide hazard analysis for the Seattle, Washington, area. An introductory chapter provides a thorough description of the Quaternary and bedrock geology of Seattle. Nine additional chapters review the history of landslide mapping in Seattle, present case studies of individual landslides, describe the results of spatial assessments of landslide hazard, discuss hydrologic controls on landsliding, and outline an early warning system for rainfall-induced landslides.

  4. Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland)

    NASA Astrophysics Data System (ADS)

    Poli, Piero

    2017-09-01

    Precursory signals to material's failure are predicted by numerical models and observed in laboratory experiments or using field data. These precursory signals are a marker of slip acceleration on weak regions, such as crustal faults. Observation of these precursory signals of catastrophic natural events, such as earthquakes and landslides, is necessary for improving our knowledge about the physics of the nucleation process. Furthermore, observing such precursory signals may help to forecast these catastrophic events or reduce their hazard. I report here the observation of seismic precursors to the Nuugaatsiaq landslide in Greenland. Time evolution of the detected precursors implies that an aseismic slip event is taking place for hours before the landslide, with an exponential increase of slip velocity. Furthermore, time evolution of the precursory signals' amplitude sheds light on the evolution of the fault physics during the nucleation process.

  5. Human-induced shifts in geomorphic process rates: An example of landslide activity following forest cover change.

    NASA Astrophysics Data System (ADS)

    Guns, Marie; Balthazar, Vincent; Vanacker, Veerle

    2013-04-01

    Mountain regions present unique challenges and opportunities to land use change research. Very few, if any, mountain ecosystems remain unaffected by human impact. Based on the exemplary evidence from local case studies, it is not yet possible to have an overall assessment of the extent and impact of human activities on mountain erosion as mountain regions are typically characterized by rapid changes in geomorphic, cryospheric, climatic, hydrologic, ecological and socio-economic conditions over relatively short distances. Here, we present a conceptual model that allows evaluating human-induced shifts in geomorphic process rates. The basic idea behind this model is that the magnitude-frequency distribution of geomorphic processes is dependent on the intensity of human disturbance. The conceptual model is here applied for characterising landslide activity following forest cover change. We selected a tropical Andean catchment with a deforestation rate of 1.4% over the last 45 years. Landslide inventories were established based on historical aerial photographs (1963, 1977, and 1989) and very high-resolution satellite images (2010). Statistical analyses show that the total number of landslides is rising, and that they are increasingly associated with human disturbances (deforestation, road construction). This is particularly the case for shallow landslides that become more frequent after clearcutting. As the human-induced shifts in landslide activity are significant for the low-magnitude events only, the total impact on geomorphic process rates is rather limited in this particular area. This work shows that including information on the magnitude-frequency of geomorphic events before, during and after human disturbances offers new possibilities to quantify the complex response of geomorphic processes to human disturbances.

  6. Topographic changes and their driving factors after 2008 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, M.; Xie, J.; Liu, K.

    2017-12-01

    The Wenchuan Ms 8.0 Earthquake caused topographic change in the stricken areas because of the formation of numerous coseismic landslides. The emergence of new landslides and debris flows and movement of loose materials under the driving force of heavy rainfall could further shape the local topography. Dynamic topographic changes in mountainous areas stricken by major earthquakes have a strong linkage to the development and occurrence of secondary disasters. However, little attention has been paid to continuously monitoring mountain environment change after such earthquakes. A digital elevation model (DEM) is the main feature of the terrain surface, in our research, we extracted DEM in 2013 and 2015 of a typical mountainous area severely impacted by the 2008 Wenchuan earthquake from the ZY-3 stereo pair images with validation by field measurement. Combined with the elevation dataset in 2002 and 2010, we quantitatively assessed elevation changes in different years and qualitatively analyzed spatiotemporal variation of the terrain and mass movement across the study area. The results show that the earthquake stricken area experienced substantial elevation changes caused by seismic forces and subsequent rainfalls. Meanwhile, deposits after the earthquake are mainly accumulated on the river-channels and mountain ridges and deep gullies which increase the risk of other geo-hazards. And the heavy rainfalls after the earthquake have become the biggest driver of elevation reduction, which overwhelmed elevation increase during the major earthquake. Our study provided a better understanding of subsequent hazards and risks faced by residents and communities stricken by major earthquakes.

  7. Comparison of event landslide inventories: the Pogliaschina catchment test case, Italy

    NASA Astrophysics Data System (ADS)

    Mondini, A. C.; Viero, A.; Cavalli, M.; Marchi, L.; Herrera, G.; Guzzetti, F.

    2014-07-01

    Event landslide inventory maps document the extent of populations of landslides caused by a single natural trigger, such as an earthquake, an intense rainfall event, or a rapid snowmelt event. Event inventory maps are important for landslide susceptibility and hazard modelling, and prove useful to manage residual risk after a landslide-triggering event. Standards for the preparation of event landslide inventory maps are lacking. Traditional methods are based on the visual interpretation of stereoscopic aerial photography, aided by field surveys. New and emerging techniques exploit remotely sensed data and semi-automatic algorithms. We describe the production and comparison of two independent event inventories prepared for the Pogliaschina catchment, Liguria, Northwest Italy. The two inventories show landslides triggered by an intense rainfall event on 25 October 2011, and were prepared through the visual interpretation of digital aerial photographs taken 3 days and 33 days after the event, and by processing a very-high-resolution image taken by the WorldView-2 satellite 4 days after the event. We compare the two inventories qualitatively and quantitatively using established and new metrics, and we discuss reasons for the differences between the two landslide maps. We expect that the results of our work can help in deciding on the most appropriate method to prepare reliable event inventory maps, and outline the advantages and the limitations of the different approaches.

  8. Submarine slope earthquake-induced instability and associated tsunami generation potential along the Hyblean-Malta Escarpment (offshore eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano

    2016-04-01

    The stability analysis of offshore margins is an important step for the assessment of natural hazard: the main challenge is to evaluate the potential slope failures and the consequent occurrence of submarine tsunamigenic landslides to mitigate the potential coastal damage to inhabitants and infrastructures. But the limited geotechnical knowledge of the underwater soil and the controversial scientific interpretation of the tectonic units make it often difficult to carry out this type of analysis reliably. We select the Hyblean-Malta Escarpment (HME), the main active geological structure offshore eastern Sicily, because the amount of data from historical chronicles, the records about strong earthquakes and tsunami, and the numerous geological offshore surveys carried out in recent years make the region an excellent scenario to evaluate slope failures, mass movements triggered by earthquakes and the consequent tsunamis. We choose several profiles along the HME and analyse their equilibrium conditions using the Minimun Lithostatic Deviation (MLD) method (Tinti and Manucci, 2006, 2008; Paparo et al. 2013), that is based on the limit-equilibrium theory. Considering the morphological and geotechnical features of the offshore slopes, we prove that large-earthquake shaking may lead some zones of the HME to instability, we evaluate the expected volumes involved in sliding and compute the associated landslide-tsunami through numerical tsunami simulations. This work was carried out in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe (Grant 603839, 7th FP, ENV.2013.6.4-3).

  9. An improved data integration algorithm to constrain the 3D displacement field induced by fast deformation phenomena tested on the Napa Valley earthquake

    NASA Astrophysics Data System (ADS)

    Polcari, Marco; Fernández, José; Albano, Matteo; Bignami, Christian; Palano, Mimmo; Stramondo, Salvatore

    2017-12-01

    In this work, we propose an improved algorithm to constrain the 3D ground displacement field induced by fast surface deformations due to earthquakes or landslides. Based on the integration of different data, we estimate the three displacement components by solving a function minimization problem from the Bayes theory. We exploit the outcomes from SAR Interferometry (InSAR), Global Positioning System (GNSS) and Multiple Aperture Interferometry (MAI) to retrieve the 3D surface displacement field. Any other source of information can be added to the processing chain in a simple way, being the algorithm computationally efficient. Furthermore, we use the intensity Pixel Offset Tracking (POT) to locate the discontinuity produced on the surface by a sudden deformation phenomenon and then improve the GNSS data interpolation. This approach allows to be independent from other information such as in-situ investigations, tectonic studies or knowledge of the data covariance matrix. We applied such a method to investigate the ground deformation field related to the 2014 Mw 6.0 Napa Valley earthquake, occurred few kilometers from the San Andreas fault system.

  10. Sensitivity analysis of earthquake-induced static stress changes on volcanoes: the 2010 Mw 8.8 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Bonali, F. L.; Tibaldi, A.; Corazzato, C.

    2015-06-01

    In this work, we analyse in detail how a large earthquake could cause stress changes on volcano plumbing systems and produce possible positive feedbacks in promoting new eruptions. We develop a sensitivity analysis that considers several possible parameters, providing also new constraints on the methodological approach. The work is focus on the Mw 8.8 2010 earthquake that occurred along the Chile subduction zone near 24 historic/Holocene volcanoes, located in the Southern Volcanic Zone. We use six different finite fault-slip models to calculate the static stress change, induced by the coseismic slip, in a direction normal to several theoretical feeder dykes with various orientations. Results indicate different magnitudes of stress change due to the heterogeneity of magma pathway geometry and orientation. In particular, the N-S and NE-SW-striking magma pathways suffer a decrease in stress normal to the feeder dyke (unclamping, up to 0.85 MPa) in comparison to those striking NW-SE and E-W, and in some cases there is even a clamping effect depending on the magma path strike. The diverse fault-slip models have also an effect (up to 0.4 MPa) on the results. As a consequence, we reconstruct the geometry and orientation of the most reliable magma pathways below the 24 volcanoes by studying structural and morphometric data, and we resolve the stress changes on each of them. Results indicate that: (i) volcanoes where post-earthquake eruptions took place experienced earthquake-induced unclamping or very small clamping effects, (ii) several volcanoes that did not erupt yet are more prone to experience future unrest, from the point of view of the host rock stress state, because of earthquake-induced unclamping. Our findings also suggest that pathway orientation plays a more relevant role in inducing stress changes, whereas the depth of calculation (e.g. 2, 5 or 10 km) used in the analysis, is not key a parameter. Earthquake-induced magma-pathway unclamping might contribute to

  11. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  12. Rainfall thresholds for possible landslide occurrence in Italy

    NASA Astrophysics Data System (ADS)

    Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto

    2017-08-01

    The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we

  13. Climate-Induced Landslides within the Larch Dominant Permafrost Zone of Central Siberia.

    PubMed

    Kharuk, Viacheslav I; Shushpanov, Alexandr S; Im, Sergei T; Ranson, Kenneth J

    2016-04-01

    Climate impact on landslide occurrence and spatial patterns were analyzed within the larch-dominant communities associated with continuous permafrost areas of Central Siberia. We used high resolution satellite imagery (i.e. QuickBird, WorldView) to identify landslide scars over an area of 62000 km 2 . Landslide occurrence was analyzed with respect to climate variables (air temperature, precipitation, drought index SPEI), and GRACE satellite derived equivalent of water thickness anomalies (EWTA). Landslides were found only on southward facing slopes, and the occurrence of landslides increased exponentially with increasing slope steepness. Lengths of landslides correlated positively with slope steepness. The observed upper elevation limit of landslides tended to coincide with the tree line. Observations revealed landslides occurrence was also found to be strongly correlated with August precipitation (r = 0.81) and drought index (r = 0.7), with June-July-August soil water anomalies (i.e., EWTA, r = 0.68-0.7), and number of thawing days (i.e., a number of days with t max > 0°C; r = 0.67). A significant increase in the variance of soil water anomalies was observed, indicating that occurrence of landslides may increase even with a stable mean precipitation level. The key-findings of this study are (1) landslides occurrence increased within the permafrost zone of Central Siberia in the beginning of the 21st century; (2) the main cause of increased landslides occurrence are extremes in precipitation and soil water anomalies; and (3) landslides occurrence are strongly dependent on relief features such as southward facing steep slopes.

  14. Climate-Induced Landsliding within the Larch Dominant Permafrost Zone of Central Siberia

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Shushpanov, Alexandr S.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Climate impact on landslide occurrence and spatial patterns were analyzed within the larch-dominant communities associated with continuous permafrost areas of central Siberia. We used high resolution satellite imagery (i.e. QuickBird, WorldView) to identify landslide scars over an area of 62 000 km2. Landslide occurrence was analyzed with respect to climate variables (air temperature, precipitation, drought index SPEI), and Gravity Recovery and Climate Experiment satellite derived equivalent of water thickness anomalies (EWTA). Landslides were found only on southward facing slopes, and the occurrence of landslides increased exponentially with increasing slope steepness. Lengths of landslides correlated positively with slope steepness. The observed upper elevation limit of landslides tended to coincide with the tree line. Observations revealed landslides occurrence was also found to be strongly correlated with August precipitation (r = 0.81) and drought index (r = 0.7), with June-July-August soil water anomalies (i.e., EWTA, r = 0.68-0.7), and number of thawing days (i.e., a number of days with t (max) > 0 deg C; r = 0.67). A significant increase in the variance of soil water anomalies was observed, indicating that occurrence of landslides may increase even with a stable mean precipitation level. The key-findings of this study are (1) landslides occurrence increased within the permafrost zone of central Siberia in the beginning of the 21st century; (2) the main cause of increased landslides occurrence are extremes in precipitation and soil water anomalies; and (3) landslides occurrence are strongly dependent on relief features such as southward facing steep slopes.

  15. Climate-Induced Landslides within the Larch Dominant Permafrost Zone of Central Siberia

    PubMed Central

    Shushpanov, Alexandr S; Im, Sergei T; Ranson, Kenneth J

    2017-01-01

    Climate impact on landslide occurrence and spatial patterns were analyzed within the larch-dominant communities associated with continuous permafrost areas of Central Siberia. We used high resolution satellite imagery (i.e. QuickBird, WorldView) to identify landslide scars over an area of 62000 km2. Landslide occurrence was analyzed with respect to climate variables (air temperature, precipitation, drought index SPEI), and GRACE satellite derived equivalent of water thickness anomalies (EWTA). Landslides were found only on southward facing slopes, and the occurrence of landslides increased exponentially with increasing slope steepness. Lengths of landslides correlated positively with slope steepness. The observed upper elevation limit of landslides tended to coincide with the tree line. Observations revealed landslides occurrence was also found to be strongly correlated with August precipitation (r = 0.81) and drought index (r = 0.7), with June-July-August soil water anomalies (i.e., EWTA, r = 0.68–0.7), and number of thawing days (i.e., a number of days with tmax > 0°C; r = 0.67). A significant increase in the variance of soil water anomalies was observed, indicating that occurrence of landslides may increase even with a stable mean precipitation level. The key-findings of this study are (1) landslides occurrence increased within the permafrost zone of Central Siberia in the beginning of the 21st century; (2) the main cause of increased landslides occurrence are extremes in precipitation and soil water anomalies; and (3) landslides occurrence are strongly dependent on relief features such as southward facing steep slopes. PMID:29326754

  16. Defining "Acceptable Risk" for Earthquakes Worldwide

    NASA Astrophysics Data System (ADS)

    Tucker, B.

    2001-05-01

    results suggest that the comparisons of the participating cities are easily understood, and defensible. The evaluation of the sources of El Salvador's risk, made before the January 13th earthquake, pointed to the vulnerability made visible by the earthquake: earthquake-induced landslides, and difficulties with emergency response.

  17. Investigation of giant mass movements in the Lesser Caucasus and assessment of the spatial relationship between landslides and major fault zones and volcanoes

    NASA Astrophysics Data System (ADS)

    Ofélia Matossian, Alice; Mreyen, Anne-Sophie; Karakhanian, Arkady; Havenith, Hans-Balder

    2017-04-01

    Two landslides of assumed seismic origin in the vicinity of Garni, Armenia, were investigated during a geophysical field campaign in September 2016. On the basis of geophysical prospecting (microseismic ambient noise measurements, i.e. H/V method), the thickness of the landslide deposits has been estimated and a trigger scenario model was developed. The original trigger of those landslides is not known - but one major reactivation by an earthquake in 1679 has been proved (see below). Additionally, the spatial distribution of landslides was analysed with respect to the location of major fault zones and volcanic areas. For that, a spatial analysis with GIS has been carried out on the basis of two landslide catalogues. The catalogue that was generated during this work covers the areas of including the Pambak-Sevan-Syunik and the Garni Faults as well as several volcanic areas. These NW-SE faults are mainly marked dextral strike-slip movements locally combined with reverse mechanisms. Along these fault zones strong historical earthquakes occurred, as for example one major event in 1139 (M 7.5 - 7.7). The 1679 Garni earthquake caused widespread destruction and also reactivated landslides located near the Garni Fault, including the two investigated landslides. According to historical sources, the event reached a magnitude of M=5.5-7 with an intensity between VIII and X. The volcanic areas on the other hand include the NNW-SSE-oriented Ghegham and the NW-SE Vardeniss ridges. Some of the ridges' volcanoes erupted during the Holocene, i.e. 2090 ± 70 BP for the Ghegham ridge. Nowadays, more than 80% of Armenia is covered by Quaternary volcanic formations or friable deposits which are favourable to the formation of landslides. Nevertheless, our first analysis showed that the faults have a stronger influence on landslide distribution than the volcanoes. This is also due to the indirect fact that many volcanic areas are marked by more gentle slopes than the valleys hosting the

  18. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  19. Response mechanism of post-earthquake slopes under heavy rainfall

    NASA Astrophysics Data System (ADS)

    Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang

    2017-07-01

    This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.

  20. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides

    NASA Astrophysics Data System (ADS)

    Handwerger, Alexander L.; Rempel, Alan W.; Skarbek, Rob M.; Roering, Joshua J.; Hilley, George E.

    2016-09-01

    Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length h*h* that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments.

  1. Mitigating mass movement caused by earthquakes and typhoons: a case study of central Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Jiun-Chuan

    2013-04-01

    Typhoons caused huge damages to Taiwan at the average of 3.8 times a year in the last 100 years, according to Central Weather Bureau data. After the Chi-Chi earthquake of 1999 at the magnitude of Richard Scale 7.3, typhoons with huge rainfall would cause huge debris flow and deposits at river channels. As a result of earthquakes, loose debris falls and flows became significant hazards in central Taiwan. Analysis of rainfall data and data about the sites of slope failure show that damage from natural hazards was enhanced in the last 20 years, as a result of the Chi-Chi earthquake. There are three main types of mass movement in Central Taiwan: landslides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and river channel banks. Many dams, check dams, housing structures and even river channels can be raised to as high as 60 meters as a result of stacking up floating materials of landslides. Debris flows occurred mainly through typhoon periods and activated ancient debris deposition. New gullies were thus developed from deposits loosened and shaken up by earthquakes. Extreme earthquakes and typhoon events occurred frequently in the last 20 years. This paper analyzes the geological and geomorphologic background for the precarious areas and typhoons in central Taiwan, to make a systematic understanding of mass movement harzards. The mechanism and relations of debris flows and rainfall data in central Taiwan are analyzed. Ways for mitigating mass movement threats are also proposed in this paper. Keywords: mass movement, earthquakes, typhoons, hazard mitigation, central Ta

  2. Green-tuff landslide areas are beneficial for rice nutrition in Japan.

    PubMed

    Tazaki, Kazue

    2006-12-01

    Japanese Islands are covered with weathered volcanic rocks and soils. Terraced rice field are located in green-tuff areas which are very fertile but where landslides occur associated to strong earthquakes. The Xray diffraction and X-ray fluorescence analyses of the soils in landslide area identified predominant smectite and Mg, Al, Si, K, Ti, Mn and Fe are main components. The rice leaf showed that S, Cl, K and Ca play important roles for nutrients in the area. Drainpipe systems have set up in the green- tuff areas to reduce the risks of landslides. Reddish brown microbial mats inhabited bacteria and diatom in the drainpipe outlets. The microbial mats are rich in Fe and PO4(3-). The iron bacteria in the ground water have a high metabolic rate suggesting that the weathering materials were produced by not only physical and chemical influence but also by microorganism. Many microorganisms attach to mineral surfaces and show their high impact in the water mineral chemistry in the landslide area. Bacteria in the green-tuff over landslide area play important roles for sustainable agriculture including rice nutrition.

  3. Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): Detailed geological-geomorphological mapping, trenching and electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Linares, Rogelio; Roqué, Carles; Zarroca, Mario; Carbonel, Domingo; Rosell, Joan; Gutiérrez, Mateo

    2015-07-01

    Detailed geomorphological-geological mapping in Canelles Reservoir, the Spanish Pyrenees, reveals the presence of several large landslides overlooked in previous cartographic works. One of the slope movements, designated as the Canelles landslide, corresponds to a 40 × 106 m3 translational landslide reactivated in 2006 by a severe decline in the reservoir water level. The geomorphic features mapped in the upper part of the Canelles landslide, including surface ruptures corroborated by electrical resistivity imaging and trenching, indicate multiple displacement episodes previous to the 2006 human-induced event. Consistently, the stratigraphic and structural relationships observed in a trench record at least two displacement events older and larger in magnitude than the 2006 reactivation. The oldest recorded event occurred in the 6th to 7th Centuries and the second in 1262-1679 yr AD. This latter episode might be correlative to the 1373 Ribagorza earthquake (Mw 6.2), which caused the reactivation of a landslide and the consequent destruction of a village in the adjacent valley. The available data indicate that over more than one millennium the kinematics of the landslide has been characterised by discrete small-displacement episodes. These data, together with the available literature on rapid rockslides, do not concur with the acceleration predicted by modelling in a previous investigation, which foresees a speed of 16 m s- 1 despite the low average dip of the sliding surface (9-10°). This case study illustrates that the trenching technique may provide valuable practical information on the past behaviour of landslides, covering a much broader time span than instrumental and historical records.

  4. Rainfall-induced landslide susceptibility zonation of Puerto Rico

    Treesearch

    Chiara Lepore; Sameer A. Kamal; Peter Shanahan; Rafael L. Bras

    2011-01-01

    Landslides are a major geologic hazard with estimated tens of deaths and $1–2 billion in economic losses per year in the US alone. The island of Puerto Rico experiences one or two large events per year, often triggered in steeply sloped areas by prolonged and heavy rainfall. Identifying areas susceptible to landslides thus has great potential value for Puerto Rico and...

  5. Rainfall induced landslide susceptibility mapping using weight-of-evidence, linear and quadratic discriminant and logistic model tree method

    NASA Astrophysics Data System (ADS)

    Hong, H.; Zhu, A. X.

    2017-12-01

    Climate change is a common phenomenon and it is very serious all over the world. The intensification of rainfall extremes with climate change is of key importance to society and then it may induce a large impact through landslides. This paper presents GIS-based new ensemble data mining techniques that weight-of-evidence, logistic model tree, linear and quadratic discriminant for landslide spatial modelling. This research was applied in Anfu County, which is a landslide-prone area in Jiangxi Province, China. According to a literature review and research the study area, we select the landslide influencing factor and their maps were digitized in a GIS environment. These landslide influencing factors are the altitude, plan curvature, profile curvature, slope degree, slope aspect, topographic wetness index (TWI), Stream Power Index (SPI), Topographic Wetness Index (SPI), distance to faults, distance to rivers, distance to roads, soil, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the government of Jiangxi Meteorological Bureau of China, 367 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, Pearson's correlation was used for the evaluation of the relationship between the landslides and influencing factors. In the next step, three data mining techniques combined with the weight-of-evidence, logistic model tree, linear and quadratic discriminant, were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.80. At the same time, the highest AUC value was for the linear and quadratic

  6. Landslide database dominated by rainfall triggered events

    NASA Astrophysics Data System (ADS)

    Devoli, G.; Strauch, W.; Álvarez, A.

    2009-04-01

    A digital landslide database has been created for Nicaragua to provide the scientific community and national authorities with a tool for landslide hazard assessment. Valuable information on landslide events has been obtained from a great variety of sources. On the basis of the data stored in the database, preliminary analyses performed at national scale aimed to characterize landslides in terms of spatial and temporal distribution, types of slope movements, triggering mechanisms, number of casualties and damage to infrastructure. A total of about 17000 events spatially distributed in mountainous and volcanic terrains have been collected in the database. The events are temporally distributed between 1826 and 2003, but a large number of the records (62% of the total number) occurred during the disastrous Hurricane Mitch in October 1998. The results showed that debris flows are the most common types of landslides recorded in the database (66% of the total amount), but other types, including rockfalls and slides, have also been identified. Rainfall, also associated with tropical cyclones, is the most frequent triggering mechanism of landslides in Nicaragua, but also seismic and volcanic activities are important triggers or, especially, the combination of one of them with rainfall. Rainfall has caused all types of failures, but debris flows and translational shallow slides are more frequent types. Earthquakes have most frequently triggered rockfalls and slides, while volcanic eruptions rockfalls and debris flows. Landslides triggered by rainfall were limited in time to the wet season that lasts from May to October and an increase in the number of events is observed during the months of September and October, which is in accord with the period of the rainy season in the Pacific and Northern and Central regions and when the country has the highest probability of being impacted by hurricanes. Both Atlantic and Pacific tropical cyclones have triggered landslides. At the

  7. Citizen Seismology Provides Insights into Ground Motions and Hazard from Injection-Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Hough, S. E.

    2014-12-01

    The US Geological Survey "Did You Feel It?" (DYFI) system is a highly successful example of citizen seismology. Users around the world now routinely report felt earthquakes via the Web; this information is used to determine Community Decimal Intensity values. These data can be enormously valuable for helping address a key issue that has arisen recently: quantifying the shaking/hazard associated with injection-induced earthquakes. I consider the shaking from 11 moderate (Mw3.9-5.7) earthquakes in the central and eastern United States that are believed to be induced by fluid injection. The distance decay of intensities for all events is consistent with that observed for regional tectonic earthquakes, but for all of the events intensities are lower than values predicted from an intensity prediction equation derived using data from tectonic events. I introduce an effective intensity magnitude, MIE, defined as the magnitude that on average would generate a given intensity distribution. For all 11 events, MIE is lower than the event magnitude by 0.4-1.3 units, with an average difference of 0.8 units. This suggests that stress drops of injection-induced earthquakes are lower than tectonic earthquakes by a factor of 2-10. However, relatively limited data suggest that intensities for epicentral distances less than 10 km are more commensurate with expectations for the event magnitude, which can be explained by the shallow focal depth of the events. The results suggest that damage from injection-induced earthquakes will be especially concentrated in the immediate epicentral region. These results further suggest a potential new discriminant for the identification of induced events. For ecample, while systematic analysis of California earthquakes remains to be done, DYFI data from the 2014 Mw5.1 La Habra, California, earthquake reveal no evidence for unusually low intensities, adding to a growing volume of evidence that this was a natural tectonic event.

  8. Likelihood testing of seismicity-based rate forecasts of induced earthquakes in Oklahoma and Kansas

    USGS Publications Warehouse

    Moschetti, Morgan P.; Hoover, Susan M.; Mueller, Charles

    2016-01-01

    Likelihood testing of induced earthquakes in Oklahoma and Kansas has identified the parameters that optimize the forecasting ability of smoothed seismicity models and quantified the recent temporal stability of the spatial seismicity patterns. Use of the most recent 1-year period of earthquake data and use of 10–20-km smoothing distances produced the greatest likelihood. The likelihood that the locations of January–June 2015 earthquakes were consistent with optimized forecasts decayed with increasing elapsed time between the catalogs used for model development and testing. Likelihood tests with two additional sets of earthquakes from 2014 exhibit a strong sensitivity of the rate of decay to the smoothing distance. Marked reductions in likelihood are caused by the nonstationarity of the induced earthquake locations. Our results indicate a multiple-fold benefit from smoothed seismicity models in developing short-term earthquake rate forecasts for induced earthquakes in Oklahoma and Kansas, relative to the use of seismic source zones.

  9. Slow, fast, and post-collapse displacements of the Mud Creek landslide in California from UAVSAR and satellite SAR analysis

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Handwerger, A. L.; Burgmann, R.; Liu, Z.

    2017-12-01

    Landslides display a wide variety of behaviors ranging from slow steady or seasonal motion to runaway acceleration and catastrophic failure. In some cases, a single landslide moves slowly for a period of weeks to years before it rapidly accelerates into a catastrophic failure. Measurement of the spatio-temporal patterns of landslide motion in response to changes in environmental parameters such as rainfall, snowmelt, and nearby earthquakes will help us to constrain the mechanisms that control these landslide behaviors. Here, we use synthetic aperture radar interferometry (InSAR) from satellite and airborne platforms to measure the kinematics of several landslides along the coast of Central California, including the large Mud Creek landslide near Big Sur that catastrophically collapsed in May 2017 and led to the destruction of a major highway and millions of dollars in damages. We use InSAR and pixel offset data from NASA/JPL UAVSAR, JAXA ALOS1/2, and Copernicus Sentinel 1A/B to quantify the displacement time series and 3D motion. Our data show that the Mud Creek landslide has been active for at least 2.5 years and displayed persistent motion (average rate of 10 cm/yr in LOS) with seasonal variations in velocity driven by rainfall-induced changes in pore pressure. We find that each year the landslide accelerated approximately 60-90 days after the onset of seasonal precipitation, which provides constraints on the hillslope hydrology. Before its ultimate collapse, the landslide displayed a large increase in velocity due to the above average rainfall during the 2017 water year. It appears a series of major storms in January and February 2017, some fed by atmospheric rivers, triggered a sufficient increase in pore-water pressure that led to the runaway failure. We model this behavior using a rate-and-state friction model developed to capture this range of landslide behaviors. This model will allow us to explore how different landslide properties (e.g., material

  10. A methodology to track temporal dynamics and rainfall thresholds of landslide processes in the East African Rift

    NASA Astrophysics Data System (ADS)

    Monsieurs, Elise; Jacobs, Liesbet; Kervyn, François; Kirschbaum, Dalia; d'Oreye, Nicolas; Derauw, Dominique; Kervyn, Matthieu; Nobile, Adriano; Trefois, Philippe; Dewitte, Olivier

    2015-04-01

    The East African rift valley is a major tectonic feature that shapes Central Africa and defines linear-shaped lowlands between highland ranges due to the action of geologic faults associated to earthquakes and volcanism. The region of interest, covering the Virunga Volcanic Province in eastern DRC, western Rwanda and Burundi, and southwest Uganda, is threatened by a rare combination of several types of geohazards, while it is also one of the most densely populated region of Africa. These geohazards can globally be classified as seismic, volcanic and landslide hazards. Landslides, include a wide range of ground movements, such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in terms of recurring impact on the populations, causing fatalities every year and resulting in structural and functional damage to infrastructure and private properties, as well as serious disruptions of the organization of societies. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithologic and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. The source mechanisms underlying landslide triggering and dynamics in the region of interest are still poorly understood, even though in recent years, some progress has been made towards appropriate data collection. Taking into account difficulties of field accessibility, we present a methodology to study landslide processes by multi-scale and multi-sensor remote sensing data from very high to low resolution (Pléiades, TRMM, CosmoSkyMed, Sentinel). The research will address the evolution over time of such data combined with other earth observations (seismic ground based networks, catalogues, rain gauge networks, GPS surveying, field observations) to detect and study landslide occurrence, dynamics and evolution. This research aims to get insights into the rainfall

  11. Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.

    2016-06-01

    Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.

  12. Assessing a 3D smoothed seismicity model of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  13. Induced Earthquakes Are Not All Alike: Examples from Texas Since 2008 (Invited)

    NASA Astrophysics Data System (ADS)

    Frohlich, C.

    2013-12-01

    The EarthScope Transportable Array passed through Texas between 2008 and 2011, providing an opportunity to identify and accurately locate earthquakes near and/or within oil/gas fields and injection waste disposal operations. In five widely separated geographical locations, the results suggest seismic activity may be induced/triggered. However, the different regions exhibit different relationships between injection/production operations and seismic activity: In the Barnett Shale of northeast Texas, small earthquakes occurred only near higher-volume (volume rate > 150,000 BWPM) injection disposal wells. These included widely reported earthquakes occurring near Dallas-Fort Worth and Cleburne in 2008 and 2009. Near Alice in south Texas, M3.9 earthquakes occurred in 1997 and 2010 on the boundary of the Stratton Field, which had been highly productive for both oil and gas since the 1950's. Both earthquakes occurred during an era of net declining production, but their focal depths and location at the field boundary suggest an association with production activity. In the Eagle Ford of south central Texas, earthquakes occurred near wells following significant increases in extraction (water+produced oil) volumes as well as injection. The largest earthquake, the M4.8 Fashing earthquake of 20 October 2011, occurred after significant increases in extraction. In the Cogdell Field near Snyder (west Texas), a sequence of earthquakes beginning in 2006 followed significant increases in the injection of CO2 at nearby wells. The largest with M4.4 occurred on 11 September 2011. This is the largest known earthquake possibly attributable to CO2 injection. Near Timpson in east Texas a sequence of earthquakes beginning in 2008, including an M4.8 earthquake on 17 May 2012, occurred within three km of two high-volume injection disposal wells that had begun operation in 2007. These were the first known earthquakes at this location. In summary, the observations find possible induced

  14. Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): Risk assessment, mitigation strategy, and lessons learned

    USGS Publications Warehouse

    Cui, P.; Dang, C.; Zhuang, J.; You, Y.; Chen, X.; Scott, K.M.

    2012-01-01

    Landslides and rock avalanches triggered by the 2008 Wenchuan Earthquake produced 257 landslide dams, mainly situated along the eastern boundary of the Qinghai-Tibet Plateau where rivers descend approximately 3,000 m into the Sichuan Basin. The largest of these dams blocked the Tongkou River (a tributary of the Fujiang River) at Tangjiashan. The blockage, consisting of 2. 04 ?? 10 7 m 3 of landslide debris, impounded a lake with a projected maximum volume of 3. 15 ?? 10 8 m 3, potentially inundating 8. 92 km 2 of terrain. Its creation during the rainy season and the possibility of an uncontrolled release posed a serious, impending threat to at least 1. 3 million people downstream that could add substantially to the total of 69,200 individuals directly killed by the earthquake. Risk assessment of the blockage indicated that it was unlikely to collapse suddenly, and that eventual overtopping could be mitigated by notching the structure in order to create an engineered breach and achieve safe drainage of the lake. In addition to the installation of monitoring and warning instrumentation, for emergency planning we estimated several outburst scenarios equivalent to 20, 25, 33, and 50% of the dam failing suddenly, creating, respectively, 3. 35, 3. 84, 4. 22, and 4. 65 km 2 of flooded area, and overbank water depths of 4. 6, 5. 1, 5. 7, and 6. 2 m, respectively, in Mianyang, the second largest city in Sichuan Province, 48 km downstream from the blockage. Based on these scenarios, recommendations and plans for excavating a sluiceway, draining the lake, and downstream evacuation were proposed and later were implemented successfully, with the blockage breached by overtopping on June 10, less than a month after dam emplacement. The peak discharge of the release only slightly exceeded the flood of record at Mianyang City. No lives were lost, and significant property damage was avoided. Post-breaching evaluation reveals how future similar mitigation can be improved. Although

  15. The OMIV Observatory on landslides - Observing with Multi-parameters the Instability of Versants

    NASA Astrophysics Data System (ADS)

    Grasso, J.-R.; Garambois, S.; D; Jongmans; Helmstetter, A.; Lebourg, T.; Malet, J.-P.; Berolo, W.; Bethoux, R.; Daras, L.; Ulrich, P.

    2010-05-01

    The OMIV Observatory on landslides (Observatoire Multi-disciplinaire des Instabilités de Versants; e.g. Multi-disciplinary Observatory on Slope Instabilities) is a French-research initiative clustering five research institutes in earth sciences (e.g. GéoAzur in Nice; EOST-IPGS in Strasbourg, LETG in Caen, LGIT in Grenoble, LST in Lyon) under the auspices of INSU (Institut National des Sciences de l'Univers) since 2007. The primary objectives of OMIV are (1) to deploy and maintain permanent instrumental networks in order to be able to (2) to provide robust, long-lasting multi-parameter, open datasets to the international geoscience community. Such continuous monitoring of ongoing landslides are missing and they will provide constrains on the processes that lead to slope instabilities. Worldwide, the societal impact of landslides is one of the most important natural hazard in mountainous and rocky coastal areas. The variability in time and space of the slope structures and their susceptibility to external forcing (weathering, earthquake, climatic triggers) restrain our ability to simulate and forecast slope instabilities. Four active large landslides are monitored by the OMIV observatory group; these sites have been chosen according to their past history of monitoring, to the risk they may create and to the scientific challenges they raise up. The four studied landslides are: the Avignonet landslide (30 km South of Grenoble) and the Super-Sauze landslide (5 km South to Barcelonnette) which are soft-rock slides developed in clays for which the susceptibility to rainfalls and earthquake is the main open question; the La Clapière (100 km North of Nice) and the Séchilienne landslide (25km East of Grenoble) which are typical mature and immature large scale rock mass gravitational instabilities, respectively. On these four pilot sites, the OMIV research group is monitoring in continuous three types of observations: landslide kinematics (deformation and displacements

  16. Early warning of orographically induced floods and landslides in Western Norway

    NASA Astrophysics Data System (ADS)

    Leine, Ann-Live; Wang, Thea; Boje, Søren

    2017-04-01

    In Western Norway, landslides and debris flows are commonly initiated by short-term orographic rainfall or intensity peaks during a prolonged rainfall event. In recent years, the flood warning service in Norway has evolved from being solely a flood forecasting service to also integrating landslides into its early warning systems. As both floods and landslides are closely related to the same hydrometeorological processes, particularly in small catchments, there is a natural synergy between monitoring flood and landslide risk. The Norwegian Flood and Landslide Hazard Forecasting and Warning Service issues regional landslide hazard warnings based on hydrological models, threshold values, observations and weather forecasts. Intense rainfall events and/or orographic precipitation that, under certain topographic conditions, significantly increase the risk of debris avalanches and debris floods are lately receiving more research focus from the Norwegian warning service. Orographic precipitation is a common feature in W-Norway, when moist and relatively mild air arrives from the Atlantic. Steep mountain slopes covered by glacial till makes the region prone to landslides, as well as flooding. The operational early warning system in Norway requires constant improvement, especially with the enhanced number of intense rainfall events that occur in a warming climate. Here, we examine different cases of intense rainfall events which have lead to landslides and debris flows, as well as increased runoff in fast responding small catchments. The main objective is to increase the understanding of the hydrometeorological conditions related to these events, in order to make priorities for the future development of the warning service.

  17. Earthquake-induced gravitational potential energy change at convergent plate boundary near Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, C.; Hsu, S.

    2004-12-01

    The coseismic displacement induced by earthquakes will change the gravitational potential energy (GPE). Okamoto and Tanimoto (2002) have shown that the gain of {Δ GPE} corresponds to the compressional stress regime while the loss of {Δ GPE} corresponds to the extensional stress regime. Here we show an example at a convergent plate boundary near Taiwan. The Philippine Sea Plate is converging against the Eurasian Plate with a velocity of 7-8 cm/yr near Taiwan, which has caused the active Taiwan orogeny and induced abundant earthquakes. We have examined the corresponding change of gravitational potential energy by using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from July 1995 to December 2003. The results show that the variation of the crustal Δ GPE strongly correlates with the different stage of the orogenesis. Except for the western Okinawa Trough and the southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal Δ GPE. In contrast, the lithospheric Δ GPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal Δ GPE and the lithospheric Δ GPE during the observation period are 1.03×1017 joules and -1.15×1017 joules, respectively. The average rate of the whole Δ GPE in the Taiwan region is very intense and equal to -2.07×1010 watts, corresponding to about one percent of the global Δ GPE loss induced by earthquakes.

  18. Modeling the Fluid Withdraw and Injection Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Meng, C.

    2016-12-01

    We present an open source numerical code, Defmod, that allows one to model the induced seismicity in an efficient and standalone manner. The fluid withdraw and injection induced earthquake has been a great concern to the industries including oil/gas, wastewater disposal and CO2 sequestration. Being able to numerically model the induced seismicity is long desired. To do that, one has to consider at lease two processes, a steady process that describes the inducing and aseismic stages before and in between the seismic events, and an abrupt process that describes the dynamic fault rupture accompanied by seismic energy radiations during the events. The steady process can be adequately modeled by a quasi-static model, while the abrupt process has to be modeled by a dynamic model. In most of the published modeling works, only one of these processes is considered. The geomechanicists and reservoir engineers are focused more on the quasi-static modeling, whereas the geophysicists and seismologists are focused more on the dynamic modeling. The finite element code Defmod combines these two models into a hybrid model that uses the failure criterion and frictional laws to adaptively switch between the (quasi-)static and dynamic states. The code is capable of modeling episodic fault rupture driven by quasi-static loading, e.g. due to reservoir fluid withdraw and/or injection, and by dynamic loading, e.g. due to the foregoing earthquakes. We demonstrate a case study for the 2013 Azle earthquake.

  19. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    NASA Astrophysics Data System (ADS)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  20. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence

    USGS Publications Warehouse

    Keranen, Katie M.; Savage, Heather M.; Abers, Geoffrey A.; Cochran, Elizabeth S.

    2013-01-01

    Significant earthquakes are increasingly occurring within the continental interior of the United States, including five of moment magnitude (Mw) ≥ 5.0 in 2011 alone. Concurrently, the volume of fluid injected into the subsurface related to the production of unconventional resources continues to rise. Here we identify the largest earthquake potentially related to injection, an Mw 5.7 earthquake in November 2011 in Oklahoma. The earthquake was felt in at least 17 states and caused damage in the epicentral region. It occurred in a sequence, with 2 earthquakes of Mw 5.0 and a prolific sequence of aftershocks. We use the aftershocks to illuminate the faults that ruptured in the sequence, and show that the tip of the initial rupture plane is within ~200 m of active injection wells and within ~1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Subsurface data indicate that fluid was injected into effectively sealed compartments, and we interpret that a net fluid volume increase after 18 yr of injection lowered effective stress on reservoir-bounding faults. Significantly, this case indicates that decades-long lags between the commencement of fluid injection and the onset of induced earthquakes are possible, and modifies our common criteria for fluid-induced events. The progressive rupture of three fault planes in this sequence suggests that stress changes from the initial rupture triggered the successive earthquakes, including one larger than the first.

  1. Can an earthquake prediction and warning system be developed?

    USGS Publications Warehouse

    N.N, Ambraseys

    1990-01-01

    Over the last 20 years, natural disasters have killed nearly 3 million people and disrupted the lives of over 800 million others. In 2 years there were more than 50 serious natural disasters, including landslides in Italy, France, and Colombia; a typhoon in Korea; wildfires in China and the United States; a windstorm in England; grasshopper plagues in Africa's horn and the Sahel; tornadoes in Canada; devastating earthquakes in Soviet Armenia and Tadzhikstand; infestations in Africa; landslides in Brazil; and tornadoes in the United States 

  2. Using a UAV for collecting information about a deep-seated landslide in the island of Lefkada following the 17 November 2015 strike-slip earthquake (M=6.5)

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Ganas, Athanassios; Papathanassiou, George

    2017-04-01

    Documentation of landslides is a very critical issue because effective protection and mitigation measures can be designed only if they are based on the accuracy of the provided information. Such a documentation aims at a detailed description of the basic geomorphological features e.g. edge, traces, scarp etc. while variables such as the landslide area and the volume of the area (that moved) are also measured. However, it is well known that the mapping of these features is not always feasible due to several adverse factors e.g. vertical slopes, high risk. In order to overcome this issue, remote sensing techniques were applied during the last decades. In particular, Interferometric Synthetic Aperture Radar (InSAR), Light Detection and Ranging (LiDAR) and photogrammetric surveys are used for geomorphic mapping in order to quantify landslide processes. The latter one, photogrammetric survey, is frequently conducted by use of Unmanned Aerial Vehicles (UAV), such as multicopters that are flexible in operating conditions and can be equipped with webcams, digital cameras and other sensors. In addition, UAV is considered as a low-cost imaging technique that offers a very high spatial-temporal resolution and flexibility in data acquisition programming. The goal of this study is to provide quantitative data regarding a deep-seated landslide triggered by the 17 November 2015, Greece earthquake (M=6.5; Ganas et al., 2016) in a coastal area of Lefkada, that was not accessible by foot and accordingly, a UAV was used in order to collect the essential information. Ganas, A., et al., Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2016.08.012

  3. Natural Hazard Public Policy Implications of the May 12, 2008 M7.9 Wenchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Cydzik, K.; Hamilton, D.; Stenner, H. D.; Cattarossi, A.; Shrestha, P. L.

    2009-12-01

    The May 12, 2008 M7.9 Wenchuan Earthquake in Sichuan Province, China killed almost 90,000 people and affected a population of over 45.5 million throughout western China. Shaking caused the destruction of five million buildings, many of them homes and schools, and damaged 21 million other structures, inflicting devastating impacts to communities. Landslides, a secondary effect of the shaking, caused much of the devastation. Debris flows buried schools and homes, rock falls crushed cars, and rockslides, landslides, and rock avalanches blocked streams and rivers creating massive, unstable landslide dams, which formed “quake lakes” upstream of the blockages. Impassable roads made emergency access slow and extremely difficult. Collapses of buildings and structures large and small took the lives of many. Damage to infrastructure impaired communication, cut off water supplies and electricity, and put authorities on high alert as the integrity of large engineered dams were reviewed. During our field reconnaissance three months after the disaster, evidence of the extent of the tragedy was undeniably apparent. Observing the damage throughout Sichuan reminded us that earthquakes in the United States and throughout the world routinely cause widespread damage and destruction to lives, property, and infrastructure. The focus of this poster is to present observations and findings based on our field reconnaissance regarding the scale of earthquake destruction with respect to slope failures, landslide dams, damage to infrastructure (e.g., schools, engineered dams, buildings, roads, rail lines, and water resources facilities), human habitation within the region, and the mitigation and response effort to this catastrophe. This is presented in the context of the policy measures that could be developed to reduce risks of similar catastrophes. The rapid response of the Chinese government and the mobilization of the Chinese People’s Liberation Army to help the communities affected

  4. The 3D Elevation Program—Landslide recognition, hazard assessment, and mitigation support

    USGS Publications Warehouse

    Lukas, Vicki; Carswell, Jr., William J.

    2017-01-27

    The U.S. Geological Survey (USGS) Landslide Hazards Program conducts landslide hazard assessments, pursues landslide investigations and forecasts, provides technical assistance to respond to landslide emergencies, and engages in outreach. All of these activities benefit from the availability of high-resolution, three-dimensional (3D) elevation information in the form of light detection and ranging (lidar) data and interferometric synthetic aperture radar (IfSAR) data. Research on landslide processes addresses critical questions of where and when landslides are likely to occur as well as their size, speed, and effects. This understanding informs the development of methods and tools for hazard assessment and situational awareness used to guide efforts to avoid or mitigate landslide impacts. Such research is essential for the USGS to provide improved information on landslide potential associated with severe storms, earthquakes, volcanic activity, coastal wave erosion, and wildfire burn areas.Decisionmakers in government and the private sector increasingly depend on information the USGS provides before, during, and following disasters so that communities can live, work, travel, and build safely. The USGS 3D Elevation Program (3DEP) provides the programmatic infrastructure to generate and supply lidar-derived superior terrain data to address landslide applications and a wide range of other urgent needs nationwide. By providing data to users, 3DEP reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data.

  5. GIS-aided Statistical Landslide Susceptibility Modeling And Mapping Of Antipolo Rizal (Philippines)

    NASA Astrophysics Data System (ADS)

    Dumlao, A. J.; Victor, J. A.

    2015-09-01

    Slope instability associated with heavy rainfall or earthquake is a familiar geotechnical problem in the Philippines. The main objective of this study is to perform a detailed landslide susceptibility assessment of Antipolo City. The statistical method of assessment used was logistic regression. Landslide inventory was done through interpretation of aerial photographs and satellite images with corresponding field verification. In this study, morphologic and non-morphologic factors contributing to landslide occurrence and their corresponding spatial relationships were considered. The analysis of landslide susceptibility was implemented in a Geographic Information System (GIS). The 17320 randomly selected datasets were divided into training and test data sets. K- cross fold validation is done with k= 5. The subsamples are then fitted five times with k-1 training data set and the remaining fold as the validation data set. The AUROC of each model is validated using each corresponding data set. The AUROC of the five models are; 0.978, 0.977, 0.977, 0.974, and 0.979 respectively, implying that the models are effective in correctly predicting the occurrence and nonoccurrence of landslide activity. Field verification was also done. The landslide susceptibility map was then generated from the model. It is classified into four categories; low, moderate, high and very high susceptibility. The study also shows that almost 40% of Antipolo City has been assessed to be potentially dangerous areas in terms of landslide occurrence.

  6. Earthquake-induced gravitational potential energy change in the active Taiwan orogenic belt

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Liang; Hsu, Shu-Kun

    2005-07-01

    The Philippine Sea Plate is converging against the Eurasian Plate near Taiwan at a velocity of 7-8 cm yr-1 this has caused the Taiwan orogenesis and induced abundant earthquakes. In this study we examine the corresponding change of gravitational potential energy (ΔGPE) using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from 1995 July to 2003 December. Our results show that the variation of the crustal ΔGPE strongly correlates with the different stages of the orogenesis. Except for the western Okinawa Trough and southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal ΔGPE. In contrast, the lithospheric ΔGPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal ΔGPE and the lithospheric ΔGPE during the observation period are 1.03 × 1017 J and -1.15 × 1017 J, respectively. The average rate of the whole ΔGPE in the Taiwan region is very intense and equal to -2.07 × 1010 W, corresponding to about 1 per cent of the global GPE loss induced by earthquakes.

  7. The double landslide-induced tsunami

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Armigliat, A.; Manucci, A.; Pagnoni, G.; Tonini, R.; Zaniboni, F.; Maramai, A.; Graziani, L.

    The 2002 crisis of Stromboli culminated on December 30 in a series of mass failures detached from the Sciara del Fuoco, with two main landslides, one submarine followed about 7 min later by a second subaerial. These landslides caused two distinct tsunamis that were seen by most people in the island as a unique event. The double tsunami was strongly damaging, destroying several houses in the waterfront at Ficogrande, Punta Lena, and Scari localities in the northeastern coast of Stromboli. The waves affected also Panarea and were observed in the northern Sicily coast and even in Campania, but with minor effects. There are no direct instrumental records of these tsunamis. What we know resides on (1) observations and quantification of the impact of the waves on the coast, collected in a number of postevent field surveys; (2) interviews of eyewitnesses and a collection of tsunami images (photos and videos) taken by observers; and (3) on results of numerical simulations. In this paper, we propose a critical reconstruction of the events where all the available pieces of information are recomposed to form a coherent and consistent mosaic.

  8. Landslide stability: Role of rainfall-induced, laterally propagating, pore-pressure waves

    USGS Publications Warehouse

    Priest, G.R.; Schulz, W.H.; Ellis, W.L.; Allan, J.A.; Niem, A.R.; Niem, W.A.

    2011-01-01

    The Johnson Creek Landslide is a translational slide in seaward-dipping Miocene siltstone and sandstone (Astoria Formation) and an overlying Quaternary marine terrace deposit. The basal slide plane slopes sub-parallel to the dip of the Miocene rocks, except beneath the back-tilted toe block, where it slopes inland. Rainfall events raise pore-water pressure in the basal shear zone in the form of pulses of water pressure traveling laterally from the headwall graben down the axis of the slide at rates of 1-6 m/hr. Infiltration of meteoric water and vertical pressure transmission through the unsaturated zone has been measured at ~50 mm/hr. Infiltration and vertical pressure transmission were too slow to directly raise head at the basal shear zone prior to landslide movement. Only at the headwall graben was the saturated zone shallow enough for rainfall events to trigger lateral pulses of water pressure through the saturated zone. When pressure levels in the basal shear zone exceeded thresholds defined in this paper, the slide began slow, creeping movement as an intact block. As pressures exceeded thresholds for movement in more of the slide mass, movement accelerated, and differential displacement between internal slide blocks became more pronounced. Rainfall-induced pore-pressure waves are probably a common landslide trigger wherever effective hydraulic conductivity is high and the saturated zone is located near the surface in some part of a slide. An ancillary finding is apparently greater accuracy of grouted piezometers relative to those in sand packs for measurement of pore pressures at the installed depth.

  9. Landslides caused by the Klamath Falls, Oregon, earthquakes of September 20, 1993

    USGS Publications Warehouse

    Keefer, D.K.; Schuster, R.L.

    1993-01-01

    In the Klamath Falls area, the most numerous earthquake-induced rock falls were along the east-to southeast-facing flank of a ridge immediately south and west of Howard Bay (locality 1 on the accompanying map), 18 km east-southeast of the epicenter of the magntiude 6.0 shock at 10:45 p.m. This ridge is more than 240 m high and has slopes steeper than 45° in places. The upper part of the ridge is composed of material from basaltic lava flows, an the lower slopes are covered with colluvium and talus deposits containing abundant boulders. 

  10. Landslide-induced iron mobilisation shapes benthic accumulation of nutrients, trace metals and REE fractionation in an oligotrophic alpine stream

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Rose, Andrew L.; Burton, Edward D.; Webster-Brown, Jenny

    2015-01-01

    Large alpine landslides that entrain substantial organic material below the water table and create suspended floodplains may have long-term consequences for the mobilisation of redox sensitive elements, such as Fe, into streamwaters. In turn, the cycling of iron in aquatic systems can influence the fate of nutrients, alter primary productivity, enhance accumulation of trace metals and induce fractionation of rare earth elements (REE). In this study we examine a reach of a pristine oligotrophic alpine stream bracketing a 30 year-old landslide and explore the consequences of landslide-induced Fe mobilisation for aqueous geochemistry and the composition of benthic stream cobble biofilm. Elevated Fe2+ and Mn in landslide zone stream waters reflect inputs of circumneutral groundwater from the landslide debris-zone floodplain. Geochemical characteristics are consistent with reductive dissolution being a primary mechanism of Fe2+ and Mn mobilisation. Stream cobble biofilm in the landslide zone is significantly (P < 0.01) enriched in poorly crystalline Fe(III) (∼10-400 times background) and Mn (∼15-150 times background) (1 M HCl extractable; Fe(III)Ab). While the landslide zone accounts for less than ∼9% of the total stream length, we estimate it is responsible for approximately 60-80% of the stream's benthic biofilm load of poorly crystalline Fe(III) and Mn. Biofilm Fe(III) precipitates are comprised mainly of ferrihydrite, lepidocrocite and an organic-Fe species, while precipitate samples collected proximal to hyporheic seeps contain abundant sheath structures characteristic of the neutrophilic Fe(II)-oxidising bacteria Leptothrix spp. Stream-cobble Fe(III)-rich biofilm is accumulating PO43- (∼3-30 times background) and behaving as a preferential substrate for photosynthetic periphyton, with benthic PO43-, chlorophyll a, organic carbonHCl and total N all significantly positively correlated with Fe(III)Ab and significantly elevated within the landslide zone (P < 0

  11. Shaking intensity from injection-induced versus tectonic earthquakes in the central-eastern United States

    USGS Publications Warehouse

    Hough, Susan E.

    2015-01-01

    Although instrumental recordings of earthquakes in the central and eastern United States (CEUS) remain sparse, the U. S. Geological Survey's “Did you feel it?” (DYFI) system now provides excellent characterization of shaking intensities caused by induced and tectonic earthquakes. Seventeen CEUS events are considered between 2013 and 2015. It is shown that for 15 events, observed intensities at epicentral distances greater than ≈ 10 km are lower than expected given a published intensity-prediction equation for the region. Using simple published relations among intensity, magnitude, and stress drop, the results suggest that 15 of the 17 events have low stress drop. For those 15 events, intensities within ≈ 10-km epicentral distance are closer to predicted values, which can be explained as a consequence of relatively shallow source depths. The results suggest that those 15 events, most of which occurred in areas where induced earthquakes have occurred previously, were likely induced. Although moderate injection-induced earthquakes in the central and eastern United States will be felt widely because of low regional attenuation, the damage from shallow earthquakes induced by injection will be more localized to event epicenters than shaking tectonic earthquakes, which tend to be somewhat deeper. Within approximately 10 km of the epicenter, intensities are generally commensurate with predicted levels expected for the event magnitude.

  12. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm for Alaska and the Himalaya.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Malet, Jean-Philippe; Provost, Floriane; Michéa, David; Geertsema, Marten

    2017-04-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with volumes below one millions of cubic meters. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. We present here the preliminary results of the application of this processing chain in two contexts: i) In Himalaya with the data acquired between 2002 and 2005 by the Hi-Climb network; ii) In Alaska using data recorded by the

  13. Potential future exposure of European land transport infrastructure to rainfall-induced landslides throughout the 21st century

    NASA Astrophysics Data System (ADS)

    Schlögl, Matthias; Matulla, Christoph

    2018-04-01

    In the face of climate change, the assessment of land transport infrastructure exposure towards adverse climate events is of major importance for Europe's economic prosperity and social wellbeing. In this study, a climate index estimating rainfall patterns which trigger landslides in central Europe is analysed until the end of this century and compared to present-day conditions. The analysis of the potential future development of landslide risk is based on an ensemble of dynamically downscaled climate projections which are driven by the SRES A1B socio-economic scenario. Resulting regional-scale climate change projections across central Europe are concatenated with Europe's road and railway network. Results indicate overall increases of landslide occurrence. While flat terrain at low altitudes exhibits an increase of about 1 more potentially landslide-inducing rainfall period per year until the end of this century, higher elevated regions are more affected and show increases of up to 14 additional periods. This general spatial distribution emerges in the near future (2021-2050) but becomes more pronounced in the remote future (2071-2100). Since largest increases are to be found in Alsace, potential impacts of an increasing amount of landslides are discussed using the example of a case study covering the Black Forest mountain range in Baden-Württemberg by further enriching the climate information with additional geodata. The findings derived are suitable to support political decision makers and European authorities in transport, freight and logistics by offering detailed information on which parts of Europe's ground transport network are at particularly high risk concerning landslide activity.

  14. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface

    USGS Publications Warehouse

    Alvioli, M.; Baum, R.L.

    2016-01-01

    We describe a parallel implementation of TRIGRS, the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model for the timing and distribution of rainfall-induced shallow landslides. We have parallelized the four time-demanding execution modes of TRIGRS, namely both the saturated and unsaturated model with finite and infinite soil depth options, within the Message Passing Interface framework. In addition to new features of the code, we outline details of the parallel implementation and show the performance gain with respect to the serial code. Results are obtained both on commercial hardware and on a high-performance multi-node machine, showing the different limits of applicability of the new code. We also discuss the implications for the application of the model on large-scale areas and as a tool for real-time landslide hazard monitoring.

  15. Submarine Landslide Hazards Offshore Southern Alaska: Seismic Strengthening Versus Rapid Sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.

    2017-12-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking

  16. Landslide-generated tsunamis in a perialpine lake: Historical events and numerical models

    NASA Astrophysics Data System (ADS)

    Hilbe, Michael; Anselmetti, Flavio S.

    2014-05-01

    Many of the perialpine lakes in Central Europe - the large, glacier-carved basins formed during the Pleistocene glaciations of the Alps - have proven to be environments prone to subaquatic landsliding. Among these, Lake Lucerne (Switzerland) has a particularly well-established record of subaquatic landslides and related tsunamis. Its sedimentary archive documents numerous landslides over the entire Holocene, which have either been triggered by earthquakes, or which occurred apparently spontaneously, possibly due to rapid sediment accumulation on delta slopes. Due to their controlled boundary conditions and the possibility to be investigated on a complete basinal scale, such lacustrine tsunamis may be used as textbook analogons for their marine counterparts. Two events in the 17th century illustrate these processes and their consequences: In AD 1601, an earthquake (Mw ~ 5.9) led to widespread failure of the sediment drape covering the lateral slopes in several basins. The resulting landslides generated tsunami waves that reached a runup of several metres, as reported in historical accounts. The waves caused widespread damage as well as loss of lives in communities along the shores. In AD 1687, the apparently spontaneous collapse of a river delta in the lake led to similar waves that damaged nearby villages. Based on detailed information on topography, bathymetry and the geometry of the landslide deposits, numerical simulations combining two-dimensional, depth-averaged models for landslide propagation, as well as for tsunami generation, propagation and inundation, are able to reproduce most of the reported tsunami effects for these events. Calculated maximum runup of the waves is 6 to >10 m in the directly affected lake basins, but significantly less in neighbouring basins. Flat alluvial plains adjacent to the most heavily affected areas are inundated over distances of several hundred metres. Taken as scenarios for possible future events, these past events suggest

  17. Impact of the 2008 Wenchuan earthquake on river organic carbon provenance: Insight from biomarkers

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Feng, Xiaojuan; Hilton, Robert; Jin, Zhangdong; Ma, Tian; Zhang, Fei; Li, Gen; Densmore, Alexander; West, A. Joshua

    2017-04-01

    Large earthquakes can trigger widespread landslides in active mountain belts, which can mobilize biospheric organic carbon (OC) from the soil and vegetation. Rivers can erode and export biospheric particulate organic carbon (POC), which is an export of ecosystem productivity and may result in a CO2 sink if buried in sedimentary deposits. Our previous work showed that the 2008 Mw 7.9 Wenchuan earthquake increased the discharge of biospheric OC by rivers, due to the increased supply by earthquake triggered landslides (Wang et al., 2016). However, while the OC derived from sedimentary rocks could be accounted for, the source of biospheric OC in rivers before and after the earthquake remains poorly constrained. Here we use suspended sediment samples collected from the Zagunao River before and after the Wenchuan earthquake and measured the specific compounds of OC, including fatty acids, lignin phenols and glycerol dialkyl glycerol tetraether (GDGT) lipids. In combination with the analysis of bulk elemental concentration (C and N) and carbon isotopic ratio, the new data shows differential export patterns for OC components derived from varied terrestrial sources. A high frequency sampling enabled us to explore how the biospheric OC source changes following the earthquake, helping to better understand the link between active tectonics and the carbon cycle. Our results are also important in revealing how sedimentary biomarker records may record past earthquakes.

  18. Towards a Quasi-global precipitation-induced Landslide Detection System using Remote Sensing Information

    NASA Astrophysics Data System (ADS)

    Adler, B.; Hong, Y.; Huffman, G.; Negri, A.; Pando, M.

    2006-05-01

    Landslides and debris flows are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage per year. Currently, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides. In this study, global landslide susceptibility is mapped using USGS GTOPO30 Digital Elevation, hydrological derivatives (slopes and wetness index etc.) from HYDRO1k data, soil type information downscaled from Digital Soil Map of the World (Sand, Loam, Silt, or Clay etc.), and MODIS land cover/use classification data. These variables are then combined with empirical landslide inventory data, if available, to derive a global landslide susceptibility map at elemental resolution of 1 x 1 km. This map can then be overlain with the driving force, namely rainfall estimates from the TRMM-based Multiple-satellite Precipitation Analysis to identify when areas with significant landslide potential receive heavy rainfall. The relations between rainfall intensity and rainstorm duration are regionally specific and often take the form of a power-law relation. Several empirical landslide-triggering Rainfall Intensity-Duration thresholds are implemented regionally using the 8-year TRMM-based precipitation with or without the global landslide susceptibility map at continuous space and time domain. Finally, the effectiveness of this system is validated by studying several recent deadly landslide/mudslide events. This study aims to build up a prototype quasi-global potential landslide warning system. Spatially-distributed landslide susceptibility maps and regional empirical rainfall intensity-duration thresholds, in combination with real-time rainfall measurements from space and rainfall forecasts from models, will be the basis for this experimental system.

  19. High tsunami risk at northern tip of Sumatra as a result of the activity of the Sumatra Fault Zone (SFZ) combined with coastal landslides

    NASA Astrophysics Data System (ADS)

    Haridhi, H. A.; Huang, B. S.; Wen, K. L.; Mirza, A.; Rizal, S.; Purnawan, S.; Fajri, I.; Klingelhoefer, F.; Liu, C. S.; Lee, C. S.; Wilson, C. R.

    2017-12-01

    The lesson learned from the 12 January 2010, Mw 7.0 Haiti earthquake has shown that an earthquake with strike-slip faulting can produce a significant tsunami. This occasion is rare since in the fact of the fault consist predominantly of lateral motion, which is rarely associated with significant uplift or tsunami generation. Yet, another hint from this event, that this earthquake was accompanied by a coastal landslide. Again, there were only few records of a submarine slides as a primary source that generate a tsunami. Hence, the Haiti Mw 7.0 earthquake was generated by these combined mechanisms, i.e. strike-slip faulting earthquake and coastal landslide. In reflecting this event, the Sumatra region exhibit almost identical situation, where the right lateral strike-slip faulting of Sumatra Fault Zone (SFZ) is located. In this study, we are focusing at the northern tip of SFZ at Aceh Province. The reason we focused our study at its northern tip is that, since the Sumatra-Andaman mega earthquake and tsunami on 26 December 2004, which occurred at the subduction zone, there were no records of significant earthquake along the SFZ, where at this location the SFZ is divided into two faults, i.e. Aceh and Seulimeum faults. This study aimed as a mitigation effort, if an earthquake happened at these faults, do we observe a similar result as that happened at Haiti or not. To do so, we access the high-resolution shallow bathymetry data that acquired through a Community-Based Bathymetric Survey (CBBS), examines five scanned Single Channel Seismic (SCS) reflections data, perform the slope stability analysis and that simulate the tsunami using Cornell Multi-grid Coupled Tsunami Model (COMCOT) model with a combined source of fault activity and submarine landslide. The result shows that, by these combined mechanisms, if the earthquake as large as 7 Mw or larger, it could produce a tsunami as high as 6 meters along the coast. The detailed shallow bathymetric and the slope stability

  20. Improving predictive power of physically based rainfall-induced shallow landslide models: a probablistic approach

    USGS Publications Warehouse

    Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F.

    2013-01-01

    Distributed models to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides are deterministic. These models extend spatially the static stability models adopted in geotechnical engineering and adopt an infinite-slope geometry to balance the resisting and the driving forces acting on the sliding mass. An infiltration model is used to determine how rainfall changes pore-water conditions, modulating the local stability/instability conditions. A problem with the existing models is the difficulty in obtaining accurate values for the several variables that describe the material properties of the slopes. The problem is particularly severe when the models are applied over large areas, for which sufficient information on the geotechnical and hydrological conditions of the slopes is not generally available. To help solve the problem, we propose a probabilistic Monte Carlo approach to the distributed modeling of shallow rainfall-induced landslides. For the purpose, we have modified the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) code. The new code (TRIGRS-P) adopts a stochastic approach to compute, on a cell-by-cell basis, transient pore-pressure changes and related changes in the factor of safety due to rainfall infiltration. Infiltration is modeled using analytical solutions of partial differential equations describing one-dimensional vertical flow in isotropic, homogeneous materials. Both saturated and unsaturated soil conditions can be considered. TRIGRS-P copes with the natural variability inherent to the mechanical and hydrological properties of the slope materials by allowing values of the TRIGRS model input parameters to be sampled randomly from a given probability distribution. The range of variation and the mean value of the parameters can be determined by the usual methods used for preparing the TRIGRS input parameters. The outputs of several model runs obtained varying the input parameters

  1. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    USGS Publications Warehouse

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  2. Case studies of Induced Earthquakes in Ohio for 2016 and 2017

    NASA Astrophysics Data System (ADS)

    Friberg, P. A.; Brudzinski, M.; Kozlowska, M.; Loughner, E.; Langenkamp, T.; Dricker, I.

    2017-12-01

    Over the last four years, unconventional oil and gas production activity in the Utica shale play in Ohio has induced over 20 earthquake sequences (Friberg et al, 2014; Skoumal et al, 2016; Friberg et al, 2016; Kozlowska et al, in submission) including a few new ones in 2017. The majority of the induced events have been attributed to optimally oriented faults located in crystalline basement rocks, which are closer to the Utica formation than the Marcellus shale, a shallower formation more typically targeted in Pennsylvania and West Virginia. A number of earthquake sequences in 2016 and 2017 are examined using multi-station cross correlation template matching techniques. We examine the Gutenberg-Richter b-values and, where possible, the b-value evolution of the earthquake sequences to help determine seismogensis of the events. Refined earthquake locations using HypoDD are determined using data from stations operated by the USGS, IRIS, ODNR, Miami University, and PASEIS.

  3. Streamflow Changes Induced by the 1999 MW 7.6 Chi-Chi Earthquake

    NASA Astrophysics Data System (ADS)

    Chia, Yeeping; Liu, Ching-Yi; Chuang, Po-Yu

    2016-04-01

    Anomalous streamflow changes have often been observed after strong earthquakes. These changes have been used to study crustal deformation induced by earthquakes. Previous studies indicated that co-seismic groundwater-level changes, ranging from a fall of 11.1 m to a rise of 7.42 m, were recorded in 152 monitoring wells near the seismogenic fault during the 1999 MW 7.6 Chi-Chi earthquake. Here we report anomalous streamflow changes due to the earthquake in central Taiwan. There are 32 stream gauges in the vicinity of the fault, mostly in the mountainous hanging wall area. Of those, 22 recorded anomalous streamflow increases, ranging from 60% to 732%, one to four days after the earthquake. Unlike a rapid decrease in discharge after heavy rainfall, the post-seismic increase is followed by a slow decline which may last for several months. Only one gauge recorded a sudden decrease in discharge immediately after the earthquake. Besides, the decrease was preceded by a large and abrupt streamflow increase over the four days before the earthquake. We attribute the post-seismic increase to fracturing in the mountainous area due to seismic shaking, while the decrease to co-seismic pore pressure drop induced by crustal extension. However, more evidence is needed to consider the pre-seismic streamflow changes as a potential precursory indicator of earthquakes.

  4. Numerical simulation of scouring-deposition variations caused by rainfall-induced landslides in the upstream of Zengwun River, Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Liao, Yi-Wen; Tsai, Kuang-Jung

    2017-04-01

    In recent years, the increasing sediment disasters of severe rainfall-induced landslides on human lives and lifeline facilities worldwide have advanced the necessity to find out both economically acceptable and useful techniques to predict the occurrence and destructive power of the disasters. In August 2009, Typhoon Morakot brought a large amount of rainfall with both high intensity and long duration to a vast area of Taiwan. Unfortunately, this resulted in a catastrophic landslide in watershed of Zengwun-River reservoir, southern Taiwan. Meanwhile, large amounts of landslides were formed in the upstream of Zengwun River. The major scope of this study is to apply numerical model to simulate the scouring-deposition variations caused by rainfall-induced landslides that occurred in the upstream of Zengwun River during Typhoon Morakot. This study proposed the relation diagrams of the intermediate diameter (d50), recurrence interval (T) and scouring-deposition depth (D), and applied the diagrams to understand the impacts of the scouring-deposition variations on the structures for water and soil conservation and their measurements. Based on the simulation of scouring-deposition variation at the Da-Bu dam and Da-Bang dam, this study also discussed the scouring-deposition variations of different sections under different scenarios (including flow rate, intermediate diameters and structures). In summary, the result suggested that the diagrams of the intermediate diameter, recurrence interval and scouring-deposition depth could be used as the reference for designing the check dams, ground sills and lateral constructions.

  5. Construction of a Risk Assessment Model for Rainfall-Induced Landslides

    NASA Astrophysics Data System (ADS)

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Lin, Wei-Chung

    2013-04-01

    The unstable geology and steep terrain in the mountainous regions of Taiwan make these areas vulnerable to landslides and debris flow during typhoons and heavy rains. According to the Water Resources Agency, Ministry of Economic Affairs of Taiwan, there were 500 typhoons and over one thousand storms in Taiwan between 1897 and 2011. Natural disasters caused 3.5 billion USD of damage between 1983 and 2011. Thus, the construction of risk assessment model for landslides is essential to disaster prevention. This study employed genetic adaptive neural networks (GANN) with texture analysis in the classification of high-resolution satellite images from which data related to surface conditions in mountainous areas of Taiwan were derived. Ten landslide hazard potential factors are included: slope, geology, elevation, distance from the fault, distance from water, terrain roughness, slope roughness, effective accumulated rainfall and developing situation. By using correlation test, GANN, weight analysis and dangerous value method, levels and probabilities of landslide of the research areas are presented. Then, through geographic information system the landslide potential map is plotted to distinguish high potential regions from low potential regions. Through field surveys, interviews with district officials and a review of relevant literature, the probability of a sediment disaster was estimated as well as the vulnerability of the villages concerned and the degree to which these villages were prepared, to construct a risk evaluation model. The regional risk map was plotted with the help of GIS and the landslide assessment model. The risk assessment model can be used by authorities to make provisions for high-risk areas, to reduce the number of casualties and social costs of sediment disasters.

  6. Frictional weakening of Landslides in the Solar System

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean-Paul

    2014-05-01

    Landslides are an important phenomenon that shapes the surface morphology of solid planetary bodies, including planets and small bodies. In addition, landslide science aims to predict the maximum distance travelled and the maximum velocity reached by a potential landslide in order to quantify the damage it may cause. On the one hand, observations show that the so-called Heim's ratio (i.e. the ratio between the difference of the height of the initial mass and that of the deposit, and the traveling distance) decreases with increasing volume for landslides observed on Earth [1] and other planets like Mars and icy moons like Iapetus [2], but whether this quantity is a good representation of the effective friction during the flow is still a controversial issue. On the other hand, numerical simulations (either continuous or discrete) of real landslides commonly require the assumption of very small friction coefficient to reproduce the extension of deposits [2-5]. We investigate if a common origin can explain the characteristics of landslides in such variety of planetary environments. Based on analytical and numerical solutions for granular flows constrained by remote-sensing observations [3, 7], we developed a consistent method to estimate the effective friction coefficient of landslides, i.e., the constant basal friction coefficient that reproduces their first-order properties. We show that: i) the Heim's ratio is not equivalent to the effective friction coefficient; ii) the friction coefficient decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes [8], we propose an empirical velocity-weakening friction law under an unifying phenomenological framework applicable to small to large landslides observed on Earth and beyond (including icy moons of giant planets) whatever the environment and material involved. References: [1] Legros, Eng. Geol. 2002; [2

  7. Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han

    2016-04-01

    Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream

  8. A coccidioidomycosis outbreak following the Northridge, Calif, earthquake

    USGS Publications Warehouse

    Schneider, E.; Hajjeh, R.A.; Spiegel, R.A.; Jibson, R.W.; Harp, E.L.; Marshall, G.A.; Gunn, R.A.; McNeil, M.M.; Pinner, R.W.; Baron, R.C.; Burger, R.C.; Hutwagner, L.C.; Crump, C.; Kaufman, L.; Reef, S.E.; Feldman, G.M.; Pappagianis, D.; Werner, S.B.

    1997-01-01

    Objective. - To describe a coccidioidomycosis outbreak in Ventura County following the January 1994 earthquake, centered in Northridge, Calif, and to identify factors that increased the risk for acquiring acute coccidioidomycosis infection. Design. - Epidemic investigation, population- based skin test survey, and case-control study. Setting. - Ventura County, California. Results. - In Ventura County, between January 24 and March 15, 1994, 203 outbreak-associated coccidioidomycosis cases, including 3 fatalities, were identified (attack rate [AR], 30 cases per 100 000 population). The majority of cases (56%) and the highest AR (114 per 100 000 population) occurred in the town of Simi Valley, a community located at the base of a mountain range that experienced numerous landslides associated with the earthquake. Disease onset for cases peaked 2 weeks after the earthquake. The AR was 2.8 times greater for persons 40 years of age and older than for younger persons (relative risk, 2.8; 95% confidence interval [CI], 2.1-3.7; P<.001). Environmental data indicated that large dust clouds, generated by landslides following the earthquake and strong aftershocks in the Santa Susana Mountains north of Simi Valley, were dispersed into nearby valleys by northeast winds. Simi Valley case-control study data indicated that physically being in a dust cloud (odds ratio, 3.0; 95% CI, 1.6-5.4; P<.001) and time spent in a dust cloud (P<.001) significantly increased the risk for being diagnosed with acute coccidioidomycosis. Conclusions. - Both the location and timing of cases strongly suggest that the coccidioidomycosis outbreak in Ventura County was caused when arthrospores were spread in dust clouds generated by the earthquake. This is the first report of a coccidioidomycosis outbreak following an earthquake. Public and physician awareness, especially in endemic areas following similar dust cloud- generating events, may result in prevention and early recognition of acute

  9. Rainfall and Seasonal Movement of the Weeks Creek Landslide, San Mateo County, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Reid, Mark E.; Jodicke, Walter; Pearson, Chris; Wilcox, Grant

    2007-01-01

    Introduction Many different types of landslide occur in the Santa Cruz Mountains of San Mateo County, Calif. (Brabb and Pampeyan, 1972); most slope movement is triggered by strong earthquakes, heavy rainfall, or shoreline erosion. In this area, shallow landslides of loose soil and rock, which may transform into debris flows, commonly occur during individual storms when rainfall exceeds a threshold of intensity and duration (Cannon and Ellen, 1985; Wieczorek and Sarmiento, 1988; Wilson and Wieczorek, 1995). In contrast, deeper rotational and translational slides (Varnes, 1978) typically begin to move only after days to weeks or months of heavy rain. Once started, they can continue to move for months during and after a heavy rainfall season, for example, the Scenic Drive landslide at La Honda, Calif. (Jayko and others, 1998; Wells and others, 2005, 2006). Although the rainfall characteristics triggering rapid, shallow landslides have been documented (Wieczorek, 1987; Cannon and Ellen, 1988), the rainfall conditions leading to repeated deeper-seated slope movements are less well known. The Weeks Creek landslide (Adam, 1975), near the western crest of the Santa Cruz Mountains north of La Honda in San Mateo County (fig. 1), consists of a large prehistoric section containing a historically active section; both sections have earthflow morphologies. The entire landslide mass, which extends about 1,000 m westward from an elevation of 220 m down to an elevation of 120 m, is about 300 to 370 m wide (Cole and others, 1994); The prehistoric section of the landslide is about 30 m deep and approximately 10 million m3 in volume (Cole and others, 1994). The smaller, historically active portion of the Weeks Creek landslide (fig. 1) is only approximately 500 m long, 200 m wide, and 13 m deep (Cole and others, 1994). Near the landslide, the Santa Cruz Mountains consist of tightly folded, Tertiary sedimentary bedrock materials of the Butano sandstone and San Lorenzo Formations (Eocene

  10. Modeling landslide runout dynamics and hazards: crucial effects of initial conditions

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; George, D. L.

    2016-12-01

    Physically based numerical models can provide useful tools for forecasting landslide runout and associated hazards, but only if the models employ initial conditions and parameter values that faithfully represent the states of geological materials on slopes. Many models assume that a landslide begins from a heap of granular material poised on a slope and held in check by an imaginary dam. A computer instruction instantaneously removes the dam, unleashing a modeled landslide that accelerates under the influence of a large force imbalance. Thus, an unrealistically large initial acceleration influences all subsequent modeled motion. By contrast, most natural landslides are triggered by small perturbations of statically balanced effective stress states, which are commonly caused by rainfall, snowmelt, or earthquakes. Landslide motion begins with an infinitesimal force imbalance and commensurately small acceleration. However, a small initial force imbalance can evolve into a much larger imbalance if feedback causes a reduction in resisting forces. A well-documented source of such feedback involves dilatancy coupled to pore-pressure evolution, which may either increase or decrease effective Coulomb friction—contingent on initial conditions. Landslide dynamics models that account for this feedback include our D-Claw model (Proc. Roy. Soc. Lon., Ser. A, 2014, doi: 10.1098/rspa.2013.0819 and doi:10.1098/rspa.2013.0820) and a similar model presented by Bouchut et al. (J. Fluid Mech., 2016, doi:10.1017/jfm.2016.417). We illustrate the crucial effects of initial conditions and dilatancy coupled to pore-pressure feedback by using D-Claw to perform simple test calculations and also by computing alternative behaviors of the well-documented Oso, Washington, and West Salt Creek, Colorado, landslides of 2014. We conclude that realistic initial conditions and feedbacks are essential elements in numerical models used to forecast landslide runout dynamics and hazards.

  11. Transformation of dilative and contractive landslide debris into debris flows-An example from marin County, California

    USGS Publications Warehouse

    Fleming, R.W.; Ellen, S.D.; Algus, M.A.

    1989-01-01

    The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.

  12. Global earthquake casualties due to secondary effects: A quantitative analysis for improving PAGER losses

    USGS Publications Warehouse

    Wald, David J.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey’s (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER’s overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra–Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability.

  13. Co-Seismic Energy Changes Induced by Earthquakes on a Rotating, Gravitating Earth

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Gross, Richard S.

    2003-01-01

    Besides operating its own energy budget, an earthquake acts as an agent transferring a much greater amount of energy among the Earth's rotation, elastic field, gravitational field and internal heat. We compute the co-seismic, globally integrated gravitational and rotation changes induced by some 20,000 large earthquakes that occurred in the last quarter century, according to Chao et al. (1995, GJI, 122,776- 783,784-789) and using the Harvard CMT catalog. The result confirms an extremely strong tendency for the earthquakes to decrease the global gravitational energy and to increase the spin energy. It is found that energy is being extracted from the Earth's gravitational field by the action of earthquakes at an average rate of about approx. 2 TeraW during the studied period, larger by far than the approx. 7 GigaW for the average rate of the earthquake-induced rotational energy increase and the approx. 5 GigaW for the seismic energy release. Based on energetics considerations and assuming the inability of the Earth to build up elastic energy continuously over time, it is argued that earthquakes, by converting gravitational energy, may make a significant contribution to the global hedflow.

  14. Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks

    USGS Publications Warehouse

    Moss, Robb E. S.; Thompson, Eric M.; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital

    2015-01-01

    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.

  15. Landslides density map of S. Miguel Island, Azores archipelago

    NASA Astrophysics Data System (ADS)

    Valadão, P.; Gaspar, J. L.; Queiroz, G.; Ferreira, T.

    The Azores archipelago is located in the Atlantic Ocean and is composed of nine volcanic islands. S. Miguel, the largest one, is formed by three active, E-W trending, trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas). Chains of basaltic cinder cones link those major volcanic structures. An inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste) comprise the easternmost part of the island. Since the settlement of the island early in the 15th century, several destructive landslides triggered by catastrophic rainfall episodes, earthquakes and volcanic eruptions occurred in different areas of S. Miguel. One unique event killed thousands of people in 1522. Houses and bridges were destroyed, roads were cut, communications, water and energy supply systems became frequently disrupted and areas of fertile land were often buried by mud. Based on (1) historical documents, (2) aerial photographs and (3) field observations, landslide sites were plotted on a topographic map, in order to establish a landslide density map for the island. Data obtained showed that landslide hazard is higher on (1) the main central volcanoes where the thickness of unconsolidated pyroclastic deposits is considerable high and (2) the old basaltic volcanic complex, marked by deep gullies developed on thick sequences of lava flows. In these areas, caldera walls, fault scarps, steep valley margins and sea cliffs are potentially hazardous.

  16. Short Term Patterns of Landslides Causing Death in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Sepulveda, S. A.; Petley, D. N.

    2015-12-01

    Among natural hazards, landslides represent a significant source of loss of life in mountainous terrains. Many regions of Latin America and the Caribbean are prone to landslide activity, due to strong topographic relief, high tectonic uplift rates, seismicity and/or climate. Further, vulnerable populations are often concentrated in deep valleys or mountain foothills susceptible to catastrophic landslides, with vulnerability further increased by dense urbanization and precarious settlements in some large cities. While historic extremely catastrophic events such as the 1999 Vargas flows in Venezuela or the 1970 Huascaran rock avalanche in Peru are commonly cited to characterize landslide hazards in this region, less known is the landslide activity in periods without such large disasters. This study assesses the occurrence of fatal landslides in Latin America and the Caribbean between 2004 and 2013. Over this time period we recorded 611 landslides that caused 11,631 deaths in 25 countries, mostly as a result of rainfall triggers. The countries with the highest number of fatal landslides are Brazil, Colombia, Mexico, Guatemala, Peru and Haiti. The highest death toll for a single event was ca.3000. The dataset has not captured a strong El Niño event or large earthquakes in landslide prone areas, thus the analysis is indicative of short term rather than long term spatial and temporal patterns. Results show that at continental scale, the spatial distribution of landslides in the 2004-2013 period correlates well with relief, precipitation and population density, while the temporal distribution reflects the regional annual rainfall patterns. In urban areas, the presence of informal settlements has a big impact on the number of fatalities, while at national level weaker correlations with gross income, human development and corruption indices can be found. This work was funded by the Durham International Fellowships for Research and Enterprise and Fondecyt project 1140317.

  17. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    NASA Astrophysics Data System (ADS)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  18. Uncertainty evaluation of a regional real-time system for rain-induced landslides

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni

    2015-04-01

    A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.

  19. Effects of the 2016 Kumamoto earthquakes on the Aso volcanic edifice

    NASA Astrophysics Data System (ADS)

    Tajima, Yasuhisa; Hasenaka, Toshiaki; Torii, Masayuki

    2017-05-01

    Large earthquakes occurred in the central part of Kumamoto Prefecture on April 14-16, 2016, causing severe damage to the northern segment of the Hinagu faults and the eastern segment of the Futagawa faults. Earthquake surface ruptures appeared along these faults and on the Aso volcanic edifice, which in turn generated landslides. We conducted landform change analysis of the central cones of Aso volcano by using satellite and aerial photographs. First, we categorized the topographical changes as surface scarps, arc-shaped cracks, and linear cracks. Field survey indicated that landslides caused the scarps and arc-shaped cracks, whereas faulting caused the linear cracks. We discovered a surface rupture concentration zone (RCZ) formed three ruptures bands with many surface ruptures and landslides extending from the west foot to the center of the Aso volcanic edifice. The magmatic volcanic vents that formed during the past 10,000 years are located along the north margin of the RCZ. Moreover, the distribution and dip of the core of rupture concentration zone correspond with the Nakadake craters. We conclude that a strong relationship exists between the volcanic vents and fault structures in the central cones of Aso volcano.[Figure not available: see fulltext.

  20. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.