Sample records for earthquake moment magnitude

  1. Conversion of Local and Surface-Wave Magnitudes to Moment Magnitude for Earthquakes in the Chinese Mainland

    NASA Astrophysics Data System (ADS)

    Li, X.; Gao, M.

    2017-12-01

    The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18

  2. A moment-tensor catalog for intermediate magnitude earthquakes in Mexico

    NASA Astrophysics Data System (ADS)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Martínez-Peláez, Liliana; Franco, Sara; Iglesias Mendoza, Arturo

    2016-04-01

    Located among five tectonic plates, Mexico is one of the world's most seismically active regions. The earthquake focal mechanisms provide important information on the active tectonics. A widespread technique for estimating the earthquake magnitud and focal mechanism is the inversion for the moment tensor, obtained by minimizing a misfit function that estimates the difference between synthetic and observed seismograms. An important element in the estimation of the moment tensor is an appropriate velocity model, which allows for the calculation of accurate Green's Functions so that the differences between observed and synthetics seismograms are due to the source of the earthquake rather than the velocity model. However, calculating accurate synthetic seismograms gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes (M>5.0) excite waves of longer periods that interact weakly with lateral heterogeneities in the crust. For these events, using 1D velocity models to compute Greens functions works well and they are well characterized by seismic moment tensors reported in global catalogs (eg. USGS fast moment tensor solutions and GCMT). The opposite occurs for small and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle. To accurately model the Green's functions for the smaller events in a large heterogeneous area, requires 3D or regionalized 1D models. To obtain a rapid estimate of earthquake magnitude, the National Seismological Survey in Mexico (Servicio Sismológico Nacional, SSN) automatically calculates seismic moment tensors for events in the Mexican Territory (Franco et al., 2002; Nolasco-Carteño, 2006). However, for intermediate-magnitude and small earthquakes the signal-to-noise ratio could is low for many of the seismic stations, and without careful selection and filtering of the data, obtaining a stable focal mechanism

  3. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3< M < 7, M and M­L are coincident; for earthquakes smaller than M3, ML log M0 [Hanks and Boore, 1984]. This is a consequence of the saturation of the apparent corner frequency fc as it becoming greater than the largest observable frequency, fmax; In this regime, stress drop no longer controls ground motion. This implies that ML and M differ by a factor of 1.5 for these small events. While this idea is not new, its implications are important as more small-magnitude data are incorporated into earthquake hazard research. With a large dataset of M<3 earthquakes recorded on the ANZA network, we demonstrate striking consequences of the difference between M and ML. ML scales as the log peak ground motions (e.g., PGA or PGV) for these small earthquakes, which yields log PGA log M0 [Boore, 1986]. We plot nearly 15,000 records of PGA and PGV at close stations, adjusted for site conditions and for geometrical spreading to 10 km. The slope of the log of ground motion is 1.0*ML­, or 1.5*M, confirming the relationship, and that fc >> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for

  4. Characteristics of Gyeongju earthquake, moment magnitude 5.5 and relative relocations of aftershocks

    NASA Astrophysics Data System (ADS)

    Cho, ChangSoo; Son, Minkyung

    2017-04-01

    There is low seismicity in the korea peninsula. According historical record in the historic book, There were several strong earthquake in the korea peninsula. Especially in Gyeongju of capital city of the Silla dynasty, few strong earthquakes caused the fatalities of several hundreds people 1,300 years ago and damaged the houses and make the wall of castles collapsed. Moderate strong earthquake of moment magnitude 5.5 hit the city in September 12, 2016. Over 1000 aftershocks were detected. The numbers of occurrences of aftershock over time follows omori's law well. The distribution of relative locations of 561 events using clustering aftershocks by cross-correlation between P and S waveform of the events showed the strike NNE 25 30 o and dip 68 74o of fault plane to cause the earthquake matched with the fault plane solution of moment tensor inversion well. The depth of range of the events is from 11km to 16km. The width of distribution of event locations is about 5km length. The direction of maximum horizontal stress by inversion of stress for the moment solutions of main event and large aftershocks is similar to the known maximum horizontal stress direction of the korea peninsula. The relation curves between moment magnitude and local magnitude of aftershocks shows that the moment magnitude increases slightly more for events of size less than 2.0

  5. Maximum earthquake magnitudes in the Aegean area constrained by tectonic moment release rates

    NASA Astrophysics Data System (ADS)

    Ch. Koravos, G.; Main, I. G.; Tsapanos, T. M.; Musson, R. M. W.

    2003-01-01

    Seismic moment release is usually dominated by the largest but rarest events, making the estimation of seismic hazard inherently uncertain. This uncertainty can be reduced by combining long-term tectonic deformation rates with short-term recurrence rates. Here we adopt this strategy to estimate recurrence rates and maximum magnitudes for tectonic zones in the Aegean area. We first form a merged catalogue for historical and instrumentally recorded earthquakes in the Aegean, based on a recently published catalogue for Greece and surrounding areas covering the time period 550BC-2000AD, at varying degrees of completeness. The historical data are recalibrated to allow for changes in damping in seismic instruments around 1911. We divide the area up into zones that correspond to recent determinations of deformation rate from satellite data. In all zones we find that the Gutenberg-Richter (GR) law holds at low magnitudes. We use Akaike's information criterion to determine the best-fitting distribution at high magnitudes, and classify the resulting frequency-magnitude distributions of the zones as critical (GR law), subcritical (gamma density distribution) or supercritical (`characteristic' earthquake model) where appropriate. We determine the ratio η of seismic to tectonic moment release rate. Low values of η (<0.5) corresponding to relatively aseismic deformation, are associated with higher b values (>1.0). The seismic and tectonic moment release rates are then combined to constrain recurrence rates and maximum credible magnitudes (in the range 6.7-7.6 mW where the results are well constrained) based on extrapolating the short-term seismic data. With current earthquake data, many of the tectonic zones show a characteristic distribution that leads to an elevated probability of magnitudes around 7, but a reduced probability of larger magnitudes above this value when compared with the GR trend. A modification of the generalized gamma distribution is suggested to account

  6. Moment Magnitude discussion in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  7. A local earthquake coda magnitude and its relation to duration, moment M sub O, and local Richter magnitude M sub L

    NASA Technical Reports Server (NTRS)

    Suteau, A. M.; Whitcomb, J. H.

    1977-01-01

    A relationship was found between the seismic moment, M sub O, of shallow local earthquakes and the total duration of the signal, t, in seconds, measured from the earthquakes origin time, assuming that the end of the coda is composed of backscattering surface waves due to lateral heterogenity in the shallow crust following Aki. Using the linear relationship between the logarithm of M sub O and the local Richter magnitude M sub L, a relationship between M sub L and t, was found. This relationship was used to calculate a coda magnitude M sub C which was compared to M sub L for Southern California earthquakes which occurred during the period from 1972 to 1975.

  8. Moment magnitude, local magnitude and corner frequency of small earthquakes nucleating along a low angle normal fault in the Upper Tiber valley (Italy)

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.

    2015-12-01

    The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a

  9. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  10. Maximum magnitude earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.

    2014-01-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  11. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    USGS Publications Warehouse

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  12. Scaling A Moment-Rate Function For Small To Large Magnitude Events

    NASA Astrophysics Data System (ADS)

    Archuleta, Ralph; Ji, Chen

    2017-04-01

    Since the 1980's seismologists have recognized that peak ground acceleration (PGA) and peak ground velocity (PGV) scale differently with magnitude for large and moderate earthquakes. In a recent paper (Archuleta and Ji, GRL 2016) we introduced an apparent moment-rate function (aMRF) that accurately predicts the scaling with magnitude of PGA, PGV, PWA (Wood-Anderson Displacement) and the ratio PGA/2πPGV (dominant frequency) for earthquakes 3.3 ≤ M ≤ 5.3. This apparent moment-rate function is controlled by two temporal parameters, tp and td, which are related to the time for the moment-rate function to reach its peak amplitude and the total duration of the earthquake, respectively. These two temporal parameters lead to a Fourier amplitude spectrum (FAS) of displacement that has two corners in between which the spectral amplitudes decay as 1/f, f denotes frequency. At higher or lower frequencies, the FAS of the aMRF looks like a single-corner Aki-Brune omega squared spectrum. However, in the presence of attenuation the higher corner is almost certainly masked. Attempting to correct the spectrum to an Aki-Brune omega-squared spectrum will produce an "apparent" corner frequency that falls between the double corner frequency of the aMRF. We reason that the two corners of the aMRF are the reason that seismologists deduce a stress drop (e.g., Allmann and Shearer, JGR 2009) that is generally much smaller than the stress parameter used to produce ground motions from stochastic simulations (e.g., Boore, 2003 Pageoph.). The presence of two corners for the smaller magnitude earthquakes leads to several questions. Can deconvolution be successfully used to determine scaling from small to large earthquakes? Equivalently will large earthquakes have a double corner? If large earthquakes are the sum of many smaller magnitude earthquakes, what should the displacement FAS look like for a large magnitude earthquake? Can a combination of such a double-corner spectrum and random

  13. An Equivalent Moment Magnitude Earthquake Catalogue for Western Turkey and its Quantitative Properties

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, Konstantinos; Vasilios, Karakostas; Eleftheria, Papadimitriou; Aggeliki, Adamaki; Onur, Tan; Zumer, Pabuçcu

    2013-04-01

    Earthquake catalogues consist a basic product of seismology, resulting from complex procedures and suffering from natural and man-made errors. The accumulation of these problems over space and time lead to inhomogeneous catalogues which in turn lead to significant uncertainties in many kinds of analyses, such as seismicity rate evaluation and seismic hazard assessment. A major source of catalogue inhomogeneity is the variety of magnitude scales (i.e. Mw, mb, MS, ML, Md), reported from different institutions and sources. Therefore an effort is made in this study to compile a catalogue as homogenous as possible regarding the magnitude scale for the region of Western Turkey (26oE - 32oE longitude, 35oN - 43oN latitude), one of the most rapidly deforming regions worldwide with intense seismic activity, complex fault systems and frequent strong earthquakes. For this purpose we established new relationships to transform as many as possible available magnitudes into equivalent moment magnitude scale, M*w. These relations yielded by the application of the General Orthogonal Regression method and the statistical significance of the results was quantified. The final equivalent moment magnitude was evaluated by taking into consideration all the available magnitudes for which a relation was obtained and also a weight inversely proportional to their standard deviation. Once the catalogue was compiled the magnitude of completeness, Mc, was investigated in both space and time regime. The b-values and their accuracy were also calculated by the maximum likelihood estimate. The spatial and temporal constraints were selected in respect to seismicity recording level, since the state and evolution of the local and regional seismic networks are unknown. We modified and applied the Goodness of Fit test of Wiemer and Wyss (2000) in order to be more effective in datasets that are characterized by smaller sample size and higher Mcthresholds. The compiled catalogue and the Mcevaluation

  14. Induced earthquake magnitudes are as large as (statistically) expected

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran

    2016-01-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  15. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part B, historical earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax: the moment magnitude of the largest earthquake that is thought to be possible within a specified geographic region. The region specified in this report is the Central and Eastern United States and adjacent Canada. Parts A and B of this report describe the construction of a global catalog of moderate to large earthquakes that occurred worldwide in tectonic analogs of the Central and Eastern United States. Examination of histograms of the magnitudes of these earthquakes allows estimation of Central and Eastern United States Mmax. The catalog and Mmax estimates derived from it are used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. Part A deals with prehistoric earthquakes, and this part deals with historical events.

  16. Estimating earthquake location and magnitude from seismic intensity data

    USGS Publications Warehouse

    Bakun, W.H.; Wentworth, C.M.

    1997-01-01

    Analysis of Modified Mercalli intensity (MMI) observations for a training set of 22 California earthquakes suggests a strategy for bounding the epicentral region and moment magnitude M from MMI observations only. We define an intensity magnitude MI that is calibrated to be equal in the mean to M. MI = mean (Mi), where Mi = (MMIi + 3.29 + 0.0206 * ??i)/1.68 and ??i is the epicentral distance (km) of observation MMIi. The epicentral region is bounded by contours of rms [MI] = rms (MI - Mi) - rms0 (MI - Mi-), where rms is the root mean square, rms0 (MI - Mi) is the minimum rms over a grid of assumed epicenters, and empirical site corrections and a distance weighting function are used. Empirical contour values for bounding the epicenter location and empirical bounds for M estimated from MI appropriate for different levels of confidence and different quantities of intensity observations are tabulated. The epicentral region bounds and MI obtained for an independent test set of western California earthquakes are consistent with the instrumental epicenters and moment magnitudes of these earthquakes. The analysis strategy is particularly appropriate for the evaluation of pre-1900 earthquakes for which the only available data are a sparse set of intensity observations.

  17. Precise Relative Earthquake Magnitudes from Cross Correlation

    DOE PAGES

    Cleveland, K. Michael; Ammon, Charles J.

    2015-04-21

    We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.

  18. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    NASA Astrophysics Data System (ADS)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  19. The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Haeussler, Peter J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; Dawson, T.E.; Fletcher, H.; Hansen, R.; Harp, E.L.; Harris, R.A.; Hill, D.P.; Hreinsdottir, S.; Jibson, R.W.; Jones, L.M.; Kayen, R.; Keefer, D.K.; Larsen, C.F.; Moran, S.C.; Personius, S.F.; Plafker, G.; Sherrod, B.; Sieh, K.; Sitar, N.; Wallace, W.K.

    2003-01-01

    The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

  20. Estimating earthquake magnitudes from reported intensities in the central and eastern United States

    USGS Publications Warehouse

    Boyd, Oliver; Cramer, Chris H.

    2014-01-01

    A new macroseismic intensity prediction equation is derived for the central and eastern United States and is used to estimate the magnitudes of the 1811–1812 New Madrid, Missouri, and 1886 Charleston, South Carolina, earthquakes. This work improves upon previous derivations of intensity prediction equations by including additional intensity data, correcting magnitudes in the intensity datasets to moment magnitude, and accounting for the spatial and temporal population distributions. The new relation leads to moment magnitude estimates for the New Madrid earthquakes that are toward the lower range of previous studies. Depending on the intensity dataset to which the new macroseismic intensity prediction equation is applied, mean estimates for the 16 December 1811, 23 January 1812, and 7 February 1812 mainshocks, and 16 December 1811 dawn aftershock range from 6.9 to 7.1, 6.8 to 7.1, 7.3 to 7.6, and 6.3 to 6.5, respectively. One‐sigma uncertainties on any given estimate could be as high as 0.3–0.4 magnitude units. We also estimate a magnitude of 6.9±0.3 for the 1886 Charleston, South Carolina, earthquake. We find a greater range of magnitude estimates when also accounting for multiple macroseismic intensity prediction equations. The inability to accurately and precisely ascertain magnitude from intensities increases the uncertainty of the central United States earthquake hazard by nearly a factor of two. Relative to the 2008 national seismic hazard maps, our range of possible 1811–1812 New Madrid earthquake magnitudes increases the coefficient of variation of seismic hazard estimates for Memphis, Tennessee, by 35%–42% for ground motions expected to be exceeded with a 2% probability in 50 years and by 27%–35% for ground motions expected to be exceeded with a 10% probability in 50 years.

  1. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  2. Earthquake Rate Model 2 of the 2007 Working Group for California Earthquake Probabilities, Magnitude-Area Relationships

    USGS Publications Warehouse

    Stein, Ross S.

    2008-01-01

    The Working Group for California Earthquake Probabilities must transform fault lengths and their slip rates into earthquake moment-magnitudes. First, the down-dip coseismic fault dimension, W, must be inferred. We have chosen the Nazareth and Hauksson (2004) method, which uses the depth above which 99% of the background seismicity occurs to assign W. The product of the observed or inferred fault length, L, with the down-dip dimension, W, gives the fault area, A. We must then use a scaling relation to relate A to moment-magnitude, Mw. We assigned equal weight to the Ellsworth B (Working Group on California Earthquake Probabilities, 2003) and Hanks and Bakun (2007) equations. The former uses a single logarithmic relation fitted to the M=6.5 portion of data of Wells and Coppersmith (1994); the latter uses a bilinear relation with a slope change at M=6.65 (A=537 km2) and also was tested against a greatly expanded dataset for large continental transform earthquakes. We also present an alternative power law relation, which fits the newly expanded Hanks and Bakun (2007) data best, and captures the change in slope that Hanks and Bakun attribute to a transition from area- to length-scaling of earthquake slip. We have not opted to use the alternative relation for the current model. The selections and weights were developed by unanimous consensus of the Executive Committee of the Working Group, following an open meeting of scientists, a solicitation of outside opinions from additional scientists, and presentation of our approach to the Scientific Review Panel. The magnitude-area relations and their assigned weights are unchanged from that used in Working Group (2003).

  3. An Updated Catalog of Taiwan Earthquakes (1900-2011) with Homogenized Mw Magnitudes

    NASA Astrophysics Data System (ADS)

    Chen, K.; Tsai, Y.; Chang, W.

    2012-12-01

    A complete and consistent catalog of earthquakes can provide good data for studying the distribution of earthquakes in a region as function of space, time and magnitude. Therefore, it is a basic tool for studying seismic hazard and mitigating hazard, and we can get the seismicity with magnitude equal to or greater than Mw from the data set. In the article for completeness and consistence, we apply a catalog of earthquakes from 1900 to 2006 with homogenized magnitude (Mw) (Chen and Tsai, 2008) as a base, and we also refer to the Hsu (1989) to incorporate available supplementary data (total 188 data) for the period 1900-1935, the supplementary data lead the cutoff threshold magnitude to be from Mw 5.5 down to 5.0, this indicates that we add the additional data has enriched the magnitude > 5.0 content. For this study, the catalog has been updated to include earthquakes up to 2011, and it is complete for Mw > 5.0, this will increase the reliability for studying seismic hazard. It is found that it is saturated for original catalog of Taiwan earthquakes compared with Harvard Mw or USGS M for magnitude > 6.5. Although, we modified the original catalog into seismic moment magnitude Mw, it still does not overcome the drawback. But, it is found for Mw < 6.5, our unified Mw are most greater than Harvard Mw or USGS M, the phenomenon indicates our unified Mw to supplement the gap above magnitude > 6.0 and somewhere magnitude > 5.5 during the time period 1973-1991 for original catalog. Therefore, it is better with Mw to report the earthquake magnitude.

  4. Assessing the location and magnitude of the 20 October 1870 Charlevoix, Quebec, earthquake

    USGS Publications Warehouse

    Ebel, John E.; Dupuy, Megan; Bakun, William H.

    2013-01-01

    The Charlevoix, Quebec, earthquake of 20 October 1870 caused damage to several towns in Quebec and was felt throughout much of southeastern Canada and along the U.S. Atlantic seaboard from Maine to Maryland. Site‐specific damage and felt reports from Canadian and U.S. cities and towns were used in analyses of the location and magnitude of the earthquake. The macroseismic center of the earthquake was very close to Baie‐St‐Paul, where the greatest damage was reported, and the intensity magnitude MI was found to be 5.8, with a 95% probability range of 5.5–6.0. After corrections for epicentral‐distance differences are applied, the modified Mercalli intensity (MMI) data for the 1870 earthquake and for the moment magnitude M 6.2 Charlevoix earthquake of 1925 at common sites show that on average, the MMI readings are about 0.8 intensity units smaller for the 1870 earthquake than for the 1925 earthquake, suggesting that the 1870 earthquake was MI 5.7. A similar comparison of the MMI data for the 1870 earthquake with the corresponding data for the M 5.9 1988 Saguenay event suggests that the 1870 earthquake was MI 6.0. These analyses all suggest that the magnitude of the 1870 Charlevoix earthquake is between MI 5.5 and MI 6.0, with a best estimate of MI 5.8.

  5. Bibliographical search for reliable seismic moments of large earthquakes during 1900-1979 to compute MW in the ISC-GEM Global Instrumental Reference Earthquake Catalogue

    NASA Astrophysics Data System (ADS)

    Lee, William H. K.; Engdahl, E. Robert

    2015-02-01

    Moment magnitude (MW) determinations from the online GCMT Catalogue of seismic moment tensor solutions (GCMT Catalog, 2011) have provided the bulk of MW values in the ISC-GEM Global Instrumental Reference Earthquake Catalogue (1900-2009) for almost all moderate-to-large earthquakes occurring after 1975. This paper describes an effort to determine MW of large earthquakes that occurred prior to the start of the digital seismograph era, based on credible assessments of thousands of seismic moment (M0) values published in the scientific literature by hundreds of individual authors. MW computed from the published M0 values (for a time period more than twice that of the digital era) are preferable to proxy MW values, especially for earthquakes with MW greater than about 8.5, for which MS is known to be underestimated or "saturated". After examining 1,123 papers, we compile a database of seismic moments and related information for 1,003 earthquakes with published M0 values, of which 967 were included in the ISC-GEM Catalogue. The remaining 36 earthquakes were not included in the Catalogue due to difficulties in their relocation because of inadequate arrival time information. However, 5 of these earthquakes with bibliographic M0 (and thus MW) are included in the Catalogue's Appendix. A search for reliable seismic moments was not successful for earthquakes prior to 1904. For each of the 967 earthquakes a "preferred" seismic moment value (if there is more than one) was selected and its uncertainty was estimated according to the data and method used. We used the IASPEI formula (IASPEI, 2005) to compute direct moment magnitudes (MW[M0]) based on the seismic moments (M0), and assigned their errors based on the uncertainties of M0. From 1900 to 1979, there are 129 great or near great earthquakes (MW ⩾ 7.75) - the bibliographic search provided direct MW values for 86 of these events (or 67%), the GCMT Catalog provided direct MW values for 8 events (or 6%), and the remaining 35

  6. MOMENT TENSOR SOLUTIONS OF RECENT EARTHQUAKES IN THE CALABRIAN REGION (SOUTH ITALY)

    NASA Astrophysics Data System (ADS)

    Orecchio, B.; D'Amico, S.; Gervasi, A.; Guerra, I.; Presti, D.; Zhu, L.; Herrmann, R. B.; Neri, G.

    2009-12-01

    The aim of this study is to provide moment tensor solutions for recent events occurred in the Calabrian region (South Italy), an area struck by several destructive earthquakes in the last centuries. The seismicity of the area under investigation is actually characterized by low to moderate magnitude earthquakes (up to 4.5) not properly represented in the Italian national catalogues of focal mechanisms like RCMT (Regional Centroid Moment Tensor, Pondrelli et al., PEPI, 2006) and TDMT (Time Domain Moment Tensors, Dreger and Helmerger, BSSA, 1993). Also, the solutions estimated from P-onset polarities are often poorly constrained due to network geometry in the study area. We computed the moment tensor solutions using the “Cut And Paste” method originally proposed by Zhao and Helmerger (BSSA, 1994) and later modified by Zhu and Helmerger (BSSA, 1996). Each waveform is broken into the Pnl and surface wave segments and the source depth and focal mechanisms are determined using a grid search technique. The technique allows time shifts between synthetics and observed data in order to reduce dependence of the solution on the assumed velocity model and earthquake locations. This method has shown to provide good-quality solutions for earthquakes of magnitude as small as 2.5. The data set of the present study consists of waveforms from more than 100 earthquakes that were recorded by the permanent seismic network run by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and about 40 stations of the NSF CAT/SCAN project. The results concur to check and better detail the regional geodynamic model assuming subduction of the Ionian lithosphere beneath the Tyrrhenian one and related response of the shallow structures in terms of normal and strike-slip faulting seismicity.

  7. Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: Implications for source depth constraints

    USGS Publications Warehouse

    Carvajal, M.; Cisternas, M.; Gubler, A.; Catalan, P. A.; Winckler, P.; Wesson, Robert L.

    2017-01-01

    Far-field tsunami records from the Japanese tide gauge network allow the reexamination of the moment magnitudes (Mw) for the 1906 and 1922 Chilean earthquakes, which to date rely on limited information mainly from seismological observations alone. Tide gauges along the Japanese coast provide extensive records of tsunamis triggered by six great (Mw >8) Chilean earthquakes with instrumentally determined moment magnitudes. These tsunami records are used to explore the dependence of tsunami amplitudes in Japan on the parent earthquake magnitude of Chilean origin. Using the resulting regression parameters together with tide gauge amplitudes measured in Japan we estimate apparent moment magnitudes of Mw 8.0–8.2 and Mw8.5–8.6 for the 1906 central and 1922 north-central Chile earthquakes. The large discrepancy of the 1906 magnitude estimated from the tsunami observed in Japan as compared with those previously determined from seismic waves (Ms 8.4) suggests a deeper than average source with reduced tsunami excitation. A deep dislocation along the Chilean megathrust would favor uplift of the coast rather than beneath the sea, giving rise to a smaller tsunami and producing effects consistent with those observed in 1906. The 1922 magnitude inferred from far-field tsunami amplitudes appear to better explain the large extent of damage and the destructive tsunami that were locally observed following the earthquake than the lower seismic magnitudes (Ms 8.3) that were likely affected by the well-known saturation effects. Thus, a repeat of the large 1922 earthquake poses seismic and tsunami hazards in a region identified as a mature seismic gap.

  8. What controls the maximum magnitude of injection-induced earthquakes?

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  9. Uncertainty estimations for moment tensor inversions: the issue of the 2012 May 20 Emilia earthquake

    NASA Astrophysics Data System (ADS)

    Scognamiglio, Laura; Magnoni, Federica; Tinti, Elisa; Casarotti, Emanuele

    2016-08-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Geoscientists ordinarily use moment tensor catalogues, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their analysis. The 2012 May 20 Emilia main shock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. A variability of ˜0.5 units in magnitude leads to a controversial knowledge of the real size of the event and reveals how the solutions could be poorly constrained. In this work, we investigate the stability of the moment tensor solution for this earthquake, studying the effect of five different 1-D velocity models, the number and the distribution of the stations used in the inversion procedure. We also introduce a 3-D velocity model to account for structural heterogeneity. We finally estimate the uncertainties associated to the computed focal planes and the obtained Mw. We conclude that our reliable source solutions provide a moment magnitude that ranges from 5.87, 1-D model, to 5.96, 3-D model, reducing the variability of the literature to ˜0.1. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, requires coming out with disclosed assumptions and explicit processing workflows. Finally and, probably more important, when moment tensor solution is used for secondary analyses it has to be combined with the same main boundary conditions (e.g. wave-velocity propagation model) to avoid conflicting results.

  10. Analysis and selection of magnitude relations for the Working Group on Utah Earthquake Probabilities

    USGS Publications Warehouse

    Duross, Christopher; Olig, Susan; Schwartz, David

    2015-01-01

    Prior to calculating time-independent and -dependent earthquake probabilities for faults in the Wasatch Front region, the Working Group on Utah Earthquake Probabilities (WGUEP) updated a seismic-source model for the region (Wong and others, 2014) and evaluated 19 historical regressions on earthquake magnitude (M). These regressions relate M to fault parameters for historical surface-faulting earthquakes, including linear fault length (e.g., surface-rupture length [SRL] or segment length), average displacement, maximum displacement, rupture area, seismic moment (Mo ), and slip rate. These regressions show that significant epistemic uncertainties complicate the determination of characteristic magnitude for fault sources in the Basin and Range Province (BRP). For example, we found that M estimates (as a function of SRL) span about 0.3–0.4 units (figure 1) owing to differences in the fault parameter used; age, quality, and size of historical earthquake databases; and fault type and region considered.

  11. Exploring variations of earthquake moment on patches with heterogeneous strength

    NASA Astrophysics Data System (ADS)

    Lin, Y. Y.; Lapusta, N.

    2016-12-01

    Finite-fault inversions show that earthquake slip is typically non-uniform over the ruptured region, likely due to heterogeneity of the earthquake source. Observations also show that events from the same fault area can have the same source duration but different magnitude ranging from 0.0 to 2.0 (Lin et al., GJI, 2016). Strong heterogeneity in strength over a patch could provide a potential explanation of such behavior, with the event duration controlled by the size of the patch and event magnitude determined by how much of the patch area has been ruptured. To explore this possibility, we numerically simulate earthquake sequences on a rate-and-state fault, with a seismogenic patch governed by steady-state velocity-weakening friction surrounded by a steady-state velocity-strengthening region. The seismogenic patch contains strong variations in strength due to variable normal stress. Our long-term simulations of slip in this model indeed generate sequences of earthquakes of various magnitudes. In some seismic events, dynamic rupture cannot overcome areas with higher normal strength, and smaller events result. When the higher-strength areas are loaded by previous slip and rupture, larger events result, as expected. Our current work is directed towards exploring a range of such models, determining the variability in the seismic moment that they can produce, and determining the observable properties of the resulting events.

  12. Magnitude and intensity: Measures of earthquake size and severity

    USGS Publications Warehouse

    Spall, Henry

    1982-01-01

    Earthquakes can be measured in terms of either the amount of energy they release (magnitude) or the degree of ground shaking they cause at a particular locality (intensity).  Although magnitude and intensity are basically different measures of an earthquake, they are frequently confused by the public and new reports of earthquakes.  Part of the confusion probably arises from the general similarity of scales used express these quantities.  The various magnitude scales represent logarithmic expressions of the energy released by an earthquake.  Magnitude is calculated from the record made by an earthquake on a calibrated seismograph.  There are no upper or lower limits to magnitude, although no measured earthquakes have exceeded magnitude 8.9.

  13. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  14. Frequency-dependent moment release of very low frequency earthquakes in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Houston, H.

    2014-12-01

    Episodic tremor and slip (ETS) has been observed in Cascadia subduction zone at two different time scales: tremor at a high-frequency range of 2-8 Hz and slow slip events at a geodetic time-scale of days-months. The intermediate time scale is needed to understand the source spectrum of slow earthquakes. Ghosh et al. (2014, IRIS abs) recently reported the presence of very low frequency earthquakes (VLFEs) in Cascadia. In southwest Japan, VLFEs are usually observed at a period range around 20-50 s, and coincide with tremors (e.g., Ito et al. 2007). In this study, we analyzed VLFEs in and around the Olympic Peninsula to confirm their presence and estimate their moment release. We first detected VLFE events by using broadband seismograms with a band-pass filter of 20-50 s. The preliminary result shows that there are at least 16 VLFE events with moment magnitudes of 3.2-3.7 during the M6.8 2010 ETS. The focal mechanisms are consistent with the thrust earthquakes at the subducting plate interface. To detect signals of VLFEs below noise level, we further stacked long-period waveforms at the peak timings of tremor amplitudes for tremors within a 10-15 km radius by using tremor catalogs in 2006-2010, and estimated the focal mechanisms for each tremor source region as done in southwest Japan (Takeo et al. 2010 GRL). As a result, VLFEs could be detected for almost the entire tremor source region at a period range of 20-50 s with average moment magnitudes in each 5-min tremor window of 2.4-2.8. Although the region is limited, we could also detect VLFEs at a period range of 50-100 s with average moment magnitudes of 3.0-3.2. The moment release at 50-100 s is 4-8 times larger than that at 20-50 s, roughly consistent with an omega-squared spectral model. Further study including tremor, slow slip events and characteristic activities, such as rapid tremor reversal and tremor streaks, will reveal the source spectrum of slow earthquakes in a broader time scale from 0.1 s to days.

  15. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587-1996)

    NASA Astrophysics Data System (ADS)

    Beauval, Céline; Yepes, Hugo; Bakun, William H.; Egred, José; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-06-01

    equivalent moment magnitudes between 5.0 and 7.6. Large earthquakes seem to be related to strike slip faults between the North Andean Block and stable South America to the east, while moderate earthquakes (Mw <= 6) seem to be associated with to thrust faults located on the western internal slopes of the Interandean Valley.

  16. Underestimation of Microearthquake Size by the Magnitude Scale of the Japan Meteorological Agency: Influence on Earthquake Statistics

    NASA Astrophysics Data System (ADS)

    Uchide, Takahiko; Imanishi, Kazutoshi

    2018-01-01

    Magnitude scales based on the amplitude of seismic waves, including the Japan Meteorological Agency magnitude scale (Mj), are commonly used in routine processes. The moment magnitude scale (Mw), however, is more physics based and is able to evaluate any type and size of earthquake. This paper addresses the relation between Mj and Mw for microearthquakes. The relative moment magnitudes among earthquakes are well constrained by multiple spectral ratio analyses. The results for the events in the Fukushima Hamadori and northern Ibaraki prefecture areas of Japan imply that Mj is significantly and systematically smaller than Mw for microearthquakes. The Mj-Mw curve has slopes of 1/2 and 1 for small and large values of Mj, respectively; for example, Mj = 1.0 corresponds to Mw = 2.0. A simple numerical simulation implies that this is due to anelastic attenuation and the recording using a finite sampling interval. The underestimation affects earthquake statistics. The completeness magnitude, Mc, for magnitudes lower than which the magnitude-frequency distribution deviates from the Gutenberg-Richter law, is effectively lower for Mw than that for Mj, by taking into account the systematic difference between Mj and Mw. The b values of the Gutenberg-Richter law are larger for Mw than for Mj. As the b values for Mj and Mw are well correlated, qualitative argument using b values is not affected. While the estimated b values for Mj are below 1.5, those for Mw often exceed 1.5. This may affect the physical implication of the seismicity.

  17. Rapid Earthquake Magnitude Estimation for Early Warning Applications

    NASA Astrophysics Data System (ADS)

    Goldberg, Dara; Bock, Yehuda; Melgar, Diego

    2017-04-01

    Earthquake magnitude is a concise metric that provides invaluable information about the destructive potential of a seismic event. Rapid estimation of magnitude for earthquake and tsunami early warning purposes requires reliance on near-field instrumentation. For large magnitude events, ground motions can exceed the dynamic range of near-field broadband seismic instrumentation (clipping). Strong motion accelerometers are designed with low gains to better capture strong shaking. Estimating earthquake magnitude rapidly from near-source strong-motion data requires integration of acceleration waveforms to displacement. However, integration amplifies small errors, creating unphysical drift that must be eliminated with a high pass filter. The loss of the long period information due to filtering is an impediment to magnitude estimation in real-time; the relation between ground motion measured with strong-motion instrumentation and magnitude saturates, leading to underestimation of earthquake magnitude. Using station displacements from Global Navigation Satellite System (GNSS) observations, we can supplement the high frequency information recorded by traditional seismic systems with long-period observations to better inform rapid response. Unlike seismic-only instrumentation, ground motions measured with GNSS scale with magnitude without saturation [Crowell et al., 2013; Melgar et al., 2015]. We refine the current magnitude scaling relations using peak ground displacement (PGD) by adding a large GNSS dataset of earthquakes in Japan. Because it does not suffer from saturation, GNSS alone has significant advantages over seismic-only instrumentation for rapid magnitude estimation of large events. The earthquake's magnitude can be estimated within 2-3 minutes of earthquake onset time [Melgar et al., 2013]. We demonstrate that seismogeodesy, the optimal combination of GNSS and seismic data at collocated stations, provides the added benefit of improving the sensitivity of

  18. Local magnitude determinations for intermountain seismic belt earthquakes from broadband digital data

    USGS Publications Warehouse

    Pechmann, J.C.; Nava, S.J.; Terra, F.M.; Bernier, J.C.

    2007-01-01

    The University of Utah Seismograph Stations (UUSS) earthquake catalogs for the Utah and Yellowstone National Park regions contain two types of size measurements: local magnitude (ML) and coda magnitude (MC), which is calibrated against ML. From 1962 through 1993, UUSS calculated ML values for southern and central Intermountain Seismic Belt earthquakes using maximum peak-to-peak (p-p) amplitudes on paper records from one to five Wood-Anderson (W-A) seismographs in Utah. For ML determinations of earthquakes since 1994, UUSS has utilized synthetic W-A seismograms from U.S. National Seismic Network and UUSS broadband digital telemetry stations in the region, which numbered 23 by the end of our study period on 30 June 2002. This change has greatly increased the percentage of earthquakes for which ML can be determined. It is now possible to determine ML for all M ???3 earthquakes in the Utah and Yellowstone regions and earthquakes as small as M <1 in some areas. To maintain continuity in the magnitudes in the UUSS earthquake catalogs, we determined empirical ML station corrections that minimize differences between MLs calculated from paper and synthetic W-A records. Application of these station corrections, in combination with distance corrections from Richter (1958) which have been in use at UUSS since 1962, produces ML values that do not show any significant distance dependence. ML determinations for the Utah and Yellowstone regions for 1981-2002 using our station corrections and Richter's distance corrections have provided a reliable data set for recalibrating the MC scales for these regions. Our revised ML values are consistent with available moment magnitude determinations for Intermountain Seismic Belt earthquakes. To facilitate automatic ML measurements, we analyzed the distribution of the times of maximum p-p amplitudes in synthetic W-A records. A 30-sec time window for maximum amplitudes, beginning 5 sec before the predicted Sg time, encompasses 95% of the

  19. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996)

    USGS Publications Warehouse

    Beauval, Celine; Yepes, Hugo; Bakun, William H.; Egred, Jose; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-01-01

    equivalent moment magnitudes between 5.0 and 7.6. Large earthquakes seem to be related to strike slip faults between the North Andean Block and stable South America to the east, while moderate earthquakes (Mw≤ 6) seem to be associated with to thrust faults located on the western internal slopes of the Interandean Valley.

  20. Magnitude Dependent Seismic Quiescence of 2008 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Suyehiro, K.; Sacks, S. I.; Takanami, T.; Smith, D. E.; Rydelek, P. A.

    2014-12-01

    The change in seismicity leading to the Wenchuan Earthquake in 2008 (Mw 7.9) has been studied by various authors based on statistics and/or pattern recognitions (Huang, 2008; Yan et al., 2009; Chen and Wang, 2010; Yi et al., 2011). We show, in particular, that the magnitude-dependent seismic quiescence is observed for the Wenchuan earthquake and that it adds to other similar observations. Such studies on seismic quiescence prior to major earthquakes include 1982 Urakawa-Oki earthquake (M 7.1) (Taylor et al., 1992), 1994 Hokkaido-Toho-Oki earthquake (Mw=8.2) (Takanami et al., 1996), 2011 Tohoku earthquake (Mw=9.0) (Katsumata, 2011). Smith and Sacks (2013) proposed a magnitude-dependent quiescence based on a physical earthquake model (Rydelek and Sacks, 1995) and demonstrated the quiescence can be reproduced by the introduction of "asperities" (dilantacy hardened zones). Actual observations indicate the change occurs in a broader area than the eventual earthquake fault zone. In order to accept the explanation, we need to verify the model as the model predicts somewhat controversial features of earthquakes such as the magnitude dependent stress drop at lower magnitude range or the dynamically appearing asperities and repeating slips in some parts of the rupture zone. We show supportive observations. We will also need to verify the dilatancy diffusion to be taking place. So far, we only seem to have indirect evidences, which need to be more quantitatively substantiated.

  1. A moment in time: emergency nurses and the Canterbury earthquakes.

    PubMed

    Richardson, S; Ardagh, M; Grainger, P; Robinson, V

    2013-06-01

    To outline the impact of the Canterbury, New Zealand (NZ) earthquakes on Christchurch Hospital, and the experiences of emergency nurses during this time. NZ has experienced earthquakes and aftershocks centred in the Canterbury region of the South Island. The location of these, around and within the major city of Christchurch, was unexpected and associated with previously unknown fault lines. While the highest magnitude quake occurred in September 2010, registering 7.1 on the Richter scale, it was the magnitude 6.3 event on 22 February 2011 which was associated with the greatest injury burden and loss of life. Staff working in the only emergency department in the city were faced with an external emergency while also being directly affected as part of the disaster. SOURCES OF EVIDENCE: This paper developed following interviews with nurses who worked during this period, and draws on literature related to healthcare responses to earthquakes and natural disasters. The establishment of an injury database allowed for an accurate picture to emerge of the injury burden, and each of the authors was present and worked in a clinical capacity during the earthquake. Nurses played a significant role in the response to the earthquakes and its aftermath. However, little is known regarding the impact of this, either in personal or professional terms. This paper presents an overview of the earthquakes and experiences of nurses working during this time, identifying a range of issues that will benefit from further exploration and research. It seeks to provide a sense of the experiences and the potential meanings that were derived from being part of this 'moment in time'. Examples of innovations in practice emerged during the earthquake response and a number of recommendations for nursing practice are identified. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.

  2. Moment Tensor Inversion of the 1998 Aiquile Earthquake Using Long-period surface waves

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2016-12-01

    On 22nd May 1998 at 04:49(GMT), an earthquake of magnitude Mw = 6.6 struck the Aiquile region of Bolivia, causing 105 deaths and significant damage to the nearby towns of Hoyadas and Pampa Grande. This was the largest shallow earthquake (15 km depth) in Bolivia in over 50 years, and was felt as far Sucre, approximately 100 km away. In this report, a centroid moment tensor (CMT) inversion is carried using body waves and surface waves from 1998 Aiquile earthquake with 1-D and 3-D earth models to obtain the source model parameters and moment tensor, which are the values will be subsequently compared against the Global Centroid Moment Tensor Catalog(GCMT). Also, the excitation kernels could be gained and synthetic data can be created with different earth models. The two method for calculating synthetic seismograms are SPECFEM3D Globe which is based on shear wave mantle model S40RTS and crustal model CRUST 2.0, and AxiSEM which is based on PREM 1-D earth Model. Within the report, the theory behind the CMT inversion was explained and the source parameters gained from the inversion can be used to reveal the tectonics of the source of this earthquake, these information could be helpful in assessing seismic hazard and overall tectonic regime of this region. Furthermore, results of synthetic seismograms and the solution of inversion are going to be used to assess two models.

  3. Extreme magnitude earthquakes and their economical impact: The Mexico City case

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Mario, C.

    2005-12-01

    The consequences (estimated by the human and economical losses) of the recent occurrence (worldwide) of extreme magnitude (for the region under consideration) earthquakes, such as the 19 09 1985 in Mexico (Ritchter magnitude Ms 8.1, moment magnitude Mw 8.01), or the one in Indonesia of the 26 12 2004 (Ms 9.4, Mw 9.3), stress the importance of performing seismic hazard analysis that, specifically, incorporate this possibility. Herewith, we present and apply a methodology, based on plausible extreme seismic scenarios and the computation of their associated synthetic accelerograms, to estimate the seismic hazard on Mexico City (MC) stiff and compressible surficial soils. The uncertainties about the characteristics of the potential finite seismic sources, as well as those related to the dynamic properties of MC compressible soils are taken into account. The economic consequences (i.e. the seismic risk = seismic hazard x economic cost) implicit in the seismic coefficients proposed in MC seismic Codes before (1976) and after the 1985 earthquake (2004) are analyzed. Based on the latter and on an acceptable risk criterion, a maximum seismic coefficient (MSC) of 1.4g (g = 9.81m/s2) of the elastic acceleration design spectra (5 percent damping), which has a probability of exceedance of 2.4 x 10-4, seems to be appropriate for analyzing the seismic behavior of infrastructure located on MC compressible soils, if extreme Mw 8.5 subduction thrust mechanism earthquakes (similar to the one occurred on 19 09 1985 with an observed, equivalent, MSC of 1g) occurred in the next 50 years.

  4. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    NASA Astrophysics Data System (ADS)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  5. Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions

    USGS Publications Warehouse

    Satake, K.; Wang, K.; Atwater, B.F.

    2003-01-01

    The 1700 Cascadia earthquake attained moment magnitude 9 according to new estimates based on effects of its tsunami in Japan, computed coseismic seafloor deformation for hypothetical ruptures in Cascadia, and tsunami modeling in the Pacific Ocean. Reports of damage and flooding show that the 1700 Casscadia tsunami reached 1-5 m heights at seven shoreline sites in Japan. Three sets of estimated heights express uncertainty about location and depth of reported flooding, landward decline in tsunami heights from shorelines, and post-1700 land-level changes. We compare each set with tsunami heights computed from six Cascadia sources. Each source is vertical seafloor displacement calculated with a three-dimensional elastic dislocation model, for three sources the rupture extends the 1100 km length of the subduction zone and differs in width and shallow dip; for the other sources, ruptures of ordinary width extend 360-670 km. To compute tsunami waveforms, we use a linear long-wave approximation with a finite difference method, and we employ modern bathymetry with nearshore grid spacing as small as 0.4 km. The various combinations of Japanese tsunami heights and Cascadia sources give seismic moment of 1-9 ?? 1022 N m, equivalent to moment magnitude 8.7-9.2. This range excludes several unquantified uncertainties. The most likely earthquake, of moment magnitude 9.0, has 19 m of coseismic slip on an offshore, full-slip zone 1100 km long with linearly decreasing slip on a downdip partial-slip zone. The shorter rupture models require up to 40 m offshore slip and predict land-level changes inconsistent with coastal paleoseismological evidence. Copyright 2003 by the American Geophysical Union.

  6. Repose time and cumulative moment magnitude: A new tool for forecasting eruptions?

    USGS Publications Warehouse

    Thelen, W.A.; Malone, S.D.; West, M.E.

    2010-01-01

    During earthquake swarms on active volcanoes, one of the primary challenges facing scientists is determining the likelihood of an eruption. Here we present the relation between repose time and the cumulative moment magnitude (CMM) as a tool to aid in differentiating between an eruption and a period of unrest. In several case studies, the CMM is lower at shorter repose times than it is at longer repose times. The relationship between repose time and CMM may be linear in log-log space, particularly at Mount St. Helens. We suggest that the volume and competence of the plug within the conduit drives the strength of the precursory CMM.

  7. A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe

    NASA Astrophysics Data System (ADS)

    Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S.

    2014-08-01

    We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project `Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for

  8. Correlation Equation of Fault Size, Moment Magnitude, and Height of Tsunami Case Study: Historical Tsunami Database in Sulawesi

    NASA Astrophysics Data System (ADS)

    Julius, Musa, Admiral; Pribadi, Sugeng; Muzli, Muzli

    2018-03-01

    Sulawesi, one of the biggest island in Indonesia, located on the convergence of two macro plate that is Eurasia and Pacific. NOAA and Novosibirsk Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determination of correlation between tsunami and earthquake parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights on this study sourced from NOAA and Novosibirsk Tsunami database, completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between moment magnitude, fault size and tsunami height by simple regression. The step of this research are data collecting, processing, and regression analysis. Result shows moment magnitude, fault size and tsunami heights strongly correlated. This analysis is enough to proved the accuracy of historical tsunami database in Sulawesi on NOAA, Novosibirsk Tsunami Laboratory and PTWC.

  9. Determining on-fault earthquake magnitude distributions from integer programming

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  10. Determining on-fault earthquake magnitude distributions from integer programming

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  11. Extreme Magnitude Earthquakes and their Economical Consequences

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Perea, N.; Emerson, D.; Salazar, A.; Moulinec, C.

    2011-12-01

    The frequency of occurrence of extreme magnitude earthquakes varies from tens to thousands of years, depending on the considered seismotectonic region of the world. However, the human and economic losses when their hypocenters are located in the neighborhood of heavily populated and/or industrialized regions, can be very large, as recently observed for the 1985 Mw 8.01 Michoacan, Mexico and the 2011 Mw 9 Tohoku, Japan, earthquakes. Herewith, a methodology is proposed in order to estimate the probability of exceedance of: the intensities of extreme magnitude earthquakes, PEI and of their direct economical consequences PEDEC. The PEI are obtained by using supercomputing facilities to generate samples of the 3D propagation of extreme earthquake plausible scenarios, and enlarge those samples by Monte Carlo simulation. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. An example of the application of the methodology due to the potential occurrence of extreme Mw 8.5 subduction earthquakes on Mexico City is presented.

  12. Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Inoue, H.

    2008-06-01

    We propose a method of waveform inversion to rapidly and routinely estimate both the moment function and the centroid moment tensor (CMT) of an earthquake. In this method, waveform inversion is carried out in the frequency domain to obtain the moment function more rapidly than when solved in the time domain. We assume a pure double-couple source mechanism in order to stabilize the solution when using data from a small number of seismic stations. The fault and slip orientations are estimated by a grid search with respect to the strike, dip and rake angles. The moment function in the time domain is obtained from the inverse Fourier transform of the frequency components determined by the inversion. Since observed waveforms used for the inversion are limited in a particular frequency band, the estimated moment function is a bandpassed form. We develop a practical approach to estimate the deconvolved form of the moment function, from which we can reconstruct detailed rupture history and the seismic moment. The source location is determined by a spatial grid search using adaptive grid spacings, which are gradually decreased in each step of the search. We apply this method to two events that occurred in Indonesia by using data from a broad-band seismic network in Indonesia (JISNET): one northeast of Sulawesi (Mw = 7.5) on 2007 January 21, and the other south of Java (Mw = 7.5) on 2006 July 17. The source centroid locations and mechanisms we estimated for both events are consistent with those determined by the Global CMT Project and the National Earthquake Information Center of the U.S. Geological Survey. The estimated rupture duration of the Sulawesi event is 16 s, which is comparable to a typical duration for earthquakes of this magnitude, while that of the Java event is anomalously long (176 s), suggesting that this event was a tsunami earthquake. Our application demonstrates that this inversion method has great potential for rapid and routine estimations of both the

  13. Correlating precursory declines in groundwater radon with earthquake magnitude.

    PubMed

    Kuo, T

    2014-01-01

    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. © 2013, National Ground Water Association.

  14. Re-examination of Magnitude of the AD 869 Jogan Earthquake, a Possible Predecessor of the 2011 Tohoku Earthquake, from Tsunami Deposit Distribution and Computed Inundation Distances

    NASA Astrophysics Data System (ADS)

    Namegaya, Y.; Satake, K.

    2012-12-01

    We re-examined the magnitude of the AD 869 Jogan earthquake by comparing the inland limit of tsunami deposit and computed inundation distance for various fault models. The 869 tsunami deposit is distributed 3-4 km inland from the estimated past shorelines in Ishinomaki and Sendai plains (Shishikura et al., 2007, Annual Report on Active Fault and Paleoearthquake Researches; Sawai et al., 2007 ibid). In the previous studies (Satake et al., 2008 and Namegaya et al. 2010, ibid), we assumed 14 fault models of the Jogan earthquake including outer-rise normal fault, tsunami earthquake, interplate earthquakes, and an active fault in Sendai bay. The computed inundation area from an interplate earthquake with Mw of 8.4 (length: 200 km, width: 100 km, slip 7 m) covers the distribution of tsunami deposits in Ishinomaki and Sendai plains. However, the previous studies yielded the minimum magnitude, because we assumed that the inland limit of tsunami deposits and the computed inundation limit were the same. A post-2011 field survey indicate that the 2011 tsunami inundation distance was about 1.6 times the inland limit of tsunami deposits (e.g. Goto et al., 2011, Marine Geology). In this study, we computed tsunami inundation areas from interplate earthquake with different magnitude, fault length, and slip amount. The moment magnitude ranges from 8.0 to 8.7, the fault length ranges from 100 to 400 km, and the slip ranged from 3 to 9 m. The fault width is fixed at 100 km. The distance ratios of computed inundation to the inland limit of tsunami deposit (Inundation to Deposit Ratio or IDR) were calculated along 8 transects on Sendai and Ishinomaki plains. The results show that IDR increases with magnitude, up to Mw=8.4, when IDR becomes one, or the computed inundation is almost the same as the inland limit of tsunami deposit. IDR increases for a larger magnitude, but at a much smaller rate. This confirms that the magnitude of the 869 Jogan earthquake was at least 8.4, but it could

  15. The global distribution of magnitude 9 earthquakes

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2011-12-01

    The 2011 Tohoku M9 earthquake once again caught some in the earthquake community by surprise. The expectation of these massive quakes has been driven in the past by the over-reliance on our short, incomplete history of earthquakes and causal relationships derived from it. The logic applied is that if a great earthquake has not happened in the past, that we know of, one cannot happen in the future. Using the ~100-year global earthquake history, seismologists have promoted relationships between maximum earthquake sizes and other properties of subduction zones, leading to the notion that some subduction zones, like the Japan Trench, would never produce a magnitude ~9 event. The 2004 Andaman Mw = 9.2 earthquake, that occurred where there is slow subduction of old crust and a history of only moderate-sized earthquakes, seriously undermined such ideas. Given multi-century return times of the greatest earthquakes, ignorance of those return times and our very limited observation span, I suggest that we cannot yet make such determinations. Alternatively, using the length of a subduction zone that is available for slip as the predominant factor in determining maximum earthquake size, we cannot rule out that any subduction zone of a few hundred kilometers or more in length may be capable of producing a magnitude 9 or larger earthquake. Based on this method, the expected maximum size for the Japan Trench was 9.0 (McCaffrey, Geology, p. 263, 2008). The same approach portends a M > 9 for Java, with twice the population density as Honshu and much lower building standards. The Java Trench, and others where old crust subducts (Hikurangi, Marianas, Tonga, Kermadec), require increased awareness of the possibility for a great earthquake.

  16. Estimating the Maximum Magnitude of Induced Earthquakes With Dynamic Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Gilmour, E.; Daub, E. G.

    2017-12-01

    Seismicity in Oklahoma has been sharply increasing as the result of wastewater injection. The earthquakes, thought to be induced from changes in pore pressure due to fluid injection, nucleate along existing faults. Induced earthquakes currently dominate central and eastern United States seismicity (Keranen et al. 2016). Induced earthquakes have only been occurring in the central US for a short time; therefore, too few induced earthquakes have been observed in this region to know their maximum magnitude. The lack of knowledge regarding the maximum magnitude of induced earthquakes means that large uncertainties exist in the seismic hazard for the central United States. While induced earthquakes follow the Gutenberg-Richter relation (van der Elst et al. 2016), it is unclear if there are limits to their magnitudes. An estimate of the maximum magnitude of the induced earthquakes is crucial for understanding their impact on seismic hazard. While other estimates of the maximum magnitude exist, those estimates are observational or statistical, and cannot take into account the possibility of larger events that have not yet been observed. Here, we take a physical approach to studying the maximum magnitude based on dynamic ruptures simulations. We run a suite of two-dimensional ruptures simulations to physically determine how ruptures propagate. The simulations use the known parameters of principle stress orientation and rupture locations. We vary the other unknown parameters of the ruptures simulations to obtain a large number of rupture simulation results reflecting different possible sets of parameters, and use these results to train a neural network to complete the ruptures simulations. Then using a Markov Chain Monte Carlo method to check different combinations of parameters, the trained neural network is used to create synthetic magnitude-frequency distributions to compare to the real earthquake catalog. This method allows us to find sets of parameters that are

  17. How fault geometry controls earthquake magnitude

    NASA Astrophysics Data System (ADS)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  18. Constraints on the long-period moment-dip tradeoff for the Tohoku earthquake

    USGS Publications Warehouse

    Tsai, Victor C.; Hayes, Gavin P.; Duputel, Zacharie

    2011-01-01

    Since the work of Kanamori and Given (1981), it has been recognized that shallow, pure dip-slip earthquakes excite long-period surface waves such that it is difficult to independently constrain the moment (M0) and the dip (δ) of the source mechanism, with only the product M0 sin(2δ) being well constrained. Because of this, it is often assumed that the primary discrepancies between the moments of shallow, thrust earthquakes are due to this moment-dip tradeoff. In this work, we quantify how severe this moment-dip tradeoff is depending on the depth of the earthquake, the station distribution, the closeness of the mechanism to pure dip-slip, and the quality of the data. We find that both long-period Rayleigh and Love wave modes have moment-dip resolving power even for shallow events, especially when stations are close to certain azimuths with respect to mechanism strike and when source depth is well determined. We apply these results to USGS W phase inversions of the recent M9.0 Tohoku, Japan earthquake and estimate the likely uncertainties in dip and moment associated with the moment- dip tradeoff. After discussing some of the important sources of moment and dip error, we suggest two methods for potentially improving this uncertainty.

  19. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  20. Exploring earthquake databases for the creation of magnitude-homogeneous catalogues: tools for application on a regional and global scale

    NASA Astrophysics Data System (ADS)

    Weatherill, G. A.; Pagani, M.; Garcia, J.

    2016-09-01

    The creation of a magnitude-homogenized catalogue is often one of the most fundamental steps in seismic hazard analysis. The process of homogenizing multiple catalogues of earthquakes into a single unified catalogue typically requires careful appraisal of available bulletins, identification of common events within multiple bulletins and the development and application of empirical models to convert from each catalogue's native scale into the required target. The database of the International Seismological Center (ISC) provides the most exhaustive compilation of records from local bulletins, in addition to its reviewed global bulletin. New open-source tools are developed that can utilize this, or any other compiled database, to explore the relations between earthquake solutions provided by different recording networks, and to build and apply empirical models in order to harmonize magnitude scales for the purpose of creating magnitude-homogeneous earthquake catalogues. These tools are described and their application illustrated in two different contexts. The first is a simple application in the Sub-Saharan Africa region where the spatial coverage and magnitude scales for different local recording networks are compared, and their relation to global magnitude scales explored. In the second application the tools are used on a global scale for the purpose of creating an extended magnitude-homogeneous global earthquake catalogue. Several existing high-quality earthquake databases, such as the ISC-GEM and the ISC Reviewed Bulletins, are harmonized into moment magnitude to form a catalogue of more than 562 840 events. This extended catalogue, while not an appropriate substitute for a locally calibrated analysis, can help in studying global patterns in seismicity and hazard, and is therefore released with the accompanying software.

  1. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk

    USGS Publications Warehouse

    Celsi, R.; Wolfinbarger, M.; Wald, D.

    2005-01-01

    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  2. Constraints on the long-period moment-dip tradeoff for the Tohoku earthquake

    USGS Publications Warehouse

    Tsai, V.C.; Hayes, G.P.; Duputel, Z.

    2011-01-01

    Since the work of Kanamori and Given (1981), it has been recognized that shallow, pure dip-slip earthquakes excite long-period surface waves such that it is difficult to independently constrain the moment (M0) and the dip (??) of the source mechanism, with only the product M0 sin(2??) being well constrained. Because of this, it is often assumed that the primary discrepancies between the moments of shallow, thrust earthquakes are due to this moment-dip tradeoff. In this work, we quantify how severe this moment-dip tradeoff is depending on the depth of the earthquake, the station distribution, the closeness of the mechanism to pure dip-slip, and the quality of the data. We find that both long-period Rayleigh and Love wave modes have moment-dip resolving power even for shallow events, especially when stations are close to certain azimuths with respect to mechanism strike and when source depth is well determined. We apply these results to USGS W phase inversions of the recent M9.0 Tohoku, Japan earthquake and estimate the likely uncertainties in dip and moment associated with the moment-dip tradeoff. After discussing some of the important sources of moment and dip error, we suggest two methods for potentially improving this uncertainty. Copyright 2011 by the American Geophysical Union.

  3. The 2004 Parkfield, CA Earthquake: A Teachable Moment for Exploring Earthquake Processes, Probability, and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.

    2004-12-01

    The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better

  4. An energy dependent earthquake frequency-magnitude distribution

    NASA Astrophysics Data System (ADS)

    Spassiani, I.; Marzocchi, W.

    2017-12-01

    The most popular description of the frequency-magnitude distribution of seismic events is the exponential Gutenberg-Richter (G-R) law, which is widely used in earthquake forecasting and seismic hazard models. Although it has been experimentally well validated in many catalogs worldwide, it is not yet clear at which space-time scales the G-R law still holds. For instance, in a small area where a large earthquake has just happened, the probability that another very large earthquake nucleates in a short time window should diminish because it takes time to recover the same level of elastic energy just released. In short, the frequency-magnitude distribution before and after a large earthquake in a small area should be different because of the different amount of available energy.Our study is then aimed to explore a possible modification of the classical G-R distribution by including the dependence on an energy parameter. In a nutshell, this more general version of the G-R law should be such that a higher release of energy corresponds to a lower probability of strong aftershocks. In addition, this new frequency-magnitude distribution has to satisfy an invariance condition: when integrating over large areas, that is when integrating over infinite energy available, the G-R law must be recovered.Finally we apply a proposed generalization of the G-R law to different seismic catalogs to show how it works and the differences with the classical G-R law.

  5. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  6. Automated Determination of Magnitude and Source Length of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, D.; Kawakatsu, H.; Zhuang, J.; Mori, J. J.; Maeda, T.; Tsuruoka, H.; Zhao, X.

    2017-12-01

    Rapid determination of earthquake magnitude is of importance for estimating shaking damages, and tsunami hazards. However, due to the complexity of source process, accurately estimating magnitude for great earthquakes in minutes after origin time is still a challenge. Mw is an accurate estimate for large earthquakes. However, calculating Mw requires the whole wave trains including P, S, and surface phases, which takes tens of minutes to reach stations at tele-seismic distances. To speed up the calculation, methods using W phase and body wave are developed for fast estimating earthquake sizes. Besides these methods that involve Green's Functions and inversions, there are other approaches that use empirically simulated relations to estimate earthquake magnitudes, usually for large earthquakes. The nature of simple implementation and straightforward calculation made these approaches widely applied at many institutions such as the Pacific Tsunami Warning Center, the Japan Meteorological Agency, and the USGS. Here we developed an approach that was originated from Hara [2007], estimating magnitude by considering P-wave displacement and source duration. We introduced a back-projection technique [Wang et al., 2016] instead to estimate source duration using array data from a high-sensitive seismograph network (Hi-net). The introduction of back-projection improves the method in two ways. Firstly, the source duration could be accurately determined by seismic array. Secondly, the results can be more rapidly calculated, and data derived from farther stations are not required. We purpose to develop an automated system for determining fast and reliable source information of large shallow seismic events based on real time data of a dense regional array and global data, for earthquakes that occur at distance of roughly 30°- 85° from the array center. This system can offer fast and robust estimates of magnitudes and rupture extensions of large earthquakes in 6 to 13 min (plus

  7. Automated Determination of Magnitude and Source Extent of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Dun

    2017-04-01

    Rapid determination of earthquake magnitude is of importance for estimating shaking damages, and tsunami hazards. However, due to the complexity of source process, accurately estimating magnitude for great earthquakes in minutes after origin time is still a challenge. Mw is an accurate estimate for large earthquakes. However, calculating Mw requires the whole wave trains including P, S, and surface phases, which takes tens of minutes to reach stations at tele-seismic distances. To speed up the calculation, methods using W phase and body wave are developed for fast estimating earthquake sizes. Besides these methods that involve Green's Functions and inversions, there are other approaches that use empirically simulated relations to estimate earthquake magnitudes, usually for large earthquakes. The nature of simple implementation and straightforward calculation made these approaches widely applied at many institutions such as the Pacific Tsunami Warning Center, the Japan Meteorological Agency, and the USGS. Here we developed an approach that was originated from Hara [2007], estimating magnitude by considering P-wave displacement and source duration. We introduced a back-projection technique [Wang et al., 2016] instead to estimate source duration using array data from a high-sensitive seismograph network (Hi-net). The introduction of back-projection improves the method in two ways. Firstly, the source duration could be accurately determined by seismic array. Secondly, the results can be more rapidly calculated, and data derived from farther stations are not required. We purpose to develop an automated system for determining fast and reliable source information of large shallow seismic events based on real time data of a dense regional array and global data, for earthquakes that occur at distance of roughly 30°- 85° from the array center. This system can offer fast and robust estimates of magnitudes and rupture extensions of large earthquakes in 6 to 13 min (plus

  8. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    NASA Astrophysics Data System (ADS)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of

  9. Determination of focal mechanisms of intermediate-magnitude earthquakes in Mexico, based on Greens functions calculated for a 3D Earth model

    NASA Astrophysics Data System (ADS)

    Rodrigo Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala

    2015-04-01

    One important ingredient in the study of the complex active tectonics in Mexico is the analysis of earthquake focal mechanisms, or the seismic moment tensor. They can be determined trough the calculation of Green functions and subsequent inversion for moment-tensor parameters. However, this calculation is gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes excite waves of longer periods that interact weakly with laterally heterogeneities in the crust. For these earthquakes, using 1D velocity models to compute the Greens fucntions works well. The opposite occurs for smaller and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle and requires more specific or regional 3D models. In this study, we calculate Greens functions for earthquakes in Mexico using a laterally heterogeneous seismic wave speed model, comprised of mantle model S362ANI (Kustowski et al 2008) and crustal model CRUST 2.0 (Bassin et al 1990). Subsequently, we invert the observed seismograms for the seismic moment tensor using a method developed by Liu et al (2004) an implemented by Óscar de La Vega (2014) for earthquakes in Mexico. By following a brute force approach, in which we include all observed Rayleigh and Love waves of the Mexican National Seismic Network (Servicio Sismológico Naciona, SSN), we obtain reliable focal mechanisms for events that excite a considerable amount of low frequency waves (Mw > 4.8). However, we are not able to consistently estimate focal mechanisms for smaller events using this method, due to high noise levels in many of the records. Excluding the noisy records, or noisy parts of the records manually, requires interactive edition of the data, using an efficient tool for the editing. Therefore, we developed a graphical user interface (GUI), based on python and the python library ObsPy, that allows the edition of observed and

  10. Regional Moment Tensor Analysis of Earthquakes in Iran for 2010 to 2017 Using In-Country Data

    NASA Astrophysics Data System (ADS)

    Graybeal, D.; Braunmiller, J.

    2017-12-01

    Located in the middle of the Arabia-Eurasia continental collision, Iran is one of the most tectonically diverse and seismically active countries in the world. Until recently, however, seismic source parameter studies had to rely on teleseismic data or on data from temporary local arrays, which limited the scope of investigations. Relatively new broadband seismic networks operated by the Iranian Institute of Engineering Seismology (IIEES) and the Iranian Seismological Center (IRSC) currently consist of more than 100 stations and allow, for the first time, routine three-component full-waveform regional moment tensor analysis of the numerous M≥4.0 earthquakes that occur throughout the country. We use openly available, in-country data and include data from nearby permanent broadband stations available through IRIS and EIDA to improve azimuthal coverage for events in border regions. For the period from 2010 to 2017, we have obtained about 500 moment tensors for earthquakes ranging from Mw=3.6 to 7.8. The resulting database provides a unique, detailed view of deformation styles and earthquake depths in Iran. Overall, we find mainly thrust and strike-slip mechanisms as expected considering the convergent tectonic setting. Our magnitudes (Mw) are slightly smaller than ML and mb but comparable to Mw as reported in global catalogs (USGS ANSS). Event depths average about 3 km shallower than in global catalogs and are well constrained considering the capability of regional waveforms to resolve earthquake depth. Our dataset also contains several large magnitude main shock-aftershock sequences from different tectonic provinces, including the 2012 Ahar-Varzeghan (Mw=6.4), 2013 Kaki (Mw=6.5), and 2014 Murmuri (Mw=6.2) earthquakes. The most significant result in terms of seismogenesis and seismic hazard is that the vast majority of earthquakes occur at shallow depth, not in deeper basement. Our findings indicate that more than 80% of crustal seismicity in Iran likely occurs at

  11. Automatic 3D Moment tensor inversions for southern California earthquakes

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Friberg, P.; Tromp, J.

    2008-12-01

    We present a new source mechanism (moment-tensor and depth) catalog for about 150 recent southern California earthquakes with Mw ≥ 3.5. We carefully select the initial solutions from a few available earthquake catalogs as well as our own preliminary 3D moment tensor inversion results. We pick useful data windows by assessing the quality of fits between the data and synthetics using an automatic windowing package FLEXWIN (Maggi et al 2008). We compute the source Fréchet derivatives of moment-tensor elements and depth for a recent 3D southern California velocity model inverted based upon finite-frequency event kernels calculated by the adjoint methods and a nonlinear conjugate gradient technique with subspace preconditioning (Tape et al 2008). We then invert for the source mechanisms and event depths based upon the techniques introduced by Liu et al 2005. We assess the quality of this new catalog, as well as the other existing ones, by computing the 3D synthetics for the updated 3D southern California model. We also plan to implement the moment-tensor inversion methods to automatically determine the source mechanisms for earthquakes with Mw ≥ 3.5 in southern California.

  12. Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes

    USGS Publications Warehouse

    Bakun, W.H.; Scotti, O.

    2006-01-01

    Intensity assignments for 33 calibration earthquakes were used to develop intensity attenuation models for the Alps, Armorican, Provence, Pyrenees and Rhine regions of France. Intensity decreases with ?? most rapidly in the French Alps, Provence and Pyrenees regions, and least rapidly in the Armorican and Rhine regions. The comparable Armorican and Rhine region attenuation models are aggregated into a French stable continental region model and the comparable Provence and Pyrenees region models are aggregated into a Southern France model. We analyse MSK intensity assignments using the technique of Bakun & Wentworth, which provides an objective method for estimating epicentral location and intensity magnitude MI. MI for the 1356 October 18 earthquake in the French stable continental region is 6.6 for a location near Basle, Switzerland, and moment magnitude M is 5.9-7.2 at the 95 per cent (??2??) confidence level. MI for the 1909 June 11 Trevaresse (Lambesc) earthquake near Marseilles in the Southern France region is 5.5, and M is 4.9-6.0 at the 95 per cent confidence level. Bootstrap resampling techniques are used to calculate objective, reproducible 67 per cent and 95 per cent confidence regions for the locations of historical earthquakes. These confidence regions for location provide an attractive alternative to the macroseismic epicentre and qualitative location uncertainties used heretofore. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  13. Determination of broadband moment magnitude (Mwp) for August 11, 2009 Suruga-Bay earthquake (MJMA=6.5)

    NASA Astrophysics Data System (ADS)

    Tsuboi, S.; Hirshorn, B. F.

    2009-12-01

    We have determined Mwp for the August 11, 2009 Suruga-Bay earthquake (MJMA=6.5) using broadband seismograms recorded at close epicentral distance stations. We have used two broadband seismograph stations: JHJ2 (epicentral distance 1.9 degree) and FUJ (epicentral distance 0.44 degree). Because of the close epicentral distance of FUJ, the seismogram is clipped at about 10 second after the P-wave arrival. However, it was possible to use the first 10 second of this seismogram to compute Mwp. We get Mwp=6.4 for JHJ2 and 6.8 for FUJ(figure 1). After we apply Whitmore et al (2000)’s correction and average these two stations, we get Mwp=6.6 for this event. The epicentral distance of 0.44 degree for magnitude 6.5 earthquake is marginal to treat this seismogram as far-field. However, considering the aftershock distribution, the fault area seems to be limited to within the Suruga-Bay, which may confirm the fact that Mwp can be successfully computed at FUJ based on the far-field approximation. This result is significant in using Mwp from close epicentral distance seismograms to issue early tsunami warning. A large earthquake with Mw=7.5 (GCMT) occurred in Andaman Island, India, 10 minutes before this Suruga-Bay event. This made it very difficult to estimate Mwp for the Suruga-Bay event from broadband seismograms at teleseismic distances because of the large amplitude of Mw7.5 Andaman Island earthquake. In this case, it is therefore difficult to issue accurate tsunami warnings based on the teleseismic stations. We used broadband seismograms recorded by F-net operated by the National Research Institute for Earth Science and Disaster Prevention.

  14. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  15. Magnitude 8.1 Earthquake off the Solomon Islands

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 1, 2007, a magnitude 8.1 earthquake rattled the Solomon Islands, 2,145 kilometers (1,330 miles) northeast of Brisbane, Australia. Centered less than ten kilometers beneath the Earth's surface, the earthquake displaced enough water in the ocean above to trigger a small tsunami. Though officials were still assessing damage to remote island communities on April 3, Reuters reported that the earthquake and the tsunami killed an estimated 22 people and left as many as 5,409 homeless. The most serious damage occurred on the island of Gizo, northwest of the earthquake epicenter, where the tsunami damaged the hospital, schools, and hundreds of houses, said Reuters. This image, captured by the Landsat-7 satellite, shows the location of the earthquake epicenter in relation to the nearest islands in the Solomon Island group. Gizo is beyond the left edge of the image, but its triangular fringing coral reefs are shown in the upper left corner. Though dense rain forest hides volcanic features from view, the very shape of the islands testifies to the geologic activity of the region. The circular Kolombangara Island is the tip of a dormant volcano, and other circular volcanic peaks are visible in the image. The image also shows that the Solomon Islands run on a northwest-southeast axis parallel to the edge of the Pacific plate, the section of the Earth's crust that carries the Pacific Ocean and its islands. The earthquake occurred along the plate boundary, where the Australia/Woodlark/Solomon Sea plates slide beneath the denser Pacific plate. Friction between the sinking (subducting) plates and the overriding Pacific plate led to the large earthquake on April 1, said the United States Geological Survey (USGS) summary of the earthquake. Large earthquakes are common in the region, though the section of the plate that produced the April 1 earthquake had not caused any quakes of magnitude 7 or larger since the early 20th century, said the USGS.

  16. Application of Second-Moment Source Analysis to Three Problems in Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2011-12-01

    Though earthquake forecasting models have often represented seismic sources as space-time points (usually hypocenters), a more complete hazard analysis requires the consideration of finite-source effects, such as rupture extent, orientation, directivity, and stress drop. The most compact source representation that includes these effects is the finite moment tensor (FMT), which approximates the degree-two polynomial moments of the stress glut by its projection onto the seismic (degree-zero) moment tensor. This projection yields a scalar space-time source function whose degree-one moments define the centroid moment tensor (CMT) and whose degree-two moments define the FMT. We apply this finite-source parameterization to three forecasting problems. The first is the question of hypocenter bias: can we reject the null hypothesis that the conditional probability of hypocenter location is uniformly distributed over the rupture area? This hypothesis is currently used to specify rupture sets in the "extended" earthquake forecasts that drive simulation-based hazard models, such as CyberShake. Following McGuire et al. (2002), we test the hypothesis using the distribution of FMT directivity ratios calculated from a global data set of source slip inversions. The second is the question of source identification: given an observed FMT (and its errors), can we identify it with an FMT in the complete rupture set that represents an extended fault-based rupture forecast? Solving this problem will facilitate operational earthquake forecasting, which requires the rapid updating of earthquake triggering and clustering models. Our proposed method uses the second-order uncertainties as a norm on the FMT parameter space to identify the closest member of the hypothetical rupture set and to test whether this closest member is an adequate representation of the observed event. Finally, we address the aftershock excitation problem: given a mainshock, what is the spatial distribution of aftershock

  17. Reexamination of the subsurface fault structure in the vicinity of the 1989 moment-magnitude-6.9 Loma Prieta earthquake, central California, using steep-reflection, earthquake, and magnetic data

    USGS Publications Warehouse

    Zhang, Edward; Fuis, Gary S.; Catchings, Rufus D.; Scheirer, Daniel S.; Goldman, Mark; Bauer, Klaus

    2018-06-13

    We reexamine the geometry of the causative fault structure of the 1989 moment-magnitude-6.9 Loma Prieta earthquake in central California, using seismic-reflection, earthquake-hypocenter, and magnetic data. Our study is prompted by recent interpretations of a two-part dip of the San Andreas Fault (SAF) accompanied by a flower-like structure in the Coachella Valley, in southern California. Initially, the prevailing interpretation of fault geometry in the vicinity of the Loma Prieta earthquake was that the mainshock did not rupture the SAF, but rather a secondary fault within the SAF system, because network locations of aftershocks defined neither a vertical plane nor a fault plane that projected to the surface trace of the SAF. Subsequent waveform cross-correlation and double-difference relocations of Loma Prieta aftershocks appear to have clarified the fault geometry somewhat, with steeply dipping faults in the upper crust possibly connecting to the more moderately southwest-dipping mainshock rupture in the middle crust. Examination of steep-reflection data, extracted from a 1991 seismic-refraction profile through the Loma Prieta area, reveals three robust fault-like features that agree approximately in geometry with the clusters of upper-crustal relocated aftershocks. The subsurface geometry of the San Andreas, Sargent, and Berrocal Faults can be mapped using these features and the aftershock clusters. The San Andreas and Sargent Faults appear to dip northeastward in the uppermost crust and change dip continuously toward the southwest with depth. Previous models of gravity and magnetic data on profiles through the aftershock region also define a steeply dipping SAF, with an initial northeastward dip in the uppermost crust that changes with depth. At a depth 6 to 9 km, upper-crustal faults appear to project into the moderately southwest-dipping, planar mainshock rupture. The change to a planar dipping rupture at 6–9 km is similar to fault geometry seen in the

  18. Reevaluation of the macroseismic effects of the 1887 Sonora, Mexico earthquake and its magnitude estimation

    USGS Publications Warehouse

    Suárez, Gerardo; Hough, Susan E.

    2008-01-01

    The Sonora, Mexico, earthquake of 3 May 1887 occurred a few years before the start of the instrumental era in seismology. We revisit all available accounts of the earthquake and assign Modified Mercalli Intensities (MMI), interpreting and analyzing macroseismic information using the best available modern methods. We find that earlier intensity assignments for this important earthquake were unjustifiably high in many cases. High intensity values were assigned based on accounts of rock falls, soil failure or changes in the water table, which are now known to be very poor indicators of shaking severity and intensity. Nonetheless, reliable accounts reveal that light damage (intensity VI) occurred at distances of up to ~200 km in both Mexico and the United States. The resulting set of 98 reevaluated intensity values is used to draw an isoseismal map of this event. Using the attenuation relation proposed by Bakun (2006b), we estimate an optimal moment magnitude of Mw7.6. Assuming this magnitude is correct, a fact supported independently by documented rupture parameters assuming standard scaling relations, our results support the conclusion that northern Sonora as well as the Basin and Range province are characterized by lower attenuation of intensities than California. However, this appears to be at odds with recent results that Lg attenuation in the Basin and Range province is comparable to that in California.

  19. Early Warning for Large Magnitude Earthquakes: Is it feasible?

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Colombelli, S.; Kanamori, H.

    2011-12-01

    The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude

  20. Updated earthquake catalogue for seismic hazard analysis in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Sarfraz; Waseem, Muhammad; Khan, Muhammad Asif; Ahmed, Waqas

    2018-03-01

    A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40-83° N and 20-40° E) includes 36,563 earthquake events, which are reported as 4.0-8.3 moment magnitude (M W) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude M W. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.

  1. Moment Tensor Inversions of the M1.7+ Earthquakes in Basel. Switzerland Reveal Predominant Shear Dislocations

    NASA Astrophysics Data System (ADS)

    Guilhem, A.; Walter, F. T.

    2013-12-01

    We investigate moment tensor solutions of nearly 30 magnitude (M) 1.7+ earthquakes that occurred in Basel, Switzerland during and after the simulation of the geothermal enhanced system between December 2nd and 8th 2006. In 2009, Deichmann and Ernst determined the focal mechanisms for these events using P-wave first-motions. They found clear evidence for double-couple mechanisms with no indications for substantial volumetric changes. This differs from evidences of composite type ruptures (i.e., shearing with isotropic motion) observed in other geothermal environments. Here, we use a similar approach for the computation of the moment tensor inversions to the one used by Guilhem et al. (2012) for M3 earthquakes in Geysers. We use a dataset from strong-motion stations located within 7 km from the epicenters, with data filtered between 0.5 and 3 Hz and integrated twice to displacement. The waveforms are inverted for both deviatoric and full moment tensor solutions. In addition, we perform a network sensitivity test (NSS) by computing 100 million random moment tensors for each event thus testing the sensitivity of the moment tensor solutions. Finally, because the injection of fluids in the ground can promote crack growth generating seismic events, we also compute a crack + double-couple inversion (Minson et al., 2007) for each of the studied earthquakes between December 2006 and May 2007. From this extensive search we find that the results of our different techniques converge. Moment tensor solutions are very similar to the first-motion focal mechanisms of Deichmann and Ernst (2009) and accordingly do not exhibit dominant volumetric changes except for a subset of events, which we discuss in some detail. References: Deichmann, N. and Ernst, J. (2009), Swiss J. Geosc. Guilhem, A., Dreger, D.S., Hutchings, L. J., and Johnson, L. (2012), AGU Fall meeting Minson, S. E., Dreger, D. S., Bürgmann, R., Kanamori, H., Larson, K. M. (2007), J. Geophys. Res.

  2. Determination of source parameters of the 2017 Mount Agung volcanic earthquake from moment-tensor inversion method using local broadband seismic waveforms

    NASA Astrophysics Data System (ADS)

    Madlazim; Prastowo, T.; Supardiyono; Hardy, T.

    2018-03-01

    Monitoring of volcanoes has been an important issue for many purposes, particularly hazard mitigation. With regard to this, the aims of the present work are to estimate and analyse source parameters of a volcanic earthquake driven by recent magmatic events of Mount Agung in Bali island that occurred on September 28, 2017. The broadband seismogram data consisting of 3 local component waveforms were recorded by the IA network of 5 seismic stations: SRBI, DNP, BYJI, JAGI, and TWSI (managed by BMKG). These land-based observatories covered a full 4-quadrant region surrounding the epicenter. The methods used in the present study were seismic moment-tensor inversions, where the data were all analyzed to extract the parameters, namely moment magnitude, type of a volcanic earthquake indicated by percentages of seismic components: compensated linear vector dipole (CLVD), isotropic (ISO), double-couple (DC), and source depth. The results are given in the forms of variance reduction of 65%, a magnitude of M W 3.6, a CLVD of 40%, an ISO of 33%, a DC of 27% and a centroid-depth of 9.7 km. These suggest that the unusual earthquake was dominated by a vertical CLVD component, implying the dominance of uplift motion of magmatic fluid flow inside the volcano.

  3. Monitoring the Earthquake source process in North America

    USGS Publications Warehouse

    Herrmann, Robert B.; Benz, H.; Ammon, C.J.

    2011-01-01

    With the implementation of the USGS National Earthquake Information Center Prompt Assessment of Global Earthquakes for Response system (PAGER), rapid determination of earthquake moment magnitude is essential, especially for earthquakes that are felt within the contiguous United States. We report an implementation of moment tensor processing for application to broad, seismically active areas of North America. This effort focuses on the selection of regional crustal velocity models, codification of data quality tests, and the development of procedures for rapid computation of the seismic moment tensor. We systematically apply these techniques to earthquakes with reported magnitude greater than 3.5 in continental North America that are not associated with a tectonic plate boundary. Using the 0.02-0.10 Hz passband, we can usually determine, with few exceptions, moment tensor solutions for earthquakes with M w as small as 3.7. The threshold is significantly influenced by the density of stations, the location of the earthquake relative to the seismic stations and, of course, the signal-to-noise ratio. With the existing permanent broadband stations in North America operated for rapid earthquake response, the seismic moment tensor of most earthquakes that are M w 4 or larger can be routinely computed. As expected the nonuniform spatial pattern of these solutions reflects the seismicity pattern. However, the orientation of the direction of maximum compressive stress and the predominant style of faulting is spatially coherent across large regions of the continent.

  4. Spectral Estimation of Seismic Moment, Corner Frequency and Radiated Energy for Earthquakes in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Satriano, C.; Mejia Uquiche, A. R.; Saurel, J. M.

    2016-12-01

    The Lesser Antilles are situated at a convergent plate boundary where the North- and South-American plates subduct below the Caribbean Plate at a rate of about 2 cm/y. The subduction forms the volcanic arc of Lesser Antilles and generates three types of seismicity: subduction earthquakes at the plate interface, intermediate depth earthquakes within the subducting oceanic plates and crustal earthquakes associated with the deformation of the Caribbean Plate. Even if the seismicity rate is moderate, this zone has generated in the past major earthquakes, like the subduction event on February 8, 1843, estimated M 8.5 (Beauducel et Feuillet, 2012), the Mw 6.3 "Les Saintes" crustal earthquake of November 24, 2004 (Drouet et al., 2011), and the Mw 7.4 Martinique intermediate earthquake of November 29, 2007 (Bouin et al., 2010). The seismic catalogue produced by the Volcanological and Seismological Observatories of Guadeloupe and Martinique comprises about 1000 events per year, most of them of moderate magnitude (M < 5.0). The observation and characterization of this background seismicity has a fundamental role in understanding the processes of energy accumulation and liberation preparing major earthquakes. For this reason, the catalogue needs to be completed by information like seismic moment, corner frequency and radiated energy which give access to important fault properties like the rupture size, the static and the apparent stress drop. So far, this analysis has only been performed for the "Les Saintes" sequence (Drouet et al., 2011). Here we present a systematic study of the Lesser Antilles merged seismic catalogue (http://www.seismes-antilles.fr), between 2002 and 2013, using broadband data from the West Indies seismic network and recordings from the French Accelerometric Network. The analysis is aimed at determining, from the inversion of S-wave displacement spectra, source parameters like seismic moment, corner frequency and radiated energy, as well as the inelastic

  5. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2017-01-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  6. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Bondár, István; Storchak, Dmitry A.; Engdahl, E. Robert; Bormann, Peter; Harris, James

    2015-02-01

    This paper outlines the re-computation and compilation of the magnitudes now contained in the final ISC-GEM Reference Global Instrumental Earthquake Catalogue (1900-2009). The catalogue is available via the ISC website (http://www.isc.ac.uk/iscgem/). The available re-computed MS and mb provided an ideal basis for deriving new conversion relationships to moment magnitude MW. Therefore, rather than using previously published regression models, we derived new empirical relationships using both generalized orthogonal linear and exponential non-linear models to obtain MW proxies from MS and mb. The new models were tested against true values of MW, and the newly derived exponential models were then preferred to the linear ones in computing MW proxies. For the final magnitude composition of the ISC-GEM catalogue, we preferred directly measured MW values as published by the Global CMT project for the period 1976-2009 (plus intermediate-depth earthquakes between 1962 and 1975). In addition, over 1000 publications have been examined to obtain direct seismic moment M0 and, therefore, also MW estimates for 967 large earthquakes during 1900-1978 (Lee and Engdahl, 2015) by various alternative methods to the current GCMT procedure. In all other instances we computed MW proxy values by converting our re-computed MS and mb values into MW, using the newly derived non-linear regression models. The final magnitude composition is an improvement in terms of magnitude homogeneity compared to previous catalogues. The magnitude completeness is not homogeneous over the 110 years covered by the ISC-GEM catalogue. Therefore, seismicity rate estimates may be strongly affected without a careful time window selection. In particular, the ISC-GEM catalogue appears to be complete down to MW 5.6 starting from 1964, whereas for the early instrumental period the completeness varies from ∼7.5 to 6.2. Further time and resources would be necessary to homogenize the magnitude of completeness over the

  7. Finite Moment Tensors of Southern California Earthquakes

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; Chen, P.; Zhao, L.

    2003-12-01

    We have developed procedures for inverting broadband waveforms for the finite moment tensors (FMTs) of regional earthquakes. The FMT is defined in terms of second-order polynomial moments of the source space-time function and provides the lowest order representation of a finite fault rupture; it removes the fault-plane ambiguity of the centroid moment tensor (CMT) and yields several additional parameters of seismological interest: the characteristic length L{c}, width W{c}, and duration T{c} of the faulting, as well as the directivity vector {v}{d} of the fault slip. To formulate the inverse problem, we follow and extend the methods of McGuire et al. [2001, 2002], who have successfully recovered the second-order moments of large earthquakes using low-frequency teleseismic data. We express the Fourier spectra of a synthetic point-source waveform in its exponential (Rytov) form and represent the observed waveform relative to the synthetic in terms two frequency-dependent differential times, a phase delay δ τ {p}(ω ) and an amplitude-reduction time δ τ {q}(ω ), which we measure using Gee and Jordan's [1992] isolation-filter technique. We numerically calculate the FMT partial derivatives in terms of second-order spatiotemporal gradients, which allows us to use 3D finite-difference seismograms as our isolation filters. We have applied our methodology to a set of small to medium-sized earthquakes in Southern California. The errors in anelastic structure introduced perturbations larger than the signal level caused by finite source effect. We have therefore employed a joint inversion technique that recovers the CMT parameters of the aftershocks, as well as the CMT and FMT parameters of the mainshock, under the assumption that the source finiteness of the aftershocks can be ignored. The joint system of equations relating the δ τ {p} and δ τ {q} data to the source parameters of the mainshock-aftershock cluster is denuisanced for path anomalies in both observables

  8. New constraints on the magnitude of the 4 January 1907 tsunami earthquake off Sumatra, Indonesia, and its Indian Ocean-wide tsunami

    NASA Astrophysics Data System (ADS)

    Martin, S. S.; Li, L.; Okal, E.; Kanamori, H.; Morin, J.; Sieh, K.; Switzer, A.

    2017-12-01

    On 4 January 1907, an earthquake and tsunami occurred off the west coast of Sumatra, Indonesia, causing at least 2,188 fatalities. The earthquake was given an instrumental surface-wave magnitude (MS) in the range of 7.5 to 8.0 at periods of ≈40s. The tsunami it triggered was destructive on the islands of Nias and Simeulue; on the latter, this gave rise to the legend of the S'mong. This tsunami appears in records in India, Pakistan, Sri Lanka, and as far as the island of La Réunion. In relation to published seismic magnitudes for the earthquake, the tsunami was anomalously large, qualifying it as a "tsunami earthquake." Relocations using reported arrival times suggest an epicentral location near the trench. However, unusually for a tsunami earthquake the reported macroseismic intensities were higher than expected on Nias (6-7 EMS). We present a new study of this event based on macroseismic and tsunami observations culled from published literature and colonial press reports, as well as existing and newly acquired digitized or print seismograms. This multidisciplinary combination of macroseismic and seismological data with tsunami modelling has yielded new insights into this poorly understood but scientifically and societally important tsunami earthquake in the Indian Ocean. With these new data, we discriminated two large earthquakes within an hour of each other with clear differences in seismological character. The first, we interpret to be a tsunami earthquake with low levels of shaking (3-4 EMS). For this event, we estimate a seismic moment (M0) between 0.8 and 1.2 x1021 Nm (≈MW 7.9 to 8.0) based on digitized Wiechert records at Göttingen in the frequency band 6-8 mHz. These records document a regular growth of moment with period and suggest possibly larger values of M0 at even longer periods. The second earthquake caused damage on Nias (6-7 EMS). We estimate MS 6 ¾ - 7 for the second event based on seismograms from Manila, Mizusawa, and Osaka. We also

  9. Using regional moment tensors to constrain the kinematics and stress evolution of the 2010–2013 Canterbury earthquake sequence, South Island, New Zealand

    USGS Publications Warehouse

    Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.

    2014-01-01

    On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.

  10. Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes

    NASA Astrophysics Data System (ADS)

    Cai, X.; Chen, X.; Chen, Y.; Cai, M.

    2008-12-01

    It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722

  11. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part A, Prehistoric earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax, the maximum earthquake magnitude thought to be possible within a specified geographic region. This report is Part A of an Open-File Report that describes the construction of a global catalog of moderate to large earthquakes, from which one can estimate Mmax for most of the Central and Eastern United States and adjacent Canada. The catalog and Mmax estimates derived from it were used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. This Part A discusses prehistoric earthquakes that occurred in eastern North America, northwestern Europe, and Australia, whereas a separate Part B deals with historical events.

  12. Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data

    USGS Publications Warehouse

    Bakun, W.H.; Gomez, Capera A.; Stucchi, M.

    2011-01-01

    Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental

  13. The 2009 Samoa-Tonga great earthquake triggered doublet.

    PubMed

    Lay, Thorne; Ammon, Charles J; Kanamori, Hiroo; Rivera, Luis; Koper, Keith D; Hutko, Alexander R

    2010-08-19

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.

  14. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    NASA Astrophysics Data System (ADS)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  15. Estimation of the Demand for Hospital Care After a Possible High-Magnitude Earthquake in the City of Lima, Peru.

    PubMed

    Bambarén, Celso; Uyen, Angela; Rodriguez, Miguel

    2017-02-01

    Introduction A model prepared by National Civil Defense (INDECI; Lima, Peru) estimated that an earthquake with an intensity of 8.0 Mw in front of the central coast of Peru would result in 51,019 deaths and 686,105 injured in districts of Metropolitan Lima and Callao. Using this information as a base, a study was designed to determine the characteristics of the demand for treatment in public hospitals and to estimate gaps in care in the hours immediately after such an event. A probabilistic model was designed that included the following variables: demand for hospital care; time of arrival at the hospitals; type of medical treatment; reason for hospital admission; and the need for specialized care like hemodialysis, blood transfusions, and surgical procedures. The values for these variables were obtained through a literature search of the databases of the MEDLINE medical bibliography, the Cochrane and SciELO libraries, and Google Scholar for information on earthquakes over the last 30 years of over magnitude 6.0 on the moment magnitude scale. If a high-magnitude earthquake were to occur in Lima, it was estimated that between 23,328 and 178,387 injured would go to hospitals, of which between 4,666 and 121,303 would require inpatient care, while between 18,662 and 57,084 could be treated as outpatients. It was estimated that there would be an average of 8,768 cases of crush syndrome and 54,217 cases of other health problems. Enough blood would be required for 8,761 wounded in the first 24 hours. Furthermore, it was expected that there would be a deficit of hospital beds and operating theaters due to the high demand. Sudden and violent disasters, such as earthquakes, represent significant challenges for health systems and services. This study shows the deficit of preparation and capacity to respond to a possible high-magnitude earthquake. The study also showed there are not enough resources to face mega-disasters, especially in large cities. Bambarén C , Uyen A

  16. Performance test of an automated moment tensor determination system for the future "Tokai" earthquake

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Dreger, D. S.

    2000-06-01

    We have investigated how the automated moment tensor determination (AMTD) system using the FREESIA/KIBAN broadband network is likely to behave during a future large earthquake. Because we do not have enough experience with a large (M >8) nearby earthquake, we computed synthetic waveforms for such an event by assuming the geometrical configuration of the anticipated Tokai earthquake and several fault rupture scenarios. Using this synthetic data set, we examined the behavior of the AMTD system to learn how to prepare for such an event. For our synthetic Tokai event data we assume its focal mechanism, fault dimension, and scalar seismic moment. We also assume a circular rupture propagation with constant rupture velocity and dislocation rise time. Both uniform and heterogeneous slip models are tested. The results show that performance depends on both the hypocentral location (i.e. unilateral vs. bilateral) and the degree of heterogeneity of slip. In the tests that we have performed the rupture directivity appears to be more important than slip heterogeneity. We find that for such large earthquakes it is necessary to use stations at distances greater than 600 km and frequencies between 0.005 to 0.02 Hz to maintain a point-source assumption and to recover the full scalar seismic moment and radiation pattern. In order to confirm the result of the synthetic test, we have analyzed the 1993 Hokkaido Nansei-oki (MJ7.8) and the 1995 Kobe (MJ7.2) earthquakes by using observed broadband waveforms. For the Kobe earthquake we successfully recovered the moment tensor by using the routinely used frequency band (0.01-0.05 Hz displacements). However, we failed to estimate a correct solution for the Hokkaido Nansei-oki earthquake by using the same routine frequency band. In this case, we had to use the frequencies between 0.005 to 0.02 Hz to recover the moment tensor, confirming the validity of the synthetic test result for the Tokai earthquake.

  17. Seismic Moment, Seismic Energy, and Source Duration of Slow Earthquakes: Application of Brownian slow earthquake model to three major subduction zones

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Maury, Julie

    2018-04-01

    Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.

  18. Intensity, magnitude, location and attenuation in India for felt earthquakes since 1762

    USGS Publications Warehouse

    Szeliga, Walter; Hough, Susan; Martin, Stacey; Bilham, Roger

    2010-01-01

    A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earthquakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental- with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties. We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earthquakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly

  19. Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762

    USGS Publications Warehouse

    Szeliga, W.; Hough, S.; Martin, S.; Bilham, R.

    2010-01-01

    A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earth-quakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental-with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties. We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earth-quakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly

  20. Spatio-Temporal Fluctuations of the Earthquake Magnitude Distribution: Robust Estimation and Predictive Power

    NASA Astrophysics Data System (ADS)

    Olsen, S.; Zaliapin, I.

    2008-12-01

    We establish positive correlation between the local spatio-temporal fluctuations of the earthquake magnitude distribution and the occurrence of regional earthquakes. In order to accomplish this goal, we develop a sequential Bayesian statistical estimation framework for the b-value (slope of the Gutenberg-Richter's exponential approximation to the observed magnitude distribution) and for the ratio a(t) between the earthquake intensities in two non-overlapping magnitude intervals. The time-dependent dynamics of these parameters is analyzed using Markov Chain Models (MCM). The main advantage of this approach over the traditional window-based estimation is its "soft" parameterization, which allows one to obtain stable results with realistically small samples. We furthermore discuss a statistical methodology for establishing lagged correlations between continuous and point processes. The developed methods are applied to the observed seismicity of California, Nevada, and Japan on different temporal and spatial scales. We report an oscillatory dynamics of the estimated parameters, and find that the detected oscillations are positively correlated with the occurrence of large regional earthquakes, as well as with small events with magnitudes as low as 2.5. The reported results have important implications for further development of earthquake prediction and seismic hazard assessment methods.

  1. Large earthquake rates from geologic, geodetic, and seismological perspectives

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2017-12-01

    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes

  2. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    NASA Astrophysics Data System (ADS)

    Alvizuri, Celso R.

    We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalog: (1) 6 isotropic events, (2) 5 tensional crack events, and (3) a swarm of 14 events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes. A seismic moment tensor is a 3x3 symmetric matrix that provides a compact representation of a seismic source. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms for each moment tensor and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M0 for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M0, we first convert the misfit function to a probability function. The uncertainty, or

  3. Application of a time-magnitude prediction model for earthquakes

    NASA Astrophysics Data System (ADS)

    An, Weiping; Jin, Xueshen; Yang, Jialiang; Dong, Peng; Zhao, Jun; Zhang, He

    2007-06-01

    In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4° × 4° for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.

  4. The 2009 Samoa-Tonga great earthquake triggered doublet

    USGS Publications Warehouse

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  5. The magnitude 6.7 Northridge, California, earthquake of 17 January 1994

    USGS Publications Warehouse

    Jones, L.; Aki, K.; Boore, D.; Celebi, M.; Donnellan, A.; Hall, J.; Harris, R.; Hauksson, E.; Heaton, T.; Hough, S.; Hudnut, K.; Hutton, K.; Johnston, M.; Joyner, W.; Kanamori, H.; Marshall, G.; Michael, A.; Mori, J.; Murray, M.; Ponti, D.; Reasenberg, P.; Schwartz, D.; Seeber, L.; Shakal, A.; Simpson, R.; Thio, H.; Tinsley, J.; Todorovska, M.; Trifunac, M.; Wald, D.; Zoback, M.L.

    1994-01-01

    The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.

  6. Source parameters and moment tensor of the ML 4.6 earthquake of November 19, 2011, southwest Sharm El-Sheikh, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Gad-Elkareem Abdrabou; Omar, Khaled

    2014-06-01

    The southern part of the Gulf of Suez is one of the most seismically active areas in Egypt. On Saturday November 19, 2011 at 07:12:15 (GMT) an earthquake of ML 4.6 occurred in southwest Sharm El-Sheikh, Egypt. The quake has been felt at Sharm El-Sheikh city while no casualties were reported. The instrumental epicenter is located at 27.69°N and 34.06°E. Seismic moment is 1.47 E+22 dyne cm, corresponding to a moment magnitude Mw 4.1. Following a Brune model, the source radius is 101.36 m with an average dislocation of 0.015 cm and a 0.06 MPa stress drop. The source mechanism from a fault plane solution shows a normal fault, the actual fault plane is strike 358, dip 34 and rake -60, the computer code ISOLA is used. Twenty seven small and micro earthquakes (1.5 ⩽ ML ⩽ 4.2) were also recorded by the Egyptian National Seismological Network (ENSN) from the same region. We estimate the source parameters for these earthquakes using displacement spectra. The obtained source parameters include seismic moments of 2.77E+16-1.47E+22 dyne cm, stress drops of 0.0005-0.0617 MPa and relative displacement of 0.0001-0.0152 cm.

  7. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2011-01-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  8. A new macroseismic intensity prediction equation and magnitude estimates of the 1811-1812 New Madrid and 1886 Charleston, South Carolina, earthquakes

    NASA Astrophysics Data System (ADS)

    Boyd, O. S.; Cramer, C. H.

    2013-12-01

    We develop an intensity prediction equation (IPE) for the Central and Eastern United States, explore differences between modified Mercalli intensities (MMI) and community internet intensities (CII) and the propensity for reporting, and estimate the moment magnitudes of the 1811-1812 New Madrid, MO, and 1886 Charleston, SC, earthquakes. We constrain the study with North American census data, the National Oceanic and Atmospheric Administration MMI dataset (responses between 1924 and 1985), and the USGS ';Did You Feel It?' CII dataset (responses between June, 2000 and August, 2012). The combined intensity dataset has more than 500,000 felt reports for 517 earthquakes with magnitudes between 2.5 and 7.2. The IPE has the basic form, MMI=c1+c2M+c3exp(λ)+c4λ. where M is moment magnitude and λ is mean log hypocentral distance. Previous IPEs use a limited dataset of MMI, do not differentiate between MMI and CII data in the CEUS, nor account for spatial variations in population. These factors can have an impact at all magnitudes, especially the last factor at large magnitudes and small intensities where the population drops to zero in the Atlantic Ocean and Gulf of Mexico. We assume that the number of reports of a given intensity have hypocentral distances that are log-normally distributed, the distribution of which is modulated by population and the propensity for individuals to report their experience. We do not account for variations in stress drop, regional variations in Q, or distance-dependent geometrical spreading. We simulate the distribution of reports of a given intensity accounting for population and use a grid search method to solve for the fraction of population to report the intensity, the standard deviation of the log-normal distribution and the mean log hypocentral distance, which appears in the above equation. We find that lower intensities, both CII and MMI, are less likely to be reported than greater intensities. Further, there are strong spatial

  9. Missing great earthquakes

    USGS Publications Warehouse

    Hough, Susan E.

    2013-01-01

    The occurrence of three earthquakes with moment magnitude (Mw) greater than 8.8 and six earthquakes larger than Mw 8.5, since 2004, has raised interest in the long-term global rate of great earthquakes. Past studies have focused on the analysis of earthquakes since 1900, which roughly marks the start of the instrumental era in seismology. Before this time, the catalog is less complete and magnitude estimates are more uncertain. Yet substantial information is available for earthquakes before 1900, and the catalog of historical events is being used increasingly to improve hazard assessment. Here I consider the catalog of historical earthquakes and show that approximately half of all Mw ≥ 8.5 earthquakes are likely missing or underestimated in the 19th century. I further present a reconsideration of the felt effects of the 8 February 1843, Lesser Antilles earthquake, including a first thorough assessment of felt reports from the United States, and show it is an example of a known historical earthquake that was significantly larger than initially estimated. The results suggest that incorporation of best available catalogs of historical earthquakes will likely lead to a significant underestimation of seismic hazard and/or the maximum possible magnitude in many regions, including parts of the Caribbean.

  10. Continuous estimates on the earthquake early warning magnitude by use of the near-field acceleration records

    NASA Astrophysics Data System (ADS)

    Li, Jun; Jin, Xing; Wei, Yongxiang; Zhang, Hongcai

    2013-10-01

    In this article, the seismic records of Japan's Kik-net are selected to measure the acceleration, displacement, and effective peak acceleration of each seismic record within a certain time after P wave, then a continuous estimation is given on earthquake early warning magnitude through statistical analysis method, and Wenchuan earthquake record is utilized to check the method. The results show that the reliability of earthquake early warning magnitude continuously increases with the increase of the seismic information, the biggest residual happens if the acceleration is adopted to fit earthquake magnitude, which may be caused by rich high-frequency components and large dispersion of peak value in acceleration record, the influence caused by the high-frequency components can be effectively reduced if the effective peak acceleration and peak displacement is adopted, it is estimated that the dispersion of earthquake magnitude obviously reduces, but it is easy for peak displacement to be affected by long-period drifting. In various components, the residual enlargement phenomenon at vertical direction is almost unobvious, thus it is recommended in this article that the effective peak acceleration at vertical direction is preferred to estimate earthquake early warning magnitude. Through adopting Wenchuan strong earthquake record to check the method mentioned in this article, it is found that this method can be used to quickly, stably, and accurately estimate the early warning magnitude of this earthquake, which shows that this method is completely applicable for earthquake early warning.

  11. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term magnitude distribution of the Dead Sea Fault zone

    USGS Publications Warehouse

    Hough, S.E.; Avni, R.

    2009-01-01

    In combination with the historical record, paleoseismic investigations have provided a record of large earthquakes in the Dead Sea Rift that extends back over 1500 years. Analysis of macroseismic effects can help refine magnitude estimates for large historical events. In this study we consider the detailed intensity distributions for two large events, in 1170 CE and 1202 CE, as determined from careful reinterpretation of available historical accounts, using the 1927 Jericho earthquake as a guide in their interpretation. In the absence of an intensity attenuation relationship for the Dead Sea region, we use the 1927 Jericho earthquake to develop a preliminary relationship based on a modification of the relationships developed in other regions. Using this relation, we estimate M7.6 for the 1202 earthquake and M6.6 for the 1170 earthquake. The uncertainties for both estimates are large and difficult to quantify with precision. The large uncertainties illustrate the critical need to develop a regional intensity attenuation relation. We further consider the distribution of magnitudes in the historic record and show that it is consistent with a b-value distribution with a b-value of 1. Considering the entire Dead Sea Rift zone, we show that the seismic moment release rate over the past 1500 years is sufficient, within the uncertainties of the data, to account for the plate tectonic strain rate along the plate boundary. The results reveal that an earthquake of M7.8 is expected within the zone on average every 1000 years. ?? 2011 Science From Israel/LPPLtd.

  12. Moment tensor inversion of the 2016 southeast offshore Mie earthquake in the Tonankai region using a three-dimensional velocity structure model: effects of the accretionary prism and subducting oceanic plate

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Kimura, Takeshi; Saito, Tatsuhiko; Kubo, Hisahiko; Shiomi, Katsuhiko

    2018-03-01

    The southeast offshore Mie earthquake occurred on April 1, 2016 near the rupture area of the 1944 Tonankai earthquake, where seismicity around the interface of the Philippine Sea plate had been very low until this earthquake. Since this earthquake occurred outside of seismic arrays, the focal mechanism and depth were not precisely constrained using a one-dimensional velocity model, as in a conventional approach. We conducted a moment tensor inversion of this earthquake by using a three-dimensional velocity structure model. Before the analysis of observed data, we investigated the effects of offshore heterogeneous structures such as the seawater, accretionary prism, and subducting oceanic plate by using synthetic seismograms in a full three-dimensional model and simpler models. The accretionary prism and subducting oceanic plate play important roles in the moment tensor inversion for offshore earthquakes in the subduction zone. Particularly, the accretionary prism, which controls the excitation and propagation of long-period surface waves around the offshore region, provides better estimations of the centroid depths and focal mechanisms of earthquakes around the Nankai subduction zone. The result of moment tensor inversion for the 2016 southeast offshore Mie earthquake revealed low-angle thrust faulting with a moment magnitude of 5.6. According to geophysical surveys in the Nankai Trough, our results suggest that the rupture of this earthquake occurred on the interface of the Philippine Sea plate, rather than on a mega-splay fault. Detailed comparisons of first-motion polarizations provided additional constraints of the rupture that occurred on the interface of the Philippine Sea plate.

  13. Rapid determination of global moment-tensor solutions

    USGS Publications Warehouse

    Sipkin, S.A.

    1994-01-01

    In an effort to improve data services, the National Earthquake Information Center has begun a program, in cooperation with the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC), to produce rapid estimates of the seismic moment tensor for most earthquakes with a bodywave magnitude of 5.8 or greater. An estimate of the moment tensor can usually be produced within 20 minutes of the arrival of the broadband P-waveform data from the IRIS DMC. The solutions do not vary significantly from the final solutions determined using the entire network. -from Author

  14. Earthquake number forecasts testing

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  15. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  16. Spatial distribution of F-net moment tensors for the 2005 West Off Fukuoka Prefecture Earthquake determined by the extended method of the NIED F-net routine

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takumi; Ito, Yoshihiro; Matsubayashi, Hirotoshi; Sekiguchi, Shoji

    2006-01-01

    The 2005 West Off Fukuoka Prefecture Earthquake with a Japan Meteorological Agency (JMA) magnitude (MJMA) of 7.0 occurred on March 20, 2005. We determined moment tensor solutions, using a surface wave with an extended method of the NIED F-net routine processing. The horizontal distance to the station is rounded to the nearest interval of 1 km, and the variance reduction approach is applied to a focal depth from 2 km with an interval of 1 km. We obtain the moment tensors of 101 events with (MJMA) exceeding 3.0 and spatial distribution of these moment tensors. The focal mechanism of aftershocks is mainly of the strike-slip type. The alignment of the epicenters in the rupture zone of the main-shock is oriented between N110°E and N130°E, which is close to the strike of the main-shock's moment tensor solutions (N122°E). These moment tensor solutions of intermediatesized aftershocks around the focal region represent basic and important information concerning earthquakes in investigating regional tectonic stress fields, source mechanisms and so on.

  17. Effect of repeated earthquake on inelastic moment resisting concrete frame

    NASA Astrophysics Data System (ADS)

    Tahara, R. M. K.; Majid, T. A.; Zaini, S. S.; Faisal, A.

    2017-10-01

    This paper investigates the response of inelastic moment resisting concrete building under repeated earthquakes. 2D models consist of 3-storey, 6-storey and 9-storey representing low to medium rise building frame were designed using seismic load and ductility class medium (DCM) according to the requirements set by Euro Code 8. Behaviour factor and stiffness degradation were also taken into consideration. Seven sets of real repeated earthquakes as opposed to artificial earthquakes data were used. The response of the frame was measured in terms of the inter-storey drift and maximum displacement. By adopting repeated earthquake, the recorded mean IDR increased in the range of 3% - 21%. Similarly, in the case of maximum displacement, the values also increased from 20 mm to 40 mm. The findings concluded that the effect of using repeated earthquake in seismic analysis considerably influenced the inter-storey drift and the maximum displacement.

  18. Statistical distributions of earthquake numbers: consequence of branching process

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2010-03-01

    We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.

  19. Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake

    USGS Publications Warehouse

    Bakun, W.H.

    2005-01-01

    Japan Meteorological Agency (JMA) intensity assignments IJMA are used to derive intensity attenuation models suitable for estimating the location and an intensity magnitude Mjma for historical earthquakes in Japan. The intensity for shallow crustal earthquakes on Honshu is equal to -1.89 + 1.42MJMA - 0.00887?? h - 1.66log??h, where MJMA is the JMA magnitude, ??h = (??2 + h2)1/2, and ?? and h are epicentral distance and focal depth (km), respectively. Four earthquakes located near the Japan Trench were used to develop a subducting plate intensity attenuation model where intensity is equal to -8.33 + 2.19MJMA -0.00550??h - 1.14 log ?? h. The IJMA assignments for the MJMA7.9 great 1923 Kanto earthquake on the Philippine Sea-Eurasian plate interface are consistent with the subducting plate model; Using the subducting plate model and 226 IJMA IV-VI assignments, the location of the intensity center is 25 km north of the epicenter, Mjma is 7.7, and MJMA is 7.3-8.0 at the 1?? confidence level. Intensity assignments and reported aftershock activity for the enigmatic 11 November 1855 Ansei Edo earthquake are consistent with an MJMA 7.2 Philippine Sea-Eurasian interplate source or Philippine Sea intraslab source at about 30 km depth. If the 1855 earthquake was a Philippine Sea-Eurasian interplate event, the intensity center was adjacent to and downdip of the rupture area of the great 1923 Kanto earthquake, suggesting that the 1855 and 1923 events ruptured adjoining sections of the Philippine Sea-Eurasian plate interface.

  20. Compiling an earthquake catalogue for the Arabian Plate, Western Asia

    NASA Astrophysics Data System (ADS)

    Deif, Ahmed; Al-Shijbi, Yousuf; El-Hussain, Issa; Ezzelarab, Mohamed; Mohamed, Adel M. E.

    2017-10-01

    The Arabian Plate is surrounded by regions of relatively high seismicity. Accounting for this seismicity is of great importance for seismic hazard and risk assessments, seismic zoning, and land use. In this study, a homogenous earthquake catalogue of moment-magnitude (Mw) for the Arabian Plate is provided. The comprehensive and homogenous earthquake catalogue provided in the current study spatially involves the entire Arabian Peninsula and neighboring areas, covering all earthquake sources that can generate substantial hazard for the Arabian Plate mainland. The catalogue extends in time from 19 to 2015 with a total number of 13,156 events, of which 497 are historical events. Four polygons covering the entire Arabian Plate were delineated and different data sources including special studies, local, regional and international catalogues were used to prepare the earthquake catalogue. Moment magnitudes (Mw) that provided by original sources were given the highest magnitude type priority and introduced to the catalogues with their references. Earthquakes with magnitude differ from Mw were converted into this scale applying empirical relationships derived in the current or in previous studies. The four polygons catalogues were included in two comprehensive earthquake catalogues constituting the historical and instrumental periods. Duplicate events were identified and discarded from the current catalogue. The present earthquake catalogue was declustered in order to contain only independent events and investigated for the completeness with time of different magnitude spans.

  1. Magnitude Based Discrimination of Manmade Seismic Events From Naturally Occurring Earthquakes in Utah, USA

    NASA Astrophysics Data System (ADS)

    Koper, K. D.; Pechmann, J. C.; Burlacu, R.; Pankow, K. L.; Stein, J. R.; Hale, J. M.; Roberson, P.; McCarter, M. K.

    2016-12-01

    We investigate the feasibility of using the difference between local (ML) and coda duration (MC) magnitude as a means of discriminating manmade seismic events from naturally occurring tectonic earthquakes in and around Utah. Using a dataset of nearly 7,000 well-located earthquakes in the Utah region, we find that ML-MC is on average 0.44 magnitude units smaller for mining induced seismicity (MIS) than for tectonic seismicity (TS). MIS occurs within near-surface low-velocity layers that act as a waveguide and preferentially increase coda duration relative to peak amplitude, while the vast majority of TS occurs beneath the near-surface waveguide. A second dataset of more than 3,700 probable explosions in the Utah region also has significantly lower ML-MC values than TS, likely for the same reason as the MIS. These observations suggest that ML-MC, or related measures of peak amplitude versus signal duration, may be useful for discriminating small explosions from earthquakes at local-to-regional distances. ML and MC can be determined for small events with relatively few observations, hence an ML-MC discriminant can be effective in cases where moment tensor inversion is not possible because of low data quality or poorly known Green's functions. Furthermore, an ML-MC discriminant does not rely on the existence of the fast attenuating Rg phase at regional distances. ML-MC may provide a local-to-regional distance extension of the mb-MS discriminant that has traditionally been effective at identifying large nuclear explosions with teleseismic data. This topic is of growing interest in forensic seismology, in part because the Comprehensive Nuclear Test Ban Treaty (CTBT) is a zero tolerance treaty that prohibits all nuclear explosions, no matter how small. If the CTBT were to come into force, source discrimination at local distances would be required to verify compliance.

  2. Global moment tensor computation at GFZ Potsdam

    NASA Astrophysics Data System (ADS)

    Saul, J.; Becker, J.; Hanka, W.

    2011-12-01

    As part of its earthquake information service, GFZ Potsdam has started to provide seismic moment tensor solutions for significant earthquakes world-wide. The software used to compute the moment tensors is a GFZ-Potsdam in-house development, which uses the framework of the software SeisComP 3 (Hanka et al., 2010). SeisComP 3 (SC3) is a software package for seismological data acquisition, archival, quality control and analysis. SC3 is developed by GFZ Potsdam with significant contributions from its user community. The moment tensor inversion technique uses a combination of several wave types, time windows and frequency bands depending on magnitude and station distance. Wave types include body, surface and mantle waves as well as the so-called 'W-Phase' (Kanamori and Rivera, 2008). The inversion is currently performed in the time domain only. An iterative centroid search can be performed independently both horizontally and in depth. Moment tensors are currently computed in a semi-automatic fashion. This involves inversions that are performed automatically in near-real time, followed by analyst review prior to publication. The automatic results are quite often good enough to be published without further improvements, sometimes in less than 30 minutes from origin time. In those cases where a manual interaction is still required, the automatic inversion usually does a good job at pre-selecting those traces that are the most relevant for the inversion, keeping the work required for the analyst at a minimum. Our published moment tensors are generally in good agreement with those published by the Global Centroid-Moment-Tensor (GCMT) project for earthquakes above a magnitude of about Mw 5. Additionally we provide solutions for smaller earthquakes above about Mw 4 in Europe, which are normally not analyzed by the GCMT project. We find that for earthquakes above Mw 6, the most robust automatic inversions can usually be obtained using the W-Phase time window. The GFZ earthquake

  3. Constraints on the frequency-magnitude relation and maximum magnitudes in the UK from observed seismicity and glacio-isostatic recovery rates

    NASA Astrophysics Data System (ADS)

    Main, Ian; Irving, Duncan; Musson, Roger; Reading, Anya

    1999-05-01

    Earthquake populations have recently been shown to have many similarities with critical-point phenomena, with fractal scaling of source sizes (energy or seismic moment) corresponding to the observed Gutenberg-Richter (G-R) frequency-magnitude law holding at low magnitudes. At high magnitudes, the form of the distribution depends on the seismic moment release rate Msolar and the maximum magnitude m_max . The G-R law requires a sharp truncation at an absolute maximum magnitude for finite Msolar. In contrast, the gamma distribution has an exponential tail which allows a soft or `credible' maximum to be determined by negligible contribution to the total seismic moment release. Here we apply both distributions to seismic hazard in the mainland UK and its immediate continental shelf, constrained by a mixture of instrumental, historical and neotectonic data. Tectonic moment release rates for the seismogenic part of the lithosphere are calculated from a flexural-plate model for glacio-isostatic recovery, constrained by vertical deformation rates from tide-gauge and geomorphological data. Earthquake focal mechanisms in the UK show near-vertical strike-slip faulting, with implied directions of maximum compressive stress approximately in the NNW-SSE direction, consistent with the tectonic model. Maximum magnitudes are found to be in the range 6.3-7.5 for the G-R law, or 7.0-8.2 m_L for the gamma distribution, which compare with a maximum observed in the time period of interest of 6.1 m_L . The upper bounds are conservative estimates, based on 100 per cent seismic release of the observed vertical neotectonic deformation. Glacio-isostatic recovery is predominantly an elastic rather than a seismic process, so the true value of m_max is likely to be nearer the lower end of the quoted range.

  4. Directly Estimating Earthquake Rupture Area using Second Moments to Reduce the Uncertainty in Stress Drop

    NASA Astrophysics Data System (ADS)

    McGuire, Jeffrey J.; Kaneko, Yoshihiro

    2018-06-01

    The key kinematic earthquake source parameters: rupture velocity, duration and area, shed light on earthquake dynamics, provide direct constraints on stress-drop, and have implications for seismic hazard. However, for moderate and small earthquakes, these parameters are usually poorly constrained due to limitations of the standard analysis methods. Numerical experiments by Kaneko and Shearer [2014,2015] demonstrated that standard spectral fitting techniques can lead to roughly 1 order of magnitude variation in stress-drop estimates that do not reflect the actual rupture properties even for simple crack models. We utilize these models to explore an alternative approach where we estimate the rupture area directly. For the suite of models, the area averaged static stress drop is nearly constant for models with the same underlying friction law, yet corner frequency based stress-drop estimates vary by a factor of 5-10 even for noise free data. Alternatively, we simulated inversions for the rupture area as parameterized by the second moments of the slip distribution. A natural estimate for the rupture area derived from the second moments is A=πLcWc, where Lc and Wc are the characteristic rupture length and width. This definition yields estimates of stress drop that vary by only 10% between the models but are slightly larger than the true area-averaged values. We simulate inversions for the second moments for the various models and find that the area can be estimated well when there are at least 15 available measurements of apparent duration at a variety of take-off angles. The improvement compared to azimuthally-averaged corner-frequency based approaches results from the second moments accounting for directivity and removing the assumption of a circular rupture area, both of which bias the standard approach. We also develop a new method that determines the minimum and maximum values of rupture area that are consistent with a particular dataset at the 95% confidence

  5. Source time function properties indicate a strain drop independent of earthquake depth and magnitude.

    PubMed

    Vallée, Martin

    2013-01-01

    The movement of tectonic plates leads to strain build-up in the Earth, which can be released during earthquakes when one side of a seismic fault suddenly slips with respect to the other. The amount of seismic strain release (or 'strain drop') is thus a direct measurement of a basic earthquake property, that is, the ratio of seismic slip over the dimension of the ruptured fault. Here the analysis of a new global catalogue, containing ~1,700 earthquakes with magnitude larger than 6, suggests that strain drop is independent of earthquake depth and magnitude. This invariance implies that deep earthquakes are even more similar to their shallow counterparts than previously thought, a puzzling finding as shallow and deep earthquakes are believed to originate from different physical mechanisms. More practically, this property contributes to our ability to predict the damaging waves generated by future earthquakes.

  6. Earthquake Rate Model 2.2 of the 2007 Working Group for California Earthquake Probabilities, Appendix D: Magnitude-Area Relationships

    USGS Publications Warehouse

    Stein, Ross S.

    2007-01-01

    Summary To estimate the down-dip coseismic fault dimension, W, the Executive Committee has chosen the Nazareth and Hauksson (2004) method, which uses the 99% depth of background seismicity to assign W. For the predicted earthquake magnitude-fault area scaling used to estimate the maximum magnitude of an earthquake rupture from a fault's length, L, and W, the Committee has assigned equal weight to the Ellsworth B (Working Group on California Earthquake Probabilities, 2003) and Hanks and Bakun (2002) (as updated in 2007) equations. The former uses a single relation; the latter uses a bilinear relation which changes slope at M=6.65 (A=537 km2).

  7. Geotechnical aspects of the 2016 MW 6.2, MW 6.0, and MW 7.0 Kumamoto earthquakes

    USGS Publications Warehouse

    Kayen, Robert E.; Dashti, Shideh; Kokusho, T.; Hazarika, H.; Franke, Kevin; Oettle, N. K.; Wham, Brad; Ramirez Calderon, Jenny; Briggs, Dallin; Guillies, Samantha; Cheng, Katherine; Tanoue, Yutaka; Takematsu, Katsuji; Matsumoto, Daisuke; Morinaga, Takayuki; Furuichi, Hideo; Kitano, Yuuta; Tajiri, Masanori; Chaudhary, Babloo; Nishimura, Kengo; Chu, Chu

    2017-01-01

    The 2016 Kumamoto earthquakes are a series of events that began with an earthquake of moment magnitude 6.2 on the Hinagu Fault on April 14, 2016, followed by another foreshock of moment magnitude 6.0 on the Hinagu Fault on April 15, 2016, and a larger moment magnitude 7.0 event on the Futagawa Fault on April 16, 2016 beneath Kumamoto City, Kumamoto Prefecture on Kyushu, Japan. These events are the strongest earthquakes recorded in Kyushu during the modern instrumental era. The earthquakes resulted in substantial damage to infrastructure, buildings, cultural heritage of Kumamoto Castle, roads and highways, slopes, and river embankments due to earthquake-induced landsliding and debris flows. Surface fault rupture produced offset and damage to roads, buildings, river levees, and an agricultural dam. Surprisingly, given the extremely intense earthquake motions, liquefaction occurred only in a few districts of Kumamoto City and in the port areas indicating that the volcanic soils were less susceptible to liquefying than expected given the intensity of earthquake shaking, a significant finding from this event.

  8. Crowdsourced earthquake early warning.

    PubMed

    Minson, Sarah E; Brooks, Benjamin A; Glennie, Craig L; Murray, Jessica R; Langbein, John O; Owen, Susan E; Heaton, Thomas H; Iannucci, Robert A; Hauser, Darren L

    2015-04-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an M w (moment magnitude) 7 earthquake on California's Hayward fault, and real data from the M w 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  9. Crowdsourced earthquake early warning

    PubMed Central

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing. PMID:26601167

  10. Crowdsourced earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  11. Long-range dependence in earthquake-moment release and implications for earthquake occurrence probability.

    PubMed

    Barani, Simone; Mascandola, Claudia; Riccomagno, Eva; Spallarossa, Daniele; Albarello, Dario; Ferretti, Gabriele; Scafidi, Davide; Augliera, Paolo; Massa, Marco

    2018-03-28

    Since the beginning of the 1980s, when Mandelbrot observed that earthquakes occur on 'fractal' self-similar sets, many studies have investigated the dynamical mechanisms that lead to self-similarities in the earthquake process. Interpreting seismicity as a self-similar process is undoubtedly convenient to bypass the physical complexities related to the actual process. Self-similar processes are indeed invariant under suitable scaling of space and time. In this study, we show that long-range dependence is an inherent feature of the seismic process, and is universal. Examination of series of cumulative seismic moment both in Italy and worldwide through Hurst's rescaled range analysis shows that seismicity is a memory process with a Hurst exponent H ≈ 0.87. We observe that H is substantially space- and time-invariant, except in cases of catalog incompleteness. This has implications for earthquake forecasting. Hence, we have developed a probability model for earthquake occurrence that allows for long-range dependence in the seismic process. Unlike the Poisson model, dependent events are allowed. This model can be easily transferred to other disciplines that deal with self-similar processes.

  12. Insights gained from relating cumulative seismic moments to fluid injection activities

    NASA Astrophysics Data System (ADS)

    McGarr, A.; Barbour, A. J.

    2017-12-01

    The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.

  13. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such

  14. The generalized truncated exponential distribution as a model for earthquake magnitudes

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-04-01

    The random distribution of small, medium and large earthquake magnitudes follows an exponential distribution (ED) according to the Gutenberg-Richter relation. But a magnitude distribution is truncated in the range of very large magnitudes because the earthquake energy is finite and the upper tail of the exponential distribution does not fit well observations. Hence the truncated exponential distribution (TED) is frequently applied for the modelling of the magnitude distributions in the seismic hazard and risk analysis. The TED has a weak point: when two TEDs with equal parameters, except the upper bound magnitude, are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters, except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. It also applies to alternative distribution models. The presented generalized truncated exponential distribution (GTED) overcomes this weakness. The ED and the TED are special cases of the GTED. Different issues of the statistical inference are also discussed and an example of empirical data is presented in the current contribution.

  15. Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs

    NASA Astrophysics Data System (ADS)

    Mignan, A.; Werner, M.; Wiemer, S.; Chen, C.; Wu, Y.

    2010-12-01

    Assessing the completeness magnitude Mc of earthquake catalogs is an essential prerequisite for any seismicity analysis. We employ a simple model to compute Mc in space, based on the proximity to seismic stations in a network. We show that a relationship of the form Mcpred(d) = ad^b+c, with d the distance to the 5th nearest seismic station, fits the observations well. We then propose a new Mc mapping approach, the Bayesian Magnitude of Completeness (BMC) method, based on a 2-step procedure: (1) a spatial resolution optimization to minimize spatial heterogeneities and uncertainties in Mc estimates and (2) a Bayesian approach that merges prior information about Mc based on the proximity to seismic stations with locally observed values weighted by their respective uncertainties. This new methodology eliminates most weaknesses associated with current Mc mapping procedures: the radius that defines which earthquakes to include in the local magnitude distribution is chosen according to an objective criterion and there are no gaps in the spatial estimation of Mc. The method solely requires the coordinates of seismic stations. Here, we investigate the Taiwan Central Weather Bureau (CWB) earthquake catalog by computing a Mc map for the period 1994-2010.

  16. Development of magnitude scaling relationship for earthquake early warning system in South Korea

    NASA Astrophysics Data System (ADS)

    Sheen, D.

    2011-12-01

    Seismicity in South Korea is low and magnitudes of recent earthquakes are mostly less than 4.0. However, historical earthquakes of South Korea reveal that many damaging earthquakes had occurred in the Korean Peninsula. To mitigate potential seismic hazard in the Korean Peninsula, earthquake early warning (EEW) system is being installed and will be operated in South Korea in the near future. In order to deliver early warnings successfully, it is very important to develop stable magnitude scaling relationships. In this study, two empirical magnitude relationships are developed from 350 events ranging in magnitude from 2.0 to 5.0 recorded by the KMA and the KIGAM. 1606 vertical component seismograms whose epicentral distances are within 100 km are chosen. The peak amplitude and the maximum predominant period of the initial P wave are used for finding magnitude relationships. The peak displacement of seismogram recorded at a broadband seismometer shows less scatter than the peak velocity of that. The scatters of the peak displacement and the peak velocity of accelerogram are similar to each other. The peak displacement of seismogram differs from that of accelerogram, which means that two different magnitude relationships for each type of data should be developed. The maximum predominant period of the initial P wave is estimated after using two low-pass filters, 3 Hz and 10 Hz, and 10 Hz low-pass filter yields better estimate than 3 Hz. It is found that most of the peak amplitude and the maximum predominant period are estimated within 1 sec after triggering.

  17. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    PubMed

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  18. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries

    PubMed Central

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006–2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year. PMID:26812351

  19. Moment tensor inversion of ground motion from mining-induced earthquakes, Trail Mountain, Utah

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2005-01-01

    A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop groundmotion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes Mc. Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4 ?? 105 to 2.4 ?? 106 J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.

  20. Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015

    USGS Publications Warehouse

    Hayes, Gavin P.; Meyers, Emma K.; Dewey, James W.; Briggs, Richard W.; Earle, Paul S.; Benz, Harley M.; Smoczyk, Gregory M.; Flamme, Hanna E.; Barnhart, William D.; Gold, Ryan D.; Furlong, Kevin P.

    2017-01-11

    This paper describes the tectonic summaries for all magnitude 7 and larger earthquakes in the period 2000–2015, as produced by the U.S. Geological Survey National Earthquake Information Center during their routine response operations to global earthquakes. The goal of such summaries is to provide important event-specific information to the public rapidly and concisely, such that recent earthquakes can be understood within a global and regional seismotectonic framework. We compile these summaries here to provide a long-term archive for this information, and so that the variability in tectonic setting and earthquake history from region to region, and sometimes within a given region, can be more clearly understood.

  1. Injection-induced moment release can also be aseismic

    USGS Publications Warehouse

    McGarr, Arthur; Barbour, Andrew J.

    2018-01-01

    The cumulative seismic moment is a robust measure of the earthquake response to fluid injection for injection volumes ranging from 3100 to about 12 million m3. Over this range, the moment release is limited to twice the product of the shear modulus and the volume of injected fluid. This relation also applies at the much smaller injection volumes of the field experiment in France reported by Guglielmi, et al. (2015) and laboratory experiments to simulate hydraulic fracturing described by Goodfellow, et al. (2015). In both of these studies, the relevant moment release for comparison with the fluid injection was aseismic and consistent with the scaling that applies to the much larger volumes associated with injection-induced earthquakes with magnitudes extending up to 5.8. Neither the micro-earthquakes, at the site in France, nor the acoustic emission in the laboratory samples contributed significantly to the deformation due to fluid injection.

  2. Seismicity remotely triggered by the magnitude 7.3 landers, california, earthquake

    USGS Publications Warehouse

    Hill, D.P.; Reasenberg, P.A.; Michael, A.; Arabaz, W.J.; Beroza, G.; Brumbaugh, D.; Brune, J.N.; Castro, R.; Davis, S.; Depolo, D.; Ellsworth, W.L.; Gomberg, J.; Harmsen, S.; House, L.; Jackson, S.M.; Johnston, M.J.S.; Jones, L.; Keller, Rebecca Hylton; Malone, S.; Munguia, L.; Nava, S.; Pechmann, J.C.; Sanford, A.; Simpson, R.W.; Smith, R.B.; Stark, M.; Stickney, M.; Vidal, A.; Walter, S.; Wong, V.; Zollweg, J.

    1993-01-01

    The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).

  3. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Mignan, Arnaud; Vogfjörð, Kristin S.

    2017-07-01

    In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5-1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

  4. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement

  5. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    NASA Astrophysics Data System (ADS)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  6. Seismotectonics of Marasesti region (Eastern Romania) revealed by earthquake relocations and moment tensor determinations

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Rogozea, Maria; Placinta, Anca; Popa, Mihaela; Radulian, Mircea

    2017-04-01

    A large seismic sequence occurred between 22 November 2014 and 31 January 2015 in the Foredeep area of the South-Eastern Carpathians at a distance of about 10 km north-east relative to Marasesti city. The sequence was located in the lower crust, close to 40 km depth. Although the moment magnitude of the largest event was 5.4 according to Romplus (Romanian earthquakes catalog) the largest aftershock did not exceed 4.0 (Mw) and most of the aftershocks were weak (magnitude below 3). From a total of 230 well-located events, we relocated 178 using more than 17000 P and S differential travel times. The results show a NW-SE alignment consistent with the focal mechanism solution computed through the broadband seismic waveforms inversion. An important aspect of this sequence is the distribution in time of the seismic events, which reveals an aftershocks migration with an average velocity of about 3 km/day. This seismicity behavior might be due to the presence of the fluids. We interpret all these features in terms of the seismotectonics of the region.

  7. Effect of slip-area scaling on the earthquake frequency-magnitude relationship

    NASA Astrophysics Data System (ADS)

    Senatorski, Piotr

    2017-06-01

    The earthquake frequency-magnitude relationship is considered in the maximum entropy principle (MEP) perspective. The MEP suggests sampling with constraints as a simple stochastic model of seismicity. The model is based on the von Neumann's acceptance-rejection method, with b-value as the parameter that breaks symmetry between small and large earthquakes. The Gutenberg-Richter law's b-value forms a link between earthquake statistics and physics. Dependence between b-value and the rupture area vs. slip scaling exponent is derived. The relationship enables us to explain observed ranges of b-values for different types of earthquakes. Specifically, different b-value ranges for tectonic and induced, hydraulic fracturing seismicity is explained in terms of their different triggering mechanisms: by the applied stress increase and fault strength reduction, respectively.

  8. Validation of an improved method to calculate the orientation and magnitude of pedicle screw bending moments.

    PubMed

    Freeman, Andrew L; Fahim, Mina S; Bechtold, Joan E

    2012-10-01

    Previous methods of pedicle screw strain measurement have utilized complex, time consuming methods of strain gauge application, experience high failure rates, do not effectively measure resultant bending moments, and cannot predict moment orientation. The purpose of this biomechanical study was to validate an improved method of quantifying pedicle screw bending moment orientation and magnitude. Pedicle screws were instrumented to measure biplanar screw bending moments by positioning four strain gauges on flat, machined surfaces below the screw head. Screws were calibrated to measure bending moments by hanging certified weights a known distance from the strain gauges. Loads were applied in 30 deg increments at 12 different angles while recording data from two independent strain channels. The data were then analyzed to calculate the predicted orientation and magnitude of the resultant bending moment. Finally, flexibility tests were performed on a cadaveric motion segment implanted with the instrumented screws to demonstrate the implementation of this technique. The difference between the applied and calculated orientation of the bending moments averaged (±standard error of the mean (SEM)) 0.3 ± 0.1 deg across the four screws for all rotations and loading conditions. The calculated resultant bending moments deviated from the actual magnitudes by an average of 0.00 ± 0.00 Nm for all loading conditions. During cadaveric testing, the bending moment orientations were medial/lateral in flexion-extension, variable in lateral bending, and diagonal in axial torsion. The technique developed in this study provides an accurate method of calculating the orientation and magnitude of screw bending moments and can be utilized with any pedicle screw fixation system.

  9. Earthquakes Magnitude Predication Using Artificial Neural Network in Northern Red Sea Area

    NASA Astrophysics Data System (ADS)

    Alarifi, A. S.; Alarifi, N. S.

    2009-12-01

    Earthquakes are natural hazards that do not happen very often, however they may cause huge losses in life and property. Early preparation for these hazards is a key factor to reduce their damage and consequence. Since early ages, people tried to predicate earthquakes using simple observations such as strange or a typical animal behavior. In this paper, we study data collected from existing earthquake catalogue to give better forecasting for future earthquakes. The 16000 events cover a time span of 1970 to 2009, the magnitude range from greater than 0 to less than 7.2 while the depth range from greater than 0 to less than 100km. We propose a new artificial intelligent predication system based on artificial neural network, which can be used to predicate the magnitude of future earthquakes in northern Red Sea area including the Sinai Peninsula, the Gulf of Aqaba, and the Gulf of Suez. We propose a feed forward new neural network model with multi-hidden layers to predicate earthquakes occurrences and magnitudes in northern Red Sea area. Although there are similar model that have been published before in different areas, to our best knowledge this is the first neural network model to predicate earthquake in northern Red Sea area. Furthermore, we present other forecasting methods such as moving average over different interval, normally distributed random predicator, and uniformly distributed random predicator. In addition, we present different statistical methods and data fitting such as linear, quadratic, and cubic regression. We present a details performance analyses of the proposed methods for different evaluation metrics. The results show that neural network model provides higher forecast accuracy than other proposed methods. The results show that neural network achieves an average absolute error of 2.6% while an average absolute error of 3.8%, 7.3% and 6.17% for moving average, linear regression and cubic regression, respectively. In this work, we show an analysis

  10. An approach to detect afterslips in giant earthquakes in the normal-mode frequency band

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Ji, Chen; Igarashi, Mitsutsugu

    2012-08-01

    compatible with the GCMT solution but the low-frequency part requires afterslip to explain the increasing amplitude ratios towards lower frequency. The required slip has the moment about 19 per cent of the GCMT solution and the rise time of 260 s. The total moment of these earthquakes are 5.31 × 1022 N m (Tohoku), (1.86-1.96) × 1022 N m (Chile), 1.33 × 1023 N m (Sumatra) and 1.86 × 1021 N m (Solomon). The moment magnitudes are 9.08, 8.78-8.79, 9.35 and 8.11, respectively, using Kanamori's original formula between the moment and the moment magnitude. However, the trade-off problem between the moment and dip angle can modify these estimates for moment up to about 40-50 per cent and the corresponding magnitude ±0.1.

  11. Maximum magnitude estimations of induced earthquakes at Paradox Valley, Colorado, from cumulative injection volume and geometry of seismicity clusters

    NASA Astrophysics Data System (ADS)

    Yeck, William L.; Block, Lisa V.; Wood, Christopher K.; King, Vanessa M.

    2015-01-01

    The Paradox Valley Unit (PVU), a salinity control project in southwest Colorado, disposes of brine in a single deep injection well. Since the initiation of injection at the PVU in 1991, earthquakes have been repeatedly induced. PVU closely monitors all seismicity in the Paradox Valley region with a dense surface seismic network. A key factor for understanding the seismic hazard from PVU injection is the maximum magnitude earthquake that can be induced. The estimate of maximum magnitude of induced earthquakes is difficult to constrain as, unlike naturally occurring earthquakes, the maximum magnitude of induced earthquakes changes over time and is affected by injection parameters. We investigate temporal variations in maximum magnitudes of induced earthquakes at the PVU using two methods. First, we consider the relationship between the total cumulative injected volume and the history of observed largest earthquakes at the PVU. Second, we explore the relationship between maximum magnitude and the geometry of individual seismicity clusters. Under the assumptions that: (i) elevated pore pressures must be distributed over an entire fault surface to initiate rupture and (ii) the location of induced events delineates volumes of sufficiently high pore-pressure to induce rupture, we calculate the largest allowable vertical penny-shaped faults, and investigate the potential earthquake magnitudes represented by their rupture. Results from both the injection volume and geometrical methods suggest that the PVU has the potential to induce events up to roughly MW 5 in the region directly surrounding the well; however, the largest observed earthquake to date has been about a magnitude unit smaller than this predicted maximum. In the seismicity cluster surrounding the injection well, the maximum potential earthquake size estimated by these methods and the observed maximum magnitudes have remained steady since the mid-2000s. These observations suggest that either these methods

  12. Earthquake Scaling Relations

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; Boettcher, M.; Richardson, E.

    2002-12-01

    Using scaling relations to understand nonlinear geosystems has been an enduring theme of Don Turcotte's research. In particular, his studies of scaling in active fault systems have led to a series of insights about the underlying physics of earthquakes. This presentation will review some recent progress in developing scaling relations for several key aspects of earthquake behavior, including the inner and outer scales of dynamic fault rupture and the energetics of the rupture process. The proximate observations of mining-induced, friction-controlled events obtained from in-mine seismic networks have revealed a lower seismicity cutoff at a seismic moment Mmin near 109 Nm and a corresponding upper frequency cutoff near 200 Hz, which we interpret in terms of a critical slip distance for frictional drop of about 10-4 m. Above this cutoff, the apparent stress scales as M1/6 up to magnitudes of 4-5, consistent with other near-source studies in this magnitude range (see special session S07, this meeting). Such a relationship suggests a damage model in which apparent fracture energy scales with the stress intensity factor at the crack tip. Under the assumption of constant stress drop, this model implies an increase in rupture velocity with seismic moment, which successfully predicts the observed variation in corner frequency and maximum particle velocity. Global observations of oceanic transform faults (OTFs) allow us to investigate a situation where the outer scale of earthquake size may be controlled by dynamics (as opposed to geologic heterogeneity). The seismicity data imply that the effective area for OTF moment release, AE, depends on the thermal state of the fault but is otherwise independent of fault's average slip rate; i.e., AE ~ AT, where AT is the area above a reference isotherm. The data are consistent with β = 1/2 below an upper cutoff moment Mmax that increases with AT and yield the interesting scaling relation Amax ~ AT1/2. Taken together, the OTF

  13. Low magnitude earthquakes generating significant subsidence: the Lunigiana case study

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; Polcari, M.; Melini, D.; Cannelli, V.; Moro, M.; Bignami, C.; Saroli, M.; Vannoli, P.; Stramondo, S.

    2013-12-01

    We applied the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique to investigate and measure surface displacements due to the ML 5.2, June 21, 2013, earthquake occurred in the Apuan Alps (NW Italy) at a depth of about 5 km. The Centroid Moment Tensor (CMT) solution from INGV indicates an almost pure normal fault mechanism. Two differential interferograms showing the coseismic displacement were generated using X- band and C-band data respectively. The X-Band interferogram was obtained from a Cosmo-SkyMed ascending pair (azimuth -7.9° and incidence angle 40°) with a time interval of one day (June 21 - June 22) and 139 m spatial baseline, covering an area of about 40x40 km around the epicenter. The topographic phase component was removed using the 90 m SRTM DEM. The C-Band interferferogram was computed from two RADARSAT-2 Standard-3 (S3) images, characterized by 24 days temporal and 69 m spatial baselines, acquired on June 18 and July 12, 2013 on ascending orbit (azimuth -10.8°) with an incidence angle of 34° and covering 100x100 km area around the epicenter. The topographic phase component was removed using 30 m ASTER DEM. Adaptive filtering, phase unwrapping with Minimum Cost Flow (MCF) algorithm and orbital refinement were also applied to both interferograms. We modeled the observed SAR deformation fields using the Okada analytical formulation within a nonlinear inversion scheme, and found them to be consistent with a fault plane dipping towards NW at an angle of about 45°. In spite of the small magnitude, this earthquake produces a surface subsidence of about 1.5 cm in the Line-Of-Sight (LOS) direction, corresponding to about 3 cm along the vertical axis, that can be observed in both interferograms and appears consistent with the normal fault mechanisms.

  14. Towards Estimating the Magnitude of Earthquakes from EM Data Collected from the Subduction Zone

    NASA Astrophysics Data System (ADS)

    Heraud, J. A.

    2016-12-01

    During the past three years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone. Such evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. The process has been extended in time, only pulses associated with the occurrence of earthquakes and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including an animated data video, are a first approximation towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. During the past three years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone. Such evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. The process has been extended in time, only pulses associated with the occurrence of earthquakes have been used and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including an animated data video, are a first approximation towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone.

  15. Seismicity Controlled by a Frictional Afterslip During a Small-Magnitude Seismic Sequence (ML < 5) on the Chihshang Fault, Taiwan

    NASA Astrophysics Data System (ADS)

    Canitano, Alexandre; Godano, Maxime; Hsu, Ya-Ju; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn

    2018-02-01

    We report evidence for frictional afterslip at shallow depths (about 5 to 7 km) during a small-magnitude seismic sequence (with ML<5) along the Chihshang Fault, a main active structure of the Longitudinal Valley, in southeast Taiwan. The afterslip, which was recorded by a nearby borehole dilatometer, lasted about a month with a cumulative geodetic moment magnitude of 4.8 ± 0.2. The afterslip comprised two stages and controlled the aftershock sequence. The first postseismic stage, which followed a ML 4.6 earthquake, lasted about 6 h and mostly controlled the ruptures of neighboring asperities (e.g., multiplets) near the hypocenter. Then, a 4 week duration large afterslip event following a ML 4.9 earthquake controlled the rate of aftershocks during its first 2 days through brittle creep. The study presents a rare case of simultaneous seismological and geodetic observations for afterslip following earthquakes with magnitude lower than 5. Furthermore, the geodetic moment of the postseismic phase is at least equivalent to the coseismic moment of the sequence.

  16. Holocene earthquakes of magnitude 7 during westward escape of the Olympic Mountains, Washington

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen; Wells, Ray; Schermer, Elizabeth R.; Bradley, Lee-Ann; Buck, Jason; Reitman, Nadine G.

    2017-01-01

    The Lake Creek–Boundary Creek fault, previously mapped in Miocene bedrock as an oblique thrust on the north flank of the Olympic Mountains, poses a significant earthquake hazard. Mapping using 2015 light detection and ranging (lidar) confirms 2004 lidar mapping of postglacial (<13  ka"><13  ka) and Holocene fault scarps along the 22‐km‐long eastern section of the fault and documents Holocene scarps that extend ≥14  km">≥14  km along a splay fault, the Sadie Creek fault, west of Lake Crescent. Scarp morphology suggests repeated earthquake ruptures along the eastern section of the Lake Creek–Boundary Creek fault and the Sadie Creek fault since ∼13  ka">∼13  ka. Right‐lateral (∼11–28  m">∼11–28  m) and vertical (1–2 m) cumulative fault offsets suggest slip rates of ∼1–2  mm/yr">∼1–2  mm/yr Stratigraphic and age‐model data from five trenches perpendicular to scarps at four sites on the eastern section of the fault show evidence of 3–5 surface‐rupturing earthquakes. Near‐vertical fault dips and upward‐branching fault patterns in trenches, abrupt changes in the thickness of stratigraphic units across faults, and variations in vertical displacement of successive stratigraphic units along fault traces also suggest a large lateral component of slip. Age models suggest two earthquakes date from 1.3±0.8">1.3±0.8 and 2.9±0.6  ka">2.9±0.6  ka; evidence and ages for 2–3 earlier earthquakes are less certain. Assuming 3–5 postglacial earthquakes, lateral and vertical cumulative fault offsets yield average slip per earthquake of ∼4.6  m">∼4.6  m, a lateral‐to‐vertical slip ratio of ∼10:1">∼10:1, and a recurrence interval of 3.5±1.0  ka">3.5±1.0  ka. Empirical relations yield moment magnitude estimates of M 7.2–7.5 (slip per earthquake) and 7.1–7.3 (56 km maximum rupture length). An apparent left‐lateral Miocene to right

  17. Estimation of completeness magnitude with a Bayesian modeling of daily and weekly variations in earthquake detectability

    NASA Astrophysics Data System (ADS)

    Iwata, T.

    2014-12-01

    In the analysis of seismic activity, assessment of earthquake detectability of a seismic network is a fundamental issue. For this assessment, the completeness magnitude Mc, the minimum magnitude above which all earthquakes are recorded, is frequently estimated. In most cases, Mc is estimated for an earthquake catalog of duration longer than several weeks. However, owing to human activity, noise level in seismic data is higher on weekdays than on weekends, so that earthquake detectability has a weekly variation [e.g., Atef et al., 2009, BSSA]; the consideration of such a variation makes a significant contribution to the precise assessment of earthquake detectability and Mc. For a quantitative evaluation of the weekly variation, we introduced the statistical model of a magnitude-frequency distribution of earthquakes covering an entire magnitude range [Ogata & Katsura, 1993, GJI]. The frequency distribution is represented as the product of the Gutenberg-Richter law and a detection rate function. Then, the weekly variation in one of the model parameters, which corresponds to the magnitude where the detection rate of earthquakes is 50%, was estimated. Because earthquake detectability also have a daily variation [e.g., Iwata, 2013, GJI], and the weekly and daily variations were estimated simultaneously by adopting a modification of a Bayesian smoothing spline method for temporal change in earthquake detectability developed in Iwata [2014, Aust. N. Z. J. Stat.]. Based on the estimated variations in the parameter, the value of Mc was estimated. In this study, the Japan Meteorological Agency catalog from 2006 to 2010 was analyzed; this dataset is the same as analyzed in Iwata [2013] where only the daily variation in earthquake detectability was considered in the estimation of Mc. A rectangular grid with 0.1° intervals covering in and around Japan was deployed, and the value of Mc was estimated for each gridpoint. Consequently, a clear weekly variation was revealed; the

  18. Moderate-magnitude earthquakes induced by magma reservoir inflation at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Wauthier, Christelle; Roman, Diana C.; Poland, Michael P.

    2013-01-01

    Although volcano-tectonic (VT) earthquakes often occur in response to magma intrusion, it is rare for them to have magnitudes larger than ~M4. On 24 May 2007, two shallow M4+ earthquakes occurred beneath the upper part of the east rift zone of Kīlauea Volcano, Hawai‘i. An integrated analysis of geodetic, seismic, and field data, together with Coulomb stress modeling, demonstrates that the earthquakes occurred due to strike-slip motion on pre-existing faults that bound Kīlauea Caldera to the southeast and that the pressurization of Kīlauea's summit magma system may have been sufficient to promote faulting. For the first time, we infer a plausible origin to generate rare moderate-magnitude VTs at Kīlauea by reactivation of suitably oriented pre-existing caldera-bounding faults. Rare moderate- to large-magnitude VTs at Kīlauea and other volcanoes can therefore result from reactivation of existing fault planes due to stresses induced by magmatic processes.

  19. Comparison of the Cut-and-Paste and Full Moment Tensor Methods for Estimating Earthquake Source Parameters

    NASA Astrophysics Data System (ADS)

    Templeton, D.; Rodgers, A.; Helmberger, D.; Dreger, D.

    2008-12-01

    Earthquake source parameters (seismic moment, focal mechanism and depth) are now routinely reported by various institutions and network operators. These parameters are important for seismotectonic and earthquake ground motion studies as well as calibration of moment magnitude scales and model-based earthquake-explosion discrimination. Source parameters are often estimated from long-period three- component waveforms at regional distances using waveform modeling techniques with Green's functions computed for an average plane-layered models. One widely used method is waveform inversion for the full moment tensor (Dreger and Helmberger, 1993). This method (TDMT) solves for the moment tensor elements by performing a linearized inversion in the time-domain that minimizes the difference between the observed and synthetic waveforms. Errors in the seismic velocity structure inevitably arise due to either differences in the true average plane-layered structure or laterally varying structure. The TDMT method can account for errors in the velocity model by applying a single time shift at each station to the observed waveforms to best match the synthetics. Another method for estimating source parameters is the Cut-and-Paste (CAP) method. This method breaks the three-component regional waveforms into five windows: vertical and radial component Pnl; vertical and radial component Rayleigh wave; and transverse component Love waves. The CAP method performs a grid search over double-couple mechanisms and allows the synthetic waveforms for each phase (Pnl, Rayleigh and Love) to shift in time to account for errors in the Green's functions. Different filtering and weighting of the Pnl segment relative to surface wave segments enhances sensitivity to source parameters, however, some bias may be introduced. This study will compare the TDMT and CAP methods in two different regions in order to better understand the advantages and limitations of each method. Firstly, we will consider the

  20. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Rizza, M.; Ritz, J.-F.; Braucher, R.; Vassallo, R.; Prentice, C.; Mahan, S.; McGill, S.; Chauvet, A.; Marco, S.; Todbileg, M.; Demberel, S.; Bourles, D.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans-particularly well preserved in the arid environment of the Gobi region-allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is ~1 mm yr-1 along the WIB and EIB segments and ~0.5 mm yr-1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78-7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of ~2500-5200 yr for past

  1. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  2. Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.

    PubMed

    Miyake, Teru

    This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Geophysical advances triggered by 1964 Great Alaska Earthquake

    USGS Publications Warehouse

    Haeussler, Peter J.; Leith, William S.; Wald, David J.; Filson, John R.; Wolfe, Cecily; Applegate, David

    2014-01-01

    A little more than 50 years ago, on 27 March 1964, the Great Alaska earthquake and tsunami struck. At moment magnitude 9.2, this earthquake is notable as the largest in U.S. written history and as the second-largest ever recorded by instruments worldwide. But what resonates today are its impacts on the understanding of plate tectonics, tsunami generation, and earthquake history as well as on the development of national programs to reduce risk from earthquakes and tsunamis.

  4. Discrepancy between earthquake rates implied by historic earthquakes and a consensus geologic source model for California

    USGS Publications Warehouse

    Petersen, M.D.; Cramer, C.H.; Reichle, M.S.; Frankel, A.D.; Hanks, T.C.

    2000-01-01

    We examine the difference between expected earthquake rates inferred from the historical earthquake catalog and the geologic data that was used to develop the consensus seismic source characterization for the state of California [California Department of Conservation, Division of Mines and Geology (CDMG) and U.S. Geological Survey (USGS) Petersen et al., 1996; Frankel et al., 1996]. On average the historic earthquake catalog and the seismic source model both indicate about one M 6 or greater earthquake per year in the state of California. However, the overall earthquake rates of earthquakes with magnitudes (M) between 6 and 7 in this seismic source model are higher, by at least a factor of 2, than the mean historic earthquake rates for both southern and northern California. The earthquake rate discrepancy results from a seismic source model that includes earthquakes with characteristic (maximum) magnitudes that are primarily between M 6.4 and 7.1. Many of these faults are interpreted to accommodate high strain rates from geologic and geodetic data but have not ruptured in large earthquakes during historic time. Our sensitivity study indicates that the rate differences between magnitudes 6 and 7 can be reduced by adjusting the magnitude-frequency distribution of the source model to reflect more characteristic behavior, by decreasing the moment rate available for seismogenic slip along faults, by increasing the maximum magnitude of the earthquake on a fault, or by decreasing the maximum magnitude of the background seismicity. However, no single parameter can be adjusted, consistent with scientific consensus, to eliminate the earthquake rate discrepancy. Applying a combination of these parametric adjustments yields an alternative earthquake source model that is more compatible with the historic data. The 475-year return period hazard for peak ground and 1-sec spectral acceleration resulting from this alternative source model differs from the hazard resulting from the

  5. Earthquake Magnitude: A Teaching Module for the Spreadsheets Across the Curriculum Initiative

    NASA Astrophysics Data System (ADS)

    Wetzel, L. R.; Vacher, H. L.

    2006-12-01

    Spreadsheets Across the Curriculum (SSAC) is a library of computer-based activities designed to reinforce or teach quantitative-literacy or mathematics concepts and skills in context. Each activity (called a "module" in the SSAC project) consists of a PowerPoint presentation with embedded Excel spreadsheets. Each module focuses on one or more problems for students to solve. Each student works through a presentation, thinks about the in-context problem, figures out how to solve it mathematically, and builds the spreadsheets to calculate and examine answers. The emphasis is on mathematical problem solving. The intention is for the in- context problems to span the entire range of subjects where quantitative thinking, number sense, and math non-anxiety are relevant. The self-contained modules aim to teach quantitative concepts and skills in a wide variety of disciplines (e.g., health care, finance, biology, and geology). For example, in the Earthquake Magnitude module students create spreadsheets and graphs to explore earthquake magnitude scales, wave amplitude, and energy release. In particular, students realize that earthquake magnitude scales are logarithmic. Because each step in magnitude represents a 10-fold increase in wave amplitude and approximately a 30-fold increase in energy release, large earthquakes are much more powerful than small earthquakes. The module has been used as laboratory and take-home exercises in small structural geology and solid earth geophysics courses with upper level undergraduates. Anonymous pre- and post-tests assessed students' familiarity with Excel as well as other quantitative skills. The SSAC library consists of 27 modules created by a community of educators who met for one-week "module-making workshops" in Olympia, Washington, in July of 2005 and 2006. The educators designed the modules at the workshops both to use in their own classrooms and to make available for others to adopt and adapt at other locations and in other classes

  6. Holocene behavior of the Brigham City segment: implications for forecasting the next large-magnitude earthquake on the Wasatch fault zone, Utah

    USGS Publications Warehouse

    Personius, Stephen F.; DuRoss, Christopher B.; Crone, Anthony J.

    2012-01-01

    The Brigham City segment (BCS), the northernmost Holocene‐active segment of the Wasatch fault zone (WFZ), is considered a likely location for the next big earthquake in northern Utah. We refine the timing of the last four surface‐rupturing (~Mw 7) earthquakes at several sites near Brigham City (BE1, 2430±250; BE2, 3490±180; BE3, 4510±530; and BE4, 5610±650 cal yr B.P.) and calculate mean recurrence intervals (1060–1500  yr) that are greatly exceeded by the elapsed time (~2500  yr) since the most recent surface‐rupturing earthquake (MRE). An additional rupture observed at the Pearsons Canyon site (PC1, 1240±50 cal yr B.P.) near the southern segment boundary is probably spillover rupture from a large earthquake on the adjacent Weber segment. Our seismic moment calculations show that the PC1 rupture reduced accumulated moment on the BCS about 22%, a value that may have been enough to postpone the next large earthquake. However, our calculations suggest that the segment currently has accumulated more than twice the moment accumulated in the three previous earthquake cycles, so we suspect that additional interactions with the adjacent Weber segment contributed to the long elapse time since the MRE on the BCS. Our moment calculations indicate that the next earthquake is not only overdue, but could be larger than the previous four earthquakes. Displacement data show higher rates of latest Quaternary slip (~1.3  mm/yr) along the southern two‐thirds of the segment. The northern third likely has experienced fewer or smaller ruptures, which suggests to us that most earthquakes initiate at the southern segment boundary.

  7. Strong nonlinear dependence of the spectral amplification factors of deep Vrancea earthquakes magnitude

    NASA Astrophysics Data System (ADS)

    Marmureanu, Gheorghe; Ortanza Cioflan, Carmen; Marmureanu, Alexandru

    2010-05-01

    Nonlinear effects in ground motion during large earthquakes have long been a controversial issue between seismologists and geotechnical engineers. Aki wrote in 1993:"Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification( Local site effects on weak and strong ground motion, Tectonophysics,218,93-111). In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding of the effects of earthquake source, propagation path and local geological site conditions. The difficulty for seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and path propagation. The researchers from National Institute for Earth Physics ,in order to make quantitative evidence of large nonlinear effects, introduced the spectral amplification factor (SAF) as ratio between maximum spectral absolute acceleration (Sa), relative velocity (Sv) , relative displacement (Sd) from response spectra for a fraction of critical damping at fundamental period and peak values of acceleration(a-max),velocity (v-max) and displacement (d-max),respectively, from processed strong motion record and pointed out that there is a strong nonlinear dependence on earthquake magnitude and site conditions.The spectral amplification factors(SAF) are finally computed for absolute accelerations at 5% fraction of critical damping (β=5%) in five seismic stations: Bucharest-INCERC(soft soils, quaternary layers with a total thickness of 800 m);Bucharest-Magurele (dense sand and loess on 350m); Cernavoda Nuclear Power Plant site (marl, loess, limestone on 270 m) Bacau(gravel and loess on 20m) and Iassy (loess, sand, clay, gravel on 60 m) for last strong and deep Vrancea earthquakes: March 4,1977 (MGR =7.2 and h=95 km);August 30

  8. Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation

    USGS Publications Warehouse

    Mori, J.; Abercrombie, R.E.

    1997-01-01

    Statistics of earthquakes in California show linear frequency-magnitude relationships in the range of M2.0 to M5.5 for various data sets. Assuming Gutenberg-Richter distributions, there is a systematic decrease in b value with increasing depth of earthquakes. We find consistent results for various data sets from northern and southern California that both include and exclude the larger aftershock sequences. We suggest that at shallow depth (???0 to 6 km) conditions with more heterogeneous material properties and lower lithospheric stress prevail. Rupture initiations are more likely to stop before growing into large earthquakes, producing relatively more smaller earthquakes and consequently higher b values. These ideas help to explain the depth-dependent observations of foreshocks in the western United States. The higher occurrence rate of foreshocks preceding shallow earthquakes can be interpreted in terms of rupture initiations that are stopped before growing into the mainshock. At greater depth (9-15 km), any rupture initiation is more likely to continue growing into a larger event, so there are fewer foreshocks. If one assumes that frequency-magnitude statistics can be used to estimate probabilities of a small rupture initiation growing into a larger earthquake, then a small (M2) rupture initiation at 9 to 12 km depth is 18 times more likely to grow into a M5.5 or larger event, compared to the same small rupture initiation at 0 to 3 km. Copyright 1997 by the American Geophysical Union.

  9. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500

  10. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  11. Relationship between isoseismal area and magnitude of historical earthquakes in Greece by a hybrid fuzzy neural network method

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-A.; Sokos, E.

    2012-01-01

    In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.

  12. Estimating Seismic Moment From Broadband P-Waves for Tsunami Warnings.

    NASA Astrophysics Data System (ADS)

    Hirshorn, B. F.

    2006-12-01

    The Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC), located in Ewa Beach, Oahu, Hawaii, is responsible for issuing local, regional, and distant tsunami warnings to Hawaii, and for issuing regional and distant tsunami warnings to the rest of the Pacific Basin, exclusive of the US West Coast. The PTWC must provide these tsunami warnings as soon as technologically possible, based entirely on estimates of a potentially tsunamigenic earthquake's source parameters. We calculate the broadband P-wave moment magnitude, Mwp, from the P or pP wave velocity seismograms [Tsuboi et al., 1995, 1999]. This method appears to work well for regional and teleseismic events [ Tsuboi et al (1999], Whitmore et al (2002), Hirshorn et al (2004) ]. Following Tsuboi, [1995], we consider the displacement record of the P-wave portion of the broadband seismograms as an approximate source time function and integrate this record to obtain the moment rate function, Mo(t), and the moment magnitude [Hanks and Kanamori, 1972] as a function of time, Mw(t). We present results for Mwp for local, regional, and teleseismic broad band recordings for earthquakes in the Mw 5 to 9.3 range. As large Hawaii events are rare, we tested this local case using other Pacific events in the magnitude 5.0 to 7.5 range recorded by nearby stations. Signals were excluded, however, if the epicentral distance was so small (generally less than 1 degree) that there was contamination by the S-wave too closely following the P-waves. Scatter plots of Mwp against the Harvard Mw for these events shows that Mwp does predict Mw well from seismograms recorded at local, regional, and teleseismic distances. For some complex earthquakes, eg. the Mw 8.4(HRV) Peru earthquake of June 21, 2001, Mwp underestimates Mw if the first moment release is not the largest. Our estimates of Mwp for the Mw 9.3 Summatra-Andaman Island's earthquake of December 26, 2004 and for the Mw 8.7 (HRV) Summatra event of March 28, 2005, were Mwp 8

  13. Nonlinear site response in medium magnitude earthquakes near Parkfield, California

    USGS Publications Warehouse

    Rubinstein, Justin L.

    2011-01-01

    Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).

  14. Changes in crustal seismic deformation rates associated with the 1964 Great Alaska earthquake

    USGS Publications Warehouse

    Doser, D.I.; Ratchkovski, N.A.; Haeussler, Peter J.; Saltus, R.

    2004-01-01

    We calculated seismic moment rates from crustal earthquake information for the upper Cook Inlet region, including Anchorage, Alaska, for the 30 yr prior to and 36 yr following the 1964 Great Alaska earthquake. Our results suggest over a factor of 1000 decrease in seismic moment rate (in units of dyne centimeters per year) following the 1964 mainshock. We used geologic information on structures within the Cook Inlet basin to estimate a regional geologic moment rate, assuming the structures extend to 30 km depth and have near-vertical dips. The geologic moment rates could underestimate the true rates by up to 70% since it is difficult determine the amount of horizontal offset that has occurred along many structures within the basin. Nevertheless, the geologic moment rate is only 3-7 times lower than the pre-1964 seismic moment rate, suggesting the 1964 mainshock has significantly slowed regional crustal deformation. If we compare the geologic moment rate to the post-1964 seismic moment rate, the moment rate deficit over the past 36 yr is equivalent to a moment magnitude 6.6-7.0 earthquake. These observed differences in moment rates highlight the difficulty in using seismicity in the decades following a large megathrust earthquake to adequately characterize long-term crustal deformation.

  15. Calculation of Confidence Intervals for the Maximum Magnitude of Earthquakes in Different Seismotectonic Zones of Iran

    NASA Astrophysics Data System (ADS)

    Salamat, Mona; Zare, Mehdi; Holschneider, Matthias; Zöller, Gert

    2017-03-01

    The problem of estimating the maximum possible earthquake magnitude m_max has attracted growing attention in recent years. Due to sparse data, the role of uncertainties becomes crucial. In this work, we determine the uncertainties related to the maximum magnitude in terms of confidence intervals. Using an earthquake catalog of Iran, m_max is estimated for different predefined levels of confidence in six seismotectonic zones. Assuming the doubly truncated Gutenberg-Richter distribution as a statistical model for earthquake magnitudes, confidence intervals for the maximum possible magnitude of earthquakes are calculated in each zone. While the lower limit of the confidence interval is the magnitude of the maximum observed event,the upper limit is calculated from the catalog and the statistical model. For this aim, we use the original catalog which no declustering methods applied on as well as a declustered version of the catalog. Based on the study by Holschneider et al. (Bull Seismol Soc Am 101(4):1649-1659, 2011), the confidence interval for m_max is frequently unbounded, especially if high levels of confidence are required. In this case, no information is gained from the data. Therefore, we elaborate for which settings finite confidence levels are obtained. In this work, Iran is divided into six seismotectonic zones, namely Alborz, Azerbaijan, Zagros, Makran, Kopet Dagh, Central Iran. Although calculations of the confidence interval in Central Iran and Zagros seismotectonic zones are relatively acceptable for meaningful levels of confidence, results in Kopet Dagh, Alborz, Azerbaijan and Makran are not that much promising. The results indicate that estimating m_max from an earthquake catalog for reasonable levels of confidence alone is almost impossible.

  16. Strong Scaling and a Scarcity of Small Earthquakes Point to an Important Role for Thermal Runaway in Intermediate-Depth Earthquake Mechanics

    NASA Astrophysics Data System (ADS)

    Barrett, S. A.; Prieto, G. A.; Beroza, G. C.

    2015-12-01

    There is strong evidence that metamorphic reactions play a role in enabling the rupture of intermediate-depth earthquakes; however, recent studies of the Bucaramanga Nest at a depth of 135-165 km under Colombia indicate that intermediate-depth seismicity shows low radiation efficiency and strong scaling of stress drop with slip/size, which suggests a dramatic weakening process, as proposed in the thermal shear instability model. Decreasing stress drop with slip and low seismic efficiency could have a measurable effect on the magnitude-frequency distribution of small earthquakes by causing them to become undetectable at substantially larger seismic moment than would be the case if stress drop were constant. We explore the population of small earthquakes in the Bucaramanga Nest using an empirical subspace detector to push the detection limit to lower magnitude. Using this approach, we find ~30,000 small, previously uncatalogued earthquakes during a 6-month period in 2013. We calculate magnitudes for these events using their relative amplitudes. Despite the additional detections, we observe a sharp deviation from a Gutenberg-Richter magnitude frequency distribution with a marked deficiency of events at the smallest magnitudes. This scarcity of small earthquakes is not easily ascribed to the detectability threshold; tests of our ability to recover small-magnitude waveforms of Bucaramanga Nest earthquakes in the continuous data indicate that we should be able to detect events reliably at magnitudes that are nearly a full magnitude unit smaller than the smallest earthquakes we observe. The implication is that nearly 100,000 events expected for a Gutenberg-Richter MFD are "missing," and that this scarcity of small earthquakes may provide new support for the thermal runaway mechanism in intermediate-depth earthquake mechanics.

  17. Earthquake source properties of a shallow induced seismic sequence in SE Brazil

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, Hans; Bianchi, Marcelo; Prieto, Germán. A.; Assumpção, Marcelo

    2017-04-01

    We study source parameters of a cluster of 21 very shallow (<1 km depth) small-magnitude (Mw < 2) earthquakes induced by percolation of water by gravity in SE Brazil. Using a multiple empirical Green's functions (meGf) approach, we estimate seismic moments, corner frequencies, and static stress drops of these events by inversion of their spectral ratios. For the studied magnitude range (-0.3 < Mw < 1.9), we found an increase of stress drop with seismic moment. We assess associated uncertainties by considering different signal time windows and by performing a jackknife resampling of the spectral ratios. We also calculate seismic moments by full waveform inversion to independently validate our moments from spectral analysis. We propose repeated rupture on a fault patch at shallow depth, following continuous inflow of water, as the cause for the observed low absolute stress drop values (<1 MPa) and earthquake size dependency. To our knowledge, no other study on earthquake source properties of shallow events induced by water injection with no added pressure is available in the literature. Our study suggests that source parameter characterization may provide additional information of induced seismicity by hydraulic stimulation.

  18. Evaluation of earthquake potential in China

    NASA Astrophysics Data System (ADS)

    Rong, Yufang

    I present three earthquake potential estimates for magnitude 5.4 and larger earthquakes for China. The potential is expressed as the rate density (that is, the probability per unit area, magnitude and time). The three methods employ smoothed seismicity-, geologic slip rate-, and geodetic strain rate data. I test all three estimates, and another published estimate, against earthquake data. I constructed a special earthquake catalog which combines previous catalogs covering different times. I estimated moment magnitudes for some events using regression relationships that are derived in this study. I used the special catalog to construct the smoothed seismicity model and to test all models retrospectively. In all the models, I adopted a kind of Gutenberg-Richter magnitude distribution with modifications at higher magnitude. The assumed magnitude distribution depends on three parameters: a multiplicative " a-value," the slope or "b-value," and a "corner magnitude" marking a rapid decrease of earthquake rate with magnitude. I assumed the "b-value" to be constant for the whole study area and estimated the other parameters from regional or local geophysical data. The smoothed seismicity method assumes that the rate density is proportional to the magnitude of past earthquakes and declines as a negative power of the epicentral distance out to a few hundred kilometers. I derived the upper magnitude limit from the special catalog, and estimated local "a-values" from smoothed seismicity. I have begun a "prospective" test, and earthquakes since the beginning of 2000 are quite compatible with the model. For the geologic estimations, I adopted the seismic source zones that are used in the published Global Seismic Hazard Assessment Project (GSHAP) model. The zones are divided according to geological, geodetic and seismicity data. Corner magnitudes are estimated from fault length, while fault slip rates and an assumed locking depth determine earthquake rates. The geological model

  19. A new reference global instrumental earthquake catalogue (1900-2009)

    NASA Astrophysics Data System (ADS)

    Di Giacomo, D.; Engdahl, B.; Bondar, I.; Storchak, D. A.; Villasenor, A.; Bormann, P.; Lee, W.; Dando, B.; Harris, J.

    2011-12-01

    For seismic hazard studies on a global and/or regional scale, accurate knowledge of the spatial distribution of seismicity, the magnitude-frequency relation and the maximum magnitudes is of fundamental importance. However, such information is normally not homogeneous (or not available) for the various seismically active regions of the Earth. To achieve the GEM objectives (www.globalquakemodel.org) of calculating and communicating earthquake risk worldwide, an improved reference global instrumental catalogue for large earthquakes spanning the entire 100+ years period of instrumental seismology is an absolute necessity. To accomplish this task, we apply the most up-to-date techniques and standard observatory practices for computing the earthquake location and magnitude. In particular, the re-location procedure benefits both from the depth determination according to Engdahl and Villaseñor (2002), and the advanced technique recently implemented at the ISC (Bondár and Storchak, 2011) to account for correlated error structure. With regard to magnitude, starting from the re-located hypocenters, the classical surface and body-wave magnitudes are determined following the new IASPEI standards and by using amplitude-period data of phases collected from historical station bulletins (up to 1970), which were not available in digital format before the beginning of this work. Finally, the catalogue will provide moment magnitude values (including uncertainty) for each seismic event via seismic moment, via surface wave magnitude or via other magnitude types using empirical relationships. References Engdahl, E.R., and A. Villaseñor (2002). Global seismicity: 1900-1999. In: International Handbook of Earthquake and Engineering Seismology, eds. W.H.K. Lee, H. Kanamori, J.C. Jennings, and C. Kisslinger, Part A, 665-690, Academic Press, San Diego. Bondár, I., and D. Storchak (2011). Improved location procedures at the International Seismological Centre, Geophys. J. Int., doi:10.1111/j

  20. Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.

    PubMed

    McCaffrey, R; Goldfinger, C

    1995-02-10

    The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.

  1. InSAR constraints on the kinematics and magnitude of the 2001 Bhuj earthquake

    NASA Astrophysics Data System (ADS)

    Schmidt, D.; Bürgmann, R.

    2005-12-01

    The Mw 7.6 Bhuj intraplate event occurred along a blind thrust within the Kutch Rift basin of western India in January of 2001. The lack of any surface rupture and limited geodetic data have made it difficult to place the event on a known fault and constrain its source parameters. Moment tensor solutions and aftershock relocations indicate that the earthquake was a reverse event along an east-west striking, south dipping fault. In an effort to image the surface deformation, we have processed a total of 9 interferograms that span the coseismic event. Interferometry has proven difficult for the region because of technical difficulties experienced by the ERS Satellite around the time of the earthquake and because of low coherence. The stabilization of the orbital control by the European Space Agency beginning in 2002 has allowed us to interfere more recent SAR data with pre-earthquake data. Therefore, all available interferograms of the event include the first year of any postseismic deformation. The source region is characterized by broad floodplains interrupted by isolated highlands. Coherence is limited to the surrounding highlands and no data is available directly over the epicenter. Using the InSAR data along two descending and one ascending tracks, we perform a gridded search for the optimal source parameters of the earthquake. The deformation pattern is modeled assuming uniform slip on an elastic dislocation. Since the highland regions are discontinuous, the coherent InSAR phase is isolated to several individual patches. For each iteration of the gridded search algorithm, we optimize the fit to the data by solving for number of 2π phase cycles between coherent patches and the orbital gradient across each interferogram. Since the look angle varies across a SAR scene, a variable unit vector is calculated for each track. Inversion results place the center of the fault plane at 70.33° E/23.42° N at a depth of 21 km, and are consistent with the strike and dip

  2. Rapid estimation of earthquake magnitude from the arrival time of the peak high‐frequency amplitude

    USGS Publications Warehouse

    Noda, Shunta; Yamamoto, Shunroku; Ellsworth, William L.

    2016-01-01

    We propose a simple approach to measure earthquake magnitude M using the time difference (Top) between the body‐wave onset and the arrival time of the peak high‐frequency amplitude in an accelerogram. Measured in this manner, we find that Mw is proportional to 2logTop for earthquakes 5≤Mw≤7, which is the theoretical proportionality if Top is proportional to source dimension and stress drop is scale invariant. Using high‐frequency (>2  Hz) data, the root mean square (rms) residual between Mw and MTop(M estimated from Top) is approximately 0.5 magnitude units. The rms residuals of the high‐frequency data in passbands between 2 and 16 Hz are uniformly smaller than those obtained from the lower‐frequency data. Top depends weakly on epicentral distance, and this dependence can be ignored for distances <200  km. Retrospective application of this algorithm to the 2011 Tohoku earthquake produces a final magnitude estimate of M 9.0 at 120 s after the origin time. We conclude that Top of high‐frequency (>2  Hz) accelerograms has value in the context of earthquake early warning for extremely large events.

  3. Earthquake Declustering via a Nearest-Neighbor Approach in Space-Time-Magnitude Domain

    NASA Astrophysics Data System (ADS)

    Zaliapin, I. V.; Ben-Zion, Y.

    2016-12-01

    We propose a new method for earthquake declustering based on nearest-neighbor analysis of earthquakes in space-time-magnitude domain. The nearest-neighbor approach was recently applied to a variety of seismological problems that validate the general utility of the technique and reveal the existence of several different robust types of earthquake clusters. Notably, it was demonstrated that clustering associated with the largest earthquakes is statistically different from that of small-to-medium events. In particular, the characteristic bimodality of the nearest-neighbor distances that helps separating clustered and background events is often violated after the largest earthquakes in their vicinity, which is dominated by triggered events. This prevents using a simple threshold between the two modes of the nearest-neighbor distance distribution for declustering. The current study resolves this problem hence extending the nearest-neighbor approach to the problem of earthquake declustering. The proposed technique is applied to seismicity of different areas in California (San Jacinto, Coso, Salton Sea, Parkfield, Ventura, Mojave, etc.), as well as to the global seismicity, to demonstrate its stability and efficiency in treating various clustering types. The results are compared with those of alternative declustering methods.

  4. Low frequency (<1Hz) Large Magnitude Earthquake Simulations in Central Mexico: the 1985 Michoacan Earthquake and Hypothetical Rupture in the Guerrero Gap

    NASA Astrophysics Data System (ADS)

    Ramirez Guzman, L.; Contreras Ruíz Esparza, M.; Aguirre Gonzalez, J. J.; Alcántara Noasco, L.; Quiroz Ramírez, A.

    2012-12-01

    We present the analysis of simulations at low frequency (<1Hz) of historical and hypothetical earthquakes in Central Mexico, by using a 3D crustal velocity model and an idealized geotechnical structure of the Valley of Mexico. Mexico's destructive earthquake history bolsters the need for a better understanding regarding the seismic hazard and risk of the region. The Mw=8.0 1985 Michoacan earthquake is among the largest natural disasters that Mexico has faced in the last decades; more than 5000 people died and thousands of structures were damaged (Reinoso and Ordaz, 1999). Thus, estimates on the effects of similar or larger magnitude earthquakes on today's population and infrastructure are important. Moreover, Singh and Mortera (1991) suggest that earthquakes of magnitude 8.1 to 8.4 could take place in the so-called Guerrero Gap, an area adjacent to the region responsible for the 1985 earthquake. In order to improve previous estimations of the ground motion (e.g. Furumura and Singh, 2002) and lay the groundwork for a numerical simulation of a hypothetical Guerrero Gap scenario, we recast the 1985 Michoacan earthquake. We used the inversion by Mendoza and Hartzell (1989) and a 3D velocity model built on the basis of recent investigations in the area, which include a velocity structure of the Valley of Mexico constrained by geotechnical and reflection experiments, and noise tomography, receiver functions, and gravity-based regional models. Our synthetic seismograms were computed using the octree-based finite element tool-chain Hercules (Tu et al., 2006), and are valid up to a frequency of 1 Hz, considering realistic velocities in the Valley of Mexico ( >60 m/s in the very shallow subsurface). We evaluated the model's ability to reproduce the available records using the goodness-of-fit analysis proposed by Mayhew and Olsen (2010). Once the reliablilty of the model was established, we estimated the effects of a large magnitude earthquake in Central Mexico. We built a

  5. Magnitude and Surface Rupture Length of Prehistoric Upper Crustal Earthquakes in the Puget Lowland, Washington State

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Styron, R. H.

    2016-12-01

    Paleoseismic studies documented prehistoric earthquakes after the last glaciation ended 15 ka on 13 upper-crustal fault zones in the Cascadia fore arc. These fault zones are a consequence of north-directed fore arc block migration manifesting as a series of bedrock uplifts and intervening structural basins in the southern Salish Sea lowland between Vancouver, B.C. to the north and Olympia, WA to the south, and bounded on the east and west by the Cascade Mountains and Olympic Mountains, respectively. Our dataset uses published information and includes 27 earthquakes tabulated from observations of postglacial deformation at 63 sites. Stratigraphic offsets along faults consist of two types of measurements: 1) vertical separation of strata along faults observed in fault scarp excavations, and 2) estimates from coastal uplift and subsidence. We used probabilistic methods to estimate past rupture magnitudes and surface rupture length (SRL), applying empirical observations from modern earthquakes and point measurements from paleoseismic sites (Biasi and Weldon, 2006). Estimates of paleoearthquake magnitude ranged between M 6.5 and M 7.5. SRL estimates varied between 20 and 90 km. Paleoearthquakes on the Seattle fault zone and Saddle Mountain West fault about 1100 years ago were outliers in our analysis. Large offsets observed for these two earthquakes implies a M 7.8 and 200 km SRL, given the average observed ratio of slip/SRL in modern earthquakes. The actual mapped traces of these faults are less than 200km, implying these earthquakes had an unusually high static stress drop or, in the case of the Seattle fault, splay faults may have accentuated uplift in the hanging wall. Refined calculations incorporating fault area may change these magnitude and SRL estimates. Biasi, G.P., and Weldon, R.J., 2006, Estimating Surface Rupture Length and Magnitude of Paleoearthquakes from Point Measurements of Rupture Displacement: B. Seismol. Soc. Am., 96, 1612-1623.

  6. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Hee; Ree, Jin-Han; Kim, YoungHee; Kim, Sungshil; Kang, Su Young; Seo, Wooseok

    2018-06-01

    The moment magnitude (Mw) 5.4 Pohang earthquake, the most damaging event in South Korea since instrumental seismic observation began in 1905, occurred beneath the Pohang geothermal power plant in 2017. Geological and geophysical data suggest that the Pohang earthquake was induced by fluid from an enhanced geothermal system (EGS) site, which was injected directly into a near-critically stressed subsurface fault zone. The magnitude of the mainshock makes it the largest known induced earthquake at an EGS site.

  7. Global variations of large megathrust earthquake rupture characteristics

    PubMed Central

    Kanamori, Hiroo

    2018-01-01

    Despite the surge of great earthquakes along subduction zones over the last decade and advances in observations and analysis techniques, it remains unclear whether earthquake complexity is primarily controlled by persistent fault properties or by dynamics of the failure process. We introduce the radiated energy enhancement factor (REEF), given by the ratio of an event’s directly measured radiated energy to the calculated minimum radiated energy for a source with the same seismic moment and duration, to quantify the rupture complexity. The REEF measurements for 119 large [moment magnitude (Mw) 7.0 to 9.2] megathrust earthquakes distributed globally show marked systematic regional patterns, suggesting that the rupture complexity is strongly influenced by persistent geological factors. We characterize this as the existence of smooth and rough rupture patches with varying interpatch separation, along with failure dynamics producing triggering interactions that augment the regional influences on large events. We present an improved asperity scenario incorporating both effects and categorize global subduction zones and great earthquakes based on their REEF values and slip patterns. Giant earthquakes rupturing over several hundred kilometers can occur in regions with low-REEF patches and small interpatch spacing, such as for the 1960 Chile, 1964 Alaska, and 2011 Tohoku earthquakes, or in regions with high-REEF patches and large interpatch spacing as in the case for the 2004 Sumatra and 1906 Ecuador-Colombia earthquakes. Thus, combining seismic magnitude Mw and REEF, we provide a quantitative framework to better represent the span of rupture characteristics of great earthquakes and to understand global seismicity. PMID:29750186

  8. Evidence for a global seismic-moment release sequence

    USGS Publications Warehouse

    Bufe, C.G.; Perkins, D.M.

    2005-01-01

    Temporal clustering of the larger earthquakes (foreshock-mainshock-aftershock) followed by relative quiescence (stress shadow) are characteristic of seismic cycles along plate boundaries. A global seismic-moment release history, based on a little more than 100 years of instrumental earthquake data in an extended version of the catalog of Pacheco and Sykes (1992), illustrates similar behavior for Earth as a whole. Although the largest earthquakes have occurred in the circum-Pacific region, an analysis of moment release in the hemisphere antipodal to the Pacific plate shows a very similar pattern. Monte Carlo simulations confirm that the global temporal clustering of great shallow earthquakes during 1952-1964 at M ??? 9.0 is highly significant (4% random probability) as is the clustering of the events of M ??? 8.6 (0.2% random probability) during 1950-1965. We have extended the Pacheco and Sykes (1992) catalog from 1989 through 2001 using Harvard moment centroid data. Immediately after the 1950-1965 cluster, significant quiescence at and above M 8.4 begins and continues until 2001 (0.5% random probability). In alternative catalogs derived by correcting for possible random errors in magnitude estimates in the extended Pacheco-Sykes catalog, the clustering of M ??? 9 persists at a significant level. These observations indicate that, for great earthquakes, Earth behaves as a coherent seismotectonic system. A very-large-scale mechanism for global earthquake triggering and/or stress transfer is implied. There are several candidates, but so far only viscoelastic relaxation has been modeled on a global scale.

  9. Natural time analysis of global seismicity: the identification of magnitude correlations.

    NASA Astrophysics Data System (ADS)

    Sarlis, N. V.; Christopoulos, S.-R. G.

    2012-04-01

    Natural time [1-6] can reveal novel dynamical features hidden behind the time series of complex systems, for a review see Ref.[7]. In a time series comprising N earthquakes, the natural time χk = k/N serves as an index for the occurrence of the k-th event[1, 5, 6], and is smaller than or equal to unity. In natural time analysis of seismicity, the evolution of the pair of two quantities (χk, Ek) is considered, where Ek denotes the energy emitted during the k-th earthquake. It has been proposed[5] that the variance κ1 of natural time can play the role of an order parameter for seismicity. Moreover, when using natural time the identification of temporal correlations -even in the presence of heavy tails in the data- becomes possible[6]. Thus, natural time analysis enables the identification of magnitude correlations between successive earthquakes[8]. By analyzing in natural time[9] the worldwide seismicity from the Harvard Global Centroid Moment Tensor Catalog as reported by the United States Geological Survey as well as the most recent version (1900-2007) of the Centennial earthquake Catalog[10], we find non-trivial magnitude correlations for earthquakes of magnitude greater than or equal to 7.

  10. Estimating Seismic Hazards from the Catalog of Taiwan Earthquakes from 1900 to 2014 in Terms of Maximum Magnitude

    NASA Astrophysics Data System (ADS)

    Chen, Kuei-Pao; Chang, Wen-Yen

    2017-04-01

    Maximum expected earthquake magnitude is an important parameter when designing mitigation measures for seismic hazards. This study calculated the maximum magnitude of potential earthquakes for each cell in a 0.1° × 0.1° grid of Taiwan. Two zones vulnerable to maximum magnitudes of M w ≥6.0, which will cause extensive building damage, were identified: one extends from Hsinchu southward to Taichung, Nantou, Chiayi, and Tainan in western Taiwan; the other extends from Ilan southward to Hualian and Taitung in eastern Taiwan. These zones are also characterized by low b values, which are consistent with high peak ground shaking. We also employed an innovative method to calculate (at intervals of M w 0.5) the bounds and median of recurrence time for earthquakes of magnitude M w 6.0-8.0 in Taiwan.

  11. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake.

    PubMed

    Donnellan, Andrea; Grant Ludwig, Lisa; Parker, Jay W; Rundle, John B; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-09-01

    Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933  M 6.4 Long Beach and 1994  M 6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M 5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left-lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still-locked deeper structures. A future M 6.1-6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping.

  12. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake

    PubMed Central

    Grant Ludwig, Lisa; Parker, Jay W.; Rundle, John B.; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-01-01

    Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike‐slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike‐slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north‐south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left‐lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still‐locked deeper structures. A future M6.1–6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping. PMID:27981074

  13. Evaluation of the statistical evidence for Characteristic Earthquakes in the frequency-magnitude distributions of Sumatra and other subduction zone regions

    NASA Astrophysics Data System (ADS)

    Naylor, M.; Main, I. G.; Greenhough, J.; Bell, A. F.; McCloskey, J.

    2009-04-01

    The Sumatran Boxing Day earthquake and subsequent large events provide an opportunity to re-evaluate the statistical evidence for characteristic earthquake events in frequency-magnitude distributions. Our aims are to (i) improve intuition regarding the properties of samples drawn from power laws, (ii) illustrate using random samples how appropriate Poisson confidence intervals can both aid the eye and provide an appropriate statistical evaluation of data drawn from power-law distributions, and (iii) apply these confidence intervals to test for evidence of characteristic earthquakes in subduction-zone frequency-magnitude distributions. We find no need for a characteristic model to describe frequency magnitude distributions in any of the investigated subduction zones, including Sumatra, due to an emergent skew in residuals of power law count data at high magnitudes combined with a sample bias for examining large earthquakes as candidate characteristic events.

  14. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Lei, Xinglin; Huang, Dongjian; Su, Jinrong; Jiang, Guomao; Wang, Xiaolong; Wang, Hui; Guo, Xin; Fu, Hong

    2017-08-11

    This paper presents a timely and detailed study of significant injection-induced seismicity recently observed in the Sichuan Basin, China, where shale-gas hydraulic fracturing has been initiated and the aggressive production of shale gas is planned for the coming years. Multiple lines of evidence, including an epidemic-type aftershock sequence model, relocated hypocenters, the mechanisms of 13 large events (M W  > 3.5), and numerically calculated Coulomb failure stress results, convincingly suggest that a series of earthquakes with moment magnitudes up to M W 4.7 has been induced by "short-term" (several months at a single well pad) injections for hydraulic fracturing at depths of 2.3 to 3 km. This, in turn, supports the hypothesis that they represent examples of injection-induced fault reactivation. The geologic reasons why earthquake magnitudes associated with hydraulic fracturing operations are so high in this area are discussed. Because hydraulic fracturing operations are on the rise in the Sichuan Basin, it would be beneficial for the geoscience, gas operator, regulator, and academic communities to work collectively to elucidate the local factors governing the high level of injection-induced seismicity, with the ultimate goal of ensuring that shale gas fracking can be carried out effectively and safely.

  15. Magnitudes and locations of the 1811-1812 New Madrid, Missouri, and the 1886 Charleston, South Carolina, earthquakes

    USGS Publications Warehouse

    Bakun, W.H.; Hopper, M.G.

    2004-01-01

    We estimate locations and moment magnitudes M and their uncertainties for the three largest events in the 1811-1812 sequence near New Madrid, Missouri, and for the 1 September 1886 event near Charleston, South Carolina. The intensity magnitude M1, our preferred estimate of M, is 7.6 for the 16 December 1811 event that occurred in the New Madrid seismic zone (NMSZ) on the Bootheel lineament or on the Blytheville seismic zone. M1, is 7.5 for the 23 January 1812 event for a location on the New Madrid north zone of the NMSZ and 7.8 for the 7 February 1812 event that occurred on the Reelfoot blind thrust of the NMSZ. Our preferred locations for these events are located on those NMSZ segments preferred by Johnston and Schweig (1996). Our estimates of M are 0.1-0.4 M units less than those of Johnston (1996b) and 0.3-0.5 M units greater than those of Hough et al. (2000). M1 is 6.9 for the 1 September 1886 event for a location at the Summerville-Middleton Place cluster of recent small earthquakes located about 30 km northwest of Charleston.

  16. Great earthquakes of variable magnitude at the Cascadia subduction zone

    USGS Publications Warehouse

    Nelson, A.R.; Kelsey, H.M.; Witter, R.C.

    2006-01-01

    Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600??cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350??cal yr B.P., 2500??cal yr B.P., 3400??cal yr B.P., 3800??cal yr B.P., 4400??cal yr B.P., and 4900??cal yr B.P. A rupture about 700-1100??cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900??cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100??cal yr B.P., 1700??cal yr B.P., 3200??cal yr B.P., 4200??cal yr B.P., 4600??cal yr B.P., and 4700??cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.

  17. In situ seismic anisotropy around deep earthquakes in Japan subduction slabs using Japan Meteorological Agency moment tensors

    NASA Astrophysics Data System (ADS)

    Li, J.; Zheng, Y.; Thomsen, L.

    2017-12-01

    Knowing the in situ seismic anisotropy around deep earthquakes in slabs is important in understanding deep-earthquake mechanism as it may provide critically needed information about the rock fabric where deep earthquakes occur. It has been recognized for about 50 years that many deep earthquakes are not double-couple (DC) events. Previously we showed that in situ anisotropy around deep earthquakes could explain such observed non-DC events. Traditionally, the shear wave splitting method has been used to infer such anisotropy around deep earthquakes but this is challenging because it will need many crossing ray paths for the method to localize the anisotropic region (Long 2013). In this abstract, we adopt the same procedure to obtain anisotropy in the Pacific slab under Japan using moment tensors provided by the Japan Meteorological Agency using the F-net data. We directly probe the in situ anisotropy within the subducting slabs using the radiation patterns (represented by the moment tensors) of deep earthquakes (with depth greater than 60 km). By assuming a group of shear dislocation events embedded in a common tilted transversely isotropic (TTI) medium, we used the moment tensors as our input data to invert for the anisotropy in Mariana-Japan-Kuril subducting zone. The TTI medium is characterized by the P and S wave velocities along the symmetry axis (described by two free angles) and three Thomsen parameters. We divided the deep earthquake events into 9 groups by their spatial proximity using the k-means clustering method (Hartigan and Wong 1979). These 9 groups include 2 intermediate-depth groups (depth from 60 km to 300 km) and 7 deep-focus groups (depth greater than 300 km). Our inversion results show that the inverted TTI symmetry axes are perpendicular to the slab interface for two intermediate-depth groups (consistent with dehydration metamorphic reactions) and parallel to the slab interface for 7 deep-focus group. The shear wave anisotropy is best resolved

  18. Moment rate scaling for earthquakes 3.3 ≤ M ≤ 5.3 with implications for stress drop

    NASA Astrophysics Data System (ADS)

    Archuleta, Ralph J.; Ji, Chen

    2016-12-01

    We have determined a scalable apparent moment rate function (aMRF) that correctly predicts the peak ground acceleration (PGA), peak ground velocity (PGV), local magnitude, and the ratio of PGA/PGV for earthquakes 3.3 ≤ M ≤ 5.3. Using the NGA-West2 database for 3.0 ≤ M ≤ 7.7, we find a break in scaling of LogPGA and LogPGV versus M around M 5.3 with nearly linear scaling for LogPGA and LogPGV for 3.3 ≤ M ≤ 5.3. Temporal parameters tp and td—related to rise time and total duration—control the aMRF. Both scale with seismic moment. The Fourier amplitude spectrum of the aMRF has two corners between which the spectrum decays f- 1. Significant attenuation along the raypath results in a Brune-like spectrum with one corner fC. Assuming that fC ≅ 1/td, the aMRF predicts non-self-similar scaling M0∝fC3.3 and weak stress drop scaling Δσ∝M00.091. This aMRF can explain why stress drop is different from the stress parameter used to predict high-frequency ground motion.

  19. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  20. Fault failure with moderate earthquakes

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.

    1987-01-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  1. Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference

    USGS Publications Warehouse

    Wesson, R.L.; Bakun, W.H.; Perkins, D.M.

    2003-01-01

    Bayesian inference provides a method to use seismic intensity data or instrumental locations, together with geologic and seismologic data, to make quantitative estimates of the probabilities that specific past earthquakes are associated with specific faults. Probability density functions are constructed for the location of each earthquake, and these are combined with prior probabilities through Bayes' theorem to estimate the probability that an earthquake is associated with a specific fault. Results using this method are presented here for large, preinstrumental, historical earthquakes and for recent earthquakes with instrumental locations in the San Francisco Bay region. The probabilities for individual earthquakes can be summed to construct a probabilistic frequency-magnitude relationship for a fault segment. Other applications of the technique include the estimation of the probability of background earthquakes, that is, earthquakes not associated with known or considered faults, and the estimation of the fraction of the total seismic moment associated with earthquakes less than the characteristic magnitude. Results for the San Francisco Bay region suggest that potentially damaging earthquakes with magnitudes less than the characteristic magnitudes should be expected. Comparisons of earthquake locations and the surface traces of active faults as determined from geologic data show significant disparities, indicating that a complete understanding of the relationship between earthquakes and faults remains elusive.

  2. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  3. Scaling Relations of Earthquakes on Inland Active Mega-Fault Systems

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Matsushima, S.; Azuma, T.; Irikura, K.; Kitagawa, S.

    2010-12-01

    Since 2005, The Headquarters for Earthquake Research Promotion (HERP) has been publishing 'National Seismic Hazard Maps for Japan' to provide useful information for disaster prevention countermeasures for the country and local public agencies, as well as promote public awareness of disaster prevention of earthquakes. In the course of making the year 2009 version of the map, which is the commemorate of the tenth anniversary of the settlement of the Comprehensive Basic Policy, the methods to evaluate magnitude of earthquakes, to predict strong ground motion, and to construct underground structure were investigated in the Earthquake Research Committee and its subcommittees. In order to predict the magnitude of earthquakes occurring on mega-fault systems, we examined the scaling relations for mega-fault systems using 11 earthquakes of which source processes were analyzed by waveform inversion and of which surface information was investigated. As a result, we found that the data fit in between the scaling relations of seismic moment and rupture area by Somerville et al. (1999) and Irikura and Miyake (2001). We also found that maximum displacement of surface rupture is two to three times larger than the average slip on the seismic fault and surface fault length is equal to length of the source fault. Furthermore, compiled data of the source fault shows that displacement saturates at 10m when fault length(L) is beyond 100km, L>100km. By assuming the fault width (W) to be 18km in average of inland earthquakes in Japan, and the displacement saturate at 10m for length of more than 100 km, we derived a new scaling relation between source area and seismic moment, S[km^2] = 1.0 x 10^-17 M0 [Nm] for mega-fault systems that seismic moment (M0) exceeds 1.8×10^20 Nm.

  4. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults

    NASA Astrophysics Data System (ADS)

    Norbeck, Jack H.; Horne, Roland N.

    2018-05-01

    The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.

  5. A Magnitude 7.1 Earthquake in the Tacoma Fault Zone-A Plausible Scenario for the Southern Puget Sound Region, Washington

    USGS Publications Warehouse

    Gomberg, Joan; Sherrod, Brian; Weaver, Craig; Frankel, Art

    2010-01-01

    The U.S. Geological Survey and cooperating scientists have recently assessed the effects of a magnitude 7.1 earthquake on the Tacoma Fault Zone in Pierce County, Washington. A quake of comparable magnitude struck the southern Puget Sound region about 1,100 years ago, and similar earthquakes are almost certain to occur in the future. The region is now home to hundreds of thousands of people, who would be at risk from the shaking, liquefaction, landsliding, and tsunamis caused by such an earthquake. The modeled effects of this scenario earthquake will help emergency planners and residents of the region prepare for future quakes.

  6. Geodetically resolved slip distribution of the 27 August 2012 Mw=7.3 El Salvador earthquake

    NASA Astrophysics Data System (ADS)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Hernandez, D. A.; Mattioli, G. S.; Rogers, R.; Rodriguez, M.

    2013-12-01

    On 27 August 2012 a Mw=7.3 earthquake occurred offshore of Central America causing a small tsunami in El Salvador and Nicaragua but little damage otherwise. This is the largest magnitude earthquake in this area since 2001. We use co-seismic displacements estimated from episodic and continuous GPS station time series to model the magnitude and spatial variability of slip for this event. The estimated surface displacements are small (<2 cm) due to the distance and low magnitude of the earthquake. We use TDEFNODE to model the displacements using two different modeling approaches. In the first model, we solve for homogeneous slip on free rectangular fault(s), and in the second model we solve for distributed slip on the main thrust, realized using different slab models. The results indicate that we can match the seismic moment release, with models indicating rupture of a large area, with a low magnitude of slip. The slip is at shallow-to-intermediate depths on the main thrust off the coast of El Salvador. Additionally, we observe a deeper region of slip to the east, that reaches towards the Gulf of Fonseca between El Salvador and Nicaragua. The observed tsunami additionally indicates near-trench rupture off the coast of El Salvador. The duration of the rupturing is estimated from seismic data to be 70 s, which indicates a slow rupture process. Since the geodetic moment we obtain agrees with the seismic moment, this indicates that the earthquake was not associated with aseismic slip.

  7. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  8. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    USGS Publications Warehouse

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  9. A new 1649-1884 catalog of destructive earthquakes near Tokyo and implications for the long-term seismic process

    USGS Publications Warehouse

    Grunewald, E.D.; Stein, R.S.

    2006-01-01

    In order to assess the long-term character of seismicity near Tokyo, we construct an intensity-based catalog of damaging earthquakes that struck the greater Tokyo area between 1649 and 1884. Models for 15 historical earthquakes are developed using calibrated intensity attenuation relations that quantitatively convey uncertainties in event location and magnitude, as well as their covariance. The historical catalog is most likely complete for earthquakes M ??? 6.7; the largest earthquake in the catalog is the 1703 M ??? 8.2 Genroku event. Seismicity rates from 80 years of instrumental records, which include the 1923 M = 7.9 Kanto shock, as well as interevent times estimated from the past ???7000 years of paleoseismic data, are combined with the historical catalog to define a frequency-magnitude distribution for 4.5 ??? M ??? 8.2, which is well described by a truncated Gutenberg-Richter relation with a b value of 0.96 and a maximum magnitude of 8.4. Large uncertainties associated with the intensity-based catalog are propagated by a Monte Carlo simulation to estimations of the scalar moment rate. The resulting best estimate of moment rate during 1649-2003 is 1.35 ?? 1026 dyn cm yr-1 with considerable uncertainty at the 1??, level: (-0.11, + 0.20) ?? 1026 dyn cm yr-1. Comparison with geodetic models of the interseismic deformation indicates that the geodetic moment accumulation and likely moment release rate are roughly balanced over the catalog period. This balance suggests that the extended catalog is representative of long-term seismic processes near Tokyo and so can be used to assess earthquake probabilities. The resulting Poisson (or time-averaged) 30-year probability for M ??? 7.9 earthquakes is 7-11%.

  10. Suitability of rapid energy magnitude determinations for emergency response purposes

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Parolai, Stefano; Bormann, Peter; Grosser, Helmut; Saul, Joachim; Wang, Rongjiang; Zschau, Jochen

    2010-01-01

    It is common practice in the seismological community to use, especially for large earthquakes, the moment magnitude Mw as a unique magnitude parameter to evaluate the earthquake's damage potential. However, as a static measure of earthquake size, Mw does not provide direct information about the released seismic wave energy and its high frequency content, which is the more interesting information both for engineering purposes and for a rapid assessment of the earthquake's shaking potential. Therefore, we recommend to provide to disaster management organizations besides Mw also sufficiently accurate energy magnitude determinations as soon as possible after large earthquakes. We developed and extensively tested a rapid method for calculating the energy magnitude Me within about 10-15 min after an earthquake's occurrence. The method is based on pre-calculated spectral amplitude decay functions obtained from numerical simulations of Green's functions. After empirical validation, the procedure has been applied offline to a large data set of 767 shallow earthquakes that have been grouped according to their type of mechanism (strike-slip, normal faulting, thrust faulting, etc.). The suitability of the proposed approach is discussed by comparing our rapid Me estimates with Mw published by GCMT as well as with Mw and Me reported by the USGS. Mw is on average slightly larger than our Me for all types of mechanisms. No clear dependence on source mechanism is observed for our Me estimates. In contrast, Me from the USGS is generally larger than Mw for strike-slip earthquakes and generally smaller for the other source types. For ~67 per cent of the event data set our Me differs <= +/-0.3 magnitude units (m.u.) from the respective Me values published by the USGS. However, larger discrepancies (up to 0.8 m.u.) may occur for strike-slip events. A reason of that may be the overcorrection of the energy flux applied by the USGS for this type of earthquakes. We follow the original

  11. Moment-tensor solutions for the 24 November 1987 Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Sipkin, S.A.

    1989-01-01

    The teleseismic long-period waveforms recorded by the Global Digital Seismograph Network from the two largest Superstition Hills earthquakes are inverted using an algorithm based on optimal filter theory. These solutions differ slightly from those published in the Preliminary Determination of Epicenters Monthly Listing because a somewhat different, improved data set was used in the inversions and a time-dependent moment-tensor algorithm was used to investigate the complexity of the main shock. The foreshock (origin time 01:54:14.5, mb 5.7, Ms6.2) had a scalar moment of 2.3 ?? 1025 dyne-cm, a depth of 8km, and a mechanism of strike 217??, dip 79??, rake 4??. The main shock (origin time 13:15:56.4, mb 6.0, Ms6.6) was a complex event, consisting of at least two subevents, with a combined scalar moment of 1.0 ?? 1026 dyne-cm, a depth of 10km, and a mechanism of strike 303??, dip 89??, rake -180??. -Authors

  12. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  13. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a

  14. Precursory diffuse carbon dioxide degassing signature related to a 5.1 magnitude earthquake in El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Salazar, J. M. L.; Pérez, N. M.; Hernández, P. A.; Soriano, T.; Barahona, F.; Olmos, R.; Cartagena, R.; López, D. L.; Lima, R. N.; Melián, G.; Galindo, I.; Padrón, E.; Sumino, H.; Notsu, K.

    2002-12-01

    Anomalous changes in the diffuse emission of carbon dioxide have been observed before some of the aftershocks of the 13 February 2001 El Salvador earthquake (magnitude 6.6). A significant increase in soil CO 2 efflux was detected 8 days before a 5.1 magnitude earthquake on 8 May 2001 25 km away from the observation site. In addition, pre- and co-seismic CO 2 efflux variations have also been observed related to the onset of a seismic swarm beneath San Vicente volcano on May 2001. Strain changes and/or fluid pressure fluctuations prior to earthquakes in the crust are hypothesized to be responsible for the observed variations in gas efflux at the surface environment of San Vicente volcano.

  15. Listening to data from the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Kilb, D. L.; Shelly, D. R.; Enescu, B.

    2011-12-01

    It is important for seismologists to effectively convey information about catastrophic earthquakes, such as the magnitude 9.0 earthquake in Tohoku-Oki, Japan, to general audience who may not necessarily be well-versed in the language of earthquake seismology. Given recent technological advances, previous approaches of using "snapshot" static images to represent earthquake data is now becoming obsolete, and the favored venue to explain complex wave propagation inside the solid earth and interactions among earthquakes is now visualizations that include auditory information. Here, we convert seismic data into visualizations that include sounds, the latter being a term known as 'audification', or continuous 'sonification'. By combining seismic auditory and visual information, static "snapshots" of earthquake data come to life, allowing pitch and amplitude changes to be heard in sync with viewed frequency changes in the seismograms and associated spectragrams. In addition, these visual and auditory media allow the viewer to relate earthquake generated seismic signals to familiar sounds such as thunder, popcorn popping, rattlesnakes, firecrackers, etc. We present a free software package that uses simple MATLAB tools and Apple Inc's QuickTime Pro to automatically convert seismic data into auditory movies. We focus on examples of seismic data from the 2011 Tohoku-Oki earthquake. These examples range from near-field strong motion recordings that demonstrate the complex source process of the mainshock and early aftershocks, to far-field broadband recordings that capture remotely triggered deep tremor and shallow earthquakes. We envision audification of seismic data, which is geared toward a broad range of audiences, will be increasingly used to convey information about notable earthquakes and research frontiers in earthquake seismology (tremor, dynamic triggering, etc). Our overarching goal is that sharing our new visualization tool will foster an interest in seismology, not

  16. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence

    NASA Astrophysics Data System (ADS)

    Zhu, Lupei; Zhou, Xiaofeng

    2016-10-01

    Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.

  17. Oklahoma Area Struck By Magnitude 5.0 Earthquake Imaged by NASA Satellite

    NASA Image and Video Library

    2016-11-08

    On Sunday, Nov. 6, 2016, at 7:44 p.m. local time, a magnitude 5.0 earthquake struck near the town of Cushing, Oklahoma. Numerous buildings were damaged by the temblor, but only a few minor injuries were reported. Cushing is home to one of the world's largest oil storage terminals; no damage was reported to the petroleum facilities. A star marks the epicenter of the earthquake,which occurred at a depth of 3.1 miles (5 kilometers). The image was acquired April 28, 2011, covers an area of 7 by 9 miles (11.4 by 14.5 kilometers), and is located at 36 degrees north, 96.8 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21099

  18. An overview of the geotechnical damage brought by the 2016 Kumamoto Earthquake, Japan

    USGS Publications Warehouse

    Hemanta Hazarika,; Takaji Kokusho,; Kayen, Robert E.; Dashti, Shideh; Yutaka Tanoue,; Shuuichi Kuroda and Kentaro Kuribayashi,; Daisuke Matsumoto,; Furuichi, Hideo

    2016-01-01

    The 2016 Kumamoto earthquake with a moment magnitude of 7.0 (Japanese intensity = 7) that struck on April 16 brought devastation in many areas of Kumamoto Prefecture and partly in Oita Prefecture in Kyushu Region, Japan. The earthquake succeeds a foreshock of magnitude 6.5 (Japanese intensity = 7) on April 14. The authors conducted two surveys on the devastated areas: one during April 16-17, and the other during May 11-14. This report summarizes the damage brought to geotechnical structures by the two consecutive earthquakes within a span of twenty-eight hours. This report highlights some of the observed damage and identifies reasons for such damage. The geotechnical challenges towards mitigation of losses from such earthquakes are also suggested.

  19. Analysis of Seismic Moment Tensor and Finite-Source Scaling During EGS Resource Development at The Geysers, CA

    NASA Astrophysics Data System (ADS)

    Boyd, O. S.; Dreger, D. S.; Gritto, R.

    2015-12-01

    Enhanced Geothermal Systems (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. We investigate seismicity in the vicinity of the EGS development at The Geysers Prati-32 injection well to determine moment magnitude, focal mechanism, and kinematic finite-source models with the goal of developing a rupture area scaling relationship for the Geysers and specifically for the Prati-32 EGS injection experiment. Thus far we have analyzed moment tensors of M ≥ 2 events, and are developing the capability to analyze the large numbers of events occurring as a result of the fluid injection and to push the analysis to smaller magnitude earthquakes. We have also determined finite-source models for five events ranging in magnitude from M 3.7 to 4.5. The scaling relationship between rupture area and moment magnitude of these events resembles that of a published empirical relationship derived for events from M 4.5 to 8.3. We plan to develop a scaling relationship in which moment magnitude and corner frequency are predictor variables for source rupture area constrained by the finite-source modeling. Inclusion of corner frequency in the empirical scaling relationship is proposed to account for possible variations in stress drop. If successful, we will use this relationship to extrapolate to the large numbers of events in the EGS seismicity cloud to estimate the coseismic fracture density. We will present the moment tensor and corner frequency results for the micro earthquakes, and for select events, finite-source models. Stress drop inferred from corner frequencies and from finite-source modeling will be compared.

  20. On the modified Mercalli intensities and magnitudes of the 1811-1812 New Madrid earthquakes

    USGS Publications Warehouse

    Hough, S.E.; Armbruster, J.G.; Seeber, L.; Hough, J.F.

    2000-01-01

    We reexamine original felt reports from the 1811-1812 New Madrid earthquakes and determine revised isoseismal maps for the three principal mainshocks. In many cases we interpret lower values than those assigned by earlier studies. In some cases the revisions result from an interpretation of original felt reports with an appreciation for site response issues. Additionally, earlier studies had assigned modified Mercalli intensity (MMI) values of V-VII to a substantial number of reports that we conclude do not describe damage commensurate with intensities this high. We investigate several approaches to contouring the MMI values using both analytical and subjective methods. For the first mainshock on 02:15 LT December 16, 1811, our preferred contouring yields M??7.2-7.3 using the area-moment regressions of Johnston [1996]. For the 08:00 LT on January 23, 1812, and 03:45 LT on February 7, 1812, mainshocks, we obtain M??7.0 and M??7.4-7.5, respectively. Our magnitude for the February mainshock is consistent with the established geometry of the Reelfoot fault, which all evidence suggests to have been the causative structure for this event. We note that the inference of lower magnitudes for the New Madrid events implies that site response plays a significant role in controlling seismic hazard at alluvial sites in the central and eastern United States. We also note that our results suggest that thrusting may have been the dominant mechanism of faulting associated with the 1811-1812 sequence. Copyright 2000 by the American Geophysical Union.

  1. The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan

    NASA Astrophysics Data System (ADS)

    Reddy, Ramakrushna; Nair, Rajesh R.

    2013-10-01

    This work deals with a methodology applied to seismic early warning systems which are designed to provide real-time estimation of the magnitude of an event. We will reappraise the work of Simons et al. (2006), who on the basis of wavelet approach predicted a magnitude error of ±1. We will verify and improve upon the methodology of Simons et al. (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source-receiver distance of up to 150 km during the period 1998-2011. We applied a wavelet transform on the seismogram data and calculating scale-dependent threshold wavelet coefficients. These coefficients were then classified into low magnitude and high magnitude events by constructing a maximum margin hyperplane between the two classes, which forms the essence of SVMs. Further, the classified events from both the classes were picked up and linear regressions were plotted to determine the relationship between wavelet coefficient magnitude and earthquake magnitude, which in turn helped us to estimate the earthquake magnitude of an event given its threshold wavelet coefficient. At wavelet scale number 7, we predicted the earthquake magnitude of an event within 2.7 seconds. This means that a magnitude determination is available within 2.7 s after the initial onset of the P-wave. These results shed light on the application of SVM as a way to choose the optimal regression function to estimate the magnitude from a few seconds of an incoming seismogram. This would improve the approaches from Simons et al. (2006) which use an average of the two regression functions to estimate the magnitude.

  2. Geodetic constraints on afterslip characteristics following the March 9, 2011, Sanriku-oki earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Ohta, Yusaku; Hino, Ryota; Inazu, Daisuke; Ohzono, Mako; Ito, Yoshihiro; Mishina, Masaaki; Iinuma, Takeshi; Nakajima, Junichi; Osada, Yukihito; Suzuki, Kensuke; Fujimoto, Hiromi; Tachibana, Kenji; Demachi, Tomotsugu; Miura, Satoshi

    2012-08-01

    A magnitude 7.3 foreshock occurred at the subducting Pacific plate interface on March 9, 2011, 51 h before the magnitude 9.0 Tohoku earthquake off the Pacific coast of Japan. We propose a coseismic and postseismic afterslip model of the magnitude 7.3 event based on a global positioning system network and ocean bottom pressure gauge sites. The estimated coseismic slip and afterslip areas show complementary spatial distributions; the afterslip distribution is located up-dip of the coseismic slip for the foreshock and northward of hypocenter of the Tohoku earthquake. The slip amount for the afterslip is roughly consistent with that determined by repeating earthquake analysis carried out in a previous study. The estimated moment release for the afterslip reached magnitude 6.8, even within a short time period of 51h. A volumetric strainmeter time series also suggests that this event advanced with a rapid decay time constant compared with other typical large earthquakes.

  3. Energy-to-Moment ratios for Deep Earthquakes: No evidence for scofflaws

    NASA Astrophysics Data System (ADS)

    Saloor, N.; Okal, E. A.

    2015-12-01

    Energy-to-moment ratios can provide information on the distribution of seismic source spectrum between high and low frequencies, and thus identify anomalous events (either "slow" or "snappy") whose source violates seismic scaling laws, the former characteristic of the so-called tsunami earthquakes (e.g., Mentawai, 2010), the latter featuring enhanced acceleration and destruction (e.g., Christchurch, 2011). We extend to deep earthquakes the concept of the slowness paramete, Θ=log10EE/M0, introduced by Newman and Okal [1998], where the estimated energy EE is computed for an average focal mechanism and depth (in the range 300-690 km). We find that only minor modifications of the algorithm are necessary to adapt it to deep earthquakes. The analysis of a dataset of 160 deep earthquakes from the past 30 years show that these events scale with an average Θ=-4.34±0.31, corresponding to slightly greater strain release than for their shallow counterparts. However, the most important result to date is that we have not found any "outliers", i.e., violating this trend by one or more logarithmic units, as was the case for the slow events at shallow depths. This indicates that the processes responsible for such variations in energy distribution in the source spectrum of shallow earthquakes, are absent from their deep counterparts, suggesting, perhaps not unexpectedly, that the deep seismogenic zones feature more homogeneous properties than shallow ones. This includes the large event of 30 May 2015 below the Bonin Islands (Θ=-4.13), which took place both deeper than, and oceanwards of, the otherwise documented Wadati-Benioff Zone.

  4. Seismic databases and earthquake catalogue of the Caucasus

    NASA Astrophysics Data System (ADS)

    Godoladze, Tea; Javakhishvili, Zurab; Tvaradze, Nino; Tumanova, Nino; Jorjiashvili, Nato; Gok, Rengen

    2016-04-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283, Ms~7.0, Io=9; Lechkhumi-Svaneti earthquake of 1350, Ms~7.0, Io=9; and the Alaverdi(earthquake of 1742, Ms~6.8, Io=9. Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088, Ms~6.5, Io=9 and the Akhalkalaki earthquake of 1899, Ms~6.3, Io =8-9. Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; 1991 Ms=7.0 Racha earthquake, the largest event ever recorded in the region; the 1992 M=6.5 Barisakho earthquake; Ms=6.9 Spitak, Armenia earthquake (100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of various national networks (Georgia (~25 stations), Azerbaijan (~35 stations), Armenia (~14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. A catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences, Ilia State University). The catalog consists of more then 80,000 events. Together with our colleagues from Armenia, Azerbaijan and Turkey the database for the Caucasus seismic events was compiled. We tried to improve locations of the events and calculate Moment magnitudes for the events more than magnitude 4 estimate in order to obtain unified magnitude catalogue of the region. The results will serve as the input for the Seismic hazard assessment for the region.

  5. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    USGS Publications Warehouse

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill

  6. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  7. The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide

    USGS Publications Warehouse

    Pollitz, Fred F.; Stein, Ross S.; Sevilgen, Volkan; Burgmann, Roland

    2012-01-01

    Large earthquakes trigger very small earthquakes globally during passage of the seismic waves and during the following several hours to days1, 2, 3, 4, 5, 6, 7, 8, 9, 10, but so far remote aftershocks of moment magnitude M≥5.5 have not been identified11, with the lone exception of an M=6.9 quake remotely triggered by the surface waves from an M=6.6 quake 4,800 kilometres away12. The 2012 east Indian Ocean earthquake that had a moment magnitude of 8.6 is the largest strike-slip event ever recorded. Here we show that the rate of occurrence of remote M≥5.5 earthquakes (>1,500 kilometres from the epicentre) increased nearly fivefold for six days after the 2012 event, and extended in magnitude to M≥7. These global aftershocks were located along the four lobes of Love-wave radiation; all struck where the dynamic shear strain is calculated to exceed 10-7 for at least 100 seconds during dynamic-wave passage. The other M≥8.5 mainshocks during the past decade are thrusts; after these events, the global rate of occurrence of remote M≥5.5 events increased by about one-third the rate following the 2012 shock and lasted for only two days, a weaker but possibly real increase. We suggest that the unprecedented delayed triggering power of the 2012 earthquake may have arisen because of its strike-slip source geometry or because the event struck at a time of an unusually low global earthquake rate, perhaps increasing the number of nucleation sites that were very close to failure.

  8. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    PubMed

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  9. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    PubMed Central

    Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  10. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    NASA Astrophysics Data System (ADS)

    Alvizuri, Celso; Silwal, Vipul; Krischer, Lion; Tape, Carl

    2017-04-01

    A seismic moment tensor is a 3 × 3 symmetric matrix that provides a compact representation of seismic events within Earth's crust. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms at each grid point and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P(V ), where P(V ) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V . The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M. We apply the method to data from events in different regions and tectonic settings: small (Mw < 2.5) events at Uturuncu volcano in Bolivia, moderate (Mw > 4) earthquakes in the southern Alaska subduction zone, and natural and man-made events at the Nevada Test Site. Moment tensor uncertainties allow us to better discriminate among moment tensor source types and to assign physical processes to the events.

  11. Improved tests reveal that the accelarating moment release hypothesis is statistically insignificant

    USGS Publications Warehouse

    Hardebeck, J.L.; Felzer, K.R.; Michael, A.J.

    2008-01-01

    We test the hypothesis that accelerating moment release (AMR) is a precursor to large earthquakes, using data from California, Nevada, and Sumatra. Spurious cases of AMR can arise from data fitting because the time period, area, and sometimes magnitude range analyzed before each main shock are often optimized to produce the strongest AMR signal. Optimizing the search criteria can identify apparent AMR even if no robust signal exists. For both 1950-2006 California-Nevada M ??? 6.5 earthquakes and the 2004 M9.3 Sumatra earthquake, we can find two contradictory patterns in the pre-main shock earthquakes by data fitting: AMR and decelerating moment release. We compare the apparent AMR found in the real data to the apparent AMR found in four types of synthetic catalogs with no inherent AMR. When spatiotemporal clustering is included in the simulations, similar AMR signals are found by data fitting in both the real and synthetic data sets even though the synthetic data sets contain no real AMR. These tests demonstrate that apparent AMR may arise from a combination of data fitting and normal foreshock and aftershock activity. In principle, data-fitting artifacts could be avoided if the free parameters were determined from scaling relationships between the duration and spatial extent of the AMR pattern and the magnitude of the earthquake that follows it. However, we demonstrate that previously proposed scaling relationships are unstable, statistical artifacts caused by the use of a minimum magnitude for the earthquake catalog that scales with the main shock magnitude. Some recent AMR studies have used spatial regions based on hypothetical stress loading patterns, rather than circles, to select the data. We show that previous tests were biased and that unbiased tests do not find this change to the method to be an improvement. The use of declustered catalogs has also been proposed to eliminate the effect of clustering but we demonstrate that this does not increase the

  12. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribadi, Sugeng, E-mail: sugengpribadimsc@gmail.com; Afnimar,; Puspito, Nanang T.

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994more » Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake.« less

  13. On the scale dependence of earthquake stress drop

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Tinti, Elisa; Cirella, Antonella

    2016-10-01

    We discuss the debated issue of scale dependence in earthquake source mechanics with the goal of providing supporting evidence to foster the adoption of a coherent interpretative framework. We examine the heterogeneous distribution of source and constitutive parameters during individual ruptures and their scaling with earthquake size. We discuss evidence that slip, slip-weakening distance and breakdown work scale with seismic moment and are interpreted as scale dependent parameters. We integrate our estimates of earthquake stress drop, computed through a pseudo-dynamic approach, with many others available in the literature for both point sources and finite fault models. We obtain a picture of the earthquake stress drop scaling with seismic moment over an exceptional broad range of earthquake sizes (-8 < MW < 9). Our results confirm that stress drop values are scattered over three order of magnitude and emphasize the lack of corroborating evidence that stress drop scales with seismic moment. We discuss these results in terms of scale invariance of stress drop with source dimension to analyse the interpretation of this outcome in terms of self-similarity. Geophysicists are presently unable to provide physical explanations of dynamic self-similarity relying on deterministic descriptions of micro-scale processes. We conclude that the interpretation of the self-similar behaviour of stress drop scaling is strongly model dependent. We emphasize that it relies on a geometric description of source heterogeneity through the statistical properties of initial stress or fault-surface topography, in which only the latter is constrained by observations.

  14. Empirical relations to convert magnitudes of the earthquake catalogue for the north western of Algeria

    NASA Astrophysics Data System (ADS)

    Belayadi, Ilyes; Bezzeghoud, Mourad; Fontiela, João; Nadji, Amansour

    2017-04-01

    North Algeria is one of the most seismically active regions on the western Mediterranean basin and it is related with the boundaries of the Eurasian and Nubian plates. We compiled an earthquake catalogue for the north western of Algeria, within the area -2°W-1°E and 34°N-37°N for the time span 1790 - 2016. To compile the earthquake catalogue we merge all available catalogues either national and international. Then we remove all duplicates and fake earthquakes. The lower level of the catalogue entries is set at M = 2.5. Nevertheless, the magnitudes reported on the catalogue are ML, Ms, Mb, Mw and macroseismic intensity. Thus, we develop new empirical relations to calculate the Mw from the different magnitudes and intensity suitable to the seismic hazard and geodynamic context of North Algeria. Acknowledgements: Ilyes Belayadi is funded entirely by the University of Oran 2 Mohamed Ben Ahmed (Algeria). This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.

  15. An earthquake rate forecast for Europe based on smoothed seismicity and smoothed fault contribution

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Woessner, Jochen; Basili, Roberto; Wiemer, Stefan

    2013-04-01

    The main objective of project SHARE (Seismic Hazard Harmonization in Europe) is to develop a community-based seismic hazard model for the Euro-Mediterranean region. The logic tree of earthquake rupture forecasts comprises several methodologies including smoothed seismicity approaches. Smoothed seismicity thus represents an alternative concept to express the degree of spatial stationarity of seismicity and provides results that are more objective, reproducible, and testable. Nonetheless, the smoothed-seismicity approach suffers from the common drawback of being generally based on earthquake catalogs alone, i.e. the wealth of knowledge from geology is completely ignored. We present a model that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults and subductions. The result is mainly driven by the data, being independent of subjective delineation of seismic source zones. The core parts of our model are two distinct location probability densities: The first is computed by smoothing past seismicity (using variable kernel smoothing to account for varying data density). The second is obtained by smoothing fault moment rate contributions. The fault moment rates are calculated by summing the moment rate of each fault patch on a fully parameterized and discretized fault as available from the SHARE fault database. We assume that the regional frequency-magnitude distribution of the entire study area is well known and estimate the a- and b-value of a truncated Gutenberg-Richter magnitude distribution based on a maximum likelihood approach that considers the spatial and temporal completeness history of the seismic catalog. The two location probability densities are linearly weighted as a function of magnitude assuming that (1) the occurrence of past seismicity is a good proxy to forecast occurrence of future seismicity and (2) future large-magnitude events occur more likely in the vicinity of known faults. Consequently

  16. The 1995 November 22, Mw 7.2 Gulf of Elat earthquake cycle revisited

    NASA Astrophysics Data System (ADS)

    Baer, Gidon; Funning, Gareth J.; Shamir, Gadi; Wright, Tim J.

    2008-12-01

    The 1995 November 22, Mw = 7.2 Nuweiba earthquake occurred along one of the left-stepping segments of the Dead Sea Transform (DST) in the Gulf of Elat (Aqaba). It was the largest earthquake along the DST in at least 160 yr. The main shock was preceded by earthquake swarms north and south of its NE-striking rupture since the early 1980s, and was followed by about 6 months of intense aftershock activity, concentrated mainly northwest and southeast of the main rupture. In this study we re-analyse ERS-1 and ERS-2 InSAR data for the period spanning the main shock and 5 post-seismic years. Because the entire rupture was under the Gulf water, surface observations related to the earthquake are limited to distances greater than 5 km away from the rupture zone. Coseismic interferograms were produced for the earthquake +1 week, +4 months and +6 months. Non-linear inversions were carried out for fault geometry and linear inversions were made for slip distribution using an ascending-descending 2-frame data set. The moment calculated from our best-fitting model is in agreement with the seismological moment, but trade-offs exist among several fault parameters. The present model upgrades previous InSAR models of the Nuweiba earthquake, and differs from recent teleseismic waveform inversion results mainly in terms of slip magnitude and distribution. The moment released by post-seismic deformation in the period of 6 months to 2 yr after the Nuweiba earthquake is about 15 per cent of the coseismic moment release. Our models suggest that this deformation can be represented by slip along the lower part of the coseismic rupture. Localised deformation along the Gulf shores NW of the main rupture in the first 6 months after the earthquake is correlated with surface displacements along active Gulf-parallel normal faults and possibly with shallow M > 3.9, D < 6 km aftershocks. The geodetic moment calculated by modelling this deformation is more than an order of magnitude larger than

  17. Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence

    NASA Astrophysics Data System (ADS)

    Borghi, A.; Aoudia, A.; Javed, F.; Barzaghi, R.

    2016-05-01

    Slow-slip events (SSEs) are common at subduction zone faults where large mega earthquakes occur. We report here that one of the best-recorded moderate size continental earthquake, the 2009 April 6 moment magnitude (Mw) 6.3 L'Aquila (Italy) earthquake, was preceded by a 5.9 Mw SSE that originated from the decollement beneath the reactivated normal faulting system. The SSE is identified from a rigorous analysis of continuous GPS stations and occurred on the 12 February and lasted for almost two weeks. It coincided with a burst in the foreshock activity with small repeating earthquakes migrating towards the main-shock hypocentre as well as with a change in the elastic properties of rocks in the fault region. The SSE has caused substantial stress loading at seismogenic depths where the magnitude 4.0 foreshock and Mw 6.3 main shock nucleated. This stress loading is also spatially correlated with the lateral extent of the aftershock sequence.

  18. Comparing the November 2002 Denali and November 2001 Kunlun earthquakes

    USGS Publications Warehouse

    Bufe, C.G.

    2004-01-01

    Major strike-slip earthquakes recently occurred in Alaska on the central Denali fault (M 7.9) on 3 November 2002, and in Tibet on the central Kunlun fault (M 7.8) on 14 November 2001. Both earthquakes generated large surface waves with Ms [U.S. Geological Survey (USGS)] of 8.5 (Denali) and 8.0 (Kunlun). Each event occurred on an east-west-trending strike-slip fault situated near the northern boundary of an intense deformation zone that is characterized by lateral extrusion and rotation of crustal blocks. Each earthquake produced east-directed nearly unilateral ruptures that propagated 300 to 400 km. Maximum lateral surface offsets and maximum moment release occurred well beyond 100 km from the rupture initiation, with the events exhibiting by far the largest separations of USGS hypocenter and Harvard Moment Tensor Centroid (CMT) for strike-slip earthquakes in the 27-year CMT catalog. In each sequence, the largest aftershock was more than two orders of magnitude smaller than the mainshock. Regional moment release had been accelerating prior to the main shocks. The close proximity in space and time of the 1964 Prince William Sound and 2002 Denali earthquakes, relative to their rupture lengths and estimated return times, suggests that these events may be part of a recurrent cluster in the vicinity of a complex plate boundary.

  19. Extension of the energy-to-moment parameter Θ to intermediate and deep earthquakes

    NASA Astrophysics Data System (ADS)

    Saloor, Nooshin; Okal, Emile A.

    2018-01-01

    We extend to intermediate and deep earthquakes the slowness parameter Θ originally introduced by Newman and Okal (1998). Because of the increasing time lag with depth between the phases P, pP and sP, and of variations in anelastic attenuation parameters t∗ , we define four depth bins featuring slightly different algorithms for the computation of Θ . We apply this methodology to a global dataset of 598 intermediate and deep earthquakes with moments greater than 1025 dyn∗cm. We find a slight increase with depth in average values of Θ (from -4.81 between 80 and 135 km to -4.48 between 450 and 700 km), which however all have intersecting one- σ bands. With widths ranging from 0.26 to 0.31 logarithmic units, these are narrower than their counterpart for a reference dataset of 146 shallow earthquakes (σ = 0.55). Similarly, we find no correlation between values of Θ and focal geometry. These results point to stress conditions within the seismogenic zones inside the Wadati-Benioff slabs more homogeneous than those prevailing at the shallow contacts between tectonic plates.

  20. Incorporating Love- and Rayleigh-wave magnitudes, unequal earthquake and explosion variance assumptions and interstation complexity for improved event screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N; Bonner, Jessie L; Stroujkova, Anastasia

    Our objective is to improve seismic event screening using the properties of surface waves, We are accomplishing this through (1) the development of a Love-wave magnitude formula that is complementary to the Russell (2006) formula for Rayleigh waves and (2) quantifying differences in complexities and magnitude variances for earthquake and explosion-generated surface waves. We have applied the M{sub s} (VMAX) analysis (Bonner et al., 2006) using both Love and Rayleigh waves to events in the Middle East and Korean Peninsula, For the Middle East dataset consisting of approximately 100 events, the Love M{sub s} (VMAX) is greater than the Rayleighmore » M{sub s} (VMAX) estimated for individual stations for the majority of the events and azimuths, with the exception of the measurements for the smaller events from European stations to the northeast. It is unclear whether these smaller events suffer from magnitude bias for the Love waves or whether the paths, which include the Caspian and Mediterranean, have variable attenuation for Love and Rayleigh waves. For the Korean Peninsula, we have estimated Rayleigh- and Love-wave magnitudes for 31 earthquakes and two nuclear explosions, including the 25 May 2009 event. For 25 of the earthquakes, the network-averaged Love-wave magnitude is larger than the Rayleigh-wave estimate. For the 2009 nuclear explosion, the Love-wave M{sub s} (VMAX) was 3.1 while the Rayleigh-wave magnitude was 3.6. We are also utilizing the potential of observed variances in M{sub s} estimates that differ significantly in earthquake and explosion populations. We have considered two possible methods for incorporating unequal variances into the discrimination problem and compared the performance of various approaches on a population of 73 western United States earthquakes and 131 Nevada Test Site explosions. The approach proposes replacing the M{sub s} component by M{sub s} + a* {sigma}, where {sigma} denotes the interstation standard deviation obtained

  1. NIED seismic moment tensor catalogue for regional earthquakes around Japan: quality test and application

    NASA Astrophysics Data System (ADS)

    Kubo, Atsuki; Fukuyama, Eiichi; Kawai, Hiroyuki; Nonomura, Ken'ichi

    2002-10-01

    We have examined the quality of the National Research Institute for Earth Science and Disaster Prevention (NIED) seismic moment tensor (MT) catalogue obtained using a regional broadband seismic network (FREESIA). First, we examined using synthetic waveforms the robustness of the solutions with regard to data noise as well as to errors in the velocity structure and focal location. Then, to estimate the reliability, robustness and validity of the catalogue, we compared it with the Harvard centroid moment tensor (CMT) catalogue as well as the Japan Meteorological Agency (JMA) focal mechanism catalogue. We found out that the NIED catalogue is consistent with Harvard and JMA catalogues within the uncertainty of 0.1 in moment magnitude, 10 km in depth, and 15° in direction of the stress axes. The NIED MT catalogue succeeded in reducing to 3.5 the lower limit of moment magnitude above which the moment tensor could be reliably estimated. Finally, we estimated the stress tensors in several different regions by using the NIED MT catalogue. This enables us to elucidate the stress/deformation field in and around the Japanese islands to understand the mode of deformation and applied stress. Moreover, we identified a region of abnormal stress in a swarm area from stress tensor estimates.

  2. Seismomagnetic observation during the 8 July 1986 magnitude 5.9 North Palm Springs earthquake

    USGS Publications Warehouse

    Johnston, M.J.S.; Mueller, R.J.

    1987-01-01

    A differentially connected array of 24 proton magnetometers has operated along the San Andreas fault since 1976. Seismomagnetic offsets of 1.2 and 0.3 nanotesla were observed at epicentral distances of 3 and 9 kilometers, respectively, after the 8 July 1986 magnitude 5.9 North Palm Springs earthquake. These seismomagnetic observations are the first obtained of this elusive but long-anticipated effect. The data are consistent with a seismomagnetic model of the earthquake for which right-lateral rupture of 20 centimeters is assumed on a 16-kilometer segment of the Banning fault between the depths of 3 and 10 kilometers in a region with average magnetization of 1 ampere per meter. Alternative explanations in terms of electrokinetic effects and earthquake-generated electrostatic charge redistribution seem unlikely because the changes are permanent and complete within a 20-minute period.

  3. Improved centroid moment tensor analyses in the NIED AQUA (Accurate and QUick Analysis system for source parameters)

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Asano, Y.; Matsumoto, T.

    2012-12-01

    The rapid determination of hypocentral parameters and their transmission to the public are valuable components of disaster mitigation. We have operated an automatic system for this purpose—termed the Accurate and QUick Analysis system for source parameters (AQUA)—since 2005 (Matsumura et al., 2006). In this system, the initial hypocenter, the moment tensor (MT), and the centroid moment tensor (CMT) solutions are automatically determined and posted on the NIED Hi-net Web site (www.hinet.bosai.go.jp). This paper describes improvements made to the AQUA to overcome limitations that became apparent after the 2011 Tohoku Earthquake (05:46:17, March 11, 2011 in UTC). The improvements included the processing of NIED F-net velocity-type strong motion records, because NIED F-net broadband seismographs are saturated for great earthquakes such as the 2011 Tohoku Earthquake. These velocity-type strong motion seismographs provide unsaturated records not only for the 2011 Tohoku Earthquake, but also for recording stations located close to the epicenters of M>7 earthquakes. We used 0.005-0.020 Hz records for M>7.5 earthquakes, in contrast to the 0.01-0.05 Hz records employed in the original system. The initial hypocenters determined based on arrival times picked by using seismograms recorded by NIED Hi-net stations can have large errors in terms of magnitude and hypocenter location, especially for great earthquakes or earthquakes located far from the onland Hi-net network. The size of the 2011 Tohoku Earthquake was initially underestimated in the AQUA to be around M5 at the initial stage of rupture. Numerous aftershocks occurred at the outer rise east of the Japan trench, where a great earthquake is anticipated to occur. Hence, we modified the system to repeat the MT analyses assuming a larger size, for all earthquakes for which the magnitude was initially underestimated. We also broadened the search range of centroid depth for earthquakes located far from the onland Hi

  4. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Saul, J.; Grosser, H.; Wang, R.; Zschau, J.

    2009-04-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake's damage potential. However, many magnitude scales developed over the past years have different meanings. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy ES (e.g. Bormann et al., 2002): Me = 2/3(log10 ES - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. The calculation of ES requires the integration over frequency of the squared P-waves velocity spectrum corrected for the energy loss experienced by the seismic waves along the path from the source to the receivers. To accout for the frequency-dependent energy loss, we computed spectral amplitude decay functions for different frequenciesby using synthetic Green's functions (Wang, 1999) based on the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We analyse teleseismic broadband P-waves signals in the distance range 20°-98°. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake's origin time. Indeed, we use time variable cumulative energy windows starting 4 s after the first P-wave arrival in order to include the earthquake rupture

  5. The seismicity in the L'Aquila area (Italy) with particular regard to 1985 earthquake

    NASA Astrophysics Data System (ADS)

    Bernardi, Fabrizio; Grazia Ciaccio, Maria; Palombo, Barbara

    2010-05-01

    We study moderate-magnitude earthquakes (Ml ≥3.5) occurred in the Aquila region recorded by the Istituto Nazionale di Geofisica e Vulcanologia from 1981 to 2009 (CSI, Castello et al., 2006 - http://www.ingv.it/CSI/ ; and ISIDe, http://iside.rm.ingv.it/iside/standard/index.jsp) as well as local temporary seismic networks We identify three major sequences (1985, 1994, 1996) occurring before the 6.th April 2009 Mw=6.3 earthquake. The 1985 earthquake (Ml=4.2) is the larger earthquake occurred in the investigated region till April 2009. The 1994 (Ml=3.9) and 1996 (Ml=4.1) occurred in the Campotosto area (NE to L'Aquila). We computed the source moment tensor using surface waves (Giardini et al., 1993) for the main shocks of the 1985 (Mw=4.7) and 1996 (Mw=4.4) sequences. The solutions show normal fault ruptures. We do not find a reliable solution for the major 1994 sequence earthquake. This suggests, that the magnitude of this event is probably below Mw≈4.2, which is the minimum magnitude threshold for this method.

  6. New perspectives on self-similarity for shallow thrust earthquakes

    NASA Astrophysics Data System (ADS)

    Denolle, Marine A.; Shearer, Peter M.

    2016-09-01

    Scaling of dynamic rupture processes from small to large earthquakes is critical to seismic hazard assessment. Large subduction earthquakes are typically remote, and we mostly rely on teleseismic body waves to extract information on their slip rate functions. We estimate the P wave source spectra of 942 thrust earthquakes of magnitude Mw 5.5 and above by carefully removing wave propagation effects (geometrical spreading, attenuation, and free surface effects). The conventional spectral model of a single-corner frequency and high-frequency falloff rate does not explain our data, and we instead introduce a double-corner-frequency model, modified from the Haskell propagating source model, with an intermediate falloff of f-1. The first corner frequency f1 relates closely to the source duration T1, its scaling follows M0∝T13 for Mw<7.5, and changes to M0∝T12 for larger earthquakes. An elliptical rupture geometry better explains the observed scaling than circular crack models. The second time scale T2 varies more weakly with moment, M0∝T25, varies weakly with depth, and can be interpreted either as expressions of starting and stopping phases, as a pulse-like rupture, or a dynamic weakening process. Estimated stress drops and scaled energy (ratio of radiated energy over seismic moment) are both invariant with seismic moment. However, the observed earthquakes are not self-similar because their source geometry and spectral shapes vary with earthquake size. We find and map global variations of these source parameters.

  7. Dynamic strains for earthquake source characterization

    USGS Publications Warehouse

    Barbour, Andrew J.; Crowell, Brendan W

    2017-01-01

    Strainmeters measure elastodynamic deformation associated with earthquakes over a broad frequency band, with detection characteristics that complement traditional instrumentation, but they are commonly used to study slow transient deformation along active faults and at subduction zones, for example. Here, we analyze dynamic strains at Plate Boundary Observatory (PBO) borehole strainmeters (BSM) associated with 146 local and regional earthquakes from 2004–2014, with magnitudes from M 4.5 to 7.2. We find that peak values in seismic strain can be predicted from a general regression against distance and magnitude, with improvements in accuracy gained by accounting for biases associated with site–station effects and source–path effects, the latter exhibiting the strongest influence on the regression coefficients. To account for the influence of these biases in a general way, we include crustal‐type classifications from the CRUST1.0 global velocity model, which demonstrates that high‐frequency strain data from the PBO BSM network carry information on crustal structure and fault mechanics: earthquakes nucleating offshore on the Blanco fracture zone, for example, generate consistently lower dynamic strains than earthquakes around the Sierra Nevada microplate and in the Salton trough. Finally, we test our dynamic strain prediction equations on the 2011 M 9 Tohoku‐Oki earthquake, specifically continuous strain records derived from triangulation of 137 high‐rate Global Navigation Satellite System Earth Observation Network stations in Japan. Moment magnitudes inferred from these data and the strain model are in agreement when Global Positioning System subnetworks are unaffected by spatial aliasing.

  8. Geophysics: The size and duration of the Sumatra-Andaman earthquake from far-field static offsets

    USGS Publications Warehouse

    Banerjee, P.; Pollitz, F.F.; Burgmann, R.

    2005-01-01

    The 26 December 2004 Sumatra earthquake produced static offsets at continuously operating GPS stations at distances of up to 4500 kilometers from the epicenter. We used these displacements to model the earthquake and include consideration of the Earth's shape and depth-varying rigidity. The results imply that the average slip was >5 meters along the full length of the rupture, including the ???650-kilometer-long Andaman segment. Comparison of the source derived from the far-field static offsets with seismically derived estimates suggests that 25 to 35% of the total moment release occurred at periods greater than 1 hour. Taking into consideration the strong dip dependence of moment estimates, the magnitude of the earthquake did not exceed Mw = 9.2.

  9. Electromagnetic Energy Released in the Subduction (Benioff) Zone in Weeks Previous to Earthquake Occurrence in Central Peru and the Estimation of Earthquake Magnitudes.

    NASA Astrophysics Data System (ADS)

    Heraud, J. A.; Centa, V. A.; Bleier, T.

    2017-12-01

    During the past four years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone and are connected with the occurrence of earthquakes within a few kilometers of the source of such pulses. This evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. Additional work has been done and the method has now been expanded to provide the instantaneous energy released at the stress areas on the Benioff zone during the precursory stage, before an earthquake occurs. Collected data from several events and in other parts of the country will be shown in a sequential animated form that illustrates the way energy is released in the ULF part of the electromagnetic spectrum. The process has been extended in time and geographical places. Only pulses associated with the occurrence of earthquakes are taken into account in an area which is highly associated with subduction-zone seismic events and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including the animated data video, constitute additional work towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. The method is providing clearer evidence that electromagnetic precursors in effect conveys physical and useful information prior to the advent of a seismic event

  10. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan

    PubMed Central

    Satake, Kenji

    2018-01-01

    Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [Mw (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non–double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of Mzx, Mzy, and M{tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved. PMID:29740604

  11. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan.

    PubMed

    Fukao, Yoshio; Sandanbata, Osamu; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime; Watada, Shingo; Satake, Kenji

    2018-04-01

    Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [ M w (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non-double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of M zx , M zy , and M {tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved.

  12. Testing and comparison of three frequency-based magnitude estimating parameters for earthquake early warning based events in the Yunnan region, China in 2014

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjing; Li, Hongjie

    2018-06-01

    To mitigate potential seismic disasters in the Yunnan region, China, building up suitable magnitude estimation scaling laws for an earthquake early warning system (EEWS) is in high demand. In this paper, the records from the main and after-shocks of the Yingjiang earthquake (M W 5.9), the Ludian earthquake (M W 6.2) and the Jinggu earthquake (M W 6.1), which occurred in Yunnan in 2014, were used to develop three estimators, including the maximum of the predominant period ({{τ }{{p}}}\\max ), the characteristic period (τ c) and the log-average period (τ log), for estimating earthquake magnitude. The correlations between these three frequency-based parameters and catalog magnitudes were developed, compared and evaluated against previous studies. The amplitude and period of seismic waves might be amplified in the Ludian mountain-canyon area by multiple reflections and resonance, leading to excessive values of the calculated parameters, which are consistent with Sichuan’s scaling. As a result, τ log was best correlated with magnitude and τ c had the highest slope of regression equation, while {{τ }{{p}}}\\max performed worst with large scatter and less sensitivity for the change of magnitude. No evident saturation occurred in the case of M 6.1 and M 6.2 in this study. Even though both τ c and τ log performed similarly and can well reflect the size of the Earthquake, τ log has slightly fewer prediction errors for small scale earthquakes (M ≤ 4.5), which was also observed by previous research. Our work offers an insight into the feasibility of a EEWS in Yunnan, China, and this study shows that it is necessary to build up an appropriate scaling law suitable for the warning region.

  13. Differential energy radiation from two earthquakes in Japan with identical Mw: The Kyushu 1996 and Tottori 2000 earthquakes

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2009-01-01

    We examine two closely located earthquakes in Japan that had identical moment magnitudes Mw but significantly different energy magnitudes Me. We use teleseismic data from the Global Seismograph Network and strong-motion data from the National Research Institute for Earth Science and Disaster Prevention's K-Net to analyze the 19 October 1996 Kyushu earthquake (Mw 6.7, Me 6.6) and the 6 October 2000 Tottori earthquake (Mw 6.7, Me 7.4). To obtain regional estimates of radiated energy ES we apply a spectral technique to regional (<200 km) waveforms that are dominated by S and Lg waves. For the thrust-fault Kyushu earthquake, we estimate an average regional attenuation Q(f) 230f0:65. For the strike-slip Tottori earthquake, the average regional attenuation is Q(f) 180f0:6. These attenuation functions are similar to those derived from studies of both California and Japan earthquakes. The regional estimate of ES for the Kyushu earthquake, 3:8 ?? 1014 J, is significantly smaller than that for the Tottori earthquake, ES 1:3 ?? 1015 J. These estimates correspond well with the teleseismic estimates of 3:9 ?? 1014 J and 1:8 ?? 1015 J, respectively. The apparent stress (Ta = ??Es/M0 with ?? equal to rigidity) for the Kyushu earthquake is 4 times smaller than the apparent stress for the Tottori earthquake. In terms of the fault maturity model, the significantly greater release of energy by the strike-slip Tottori earthquake can be related to strong deformation in an immature intraplate setting. The relatively lower energy release of the thrust-fault Kyushu earthquake can be related to rupture on mature faults at a subduction environment. The consistence between teleseismic and regional estimates of ES is particularly significant as teleseismic data for computing ES are routinely available for all large earthquakes whereas often there are no near-field data.

  14. The earthquake cycle in the San Francisco Bay region: A.D. 1600–2012

    USGS Publications Warehouse

    Schwartz, David P.; Lienkaemper, James J.; Hecker, Suzanne; Kelson, Keith I.; Fumal, Thomas E.; Baldwin, John N.; Seitz, Gordon G.; Niemi, Tina

    2014-01-01

    Stress changes produced by the 1906 San Francisco earthquake had a profound effect on the seismicity of the San Francisco Bay region (SFBR), dramatically reducing it in the twentieth century. Whether the SFBR is still within or has emerged from this seismic quiescence is an issue of debate with implications for earthquake mechanics and seismic hazards. Historically, the SFBR has not experienced one complete earthquake cycle (i.e., the accumulation of stress, its release primarily as coseismic slip during surface‐faulting earthquakes, its re‐accumulation in the interval following, and its subsequent rerelease). The historical record of earthquake occurrence in the SFBR appears to be complete at about M 5.5 back to 1850 (Bakun, 1999). For large events, the record may be complete back to 1776, which represents about half a cycle. Paleoseismic data provide a more complete view of the most recent pre‐1906 SFBR earthquake cycle, extending it back to about 1600. Using these, we have developed estimates of magnitude and seismic moment for alternative sequences of surface‐faulting paleoearthquakes occurring between 1600 and 1776 on the region’s major faults. From these we calculate seismic moment and moment release rates for different time intervals between 1600 and 2012. These show the variability in moment release and suggest that, in the SFBR regional plate boundary, stress can be released on a single fault in great earthquakes such as that in 1906 and in multiple ruptures distributed on the regional plate boundary fault system on a decadal time scale.

  15. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    USGS Publications Warehouse

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  16. Analysis of the similar epicenter earthquakes on 22 January 2013 and 01 June 2013, Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    Toni, Mostafa; Barth, Andreas; Ali, Sherif M.; Wenzel, Friedemann

    2016-09-01

    On 22 January 2013 an earthquake with local magnitude ML 4.1 occurred in the central part of the Gulf of Suez. Six months later on 1 June 2013 another earthquake with local magnitude ML 5.1 took place at the same epicenter and different depths. These two perceptible events were recorded and localized by the Egyptian National Seismological Network (ENSN) and additional networks in the region. The purpose of this study is to determine focal mechanisms and source parameters of both earthquakes to analyze their tectonic relation. We determine the focal mechanisms by applying moment tensor inversion and first motion analysis of P- and S-waves. Both sources reveal oblique focal mechanisms with normal faulting and strike-slip components on differently oriented faults. The source mechanism of the larger event on 1 June in combination with the location of aftershock sequence indicates a left-lateral slip on N-S striking fault structure in 21 km depth that is in conformity with the NE-SW extensional Shmin (orientation of minimum horizontal compressional stress) and the local fault pattern. On the other hand, the smaller earthquake on 22 January with a shallower hypocenter in 16 km depth seems to have happened on a NE-SW striking fault plane sub-parallel to Shmin. Thus, here an energy release on a transfer fault connecting dominant rift-parallel structures might have resulted in a stress transfer, triggering the later ML 5.1 earthquake. Following Brune's model and using displacement spectra, we calculate the dynamic source parameters for the two events. The estimated source parameters for the 22 January 2013 and 1 June 2013 earthquakes are fault length (470 and 830 m), stress drop (1.40 and 2.13 MPa), and seismic moment (5.47E+21 and 6.30E+22 dyn cm) corresponding to moment magnitudes of MW 3.8 and 4.6, respectively.

  17. Dilational processes accompanying earthquakes in the Long Valley Caldera

    USGS Publications Warehouse

    Dreger, Douglas S.; Tkalcic, Hrvoje; Johnston, M.

    2000-01-01

    Regional distance seismic moment tensor determinations and broadband waveforms of moment magnitude 4.6 to 4.9 earthquakes from a November 1997 Long Valley Caldera swarm, during an inflation episode, display evidence of anomalous seismic radiation characterized by non-double couple (NDC) moment tensors with significant volumetric components. Observed coseismic dilation suggests that hydrothermal or magmatic processes are directly triggering some of the seismicity in the region. Similarity in the NDC solutions implies a common source process, and the anomalous events may have been triggered by net fault-normal stress reduction due to high-pressure fluid injection or pressurization of fluid-saturated faults due to magmatic heating.

  18. HYPOELLIPSE; a computer program for determining local earthquake hypocentral parameters, magnitude, and first-motion pattern

    USGS Publications Warehouse

    Lahr, John C.

    1999-01-01

    This report provides Fortran source code and program manuals for HYPOELLIPSE, a computer program for determining hypocenters and magnitudes of near regional earthquakes and the ellipsoids that enclose the 68-percent confidence volumes of the computed hypocenters. HYPOELLIPSE was developed to meet the needs of U.S. Geological Survey (USGS) scientists studying crustal and sub-crustal earthquakes recorded by a sparse regional seismograph network. The program was extended to locate hypocenters of volcanic earthquakes recorded by seismographs distributed on and around the volcanic edifice, at elevations above and below the hypocenter. HYPOELLIPSE was used to locate events recorded by the USGS southern Alaska seismograph network from October 1971 to the early 1990s. Both UNIX and PC/DOS versions of the source code of the program are provided along with sample runs.

  19. Moment tensor solutions estimated using optimal filter theory for 51 selected earthquakes, 1980-1984

    USGS Publications Warehouse

    Sipkin, S.A.

    1987-01-01

    The 51 global events that occurred from January 1980 to March 1984, which were chosen by the convenors of the Symposium on Seismological Theory and Practice, have been analyzed using a moment tensor inversion algorithm (Sipkin). Many of the events were routinely analyzed as part of the National Earthquake Information Center's (NEIC) efforts to publish moment tensor and first-motion fault-plane solutions for all moderate- to large-sized (mb>5.7) earthquakes. In routine use only long-period P-waves are used and the source-time function is constrained to be a step-function at the source (??-function in the far-field). Four of the events were of special interest, and long-period P, SH-wave solutions were obtained. For three of these events, an unconstrained inversion was performed. The resulting time-dependent solutions indicated that, for many cases, departures of the solutions from pure double-couples are caused by source complexity that has not been adequately modeled. These solutions also indicate that source complexity of moderate-sized events can be determined from long-period data. Finally, for one of the events of special interest, an inversion of the broadband P-waveforms was also performed, demonstrating the potential for using broadband waveform data in inversion procedures. ?? 1987.

  20. Magnitude Scaling of the early displacement for the 2007, Mw 7.8 Tocopilla sequence (Chile)

    NASA Astrophysics Data System (ADS)

    Lancieri, M.; Fuenzalida, A.; Ruiz, S.; Madariaga, R. I.

    2009-12-01

    We investigate the empirical relationships between the initial portion of P and S-phase and the final event magnitude, on the Tocopilla (Chile) event and its aftershocks. Such correlations, on which real-time magnitude estimation for seismic early warning is founded, have been widely studied on several data sets, merging earthquakes generated in different tectonic settings and recorded with very different networks. The Tocopilla (Mw 7.8) earthquake, occurred along the northern Chile seismic gap on 14 November 2007, provides, together with its aftershocks, a unique opportunity of studying a homogeneous data set in terms of tectonic environment, focal mechanism, and recording network. The preliminary analysis required to build the seismic catalogue includes the automatic identification of more than 570 aftershocks using an automatic phase detector and picker algorithm, and the subsequent location of the events through a non-linear and probabilistic code. The seismic moment (M0) has been calculated by spectral modeling of P and S waves, assuming a Brune omega-square model. This analysis also yields values for the corner frequency and quality factor. The estimated range of moment magnitude for the aftershocks sequence is [2.8 - 6.8]. The correlation between the low pass filtered peak displacement (PD) and the final magnitude has been investigated for 90 events with magnitude greater than 4. These include the main event, its larger aftershock (Mw 6.8 occurred twenty-four hours after the main shock), and seven events with magnitude greater than 5.7. The recovered relationships confirm the observations of Zollo et al. [2006, 2007] of a clear correlation between distance corrected PD and final magnitude in the magnitude range [4.0 - 7.4], when considering time windows of 4 sec of P- or 2 sec of S- wave. In contrast with the previous studies, when examining time windows of 2 sec of P-wave, we surprisingly do not observe any saturation effect for magnitudes greater than 6

  1. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes

    USGS Publications Warehouse

    Geist, E.L.; Bilek, S.L.; Arcas, D.; Titov, V.V.

    2006-01-01

    Source parameters affecting tsunami generation and propagation for the Mw > 9.0 December 26, 2004 and the Mw = 8.6 March 28, 2005 earthquakes are examined to explain the dramatic difference in tsunami observations. We evaluate both scalar measures (seismic moment, maximum slip, potential energy) and finite-source repre-sentations (distributed slip and far-field beaming from finite source dimensions) of tsunami generation potential. There exists significant variability in local tsunami runup with respect to the most readily available measure, seismic moment. The local tsunami intensity for the December 2004 earthquake is similar to other tsunamigenic earthquakes of comparable magnitude. In contrast, the March 2005 local tsunami was deficient relative to its earthquake magnitude. Tsunami potential energy calculations more accurately reflect the difference in tsunami severity, although these calculations are dependent on knowledge of the slip distribution and therefore difficult to implement in a real-time system. A significant factor affecting tsunami generation unaccounted for in these scalar measures is the location of regions of seafloor displacement relative to the overlying water depth. The deficiency of the March 2005 tsunami seems to be related to concentration of slip in the down-dip part of the rupture zone and the fact that a substantial portion of the vertical displacement field occurred in shallow water or on land. The comparison of the December 2004 and March 2005 Sumatra earthquakes presented in this study is analogous to previous studies comparing the 1952 and 2003 Tokachi-Oki earthquakes and tsunamis, in terms of the effect slip distribution has on local tsunamis. Results from these studies indicate the difficulty in rapidly assessing local tsunami runup from magnitude and epicentral location information alone.

  2. Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults?

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio

    2017-10-01

    The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.

  3. Assessing the Uncertainties on Seismic Source Parameters: Towards Realistic Estimates of Moment Tensor Determinations

    NASA Astrophysics Data System (ADS)

    Magnoni, F.; Scognamiglio, L.; Tinti, E.; Casarotti, E.

    2014-12-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Moment tensor catalogues are ordinarily used by geoscientists, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their own analysis. The 2012 May 20 Emilia mainshock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. An uncertainty of ~0.5 units in magnitude leads to a controversial knowledge of the real size of the event. The possible uncertainty associated to this estimate could be critical for the inference of other seismological parameters, suggesting caution for seismic hazard assessment, coulomb stress transfer determination and other analyses where self-consistency is important. In this work, we focus on the variability of the moment tensor solution, highlighting the effect of four different velocity models, different types and ranges of filtering, and two different methodologies. Using a larger dataset, to better quantify the source parameter uncertainty, we also analyze the variability of the moment tensor solutions depending on the number, the epicentral distance and the azimuth of used stations. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, cannot be considered an absolute value and requires to come out with the related uncertainties and in a reproducible framework characterized by disclosed assumptions and explicit processing workflows.

  4. Global Instrumental Seismic Catalog: earthquake relocations for 1900-present

    NASA Astrophysics Data System (ADS)

    Villasenor, A.; Engdahl, E.; Storchak, D. A.; Bondar, I.

    2010-12-01

    We present the current status of our efforts to produce a set of homogeneous earthquake locations and improved focal depths towards the compilation of a Global Catalog of instrumentally recorded earthquakes that will be complete down to the lowest magnitude threshold possible on a global scale and for the time period considered. This project is currently being carried out under the auspices of GEM (Global Earthquake Model). The resulting earthquake catalog will be a fundamental dataset not only for earthquake risk modeling and assessment on a global scale, but also for a large number of studies such as global and regional seismotectonics; the rupture zones and return time of large, damaging earthquakes; the spatial-temporal pattern of moment release along seismic zones and faults etc. Our current goal is to re-locate all earthquakes with available station arrival data using the following magnitude thresholds: M5.5 for 1964-present, M6.25 for 1918-1963, M7.5 (complemented with significant events in continental regions) for 1900-1917. Phase arrival time data for earthquakes after 1963 are available in digital form from the International Seismological Centre (ISC). For earthquakes in the time period 1918-1963, phase data is obtained by scanning the printed International Seismological Summary (ISS) bulletins and applying optical character recognition routines. For earlier earthquakes we will collect phase data from individual station bulletins. We will illustrate some of the most significant results of this relocation effort, including aftershock distributions for large earthquakes, systematic differences in epicenter and depth with respect to previous location, examples of grossly mislocated events, etc.

  5. Observation of the seismic nucleation phase in the Ridgecrest, California, earthquake sequence

    USGS Publications Warehouse

    Ellsworth, W.L.; Beroza, G.C.

    1998-01-01

    Near-source observations of five M 3.8-5.2 earthquakes near Ridgecrest, California are consistent with the presence of a seismic nucleation phase. These earthquakes start abruptly, but then slow or stop before rapidly growing again toward their maximum rate of moment release. Deconvolution of instrument and path effects by empirical Green's functions demonstrates that the initial complexity at the start of the earthquake is a source effect. The rapid growth of the P-wave arrival at the start of the seismic nucleation phase supports the conclusion of Mori and Kanamori [1996] that these earthquakes begin without a magnitude-scaled slow initial phase of the type observed by Iio [1992, 1995].

  6. Testing the accelerating moment release (AMR) hypothesis in areas of high stress

    NASA Astrophysics Data System (ADS)

    Guilhem, Aurélie; Bürgmann, Roland; Freed, Andrew M.; Ali, Syed Tabrez

    2013-11-01

    Several retrospective analyses have proposed that significant increases in moment release occurred prior to many large earthquakes of recent times. However, the finding of accelerating moment release (AMR) strongly depends on the choice of three parameters: (1) magnitude range, (2) area being considered surrounding the events and (3) the time period prior to the large earthquakes. Consequently, the AMR analysis has been criticized as being a posteriori data-fitting exercise with no new predictive power. As AMR has been hypothesized to relate to changes in the state of stress around the eventual epicentre, we compare here AMR results to models of stress accumulation in California. Instead of assuming a complete stress drop on all surrounding fault segments implied by a back-slip stress lobe method, we consider that stress evolves dynamically, punctuated by the occurrence of earthquakes, and governed by the elastic and viscous properties of the lithosphere. We study the seismicity of southern California and extract events for AMR calculations following the systematic approach employed in previous studies. We present several sensitivity tests of the method, as well as grid-search analyses over the region between 1955 and 2005 using fixed magnitude range, radius of the search area and period of time. The results are compared to the occurrence of large events and to maps of Coulomb stress changes. The Coulomb stress maps are compiled using the coseismic stress from all M > 7.0 earthquakes since 1812, their subsequent post-seismic relaxation, and the interseismic strain accumulation. We find no convincing correlation of seismicity rate changes in recent decades with areas of high stress that would support the AMR hypothesis. Furthermore, this indicates limited utility for practical earthquake hazard analysis in southern California, and possibly other regions.

  7. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    USGS Publications Warehouse

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  8. Continuous-cyclic variations in the b-value of the earthquake frequency-magnitude distribution

    NASA Astrophysics Data System (ADS)

    El-Isa, Z. H.

    2013-10-01

    Seismicity of the Earth ( M ≥ 4.5) was compiled from NEIC, IRIS and ISC catalogues and used to compute b-value based on various time windows. It is found that continuous cyclic b-variations occur on both long and short time scales, the latter being of much higher value and sometimes in excess of 0.7 of the absolute b-value. These variations occur not only yearly or monthly, but also daily. Before the occurrence of large earthquakes, b-values start increasing with variable gradients that are affected by foreshocks. In some cases, the gradient is reduced to zero or to a negative value a few days before the earthquake occurrence. In general, calculated b-values attain maxima 1 day before large earthquakes and minima soon after their occurrence. Both linear regression and maximum likelihood methods give correlatable, but variable results. It is found that an expanding time window technique from a fixed starting point is more effective in the study of b-variations. The calculated b-variations for the whole Earth, its hemispheres, quadrants and the epicentral regions of some large earthquakes are of both local and regional character, which may indicate that in such cases, the geodynamic processes acting within a certain region have a much regional effect within the Earth. The b-variations have long been known to vary with a number of local and regional factors including tectonic stresses. The results reported here indicate that geotectonic stress remains the most significant factor that controls b-variations. It is found that for earthquakes with M w ≥ 7, an increase of about 0.20 in the b-value implies a stress increase that will result in an earthquake with a magnitude one unit higher.

  9. Magnitude scale for the Central American tsunamis

    NASA Astrophysics Data System (ADS)

    Hatori, Tokutaro

    1995-09-01

    Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to be m=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude ( M s =6.9 7.2). The Central American tsunamis having magnitude m>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.

  10. Stress-strain state of the lithosphere in the southern Baikal region and northern Mongolia from data on seismic moments of earthquakes

    NASA Astrophysics Data System (ADS)

    Klyuchevskii, A. V.; Dem'yanovich, V. M.

    2006-05-01

    Investigation and understanding of the present-day geodynamic situation are of key importance for the elucidation of the laws and evolution of the seismic process in a seismically active region. In this work, seismic moments of nearly 26000 earthquakes with K p ≥ 7 ( M LH ≥ 2) that occurred in the southern Baikal region and northern Mongolia (SBNM) (48° 54°N, 96° 108°E) from 1968 through 1994 are determined from amplitudes and periods of maximum displacements in transverse body waves. The resulting set of seismic moments is used for spatial-temporal analysis of the stress-strain state of the SBNM lithosphere. The stress fields of the Baikal rift and the India-Asia collision zone are supposed to interact in the region studied. Since the seismic moment of a tectonic earthquake depends on the type of motion in the source, seismic moments and focal mechanisms of earthquakes belonging to four long-term aftershock and swarm clusters of shocks in the Baikal region were used to “calibrate” average seismic moments in accordance with the source faulting type. The study showed that the stress-strain state of the SBNM lithosphere is spatially inhomogeneous and nonstationary. A space-time discrepancy is observed in the formation of faulting types in sources of weak ( K p = 7 and 8) and stronger ( K p ≥ 9) earthquakes. This discrepancy is interpreted in terms of rock fracture at various hierarchical levels of ruptures on differently oriented general, regional, and local faults. A gradual increase and an abrupt, nearly pulsed, decrease in the vertical component of the stress field S v is a characteristic feature of time variations. The zones where the stress S v prevails are localized at “singular points” of the lithosphere. Shocks of various energy classes in these zones are dominated by the normal-fault slip mechanism. For earthquakes with K p = 9, the source faulting changes with depth from the strike-slip type to the normal-strike-slip and normal types

  11. Modeling earthquake magnitudes from injection-induced seismicity on rough faults

    NASA Astrophysics Data System (ADS)

    Maurer, J.; Dunham, E. M.; Segall, P.

    2017-12-01

    It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.

  12. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    NASA Astrophysics Data System (ADS)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  13. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    NASA Astrophysics Data System (ADS)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  14. The HayWired Earthquake Scenario—Earthquake Hazards

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  15. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    PubMed

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  16. The M w = 5.8 14 August 2016 middle Sakhalin earthquake on a boundary between Okhotsk and Eurasian (Amurian) plates

    NASA Astrophysics Data System (ADS)

    Konovalov, A. V.; Stepnov, A. A.; Safonov, D. A.; Kozhurin, A. I.; Pavlov, A. S.; Gavrilov, A. V.; Manaychev, K. A.; Tomilev, D. Ye.; Takahashi, H.; Ichiyanagi, M.

    2018-04-01

    An earthquake with the moment magnitude M w = 5.8 occurred in the middle part of the Sakhalin Island, Russian Federation, on 14 August 2016, at 11:17 a.m. UTC. The earthquake source was located west of the Central Sakhalin Fault Zone, which is considered to mark the boundary between the Okhotsk and Eurasian (Amurian) plates. Moment tensor solution of the mainshock as well as the configuration of aftershock cloud suggests that the earthquake was caused by slip on a SW-dipping reverse fault. For the first time for Sakhalin, we have got the felt reports unified in accordance with DYFI. We also analyzed observed PGA values and, based on them, produced shaking maps.

  17. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip.

    PubMed

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 M w (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes.

  18. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip

    PubMed Central

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404

  19. Earthquake Catalogue of the Caucasus

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  20. Near-fault peak ground velocity from earthquake and laboratory data

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.

    2007-01-01

    We test the hypothesis that peak ground velocity (PGV) has an upper bound independent of earthquake magnitude and that this bound is controlled primarily by the strength of the seismogenic crust. The highest PGVs, ranging up to several meters per second, have been measured at sites within a few kilometers of the causative faults. Because the database for near-fault PGV is small, we use earthquake slip models, laboratory experiments, and evidence from a mining-induced earthquake to investigate the factors influencing near-fault PGV and the nature of its scaling. For each earthquake slip model we have calculated the peak slip rates for all subfaults and then chosen the maximum of these rates as an estimate of twice the largest near-fault PGV. Nine slip models for eight earthquakes, with magnitudes ranging from 6.5 to 7.6, yielded maximum peak slip rates ranging from 2.3 to 12 m/sec with a median of 5.9 m/sec. By making several adjustments, PGVs for small earthquakes can be simulated from peak slip rates measured during laboratory stick-slip experiments. First, we adjust the PGV for differences in the state of stress (i.e., the difference between the laboratory loading stresses and those appropriate for faults at seismogenic depths). To do this, we multiply both the slip and the peak slip rate by the ratio of the effective normal stresses acting on fault planes measured at 6.8 km depth at the KTB site, Germany (deepest available in situ stress measurements), to those acting on the laboratory faults. We also adjust the seismic moment by replacing the laboratory fault with a buried circular shear crack whose radius is chosen to match the experimental unloading stiffness. An additional, less important adjustment is needed for experiments run in triaxial loading conditions. With these adjustments, peak slip rates for 10 stick-slip events, with scaled moment magnitudes from -2.9 to 1.0, range from 3.3 to 10.3 m/sec, with a median of 5.4 m/sec. Both the earthquake and

  1. The ratio between corner frequencies of source spectra of P- and S-waves—a new discriminant between earthquakes and quarry blasts

    NASA Astrophysics Data System (ADS)

    Ataeva, G.; Gitterman, Y.; Shapira, A.

    2017-01-01

    This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md = 1.4-3.4, which occurred at distances up to 250 km during 2001-2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune's source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217-226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.

  2. Relationship Between Magnitude of Applied Spin Recovery Moment and Ensuing Number of Recovery Turns

    NASA Technical Reports Server (NTRS)

    Anglin, Ernie L.

    1967-01-01

    An analytical study has been made to investigate the relationship between the magnitude of the applied spin recovery moment and the ensuing number of turns made during recovery from a developed spin with a view toward determining how to interpolate or extrapolate spin recovery results with regard to determining the amount of control required for a satisfactory recovery. Five configurations were used which are considered to be representative of modern airplanes: a delta-wing fighter, a stub-wing research vehicle, a boostglide configuration, a supersonic trainer, and a sweptback-wing fighter. The results obtained indicate that there is a direct relationship between the magnitude of the applied spin recovery moments and the ensuing number of recovery turns made and that this relationship can be expressed in either simple multiplicative or exponential form. Either type of relationship was adequate for interpolating or extrapolating to predict turns required for recovery with satisfactory accuracy for configurations having relatively steady recovery motions. Any two recoveries from the same developed spin condition can be used as a basis for the predicted results provided these recoveries are obtained with the same ratio of recovery control deflections. No such predictive method can be expected to give satisfactory results for oscillatory recoveries.

  3. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  4. A comparison study of 2006 Java earthquake and other Tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.

    2006-12-01

    We revise the slip processes of July 17 2006 Java earthquakes by combined inverting teleseismic body wave, long period surface waves, as well as the broadband records at Christmas island (XMIS), which is 220 km away from the hypocenter and so far the closest observation for a Tsunami earthquake. Comparing with the previous studies, our approach considers the amplitude variations of surface waves with source depths as well as the contribution of ScS phase, which usually has amplitudes compatible with that of direct S phase for such low angle thrust earthquakes. The fault dip angles are also refined using the Love waves observed along fault strike direction. Our results indicate that the 2006 event initiated at a depth around 12 km and unilaterally rupture southeast for 150 sec with a speed of 1.0 km/sec. The revised fault dip is only about 6 degrees, smaller than the Harvard CMT (10.5 degrees) but consistent with that of 1994 Java earthquake. The smaller fault dip results in a larger moment magnitude (Mw=7.9) for a PREM earth, though it is dependent on the velocity structure used. After verified with 3D SEM forward simulation, we compare the inverted result with the revised slip models of 1994 Java and 1992 Nicaragua earthquakes derived using the same wavelet based finite fault inversion methodology.

  5. The Ust'-Kamchatsk "Tsunami Earthquake" of 13 April 1923: A Slow Event and a Probable Landslide

    NASA Astrophysics Data System (ADS)

    Salaree, A.; Okal, E.

    2016-12-01

    Among the "tsunami earthquakes" having generated a larger tsunami than expected from their seismic magnitudes, the large aftershock of the great Kamchatka earthquake of 1923 remains an intriguing puzzle since waves reaching 11 m were reported by Troshin & Diagilev (1926), in the vicinity of the mouth of the Kamchatka River near the coastal settlement of Ust'-Kamchatsk. Our relocation attempts based on ISS-listed travel times would put the earthquake epicenter in Ozernoye Bay, North of the Kamchatka Peninsula, suggesting that it was triggered by stress transfer beyond the plate junction at the Kamchatka corner. Mantle magnitudes obtained from Golitsyn records at De Bilt suggest a long-period moment of 2-3 times 1027 dyn*cm, with a strong increase of moment with period, suggestive of a slow source. However, tsunami simulations based on resulting models of the earthquake source, both North and South of the Kamchatka Peninsula, fail to account for the reported run-up values. On the other hand, the model of an underwater landslide, which would have been triggered by the earthquake, can explain the general amplitude and distribution of reported run-up. This model is supported by the presence of steep bathymetry offshore of Ust'-Kamchatsk, near the area of discharge of the Kamchatka River, and the abundance of subaerial landslides along the nearby coasts of the Kamchatka Peninsula. While the scarcity of scientific data for this ancient earthquake, and of historical reports in a sparsely populated area, keep this interpretation tentative, this study contributes to improving our knowledge of the challenging family of "tsunami earthquakes".

  6. Integrated Geophysical Characteristics of the 2015 Illapel, Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Yeck, W. L.; Nealy, J. L.; Hayes, G. P.; Barnhart, W. D.; Benz, H.; Furlong, K. P.

    2015-12-01

    On September 16th, 2015, an Mw 8.3 earthquake (USGS moment magnitude) ruptured offshore of central Chile, 50 km west of the city of Illapel and 200 km north of Santiago. The earthquake occurred just north of where the Juan Fernandez Ridge enters the subduction zone. In this study, we integrate multiple seismic and geodetic datasets, including multiple-event earthquake relocations; moment tensors of the Illapel mainshock, aftershocks, and prior regional seismicity; finite fault models (FFMs) of the mainshock rupture; subduction zone geometry; Coulomb stress transfer calculations; and co-seismic GPS offsets and InSAR images. These datasets allow us to (a) assess the context of the Illapel earthquake sequence with respect to historical seismicity in central Chile; (b) constrain the relationship between subduction geometry and the kinematic characteristics of the earthquake sequence; and (c) understand the distribution of aftershocks with respect to the rupture zone. Double source W-phase moment tensor analysis indicates the Illapel mainshock rupture began as a smaller Mw ~7.2 thrusting event before growing into a great-sized Mw 8.3 earthquake. Relocated aftershock seismicity is concentrated around the main region of slip, and few aftershocks occur on the megathrust shallower than ~15 km, despite the FFM indicating slip near the trench. This distribution is consistent with the aftershock behavior following the 2010 Maule and 2014 Iquique earthquakes: aftershocks primarily surround the rupture zones and are largely absent from regions of greatest slip. However, in contrast to the recent 2014 Iquique and 2010 Maule events, which ruptured in regions of the Chilean subduction zone that had not had large events in over a century, this earthquake occurred in a section of the subduction zone that hosted a large earthquake as recently as 1943, as well as earlier significant events in 1880 and 1822. At this section of the subduction zone, in addition to the impinging Juan

  7. Catalog of significant historical earthquakes in the Central United States

    USGS Publications Warehouse

    Bakun, W.H.; Hopper, M.G.

    2004-01-01

    We use Modified Mercalli intensity assignments to estimate source locations and moment magnitude M for eighteen 19th-century and twenty early- 20th-century earthquakes in the central United States (CUS) for which estimates of M are otherwise not available. We use these estimates, and locations and M estimated elsewhere, to compile a catelog of significant historical earthquakes in the CUS. The 1811-1812 New Madrid earthquakes apparently dominated CUS seismicity in the first two decades of the 19th century. M5-6 earthquakes occurred in the New Madrid Seismic Zone in 1843 and 1878, but none have occurred since 1878. There has been persistent seismic activity in the Illinois Basin in southern Illinois and Indiana, with M > 5.0 earthquakes in 1895, 1909, 1917, 1968, and 1987. Four other M > 5.0 CUS historical earthquakes have occurred: in Kansas in 1867, in Nebraska in 1877, in Oklahoma in 1882, and in Kentucky in 1980.

  8. Seismogenic width controls aspect ratios of earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Weng, Huihui; Yang, Hongfeng

    2017-03-01

    We investigate the effect of seismogenic width on aspect ratios of earthquake ruptures by using numerical simulations of strike-slip faulting and an energy balance criterion near rupture tips. If the seismogenic width is smaller than a critical value, then ruptures cannot break the entire fault, regardless of the size of the nucleation zone. The seismic moments of these self-arresting ruptures increase with the nucleation size, forming nucleation-related events. The aspect ratios increase with the seismogenic width but are smaller than 8. In contrast, ruptures become breakaway and tend to have high aspect ratios (>8) if the seismogenic width is sufficiently large. But the critical nucleation size is larger than the theoretical estimate for an unbounded fault. The eventual seismic moments of breakaway ruptures do not depend on the nucleation size. Our results suggest that estimating final earthquake magnitude from the nucleation phase may only be plausible on faults with small seismogenic width.

  9. 'Two go together': Near-simultaneous moment release of two asperities during the 2016 Mw 6.6 Muji, China earthquake

    NASA Astrophysics Data System (ADS)

    Bie, Lidong; Hicks, Stephen; Garth, Thomas; Gonzalez, Pablo; Rietbrock, Andreas

    2018-06-01

    On 25 November 2016, a Mw 6.6 earthquake ruptured the Muji fault in western Xinjiang, China. We investigate the earthquake rupture independently using geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and regional seismic recordings. To constrain the fault geometry and slip distribution, we test different combinations of fault dip and slip direction to reproduce InSAR observations. Both InSAR observations and optimal distributed slip model suggest buried rupture of two asperities separated by a gap of greater than 5 km. Additional seismic gaps exist at the end of both asperities that failed in the 2016 earthquake. To reveal the dynamic history of asperity failure, we inverted regional seismic waveforms for multiple centroid moment tensors and construct a moment rate function. The results show a small centroid time gap of 2.6 s between the two sub-events. Considering the >5 km gap between the two asperities and short time interval, we propose that the two asperities failed near-simultaneously, rather than in a cascading rupture propagation style. The second sub-event locates ∼39 km to the east of the epicenter and the centroid time is at 10.7 s. It leads to an estimate of average velocity of 3.7 km/s as an upper bound, consistent with upper crust shear wave velocity in this region. We interpret that the rupture front is propagating at sub-shear wave velocities, but that the second sub-event has a reduced or asymmetric rupture time, leading to the apparent near-simultaneous moment release of the two asperities.

  10. Spatial variations in the frequency-magnitude distribution of earthquakes at Mount Pinatubo volcano

    USGS Publications Warehouse

    Sanchez, J.J.; McNutt, S.R.; Power, J.A.; Wyss, M.

    2004-01-01

    The frequency-magnitude distribution of earthquakes measured by the b-value is mapped in two and three dimensions at Mount Pinatubo, Philippines, to a depth of 14 km below the summit. We analyzed 1406 well-located earthquakes with magnitudes MD ???0.73, recorded from late June through August 1991, using the maximum likelihood method. We found that b-values are higher than normal (b = 1.0) and range between b = 1.0 and b = 1.8. The computed b-values are lower in the areas adjacent to and west-southwest of the vent, whereas two prominent regions of anomalously high b-values (b ??? 1.7) are resolved, one located 2 km northeast of the vent between 0 and 4 km depth and a second located 5 km southeast of the vent below 8 km depth. The statistical differences between selected regions of low and high b-values are established at the 99% confidence level. The high b-value anomalies are spatially well correlated with low-velocity anomalies derived from earlier P-wave travel-time tomography studies. Our dataset was not suitable for analyzing changes in b-values as a function of time. We infer that the high b-value anomalies around Mount Pinatubo are regions of increased crack density, and/or high pore pressure, related to the presence of nearby magma bodies.

  11. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  12. Earthquake focal mechanism forecasting in Italy for PSHA purposes

    NASA Astrophysics Data System (ADS)

    Roselli, Pamela; Marzocchi, Warner; Mariucci, Maria Teresa; Montone, Paola

    2018-01-01

    In this paper, we put forward a procedure that aims to forecast focal mechanism of future earthquakes. One of the primary uses of such forecasts is in probabilistic seismic hazard analysis (PSHA); in fact, aiming at reducing the epistemic uncertainty, most of the newer ground motion prediction equations consider, besides the seismicity rates, the forecast of the focal mechanism of the next large earthquakes as input data. The data set used to this purpose is relative to focal mechanisms taken from the latest stress map release for Italy containing 392 well-constrained solutions of events, from 1908 to 2015, with Mw ≥ 4 and depths from 0 down to 40 km. The data set considers polarity focal mechanism solutions until to 1975 (23 events), whereas for 1976-2015, it takes into account only the Centroid Moment Tensor (CMT)-like earthquake focal solutions for data homogeneity. The forecasting model is rooted in the Total Weighted Moment Tensor concept that weighs information of past focal mechanisms evenly distributed in space, according to their distance from the spatial cells and magnitude. Specifically, for each cell of a regular 0.1° × 0.1° spatial grid, the model estimates the probability to observe a normal, reverse, or strike-slip fault plane solution for the next large earthquakes, the expected moment tensor and the related maximum horizontal stress orientation. These results will be available for the new PSHA model for Italy under development. Finally, to evaluate the reliability of the forecasts, we test them with an independent data set that consists of some of the strongest earthquakes with Mw ≥ 3.9 occurred during 2016 in different Italian tectonic provinces.

  13. Empirical models for the prediction of ground motion duration for intraplate earthquakes

    NASA Astrophysics Data System (ADS)

    Anbazhagan, P.; Neaz Sheikh, M.; Bajaj, Ketan; Mariya Dayana, P. J.; Madhura, H.; Reddy, G. R.

    2017-07-01

    Many empirical relationships for the earthquake ground motion duration were developed for interplate region, whereas only a very limited number of empirical relationships exist for intraplate region. Also, the existing relationships were developed based mostly on the scaled recorded interplate earthquakes to represent intraplate earthquakes. To the author's knowledge, none of the existing relationships for the intraplate regions were developed using only the data from intraplate regions. Therefore, an attempt is made in this study to develop empirical predictive relationships of earthquake ground motion duration (i.e., significant and bracketed) with earthquake magnitude, hypocentral distance, and site conditions (i.e., rock and soil sites) using the data compiled from intraplate regions of Canada, Australia, Peninsular India, and the central and southern parts of the USA. The compiled earthquake ground motion data consists of 600 records with moment magnitudes ranging from 3.0 to 6.5 and hypocentral distances ranging from 4 to 1000 km. The non-linear mixed-effect (NLMEs) and logistic regression techniques (to account for zero duration) were used to fit predictive models to the duration data. The bracketed duration was found to be decreased with an increase in the hypocentral distance and increased with an increase in the magnitude of the earthquake. The significant duration was found to be increased with the increase in the magnitude and hypocentral distance of the earthquake. Both significant and bracketed durations were predicted higher in rock sites than in soil sites. The predictive relationships developed herein are compared with the existing relationships for interplate and intraplate regions. The developed relationship for bracketed duration predicts lower durations for rock and soil sites. However, the developed relationship for a significant duration predicts lower durations up to a certain distance and thereafter predicts higher durations compared to the

  14. Stress triggering of the 1994 M = 6.7 Northridge, California, Earthquake by its predecessors

    USGS Publications Warehouse

    Stein, R.S.; King, G.C.P.; Lin, J.

    1994-01-01

    A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M ??? 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-Inglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.

  15. New constraints on the rupture process of the 1999 August 17 Izmit earthquake deduced from estimates of stress glut rate moments

    NASA Astrophysics Data System (ADS)

    Clévédé, E.; Bouin, M.-P.; Bukchin, B.; Mostinskiy, A.; Patau, G.

    2004-12-01

    This paper illustrates the use of integral estimates given by the stress glut rate moments of total degree 2 for constraining the rupture scenario of a large earthquake in the particular case of the 1999 Izmit mainshock. We determine the integral estimates of the geometry, source duration and rupture propagation given by the stress glut rate moments of total degree 2 by inverting long-period surface wave (LPSW) amplitude spectra. Kinematic and static models of the Izmit earthquake published in the literature are quite different from one another. In order to extract the characteristic features of this event, we calculate the same integral estimates directly from those models and compare them with those deduced from our inversion. While the equivalent rupture zone and the eastward directivity are consistent among all models, the LPSW solution displays a strong unilateral character of the rupture associated with a short rupture duration that is not compatible with the solutions deduced from the published models. With the aim of understand this discrepancy, we use simple equivalent kinematic models to reproduce the integral estimates of the considered rupture processes (including ours) by adjusting a few free parameters controlling the western and eastern parts of the rupture. We show that the joint analysis of the LPSW solution and source tomographies allows us to elucidate the scattering of source processes published for this earthquake and to discriminate between the models. Our results strongly suggest that (1) there was significant moment released on the eastern segment of the activated fault system during the Izmit earthquake; (2) the apparent rupture velocity decreases on this segment.

  16. Lisbon 1755, a multiple-rupture earthquake

    NASA Astrophysics Data System (ADS)

    Fonseca, J. F. B. D.

    2017-12-01

    The Lisbon earthquake of 1755 poses a challenge to seismic hazard assessment. Reports pointing to MMI 8 or above at distances of the order of 500km led to magnitude estimates near M9 in classic studies. A refined analysis of the coeval sources lowered the estimates to 8.7 (Johnston, 1998) and 8.5 (Martinez-Solares, 2004). I posit that even these lower magnitude values reflect the combined effect of multiple ruptures. Attempts to identify a single source capable of explaining the damage reports with published ground motion models did not gather consensus and, compounding the challenge, the analysis of tsunami traveltimes has led to disparate source models, sometimes separated by a few hundred kilometers. From this viewpoint, the most credible source would combine a sub-set of the multiple active structures identifiable in SW Iberia. No individual moment magnitude needs to be above M8.1, thus rendering the search for candidate structures less challenging. The possible combinations of active structures should be ranked as a function of their explaining power, for macroseismic intensities and tsunami traveltimes taken together. I argue that the Lisbon 1755 earthquake is an example of a distinct class of intraplate earthquake previously unrecognized, of which the Indian Ocean earthquake of 2012 is the first instrumentally recorded example, showing space and time correlation over scales of the orders of a few hundred km and a few minutes. Other examples may exist in the historical record, such as the M8 1556 Shaanxi earthquake, with an unusually large damage footprint (MMI equal or above 6 in 10 provinces; 830000 fatalities). The ability to trigger seismicity globally, observed after the 2012 Indian Ocean earthquake, may be a characteristic of this type of event: occurrences in Massachussets (M5.9 Cape Ann earthquake on 18/11/1755), Morocco (M6.5 Fez earthquake on 27/11/1755) and Germany (M6.1 Duren earthquake, on 18/02/1756) had in all likelyhood a causal link to the

  17. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone.

    PubMed

    Xue, Lian; Li, Hai-Bing; Brodsky, Emily E; Xu, Zhi-Qing; Kano, Yasuyuki; Wang, Huan; Mori, James J; Si, Jia-Liang; Pei, Jun-Ling; Zhang, Wei; Yang, Guang; Sun, Zhi-Ming; Huang, Yao

    2013-06-28

    Permeability controls fluid flow in fault zones and is a proxy for rock damage after an earthquake. We used the tidal response of water level in a deep borehole to track permeability for 18 months in the damage zone of the causative fault of the 2008 moment magnitude 7.9 Wenchuan earthquake. The unusually high measured hydraulic diffusivity of 2.4 × 10(-2) square meters per second implies a major role for water circulation in the fault zone. For most of the observation period, the permeability decreased rapidly as the fault healed. The trend was interrupted by abrupt permeability increases attributable to shaking from remote earthquakes. These direct measurements of the fault zone reveal a process of punctuated recovery as healing and damage interact in the aftermath of a major earthquake.

  18. Mechanical and statistical evidence of the causality of human-made mass shifts on the Earth's upper crust and the occurrence of earthquakes

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.

    2013-01-01

    A global catalog of small- to large-sized earthquakes was systematically analyzed to identify causality and correlatives between human-made mass shifts in the upper Earth's crust and the occurrence of earthquakes. The mass shifts, ranging between 1 kt and 1 Tt, result from large-scale geoengineering operations, including mining, water reservoirs, hydrocarbon production, fluid injection/extractions, deep geothermal energy production and coastal management. This article shows evidence that geomechanical relationships exist with statistical significance between (a) seismic moment magnitudes M of observed earthquakes, (b) lateral distances of the earthquake hypocenters to the geoengineering "operation points" and (c) mass removals or accumulations on the Earth's crust. Statistical findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. Statistical observations, however, indicate that every second, seismic event tends to occur after a decade. The chance of an earthquake to nucleate after 2 or 20 years near an area with a significant mass shift is 25 or 75 %, respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in which the operations take place (i.e., extensive, transverse or compressive). Results are summarized as follows: First, seismic moment magnitudes increase the more mass is locally shifted on the Earth's crust. Second, seismic moment magnitudes increase the larger the area in the crust is geomechanically polluted. Third, reverse faults tend to be more trigger-sensitive than normal faults due to a stronger alteration of the minimum vertical principal stress component. Pure strike-slip faults seem to rupture randomly and independently from the magnitude of the mass changes. Finally, mainly due to high estimation uncertainties of source parameters and, in particular, of shallow seismic events (<10 km), it remains still very difficult to

  19. Earthquakes, May-June, 1992

    USGS Publications Warehouse

    Person, Waverly J.

    1992-01-01

    The months of May and June were very active in terms of earthquake occurrence. Six major earthquakes (7.0earthquakes included a magnitude 7.1 in Papua New Guinea on May 15, a magnitude 7.1 followed by a magnitude 7.5 in the Philippine Islands on May 17, a magnitude 7.0 in the Cuba region on May 25, and a magnitude 7.3 in the Santa Cruz Islands of the Pacific on May 27. In the United States, a magnitude 7.6 earthquake struck in southern California on June 28 followed by a magnitude 6.7 quake about three hours later.

  20. Geometry and earthquake potential of the shoreline fault, central California

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2013-01-01

    The Shoreline fault is a vertical strike‐slip fault running along the coastline near San Luis Obispo, California. Much is unknown about the Shoreline fault, including its slip rate and the details of its geometry. Here, I study the geometry of the Shoreline fault at seismogenic depth, as well as the adjacent section of the offshore Hosgri fault, using seismicity relocations and earthquake focal mechanisms. The Optimal Anisotropic Dynamic Clustering (OADC) algorithm (Ouillon et al., 2008) is used to objectively identify the simplest planar fault geometry that fits all of the earthquakes to within their location uncertainty. The OADC results show that the Shoreline fault is a single continuous structure that connects to the Hosgri fault. Discontinuities smaller than about 1 km may be undetected, but would be too small to be barriers to earthquake rupture. The Hosgri fault dips steeply to the east, while the Shoreline fault is essentially vertical, so the Hosgri fault dips towards and under the Shoreline fault as the two faults approach their intersection. The focal mechanisms generally agree with pure right‐lateral strike‐slip on the OADC planes, but suggest a non‐planar Hosgri fault or another structure underlying the northern Shoreline fault. The Shoreline fault most likely transfers strike‐slip motion between the Hosgri fault and other faults of the Pacific–North America plate boundary system to the east. A hypothetical earthquake rupturing the entire known length of the Shoreline fault would have a moment magnitude of 6.4–6.8. A hypothetical earthquake rupturing the Shoreline fault and the section of the Hosgri fault north of the Hosgri–Shoreline junction would have a moment magnitude of 7.2–7.5.

  1. Viscous Moment, Mechanism of Slow Slip, and Subduction Megathrust Viscosity

    NASA Astrophysics Data System (ADS)

    Fagereng, A.

    2015-12-01

    Slow slip events (SSEs) represent transient slip velocities slower than earthquakes but faster than steady, average plate motion. SSEs repeating at the same location have characteristic slip magnitude and duration. Contrary to earthquakes, however, average slip relates to neither duration nor area. Variations in duration, slip, and slip rate can instead be tied to variations in effective viscosity, calculated from a viscous definition of moment. In this paradigm, the observation that deep slow slip events are slower and longer, implies a higher effective viscosity than in shallower, colder SSEs. Observed variations in effective viscosity and slip rate can be interpreted in terms of differences in driving stress and shear zone width, and likely arise in anastomosing shear zones containing a heterogeneous mixture of materials.

  2. The 7.9 Denali Fault Earthquake: Aftershock Locations, Moment Tensors and Focal Mechanisms from the Regional Seismic Network Data

    NASA Astrophysics Data System (ADS)

    Ratchkovski, N. A.; Hansen, R. A.; Christensen, D.; Kore, K.

    2002-12-01

    The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 foreshock on October 23. This earlier earthquake and its zone of aftershocks were located slightly to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. Near Mentasta Lake, a village that experienced some of the worst damage in the quake, the surface rupture scar turns from the Denali fault to the adjacent Totschunda fault, which trends toward more southeasterly toward the Canadian border. Overall, the geologists found that measurable scarps indicate that the north side of the Denali fault moved to the east and vertically up relative to the south. Maximum offsets on the Denali fault were 8.8 meters at the Tok Highway cutoff, and were 2.2 meters on the Totschunda fault. The Alaska regional seismic network consists of over 250 station sites, operated by the Alaska Earthquake Information Center (AEIC), the Alaska Volcano Observatory (AVO), and the Pacific Tsunami Warning Center (PTWC). Over 25 sites are equipped with the broad-band sensors, some of which have in addition the strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary network with over 20 instruments following the 6.7 Nenana Mountain and the 7.9 events. Prior to the M 7.9 Denali Fault event, the automatic earthquake detection system at AEIC was locating between 15 and 30 events per day. After the event, the system had over 200-400 automatic locations per day for at least 10 days following the 7.9 event. The processing of the data is ongoing with the priority given to the larger events. The cumulative length of the 6.7 and 7.9 aftershock locations along the Denali

  3. Coseismic and Afterslip Model Related to 25 April 2015, Mw7.8 Gorkha, Nepal Earthquake and its Potential Future Risk Regions

    NASA Astrophysics Data System (ADS)

    Wang, S.; Xu, C.; Jiang, G.

    2016-12-01

    Evidences from geologic, geophysical and geomorphic prove that 2015 Mw 7.8 Gorkha(Nepal) earthquake happened on the two ramp-flats fault structure of Main Himalayan Thrust(MHT). We approximated this more realistic fault model by a smooth curved fault surface, which was derived by the method of hybrid iterative inversion algorithm(HIIA) with additional constraints from coseismic geodetic data. Then the coseismic slip distribution of 2015 Gorkha earthquake was imaged based on this curved variably triangular sized fault model. The inverted maximum thrust and right-lateral slip components are 6 and 1.5 m, respectively, with the maximum slip magnitude 6.2 m located at a depth of 15 km. The released seismic moment derived from our best slip model is 8.58×1020 Nm, equivalent to a moment magnitude of Mw 7.89. We find two interesting tongue-shape slip areas, the maximum slip is about 1.5 m, along the up-dip of fault plane, which tappers off at the depth of 7 km, the up-dip propagation of ruptures may be impeded by the complicated geometry structures on the MHT interface. Coulomb Failure Stress(CFS), triggered by our optimal slip model, indicating a potential shallower rupture in the future. Considering historical earthquakes distribution and the calculated strain and strain gradient before this earthquake, earthquakes are expected to occur in the northwest areas of the epicenter. The spatio-temporal afterslip model over the first 180 days following the Mw 7.8 main shock was infered from the post-seismic GPS time series. One significant afterslip region can be observed in the downdip of the regions that ruptured by coseismic slip. Another afterslip region arresting our attention, is located around 40 km depth, with about 180 mm slip amplitude, but tappers off at the depth of 50 km. What's more, afterslip mainly occurs within 100 days after the 2015 Gorkha earthquake. Under the assumption of rigidity modulus u = 30 GPa, the released seismic moment by afterslip corresponding

  4. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Grosser, H.; Saul, J.; Wang, R.; Zschau, J.

    2009-12-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake’s damage potential. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy Es (e.g. Bormann et al., 2002): Me = 2/3(log10 Es - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. We analyse teleseismic broadband P-waves signals in the distance range 20°-98° to calculate Es. To correct the frequency-dependent energy loss experienced by the P-waves during the propagation path, we use pre-calculated spectral amplitude decay functions for different frequencies obtained from numerical simulations of Green’s functions (Wang, 1999) given the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake’s origin time, even in case of great earthquakes. We tested our procedure for a large dataset composed by about 770 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of

  5. Earthquake Swarm in Armutlu Peninsula, Eastern Marmara Region, Turkey

    NASA Astrophysics Data System (ADS)

    Yavuz, Evrim; Çaka, Deniz; Tunç, Berna; Serkan Irmak, T.; Woith, Heiko; Cesca, Simone; Lühr, Birger-Gottfried; Barış, Şerif

    2015-04-01

    The most active fault system of Turkey is North Anatolian Fault Zone and caused two large earthquakes in 1999. These two earthquakes affected the eastern Marmara region destructively. Unbroken part of the North Anatolian Fault Zone crosses north of Armutlu Peninsula on east-west direction. This branch has been also located quite close to Istanbul known as a megacity with its high population, economic and social aspects. A new cluster of microseismic activity occurred in the direct vicinity southeastern of the Yalova Termal area. Activity started on August 2, 2014 with a series of micro events, and then on August 3, 2014 a local magnitude is 4.1 event occurred, more than 1000 in the followed until August 31, 2014. Thus we call this tentatively a swarm-like activity. Therefore, investigation of the micro-earthquake activity of the Armutlu Peninsula has become important to understand the relationship between the occurrence of micro-earthquakes and the tectonic structure of the region. For these reasons, Armutlu Network (ARNET), installed end of 2005 and equipped with currently 27 active seismic stations operating by Kocaeli University Earth and Space Sciences Research Center (ESSRC) and Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), is a very dense network tool able to record even micro-earthquakes in this region. In the 30 days period of August 02 to 31, 2014 Kandilli Observatory and Earthquake Research Institute (KOERI) announced 120 local earthquakes ranging magnitudes between 0.7 and 4.1, but ARNET provided more than 1000 earthquakes for analyzes at the same time period. In this study, earthquakes of the swarm area and vicinity regions determined by ARNET were investigated. The focal mechanism of the August 03, 2014 22:22:42 (GMT) earthquake with local magnitude (Ml) 4.0 is obtained by the moment tensor solution. According to the solution, it discriminates a normal faulting with dextral component. The obtained focal mechanism solution is

  6. Irian Jaya earthquake and tsunami cause serious damage

    NASA Astrophysics Data System (ADS)

    Imamura, Fumihiko; Subandono, D.; Watson, G.; Moore, A.; Takahashi, T.; Matsutomi, H.; Hidayat, R.

    On February 17,1996, at 0559 UT, a major earthquake with moment magnitude (Mw) 7.9 killed 107 people and caused major damage at Biak Island, 30-40 km southwest of the earthquake's epicenter (Figures 1 and 2). A devastating tsunami washed away all of the houses at Korim, a small village located in a narrow bay facing directly towards the incoming wave, and it left behind clear evidence of sand erosion and deposition that indicated how far the tsunami advanced. An unexpectedly large tsunami run-up of 7.7 m was measured at Wardo in western Biak, which faces away from the primary tsunami source. This high run-up may have been caused by a local submarine landslide.

  7. A Moment Rate Function Deduced from Peak Ground Motions from M 3.3-5.3 Earthquakes: Implications for Scaling, Corner Frequency and Stress Drop

    NASA Astrophysics Data System (ADS)

    Archuleta, R. J.; Ji, C.

    2016-12-01

    Based on 3827 records of peak horizontal ground motions in the NGA-West2 database we computed linear regressions for Log PGA, Log PGV and the ratio PGA/2πPGV (which we call dominant frequency, DomF) versus moment magnitude for M 3.3-5.3 earthquakes. The slopes are nearly one for Log PGA and Log PGV and negative one for PGA/PGV. For magnitudes 5.3 and smaller the source can be treated as a point source. Using these regressions and an expression between the half peak-to-peak amplitude of Wood Anderson records (PWA) and moment magnitude, we have deduced an `apparent' moment rate function (aMRF) that increases quadratically in time until it reaches its maximum at time tp after which it decays linearly until a final duration td. For t*=0.054 s and with parameters tp and td scaling with seismic moment, tp(M0) = 0.03[M0/ M0(M=3.3)]1/7.0 and td(M0) = 0.31[M0/ M0(M=3.3)]1/3.3 . all the magnitude dependence within M 3.3-5.3 can be explained. The Fourier amplitude spectrum (FAS) of the aMRF has two corner frequencies connected by an intermediate slope of f-1. The smaller corner frequency fC 1/ td, i.e., a corner frequency related to the full duration. Stress drop associated with the average over the fault scales weakly with seismic moment Δσ M00.09. The larger corner frequency is proportional to 1/ tp. We also find that DomF ≈ 1/[2.2(tp(M0) + t*)], thus there is a strong tradeoff between tp and t*. The higher corner frequency and the intermediate slope in the spectrum could be completely obscured by t* for t* 0.04-0.06 s, producing a Brune-type spectrum. If so, it will be practically impossible to retrieve the true spectrum. Because the fC derived from the spectrum is controlled by td while PGA and PGV are controlled mostly by the time scale tp, this aMRF could explain the difference in uncertainty of the mean stress drop inferred from peak ground motion data and that inferred from displacement amplitude spectra. This aMRF is consistent with a rupture that initiates from

  8. Source mechanisms and source parameters of March 10 and September 13, 2007, United Arab Emirates Earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzooqi, Y A; Abou Elenean, K M; Megahed, A S

    2008-02-29

    On March 10 and September 13, 2007 two felt earthquakes with moment magnitudes 3.66 and 3.94 occurred in the eastern part of United Arab Emirates (UAE). The two events were accompanied by few smaller events. Being well recorded by the digital UAE and Oman digital broadband stations, they provide us an excellent opportunity to study the tectonic process and present day stress field acting on this area. In this study, we determined the focal mechanisms of the two main shocks by two methods (polarities of P and regional waveform inversion). Our results indicate a normal faulting mechanism with slight strikemore » slip component for the two studied events along a fault plane trending NNE-SSW in consistent a suggested fault along the extension of the faults bounded Bani Hamid area. The Seismicity distribution between two earthquake sequences reveals a noticeable gap that may be a site of a future event. The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated based on the far field displacement spectra and interpreted in the context of the tectonic setting.« less

  9. Robust real-time fault tracking for the 2011 Mw 9.0 Tohoku earthquake based on the phased-array-interference principle

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Parolai, Stefano; Zschau, Jochen

    2013-04-01

    Based on the principle of the phased array interference, we have developed an Iterative Deconvolution Stacking (IDS) method for real-time kinematic source inversion using near-field strong-motion and GPS networks. In this method, the seismic and GPS stations work like an array radar. The whole potential fault area is scanned patch by patch by stacking the apparent source time functions, which are obtained through deconvolution between the recorded seismograms and synthetic Green's functions. Once some significant source signals are detected any when and where, their signatures are removed from the observed seismograms. The procedure is repeated until the accumulative seismic moment being found converges and the residual seismograms are reduced below the noise level. The new approach does not need any artificial constraint used in the source parameterization such as, for example, fixing the hypocentre, restricting the rupture velocity and rise time, etc. Thus, it can be used for automatic real-time source inversion. In the application to the 2011 Tohoku earthquake, the IDS method is proved to be robust and reliable on the fast estimation of moment magnitude, fault area, rupture direction, and maximum slip, etc. About at 100 s after the rupture initiation, we can get the information that the rupture mainly propagates along the up-dip direction and causes a maximum slip of 17 m, which is enough to release a tsunami early warning. About two minutes after the earthquake occurrence, the maximum slip is found to be 31 m, and the moment magnitude reaches Mw8.9 which is very close to the final moment magnitude (Mw9.0) of this earthquake.

  10. Maximum magnitude in the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Merino, Miguel; Stein, Seth; Vleminckx, Bart; Brooks, Eddie; Camelbeeck, Thierry

    2014-05-01

    Estimating Mmax, the assumed magnitude of the largest future earthquakes expected on a fault or in an area, involves large uncertainties. No theoretical basis exists to infer Mmax because even where we know the long-term rate of motion across a plate boundary fault, or the deformation rate across an intraplate zone, neither predict how strain will be released. As a result, quite different estimates can be made based on the assumptions used. All one can say with certainty is that Mmax is at least as large as the largest earthquake in the available record. However, because catalogs are often short relative to the average recurrence time of large earthquakes, larger earthquakes than anticipated often occur. Estimating Mmax is especially challenging within plates, where deformation rates are poorly constrained, large earthquakes are rarer and variable in space and time, and often occur on previously unrecognized faults. We explore this issue for the Lower Rhine Graben seismic zone where the largest known earthquake, the 1756 Düren earthquake, has magnitude 5.7 and should occur on average about every 400 years. However, paleoseismic studies suggest that earthquakes with magnitudes up to 6.7 occurred during the Late Pleistocene and Holocene. What to assume for Mmax is crucial for critical facilities like nuclear power plants that should be designed to withstand the maximum shaking in 10,000 years. Using the observed earthquake frequency-magnitude data, we generate synthetic earthquake histories, and sample them over shorter intervals corresponding to the real catalog's completeness. The maximum magnitudes appearing most often in the simulations tend to be those of earthquakes with mean recurrence time equal to the catalog length. Because catalogs are often short relative to the average recurrence time of large earthquakes, we expect larger earthquakes than observed to date to occur. In a next step, we will compute hazard maps for different return periods based on the

  11. Soft storey effects on plastic hinge propagation of moment resisting reinforced concrete building subjected to Ranau earthquake

    NASA Astrophysics Data System (ADS)

    Tan, Chee Ghuan; Chia, Wei Ting; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Adiyanto, Mohd Irwan

    2017-10-01

    On 5th June 2015, a moderate earthquake with Mw 5.9 hit Ranau, resulted in damages of the existing non-seismically designed buildings, such that 61 buildings, including mosques, schools, hospitals and Ranau police headquarters were suffered from different level structural damages. Soft storey irregularity is one of the main reasons of the building damage. This study is to investigate the soft-story effect on the propagation path of plastic hinges RC building under seismic excitation. The plastic hinges formation and seismic performance of five moment resisting RC frames with different infill configurations are studied. The seismic performance of building is evaluated by Incremental Dynamic Analysis (IDA). Open ground soft storey structure shows the lowest seismic resistance, collapses at 0.55g pga. The maximum interstorey drift ratio (IDRmax) in soft storey buildings ranging from 0.53% to 2.96% which are far greater than bare frame ranging from 0.095% to 0.69%. The presence of infill walls creates stiffer upper stories causing moments concentrate at the soft storey, resulting the path of plastic hinge propagation is dominant at the soft storey columns. Hence, the buildings with soft storey are very susceptible under earthquake load.

  12. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle

    PubMed Central

    Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-01-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055

  13. Earthquake Magnitude Relationships for the Saint Peter and Saint Paul Archipelago, Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    de Melo, Guilherme W. S.; do Nascimento, Aderson F.

    2018-03-01

    We have investigated several relationships between ML, M(NEIC) and Mw for the earthquakes locally recorded in the Saint Peter and Saint Paul Archipelago (SPSPA), Equatorial Atlantic. Because we only have one station in the area, we could not derive attenuation relations for events recorded at different distances at different stations. Our approach was then to compare our ML estimates with magnitudes reported by NEIC. This approach produced acceptable results particularly for epicentral distance smaller than 100 km. For distances greater that 100 km, there is a systematic increase in the residuals probable due to the lack of station correction and our inability to accurately estimate Q. We also investigate the Mw—M(NEIC) relationship. We find that Mw estimates using S-wave produce smaller residuals when compared with both M(NEIC). Finally, we also investigate the ML—Mw relationship and observe that given the data set we have, the 1:1 holds. We believe that the use of the present methodologies provide consistent magnitude estimates between all the magnitudes investigated that could be used to better assess seismic hazard in the region.

  14. Earthquake Magnitude Relationships for the Saint Peter and Saint Paul Archipelago, Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    de Melo, Guilherme W. S.; do Nascimento, Aderson F.

    2017-12-01

    We have investigated several relationships between ML, M(NEIC) and Mw for the earthquakes locally recorded in the Saint Peter and Saint Paul Archipelago (SPSPA), Equatorial Atlantic. Because we only have one station in the area, we could not derive attenuation relations for events recorded at different distances at different stations. Our approach was then to compare our ML estimates with magnitudes reported by NEIC. This approach produced acceptable results particularly for epicentral distance smaller than 100 km. For distances greater that 100 km, there is a systematic increase in the residuals probable due to the lack of station correction and our inability to accurately estimate Q. We also investigate the Mw—M(NEIC) relationship. We find that Mw estimates using S-wave produce smaller residuals when compared with both M(NEIC). Finally, we also investigate the ML—Mw relationship and observe that given the data set we have, the 1:1 holds. We believe that the use of the present methodologies provide consistent magnitude estimates between all the magnitudes investigated that could be used to better assess seismic hazard in the region.

  15. Long-period building response to earthquakes in the San Francisco Bay Area

    USGS Publications Warehouse

    Olsen, A.H.; Aagaard, Brad T.; Heaton, T.H.

    2008-01-01

    This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area.

  16. Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill-Grensdalur volcanic complex, Iceland

    USGS Publications Warehouse

    Miller, A.D.; Julian, B.R.; Foulger, G.R.

    1998-01-01

    The volcanic and geothermal areas of Iceland are rich sources of non-double-couple (non-DC) earthquakes. A state-of-the-art digital seismometer network deployed at the Hengill-Grensdalur volcanic complex in 1991 recorded 4000 small earthquakes. We used the best recorded of these to determine 3-D VP and VP/VS structure tomographically and accurate earthquake moment tensors. The VP field is dominated by high seismic wave speed bodies interpreted as solidified intrusions. A widespread negative (-4 per cent) VP/VS anomaly in the upper 4 km correlates with the geothermal field, but is too strong to be caused solely by the effect of temperature upon liquid water or the presence of vapour, and requires in addition mineralogical or lithological differences between the geothermal reservoir and its surroundings. These may be caused by geothermal alteration. Well-constrained moment tensors were obtained for 70 of the best-recorded events by applying linear programming methods to P- and S-wave polarities and amplitude ratios. About 25 per cent of the mechanisms are, within observational error, consistent with DC mechanisms consistent with shear faulting. The other 75 per cent have significantly non-DC mechanisms. Many have substantial explosive components, one has a substantial implosive component, and the deviatoric component of many is strongly non-DC. Many of the non-DC mechanisms are consistent, within observational error, with simultaneous tensile and shear faulting. However, the mechanisms occupy a continuum in source-type parameter space and probably at least one additional source process is occurring. This may be fluid flow into newly formed cracks, causing partial compensation of the volumetric component. Studying non-shear earthquakes such as these has great potential for improving our understanding of geothermal processes and earthquake source processes in general.

  17. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, Andrew V.; Hayes, Gavin P.; Wei, Yong; Convers, Jaime

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5–9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast.

  18. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Roessler, Dirk; Scherbaum, Frank

    2012-04-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes ( M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of - 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = - 0.4, when compared to the regional networks operating in West Bohemia ( M c > 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.

  19. Near-field investigations of the Landers earthquake sequence, April to July 1992

    USGS Publications Warehouse

    Sieh, K.; Jones, L.; Hauksson, E.; Hudnut, K.; Eberhart-Phillips, D.; Heaton, T.; Hough, S.; Hutton, K.; Kanamori, H.; Lilje, A.; Lindvall, Scott; McGill, S.F.; Mori, J.; Rubin, C.; Spotila, J.A.; Stock, J.; Thio, H.K.; Treiman, J.; Wernicke, B.; Zachariasen, J.

    1993-01-01

    The Landers earthquake, which had a moment magnitude (Mw) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its Mw 6.1 preshock and Mw 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.

  20. Borehole strain observations of very low frequency earthquakes

    NASA Astrophysics Data System (ADS)

    Hawthorne, J. C.; Ghosh, A.; Hutchinson, A. A.

    2016-12-01

    We examine the signals of very low frequency earthquakes (VLFEs) in PBO borehole strain data in central Cascadia. These MW 3.3 - 4.1 earthquakes are best observed in seismograms at periods of 20 to 50 seconds. We look for the strain they produce on timescales from about 1 to 30 minutes. First, we stack the strain produced by 13 VLFEs identified by a grid search moment tensor inversion algorithm by Ghosh et. al. (2015) and Hutchinson and Ghosh (2016), as well as several thousand VLFEs detected through template matching these events. The VLFEs are located beneath southernmost Vancouver Island and the eastern Olympic Peninsula, and are best recorded at co-located stations B005 and B007. However, even at these stations, the signal to noise in the stack is often low, and the records are difficult to interpret. Therefore we also combine data from multiple stations and VLFE locations, and simply look for increases in the strain rate at the VLFE times, as increases in strain rate would suggest an increase in the moment rate. We compare the background strain rate in the 12 hours centered on the VLFEs with the strain rate in the 10 minutes centered on the VLFEs. The 10-minute duration is chosen as a compromise that averages out some instrumental noise without introducing too much longer-period random walk noise. Our results suggest a factor of 2 increase in strain rate--and thus moment rate--during the 10-minute VLFE intervals. The increase gives an average VLFE magnitude around M 3.5, within the range of magnitudes obtained with seismology. Further analyses are currently being carried out to better understand the evolution of moment release before, during, and after the VLFEs.

  1. Acceleration spectra for subduction zone earthquakes

    USGS Publications Warehouse

    Boatwright, J.; Choy, G.L.

    1989-01-01

    We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P wave groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction zone earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P wave acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface waves and normal modes are used to extend these P wave spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction zone earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors

  2. Rupture processes of the 2013-2014 Minab earthquake sequence, Iran

    NASA Astrophysics Data System (ADS)

    Kintner, Jonas A.; Ammon, Charles J.; Cleveland, K. Michael; Herman, Matthew

    2018-06-01

    We constrain epicentroid locations, magnitudes and depths of moderate-magnitude earthquakes in the 2013-2014 Minab sequence using surface-wave cross-correlations, surface-wave spectra and teleseismic body-wave modelling. We estimate precise relative locations of 54 Mw ≥ 3.8 earthquakes using 48 409 teleseismic, intermediate-period Rayleigh and Love-wave cross-correlation measurements. To reduce significant regional biases in our relative locations, we shift the relative locations to align the Mw 6.2 main-shock centroid to a location derived from an independent InSAR fault model. Our relocations suggest that the events lie along a roughly east-west trend that is consistent with the faulting geometry in the GCMT catalogue. The results support previous studies that suggest the sequence consists of left-lateral strain release, but better defines the main-shock fault length and shows that most of the Mw ≥ 5.0 aftershocks occurred on one or two similarly oriented structures. We also show that aftershock activity migrated westwards along strike, away from the main shock, suggesting that Coulomb stress transfer played a role in the fault failure. We estimate the magnitudes of the relocated events using surface-wave cross-correlation amplitudes and find good agreement with the GCMT moment magnitudes for the larger events and underestimation of small-event size by catalogue MS. In addition to clarifying details of the Minab sequence, the results demonstrate that even in tectonically complex regions, relative relocation using teleseismic surface waves greatly improves the precision of relative earthquake epicentroid locations and can facilitate detailed tectonic analyses of remote earthquake sequences.

  3. Source mechanism analysis of central Aceh earthquake July 2, 2013 Mw 6.2 using moment tensor inversion with BMKG waveform data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasetyo, Retno Agung, E-mail: prasetyo.agung@bmkg.go.id; Heryandoko, Nova; Afnimar

    The source mechanism of earthquake on July 2, 2013 was investigated by using moment tensor inversion. The result also compared by the field observation. Five waveform data of BMKG’s seismic network used to estimate the mechanism of earthquake, namely ; KCSI, MLSI, LASI, TPTI and SNSI. Main shock data taken during 200 seconds and filtered by using Butterworth band pass method from 0.03 to 0.05 Hz of frequency. Moment tensor inversion method is applied based on the point source assumption. Furthermore, the Green function calculated using the extended reflectivity method which modified by Kohketsu. The inversion result showed a strike-slipmore » faulting, where the nodal plane strike/dip/rake (124/80.6/152.8) and minimum variance value 0.3285 at a depth of 6 km (centroid). It categorized as a shallow earthquake. Field observation indicated that the building orientated to the east. It can be related to the southwest of dip direction which has 152 degrees of slip. As conclusion, the Pressure (P) and Tension (T) axis described dominant compression is happen from the south which is caused by pressure of the Indo-Australian plate.« less

  4. 2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile

    NASA Astrophysics Data System (ADS)

    Nealy, Jennifer L.; Herman, Matthew W.; Moore, Ginevra L.; Hayes, Gavin P.; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E.

    2017-09-01

    In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on 24 April, seemingly colocated with the last great-sized earthquake in the region—a M8.0 in March 1985. The history of large earthquakes in this region shows significant variation in rupture size and extent, typically highlighted by a juxtaposition of large ruptures interspersed with smaller magnitude sequences. We show that the 2017 sequence ruptured an area between the two main slip patches during the 1985 earthquake, rerupturing a patch that had previously slipped during the October 1973 M6.5 earthquake sequence. A significant gap in historic ruptures exists directly to the south of the 2017 sequence, with large enough moment deficit to host a great-sized earthquake in the near future, if it is locked.

  5. 2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile

    USGS Publications Warehouse

    Nealy, Jennifer; Herman, Matthew W.; Moore, Ginevra; Hayes, Gavin; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E

    2017-01-01

    In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on 24 April, seemingly colocated with the last great-sized earthquake in the region—a M8.0 in March 1985. The history of large earthquakes in this region shows significant variation in rupture size and extent, typically highlighted by a juxtaposition of large ruptures interspersed with smaller magnitude sequences. We show that the 2017 sequence ruptured an area between the two main slip patches during the 1985 earthquake, rerupturing a patch that had previously slipped during the October 1973 M6.5 earthquake sequence. A significant gap in historic ruptures exists directly to the south of the 2017 sequence, with large enough moment deficit to host a great-sized earthquake in the near future, if it is locked.

  6. Earthquakes; July-August, 1978

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    Earthquake activity during this period was about normal. Deaths from earthquakes were reported from Greece and Guatemala. Three major earthquakes (magnitude 7.0-7.9) occurred in Taiwan, Chile, and Costa Rica. In the United States, the most significant earthquake was a magnitude 5.6 on August 13 in southern California. 

  7. Earthquake recurrence and risk assessment in circum-Pacific seismic gaps

    USGS Publications Warehouse

    Thatcher, W.

    1989-01-01

    THE development of the concept of seismic gaps, regions of low earthquake activity where large events are expected, has been one of the notable achievements of seismology and plate tectonics. Its application to long-term earthquake hazard assessment continues to be an active field of seismological research. Here I have surveyed well documented case histories of repeated rupture of the same segment of circum-Pacific plate boundary and characterized their general features. I find that variability in fault slip and spatial extent of great earthquakes rupturing the same plate boundary segment is typical rather than exceptional but sequences of major events fill identified seismic gaps with remarkable order. Earthquakes are concentrated late in the seismic cycle and occur with increasing size and magnitude. Furthermore, earthquake rup-ture starts near zones of concentrated moment release, suggesting that high-slip regions control the timing of recurrent events. The absence of major earthquakes early in the seismic cycle indicates a more complex behaviour for lower-slip regions, which may explain the observed cycle-to-cycle diversity of gap-filling sequences. ?? 1989 Nature Publishing Group.

  8. Demonstration of the Cascadia G‐FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake

    USGS Publications Warehouse

    Crowell, Brendan; Schmidt, David; Bodin, Paul; Vidale, John; Gomberg, Joan S.; Hartog, Renate; Kress, Victor; Melbourne, Tim; Santillian, Marcelo; Minson, Sarah E.; Jamison, Dylan

    2016-01-01

    A prototype earthquake early warning (EEW) system is currently in development in the Pacific Northwest. We have taken a two‐stage approach to EEW: (1) detection and initial characterization using strong‐motion data with the Earthquake Alarm Systems (ElarmS) seismic early warning package and (2) the triggering of geodetic modeling modules using Global Navigation Satellite Systems data that help provide robust estimates of large‐magnitude earthquakes. In this article we demonstrate the performance of the latter, the Geodetic First Approximation of Size and Time (G‐FAST) geodetic early warning system, using simulated displacements for the 2001Mw 6.8 Nisqually earthquake. We test the timing and performance of the two G‐FAST source characterization modules, peak ground displacement scaling, and Centroid Moment Tensor‐driven finite‐fault‐slip modeling under ideal, latent, noisy, and incomplete data conditions. We show good agreement between source parameters computed by G‐FAST with previously published and postprocessed seismic and geodetic results for all test cases and modeling modules, and we discuss the challenges with integration into the U.S. Geological Survey’s ShakeAlert EEW system.

  9. Automated Magnitude Measures, Earthquake Source Modeling, VFM Discriminant Testing and Summary of Current Research.

    DTIC Science & Technology

    1979-02-01

    jm.. W 112.11111 * I 120 11 11111.258 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANOARDS-19b3-A 0 - SYSTEMS, SCIENCE AND SOFTWARE * SSS-R-79...3933 0AUTOMATED MAGNITUDE MEASURES, EARTHQUAKE SOURCE MODELING, VFM DISCRIMINANT TESTING AND SUMMARY OF CURRENT RESEARCH T. C. BACHE S. M. DAY J. M...VFM DISCRIMINANT . PERFORMING ORG. REPORT NUMBER TESTING AND SUMMARY OF CURRENT RESEARCH SSS-R-79-3933 7. AUTmOR(s) 8. CONTRACT OR GRANT NUMBERtSi T

  10. Earthquake Source Parameters Inferred from T-Wave Observations

    NASA Astrophysics Data System (ADS)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.

    2004-12-01

    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T

  11. Modified Mercalli intensities (MMI) for large earthquakes near New Madrid, Missouri, in 1811-1812 and near Charleston, South Carolina, in 1886

    USGS Publications Warehouse

    Bakun, W.H.; Johnston, A.C.; Hopper, M.G.

    2002-01-01

    Large historical earthquakes occurred in the eastern United States on December 16, 1811 near New Madrid, MO, on January 23, 1812 near New Madrid, MO, on February 7, 1812 near New Madrid, MO, and on September 1, 1886 near Charleston, SC. Modified Mercalli Intensity (MMI) assignments for these earthquakes were used by Bakun et al. (submitted) to estimate the location and moment magnitude M of these earthquakes from MMI observations. The MMI assignments used by Bakun et al. (submitted) are listed in this report.

  12. The 7.9 Denali Fault, Alaska Earthquake of November 3, 2002: Aftershock Locations, Moment Tensors and Focal Mechanisms from the Regional Seismic Network Data

    NASA Astrophysics Data System (ADS)

    Ratchkovski, N. A.; Hansen, R. A.; Kore, K. R.

    2003-04-01

    The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 earthquake on October 23. This earlier earthquake and its zone of aftershocks were located ~20 km to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. The geologists mapped a ~300-km-long rupture and measured maximum offsets of 8.8 meters. The 7.9 event ruptured three different faults. The rupture began on the northeast trending Susitna Glacier Thrust fault, a splay fault south of the Denali fault. Then the rupture transferred to the Denali fault and propagated eastward for 220 km. At about 143W the rupture moved onto the adjacent southeast-trending Totschunda fault and propagated for another 55 km. The cumulative length of the 6.7 and 7.9 aftershock zones along the Denali and Totschunda faults is about 380 km. The earthquakes were recorded and processed by the Alaska Earthquake Information Center (AEIC). The AEIC acquires and processes data from the Alaska Seismic Network, consisting of over 350 seismograph stations. Nearly 40 of these sites are equipped with the broad-band sensors, some of which also have strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary seismic network of 6 instruments following the 6.7 earthquake and an additional 20 stations following the 7.9 earthquake. Prior to the 7.9 Denali Fault event, the AEIC was locating 35 to 50 events per day. After the event, the processing load increased to over 300 events per day during the first week following the event. In this presentation, we will present and interpret the aftershock location patterns, first motion focal mechanism solutions, and regional seismic

  13. The source parameters, surface deformation and tectonic setting of three recent earthquakes: thessalonki (Greece), tabas-e-golshan (iran) and carlisle (u.k.).

    PubMed

    King, G; Soufleris, C; Berberian, M

    1981-03-01

    Abstract- Three earthquakes have been studied. These are the Thessaloniki earthquake of 20th June 1978 (Ms = 6.4, Normal faulting), the Tabase-Golshan earthquake of 16th September 1978 (Ms = 7.7 Thrust faulting) and the Carlisle earth-quake of 26th December 1979 (Mb = 5.0, Thrust faulting). The techniques employed to determine source parameters included field studies of SUP face deformation, fault breaks, locations of locally recorded aftershocks and teleseismic studies including joint hypocentral location, first motion methods and waveform modelling. It is clear that these techniques applied together provide more information than the same methods used separately. The moment of the Thessaloniki earthquake determined teleseismically (Force moment 5.2 times 10(25) dyne cm. Geometric moment 1.72 times 10(8) m(3) ) is an order of magnitude greater than that determined using field data (surface ruptures and aftershock depths) (Force moment 4.5 times 10(24) dyne cm. Geometric moment 0.16 times 10(8) m(3) ). It is concluded that for this earthquake the surface rupture only partly reflects the processes on the main rupture plane. This view i s supported by a distribution of aftershocks and damage which extends well outside the region of ground rupture. However, the surface breaks consistently have the same slip vector direction as the fault plane solutions suggesting that they are in this respect related to to the main faulting and are not superficial slumping. Both field studies and waveform studies suggest a low stress drop which may explain the relatively little damage and loss of life as a result of the Thessaloniki earthquake. In contrast, the teleseismic moment of the Tabas-e-Golshan earthquake (Force moment 4.4 times 10(26) dyne cm. Geometric moment 1.5 times 10(9) m(3) ) is similar t o that determined from field studies (Force moment 10.2 times 10(26) dyne cm. Geometric moment 3.4 times 10(9) m(3) ) and the damage and after-shock distributions clearly relate to the

  14. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, A.V.; Hayes, G.; Wei, Y.; Convers, J.

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5-9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast. Copyright 2011 by the American Geophysical Union.

  15. Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake

    PubMed Central

    Nimiya, Hiro; Ikeda, Tatsunori; Tsuji, Takeshi

    2017-01-01

    Monitoring of earthquake faults and volcanoes contributes to our understanding of their dynamic mechanisms and to our ability to predict future earthquakes and volcanic activity. We report here on spatial and temporal variations of seismic velocity around the seismogenic fault of the 2016 Kumamoto earthquake [moment magnitude (Mw) 7.0] based on ambient seismic noise. Seismic velocity near the rupture faults and Aso volcano decreased during the earthquake. The velocity reduction near the faults may have been due to formation damage, a change in stress state, and an increase in pore pressure. Further, we mapped the post-earthquake fault-healing process. The largest seismic velocity reduction observed at Aso volcano during the earthquake was likely caused by pressurized volcanic fluids, and the large increase in seismic velocity at the volcano’s magma body observed ~3 months after the earthquake may have been a response to depressurization caused by the eruption. This study demonstrates the usefulness of continuous monitoring of faults and volcanoes. PMID:29202026

  16. Local magnitude calibration of the Hellenic Unified Seismic Network

    NASA Astrophysics Data System (ADS)

    Scordilis, E. M.; Kementzetzidou, D.; Papazachos, B. C.

    2016-01-01

    A new relation is proposed for accurate determination of local magnitudes in Greece. This relation is based on a large number of synthetic Wood-Anderson (SWA) seismograms corresponding to 782 regional shallow earthquakes which occurred during the period 2007-2013 and recorded by 98 digital broad-band stations. These stations are installed and operated by the following: (a) the National Observatory of Athens (HL), (b) the Department of Geophysics of the Aristotle University of Thessaloniki (HT), (c) the Seismological Laboratory of the University of Athens (HA), and (d) the Seismological Laboratory of the Patras University (HP). The seismological networks of the above institutions constitute the recently (2004) established Hellenic Unified Seismic Network (HUSN). These records are used to calculate a refined geometrical spreading factor and an anelastic attenuation coefficient, representative for Greece and surrounding areas, proper for accurate calculation of local magnitudes in this region. Individual station corrections depending on the crustal structure variations in their vicinity and possible inconsistencies in instruments responses are also considered in order to further ameliorate magnitude estimation accuracy. Comparison of such calculated local magnitudes with corresponding original moment magnitudes, based on an independent dataset, revealed that these magnitude scales are equivalent for a wide range of values.

  17. Comment on Pisarenko et al., "Characterization of the Tail of the Distribution of Earthquake Magnitudes by Combining the GEV and GPD Descriptions of Extreme Value Theory"

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2016-02-01

    In this short note, I comment on the research of Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014) regarding the extreme value theory and statistics in the case of earthquake magnitudes. The link between the generalized extreme value distribution (GEVD) as an asymptotic model for the block maxima of a random variable and the generalized Pareto distribution (GPD) as a model for the peaks over threshold (POT) of the same random variable is presented more clearly. Inappropriately, Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014) have neglected to note that the approximations by GEVD and GPD work only asymptotically in most cases. This is particularly the case with truncated exponential distribution (TED), a popular distribution model for earthquake magnitudes. I explain why the classical models and methods of the extreme value theory and statistics do not work well for truncated exponential distributions. Consequently, these classical methods should be used for the estimation of the upper bound magnitude and corresponding parameters. Furthermore, I comment on various issues of statistical inference in Pisarenko et al. and propose alternatives. I argue why GPD and GEVD would work for various types of stochastic earthquake processes in time, and not only for the homogeneous (stationary) Poisson process as assumed by Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014). The crucial point of earthquake magnitudes is the poor convergence of their tail distribution to the GPD, and not the earthquake process over time.

  18. Large magnitude (M > 7.5) offshore earthquakes in 2012: few examples of absent or little tsunamigenesis, with implications for tsunami early warning

    NASA Astrophysics Data System (ADS)

    Pagnoni, Gianluca; Armigliato, Alberto; Tinti, Stefano

    2013-04-01

    We take into account some examples of offshore earthquakes occurred worldwide in year 2012 that were characterised by a "large" magnitude (Mw equal or larger than 7.5) but which produced no or little tsunami effects. Here, "little" is intended as "lower than expected on the basis of the parent earthquake magnitude". The examples we analyse include three earthquakes occurred along the Pacific coasts of Central America (20 March, Mw=7.8, Mexico; 5 September, Mw=7.6, Costa Rica; 7 November, Mw=7.5, Mexico), the Mw=7.6 and Mw=7.7 earthquakes occurred respectively on 31 August and 28 October offshore Philippines and offshore Alaska, and the two Indian Ocean earthquakes registered on a single day (11 April) and characterised by Mw=8.6 and Mw=8.2. For each event, we try to face the problem related to its tsunamigenic potential from two different perspectives. The first can be considered purely scientific and coincides with the question: why was the ensuing tsunami so weak? The answer can be related partly to the particular tectonic setting in the source area, partly to the particular position of the source with respect to the coastline, and finally to the focal mechanism of the earthquake and to the slip distribution on the ruptured fault. The first two pieces of information are available soon after the earthquake occurrence, while the third requires time periods in the order of tens of minutes. The second perspective is more "operational" and coincides with the tsunami early warning perspective, for which the question is: will the earthquake generate a significant tsunami and if so, where will it strike? The Indian Ocean events of 11 April 2012 are perfect examples of the fact that the information on the earthquake magnitude and position alone may not be sufficient to produce reliable tsunami warnings. We emphasise that it is of utmost importance that the focal mechanism determination is obtained in the future much more quickly than it is at present and that this

  19. Earthquakes, July-August 1992

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There were two major earthquakes (7.0≤M<8.0) during this reporting period. A magnitude 7.5 earthquake occurred in Kyrgyzstan on August 19 and a magnitude 7.0 quake struck the Ascension Island region on August 28. In southern California, aftershocks of the magnitude 7.6 earthquake on June 28, 1992, continued. One of these aftershocks caused damage and injuries, and at least one other aftershock caused additional damage. Earthquake-related fatalities were reportred in Kyrgzstan and Pakistan. 

  20. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit.

    PubMed

    Fialko, Yuri; Sandwell, David; Simons, Mark; Rosen, Paul

    2005-05-19

    Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4-5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4-10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.

  1. Persistency of rupture directivity in moderate-magnitude earthquakes in Italy: Implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Rovelli, A.; Calderoni, G.

    2012-12-01

    A simple method based on the EGF deconvolution in the frequency domain is applied to detect the occurrence of unilateral ruptures in recent damaging earthquakes in Italy. The spectral ratio between event pairs with different magnitudes at individual stations shows large azimuthal variations above corner frequency when the target event is affected by source directivity and the EGF is not or vice versa. The analysis is applied to seismograms and accelerograms recorded during the seismic sequence following the 20 May 2012, Mw 5.6 main shock in Emilia, northern Italy, the 6 April 2009, Mw 6.1 earthquake of L'Aquila, central Italy, and the 26 September 1997, Mw 5.7 and 6.0 shocks in Umbria-Marche, central Italy. Events of each seismic sequence are selected as having consistent focal mechanisms, and the station selection obeys to the constraint of a similar source-to-receiver path for the event pairs. The analyzed data set of L'Aquila consists of 962 broad-band seismograms relative to 69 normal-faulting earthquakes (3.3 ≤ MW ≤ 6.1, according to Herrmann et al., 2011), stations are selected in the distance range 100 to 250 km to minimize differences in propagation paths. The seismogram analysis reveals that a strong along-strike (toward SE) source directivity characterized all of the three Mw > 5.0 shocks. Source directivity was also persistent up to the smallest magnitudes: 65% of earthquakes under study showed evidence of directivity toward SE whereas only one (Mw 3.7) event showed directivity in the opposite direction. Also the Mw 5.6 main shock of the 20 May 2012 in Emilia result in large azimuthal spectral variations indicating unilateral rupture propagation toward SE. According to the reconstructed geometry of the trust-fault plane, the inferred directivity direction suggests top-down rupture propagation. The analysis over the Emilia aftershock sequence is in progress. The third seismic sequence, dated 1997-1998, occurred in the northern Apennines and, similarly

  2. Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.

    2015-01-01

    The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.

  3. Fault parameters and macroseismic observations of the May 10, 1997 Ardekul-Ghaen earthquake

    NASA Astrophysics Data System (ADS)

    Amini, H.; Zare, M.; Ansari, A.

    2018-01-01

    The Ardekul (Zirkuh) earthquake (May 10, 1997) is the largest recent earthquake that occurred in the Ardekul-Ghaen region of Eastern Iran. The greatest destruction was concentrated around Ardekul, Haji-Abad, Esfargh, Pishbar, Bashiran, Abiz-Qadim, and Fakhr-Abad (completely destroyed). The total surface fault rupture was about 125 km with the longest un-interrupted segment in the south of the region. The maximum horizontal and vertical displacements were reported in Korizan and Bohn-Abad with about 210 and 70 cm, respectively; moreover, other building damages and environmental effects were also reported for this earthquake. In this study, the intensity value XI on the European Macroseismic Scale (EMS) and Environmental Seismic Intensity (ESI) scale was selected for this earthquake according to the maximum effects on macroseismic data points affected by this earthquake. Then, according to its macroseismic data points of this earthquake and Boxer code, some macroseismic parameters including magnitude, location, source dimension, and orientation of this earthquake were also estimated at 7.3, 33.52° N-59.99° E, 75 km long and 21 km wide, and 152°, respectively. As the estimated macroseismic parameters are consistent with the instrumental ones (Global Centroid Moment Tensor (GCMT) location and magnitude equal 33.58° N-60.02° E, and 7.2, respectively), this method and dataset are suggested not only for other instrumental earthquakes, but also for historical events.

  4. Modeling of the strong ground motion of 25th April 2015 Nepal earthquake using modified semi-empirical technique

    NASA Astrophysics Data System (ADS)

    Lal, Sohan; Joshi, A.; Sandeep; Tomer, Monu; Kumar, Parveen; Kuo, Chun-Hsiang; Lin, Che-Min; Wen, Kuo-Liang; Sharma, M. L.

    2018-05-01

    On 25th April, 2015 a hazardous earthquake of moment magnitude 7.9 occurred in Nepal. Accelerographs were used to record the Nepal earthquake which is installed in the Kumaon region in the Himalayan state of Uttrakhand. The distance of the recorded stations in the Kumaon region from the epicenter of the earthquake is about 420-515 km. Modified semi-empirical technique of modeling finite faults has been used in this paper to simulate strong earthquake at these stations. Source parameters of the Nepal aftershock have been also calculated using the Brune model in the present study which are used in the modeling of the Nepal main shock. The obtained value of the seismic moment and stress drop is 8.26 × 1025 dyn cm and 10.48 bar, respectively, for the aftershock from the Brune model .The simulated earthquake time series were compared with the observed records of the earthquake. The comparison of full waveform and its response spectra has been made to finalize the rupture parameters and its location. The rupture of the earthquake was propagated in the NE-SW direction from the hypocenter with the rupture velocity 3.0 km/s from a distance of 80 km from Kathmandu in NW direction at a depth of 12 km as per compared results.

  5. Evidence for large prehistoric earthquakes in the northern New Madrid Seismic Zone, central United States

    USGS Publications Warehouse

    Li, Y.; Schweig, E.S.; Tuttle, M.P.; Ellis, M.A.

    1998-01-01

    We surveyed the area north of New Madris, Missouri, for prehistoric liquefaction deposits and uncovered two new sites with evidence of pre-1811 earthquakes. At one site, located about 20 km northeast of New Madrid, Missouri, radiocarbon dating indicates that an upper sand blow was probably deposited after A.D. 1510 and a lower sand blow was deposited prior to A.D. 1040. A sand blow at another site about 45 km northeast of New Madrid, Missouri, is dated as likely being deposited between A.D.55 and A.D. 1620 and represents the northernmost recognized expression of prehistoric liquefaction likely related to the New Madrid seismic zone. This study, taken together with other data, supports the occurrence of at least two earthquakes strong enough to indcue liquefaction or faulting before A.D. 1811, and after A.D. 400. One earthquake probably occurred around AD 900 and a second earthquake occurred around A.D. 1350. The data are not yet sufficient to estimate the magnitudes of the causative earthquakes for these liquefaction deposits although we conclude that all of the earthquakes are at least moment magnitude M ~6.8, the size of the 1895 Charleston, Missouri, earthquake. A more rigorous estimate of the number and sizes of prehistoric earthquakes in the New Madrid sesmic zone awaits evaluation of additional sites.

  6. Focal Mechanisms From Moment Tensor Solutions and First Motion Polarities of Shallow to Deep Local Earthquakes in Eastern Nepal and Southern Tibet

    NASA Astrophysics Data System (ADS)

    de La Torre, T. L.; Sheehan, A. F.; Monsalve, G.; Wu, F.

    2004-12-01

    We determined focal mechanisms using waveforms and first motion polarities from local earthquakes recorded during the Himalayan Nepal Tibet Seismic Experiment (HIMNT). The HIMNT experiment included the deployment of 28 broad band seismometers in eastern Nepal and southern Tibet from September 2001 to April 2003. Using a regional moment tensor method (Ammon and Randall, 2001) and first motion polarities for displaying double-couple focal mechanisms (Snokes, 2003), we analyzed the fault plane solutions at three distinct zones of seismicity. Characteristic focal mechanisms in seismically concentrated areas may indicate the presence of fault ramps or a decollement in the Himalayan collision zone. Previous studies of focal mechanisms on the Tibetan Plateau predominantly indicate east-west extension and shallow thrusting at the Himalayan collision zone for shallow to intermediate earthquakes (Ni and Barazangi, 1984; Molnar and Lyon-Caen, 1989; Randall et al., 1995) and east-west extension for intermediate to deep earthquakes (Zhu and Helmberger, 1996; Chen and Yang, 2004). The first zone in southeast Nepal between the Main Boundary and Main Frontal faults consist of earthquakes < Mw 4.0 at depths 40 - 60 km near the epicenter of the 1988 Udaypur earthquake, Mb 6.1, depth 57 km. The second zone north of the Main Central Thrust outcrop in eastern Nepal consists of 14 earthquakes 3.0 - 5.0 Mw at depths < 30 km that indicate north-south strike normal faulting and east-west strike thrust faulting. The third zone is an arc parallel to the Himalayas in southern Tibet and a cluster in northeast Nepal. This zone consists of 45 earthquakes < 4.0 Mw at depths > 50 km. Four earthquakes indicate northwest-southeast compression resulting in northeast strike strike-slip faulting while one earthquake in the northeast cluster indicates east-west compression at a source depth below the crust-mantle boundary. Focal mechanisms from full waveform moment tensor inversions are cross checked

  7. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Herman, Matthew W.; Barnhart, William D.; Furlong, Kevin P.; Riquelme, Sebástian; Benz, Harley M.; Bergman, Eric; Barrientos, Sergio; Earle, Paul S.; Samsonov, Sergey

    2014-01-01

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile which had not ruptured in a megathrust earthquake since a M ~8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March–April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  8. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake.

    PubMed

    Hayes, Gavin P; Herman, Matthew W; Barnhart, William D; Furlong, Kevin P; Riquelme, Sebástian; Benz, Harley M; Bergman, Eric; Barrientos, Sergio; Earle, Paul S; Samsonov, Sergey

    2014-08-21

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which had not ruptured in a megathrust earthquake since a M ∼8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March-April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  9. 2014 Mainshock-Aftershock Activity Versus Earthquake Swarms in West Bohemia, Czech Republic

    NASA Astrophysics Data System (ADS)

    Jakoubková, Hana; Horálek, Josef; Fischer, Tomáš

    2018-01-01

    A singular sequence of three episodes of ML3.5, 4.4 and 3.6 mainshock-aftershock occurred in the West Bohemia/Vogtland earthquake-swarm region during 2014. We analysed this activity using the WEBNET data and compared it with the swarms of 1997, 2000, 2008 and 2011 from the perspective of cumulative seismic moment, statistical characteristics, space-time distribution of events, and prevailing focal mechanisms. For this purpose, we improved the scaling relation between seismic moment M0 and local magnitude ML by WEBNET. The total seismic moment released during 2014 episodes (M_{0tot}≈ 1.58× 10^{15} Nm) corresponded to a single ML4.6+ event and was comparable to M_{0tot} of the swarms of 2000, 2008 and 2011. We inferred that the ML4.8 earthquake is the maximum expected event in Nový Kostel (NK), the main focal zone. Despite the different character of the 2014 sequence and the earthquake swarms, the magnitude-frequency distributions (MFDs) show the b-values ≈ 1 and probability density functions (PDFs) of the interevent times indicate the similar event rate of the individual swarms and 2014 activity. Only the a-value (event-productivity) in the MFD of the 2014 sequence is significantly lower than those of the swarms. A notable finding is a significant acceleration of the seismic moment release in each subsequent activity starting from the 2000 swarm to the 2014 sequence, which may indicate an alteration from the swarm-like to the mainshocks-aftershock character of the seismicity. The three mainshocks are located on a newly activated fault segment/asperity (D in out notation) of the NK zone situated in the transition area among fault segments A, B, C, which hosted the 2000, 2008 and 2011 swarms. The segment D appears to be predisposed to an oblique-thrust faulting while strike-slip faulting is typical of segments A, B and C. In conclusion, we propose a basic segment scheme of the NK zone which should be improved gradually.

  10. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta

    NASA Astrophysics Data System (ADS)

    Wang, Ruijia; Gu, Yu Jeffrey; Schultz, Ryan; Zhang, Miao; Kim, Ahyi

    2017-08-01

    On 2016 January 12, an intraplate earthquake with an initial reported local magnitude (ML) of 4.8 shook the town of Fox Creek, Alberta. While there were no reported damages, this earthquake was widely felt by the local residents and suspected to be induced by the nearby hydraulic-fracturing (HF) operations. In this study, we determine the earthquake source parameters using moment tensor inversions, and then detect and locate the associated swarm using a waveform cross-correlation based method. The broad-band seismic recordings from regional arrays suggest a moment magnitude (M) 4.1 for this event, which is the largest in Alberta in the past decade. Similar to other recent M ∼ 3 earthquakes near Fox Creek, the 2016 January 12 earthquake exhibits a dominant strike-slip (strike = 184°) mechanism with limited non-double-couple components (∼22 per cent). This resolved focal mechanism, which is also supported by forward modelling and P-wave first motion analysis, indicates an NE-SW oriented compressional axis consistent with the maximum compressive horizontal stress orientations delineated from borehole breakouts. Further detection analysis on industry-contributed recordings unveils 1108 smaller events within 3 km radius of the epicentre of the main event, showing a close spatial-temporal relation to a nearby HF well. The majority of the detected events are located above the basement, comparable to the injection depth (3.5 km) on the Duvernay shale Formation. The spatial distribution of this earthquake cluster further suggests that (1) the source of the sequence is an N-S-striking fault system and (2) these earthquakes were induced by an HF well close to but different from the well that triggered a previous (January 2015) earthquake swarm. Reactivation of pre-existing, N-S oriented faults analogous to the Pine Creek fault zone, which was reported by earlier studies of active source seismic and aeromagnetic data, are likely responsible for the occurrence of the

  11. History of Modern Earthquake Hazard Mapping and Assessment in California Using a Deterministic or Scenario Approach

    NASA Astrophysics Data System (ADS)

    Mualchin, Lalliana

    2011-03-01

    Modern earthquake ground motion hazard mapping in California began following the 1971 San Fernando earthquake in the Los Angeles metropolitan area of southern California. Earthquake hazard assessment followed a traditional approach, later called Deterministic Seismic Hazard Analysis (DSHA) in order to distinguish it from the newer Probabilistic Seismic Hazard Analysis (PSHA). In DSHA, seismic hazard in the event of the Maximum Credible Earthquake (MCE) magnitude from each of the known seismogenic faults within and near the state are assessed. The likely occurrence of the MCE has been assumed qualitatively by using late Quaternary and younger faults that are presumed to be seismogenic, but not when or within what time intervals MCE may occur. MCE is the largest or upper-bound potential earthquake in moment magnitude, and it supersedes and automatically considers all other possible earthquakes on that fault. That moment magnitude is used for estimating ground motions by applying it to empirical attenuation relationships, and for calculating ground motions as in neo-DSHA (Z uccolo et al., 2008). The first deterministic California earthquake hazard map was published in 1974 by the California Division of Mines and Geology (CDMG) which has been called the California Geological Survey (CGS) since 2002, using the best available fault information and ground motion attenuation relationships at that time. The California Department of Transportation (Caltrans) later assumed responsibility for printing the refined and updated peak acceleration contour maps which were heavily utilized by geologists, seismologists, and engineers for many years. Some engineers involved in the siting process of large important projects, for example, dams and nuclear power plants, continued to challenge the map(s). The second edition map was completed in 1985 incorporating more faults, improving MCE's estimation method, and using new ground motion attenuation relationships from the latest published

  12. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Hino, R.; Kido, M.; Fujimoto, H.; Osada, Y.; Inazu, D.; Ohta, Y.; Iinuma, T.; Ohzono, M.; Mishina, M.; Miura, S.; Suzuki, K.; Tsuji, T.; Ashi, J.

    2012-12-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  13. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ito, Yoshihiro; Hino, Ryota; Kido, Motoyuki; Fujimoto, Hiromi; Osada, Yukihito; Inazu, Daisuke; Ohta, Yusaku; Iinuma, Takeshi; Ohzono, Mako; Miura, Satoshi; Mishina, Masaaki; Suzuki, Kensuke; Tsuji, Takeshi; Ashi, Juichiro

    2013-07-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  14. Nucleation process and dynamic inversion of the Mw 6.9 Valparaíso 2017 earthquake in Central Chile

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Aden-Antoniow, F.; Baez, J. C., Sr.; Otarola, C., Sr.; Potin, B.; DelCampo, F., Sr.; Poli, P.; Flores, C.; Satriano, C.; Felipe, L., Sr.; Madariaga, R. I.

    2017-12-01

    The Valparaiso 2017 sequence occurred in mega-thrust Central Chile, an active zone where the last mega-earthquake occurred in 1730. An intense seismicity occurred 2 days before of the Mw 6.9 main-shock. A slow trench ward movement observed in the coastal GPS antennas accompanied the foreshock seismicity. Following the Mw 6.9 earthquake the seismicity migrated 30 Km to South-East. This sequence was well recorded by multi-parametric stations composed by GPS, Broad-Band and Strong Motion instruments. We built a seismic catalogue with 2329 events associated to Valparaiso sequence, with a magnitude completeness of Ml 2.8. We located all the seismicity considering a new 3D velocity model obtained for the Valparaiso zone, and compute the moment tensor for events with magnitude larger than Ml 3.5, and finally studied the presence of repeating earthquakes. The main-shock is studied by performing a dynamic inversion using the strong motion records and an elliptical patch approach to characterize the rupture process. During the two days nucleation stage, we observe a compact zone of repeater events. In the meantime a westward GPS movement was recorded in the coastal GPS stations. The aseismic moment estimated from GPS is larger than the foreshocks cumulative moment, suggesting the presence of a slow slip event, which potentially triggered the 6.9 mainshock. The Mw 6.9 earthquake is associated to rupture of an elliptical asperity of semi-axis of 10 km and 5 km, with a sub-shear rupture, stress drop of 11.71 MPa, yield stress of 17.21 MPa, slip weakening of 0.65 m and kappa value of 1.70. This sequence occurs close to, and with some similar characteristics that 1985 Valparaíso Mw 8.0 earthquake. The rupture of this asperity could stress more the highly locked Central Chile zone where a mega-thrust earthquake like 1730 is expected.

  15. Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to waveform data recorded in regional distance range

    NASA Astrophysics Data System (ADS)

    Hara, T.

    2012-12-01

    Hara (2007. EPS, 59, 227 - 231) developed a method to determine earthquake magnitudes using durations of high frequency energy radiation and displacement amplitudes of tele-seismic events, and showed that it was applicable to huge events such as the 2004 Sumatra earthquake (Mw 9.0 after the Global CMT catalog. In the following the moment magnitude are from their estimates). Since Hara (2007) developed this method, we have been applying it to large shallow events, and confirmed its effectiveness. The results for several events are available at the web site of our institute (http://iisee.kenken.go.jp/quakes.htm). Also, Hara (2011. EPS, 63, 525-528) applied this method to the 2011 Off the Pacific Coast of Tohoku Earthquake (Mw 9.1), and showed that it worked well. In these applications, we used only waveform data recorded in the tele-seismic distance range (30 - 85 degrees). In order to have a magnitude estimate faster, it is necessary to analyze regional distance range data. In this study, we applied the method of Hara (2007) to waveform data recorded in the regional distance range (8 - 30 degrees) to investigate its applicability. We slightly modified the method by changing durations of times series used for analysis considering arrivals of high amplitude Rayleigh waves. We selected the six recent huge (their moment magnitude are equal to or greater than 8.5) earthquakes; they are the December 26, 2004 Sumatra (Mw 9.0), the March 28, 2005 Northern Sumatra (Mw 8,6), the September 12, 2007 Southern Sumatra (Mw 8.5), the February 27, 2010 Chile (Mw 8.8), the March 11, 2011 off the Pacific Coast of Tohoku (Mw 9.1), the April 11, 2012 off West Coast of Northern Sumatra (Mw 8.6). We retrieved BHZ channel waveform data from IRIS DMC. For the 2004 Sumatra and 2010 Chile earthquakes, only a few waveform data are available. The estimated magnitudes are 9.16, 8.66, 8.53, 8.83, 9.15, and 8.70, respectively. Also, the estimated high frequency energy radiation durations are

  16. Dynamic models of an earthquake and tsunami offshore Ventura, California

    USGS Publications Warehouse

    Kenny J. Ryan,; Geist, Eric L.; Barall, Michael; David D. Oglesby,

    2015-01-01

    The Ventura basin in Southern California includes coastal dip-slip faults that can likely produce earthquakes of magnitude 7 or greater and significant local tsunamis. We construct a 3-D dynamic rupture model of an earthquake on the Pitas Point and Lower Red Mountain faults to model low-frequency ground motion and the resulting tsunami, with a goal of elucidating the seismic and tsunami hazard in this area. Our model results in an average stress drop of 6 MPa, an average fault slip of 7.4 m, and a moment magnitude of 7.7, consistent with regional paleoseismic data. Our corresponding tsunami model uses final seafloor displacement from the rupture model as initial conditions to compute local propagation and inundation, resulting in large peak tsunami amplitudes northward and eastward due to site and path effects. Modeled inundation in the Ventura area is significantly greater than that indicated by state of California's current reference inundation line.

  17. Earthquake probabilities in the San Francisco Bay Region: 2000 to 2030 - a summary of findings

    USGS Publications Warehouse

    ,

    1999-01-01

    The San Francisco Bay region sits astride a dangerous “earthquake machine,” the tectonic boundary between the Pacific and North American Plates. The region has experienced major and destructive earthquakes in 1838, 1868, 1906, and 1989, and future large earthquakes are a certainty. The ability to prepare for large earthquakes is critical to saving lives and reducing damage to property and infrastructure. An increased understanding of the timing, size, location, and effects of these likely earthquakes is a necessary component in any effective program of preparedness. This study reports on the probabilities of occurrence of major earthquakes in the San Francisco Bay region (SFBR) for the three decades 2000 to 2030. The SFBR extends from Healdsberg on the northwest to Salinas on the southeast and encloses the entire metropolitan area, including its most rapidly expanding urban and suburban areas. In this study a “major” earthquake is defined as one with M≥6.7 (where M is moment magnitude). As experience from the Northridge, California (M6.7, 1994) and Kobe, Japan (M6.9, 1995) earthquakes has shown us, earthquakes of this size can have a disastrous impact on the social and economic fabric of densely urbanized areas. To reevaluate the probability of large earthquakes striking the SFBR, the U.S. Geological Survey solicited data, interpretations, and analyses from dozens of scientists representing a wide crosssection of the Earth-science community (Appendix A). The primary approach of this new Working Group (WG99) was to develop a comprehensive, regional model for the long-term occurrence of earthquakes, founded on geologic and geophysical observations and constrained by plate tectonics. The model considers a broad range of observations and their possible interpretations. Using this model, we estimate the rates of occurrence of earthquakes and 30-year earthquake probabilities. Our study considers a range of magnitudes for earthquakes on the major faults in the

  18. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation

    USGS Publications Warehouse

    Parsons, T.; Toda, S.; Stein, R.S.; Barka, A.; Dieterich, J.H.

    2000-01-01

    We calculate the probability of strong shaking in Istanbul, an urban center of 10 million people, from the description of earthquakes on the North Anatolian fault system in the Marmara Sea during the past 500 years and test the resulting catalog against the frequency of damage in Istanbul during the preceding millennium, departing from current practice, we include the time-dependent effect of stress transferred by the 1999 moment magnitude M = 7.4 Izmit earthquake to faults nearer to Istanbul. We find a 62 ± 15% probability (one standard deviation) of strong shaking during the next 30 years and 32 ± 12% during the next decade.

  19. Evidence for a scale-limited low-frequency earthquake source process

    NASA Astrophysics Data System (ADS)

    Chestler, S. R.; Creager, K. C.

    2017-04-01

    We calculate the seismic moments for 34,264 low-frequency earthquakes (LFEs) beneath the Olympic Peninsula, Washington. LFE moments range from 1.4 × 1010 to 1.9 × 1012 N m (Mw = 0.7-2.1). While regular earthquakes follow a power law moment-frequency distribution with a b value near 1 (the number of events increases by a factor of 10 for each unit increase in Mw), we find that while for large LFEs the b value is 6, for small LFEs it is <1. The magnitude-frequency distribution for all LFEs is best fit by an exponential distribution with a mean seismic moment (characteristic moment) of 2.0 × 1011 N m. The moment-frequency distributions for each of the 43 LFE families, or spots on the plate interface where LFEs repeat, can also be fit by exponential distributions. An exponential moment-frequency distribution implies a scale-limited source process. We consider two end-member models where LFE moment is limited by (1) the amount of slip or (2) slip area. We favor the area-limited model. Based on the observed exponential distribution of LFE moment and geodetically observed total slip, we estimate that the total area that slips within an LFE family has a diameter of 300 m. Assuming an area-limited model, we estimate the slips, subpatch diameters, stress drops, and slip rates for LFEs during episodic tremor and slip events. We allow for LFEs to rupture smaller subpatches within the LFE family patch. Models with 1-10 subpatches produce slips of 0.1-1 mm, subpatch diameters of 80-275 m, and stress drops of 30-1000 kPa. While one subpatch is often assumed, we believe 3-10 subpatches are more likely.

  20. Contribution of Satellite Gravimetry to Understanding Seismic Source Processes of the 2011 Tohoku-Oki Earthquake

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Sauber, Jeanne; Riva, Riccardo

    2011-01-01

    The 2011 great Tohoku-Oki earthquake, apart from shaking the ground, perturbed the motions of satellites orbiting some hundreds km away above the ground, such as GRACE, due to coseismic change in the gravity field. Significant changes in inter-satellite distance were observed after the earthquake. These unconventional satellite measurements were inverted to examine the earthquake source processes from a radically different perspective that complements the analyses of seismic and geodetic ground recordings. We found the average slip located up-dip of the hypocenter but within the lower crust, as characterized by a limited range of bulk and shear moduli. The GRACE data constrained a group of earthquake source parameters that yield increasing dip (7-16 degrees plus or minus 2 degrees) and, simultaneously, decreasing moment magnitude (9.17-9.02 plus or minus 0.04) with increasing source depth (15-24 kilometers). The GRACE solution includes the cumulative moment released over a month and demonstrates a unique view of the long-wavelength gravimetric response to all mass redistribution processes associated with the dynamic rupture and short-term postseismic mechanisms to improve our understanding of the physics of megathrusts.

  1. Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.

    2010-01-01

    Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.

  2. Chilean megathrust earthquake recurrence linked to frictional contrast at depth

    NASA Astrophysics Data System (ADS)

    Moreno, M.; Li, S.; Melnick, D.; Bedford, J. R.; Baez, J. C.; Motagh, M.; Metzger, S.; Vajedian, S.; Sippl, C.; Gutknecht, B. D.; Contreras-Reyes, E.; Deng, Z.; Tassara, A.; Oncken, O.

    2018-04-01

    Fundamental processes of the seismic cycle in subduction zones, including those controlling the recurrence and size of great earthquakes, are still poorly understood. Here, by studying the 2016 earthquake in southern Chile—the first large event within the rupture zone of the 1960 earthquake (moment magnitude (Mw) = 9.5)—we show that the frictional zonation of the plate interface fault at depth mechanically controls the timing of more frequent, moderate-size deep events (Mw < 8) and less frequent, tsunamigenic great shallow earthquakes (Mw > 8.5). We model the evolution of stress build-up for a seismogenic zone with heterogeneous friction to examine the link between the 2016 and 1960 earthquakes. Our results suggest that the deeper segments of the seismogenic megathrust are weaker and interseismically loaded by a more strongly coupled, shallower asperity. Deeper segments fail earlier ( 60 yr recurrence), producing moderate-size events that precede the failure of the shallower region, which fails in a great earthquake (recurrence >110 yr). We interpret the contrasting frictional strength and lag time between deeper and shallower earthquakes to be controlled by variations in pore fluid pressure. Our integrated analysis strengthens understanding of the mechanics and timing of great megathrust earthquakes, and therefore could aid in the seismic hazard assessment of other subduction zones.

  3. Earthquakes; March-April 1975

    USGS Publications Warehouse

    Person, W.J.

    1975-01-01

    There were no major earthquakes (magnitude 7.0-7.9) in March or April; however, there were earthquake fatalities in Chile, Iran, and Venezuela and approximately 35 earthquake-related injuries were reported around the world. In the United States a magnitude 6.0 earthquake struck the Idaho-Utah border region. Damage was estimated at about a million dollars. The shock was felt over a wide area and was the largest to hit the continental Untied States since the San Fernando earthquake of February 1971. 

  4. Co-seismic deformation following the 2007 Bengkulu earthquake constrained by GRACE and GPS observations

    NASA Astrophysics Data System (ADS)

    Zheng, Zengji; Jin, Shuanggen; Fan, Lihong

    2018-07-01

    Gravity changes caused by giant earthquakes can be detected by Gravity Recovery and Climate Experiment (GRACE), which provide new constraints on earthquake ruptures. However, detailed rupture, seismic moment and density/displacement-induced gravity changes are not clear for less than Mw = 8.5 earthquakes. In this paper, the fault parameters of the 2007 Mw = 8.4 Bengkulu earthquake are retrieved from GRACE and GPS data, and the fault slip distribution is inverted using GPS data. Furthermore, the theoretical coseismic displacements and coseismic gravity changes from different slip models are compared with GPS and GRACE data. The results show that the significant positive and negative gravity anomalies with a peak magnitude of -2.0 to 1.3 μgal are extracted from GRACE data. The GRACE-inverted and joint-inverted seismic moment of the Bengkulu earthquake are 3.27 ×1021 Nm and 3.30 ×1021 Nm with the rake angle of 108° and 114°, respectively. The GPS-inverted Mw = 8.4 earthquake is mainly dominated by the thrusting with slight right-lateral strike-slip, which is consistent with the focal mechanism. GRACE-observed coseismic gravity changes agree well with the results from the fault models based on the spherically dislocation theories in spatial pattern, but are larger than model-estimated results in magnitude. The coseismic gravity changes caused by the density change are basically same as those caused by the vertical displacement in the magnitude of order, which are -0.8 to 0.2 μgal and -0.2 to 1.4 μgal for the Caltech model, -0.9 to 0.2 μgal and -0.5 to 1.3 μgal for the USGS model, and -0.9 to 0.2 μgal and -0.3 to 1.3 μgal for the GPS-inverted layered model. In addition, both the near-field and the far-field displacements calculated from the Caltech model and GPS-inverted layered model are in good agreement with the GPS observations, whereas the USGS model has good agreement in the far-field and poor agreement in the near-field with the GPS observations

  5. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence

    USGS Publications Warehouse

    Keranen, Katie M.; Savage, Heather M.; Abers, Geoffrey A.; Cochran, Elizabeth S.

    2013-01-01

    Significant earthquakes are increasingly occurring within the continental interior of the United States, including five of moment magnitude (Mw) ≥ 5.0 in 2011 alone. Concurrently, the volume of fluid injected into the subsurface related to the production of unconventional resources continues to rise. Here we identify the largest earthquake potentially related to injection, an Mw 5.7 earthquake in November 2011 in Oklahoma. The earthquake was felt in at least 17 states and caused damage in the epicentral region. It occurred in a sequence, with 2 earthquakes of Mw 5.0 and a prolific sequence of aftershocks. We use the aftershocks to illuminate the faults that ruptured in the sequence, and show that the tip of the initial rupture plane is within ~200 m of active injection wells and within ~1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Subsurface data indicate that fluid was injected into effectively sealed compartments, and we interpret that a net fluid volume increase after 18 yr of injection lowered effective stress on reservoir-bounding faults. Significantly, this case indicates that decades-long lags between the commencement of fluid injection and the onset of induced earthquakes are possible, and modifies our common criteria for fluid-induced events. The progressive rupture of three fault planes in this sequence suggests that stress changes from the initial rupture triggered the successive earthquakes, including one larger than the first.

  6. Preliminary Magnitude of Completeness Quantification of Improved BMKG Catalog (2008-2016) in Indonesian Region

    NASA Astrophysics Data System (ADS)

    Diantari, H. C.; Suryanto, W.; Anggraini, A.; Irnaka, T. M.; Susilanto, P.; Ngadmanto, D.

    2018-03-01

    We present a magnitude of completeness (Mc) quantification based on BMKG improved earthquake catalog which generated from Ina-TEWS seismograph network. The Mc quantification can help us determine the lowest magnitude which can be recorded perfectly as a function of space and time. We use the BMKG improved earthquake catalog from 2008 to 2016 which has been converted to moment magnitude (Mw) and declustered. The value of Mc is computed by determining the initial point of deviation patterns in Frequency Magnitude Distribution (FMD) chart following the Gutenberg-Richter equations. In the next step, we calculate the temporal variation of Mc and b-value using maximum likelihood method annually. We found that the Mc value is decreasing and produced a varying b-value. It indicates that the development of seismograph network from 2008 to 2016 can affect the value of Mc although it is not significant. We analyze temporal variation of Mc value, and correlate it with the spatial distribution of seismograph in Indonesia. The spatial distribution of seismograph installation shows that the western part of Indonesia has more dense seismograph compared to the eastern region. However, the eastern part of Indonesia has a high level of seismicity compared to the western region. Based upon the results, additional seismograph installation in the eastern part of Indonesia should be taken into consideration.

  7. Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments

    USGS Publications Warehouse

    Bonner, J.; Herrmann, R.; Benz, H.

    2010-01-01

    We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2 magnitude units (m.u). The residuals between Mw [Ms(VMAX)] and Mw [Waveform Modeling] show a significant focal mechanism effect, especially when strike-slip events are compared with other mechanisms. Validation testing of this method suggests that Ms(VMAX)-predicted Mw's can be estimated within minutes after the origin of an event and are typically within ??0.2 m.u. of the final Mw[Waveform Modeling]. While Mw estimated from Ms(VMAX) has a slightly higher variance than waveform modeling results, it can be measured on the first short-period surface-wave observed at a local or near-regional distance seismic station after a preliminary epicentral location has been formed. Therefore, it may be used to make rapid measurements of Mw, which are needed by government agencies for early warning systems.

  8. Comparison of the November 2002 Denali and November 2001 Kunlun Earthquakes

    NASA Astrophysics Data System (ADS)

    Bufe, C. G.

    2002-12-01

    Major earthquakes occurred in Tibet on the central Kunlun fault (M 7.8) on November 14, 2001 (Lin and others, 2002) and in Alaska on the central Denali fault (M 7.9) on November 3, 2002. Both earthquakes generated large surface waves (Kunlun Ms 8.0 (USGS) and Denali Ms 8.5). Each event occurred on east-west-trending strike-slip faults and exhibited nearly unilateral rupture propagating several hundred kilometers from west to east. Surface rupture length estimates were about 400 km for Kunlun, 300 km for Denali. Maximum surface faulting and moment release were observed far to the east of the points of rupture initiation. Harvard moment centroids were located east of USGS epicenters by 182 km (Kunlun) and by 126 km (Denali). Maximum surface faulting was observed near 240 km (Kunlun, 16 m left lateral) and near 175 km (Denali, 9 m right lateral) east of the USGS epicenters. Significant thrust components were observed in the initiation of the Denali event (ERI analysis and mapped thrust) and in the termination of the Kunlun rupture, as evidenced by thrust mechanisms of the largest aftershocks which occurred near the eastern part of the Kunlun rupture. In each sequence the largest aftershock was about 2 orders of magnitude smaller than the mainshock. Moment release along the ruptured segments was examined for the 25-year periods preceding the main shocks. The Denali zone shows precursory accelerating moment release with the dominant events occurring on October 22, 1996 (M 5.8) and October 23, 2002 (M 6.7). The Kunlun zone shows nearly constant moment release over time with the last significant event before the main shock occurring on November 26, 2000 (M 5.4). Moment release data are consistent with previous observations of annual periodicity preceding major earthquakes, possibly due to the evolution of a critical state with seasonal and tidal triggering (Varnes and Bufe, 2001). Annual periodicity is also evident for the larger events in the greater San Francisco Bay

  9. Moment-tensor solutions estimated using optimal filter theory: Global seismicity, 2001

    USGS Publications Warehouse

    Sipkin, S.A.; Bufe, C.G.; Zirbes, M.D.

    2003-01-01

    This paper is the 12th in a series published yearly containing moment-tensor solutions computed at the US Geological Survey using an algorithm based on the theory of optimal filter design (Sipkin, 1982 and Sipkin, 1986b). An inversion has been attempted for all earthquakes with a magnitude, mb or MS, of 5.5 or greater. Previous listings include solutions for earthquakes that occurred from 1981 to 2000 (Sipkin, 1986b; Sipkin and Needham, 1989, Sipkin and Needham, 1991, Sipkin and Needham, 1992, Sipkin and Needham, 1993, Sipkin and Needham, 1994a and Sipkin and Needham, 1994b; Sipkin and Zirbes, 1996 and Sipkin and Zirbes, 1997; Sipkin et al., 1998, Sipkin et al., 1999, Sipkin et al., 2000a, Sipkin et al., 2000b and Sipkin et al., 2002).The entire USGS moment-tensor catalog can be obtained via anonymous FTP at ftp://ghtftp.cr.usgs.gov. After logging on, change directory to “momten”. This directory contains two compressed ASCII files that contain the finalized solutions, “mt.lis.Z” and “fmech.lis.Z”. “mt.lis.Z” contains the elements of the moment tensors along with detailed event information; “fmech.lis.Z” contains the decompositions into the principal axes and best double-couples. The fast moment-tensor solutions for more recent events that have not yet been finalized and added to the catalog, are gathered by month in the files “jan01.lis.Z”, etc. “fmech.doc.Z” describes the various fields.

  10. New data on earthquake focal mechanisms in the Laptev Sea region of the Arctic-Asian seismic belt

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena I.; Melnikova, Valentina I.

    2018-05-01

    We consider 16 earthquakes with M w = 4.2-5.2 that occurred in the south-eastern part of the Laptev Sea shelf, Lena River Delta, and North Verkhoyanye (Russia) in 1990-2014. Focal mechanisms, scalar seismic moments, moment magnitudes, and hypocentral depths of the seismic events have been calculated from the data on amplitude spectra of surface waves and P wave first-motion polarities. The obtained results sufficiently implement the existing dataset on reliable earthquake source parameters for the study region and prove the change of the stress-strain state of the crust from extension on the Laptev Sea shelf to compression on the continent providing finer spatial details of the deformation field in the transition zones such as Buor-Khaya Bay and the Lena River Delta.

  11. Understanding the magnitude dependence of PGA and PGV in NGA-West 2 data

    USGS Publications Warehouse

    Baltay, Annemarie S.; Hanks, Thomas C.

    2014-01-01

    The Next Generation Attenuation‐West 2 (NGA‐West 2) 2014 ground‐motion prediction equations (GMPEs) model ground motions as a function of magnitude and distance, using empirically derived coefficients (e.g., Bozorgniaet al., 2014); as such, these GMPEs do not clearly employ earthquake source parameters beyond moment magnitude (M) and focal mechanism. To better understand the magnitude‐dependent trends in the GMPEs, we build a comprehensive earthquake source‐based model to explain the magnitude dependence of peak ground acceleration and peak ground velocity in the NGA‐West 2 ground‐motion databases and GMPEs. Our model employs existing models (Hanks and McGuire, 1981; Boore, 1983, 1986; Anderson and Hough, 1984) that incorporate a point‐source Brune model, including a constant stress drop and the high‐frequency attenuation parameter κ0, random vibration theory, and a finite‐fault assumption at the large magnitudes to describe the data from magnitudes 3 to 8. We partition this range into four different magnitude regions, each of which has different functional dependences on M. Use of the four magnitude partitions separately allows greater understanding of what happens in any one subrange, as well as the limiting conditions between the subranges. This model provides a remarkably good fit to the NGA data for magnitudes from 3magnitude data, for which the corner frequency is masked by the attenuation of high frequencies. That this simple, source‐based model matches the NGA‐West 2 GMPEs and data so well suggests that considerable simplicity underlies the parametrically complex NGA GMPEs.

  12. Accounts of damage from historical earthquakes in the northeastern Caribbean to aid in the determination of their location and intensity magnitudes

    USGS Publications Warehouse

    Flores, Claudia H.; ten Brink, Uri S.; Bakun, William H.

    2012-01-01

    Documentation of an event in the past depended on the population and political trends of the island, and the availability of historical documents is limited by the physical resource digitization schedule and by the copyright laws of each archive. Examples of documents accessed are governors' letters, newspapers, and other circulars published within the Caribbean, North America, and Western Europe. Key words were used to search for publications that contain eyewitness accounts of various large earthquakes. Finally, this catalog provides descriptions of damage to buildings used in previous studies for the estimation of moment intensity (MI) and location of significantly damaging or felt earthquakes in Hispaniola and in the northeastern Caribbean, all of which have been described in other studies.

  13. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    NASA Astrophysics Data System (ADS)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    Japan frequently suffers from many kinds of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. On average, we lose about 120 people a year due to natural hazards in this decade. Above all, earthquakes are noteworthy, since it may kill thousands of people in a moment like in Kobe in 1995. People know that we may have "a big one" some day as long as we live on this land and that what to do; retrofit houses, appliance heavy furniture to walls, add latches to kitchen cabinets, and prepare emergency packs. Yet most of them do not take the action, and result in the loss of many lives. It is only the victims that learn something from the earthquake, and it has never become the lore of the nations. One of the most essential ways to reduce the damage is to educate the general public to be able to make the sound decision on what to do at the moment when an earthquake hits. This will require the knowledge of the backgrounds of the on-going phenomenon. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools. This presentation is the report of a year and half courses that we had at the model elementary school in Tokyo Metropolitan Area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1923 Kanto earthquake (M 7.9) making 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global

  14. Performance of Real-time Earthquake Information System in Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Horiuchi, S.; Wu, C.; Yamamoto, S.

    2008-12-01

    on regions and tends to increase when earthquakes occurred outward the network. Depth differences for 70 percent of events are less than 20km and original time differences for 48 percent within one second. In addition to JMA magnitude (MJMA), which is estimated from moment magnitude, REIS estimates a new scaling parameter called intensity magnitude (MI), which is defined from observed P wave seismic intensity (Yamamoto et al., 2008). Our statistical results show that these two kinds of magnitudes are reasonably determined. Either MJMA or MI by REIS for 94 percent of events has differences less than 1.0 compared with reported JMA catalog. However, the difference increases with values of the magnitude. There is an apparent underestimation of MJMA for large earthquakes because the first report is issued when the rupture is still undergoing. Moreover, there are cases when most of Hi-net seismograms close to epicenter are clipped, but still these data are used for the determination of the lower limit of magnitude. We are making an EEWS using real-time strong motion network data for the better estimate of earthquake magnitude and seismic intensity.

  15. Determination of Source Parameters for Earthquakes in the Northeastern United States and Quebec, Canada by Using Regional Broadband Seismograms

    NASA Astrophysics Data System (ADS)

    Du, W.; Kim, W.; Sykes, L. R.

    2001-05-01

    We studied approximately 20 earthquakes which have occurred in the Northeastern United States and Quebec, southern Canada since 1990. These earthquakes have local magnitude (ML) ranging from 3.5 to 5.2 and are well recorded by broadband seismographic stations in the region. Focal depth and moment tensor of these earthquakes are determined by using waveform inversion technique in which the best fit double-couple mechanism is obtained through a grid search over strike, dip and rake angles. Complete synthetics for three-component displacement signals in the period range 1 to 30 seconds are calculated. In most cases, long period Pnl and surface waves are used to constrain the source parameters. Our results indicate that most of the events show the horizontal compression with near horizontal P axis striking NE-SW. However, three events along the lower St. Lawrence River shows the P axes striking ESE-SE (100-130 degrees) with plunge angles of about 20 degrees. Focal depths of these events range from 2 to 28 km. Four events along the Appalachian Mts. have occurred with 2 to 5 km depths -- Jan. 16, 1994 Reading, Pa sequence, Sep. 25, 1998 Pymatuning, Pa event, Jan. 26, 2001 Ashutabula, Oh earthquake and an event in the Charlevoix seismic zone, Canada (Oct. 28, 1997). Two events have occurred at depth greater than 20 km. These are Quebec City earthquake on Nov. 6, 1997 and Christieville, Quebec event on May 4, 1997. We also observed the apparent discrepancy between the moment magnitude (Mw) and local magnitude (ML). Preliminary results show that for the events studied, Mw tends to be about 0.3 magnitude units smaller than the corresponding ML. However, some events show comparable Mw and ML values, for instance, the 1994 Reading, Pa sequence and Oct. 28, 1997 Charlevoix earthquake. These events have occurred at shallow depths and show low stress drops (less than 100 bars). We believe that this magnitude discrepancy reflects the source characteristics of intraplate events in

  16. Non-double-couple earthquakes. 1. Theory

    USGS Publications Warehouse

    Julian, B.R.; Miller, A.D.; Foulger, G.R.

    1998-01-01

    Historically, most quantitative seismological analyses have been based on the assumption that earthquakes are caused by shear faulting, for which the equivalent force system in an isotropic medium is a pair of force couples with no net torque (a 'double couple,' or DC). Observations of increasing quality and coverage, however, now resolve departures from the DC model for many earthquakes and find some earthquakes, especially in volcanic and geothermal areas, that have strongly non-DC mechanisms. Understanding non-DC earthquakes is important both for studying the process of faulting in detail and for identifying nonshear-faulting processes that apparently occur in some earthquakes. This paper summarizes the theory of 'moment tensor' expansions of equivalent-force systems and analyzes many possible physical non-DC earthquake processes. Contrary to long-standing assumption, sources within the Earth can sometimes have net force and torque components, described by first-rank and asymmetric second-rank moment tensors, which must be included in analyses of landslides and some volcanic phenomena. Non-DC processes that lead to conventional (symmetric second-rank) moment tensors include geometrically complex shear faulting, tensile faulting, shear faulting in an anisotropic medium, shear faulting in a heterogeneous region (e.g., near an interface), and polymorphic phase transformations. Undoubtedly, many non-DC earthquake processes remain to be discovered. Progress will be facilitated by experimental studies that use wave amplitudes, amplitude ratios, and complete waveforms in addition to wave polarities and thus avoid arbitrary assumptions such as the absence of volume changes or the temporal similarity of different moment tensor components.

  17. Long-Term Seismic Quiescences and Great Earthquakes in and Around the Japan Subduction Zone Between 1975 and 2012

    NASA Astrophysics Data System (ADS)

    Katsumata, Kei

    2017-06-01

    An earthquake catalog created by the International Seismological Center (ISC) was analyzed, including 3898 earthquakes located in and around Japan between January 1964 and June 2012 shallower than 60 km with the body wave magnitude of 5.0 or larger. Clustered events such as earthquake swarms and aftershocks were removed from the ISC catalog by using a stochastic declustering method based on Epidemic-Type Aftershock Sequence (ETAS) model. A detailed analysis of the earthquake catalog using a simple scanning technique (ZMAP) shows that the long-term seismic quiescences lasting more than 9 years were recognized ten times along the subduction zone in and around Japan. The three seismic quiescences among them were followed by three great earthquakes: the 1994 Hokkaido-toho-oki earthquake ( M w 8.3), the 2003 Tokachi-oki earthquake ( M w 8.3), and the 2011 Tohoku earthquake ( M w 9.0). The remaining seven seismic quiescences were followed by no earthquake with the seismic moment M 0 ≥ 3.0 × 1021 Nm ( M w 8.25), which are candidates of the false alarm. The 2006 Kurile Islands earthquake ( M w 8.3) was not preceded by the significant seismic quiescence, which is a case of the surprise occurrence. As a result, when limited to earthquakes with the seismic moment of M 0 ≥ 3.0 × 1021 Nm, four earthquakes occurred between 1976 and 2012 in and around Japan, and three of them were preceded by the long-term seismic quiescence lasting more than 9 years.

  18. The October 6, 2008 Mw 6.3 magnitude Damxung earthquake, Yadong-Gulu rift, Tibet, and implications for present-day crustal deformation within Tibet

    NASA Astrophysics Data System (ADS)

    Wu, Zhong-hai; Ye, Pei-sheng; Barosh, Patrick J.; Wu, Zhen-han

    2011-03-01

    A Mw 6.3 magnitude earthquake occurred on October 6, 2008 in southern Damxung County within the N-S trending Yangyi graben, which forms the northern section of the Yadong-Gulu rift of south-central Tibet. The earthquake had a maximum intensity of IX at the village of Yangyi (also Yangying) (29°43.3'N; 90°23.6'E) and resulted in 10 deaths and 60 injured in this sparsely populated region. Field observations and focal mechanism solutions show normal fault movement occurred along the NNE-trending western boundary fault of the Yangyi graben, in agreement with the felt epicenter, pattern of the isoseismal contours, and distribution of aftershocks. The earthquake and its tectonic relations were studied in detail to provide data on the seismic hazard to the nearby city of Lhasa. The Damxung earthquake is one of the prominent events along normal and strike-slip faults that occurred widely about Tibet before and after the 2008 Mw 7.9 magnitude Wenchuan earthquake. Analysis of these recent M ⩾ 5.0 earthquake sequences demonstrate a kinematic relation between the normal, strike-slip, and reverse causative fault movements across the region. These earthquakes are found to be linked and the result of eastward extrusion of two large structural blocks of central Tibet. The reverse and oblique-slip surface faulting along the Longmenshan thrust belt at the eastern margin of the Tibetan Plateau causing the Wenchuan earthquake, was the result of eastward directed compression and crustal shortening due to the extrusion. Prior to it, east-west extensional deformation indicated by normal and strike-slip faulting events across central Tibet, had led to a build up of the compression to the east. The subsequent renewal of extensional deformational events in central Tibet appears related to some drag effect due to the crustal shortening of the Wenchuan event. Unraveling the kinematical relation between these earthquake swarms is a very helpful approach for understanding the migration of

  19. Quantifying the media bias in intensity surveys: Lessons from the 2001 Bhuj, India, earthquake

    USGS Publications Warehouse

    Hough, S.E.; Pande, P.

    2007-01-01

    Many seismologists have looked at the 26 January 2001 Bhuj earthquake as a key modern calibration event that could be used to improve estimates of magnitudes of large historic mainshocks in stable continental regions. Since no instrumental data are available for important historic events such as the 1819 Allah Bund, India, and the 1811-1812 New Madrid, central U.S. mainshocks, calibration hinges on comparisons of the macroseismic effects of these earthquakes with those of comparable modern earthquakes for which a reliable, instrumentally determined moment magnitude is available. However, although such a comparison is conceptually straightforward, in practice it is complicated by potentially significant inconsistencies in methods used to quantify macroseismic effects in different regions and/or times. For the Bhuj earthquake, extensive intensity data sets have been compiled and published from both media accounts and detailed direct surveys. Comparing the two provides a quantification of the previously suspected media bias, whereby earthquake effects can be exaggerated in media accounts. This bias is a strong function of intensity level, with substantial bias at the highest shaking levels and significantly less bias at low intensities. Because only sparse documentary data are in general available for older historic earthquakes, the results of this study suggest that their inferred intensity distributions might be similarly biased. We further use the survey-based intensity values to develop a new relationship between intensities and ground motions.

  20. The character of scaling earthquake source spectra for Kamchatka in the 3.5-6.5 magnitude range

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Guseva, E. M.

    2017-02-01

    The properties of the source spectra of local shallow-focus earthquakes on Kamchatka in the range of magnitudes M w = 3.5-6.5 are studied using 460 records of S-waves obtained at the PET station. The family of average source spectra is constructed; the spectra are used to study the relationship between M w and the key quasi-dimensionless source parameters: stress drop Δσ and apparent stress σa. It is found that the parameter Δσ is almost stable, while σa grows steadily as the magnitude M w increases, indicating that the similarity is violated. It is known that at sufficiently large M w the similarity hypothesis is approximately valid: both parameters Δσ and σa do not show any noticeable magnitude dependence. It has been established that M w ≈ 5.7 is the threshold value of the magnitude when the change in regimes described occurs for the conditions on Kamchatka.

  1. Static stress drop of the largest recorded M 4.6 hydraulic fracturing induced earthquake and its aftershock pattern in the northern Montney Play, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Wang, B.; Harrington, R. M.; Liu, Y.; Kao, H.

    2016-12-01

    The largest suspected fracking-induced earthquake to date occurred near Fort St. John, British Columbia on August 17, 2015, with a reported magnitude of Mw 4.6. Here we estimate the static stress released by the mainshock and the five cataloged aftershocks using new data from eight broadband seismometers installed approximately 50km from the hypocenter of the mainshock, at distances much closer than the Natural Resources Canada regional seismic stations. The estimated cross-correlation coefficient among the 5 cataloged earthquakes is 0.35 or greater. We will present seismic moment (M0) and spectral corner frequency (fc) values estimated using both individual earthquake spectra and spectral ratios to correct for travel-path attenuation and site effects. Static stress drop and scaled energy value calculations based on the estimated moment and corner frequency values will be presented, as well as focal mechanisms for the largest events with adequate station coverage. We will also use a multi-station matched-filter approach to detect additional uncataloged earthquakes on continuous waveforms for a period of two months after the mainshock. Using the results of the matched-filter approach, we will present the aftershock magnitude distribution and locations. The results of our detection and location calculations will be compared to reported fracking parameters, such as fluid injection pressure and duration, to determine their correlation with the spatial and temporal distribution of aftershocks. The objective of this study is to relate operational parameters to earthquake occurrence in order to help to develop procedures to understand the mechanisms responsible for fracking induced earthquakes, their relation to the maximum induced magnitude, and to reduce potential hazards of anthropogenically induced seismic activity.

  2. Earthquake Potential Models for China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Jackson, D. D.

    2002-12-01

    We present three earthquake potential estimates for magnitude 5.4 and larger earthquakes for China. The potential is expressed as the rate density (probability per unit area, magnitude and time). The three methods employ smoothed seismicity-, geologic slip rate-, and geodetic strain rate data. We tested all three estimates, and the published Global Seismic Hazard Assessment Project (GSHAP) model, against earthquake data. We constructed a special earthquake catalog which combines previous catalogs covering different times. We used the special catalog to construct our smoothed seismicity model and to evaluate all models retrospectively. All our models employ a modified Gutenberg-Richter magnitude distribution with three parameters: a multiplicative ``a-value," the slope or ``b-value," and a ``corner magnitude" marking a strong decrease of earthquake rate with magnitude. We assumed the b-value to be constant for the whole study area and estimated the other parameters from regional or local geophysical data. The smoothed seismicity method assumes that the rate density is proportional to the magnitude of past earthquakes and approximately as the reciprocal of the epicentral distance out to a few hundred kilometers. We derived the upper magnitude limit from the special catalog and estimated local a-values from smoothed seismicity. Earthquakes since January 1, 2000 are quite compatible with the model. For the geologic forecast we adopted the seismic source zones (based on geological, geodetic and seismicity data) of the GSHAP model. For each zone, we estimated a corner magnitude by applying the Wells and Coppersmith [1994] relationship to the longest fault in the zone, and we determined the a-value from fault slip rates and an assumed locking depth. The geological model fits the earthquake data better than the GSHAP model. We also applied the Wells and Coppersmith relationship to individual faults, but the results conflicted with the earthquake record. For our geodetic

  3. The Richter scale: its development and use for determining earthquake source parameters

    USGS Publications Warehouse

    Boore, D.M.

    1989-01-01

    to size, ML has been used in predictions of ground shaking as a function of distance and magnitude; it has also been used in estimating energy and seismic moment. There is a good correlation of peak ground velocity and the peak motion on a Wood-Anderson instrument at the same location, as well as an observationally defined (and theoretically predicted) nonlinear relation between ML and seismic moment. An important byproduct of the establishment of the ML scale is the continuous operation of the network of Wood-Anderson seismographs on which the scale is based. The records from these instruments can be used to make relative comparisons of amplitudes and waveforms of recent and historic earthquakes; furthermore, because of the moderate gain, the instruments can write onscale records from great earthquakes at teleseismic distances and thus can provide important information about the energy radiated from such earthquakes at frequencies where many instruments have saturated. ?? 1989.

  4. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

    PubMed Central

    Dixon, Timothy H.; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-01-01

    The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  5. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    PubMed

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-02

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

  6. 8 January 2013 Mw=5.7 North Aegean Sea Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Kürçer, Akın; Yalçın, Hilal; Gülen, Levent; Kalafat, Doǧan

    2014-05-01

    The deformation of the North Aegean Sea is mainly controlled by the westernmost segments of North Anatolian Fault Zone (NAFZ). On January 8, 2013, a moderate earthquake (Mw= 5.7) occurred in the North Aegean Sea, which may be considered to be a part of westernmost splay of the NAFZ. A series of aftershocks were occurred within four months following the mainschock, which have magnitudes varying from 1.9 to 5.0. In this study, a total of 23 earthquake moment tensor solutions that belong to the 2013 earthquake sequence have been obtained by using KOERI and AFAD seismic data. The most widely used Gephart & Forsyth (1984) and Michael (1987) methods have been used to carry out stress tensor inversions. Based on the earthquake moment tensor solutions, distribution of epicenters and seismotectonic setting, the source of this earthquake sequence is a N75°E trending pure dextral strike-slip fault. The temporal and spatial distribution of earthquakes indicate that the rupture unilaterally propagated from SW to NE. The length of the fault has been calculated as approximately 12 km. using the afterschock distribution and empirical equations, suggested by Wells and Coppersmith (1994). The stress tensor analysis indicate that the dominant faulting type in the region is strike-slip and the direction of the regional compressive stress is WNW-ESE. The 1968 Aghios earthquake (Ms=7.3; Ambraseys and Jackson, 1998) and 2013 North Aegean Sea earthquake sequences clearly show that the regional stress has been transferred from SW to NE in this region. The last historical earthquake, the Bozcaada earthquake (M=7.05) had been occurred in the northeast of the 2013 earthquake sequence in 1672. The elapsed time (342 year) and regional stress transfer point out that the 1672 earthquake segment is probably a seismic gap. According to the empirical equations, the surface rupture length of the 1672 Earthquake segment was about 47 km, with a maximum displacement of 170 cm and average displacement

  7. Regional spectral analysis of moderate earthquakes in northeastern North America—Final Report to the Nuclear Regulatory Commission, Project V6240, Task 3

    USGS Publications Warehouse

    Boatwright, John

    2018-06-21

    We analyze the Fourier spectra of S+Lg+surface wave groups from the horizontal and vertical components of broadband and accelerogram recordings of 120 small and moderate (2< Mw <6) earthquakes recorded by Canadian and American stations sited on rock at distances from 3 to 600 kilometers. There are seven Mw 4.0–4.5, six Mw 4.5–5.0, and three Mw ≥5 earthquakes in this event set. We test the regional spectral analysis by comparing the moment magnitudes with the moment magnitudes from the earthquake moment tensors determined by Bob Herrmann (St. Louis University) for 27 events, obtaining dMw=0.004±0.074. We determine the Lg attenuation in seven regions within northeastern North America: Charlevoix, lower St. Lawrence, Maine, Northern New York, lower Great Lakes, Ontario, and Nunavut. These attenuation estimates yield an average attenuation Q= (368±13)f (0.54±0.02) for the Appalachian region, a stronger attenuation Q= (317±16)f (0.54±0.03) for the Appalachian lowlands, and a weaker attenuation Q=(455±20)f (0.51±0.02) for Ontario and western Quebec. For events in Nunavut and northernmost Quebec, we estimate a similar attenuation for r <450 km, but a weaker attenuation Q= (773±70)f (0.27±0.06) for Lg propagation for 450< r <1700 kilometers. This far-regional attenuation allows us to analyze recordings of the 1989 Ungava and Payne Bay earthquakes obtained in Ontario and southern Quebec. We use these regional attenuations to determine the corner frequencies, stress drops, and radiated energies of the 120 earthquakes.

  8. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those

  9. Infrasound associated with the deep M 7.3 northeastern China earthquake of June 28, 2002

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Kim, Geunyoung; Le Pichon, Alexis

    2013-02-01

    On 28 June, 2002, a deep-focus (566 km) earthquake with a moment magnitude of 7.3 occurred in the China-Russia-North Korea border region. Despite its deep focus, the earthquake produced an infrasound signal that was observed by the remote infrasound array (CHNAR), 682 km from the epicenter, in South Korea. Coherent infrasound signals were detected sequentially at the receiver, with different arrival times and azimuths indicating that the signals were generated both near the epicenter and elsewhere. On the basis of the azimuth, arrival time measurements, and atmospheric ray simulation results, the source area of the infrasonic signals that arrived earlier were located along the eastern coastal areas of North Korea and Russia, whereas later signals were sourced throughout Japan. The geographically-constrained, and discrete, distribution of the sources identified is explained by infrasound propagation effects caused by a westward zonal wind that was active when the event occurred. The amplitude of the deep quake's signal was equivalent to that of a shallow earthquake with a magnitude of approximately 5. This study expands the breadth of seismically-associated infrasound to include deep earthquakes, and also supports the possibility that infrasound measurements could help determine the depth of earthquakes.

  10. Earthquakes, November-December 1992

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    There were two major earthquakes (7.0≤M<8.0) during the last two months of the year, a magntidue 7.5 earthquake on December 12 in the Flores region, Indonesia, and a magnitude 7.0 earthquake on December 20 in the Banda Sea. Earthquakes caused fatalities in China and Indonesia. The greatest number of deaths (2,500) for the year occurred in Indonesia. In Switzerland, six people were killed by an accidental explosion recoreded by seismographs. In teh United States, a magnitude 5.3 earthquake caused slight damage at Big Bear in southern California. 

  11. Quantification of Uncertainty in Full-Waveform Moment Tensor Inversion for Regional Seismicity

    NASA Astrophysics Data System (ADS)

    Jian, P.; Hung, S.; Tseng, T.

    2013-12-01

    Routinely and instantaneously determined moment tensor solutions deliver basic information for investigating faulting nature of earthquakes and regional tectonic structure. The accuracy of full-waveform moment tensor inversion mostly relies on azimuthal coverage of stations, data quality and previously known earth's structure (i.e., impulse responses or Green's functions). However, intrinsically imperfect station distribution, noise-contaminated waveform records and uncertain earth structure can often result in large deviations of the retrieved source parameters from the true ones, which prohibits the use of routinely reported earthquake catalogs for further structural and tectonic interferences. Duputel et al. (2012) first systematically addressed the significance of statistical uncertainty estimation in earthquake source inversion and exemplified that the data covariance matrix, if prescribed properly to account for data dependence and uncertainty due to incomplete and erroneous data and hypocenter mislocation, cannot only be mapped onto the uncertainty estimate of resulting source parameters, but it also aids obtaining more stable and reliable results. Over the past decade, BATS (Broadband Array in Taiwan for Seismology) has steadily devoted to building up a database of good-quality centroid moment tensor (CMT) solutions for moderate to large magnitude earthquakes that occurred in Taiwan area. Because of the lack of the uncertainty quantification and reliability analysis, it remains controversial to use the reported CMT catalog directly for further investigation of regional tectonics, near-source strong ground motions, and seismic hazard assessment. In this study, we develop a statistical procedure to make quantitative and reliable estimates of uncertainty in regional full-waveform CMT inversion. The linearized inversion scheme adapting efficient estimation of the covariance matrices associated with oversampled noisy waveform data and errors of biased centroid

  12. Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake.

    PubMed

    Delorey, Andrew A; Chao, Kevin; Obara, Kazushige; Johnson, Paul A

    2015-10-01

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth's stress state. Earth's stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth's elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.

  13. Source rupture process of the 12 January 2010 Port-au-Prince (Haiti, Mw7.0) earthquake

    NASA Astrophysics Data System (ADS)

    Borges, José; Caldeira, Bento; Bezzeghoud, Mourad; Santos, Rúben

    2010-05-01

    The Haiti earthquake occurred on tuesday, January 12, 2010 at 21:53:10 UTC. Its epicenter was at 18.46 degrees North, 72.53 degrees West, about 25 km WSW of Haiti's capital, Port-au-Prince. The earthquake was relatively shallow (H=13 km, U.S. Geological Survey) and thus had greater intensity and destructiveness. The earthquake occurred along the tectonic boundary between Caribbean and North America plate. This plate boundary is dominated by left-lateral strike slip motion and compression with 2 cm/year of slip velocity eastward with respect to the North America plate. The moment magnitude was measured to be 7.0 (U.S. Geological Survey) and 7.1 (Harvard Centroid-Moment-Tensor (CMT). More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude (none of magnitude larger than 6.0) struck the area in hours following the main shock. Most of these aftershocks have occurred to the West of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. The Harvard Centroid Moment Tensor (CMT) mechanism solution indicates lefth-lateral strike slip movement with a fault plane trending toward (strike = 251o ; dip = 70o; rake = 28o). In order to obtain the spatiotemporal slip distribution of a finite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori's method [1]. Rupture velocity was constrained by using the directivity effect determined from a set of waveforms well recorded at regional and teleseismic distances [2]. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the event in the region [3]. [1]- Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x (http://www.springerlink.com/content/xp524g2225628773/) [3] -King, G. C. P

  14. Field survey of the March 28, 2005 Nias-Simeulue earthquake and Tsunami

    USGS Publications Warehouse

    Borrero, J.C.; McAdoo, B.; Jaffe, B.; Dengler, L.; Gelfenbaum, G.; Higman, B.; Hidayat, R.; Moore, A.; Kongko, W.; ,; Peters, R.; Prasetya, G.; Titov, V.; Yulianto, E.

    2011-01-01

    On the evening of March 28, 2005 at 11:09 p.m. local time (16:09 UTC), a large earthquake occurred offshore of West Sumatra, Indonesia. With a moment magnitude (Mw) of 8.6, the event caused substantial shaking damage and land level changes between Simeulue Island in the north and the Batu Islands in the south. The earthquake also generated a tsunami, which was observed throughout the source region as well as on distant tide gauges. While the tsunami was not as extreme as the tsunami of December 26th, 2004, it did cause significant flooding and damage at some locations. The spatial and temporal proximity of the two events led to a unique set of observational data from the earthquake and tsunami as well as insights relevant to tsunami hazard planning and education efforts. ?? 2010 Springer Basel AG.

  15. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  16. Earthquake fracture energy inferred from kinematic rupture models on extended faults

    USGS Publications Warehouse

    Tinti, E.; Spudich, P.; Cocco, M.

    2005-01-01

    We estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4 ?? 105 and 2 ?? 107 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production. Copyright 2005 by the American Geophysical Union.

  17. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea

    NASA Astrophysics Data System (ADS)

    Grigoli, F.; Cesca, S.; Rinaldi, A. P.; Manconi, A.; López-Comino, J. A.; Clinton, J. F.; Westaway, R.; Cauzzi, C.; Dahm, T.; Wiemer, S.

    2018-06-01

    The moment magnitude (Mw) 5.5 earthquake that struck South Korea in November 2017 was one of the largest and most damaging events in that country over the past century. Its proximity to an enhanced geothermal system site, where high-pressure hydraulic injection had been performed during the previous 2 years, raises the possibility that this earthquake was anthropogenic. We have combined seismological and geodetic analyses to characterize the mainshock and its largest aftershocks, constrain the geometry of this seismic sequence, and shed light on its causal factors. According to our analysis, it seems plausible that the occurrence of this earthquake was influenced by the aforementioned industrial activities. Finally, we found that the earthquake transferred static stress to larger nearby faults, potentially increasing the seismic hazard in the area.

  18. Kinematic rupture process of the 2014 Chile Mw 8.1 earthquake constrained by strong-motion, GPS static offsets and teleseismic data

    NASA Astrophysics Data System (ADS)

    Liu, Chengli; Zheng, Yong; Wang, Rongjiang; Xiong, Xiong

    2015-08-01

    On 2014 April 1, a magnitude Mw 8.1 interplate thrust earthquake ruptured a densely instrumented region of Iquique seismic gap in northern Chile. The abundant data sets near and around the rupture zone provide a unique opportunity to study the detailed source process of this megathrust earthquake. We retrieved the spatial and temporal distributions of slip during the main shock and one strong aftershock through a joint inversion of teleseismic records, GPS offsets and strong motion data. The main shock rupture initiated at a focal depth of about 25 km and propagated around the hypocentre. The peak slip amplitude in the model is ˜6.5 m, located in the southeast of the hypocentre. The major slip patch is located around the hypocentre, spanning ˜150 km along dip and ˜160 km along strike. The associated static stress drop is ˜3 MPa. Most of the seismic moment was released within 150 s. The total seismic moment of our preferred model is 1.72 × 1021 N m, equivalent to Mw 8.1. For the strong aftershock on 2014 April 3, the slip mainly occurred in a relatively compact area, and the major slip area surrounded the hypocentre with the peak amplitude of ˜2.5 m. There is a secondary slip patch located downdip from the hypocentre with the peak slip of ˜2.1 m. The total seismic moment is about 3.9 × 1020 N m, equivalent to Mw 7.7. Between the rupture areas of the main shock and the 2007 November 14 Mw 7.7 Antofagasta, Chile earthquake, there is an earthquake vacant zone with a total length of about 150 km. Historically, if there is no big earthquake or obvious aseismic creep occurring in this area, it has a great potential of generating strong earthquakes with magnitude larger than Mw 7.0 in the future.

  19. Imaging and Understanding Foreshock and Aftershock Behavior Around the 2014 Iquique, Northern Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Yang, H.; Meng, X.; Peng, Z.; Newman, A. V.; Hu, S.; Williamson, A.

    2014-12-01

    On April 1st, 2014, a moment magnitude (MW) 8.2 earthquake occurred offshore Iquique, Northern Chile. There were numerous smaller earthquakes preceding and following the mainshock, making it an ideal case to study the spatio-temporal relation among these events and their association with the mainshock. We applied a matched-filter technique to detect previously missing foreshocks and aftershocks of the 2014 Iquique earthquake. Using more than 900 template events recorded by 19 broadband seismic stations (network code CX) operated by the GEOFON Program of GFZ Potsdam, we found 4392 earthquakes between March 1st and April 3rd, 2014, including more than 30 earthquakes with magnitude larger than 4 that were previously missed in the catalog from the Chile National Seismological Center. Additionally, we found numerous small earthquakes with magnitudes between 1 and 2 preceding the largest foreshock, an MW 6.7 event occurring on March 16th, approximately 2 weeks before the Iquique mainshock. We observed that the foreshocks migrated northward at a speed of approximately 6 km/day. Using a finite fault slip model of the mainshock determined from teleseismic waveform inversion (Hayes, 2014), we calculated the Coulomb stress changes in the nearby regions of the mainshock. We found that there was ~200% increase in seismicity in the areas with increased Coulomb stress. Our next step is to evaluate the Coulomb stress changes associated with earlier foreshocks and their roles in triggering later foreshocks, and possibly the mainshock. For this, we plan to create a fault model of the temporal evolution of the Coulomb behavior along the interface with time, assuming Wells and Coppersmith (1994) type fault parameters. These results will be compared with double-difference relocations (using HypoDD), presenting a more accurate understanding of the spatial-temporal evolution of foreshocks and aftershocks of the 2014 Iquique earthquake.

  20. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Rajendran, Kusala; Sanwal, Jaishri

    2016-07-01

    The great 1934 Himalayan earthquake of moment magnitude (Mw) 8.1 generated a large zone of ground failure and liquefaction in north Bihar, India, in addition to the earthquakes of 1833 (Mw ~7.7) and 1988 (Mw 6.7) that have also impacted this region. Here, we present the results of paleoliquefaction investigations from four sites in the plains of north Bihar and one in eastern Uttar Pradesh. The liquefaction features generated by successive earthquakes were dated at AD 829-971, 886-1090, 907-1181, 1130-1376, 1112-1572, 1492-1672, 1733-1839, and 1814-1854. One of the liquefaction events dated at AD 829-971, 886-1090, and 907-1181 may correlate with the great earthquake of AD ~1100, recognized in an earlier study from the sections across the frontal thrust in central eastern Nepal. Two late medieval liquefaction episodes of AD 1130-1376 and 1492-1672 were also exposed in our sites. The sedimentary sections also revealed sandblows that can be attributed to the 1833 earthquake, a lesser magnitude event compared to the 1934. Liquefactions triggered by the 1934 and 1988 earthquakes were evident within the topmost level in some sections. The available data lead us to conjecture that a series of temporally close spaced earthquakes of both strong and large types, not including the infrequent great earthquakes like the 1934, have affected the Bihar Plains during the last 1500 years with a combined recurrence interval of 124 ± 63 years.

  1. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake

    NASA Astrophysics Data System (ADS)

    Walter, Jacob I.; Meng, Xiaofeng; Peng, Zhigang; Schwartz, Susan Y.; Newman, Andrew V.; Protti, Marino

    2015-12-01

    On 5 September 2012, a moment magnitude (MW) 7.6 earthquake occurred directly beneath the Nicoya Peninsula, an area with dense seismic and geodetic network coverage. The mainshock ruptured a portion of a previously identified locked patch that was recognized due to a decade-long effort to delineate the megathrust seismic and aseismic processes in this area. Here we conduct a comprehensive study of the seismicity prior to this event utilizing a matched-filter analysis that allows us to decrease the magnitude of catalog completeness by 1 unit. We observe a statistically significant increase in seismicity rate below the Nicoya Peninsula following the 27 August 2012 (MW 7.3) El Salvador earthquake (about 450 km to the northwest and 9 days prior to the Nicoya earthquake). Additionally, we identify a cluster of small-magnitude (<2.2) earthquakes preceding the mainshock by about 35 min and within 15 km of its hypocenter. The immediate foreshock sequence occurred in the same area as those earthquakes triggered shortly after the El Salvador event; though it is not clear whether the effect of triggering from the El Salvador event persisted until the foreshock sequence given the uncertainties in seismicity rates from a relatively small number of earthquakes. If megathrust earthquakes at such distances can induce significant increases in seismicity during the days before another larger event, this sequence strengthens the need for real-time seismicity monitoring for large earthquake forecasting.

  2. Mechanical and Statistical Evidence of Human-Caused Earthquakes - A Global Data Analysis

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2012-12-01

    The causality of large-scale geoengineering activities and the occurrence of earthquakes with magnitudes of up to M=8 is discussed and mechanical and statistical evidence is provided. The earthquakes were caused by artificial water reservoir impoundments, underground and open-pit mining, coastal management, hydrocarbon production and fluid injections/extractions. The presented global earthquake catalog has been recently published in the Journal of Seismology and is available for the public at www.cdklose.com. The data show evidence that geomechanical relationships exist with statistical significance between a) seismic moment magnitudes of observed earthquakes, b) anthropogenic mass shifts on the Earth's crust, and c) lateral distances of the earthquake hypocenters to the locations of the mass shifts. Research findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. First analyses, however, indicate that that small- to medium size earthquakes (M6) tend to be triggered. The rupture propagation of triggered events might be dominated by pre-existing tectonic stress conditions. Besides event specific evidence, large earthquakes such as China's 2008 M7.9 Wenchuan earthquake fall into a global pattern and can not be considered as outliers or simply seen as an act of god. Observations also indicate that every second seismic event tends to occur after a decade, while pore pressure diffusion seems to only play a role when injecting fluids deep underground. The chance of an earthquake to nucleate after two or 20 years near an area with a significant mass shift is 25% or 75% respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in the Earth's crust in which geoengineering takes place.

  3. Normal Faulting in the 1923 Berdún Earthquake and Postorogenic Extension in the Pyrenees

    NASA Astrophysics Data System (ADS)

    Stich, Daniel; Martín, Rosa; Batlló, Josep; Macià, Ramón; Mancilla, Flor de Lis; Morales, Jose

    2018-04-01

    The 10 July 1923 earthquake near Berdún (Spain) is the largest instrumentally recorded event in the Pyrenees. We recover old analog seismograms and use 20 hand-digitized waveforms for regional moment tensor inversion. We estimate moment magnitude Mw 5.4, centroid depth of 8 km, and a pure normal faulting source with strike parallel to the mountain chain (N292°E), dip of 66° and rake of -88°. The new mechanism fits into the general predominance of normal faulting in the Pyrenees and extension inferred from Global Positioning System data. The unique location of the 1923 earthquake, near the south Pyrenean thrust front, shows that the extensional regime is not confined to the axial zone where high topography and the crustal root are located. Together with seismicity near the northern mountain front, this indicates that gravitational potential energy in the western Pyrenees is not extracted locally but induces a wide distribution of postorogenic deformation.

  4. Comparison of magmatic and amagmatic rift zone kinematics using full moment tensor inversions of regional earthquakes

    NASA Astrophysics Data System (ADS)

    Jaye Oliva, Sarah; Ebinger, Cynthia; Shillington, Donna; Albaric, Julie; Deschamps, Anne; Keir, Derek; Drooff, Connor

    2017-04-01

    Temporary seismic networks deployed in the magmatic Eastern rift and the mostly amagmatic Western rift in East Africa present the opportunity to compare the depth distribution of strain, and fault kinematics in light of rift age and the presence or absence of surface magmatism. The largest events in local earthquake catalogs (ML > 3.5) are modeled using the Dreger and Ford full moment tensor algorithm (Dreger, 2003; Minson & Dreger, 2008) to better constrain source depth and to investigate non-double-couple components. A bandpass filter of 0.02 to 0.10 Hz is applied to the waveforms prior to inversion. Synthetics are based on 1D velocity models derived during seismic analysis and constrained by reflection and tomographic data where available. Results show significant compensated linear vector dipole (CLVD) and isotropic components for earthquakes in magmatic rift zones, whereas double-couple mechanisms predominate in weakly magmatic rift sectors. We interpret the isotropic components as evidence for fluid-involved faulting in the Eastern rift where volatile emissions are large, and dike intrusions well documented. Lower crustal earthquakes are found in both amagmatic and magmatic sectors. These results are discussed in the context of the growing database of complementary geophysical, geochemical, and geological studies in these regions as we seek to understand the role of magmatism and faulting in accommodating strain during early continental rifting.

  5. A Search for Characteristic Seismic Energy Radiation Patterns to Identify Possible Fast-Rupturing Activity Associated with Tsunamigenic and Other Earthquakes Around the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Barama, L.; Newman, A. V.; Convers, J.

    2016-12-01

    The Solomon Islands are heavily affected by frequent and destructive tsunamigenic earthquakes. Many of these earthquakes have rupture very near the trench, a feature normally associated with slow-source "tsunami earthquakes" as defined by Kanamori [Kanamori, PEPI 1972]. However, prior evaluation of energetic behavior of some recent larger tsunamigenic earthquakes have revealed little evidence for such a slow nature [Convers and Newman, JGR 2011; Newman et al., GJI 2011]. In this study, we evaluate all regional earthquakes surrounding the Solomon Islands with moment magnitude greater than 5.5 since 1976. We will use a newly developed methodology for more robustly characterizing the rupture duration along with seismic energy radiation from teleseismically located broad-band seismic stations, called the Time-Averaged Cumulative Energy Rate (TACER) [Convers and Newman, GRL 2013], for evaluating the slow-source nature. This methodology uniquely identifies the slow-rupture often associated with tsunami earthquakes due to the contrasting nature of the up-to order-of-magnitude negative deviation in energy and up-to three-fold excess in rupture duration in such events for a particular seismic moment [Newman et al., GRL 2011]. A ubiquitous slow-nature in this region would be surprising due to the spatial variance of the subducting features, and lack of any known slow-source tsunami earthquakes in the past century. It is more likely this region is not solely characterized by such slow-nature events, but instead have rupture energies comparable to what we see for events elsewhere and occuring in deeper segments of the megathrust interface. The most recent tsunamigenic earthquakes in the Solomon islands include the 2007 April 1, MW 8.1, 2010 January 3, MW 7.1 and 2013 February 6, MW 7.9 events, that display higher radiated seismic energies and shorter rupture durations than expected in recognized tsunami earthquakes that are observed at higher magnitudes (MW >7.5) elsewhere

  6. Earthquake statistics, spatiotemporal distribution of foci and source mechanisms - a key to understanding of the West Bohemia/Vogtland earthquake swarms

    NASA Astrophysics Data System (ADS)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2016-04-01

    Earthquake swarms are sequences of numerous events closely clustered in space and time and do not have a single dominant mainshock. A few of the largest events in a swarm reach similar magnitudes and usually occur throughout the course of the earthquake sequence. These attributes differentiate earthquake swarms from ordinary mainshock-aftershock sequences. Earthquake swarms occur worldwide, in diverse geological units. The swarms typically accompany volcanic activity at margins of the tectonic plate but also occur in intracontinental areas where strain from tectonic-plate movement is small. The origin of earthquake swarms is still unclear. The swarms typically occur at the plate margins but also in intracontinental areas. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe. It is characterised by a frequent reoccurrence of ML < 4.0 swarms and by high activity of crustal fluids. West Bohemia-Vogtland is one of the most active intraplate earthquake-swarm areas in Europe which also exhibits high activity of crustal fluids. The Nový Kostel focal zone (NK) dominates the recent seismicity, there were swarms in 1997, 2000, 2008 and 20011, and a striking non-swarm activity (mainshock-aftershock sequences) up to magnitude ML= 4.5 in May to August 2014. The swarms and the 2014 mainshock-aftershock sequences are located close to each other at depths between 6 and 13 km. The frequency-magnitude distributions of all the swarms show bimodal-like character: the most events obey the b-value = 1.0 distribution, but a group of the largest events depart significantly from it. All the ML > 2.8 swarm events are located in a few dense clusters which implies step by step rupturing of one or a few asperities during the individual swarms. The source mechanism patters (moment-tensor description, MT) of the individual swarms indicate several families of the mechanisms, which fit well geometry of respective fault segments. MTs of the most

  7. Broadband Analysis of the Energetics of Earthquakes and Tsunamis in the Sunda Forearc from 1987-2012

    NASA Astrophysics Data System (ADS)

    Choy, G. L.; Kirby, S. H.; Hayes, G. P.

    2013-12-01

    In the eighteen years before the 2004 Sumatra Mw 9.1 earthquake, the forearc off Sumatra experienced only one large (Mw > 7.0) thrust event and experienced no earthquakes that generated measurable tsunami wave heights. In the subsequent eight years, twelve large thrust earthquakes occurred of which half generated measurable tsunamis. The number of broadband earthquakes (those events with Mw > 5.5 for which broadband teleseismic waveforms have sufficient signal to compute depths, focal mechanisms, moments and radiated energies) jumped six fold after 2004. The progression of tsunami earthquakes, as well as the profuse increase in broadband activity, strongly suggests regional stress adjustments following the Sumatra 2004 megathrust earthquake. Broadband source parameters, published routinely in the Source Parameters (SOPAR) database of the USGS's NEIC (National Earthquake Information Center), have provided the most accurate depths and locations of big earthquakes since the implementation of modern digital seismographic networks. Moreover, radiated energy and seismic moment (also found in SOPAR) are related to apparent stress which is a measure of fault maturity. In mapping apparent stress as a function of depth and focal mechanism, we find that about 12% of broadband thrust earthquakes in the subduction zone are unequivocally above or below the slab interface. Apparent stresses of upper-plate events are associated with failure on mature splay faults, some of which generated measurable tsunamis. One unconventional source for local wave heights was a large intraslab earthquake. High-energy upper-plate events, which are dominant in the Aceh Basin, are associated with immature faults, which may explain why the region was bypassed by significant rupture during the 2004 Sumatra earthquake. The majority of broadband earthquakes are non-randomly concentrated under the outer-arc high. They appear to delineate the periphery of the contiguous rupture zones of large earthquakes

  8. Earthquakes, November-December 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There were three major earthquakes (7.0-7.9) during the last two months of the year: a magntidue 7.0 on November 19 in Columbia, a magnitude 7.4 in the Kuril Islands on December 22, and a magnitude 7.1 in the South Sandwich Islands on December 27. Earthquake-related deaths were reported in Colombia, Yemen, and Iran. there were no significant earthquakes in the United States during this reporting period. 

  9. Earthquakes, September-October 1980

    USGS Publications Warehouse

    Person, W.J.

    1981-01-01

    There were two major (magnitudes 7.0-7.9) earthquakes during this reporting period; a magnitude (M) 7.3 in Algeria where many people were killed or injured and extensive damage occurred, and an M=7.2 in the Loyalty Islands region of the South Pacific. Japan was struck by a damaging earthquake on September 24, killing two people and causing injuries. There were no damaging earthquakes in the United States. 

  10. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity

    NASA Astrophysics Data System (ADS)

    Dziewonski, A. M.; Chou, T.-A.; Woodhouse, J. H.

    1981-04-01

    It is possible to use the waveform data not only to derive the source mechanism of an earthquake but also to establish the hypocentral coordinates of the `best point source' (the centroid of the stress glut density) at a given frequency. Thus two classical problems of seismology are combined into a single procedure. Given an estimate of the origin time, epicentral coordinates and depth, an initial moment tensor is derived using one of the variations of the method described in detail by Gilbert and Dziewonski (1975). This set of parameters represents the starting values for an iterative procedure in which perturbations to the elements of the moment tensor are found simultaneously with changes in the hypocentral parameters. In general, the method is stable, and convergence rapid. Although the approach is a general one, we present it here in the context of the analysis of long-period body wave data recorded by the instruments of the SRO and ASRO digital network. It appears that the upper magnitude limit of earthquakes that can be processed using this particular approach is between 7.5 and 8.0; the lower limit is, at this time, approximately 5.5, but it could be extended by broadening the passband of the analysis to include energy with periods shorter that 45 s. As there are hundreds of earthquakes each year with magnitudes exceeding 5.5, the seismic source mechanism can now be studied in detail not only for major events but also, for example, for aftershock series. We have investigated the foreshock and several aftershocks of the Sumba earthquake of August 19, 1977; the results show temporal variation of the stress regime in the fault area of the main shock. An area some 150 km to the northwest of the epicenter of the main event became seismically active 49 days later. The sense of the strike-slip mechanism of these events is consistent with the relaxation of the compressive stress in the plate north of the Java trench. Another geophysically interesting result of our

  11. Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data

    NASA Astrophysics Data System (ADS)

    Wang, Kang; Fialko, Yuri

    2015-09-01

    We use surface deformation measurements including Interferometric Synthetic Aperture Radar data acquired by the ALOS-2 mission of the Japanese Aerospace Exploration Agency and Global Positioning System (GPS) data to invert for the fault geometry and coseismic slip distribution of the 2015 Mw 7.8 Gorkha earthquake in Nepal. Assuming that the ruptured fault connects to the surface trace of the Main Frontal Thrust (MFT) fault between 84.34°E and 86.19°E, the best fitting model suggests a dip angle of 7°. The moment calculated from the slip model is 6.08 × 1020 Nm, corresponding to the moment magnitude of 7.79. The rupture of the 2015 Gorkha earthquake was dominated by thrust motion that was primarily concentrated in a 150 km long zone 50 to 100 km northward from the surface trace of the Main Frontal Thrust (MFT), with maximum slip of ˜ 5.8 m at a depth of ˜8 km. Data thus indicate that the 2015 Gorkha earthquake ruptured a deep part of the seismogenic zone, in contrast to the 1934 Bihar-Nepal earthquake, which had ruptured a shallow part of the adjacent fault segment to the east.

  12. Slip Model of the 2015 Mw 7.8 Gorkha (Nepal) Earthquake from Inversions of ALOS-2 and GPS Data

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fialko, Y. A.

    2015-12-01

    We use surface deformation measurements including Interferometric Synthetic Aperture Radar (InSAR) data acquired by the ALOS-2 mission of the Japanese Aerospace Exploration Agency (JAXA) and Global Positioning System (GPS) data to invert for the fault geometry and coseismic slip distribution of the 2015 Mw 7.8 Gorkha earthquake in Nepal. Assuming that the ruptured fault connects to the surface trace of the of Main Frontal Thrust fault (MFT) between 84.34E and 86.19E, the best-fitting model suggests a dip angle of 7 degrees. The moment calculated from the slip model is 6.17*1020 Nm, corresponding to the moment magnitude of 7.79. The rupture of the 2015 Gorkha earthquake was dominated by thrust motion that was primarily concentrated in a 150-km long zone 50 to 100 km northward from the surface trace of the Main Frontal Thrust (MFT), with maximum slip of ~6 m at a depth of ~ 8 km. Data thus indicate that the 2015 Gorkha earthquake ruptured a deep part of the seismogenic zone, in contrast to the 1934 Bihar-Nepal earthquake, which had ruptured a shallow part of the adjacent fault segment to the East.

  13. Cascading elastic perturbation in Japan due to the 2012 Mw 8.6 Indian Ocean earthquake

    PubMed Central

    Delorey, Andrew A.; Chao, Kevin; Obara, Kazushige; Johnson, Paul A.

    2015-01-01

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 Mw (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards. PMID:26601289

  14. Earthquake Occurrence in Bangladesh and Surrounding Region

    NASA Astrophysics Data System (ADS)

    Al-Hussaini, T. M.; Al-Noman, M.

    2011-12-01

    The collision of the northward moving Indian plate with the Eurasian plate is the cause of frequent earthquakes in the region comprising Bangladesh and neighbouring India, Nepal and Myanmar. Historical records indicate that Bangladesh has been affected by five major earthquakes of magnitude greater than 7.0 (Richter scale) during 1869 to 1930. This paper presents some statistical observations of earthquake occurrence in fulfilment of a basic groundwork for seismic hazard assessment of this region. An up to date catalogue covering earthquake information in the region bounded within 17°-30°N and 84°-97°E for the period of historical period to 2010 is derived from various reputed international sources including ISC, IRIS, Indian sources and available publications. Careful scrutiny is done to remove duplicate or uncertain earthquake events. Earthquake magnitudes in the range of 1.8 to 8.1 have been obtained and relationships between different magnitude scales have been studied. Aftershocks are removed from the catalogue using magnitude dependent space window and time window. The main shock data are then analyzed to obtain completeness period for different magnitudes evaluating their temporal homogeneity. Spatial and temporal distribution of earthquakes, magnitude-depth histograms and other statistical analysis are performed to understand the distribution of seismic activity in this region.

  15. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal

    NASA Astrophysics Data System (ADS)

    Galetzka, J.; Melgar, D.; Genrich, J. F.; Geng, J.; Owen, S.; Lindsey, E. O.; Xu, X.; Bock, Y.; Avouac, J.-P.; Adhikari, L. B.; Upreti, B. N.; Pratt-Sitaula, B.; Bhattarai, T. N.; Sitaula, B. P.; Moore, A.; Hudnut, K. W.; Szeliga, W.; Normandeau, J.; Fend, M.; Flouzat, M.; Bollinger, L.; Shrestha, P.; Koirala, B.; Gautam, U.; Bhatterai, M.; Gupta, R.; Kandel, T.; Timsina, C.; Sapkota, S. N.; Rajaure, S.; Maharjan, N.

    2015-09-01

    Detailed geodetic imaging of earthquake ruptures enhances our understanding of earthquake physics and associated ground shaking. The 25 April 2015 moment magnitude 7.8 earthquake in Gorkha, Nepal was the first large continental megathrust rupture to have occurred beneath a high-rate (5-hertz) Global Positioning System (GPS) network. We used GPS and interferometric synthetic aperture radar data to model the earthquake rupture as a slip pulse ~20 kilometers in width, ~6 seconds in duration, and with a peak sliding velocity of 1.1 meters per second, which propagated toward the Kathmandu basin at ~3.3 kilometers per second over ~140 kilometers. The smooth slip onset, indicating a large (~5-meter) slip-weakening distance, caused moderate ground shaking at high frequencies (>1 hertz; peak ground acceleration, ~16% of Earth’s gravity) and minimized damage to vernacular dwellings. Whole-basin resonance at a period of 4 to 5 seconds caused the collapse of tall structures, including cultural artifacts.

  16. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal.

    PubMed

    Galetzka, J; Melgar, D; Genrich, J F; Geng, J; Owen, S; Lindsey, E O; Xu, X; Bock, Y; Avouac, J-P; Adhikari, L B; Upreti, B N; Pratt-Sitaula, B; Bhattarai, T N; Sitaula, B P; Moore, A; Hudnut, K W; Szeliga, W; Normandeau, J; Fend, M; Flouzat, M; Bollinger, L; Shrestha, P; Koirala, B; Gautam, U; Bhatterai, M; Gupta, R; Kandel, T; Timsina, C; Sapkota, S N; Rajaure, S; Maharjan, N

    2015-09-04

    Detailed geodetic imaging of earthquake ruptures enhances our understanding of earthquake physics and associated ground shaking. The 25 April 2015 moment magnitude 7.8 earthquake in Gorkha, Nepal was the first large continental megathrust rupture to have occurred beneath a high-rate (5-hertz) Global Positioning System (GPS) network. We used GPS and interferometric synthetic aperture radar data to model the earthquake rupture as a slip pulse ~20 kilometers in width, ~6 seconds in duration, and with a peak sliding velocity of 1.1 meters per second, which propagated toward the Kathmandu basin at ~3.3 kilometers per second over ~140 kilometers. The smooth slip onset, indicating a large (~5-meter) slip-weakening distance, caused moderate ground shaking at high frequencies (>1 hertz; peak ground acceleration, ~16% of Earth's gravity) and minimized damage to vernacular dwellings. Whole-basin resonance at a period of 4 to 5 seconds caused the collapse of tall structures, including cultural artifacts. Copyright © 2015, American Association for the Advancement of Science.

  17. Stress Drop and Directivity Patterns Observed in Small-Magnitude (

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Hatch, R. L.; Abercrombie, R. E.; Smith, K.

    2017-12-01

    Recent improvements in seismic instrumentation and network coverage in the Reno, NV area have provided high-quality records of abundant microseismicity, including several swarms and clusters. Here, we discuss stress drop and directivity patterns of small-magnitude seismicity in the 2008 Mw4.9 Mogul earthquake swarm in Reno, NV and in the nearby region of an ML3.2 sequence near Virginia City, NV. In both sequences, double-difference relocated earthquakes cluster on multiple distinct structures consistent with focal mechanism and moment tensor fault plane solutions. Both sequences also show migration potentially related to fluid flow. We estimate corner frequency and stress drop using EGF-derived spectral ratios, convolving earthquake pairs (target*EGF) such that we preserve phase and recover source-time functions (STF) on a station-by-station basis. We then stack individual STFs per station for all EGF-target pairs per target earthquake, increasing the signal-to-noise of our results. By applying an azimuthal- and incidence-angle-dependent stretching factor to STFs in the time domain, we are able to invert for rupture directivity and velocity assuming both unilateral and bilateral rupture. Earthquakes in both sequences, some as low as ML2.1, show strong unilateral directivity consistent with independent fault plane solutions. We investigate and compare the relationship between rupture and migration directions on subfaults within each sequence. Average stress drops for both sequences are 4 MPa, but there is large variation in individual estimates for both sequences. Although this variation is not explained simply by any one parameter (e.g., depth), spatiotemporal variation in the Mogul swarm is distinct: coherent clusters of high and low stress drop earthquakes along the mainshock fault plane are seen, and high-stress-drop foreshocks correlate with an area of reduced aftershock productivity. These observations are best explained by a difference in rheology along the

  18. Broadband waveform inversion of moderate earthquakes in the Messina Straits, southern Italy

    NASA Astrophysics Data System (ADS)

    D'Amico, Sebastiano; Orecchio, Barbara; Presti, Debora; Zhu, Lupei; Herrmann, Robert B.; Neri, Giancarlo

    2010-04-01

    We report the first application of the Cut and Paste (CAP) method to compute earthquake focal mechanisms in the Messina Straits area by waveform inversion of Pnl and surface wave segments. This application of CAP has furnished new knowledge about low-magnitude earthquake mechanics that will be useful for improved understanding of the local geodynamics. This is possible because the CAP inversion technique can be applied to small earthquakes, for which traditional moment tensor inversion methods are not appropriate and P-onset focal mechanisms in the study area fail because of a lack of sufficient observations. We estimate the focal mechanisms of 23 earthquakes with local magnitudes in the range of 3-4 occurring in the 2004-2008 time period, and recorded by the broadband stations of the Italian National Seismic Network and the Mediterranean Very Broadband Seismographic Network (MedNet) run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The solutions show that normal faulting is the prevailing style of seismic deformation in the northern part of the study area while co-existence of normal faulting and strike-slip has been detected in the southern part. In the whole area of investigation the T-axes of focal mechanisms display a preferential northwest-southeast direction of extension. Combined with the findings of previous investigations, this improved database of focal mechanisms allows us to better detail the transitional area between the extensional domain related to subduction trench retreat (southern Calabria) and the compressional one associated with continental collision (western-central Sicily). The observed spatial change of seismic deformation regime offers new data to current seismotectonic and seismic hazard investigations in the area of Messina Straits where a magnitude 7.2 earthquake caused more than 60,000 casualties on 28 December 1908.

  19. Triggered deformation and seismic activity under Mammoth Mountain in long Valley caldera by the 3 November 2002 Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Johnston, M.J.S.; Prejean, S.G.; Hill, D.P.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake triggered deformational offsets and microseismicity under Mammoth Mountain (MM) on the rim of Long Valley caldera, California, some 3460 km from the earthquake. Such strain offsets and microseismicity were not recorded at other borehole strain sites along the San Andreas fault system in California. The Long Valley offsets were recorded on borehole strainmeters at three sites around the western part of the caldera that includes Mammoth Mountain - a young volcano on the southwestern rim of the caldera. The largest recorded strain offsets were -0.1 microstrain at PO on the west side of MM, 0.05 microstrain at MX to the southeast of MM, and -0.025 microstrain at BS to the northeast of MM with negative strain extensional. High sample rate strain data show initial triggering of the offsets began at 22:30 UTC during the arrival of the first Rayleigh waves from the Alaskan earthquake with peak-to-peak dynamic strain amplitudes of about 2 microstrain corresponding to a stress amplitude of about 0.06 MPa. The strain offsets grew to their final values in the next 10 min. The associated triggered seismicity occurred beneath the south flank of MM and also began at 22:30 UTC and died away over the next 15 min. This relatively weak seismicity burst included some 60 small events with magnitude all less than M = 1. While poorly constrained, these strain observations are consistent with triggered slip and intrusive opening on a north-striking normal fault centered at a depth of 8 km with a moment of l016 N m, or the equivalent of a M 4.3 earthquake. The cumulative seismic moment for the associated seismicity burst was more than three orders of magnitude smaller. These observations and this model resemble those for the triggered deformation and slip that occurred beneath the north side of MM following the 16 October 1999 M 7.1 Hector Mine, California, earthquake. However, in this case, we see little post-event slip decay reflected in

  20. Time functions of deep earthquakes from broadband and short-period stacks

    USGS Publications Warehouse

    Houston, H.; Benz, H.M.; Vidale, J.E.

    1998-01-01

    To constrain dynamic source properties of deep earthquakes, we have systematically constructed broadband time functions of deep earthquakes by stacking and scaling teleseismic P waves from U.S. National Seismic Network, TERRAscope, and Berkeley Digital Seismic Network broadband stations. We examined 42 earthquakes with depths from 100 to 660 km that occurred between July 1, 1992 and July 31, 1995. To directly compare time functions, or to group them by size, depth, or region, it is essential to scale them to remove the effect of moment, which varies by more than 3 orders of magnitude for these events. For each event we also computed short-period stacks of P waves recorded by west coast regional arrays. The comparison of broadband with short-period stacks yields a considerable advantage, enabling more reliable measurement of event duration. A more accurate estimate of the duration better constrains the scaling procedure to remove the effect of moment, producing scaled time functions with both correct timing and amplitude. We find only subtle differences in the broadband time-function shape with moment, indicating successful scaling and minimal effects of attenuation at the periods considered here. The average shape of the envelopes of the short-period stacks is very similar to the average broadband time function. The main variations seen with depth are (1) a mild decrease in duration with increasing depth, (2) greater asymmetry in the time functions of intermediate events compared to deep ones, and (3) unexpected complexity and late moment release for events between 350 and 550 km, with seven of the eight events in that depth interval displaying markedly more complicated time functions with more moment release late in the rupture than most events above or below. The first two results are broadly consistent with our previous studies, while the third is reported here for the first time. The greater complexity between 350 and 550 km suggests greater heterogeneity in

  1. Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system

    NASA Astrophysics Data System (ADS)

    Hsu, Y. J.; Yu, S. B.; Loveless, J. P.; Bacolcol, T.; Woessner, J.; Solidum, R., Jr.

    2015-12-01

    The Sunda plate converges obliquely with the Philippine Sea plate with a rate of ~100 mm/yr and results in the sinistral slip along the 1300 km-long Philippine fault. Using GPS data from 1998 to 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks and elastic deformation associated with fault slip at block boundaries. Our preferred model composed of 8 blocks, produces a mean residual velocity of 3.4 mm/yr at 93 GPS stations. Estimated long-term slip rates along the Manila subduction zone show a gradual southward decrease from 66 mm/yr at the northwest tip of Luzon to 60 mm/yr at the southern portion of the Manila Trench. We infer a low coupling fraction of 11% offshore northwest Luzon and a coupling fraction of 27% near the subduction of Scarborough Seamount. The accumulated strain along the Manila subduction zone at latitudes 15.5°~18.5°N could be balanced by earthquakes with composite magnitudes of Mw 8.7 and Mw 8.9 based on a recurrence interval of 500 years and 1000 years, respectively. Estimates of sinistral slip rates on the major splay faults of the Philippine fault system in central Luzon increase from east to west: sinistral slip rates are 2 mm/yr on the Dalton fault, 8 mm/yr on the Abra River fault, and 12 mm/yr on the Tubao fault. On the southern segment of the Philippine fault (Digdig fault), we infer left-lateral slip of ~20 mm/yr. The Vigan-Aggao fault in northwest Luzon exhibits significant reverse slip of up to 31 mm/yr, although deformation may be distributed across multiple offshore thrust faults. On the Northern Cordillera fault, we calculate left-lateral slip of ~7 mm/yr. Results of block modeling suggest that the majority of active faults in Luzon are fully locked to a depth of 15-20 km. Inferred moment magnitudes of inland large earthquakes in Luzon fall in the range of Mw 7.0-7.5 based on a recurrence interval of 100 years. Using the long-term plate convergence rate between the Sunda plate

  2. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    earthquakes occurring on mature faults. We have identified earthquake pairs in which an interplate-thrust and an intraslab-normal earthquake occurred remarkably close in space and time. The intraslab-normal member of each pair radiated anomalously high amounts of energy compared to its thrust-fault counterpart. These intraslab earthquakes probably ruptured intact slab mantle and are dramatic examples in which Mc (an energy magnitude) is shown to be a far better estimate of the potential for earthquake damage than Mw. This discovery may help explain why loss of life as a result of intraslab earthquakes was greater in the 20th century in Latin America than the fatalities associated with interplate-thrust events that represented much higher total moment release. ?? 2004 RAS.

  3. Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: fault movement investigation and seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongshan; Huang, Dingfa; Yuan, Linguo; Hassan, Abubakr; Zhang, Lupeng; Yang, Zhongrong

    2018-04-01

    The 2016 moment magnitude (Mw) 7.8 Kaikoura earthquake demonstrated that multiple fault segments can undergo rupture during a single seismic event. Here, we employ Global Positioning System (GPS) observations and geodetic modeling methods to create detailed images of coseismic slip and postseismic afterslip associated with the Kaikoura earthquake. Our optimal geodetic coseismic model suggests that rupture not only occurred on shallow crustal faults but also to some extent at the Hikurangi subduction interface. The GPS-inverted moment release during the earthquake is equivalent to a Mw 7.9 event. The near-field postseismic deformation is mainly derived from right-lateral strike-slip motions on shallow crustal faults. The afterslip did not only significantly extend northeastward on the Needles fault but also appeared at the plate interface, slowly releasing energy over the past 6 months, equivalent to a Mw 7.3 earthquake. Coulomb stress changes induced by coseismic deformation exhibit complex patterns and diversity at different depths, undoubtedly reflecting multi-fault rupture complexity associated with the earthquake. The Coulomb stress can reach several MPa during coseismic deformation, which can explain the trigger mechanisms of afterslip in two high-slip regions and the majority of aftershocks. Based on the deformation characteristics of the Kaikoura earthquake, interseismic plate coverage, and historical earthquakes, we conclude that Wellington is under higher seismic threat after the earthquake and great attention should be paid to potential large earthquake disasters in the near future.[Figure not available: see fulltext.

  4. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake

    PubMed Central

    2018-01-01

    The great 2011 Tohoku-oki earthquake [moment magnitude (Mw) 9.0)] is the best-documented megathrust earthquake in the world, but its causal mechanism is still in controversy because of the poor state of knowledge on the nature of the megathrust zone. We constrain the structure of the Tohoku forearc using seismic tomography, residual topography, and gravity data, which reveal a close relationship between structural heterogeneities in and around the megathrust zone and rupture processes of the 2011 Tohoku-oki earthquake. Its mainshock nucleated in an area with high seismic velocity, low seismic attenuation, and strong seismic coupling, probably indicating a large asperity (or a cluster of asperities) in the megathrust zone. Strong coseismic high-frequency radiations also occurred in high-velocity patches, whereas large afterslips took plate in low-velocity areas, differences that may reflect changes in fault friction and lithological variations. These structural heterogeneities in and around the Tohoku megathrust originate from both the overriding and subducting plates, which controlled the nucleation and rupture processes of the 2011 Tohoku-oki earthquake.

  5. On relating apparent stress to the stress causing earthquake fault slip

    USGS Publications Warehouse

    McGarr, A.

    1999-01-01

    Apparent stress ??a is defined as ??a = ??????, where ???? is the average shear stress loading the fault plane to cause slip and ?? is the seismic efficiency, defined as Ea/W, where Ea is the energy radiated seismically and W is the total energy released by the earthquake. The results of a recent study in which apparent stresses of mining-induced earthquakes were compared to those measured for laboratory stick-slip friction events led to the hypothesis that ??a/???? ??? 0.06. This hypothesis is tested here against a substantially augmented data set of earthquakes for which ???? can be estimated, mostly from in situ stress measurements, for comparison with ??a. The expanded data set, which includes earthquakes artificially triggered at a depth of 9 km in the German Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB) borehole and natural tectonic earthquakes, covers a broad range of hypocentral depths, rock types, pore pressures, and tectonic settings. Nonetheless, over ???14 orders of magnitude in seismic moment, apparent stresses exhibit distinct upper bounds defined by a maximum seismic efficiency of ???0.06, consistent with the hypothesis proposed before. This behavior of ??a and ?? can be expressed in terms of two parameters measured for stick-slip friction events in the laboratory: the ratio of the static to the dynamic coefficient of friction and the fault slip overshoot. Typical values for these two parameters yield seismic efficiencies of ???0.06. In contrast to efficiencies for laboratory events for which ?? is always near 0.06, those for earthquakes tend to be less than this bounding value because Ea for earthquakes is usually underestimated due to factors such as band-limited recording. Thus upper bounds on ??a/???? appear to be controlled by just a few fundamental aspects of frictional stick-slip behavior that are common to shallow earthquakes everywhere. Estimates of ???? from measurements of ??a for suites of earthquakes, using ??a

  6. Spatial and Temporal Variations in the Moment Tensor Solutions of the 2008 Wenchuan Earthquake Aftershocks and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Lin, X.; Dreger, D.; Ge, H.; Xu, P.; Wu, M.; Chiang, A.; Zhao, G.; Yuan, H.

    2018-03-01

    Following the mainshock of the 2008 M8 Wenchuan Earthquake, there were more than 300 ML ≥ 4.0 aftershocks that occurred between 12 May 2008 and 8 September 2010. We analyzed the broadband waveforms for these events and found 160 events with sufficient signal-to-noise levels to invert for seismic moment tensors. Considering the length of the activated fault and the distances to the recording stations, four velocity models were employed to account for variability in crustal structure. The moment tensor solutions show considerable variations with a mixture of mainly reverse and strike-slip mechanisms and a small number of normal events and ambiguous events. We analyzed the spatial and temporal distribution of the aftershocks and their mechanism types to characterize the structure and the deformation occurring in the Longmen Shan fold and thrust belt. Our results suggest that the stress is very complex at the Longmen Shan fault zone. The moment tensors have both a spatial segmentation with two major categories of the moment tensor of thrust and strike slip; and a temporal pattern that the majority of the aftershocks gradually migrated to thrust-type events. The variability of aftershock mechanisms is a strong indication of significant tectonic release and stress reorganization that activated numerous small faults in the system.

  7. Diverse rupture processes in the 2015 Peru deep earthquake doublet.

    PubMed

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Zhan, Zhongwen; Duputel, Zacharie

    2016-06-01

    Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes.

  8. Do moderate magnitude earthquakes generate seismically induced ground effects? The case study of the M w = 5.16, 29th December 2013 Matese earthquake (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Valente, Ettore; Ascione, A.; Ciotoli, G.; Cozzolino, M.; Porfido, S.; Sciarra, A.

    2018-03-01

    Seismically induced ground effects characterize moderate to high magnitude seismic events, whereas they are not so common during seismic sequences of low to moderate magnitude. A low to moderate magnitude seismic sequence with a M w = 5.16 ± 0.07 main event occurred from December 2013 to February 2014 in the Matese ridge area, in the southern Apennines mountain chain. In the epicentral area of the M w = 5.16 main event, which happened on December 29th 2013 in the southeastern part of the Matese ridge, field surveys combined with information from local people and reports allowed the recognition of several earthquake-induced ground effects. Such ground effects include landslides, hydrological variations in local springs, gas flux, and a flame that was observed around the main shock epicentre. A coseismic rupture was identified in the SW fault scarp of a small-sized intermontane basin (Mt. Airola basin). To detect the nature of the coseismic rupture, detail scale geological and geomorphological investigations, combined with geoelectrical and soil gas prospections, were carried out. Such a multidisciplinary study, besides allowing reconstruction of the surface and subsurface architecture of the Mt. Airola basin, and suggesting the occurrence of an active fault at the SW boundary of such basin, points to the gravitational nature of the coseismic ground rupture. Based on typology and spatial distribution of the ground effects, an intensity I = VII-VIII is estimated for the M w = 5.16 earthquake according to the ESI-07 scale, which affected an area of at least 90 km2.

  9. Luzon earthquake strongest in 90 years

    NASA Astrophysics Data System (ADS)

    The magnitude 7.7 Philippine earthquake that took place 2 weeks ago was the strongest recorded on the island of Luzon in nearly 90 years and the strongest in all of the Philippines in nearly 14 years, according to the U.S. Geological Survey.The earthquake occurred 60 miles north of Manila and was the third strongest recorded on Luzon, exceeded only by an earthquake with an estimated magnitude of 7.8, on December 14, 1901, near Lucena, about 80 miles southeast of Manila, and an earthquake with an estimated magnitude of 7.9 on August 15, 1897, off the northwest coast of Luzon.

  10. Statistical earthquake focal mechanism forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2014-04-01

    Forecasts of the focal mechanisms of future shallow (depth 0-70 km) earthquakes are important for seismic hazard estimates and Coulomb stress, and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude and focal mechanism. In previous publications we reported forecasts of 0.5° spatial resolution, covering the latitude range from -75° to +75°, based on the Global Central Moment Tensor earthquake catalogue. In the new forecasts we have improved the spatial resolution to 0.1° and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each gridpoint. Simultaneously, we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method of Kagan & Jackson proposed in 1994. This average angle reveals the level of tectonic complexity of a region and indicates the accuracy of the prediction. The procedure becomes problematical where longitude lines are not approximately parallel, and where shallow earthquakes are so sparse that an adequate sample spans very large distances. North or south of 75°, the azimuths of points 1000 km away may vary by about 35°. We solved this problem by calculating focal mechanisms on a plane tangent to the Earth's surface at each forecast point, correcting for the rotation of the longitude lines at the locations of earthquakes included in the averaging. The corrections are negligible between -30° and +30° latitude, but outside that band uncorrected rotations can be significantly off. Improved forecasts at 0.5° and 0.1° resolution are posted at http://eq.ess.ucla.edu/kagan/glob_gcmt_index.html.

  11. Earthquake triggering by seismic waves following the landers and hector mine earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.A.; Bodin, P.; Harris, R.A.

    2001-01-01

    The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake1-6. Here we quantify the spatial and temporal patterns of the seismicity rate changes7. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.

  12. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrún; Clark, Kate; Elliott, John; Liang, Cunren; Fielding, Eric; Litchfield, Nicola; Villamor, Pilar; Wallace, Laura; Wright, Tim J; D'Anastasio, Elisabetta; Bannister, Stephen; Burbidge, David; Denys, Paul; Gentle, Paula; Howarth, Jamie; Mueller, Christof; Palmer, Neville; Pearson, Chris; Power, William; Barnes, Philip; Barrell, David J A; Van Dissen, Russ; Langridge, Robert; Little, Tim; Nicol, Andrew; Pettinga, Jarg; Rowland, Julie; Stirling, Mark

    2017-04-14

    On 14 November 2016, northeastern South Island of New Zealand was struck by a major moment magnitude ( M w ) 7.8 earthquake. Field observations, in conjunction with interferometric synthetic aperture radar, Global Positioning System, and seismology data, reveal this to be one of the most complex earthquakes ever recorded. The rupture propagated northward for more than 170 kilometers along both mapped and unmapped faults before continuing offshore at the island's northeastern extent. Geodetic and field observations reveal surface ruptures along at least 12 major faults, including possible slip along the southern Hikurangi subduction interface; extensive uplift along much of the coastline; and widespread anelastic deformation, including the ~8-meter uplift of a fault-bounded block. This complex earthquake defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and should motivate reevaluation of these issues in seismic hazard models. Copyright © 2017, American Association for the Advancement of Science.

  13. Success! Detailed Pre-event Analysis Identified the Slip Area and Magnitude of the Sept. 2012 MW 7.6 Nicoya Earthquake

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Protti, M.; Gonzalez, V. M.; Dixon, T. H.; Schwartz, S. Y.; Feng, L.; Peng, Z.; Marshall, J.; Malservisi, R.; Owen, S. E.

    2013-05-01

    On September 5th, 2012 a moment magnitude (MW) 7.6 earthquake struck the seismogenic megathrust of Nicoya Costa Rica. Though, we knew not precisely when, this event was not unexpected, and occurred after the development of substantial pre-event scientific discovery and earthquake infrastructural development. Beginning in the late- 1990's Nicoya Costa Rica was recognized by the U.S. National Science Foundation -MARGINS program as a focus area for seismogenic zone studies in part because of the unique proximity of land to the active subduction megathrust. The region also has very fast convergence (~9 cm/a) and has suffered from regular M7+ earthquakes in 1853, 1900 and 1950. Another similar event was expected by many. Pre-event analysis identified the structure of the subduction interface [Newman et al., GRL, 2002; DeShon et al., GJI, 2006], the location and rate changes of ongoing microseismicity [Newman et al., GRL, 2002, Ghosh et al.,GRL, 2008], the location and degree of locking that developed during the late interseismic [Norabuena et al., JGR, 2006; Feng et al., JGR, 2012], and its relation to ongoing low-frequency earthquakes, subduction tremor, and episodic slip events [Walter et al., GRL, 2011; Outerbridge et al., JGR, 2010, Jiang et al., G3, 2012]. Feng et al., [2012] using campaign and continuous GPS data through 2012, identified complex locked 50x50 km patch along the central coast of Nicoya, the locale that failed in Sept 2012, and concluded that the region had the potential to fail in an MW 7.8 event should the most recent locking be representative of behavior since the last major event in 1950. In operation at the time of the event was a substantial NSF-funded continuous GPS (17 station) and seismic (18 station) network maintained by USF, UCSC, and GIT, in cooperation with OVSICORI. The seismic network captured the initial motions of the mainshock before clipping, as well as pre-shock and aftershock activity [Walter et al., (this meeting), 2013]. The

  14. Earthquakes, May-June 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    In the United States, a magnitude 5.8 earthquake in southern California on June 28 killed two people and caused considerable damage. Strong earthquakes hit Alaska on May 1 and May 30; the May 1 earthquake caused some minor damage. 

  15. The 24th January 2016 Hawassa earthquake: Implications for seismic hazard in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, Matthew; Ayele, Atalay; Kendall, J.-Michael; Wookey, James

    2017-01-01

    Earthquakes of low to intermediate magnitudes are a commonly observed feature of continental rifting and particularly in regions of Quaternary to Recent volcanism such as in the Main Ethiopian Rift (MER). Although the seismic hazard is estimated to be less in the Hawassa region of the MER than further north and south, a significant earthquake occurred on the 24th January 2016 in the Hawassa caldera basin and close to the Corbetti volcanic complex. The event was felt up to 100 km away and caused structural damage and public anxiety in the city of Hawassa itself. In this paper we first refine the earthquake's location using data from global network and Ethiopian network stations. The resulting location is at 7.0404°N, 38.3478°E and at 4.55 km depth, which suggests that the event occurred on structures associated with the caldera collapse of the Hawassa caldera in the early Pleistocene and not through volcano-tectonic processes at Corbetti. We calculate local and moment magnitudes, which are magnitude scales more appropriate at regional hypocentral distances than (mb) at four stations. This is done using a local scale (attenuation term) previously determined for the MER and spectral analysis for ML and MW respectively and gives magnitude estimates of 4.68 and 4.29. The event indicates predominantly normal slip on a N-S striking fault structure, which suggests that slip continues to occur on Wonji faults that have exploited weaknesses inherited from the preceding caldera collapse. These results and two previous earthquakes in the Hawassa caldera of M > 5 highlight that earthquakes continue to pose a risk to structures within the caldera basin. With this in mind, it is suggested that enhanced monitoring and public outreach should be considered.

  16. Application of geostatistical simulation to compile seismotectonic provinces based on earthquake databases (case study: Iran)

    NASA Astrophysics Data System (ADS)

    Jalali, Mohammad; Ramazi, Hamidreza

    2018-04-01

    This article is devoted to application of a simulation algorithm based on geostatistical methods to compile and update seismotectonic provinces in which Iran has been chosen as a case study. Traditionally, tectonic maps together with seismological data and information (e.g., earthquake catalogues, earthquake mechanism, and microseismic data) have been used to update seismotectonic provinces. In many cases, incomplete earthquake catalogues are one of the important challenges in this procedure. To overcome this problem, a geostatistical simulation algorithm, turning band simulation, TBSIM, was applied to make a synthetic data to improve incomplete earthquake catalogues. Then, the synthetic data was added to the traditional information to study the seismicity homogeneity and classify the areas according to tectonic and seismic properties to update seismotectonic provinces. In this paper, (i) different magnitude types in the studied catalogues have been homogenized to moment magnitude (Mw), and earthquake declustering was then carried out to remove aftershocks and foreshocks; (ii) time normalization method was introduced to decrease the uncertainty in a temporal domain prior to start the simulation procedure; (iii) variography has been carried out in each subregion to study spatial regressions (e.g., west-southwestern area showed a spatial regression from 0.4 to 1.4 decimal degrees; the maximum range identified in the azimuth of 135 ± 10); (iv) TBSIM algorithm was then applied to make simulated events which gave rise to make 68,800 synthetic events according to the spatial regression found in several directions; (v) simulated events (i.e., magnitudes) were classified based on their intensity in ArcGIS packages and homogenous seismic zones have been determined. Finally, according to the synthetic data, tectonic features, and actual earthquake catalogues, 17 seismotectonic provinces were introduced in four major classes introduced as very high, high, moderate, and low

  17. Dynamic triggering of low magnitude earthquakes in the Middle American Subduction Zone

    NASA Astrophysics Data System (ADS)

    Escudero, C. R.; Velasco, A. A.

    2010-12-01

    We analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. We use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw >7) earthquakes, we first identify local earthquakes that occurred before and after the mainshocks. We then group the local earthquakes within a cluster radius between 75 to 200 km. We obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as local cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Due to lateral variations of the dip along the subducted oceanic plate, we divide the Mexican subduction zone in four segments. We then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes. We identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. We find no depend of seismicity changes due to focal mainshock mechanism.

  18. Field survey of earthquake effects from the magnitude 4.0 southern Maine earthquake of October 16, 2012

    USGS Publications Warehouse

    Amy L. Radakovich,; Alex J. Fergusen,; Boatwright, John

    2016-06-02

    The magnitude 4.0 earthquake that occurred on October 16, 2012, near Hollis Center and Waterboro in southwestern Maine surprised and startled local residents but caused only minor damage. A two-person U.S. Geological Survey (USGS) team was sent to Maine to conduct an intensity survey and document the damage. The only damage we observed was the failure of a chimney and plaster cracks in two buildings in East and North Waterboro, 6 kilometers (km) west of the epicenter. We photographed the damage and interviewed residents to determine the intensity distribution in the epicentral area. The damage and shaking reports are consistent with a maximum Modified Mercalli Intensity (MMI) of 5–6 for an area 1–8 km west of the epicenter, slightly higher than the maximum Community Decimal Intensity (CDI) of 5 determined by the USGS “Did You Feel It?” Web site. The area of strong shaking in East Waterboro corresponds to updip rupture on a fault plane that dips steeply east. 

  19. Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California earthquake swarm

    USGS Publications Warehouse

    Shelly, David R.; Ellsworth, William L.; Hill, David P.

    2016-01-01

    An extended earthquake swarm occurred beneath southeastern Long Valley Caldera between May and November 2014, culminating in three magnitude 3.5 earthquakes and 1145 cataloged events on 26 September alone. The swarm produced the most prolific seismicity in the caldera since a major unrest episode in 1997-1998. To gain insight into the physics controlling swarm evolution, we used large-scale cross-correlation between waveforms of cataloged earthquakes and continuous data, producing precise locations for 8494 events, more than 2.5 times the routine catalog. We also estimated magnitudes for 18,634 events (~5.5 times the routine catalog), using a principal component fit to measure waveform amplitudes relative to cataloged events. This expanded and relocated catalog reveals multiple episodes of pronounced hypocenter expansion and migration on a collection of neighboring faults. Given the rapid migration and alignment of hypocenters on narrow faults, we infer that activity was initiated and sustained by an evolving fluid pressure transient with a low-viscosity fluid, likely composed primarily of water and CO2 exsolved from underlying magma. Although both updip and downdip migration were observed within the swarm, downdip activity ceased shortly after activation, while updip activity persisted for weeks at moderate levels. Strongly migrating, single-fault episodes within the larger swarm exhibited a higher proportion of larger earthquakes (lower Gutenberg-Richter b value), which may have been facilitated by fluid pressure confined in two dimensions within the fault zone. In contrast, the later swarm activity occurred on an increasingly diffuse collection of smaller faults, with a much higher b value.

  20. W phase source inversion for moderate to large earthquakes (1990-2010)

    USGS Publications Warehouse

    Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo; Hayes, Gavin P.

    2012-01-01

    Rapid characterization of the earthquake source and of its effects is a growing field of interest. Until recently, it still took several hours to determine the first-order attributes of a great earthquake (e.g. Mw≥ 7.5), even in a well-instrumented region. The main limiting factors were data saturation, the interference of different phases and the time duration and spatial extent of the source rupture. To accelerate centroid moment tensor (CMT) determinations, we have developed a source inversion algorithm based on modelling of the W phase, a very long period phase (100–1000 s) arriving at the same time as the P wave. The purpose of this work is to finely tune and validate the algorithm for large-to-moderate-sized earthquakes using three components of W phase ground motion at teleseismic distances. To that end, the point source parameters of all Mw≥ 6.5 earthquakes that occurred between 1990 and 2010 (815 events) are determined using Federation of Digital Seismograph Networks, Global Seismographic Network broad-band stations and STS1 global virtual networks of the Incorporated Research Institutions for Seismology Data Management Center. For each event, a preliminary magnitude obtained from W phase amplitudes is used to estimate the initial moment rate function half duration and to define the corner frequencies of the passband filter that will be applied to the waveforms. Starting from these initial parameters, the seismic moment tensor is calculated using a preliminary location as a first approximation of the centroid. A full CMT inversion is then conducted for centroid timing and location determination. Comparisons with Harvard and Global CMT solutions highlight the robustness of W phase CMT solutions at teleseismic distances. The differences in Mw rarely exceed 0.2 and the source mechanisms are very similar to one another. Difficulties arise when a target earthquake is shortly (e.g. within 10 hr) preceded by another large earthquake, which disturbs the

  1. Modified Mercalli Intensities (MMI) for some earthquakes in eastern North America (ENA) and empirical MMI site corrections for towns in ENA

    USGS Publications Warehouse

    Bakun, W.H.; Johnston, A.C.; Hopper, M.G.

    2002-01-01

    Modified Mercalli Intensity (MMI) assignments for earthquakes in eastern North America (ENA) were used by Bakun et al. (submitted) to develop a model for eastern North America for estimating the location and moment magnitude M of earthquakes from MMI observations. MMI assignments for most of the earthquakes considered by Bakun et al. (submitted) are published. MMI assignments for 6 other earthquakes used by Bakun et al. (submitted) are listed in this report: November 18, 1755 near Cape Ann, Massachusetts; January 5, 1843 near Marked Tree, Arkansas; October 31, 1895 in southern Illinois; November 18, 1929 on the Grand Banks, Newfoundland; September 26, 1990 in southeast Missouri; and May 4, 1991 near Risco, Missouri. MMI empirical site corrections developed and used by Bakun et al. (submitted) are also listed in this report.

  2. PAGER--Rapid assessment of an earthquake?s impact

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M.

    2010-01-01

    PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts--which were formerly sent based only on event magnitude and location, or population exposure to shaking--now will also be generated based on the estimated range of fatalities and economic losses.

  3. Earthquake scaling laws for rupture geometry and slip heterogeneity

    NASA Astrophysics Data System (ADS)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  4. Analysis of Seismotektonic Patterns in Sumatra Region Based on the Focal Mechanism of Earthquake Period 1976-2016

    NASA Astrophysics Data System (ADS)

    Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.

    2018-04-01

    Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.

  5. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe

    2017-01-01

    A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic

  6. Characteristics of broadband slow earthquakes explained by a Brownian model

    NASA Astrophysics Data System (ADS)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic

  7. Focal mechanisms and moment magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field

    NASA Astrophysics Data System (ADS)

    Carvalho, Juraci; Barros, Lucas Vieira; Zahradník, Jiří

    2016-11-01

    This paper documents an investigation on the use of full waveform inversion to retrieve focal mechanisms of 11 micro-earthquakes (Mw 0.8 to 1.4). The events represent aftershocks of a 5.0 mb earthquake that occurred on October 8, 2010 close to the city of Mara Rosa in the state of Goiás, Brazil. The main contribution of the work lies in demonstrating the feasibility of waveform inversion of such weak events. The inversion was made possible thanks to recordings available at 8 temporary seismic stations in epicentral distances of less than 8 km, at which waveforms can be successfully modeled at relatively high frequencies (1.5-2.0 Hz). On average, the fault-plane solutions obtained are in agreement with a composite focal mechanism previously calculated from first-motion polarities. They also agree with the fault geometry inferred from precise relocation of the Mara Rosa aftershock sequence. The focal mechanisms provide an estimate of the local stress field. This paper serves as a pilot study for similar investigations in intraplate regions where the stress-field investigations are difficult due to rare earthquake occurrences, and where weak events must be studied with a detailed quality assessment.

  8. Order of magnitude smaller limit on the electric dipole moment of the electron.

    PubMed

    Baron, J; Campbell, W C; DeMille, D; Doyle, J M; Gabrielse, G; Gurevich, Y V; Hess, P W; Hutzler, N R; Kirilov, E; Kozyryev, I; O'Leary, B R; Panda, C D; Parsons, M F; Petrik, E S; Spaun, B; Vutha, A C; West, A D

    2014-01-17

    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d(e), in the range of 10(-27) to 10(-30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S(→)) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d(e) = (-2.1 ± 3.7stat ± 2.5syst) × 10(-29) e·cm. This corresponds to an upper limit of |d(e)| < 8.7 × 10(-29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

  9. Continuing Megathrust Earthquake Potential in northern Chile after the 2014 Iquique Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Herman, M. W.; Barnhart, W. D.; Furlong, K. P.; Riquelme, S.; Benz, H.; Bergman, E.; Barrientos, S. E.; Earle, P. S.; Samsonov, S. V.

    2014-12-01

    The seismic gap theory, which identifies regions of elevated hazard based on a lack of recent seismicity in comparison to other portions of a fault, has successfully explained past earthquakes and is useful for qualitatively describing where future large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which until recently had not ruptured in a megathrust earthquake since a M~8.8 event in 1877. On April 1 2014, a M 8.2 earthquake occurred within this northern Chile seismic gap, offshore of the city of Iquique; the size and spatial extent of the rupture indicate it was not the earthquake that had been anticipated. Here, we present a rapid assessment of the seismotectonics of the March-April 2014 seismic sequence offshore northern Chile, including analyses of earthquake (fore- and aftershock) relocations, moment tensors, finite fault models, moment deficit calculations, and cumulative Coulomb stress transfer calculations over the duration of the sequence. This ensemble of information allows us to place the current sequence within the context of historic seismicity in the region, and to assess areas of remaining and/or elevated hazard. Our results indicate that while accumulated strain has been released for a portion of the northern Chile seismic gap, significant sections have not ruptured in almost 150 years. These observations suggest that large-to-great sized megathrust earthquakes will occur north and south of the 2014 Iquique sequence sooner than might be expected had the 2014 events ruptured the entire seismic gap.

  10. Sensitivity to Regional Earthquake Triggering and Magnitude-Frequency Characteristics of Microseismicity Detected via Matched-Filter Analysis, Central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Townend, J.; Chamberlain, C. J.; Warren-Smith, E.

    2016-12-01

    Microseismicity recorded since 2008 by the Southern Alps Microseismicity Borehole Array (SAMBA) and other predominantly short-period seismic networks deployed in the central Southern Alps, New Zealand, reveals distinctive patterns of triggering in response to regional seismicity (magnitudes larger than 5, epicentral distances of 100-500 km). Using matched-filter detection methods implemented in the EQcorrscan package (Chamberlain et al., in prep.), we analyze microseismicity occurring in several geographically distinct swarms in order to examine the responses of specific microearthquake sources to earthquakes of different sizes occurring at different distances and azimuths. The swarms exhibit complex responses to regional seismicity which reveal that microearthquake triggering in these cases involves a combination of extrinsic factors (related to the dynamic stresses produced by the regional earthquake) and intrinsic factors (controlled by the local state of stress and possibly by hydrogeological processes). We find also that the microearthquakes detected by individual templates have Gutenberg-Richter magnitude-frequency characteristics. Since the detected events, by design, have very similar hypocentres and focal mechanisms, the observed scaling pertains to a restricted set of fault planes.

  11. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the

  12. Source Parameters and Rupture Directivities of Earthquakes Within the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Allen, A. A.; Chen, X.

    2017-12-01

    The Mendocino Triple Junction (MTJ), a region in the Cascadia subduction zone, produces a sizable amount of earthquakes each year. Direct observations of the rupture properties are difficult to achieve due to the small magnitudes of most of these earthquakes and lack of offshore observations. The Cascadia Initiative (CI) project provides opportunities to look at the earthquakes in detail. Here we look at the transform plate boundary fault located in the MTJ, and measure source parameters of Mw≥4 earthquakes from both time-domain deconvolution and spectral analysis using empirical Green's function (EGF) method. The second-moment method is used to infer rupture length, width, and rupture velocity from apparent source duration measured at different stations. Brune's source model is used to infer corner frequency and spectral complexity for stacked spectral ratio. EGFs are selected based on their location relative to the mainshock, as well as the magnitude difference compared to the mainshock. For the transform fault, we first look at the largest earthquake recorded during the Year 4 CI array, a Mw5.72 event that occurred in January of 2015, and select two EGFs, a Mw1.75 and a Mw1.73 located within 5 km of the mainshock. This earthquake is characterized with at least two sub-events, with total duration of about 0.3 second and rupture length of about 2.78 km. The earthquake is rupturing towards west along the transform fault, and both source durations and corner frequencies show strong azimuthal variations, with anti-correlation between duration and corner frequency. The stacked spectral ratio from multiple stations with the Mw1.73 EGF event shows deviation from pure Brune's source model following the definition from Uchide and Imanishi [2016], likely due to near-field recordings with rupture complexity. We will further analyze this earthquake using more EGF events to test the reliability and stability of the results, and further analyze three other Mw≥4 earthquakes

  13. Earthquakes, March-April, 1993

    USGS Publications Warehouse

    Person, Waverly J.

    1993-01-01

    Worldwide, only one major earthquake (7.0earthquake, a magnitude 7.2 shock, struck the Santa Cruz Islands region in the South Pacific on March 6. Earthquake-related deaths occurred in the Fiji Islands, China, and Peru.

  14. Geologic Evidence of Tsunamigenic Earthquakes from the Southern Part of the Japan Trench

    NASA Astrophysics Data System (ADS)

    Pilarczyk, J.; Sawai, Y.; Namegaya, Y.; Tamura, T.; Tanigawa, K.; Matsumoto, D.; Shinozaki, T.; Fujiwara, O.; Shishikura, M.; Shimada, Y.; Dura, T.; Horton, B.

    2017-12-01

    The northern and southern parts of the Japan Trench have generated earthquakes with moment magnitudes up to 8.0. Similarly, the middle part of the Japan Trench has historically generated tsunamigenic-earthquakes up to M 7.0. However, in 2011, the Tohoku-oki (M 9.0) event ruptured 500 km along the middle part of the Japan Trench and generated the largest known tsunami to have originated from this part of the subduction zone. Seismic models indicate that the Tohoku-oki earthquake may have transferred stress southwards down the fault to the potentially locked southern part of the Japan Trench. It is unknown if this transfer of stress could produce an earthquake and tsunami that would impact the metropolitan areas of east-central Japan in the near future that may be comparable in magnitude to the Tohoku-oki event. Here, we reconstruct the history of individual great earthquakes and accompanying tsunamis using geological records from the coastal zone adjacent to the southern part of the Japan Trench, providing an assessment of the seismic hazard for metropolitan areas in east-central Japan. In the Kujukuri strand plain, we found three anomalous marine sand layers intercalated within muddy peat, which can be traced 3.8 km inland and 50 km along the present Kujukuri coastline. Each sand layer has features consistent with tsunami deposits, such as a distinct erosional base, rip-up clasts, normal grading, and a mud drape. Preliminary radiocarbon dating suggests three tsunamis inundated the Kujukuri coastline over the last millennium.

  15. Identification of Deep Earthquakes

    DTIC Science & Technology

    2010-09-01

    discriminants that will reliably separate small, crustal earthquakes (magnitudes less than about 4 and depths less than about 40 to 50 km) from small...characteristics on discrimination plots designed to separate nuclear explosions from crustal earthquakes. Thus, reliably flagging these small, deep events is...Further, reliably identifying subcrustal earthquakes will allow us to eliminate deep events (previously misidentified as crustal earthquakes) from

  16. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    USGS Publications Warehouse

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the

  17. Development of an Empirical Local Magnitude Formula for Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Karimi, S.; Moores, A. O.

    2015-12-01

    In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.

  18. Source parameters of the 1999 Osa peninsula (Costa Rica) earthquake sequence from spectral ratios analysis

    NASA Astrophysics Data System (ADS)

    Verdecchia, A.; Harrington, R. M.; Kirkpatrick, J. D.

    2017-12-01

    Many observations suggest that duration and size scale in a self-similar way for most earthquakes. Deviations from the expected scaling would suggest that some physical feature on the fault surface influences the speed of rupture differently at different length scales. Determining whether differences in scaling exist between small and large earthquakes is complicated by the fact that duration estimates of small earthquakes are often distorted by travel-path and site effects. However, when carefully estimated, scaling relationships between earthquakes may provide important clues about fault geometry and the spatial scales over which it affects fault rupture speed. The Mw 6.9, 20 August 1999, Quepos earthquake occurred on the plate boundary thrust fault along southern Costa Rica margin where the subducting seafloor is cut by numerous normal faults. The mainshock and aftershock sequence were recorded by land and (partially by) ocean bottom (OBS) seismic arrays deployed as part of the CRSEIZE experiment. Here we investigate the size-duration scaling of the mainshock and relocated aftershocks on the plate boundary to determine if a change in scaling exists that is consistent with a change in fault surface geometry at a specific length scale. We use waveforms from 5 short-period land stations and 12 broadband OBS stations to estimate corner frequencies (the inverse of duration) and seismic moment for several aftershocks on the plate interface. We first use spectral amplitudes of single events to estimate corner frequencies and seismic moments. We then adopt a spectral ratio method to correct for non-source-related effects and refine the corner frequency estimation. For the spectral ratio approach, we use pairs of earthquakes with similar waveforms (correlation coefficient > 0.7), with waveform similarity implying event co-location. Preliminary results from single spectra show similar corner frequency values among events of 0.5 ≤ M ≤ 3.6, suggesting a decrease in

  19. Velocity model calibration as a tool to improve regional wave moment tensors: Application to the Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Ichinose, G. A.

    2006-12-01

    Many scientific issues for the Basin and Range Province (BRP) remain unsettled including structural evolution, strain rates, slip partitioning and earthquake source physics. A catalog of earthquake source parameters including locations and moment tensors is the basis for tectonic and geophysical study. New instrumentation from the Advance National Seismic System, EarthScope Plate Boundary Observatory, Bigfoot and US-Array brings the opportunity for high quality research; therefore, a catalog is an underlying foundation for examining the BRP. We are continuing to generate a moment tensor catalog for the BRP (Mw<3.5) using long-period regional waves spanning back to 1990. Iterative waveform inversion method (e.g., Nolet et al., 1986, Randell, 1994) is used to calibrate the BRP velocity and density structure using two northern and southern BRP earthquakes. The calibrated models generate realistic synthetics for (f<0.5Hz) with ~50-80% variance reduction. We averaged all path specific models to construct a 1-D BRP community background model. The crust is relatively simple between 5-20km (~6.12km/s) and there is a strong velocity gradient in the upper 5- km. There are lower velocities in the upper crust but higher velocities in the mid-crust for the Sierra Nevada paths relative to BRP. There is also a lower crust high-velocity anomaly near Battle Mountain and Elko that is faster by ~5% and may indicate a wider area of under-plating by basaltic magmas. There are significant low velocity zones in the upper and mid crust mainly across the Walker Lane Belt that may indicate the presence of fluids. We are continuing to work on assessing the performance of these newly calibrated models in improving the estimation of moment tensors down to lower magnitudes and mapping out holes in the seismic network which can be filled to improve moment tensor catalog. We also are looking at how these models work at locating earthquakes and comparing synthetics with those computed from models

  20. Fractals and Forecasting in Earthquakes and Finance

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.

    2011-12-01

    It is now recognized that Benoit Mandelbrot's fractals play a critical role in describing a vast range of physical and social phenomena. Here we focus on two systems, earthquakes and finance. Since 1942, earthquakes have been characterized by the Gutenberg-Richter magnitude-frequency relation, which in more recent times is often written as a moment-frequency power law. A similar relation can be shown to hold for financial markets. Moreover, a recent New York Times article, titled "A Richter Scale for the Markets" [1] summarized the emerging viewpoint that stock market crashes can be described with similar ideas as large and great earthquakes. The idea that stock market crashes can be related in any way to earthquake phenomena has its roots in Mandelbrot's 1963 work on speculative prices in commodities markets such as cotton [2]. He pointed out that Gaussian statistics did not account for the excessive number of booms and busts that characterize such markets. Here we show that both earthquakes and financial crashes can both be described by a common Landau-Ginzburg-type free energy model, involving the presence of a classical limit of stability, or spinodal. These metastable systems are characterized by fractal statistics near the spinodal. For earthquakes, the independent ("order") parameter is the slip deficit along a fault, whereas for the financial markets, it is financial leverage in place. For financial markets, asset values play the role of a free energy. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In the case of financial models, the probabilities are closely related to implied volatility, an important component of Black-Scholes models for stock valuations. [2] B. Mandelbrot, The variation of certain speculative prices, J. Business, 36, 294 (1963)

  1. The Maupin, Oregon Earthquake Swarm

    NASA Astrophysics Data System (ADS)

    Braunmiller, J.; Williams, M.; Trehu, A. M.; Nabelek, J.

    2008-12-01

    The area near Maupin, Oregon has experienced over 300 earthquakes since December 2006. The events, located by the Pacific Northwest Seismic Network (PNSN), occurred ~10 km SE of the town in central Oregon and ~50 km E-SE of Mount Hood. The temporal event pattern and lack of a distinct main shock are characteristic of an earthquake swarm with the event-size distribution indicating a low b-value similar to other non-volcanic swarms. Locations show a NW-SE trending, ~4x3 km cluster at apparent depths of 12-24 km. The largest events (Mw=3.8 and 3.9) on March 1, 2007 and July 14, 2008 occurred more than one year apart; 11 other events had a magnitude of 3 or greater. The larger events were felt locally. During the first 14 months EarthScope USArray seismic stations surrounded the swarm, providing a unique high-quality dataset. Waveform similarity at the closest USArray site G06A indicates hypocenters are much tighter than suggested by the PNSN distribution. Moment tensor inversion reveals nearly identical double- couple strike-slip mechanisms on a plane striking ~15° NW for the three largest 2007 events and the July 2008 event. The April 2008 Mw=3.3 event is rotated ~10° clockwise consistent with slight changes of G06A three-component waveforms relative to the other events. Preferred centroid depths are in the 15-20 km range. Historically, seismicity in the Pacific Northwest east of the Cascades is characterized by sporadic bursts of clustered seismicity with occasional M=6 earthquakes. The largest instrumentally recorded earthquake near Maupin (Mw=4.6) occurred 1976. An earlier swarm was observed 1987, but since then only ~2 events/yr occurred until the current swarm. In spite of recurrent seismicity, exposed surface rocks near Maupin are undeformed lava flows of the Columbia River Basalt Group and older John Day volcanics. The geologic map of Oregon shows a NW-trending dip slip fault near the epicenter area, inconsistent with moment tensor solutions. The cause for

  2. Improvement of real-time seismic magnitude estimation by combining seismic and geodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Rapid seismic magnitude assessment is a top priority for earthquake and tsunami early warning systems. For the largest earthquakes, seismic instrumentation tends to underestimate the magnitude, leading to an insufficient early warning, particularly in the case of tsunami evacuation orders. GPS instrumentation provides more accurate magnitude estimations using near-field stations, but isn't sensitive enough to detect the first seismic wave arrivals, thereby limiting solution speed. By optimally combining collocated seismic and GPS instruments, we demonstrate improved solution speed of earthquake magnitude for the largest seismic events. We present a real-time implementation of magnitude-scaling relations that adapts to consider the length of the recording, reflecting the observed evolution of ground motion with time.

  3. New approach to analysis of strongest earthquakes with upper-value magnitude in subduction zones and induced by them catastrophic tsunamis on examples of catastrophic events in 21 century

    NASA Astrophysics Data System (ADS)

    Garagash, I. A.; Lobkovsky, L. I.; Mazova, R. Kh.

    2012-04-01

    The study of generation of strongest earthquakes with upper-value magnitude (near above 9) and induced by them catastrophic tsunamis, is performed by authors on the basis of new approach to the generation process, occurring in subduction zones under earthquake. The necessity of performing of such studies is connected with recent 11 March 2011 catastrophic underwater earthquake close to north-east Japan coastline and following it catastrophic tsunami which had led to vast victims and colossal damage for Japan. The essential importance in this study is determined by unexpected for all specialists the strength of earthquake occurred (determined by magnitude M = 9), inducing strongest tsunami with wave height runup on the beach up to 10 meters. The elaborated by us model of interaction of ocean lithosphere with island-arc blocks in subduction zones, with taking into account of incomplete stress discharge at realization of seismic process and further accumulation of elastic energy, permits to explain arising of strongest mega-earthquakes, such as catastrophic earthquake with source in Japan deep-sea trench in March, 2011. In our model, the wide possibility for numerical simulation of dynamical behaviour of underwater seismic source is provided by kinematical model of seismic source as well as by elaborated by authors numerical program for calculation of tsunami wave generation by dynamical and kinematical seismic sources. The method obtained permits take into account the contribution of residual tectonic stress in lithosphere plates, leading to increase of earthquake energy, which is usually not taken into account up to date.

  4. Statiscal analysis of an earthquake-induced landslide distribution - The 1989 Loma Prieta, California event

    USGS Publications Warehouse

    Keefer, D.K.

    2000-01-01

    The 1989 Loma Prieta, California earthquake (moment magnitude, M=6.9) generated landslides throughout an area of about 15,000 km2 in central California. Most of these landslides occurred in an area of about 2000 km2 in the mountainous terrain around the epicenter, where they were mapped during field investigations immediately following the earthquake. The distribution of these landslides is investigated statistically, using regression and one-way analysisof variance (ANOVA) techniques to determine how the occurrence of landslides correlates with distance from the earthquake source, slope steepness, and rock type. The landslide concentration (defined as the number of landslide sources per unit area) has a strong inverse correlation with distance from the earthquake source and a strong positive correlation with slope steepness. The landslide concentration differs substantially among the various geologic units in the area. The differences correlate to some degree with differences in lithology and degree of induration, but this correlation is less clear, suggesting a more complex relationship between landslide occurrence and rock properties. ?? 2000 Elsevier Science B.V. All rights reserved.

  5. Characterization of Earthquake-Induced Ground Motion from the L'Aquila Seismic Sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, L.; Akinci, A.; Mayeda, K. M.; Munafo', I.; Herrmann, R. B.; Mercuri, A.

    2010-12-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data (Peak Ground Acceleration, PGA, Peak Ground Velocity, PGV, and Spectral Acceleration, SA) gathered during the Mw 6.15 L’Aquila earthquake (April 6, 2009, 01:32 UTC). The L’Aquila main-shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12,777 high-quality, high-gain waveforms with excellent S/N ratios (4,259 vertical, and 8,518 horizontal time histories). Seismograms were selected from the recordings of 170 fore-shocks and after-shocks of the sequence (the complete set of all earthquakes with ML ≥ 3.0, from October 1, 2008, to May 10, 2010). All waveforms were downloaded from the ISIDe web page (http://iside.rm.ingv.it/iside/standard/index.jsp), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L’Aquila sequence (2.8 ≤ Mw ≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-98 recently described by Malagnini et al. (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ~ 80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central

  6. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  7. The Pocatello Valley, Idaho, earthquake

    USGS Publications Warehouse

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  8. 2010 Chile Earthquake Aftershock Response

    NASA Astrophysics Data System (ADS)

    Barientos, Sergio

    2010-05-01

    The Mw=8.8 earthquake off the coast of Chile on 27 February 2010 is the 5th largest megathrust earthquake ever to be recorded and provides an unprecedented opportunity to advance our understanding of megathrust earthquakes and associated phenomena. The 2010 Chile earthquake ruptured the Concepcion-Constitucion segment of the Nazca/South America plate boundary, south of the Central Chile region and triggered a tsunami along the coast. Following the 2010 earthquake, a very energetic aftershock sequence is being observed in an area that is 600 km along strike from Valparaiso to 150 km south of Concepcion. Within the first three weeks there were over 260 aftershocks with magnitude 5.0 or greater and 18 with magnitude 6.0 or greater (NEIC, USGS). The Concepcion-Constitucion segment lies immediately north of the rupture zone associated with the great magnitude 9.5 Chile earthquake, and south of the 1906 and the 1985 Valparaiso earthquakes. The last great subduction earthquake in the region dates back to the February 1835 event described by Darwin (1871). Since 1835, part of the region was affected in the north by the Talca earthquake in December 1928, interpreted as a shallow dipping thrust event, and by the Chillan earthquake (Mw 7.9, January 1939), a slab-pull intermediate depth earthquake. For the last 30 years, geodetic studies in this area were consistent with a fully coupled elastic loading of the subduction interface at depth; this led to identify the area as a mature seismic gap with potential for an earthquake of magnitude of the order 8.5 or several earthquakes of lesser magnitude. What was less expected was the partial rupturing of the 1985 segment toward north. Today, the 2010 earthquake raises some disturbing questions: Why and how the rupture terminated where it did at the northern end? How did the 2010 earthquake load the adjacent segment to the north and did the 1985 earthquake only partially ruptured the plate interface leaving loaded asperities since

  9. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake

    NASA Astrophysics Data System (ADS)

    Sumy, Danielle F.; Neighbors, Corrie J.; Cochran, Elizabeth S.; Keranen, Katie M.

    2017-05-01

    In November 2011, three Mw ≥ 4.8 earthquakes and thousands of aftershocks occurred along the structurally complex Wilzetta fault system near Prague, Oklahoma. Previous studies suggest that wastewater injection induced a Mw 4.8 foreshock, which subsequently triggered a Mw 5.7 mainshock. We examine source properties of aftershocks with a standard Brune-type spectral model and jointly solve for seismic moment (M0), corner frequency (f0), and kappa (κ) with an iterative Gauss-Newton global downhill optimization method. We examine 934 earthquakes with initial moment magnitudes (Mw) between 0.33 and 4.99 based on the pseudospectral acceleration and recover reasonable M0, f0, and κ for 87 earthquakes with Mw 1.83-3.51 determined by spectral fit. We use M0 and f0 to estimate the Brune-type stress drop, assuming a circular fault and shear-wave velocity at the hypocentral depth of the event. Our observations suggest that stress drops range between 0.005 and 4.8 MPa with a median of 0.2 MPa (0.03-26.4 MPa with a median of 1.1 MPa for Madariaga-type), which is significantly lower than typical eastern United States intraplate events (>10 MPa). We find that stress drops correlate weakly with hypocentral depth and magnitude. Additionally, we find the stress drops increase with time after the mainshock, although temporal variation in stress drop is difficult to separate from spatial heterogeneity and changing event locations. The overall low median stress drop suggests that the fault segments may have been primed to fail as a result of high pore fluid pressures, likely related to nearby wastewater injection.

  10. Stochastic modelling of a large subduction interface earthquake in Wellington, New Zealand

    NASA Astrophysics Data System (ADS)

    Francois-Holden, C.; Zhao, J.

    2012-12-01

    The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. A potential cause of significant earthquake loss in the Wellington region is a large magnitude (perhaps 8+) "subduction earthquake" on the Australia-Pacific plate interface, which lies ~23 km beneath Wellington City. "It's Our Fault" is a project involving a comprehensive study of Wellington's earthquake risk. Its objective is to position Wellington city to become more resilient, through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. As part of the "It's Our Fault" project, we are working on estimating ground motions from potential large plate boundary earthquakes. We present the latest results on ground motion simulations in terms of response spectra and acceleration time histories. First we characterise the potential interface rupture area based on previous geodetically-derived estimates interface of slip deficit. Then, we entertain a suitable range of source parameters, including various rupture areas, moment magnitudes, stress drops, slip distributions and rupture propagation directions. Our comprehensive study also includes simulations from historical large world subduction events translated into the New Zealand subduction context, such as the 2003 M8.3 Tokachi-Oki Japan earthquake and the M8.8 2010 Chili earthquake. To model synthetic seismograms and the corresponding response spectra we employed the EXSIM code developed by Atkinson et al. (2009), with a regional attenuation model based on the 3D attenuation model for the lower North-Island which has been developed by Eberhart-Phillips et al. (2005). The resulting rupture scenarios all produce long duration shaking, and peak ground

  11. ESO Helps Antofagasta Region after the Earthquake

    NASA Astrophysics Data System (ADS)

    2007-11-01

    On November 14 at 12:41 local time, a major earthquake with magnitude 7.7 on the Richter scale affected the north of Chile. The epicentre was located 35 km from the city of Tocopilla and 170 km of Antofagasta. Two persons died and tens were injured, while buildings were damaged in several cities. In the Maria Elena-Tocopilla area, several thousand homes were destroyed or damaged. In an act of solidarity with the local community and its authorities, ESO immediately announced a donation of 30 millions Chilean pesos (around 40,000 euros) to Antofagasta's Regional Government to support reconstruction in the Region II. ESO and its staff have been shocked by the earthquake and its impact on local communities, especially on the people of Tocopilla. The ESO Representation in Chile formally contacted the regional authorities to explore with them possible ways to collaborate in this difficult moment. In addition, many of ESO staff are personally cooperating with the victims, under the coordination of Cruz Roja, the organisation currently in charge of implementing individual efforts.

  12. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake.

    PubMed

    Subarya, Cecep; Chlieh, Mohamed; Prawirodirdjo, Linette; Avouac, Jean-Philippe; Bock, Yehuda; Sieh, Kerry; Meltzner, Aron J; Natawidjaja, Danny H; McCaffrey, Robert

    2006-03-02

    The Sumatra-Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M(w) > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that approximately 30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M(w) = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M(w) = 8.7 Nias-Simeulue earthquake.

  13. Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.

    PubMed

    Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F

    2016-11-18

    Field investigations and seismic data show that the 16 April 2016 moment magnitude (M w ) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano. Copyright © 2016, American Association for the Advancement of Science.

  14. Systematic Observations of the Slip-pulse Properties of Large Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Hayes, G. P.

    2017-12-01

    In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of ruptures and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture, however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7-M9 processed in a uniform manner and show the magnitude scaling properties (rise time, pulse width, and peak slip rate) of these slip pulses indicates self-similarity. Self similarity suggests a weak form of rupture determinism, where early on in the source process broader, higher amplitude slip pulses will distinguish between events of icnreasing magnitude. Indeed, we find by analyzing the moment rate functions that large and very large events are statistically distinguishable relatively early (at 15 seconds) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.

  15. Analysis of the Seismicity Preceding Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Stallone, A.; Marzocchi, W.

    2016-12-01

    The most common earthquake forecasting models assume that the magnitude of the next earthquake is independent from the past. This feature is probably one of the most severe limitations of the capability to forecast large earthquakes.In this work, we investigate empirically on this specific aspect, exploring whether spatial-temporal variations in seismicity encode some information on the magnitude of the future earthquakes. For this purpose, and to verify the universality of the findings, we consider seismic catalogs covering quite different space-time-magnitude windows, such as the Alto Tiberina Near Fault Observatory (TABOO) catalogue, and the California and Japanese seismic catalog. Our method is inspired by the statistical methodology proposed by Zaliapin (2013) to distinguish triggered and background earthquakes, using the nearest-neighbor clustering analysis in a two-dimension plan defined by rescaled time and space. In particular, we generalize the metric based on the nearest-neighbor to a metric based on the k-nearest-neighbors clustering analysis that allows us to consider the overall space-time-magnitude distribution of k-earthquakes (k-foreshocks) which anticipate one target event (the mainshock); then we analyze the statistical properties of the clusters identified in this rescaled space. In essence, the main goal of this study is to verify if different classes of mainshock magnitudes are characterized by distinctive k-foreshocks distribution. The final step is to show how the findings of this work may (or not) improve the skill of existing earthquake forecasting models.

  16. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity

    NASA Astrophysics Data System (ADS)

    Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise

    2018-05-01

    Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z < 120 km) earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.

  17. Seismo-Lineament Analysis Method (SLAM) Applied to the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Worrell, V. E.; Cronin, V. S.

    2014-12-01

    We used the seismo-lineament analysis method (SLAM; http://bearspace.baylor.edu/Vince_Cronin/www/SLAM/) to "predict" the location of the fault that produced the M 6.0 South Napa earthquake of 24 August 2014, using hypocenter and focal mechanism data from NCEDC (http://www.ncedc.org/ncedc/catalog-search.html) and a digital elevation model from the USGS National Elevation Dataset (http://viewer.nationalmap.gov/viewer/). The ground-surface trace of the causative fault (i.e., the Browns Valley strand of the West Napa fault zone; Bryant, 2000, 1982) and virtually all of the ground-rupture sites reported by the USGS and California Geological Survey (http://www.eqclearinghouse.org/2014-08-24-south-napa/) were located within the north-striking seismo-lineament. We also used moment tensors published online by the USGS and GCMT (http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#scientific_moment-tensor) as inputs to SLAM and found that their northwest-striking seismo-lineaments correlated spatially with the causative fault. We concluded that SLAM could have been used as soon as these mechanism solutions were available to help direct the search for the trace of the causative fault and possible rupture-related damage. We then considered whether the seismogenic fault could have been identified using SLAM prior to the 24 August event, based on the focal mechanisms of smaller prior earthquakes reported by the NCEDC or ISC (http://www.isc.ac.uk). Seismo-lineaments from three M~3.5 events from 1990 and 2012, located in the Vallejo-Crockett area, correlate spatially with the Napa County Airport strand of the West Napa fault and extend along strike toward the Browns Valley strand (Bryant, 2000, 1982). Hence, we might have used focal mechanisms from smaller earthquakes to establish that the West Napa fault is likely seismogenic prior to the South Napa earthquake. Early recognition that a fault with a mapped ground-surface trace is seismogenic, based on smaller earthquakes

  18. The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016

    NASA Astrophysics Data System (ADS)

    Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen

    2017-04-01

    Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.

  19. Network sensitivity solutions for regional moment-tensor inversions

    DOE PAGES

    Ford, Sean R.; Dreger, Douglas S.; Walter, William R.

    2010-09-20

    Well-resolved moment-tensor solutions reveal information about the sources of seismic waves. In this paper,we introduce a newly of assessing confidence in the regional full moment-tensor inversion via the introduction of the network sensitivity solution (NSS). The NSS takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The NSS compares both a hypothetical pure source (for example, an explosion or an earthquake) and the actual data with several thousand sets of synthetic data from a uniform distribution of all possible sources. The comparison with a hypothetical pure source provides the theoretically best-constrained source-typemore » distribution for a given set of stations; and with it, one can determine whether further analysis with the data is warranted. The NSS that employs the actual data gives a direct comparison of all other source types with the best fit source. In this way, one can choose a threshold level of fit in which the solution is comfortably constrained. The method is tested for the well-recorded nuclear test, JUNCTION, at the Nevada Test Site. Sources that fit comparably well to a hypothetical pure explosion recorded with no noise at the JUNCTION data stations have a large volumetric component and are not described well by a double-couple (DC) source. The NSS using the real data from JUNCTION is even more tightly constrained to an explosion because the data contain some energy that precludes fitting with any type of deviator source. We also calculate the NSS for the October 2006 North Korea test and a nearby earthquake, where the station coverage is poor and the event magnitude is small. As a result, the earthquake solution is very well fit by a DC source, and the best-fit solution to the nuclear test (M w 4.1) is dominantly explosion.« less

  20. Prospective Evaluation of the Global Earthquake Activity Rate Model (GEAR1) Earthquake Forecast: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas

    2017-04-01

    The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.

  1. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    USGS Publications Warehouse

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  2. The 2007 Mentawai earthquake sequence on the Sumatra megathrust

    NASA Astrophysics Data System (ADS)

    Konca, A.; Avouac, J.; Sladen, A.; Meltzner, A. J.; Kositsky, A. P.; Sieh, K.; Fang, P.; Li, Z.; Galetzka, J.; Genrich, J.; Chlieh, M.; Natawidjaja, D. H.; Bock, Y.; Fielding, E. J.; Helmberger, D. V.

    2008-12-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. The most recent of these major earthquakes, an Mw 8.4 earthquake and an Mw 7.9 earthquake twelve hours later, occurred in the Mentawai islands area where devastating historical earthquakes had happened in 1797 and 1833. The 2007 earthquake sequence provides an exceptional opportunity to understand the variability of the earthquakes along megathrusts and their relation to interseismic coupling. The InSAR, GPS and teleseismic modeling shows that 2007 earthquakes ruptured a fraction of the strongly coupled Mentawai patch of the megathrust, which is also only a fraction of the 1833 rupture area. It also released a much smaller moment than the one released in 1833, or than the deficit of moment that has accumulated since. Both earthquakes of 2007 consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. Sunda megathrust earthquakes of recent years include a rupture of a strongly coupled patch that closely mimics a prior rupture of that patch and which is well correlated with the interseismic coupling pattern (Nias-Simeulue section), as well as a rupture sequence of a strongly coupled patch that differs substantially in the details from its most recent predecessors (Mentawai section). We conclude that (1) seismic asperities are probably persistent features which arise form heterogeneous strain build up in the interseismic period; and (2) the same portion of a megathrust can rupture in different ways depending on whether asperities break as isolated events or cooperate to produce

  3. Interevent times in a new alarm-based earthquake forecasting model

    NASA Astrophysics Data System (ADS)

    Talbi, Abdelhak; Nanjo, Kazuyoshi; Zhuang, Jiancang; Satake, Kenji; Hamdache, Mohamed

    2013-09-01

    This study introduces a new earthquake forecasting model that uses the moment ratio (MR) of the first to second order moments of earthquake interevent times as a precursory alarm index to forecast large earthquake events. This MR model is based on the idea that the MR is associated with anomalous long-term changes in background seismicity prior to large earthquake events. In a given region, the MR statistic is defined as the inverse of the index of dispersion or Fano factor, with MR values (or scores) providing a biased estimate of the relative regional frequency of background events, here termed the background fraction. To test the forecasting performance of this proposed MR model, a composite Japan-wide earthquake catalogue for the years between 679 and 2012 was compiled using the Japan Meteorological Agency catalogue for the period between 1923 and 2012, and the Utsu historical seismicity records between 679 and 1922. MR values were estimated by sampling interevent times from events with magnitude M ≥ 6 using an earthquake random sampling (ERS) algorithm developed during previous research. Three retrospective tests of M ≥ 7 target earthquakes were undertaken to evaluate the long-, intermediate- and short-term performance of MR forecasting, using mainly Molchan diagrams and optimal spatial maps obtained by minimizing forecasting error defined by miss and alarm rate addition. This testing indicates that the MR forecasting technique performs well at long-, intermediate- and short-term. The MR maps produced during long-term testing indicate significant alarm levels before 15 of the 18 shallow earthquakes within the testing region during the past two decades, with an alarm region covering about 20 per cent (alarm rate) of the testing region. The number of shallow events missed by forecasting was reduced by about 60 per cent after using the MR method instead of the relative intensity (RI) forecasting method. At short term, our model succeeded in forecasting the

  4. A surface-wave investigation of the rupture mechanism of the Gobi-Altai (4 December 1957) earthquake

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1975-01-01

    Long period records of multiple Love waves from the 1957 earthquake in Mongolia at Pasadena are analyzed and compared to synthetic seismograms, generated by the method of Kanamori. A fit in the time domain shows that the records are not consistent with the previous solution, achieved through a frequency domain analysis of directivity. The solution asks for a shorter rupture of 270 km at a velocity of 3.5 km/s. The focal parameters are constrained by updating all the reported first motion and are found to be: Strike = 103 deg, Dip = 53 deg, Slip = 32 deg. A seismic moment of 1.8 10 to the 28th power dynes-cm is obtained. These figures are also consistent with a time domain analysis of Love waves at Palisades and Strasbourg, and of Rayleigh waves at Pasadena, with a directivity study of Love waves at Pasadena, and with static deformation and isoseismal data. A discussion is given of the relation between moment, magnitude and rupture area, and a comparison is made with other events in the same region: It is concluded that this earthquake does not exhibit an intra-plate behavior, but rather compares better with inter-plate events, such as the great Assam earthquake.

  5. Current Development at the Southern California Earthquake Data Center (SCEDC)

    NASA Astrophysics Data System (ADS)

    Appel, V. L.; Clayton, R. W.

    2005-12-01

    Over the past year, the SCEDC completed or is near completion of three featured projects: Station Information System (SIS) Development: The SIS will provide users with an interface into complete and accurate station metadata for all current and historic data at the SCEDC. The goal of this project is to develop a system that can interact with a single database source to enter, update and retrieve station metadata easily and efficiently. The system will provide accurate station/channel information for active stations to the SCSN real-time processing system, as will as station/channel information for stations that have parametric data at the SCEDC i.e., for users retrieving data via STP. Additionally, the SIS will supply information required to generate dataless SEED and COSMOS V0 volumes and allow stations to be added to the system with a minimum, but incomplete set of information using predefined defaults that can be easily updated as more information becomes available. Finally, the system will facilitate statewide metadata exchange for both real-time processing and provide a common approach to CISN historic station metadata. Moment Tensor Solutions: The SCEDC is currently archiving and delivering Moment Magnitudes and Moment Tensor Solutions (MTS) produced by the SCSN in real-time and post-processing solutions for events spanning back to 1999. The automatic MTS runs on all local events with magnitudes > 3.0, and all regional events > 3.5. The distributed solution automatically creates links from all USGS Simpson Maps to a text e-mail summary solution, creates a .gif image of the solution, and updates the moment tensor database tables at the SCEDC. Searchable Scanned Waveforms Site: The Caltech Seismological Lab has made available 12,223 scanned images of pre-digital analog recordings of major earthquakes recorded in Southern California between 1962 and 1992 at http://www.data.scec.org/research/scans/. The SCEDC has developed a searchable web interface that allows

  6. Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2006-01-01

    The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.

  7. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  8. Coseismic and postseismic deformation due to the 2007 M5.5 Ghazaband fault earthquake, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Fattahi, H.; Amelung, F.; Chaussard, E.; Wdowinski, S.

    2015-05-01

    Time series analysis of interferometric synthetic aperture radar data reveals coseismic and postseismic surface displacements associated with the 2007 M5.5 earthquake along the southern Ghazaband fault, a major but little studied fault in Pakistan. Modeling indicates that the coseismic surface deformation was caused by ~9 cm of strike-slip displacement along a shallow subvertical fault. The earthquake was followed by at least 1 year of afterslip, releasing ~70% of the moment of the main event, equivalent to a M5.4 earthquake. This high aseismic relative to the seismic moment release is consistent with previous observations for moderate earthquakes (M < 6) and suggests that smaller earthquakes are associated with a higher aseismic relative to seismic moment release than larger earthquakes.

  9. Determination of source process and the tsunami simulation of the 2013 Santa Cruz earthquake

    NASA Astrophysics Data System (ADS)

    Park, S. C.; Lee, J. W.; Park, E.; Kim, S.

    2014-12-01

    In order to understand the characteristics of large tsunamigenic earthquakes, we analyzed the earthquake source process of the 2013 Santa Cruz earthquake and simulated the following tsunami. We first estimated the fault length of about 200 km using 3-day aftershock distribution and the source duration of about 110 seconds using the duration of high-frequency energy radiation (Hara, 2007). Moment magnitude was estimated to be 8.0 using the formula of Hara (2007). From the results of 200 km of fault length and 110 seconds of source duration, we used the initial value of rupture velocity as 1.8 km/s for teleseismic waveform inversions. Teleseismic body wave inversion was carried out using the inversion package by Kikuchi and Kanamori (1991). Teleseismic P waveform data from 14 stations were used and band-pass filter of 0.005 ~ 1 Hz was applied. Our best-fit solution indicated that the earthquake occurred on the northwesterly striking (strike = 305) and shallowly dipping (dip = 13) fault plane. Focal depth was determined to be 23 km indicating shallow event. Moment magnitude of 7.8 was obtained showing somewhat smaller than the result obtained above and that of previous study (Lay et al., 2013). Large slip area was seen around the hypocenter. Using the slip distribution obtained by teleseismic waveform inversion, we calculated the surface deformations using formulas of Okada (1985) assuming as the initial change of sea water by tsunami. Then tsunami simulation was carred out using Conell Multi-grid Coupled Tsunami Model (COMCOT) code and 1 min-grid topographic data for water depth from the General Bathymetric Chart of the Ocenas (GEBCO). According to the tsunami simulation, most of tsunami waves propagated to the directions of southwest and northeast which are perpendicular to the fault strike. DART buoy data were used to verify our simulation. In the presentation, we will discuss more details on the results of source process and tsunami simulation and compare them

  10. Earthquakes, September-October 1993

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    The fatalities in the United States were caused by two earthquakes in southern Oregon on September 21. These earthquakes, both with magnitude 6.0 and separated in time by about 2 hrs, led to the deaths of two people. One of these deaths was apparently due to a heart attack induced by the earthquake

  11. Testing hypotheses of earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.

    2003-12-01

    We present a relatively straightforward likelihood method for testing those earthquake hypotheses that can be stated as vectors of earthquake rate density in defined bins of area, magnitude, and time. We illustrate the method as it will be applied to the Regional Earthquake Likelihood Models (RELM) project of the Southern California Earthquake Center (SCEC). Several earthquake forecast models are being developed as part of this project, and additional contributed forecasts are welcome. Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. We would test models in pairs, requiring that both forecasts in a pair be defined over the same set of bins. Thus we offer a standard "menu" of bins and ground rules to encourage standardization. One menu category includes five-year forecasts of magnitude 5.0 and larger. Forecasts would be in the form of a vector of yearly earthquake rates on a 0.05 degree grid at the beginning of the test. Focal mechanism forecasts, when available, would be also be archived and used in the tests. The five-year forecast category may be appropriate for testing hypotheses of stress shadows from large earthquakes. Interim progress will be evaluated yearly, but final conclusions would be made on the basis of cumulative five-year performance. The second category includes forecasts of earthquakes above magnitude 4.0 on a 0.05 degree grid, evaluated and renewed daily. Final evaluation would be based on cumulative performance over five years. Other types of forecasts with different magnitude, space, and time sampling are welcome and will be tested against other models with shared characteristics. All earthquakes would be counted, and no attempt made to separate foreshocks, main shocks, and aftershocks. Earthquakes would be considered as point sources located at the hypocenter. For each pair of forecasts, we plan to compute alpha, the probability that the first would be wrongly rejected in favor of

  12. Earthquakes, July-August 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There was one major earthquake during this reporting period-a magnitude 7.1 shock off the coast of Northern California on August 17. Earthquake-related deaths were reported from Indonesia, Romania, Peru, and Iraq. 

  13. Analysis of Magnitude Correlations in a Self-Similar model of Seismicity

    NASA Astrophysics Data System (ADS)

    Zambrano, A.; Joern, D.

    2017-12-01

    A recent model of seismicity that incorporates a self-similar Omori-Utsu relation, which is used to describe the temporal evolution of earthquake triggering, has been shown to provide a more accurate description of seismicity in Southern California when compared to epidemic type aftershock sequence models. Forecasting of earthquakes is an active research area where one of the debated points is whether magnitude correlations of earthquakes exist within real world seismic data. Prior to this work, the analysis of magnitude correlations of the aforementioned self-similar model had not been addressed. Here we present statistical properties of the magnitude correlations for the self-similar model along with an analytical analysis of the branching ratio and criticality parameters.

  14. Security Implications of Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Jha, B.; Rao, A.

    2016-12-01

    The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.

  15. Seismicity map tools for earthquake studies

    NASA Astrophysics Data System (ADS)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  16. Centroid moment tensor catalogue using a 3-D continental scale Earth model: Application to earthquakes in Papua New Guinea and the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Hejrani, Babak; Tkalčić, Hrvoje; Fichtner, Andreas

    2017-07-01

    Although both earthquake mechanism and 3-D Earth structure contribute to the seismic wavefield, the latter is usually assumed to be layered in source studies, which may limit the quality of the source estimate. To overcome this limitation, we implement a method that takes advantage of a 3-D heterogeneous Earth model, recently developed for the Australasian region. We calculate centroid moment tensors (CMTs) for earthquakes in Papua New Guinea (PNG) and the Solomon Islands. Our method is based on a library of Green's functions for each source-station pair for selected Geoscience Australia and Global Seismic Network stations in the region, and distributed on a 3-D grid covering the seismicity down to 50 km depth. For the calculation of Green's functions, we utilize a spectral-element method for the solution of the seismic wave equation. Seismic moment tensors were calculated using least squares inversion, and the 3-D location of the centroid is found by grid search. Through several synthetic tests, we confirm a trade-off between the location and the correct input moment tensor components when using a 1-D Earth model to invert synthetics produced in a 3-D heterogeneous Earth. Our CMT catalogue for PNG in comparison to the global CMT shows a meaningful increase in the double-couple percentage (up to 70%). Another significant difference that we observe is in the mechanism of events with depth shallower then 15 km and Mw < 6, which contributes to accurate tectonic interpretation of the region.

  17. Exploring Interactions Between Subduction Zone Earthquakes and Volcanic Activity in the South Central Alaskan Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lanagan, K. M.; Richardson, E.

    2012-12-01

    Although great earthquakes such as the recent moment-magnitude (M) 9 Tohoku-Oki earthquake have been shown to trigger remote seismicity in volcanoes, the extent to which subduction zone earthquakes can trigger shallow seismic swarms at volcanoes is largely unexplored. Unknowns in this relationship include the upper limit of distance, the lower limit of magnitude, the upper time limit between events, and the effects of rupture directivity. We searched the Advanced National Seismic System earthquake catalog from 1989 - 2011 for correlations in space and time between M > 5.0 earthquakes in the south central Alaskan subduction zone (between 58.5°N and 62.5°N, and 150.7°W and 154.7°W) and volcanic activity at Mt. Redoubt, Mt. Iliamna, and Mt. Spurr volcanoes. There are 48 earthquakes M > 5 in this catalog; five of these are M > 6. The depths of the 48 M>5 events range from 49km to 220km, and they are all between 100km and 350km of the three volcanoes. Preliminary analysis of our catalog shows that four of the five M > 6 earthquakes are followed by a volcanic earthquake swarm at either Redoubt or Spurr within 100 days, and three of them are followed by a volcanic earthquake swarm within a month. None of these events correlated in space and time with swarms at Mt. Iliamna. We are also searching for swarms and moderate earthquakes occurring in time windows far removed from each other. The likeliest case of remotely triggered seismicity in our search area to date occurred on January 24 2009, when a magnitude 5.8 earthquake beneath the Kenai Peninsula at 59.4°N, 152.8°W, and 95km depth was immediately followed by an increase of volcanic activity at Mt. Redoubt approximately 153km away. The first swarm began on Jan 25 2009. On Jan 30 2009, volcanologists at the Alaskan Volcano observatory determined the increased volcanic seismicity was indicative of an impending eruption. Mt. Redoubt erupted on March 15 2009. Proposed mechanisms for triggering of volcanoes by

  18. Full Moment Tensor Analysis Using First Motion Data at The Geysers Geothermal Field

    NASA Astrophysics Data System (ADS)

    Boyd, O.; Dreger, D. S.; Lai, V. H.; Gritto, R.

    2012-12-01

    Seismicity associated with geothermal energy production at The Geysers Geothermal Field in northern California has been increasing during the last forty years. We investigate source models of over fifty earthquakes with magnitudes ranging from Mw 3.5 up to Mw 4.5. We invert three-component, complete waveform data from broadband stations of the Berkeley Digital Seismic Network, the Northern California Seismic Network and the USA Array deployment (2005-2007) for the complete, six-element moment tensor. Some solutions are double-couple while others have substantial non-double-couple components. To assess the stability and significance of non-double-couple components, we use a suite of diagnostic tools including the F-test, Jackknife test, bootstrap and network sensitivity solution (NSS). The full moment tensor solutions of the studied events tend to plot in the upper half of the Hudson source type diagram where the fundamental source types include +CLVD, +LVD, tensile-crack, DC and explosion. Using the F-test to compare the goodness-of-fit values between the full and deviatoric moment tensor solutions, most of the full moment tensor solutions do not show a statistically significant improvement in fit over the deviatoric solutions. Because a small isotropic component may not significantly improve the fit, we include first motion polarity data to better constrain the full moment tensor solutions.

  19. Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes

    NASA Astrophysics Data System (ADS)

    El-Isa, Z. H.; Eaton, David W.

    2014-03-01

    Interpretation of the b-value of earthquake frequency-magnitude distributions has received considerable attention in recent decades. This paper provides a comprehensive review of previous investigations of spatial and temporal variations in b-value, including their classification and possible causes. Based on least-squares regression of seismicity data compiled from the NEIC, IRIS and ISC catalogs, we find an average value of 1.02 ± 0.03 for the whole Earth and its two hemispheres, consistent with the general view that in seismically active regions the long-term average value is close to unity. Nevertheless, wide-ranging b-variations (0.3 ≤ b ≤ 2.5) have been reported in the literature. This variability has been interpreted to arise from one or more of the following factors: prevailing stress state, crustal heterogeneity, focal depth, pore pressure, geothermal gradient, tectonic setting, petrological/environmental/geophysical characteristics, clustering of events, incomplete catalog data, and/or method of calculation. Excluding the latter, all of these factors appear to be linked, directly or indirectly, with the effective state of stress. Although time-dependent changes in b-value are well documented, conflicting observations reveal either a precursory increase or decrease in b value before major earthquakes. Our compilation of published analyses suggests that statistically significant b-variations occur globally on various timescales, including annual, monthly and perhaps diurnal. Taken together, our review suggests that b-variations are most plausibly linked with changes in effective stress.

  20. Earthquake Source Parameter Estimates for the Charlevoix and Western Quebec Seismic Zones in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Onwuemeka, J.; Liu, Y.; Harrington, R. M.; Peña-Castro, A. F.; Rodriguez Padilla, A. M.; Darbyshire, F. A.

    2017-12-01

    The Charlevoix Seismic Zone (CSZ), located in eastern Canada, experiences a high rate of intraplate earthquakes, hosting more than six M >6 events since the 17th century. The seismicity rate is similarly high in the Western Quebec seismic zone (WQSZ) where an MN 5.2 event was reported on May 17, 2013. A good understanding of seismicity and its relation to the St-Lawrence paleorift system requires information about event source properties, such as static stress drop and fault orientation (via focal mechanism solutions). In this study, we conduct a systematic estimate of event source parameters using 1) hypoDD to relocate event hypocenters, 2) spectral analysis to derive corner frequency, magnitude, and hence static stress drops, and 3) first arrival polarities to derive focal mechanism solutions of selected events. We use a combined dataset for 817 earthquakes cataloged between June 2012 and May 2017 from the Canadian National Seismograph Network (CNSN), and temporary deployments from the QM-III Earthscope FlexArray and McGill seismic networks. We first relocate 450 events using P and S-wave differential travel-times refined with waveform cross-correlation, and compute focal mechanism solutions for all events with impulsive P-wave arrivals at a minimum of 8 stations using the hybridMT moment tensor inversion algorithm. We then determine corner frequency and seismic moment values by fitting S-wave spectra on transverse components at all stations for all events. We choose the final corner frequency and moment values for each event using the median estimate at all stations. We use the corner frequency and moment estimates to calculate moment magnitudes, static stress-drop values and rupture radii, assuming a circular rupture model. We also investigate scaling relationships between parameters, directivity, and compute apparent source dimensions and source time functions of 15 M 2.4+ events from second-degree moment estimates. To the first-order, source dimension