Sample records for earthquake phenomenology atmospheric

  1. Land-Ocean-Atmospheric Coupling Associated with Earthquakes

    NASA Astrophysics Data System (ADS)

    Prasad, A. K.; Singh, R. P.; Kumar, S.; Cervone, G.; Kafatos, M.; Zlotnicki, J.

    2007-12-01

    Earthquakes are well known to occur along the plate boundaries and also on the stable shield. The recent studies have shown existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes. We have carried out detailed analysis of multi sensor data (optical and microwave remote) to show existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes with focal depth up to 30 km and magnitude greater than 5.5. Complimentary nature of various land, ocean and atmospheric parameters will be demonstrated in getting an early warning information about an impending earthquake.

  2. Prospective Validation of Pre-earthquake Atmospheric Signals and Their Potential for Short–term Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Lee, Lou; Liu, Tiger; Kafatos, Menas

    2015-04-01

    We are presenting the latest development in multi-sensors observations of short-term pre-earthquake phenomena preceding major earthquakes. Our challenge question is: "Whether such pre-earthquake atmospheric/ionospheric signals are significant and could be useful for early warning of large earthquakes?" To check the predictive potential of atmospheric pre-earthquake signals we have started to validate anomalous ionospheric / atmospheric signals in retrospective and prospective modes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (Satellite thermal infrared radiation (STIR), electron concentration in the ionosphere (GPS/TEC), radon/ion activities, air temperature and seismicity patterns) that were found to be associated with earthquakes. The science rationale for multidisciplinary analysis is based on concept Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) [Pulinets and Ouzounov, 2011], which explains the synergy of different geospace processes and anomalous variations, usually named short-term pre-earthquake anomalies. Our validation processes consist in two steps: (1) A continuous retrospective analysis preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009 (2) Prospective testing of STIR anomalies with potential for M5.5+ events. The retrospective tests (100+ major earthquakes, M>5.9, Taiwan and Japan) show STIR anomalous behavior before all of these events with false negatives close to zero. False alarm ratio for false positives is less then 25%. The initial prospective testing for STIR shows systematic appearance of anomalies in advance (1-30 days) to the M5.5+ events for Taiwan, Kamchatka-Sakhalin (Russia) and Japan. Our initial prospective results suggest that our approach show a systematic appearance of atmospheric anomalies, one to several days prior to the largest earthquakes That feature could be

  3. Data mining of atmospheric parameters associated with coastal earthquakes

    NASA Astrophysics Data System (ADS)

    Cervone, Guido

    Earthquakes are natural hazards that pose a serious threat to society and the environment. A single earthquake can claim thousands of lives, cause damages for billions of dollars, destroy natural landmarks and render large territories uninhabitable. Studying earthquakes and the processes that govern their occurrence, is of fundamental importance to protect lives, properties and the environment. Recent studies have shown that anomalous changes in land, ocean and atmospheric parameters occur prior to earthquakes. The present dissertation introduces an innovative methodology and its implementation to identify anomalous changes in atmospheric parameters associated with large coastal earthquakes. Possible geophysical mechanisms are discussed in view of the close interaction between the lithosphere, the hydrosphere and the atmosphere. The proposed methodology is a multi strategy data mining approach which combines wavelet transformations, evolutionary algorithms, and statistical analysis of atmospheric data to analyze possible precursory signals. One dimensional wavelet transformations and statistical tests are employed to identify significant singularities in the data, which may correspond to anomalous peaks due to the earthquake preparatory processes. Evolutionary algorithms and other localized search strategies are used to analyze the spatial and temporal continuity of the anomalies detected over a large area (about 2000 km2), to discriminate signals that are most likely associated with earthquakes from those due to other, mostly atmospheric, phenomena. Only statistically significant singularities occurring within a very short time of each other, and which tract a rigorous geometrical path related to the geological properties of the epicentral area, are considered to be associated with a seismic event. A program called CQuake was developed to implement and validate the proposed methodology. CQuake is a fully automated, real time semi-operational system, developed to

  4. Atmospheric Signals Associated with Major Earthquakes. A Multi-Sensor Approach. Chapter 9

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We are studying the possibility of a connection between atmospheric observation recorded by several ground and satellites as earthquakes precursors. Our main goal is to search for the existence and cause of physical phenomenon related to prior earthquake activity and to gain a better understanding of the physics of earthquake and earthquake cycles. The recent catastrophic earthquake in Japan in March 2011 has provided a renewed interest in the important question of the existence of precursory signals preceding strong earthquakes. We will demonstrate our approach based on integration and analysis of several atmospheric and environmental parameters that were found associated with earthquakes. These observations include: thermal infrared radiation, radon! ion activities; air temperature and humidity and a concentration of electrons in the ionosphere. We describe a possible physical link between atmospheric observations with earthquake precursors using the latest Lithosphere-Atmosphere-Ionosphere Coupling model, one of several paradigms used to explain our observations. Initial results for the period of2003-2009 are presented from our systematic hind-cast validation studies. We present our findings of multi-sensor atmospheric precursory signals for two major earthquakes in Japan, M6.7 Niigata-ken Chuetsu-oki of July16, 2007 and the latest M9.0 great Tohoku earthquakes of March 11,2011

  5. Multi-parameter Observations and Validation of Pre-earthquake Atmospheric Signals

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Hattori, K.; Mogi, T.; Kafatos, M.

    2014-12-01

    We are presenting the latest development in multi-sensors observations of short-term pre-earthquake phenomena preceding major earthquakes. We are exploring the potential of pre-seismic atmospheric and ionospheric signals to alert for large earthquakes. To achieve this, we start validating anomalous ionospheric /atmospheric signals in retrospective and prospective modes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (Satellite thermal infrared radiation (OLR), electron concentration in the ionosphere (GPS/TEC), VHF-bands radio waves, radon/ion activities, air temperature and seismicity patterns) that were found to be associated with earthquakes. The science rationale for multidisciplinary analysis is based on concept Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) [Pulinets and Ouzounov, 2011], which explains the synergy of different geospace processes and anomalous variations, usually named short-term pre-earthquake anomalies. Our validation processes consist in two steps: (1) A continuous retrospective analysis preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009 The retrospective tests (100+ major earthquakes, M>5.9, Taiwan and Japan) show OLR anomalous behavior before all of these events with no false negatives. False alarm ratio for false positives is less then 25%. (2) Prospective testing using multiple parameters with potential for M5.5+ events. The initial testing shows systematic appearance of atmospheric anomalies in advance (days) to the M5.5+ events for Taiwan and Japan (Honshu and Hokkaido areas). Our initial prospective results suggest that our approach show a systematic appearance of atmospheric anomalies, one to several days prior to the largest earthquakes That feature could be further studied and tested for advancing the multi-sensors detection of pre-earthquake atmospheric signals.

  6. Coseismic deformation observed with radar interferometry: Great earthquakes and atmospheric noise

    NASA Astrophysics Data System (ADS)

    Scott, Chelsea Phipps

    Spatially dense maps of coseismic deformation derived from Interferometric Synthetic Aperture Radar (InSAR) datasets result in valuable constraints on earthquake processes. The recent increase in the quantity of observations of coseismic deformation facilitates the examination of signals in many tectonic environments associated with earthquakes of varying magnitude. Efforts to place robust constraints on the evolution of the crustal stress field following great earthquakes often rely on knowledge of the earthquake location, the fault geometry, and the distribution of slip along the fault plane. Well-characterized uncertainties and biases strengthen the quality of inferred earthquake source parameters, particularly when the associated ground displacement signals are near the detection limit. Well-preserved geomorphic records of earthquakes offer additional insight into the mechanical behavior of the shallow crust and the kinematics of plate boundary systems. Together, geodetic and geologic observations of crustal deformation offer insight into the processes that drive seismic cycle deformation over a range of timescales. In this thesis, I examine several challenges associated with the inversion of earthquake source parameters from SAR data. Variations in atmospheric humidity, temperature, and pressure at the timing of SAR acquisitions result in spatially correlated phase delays that are challenging to distinguish from signals of real ground deformation. I characterize the impact of atmospheric noise on inferred earthquake source parameters following elevation-dependent atmospheric corrections. I analyze the spatial and temporal variations in the statistics of atmospheric noise from both reanalysis weather models and InSAR data itself. Using statistics that reflect the spatial heterogeneity of atmospheric characteristics, I examine parameter errors for several synthetic cases of fault slip on a basin-bounding normal fault. I show a decrease in uncertainty in fault

  7. Pre-earthquake signatures in atmosphere/ionosphere and their potential for short-term earthquake forecasting. Case studies for 2015

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Davidenko, Dmitry; Hernández-Pajares, Manuel; García-Rigo, Alberto; Petrrov, Leonid; Hatzopoulos, Nikolaos; Kafatos, Menas

    2016-04-01

    We are conducting validation studies on temporal-spatial pattern of pre-earthquake signatures in atmosphere and ionosphere associated with M>7 earthquakes in 2015. Our approach is based on the Lithosphere Atmosphere Ionosphere Coupling (LAIC) physical concept integrated with Multi-sensor-networking analysis (MSNA) of several non-correlated observations that can potentially yield predictive information. In this study we present two type of results: 1/ prospective testing of MSNA-LAIC for M7+ in 2015 and 2:/ retrospective analysis of temporal-spatial variations in atmosphere and ionosphere several days before the two M7.8 and M7.3 in Nepal and M8.3 Chile earthquakes. During the prospective test 18 earthquakes M>7 occurred worldwide, from which 15 were alerted in advance with the time lag between 2 up to 30 days and with different level of accuracy. The retrospective analysis included different physical parameters from space: Outgoing long-wavelength radiation (OLR obtained from NPOES, NASA/AQUA) on the top of the atmosphere, Atmospheric potential (ACP obtained from NASA assimilation models) and electron density variations in the ionosphere via GPS Total Electron Content (GPS/TEC). Concerning M7.8 in Nepal of April 24, rapid increase of OLR reached the maximum on April 21-22. GPS/TEC data indicate maximum value during April 22-24 periods. Strong negative TEC anomaly was detected in the crest of EIA (Equatorial Ionospheric Anomaly) on April 21st and strong positive on April 24th, 2015. For May 12 M7.3 aftershock similar pre- earthquake patterns in OLR and GPS/TEC were observed. Concerning the M8.3 Chile of Sept 16, the OLR strongest transient feature was observed of Sept 12. GPS/TEC analysis data confirm abnormal values on Sept 14. Also on the same day the degradation of EIA and disappearance of the crests of EIA as is characteristic for pre-dawn and early morning hours (11 LT) was observed. On Sept 16 co-seismic ionospheric signatures consistent with defined circular

  8. Atmospheric Baseline Monitoring Data Losses Due to the Samoa Earthquake

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Cunningham, M. C.; Vasel, B. A.; Butler, J. H.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates an Atmospheric Baseline Observatory at Cape Matatula on the north-eastern point of American Samoa, opened in 1973. The manned observatory conducts continuous measurements of a wide range of climate forcing and atmospheric composition data including greenhouse gas concentrations, solar radiation, CFC and HFC concentrations, aerosols and ozone as well as less frequent measurements of many other parameters. The onset of September 29, 2009 earthquake is clearly visible in the continuous data streams in a variety of ways. The station electrical generator came online when the Samoa power grid failed so instruments were powered during and subsequent to the earthquake. Some instruments ceased operation in a spurt of spurious data followed by silence. Other instruments just stopped sending data abruptly when the shaking from the earthquake broke a data or power links, or an integral part of the instrument was damaged. Others survived the shaking but were put out of calibration. Still others suffered damage after the earthquake as heaters ran uncontrolled or rotating shafts continued operating in a damaged environment grinding away until they seized up or chewed a new operating space. Some instruments operated as if there was no earthquake, others were brought back online within a few days. Many of the more complex (and in most cases, most expensive) instruments will be out of service, some for at least 6 months or more. This presentation will show these results and discuss the impact of the earthquake on long-term measurements of climate forcing agents and other critical climate measurements.

  9. Multi-Sensor Observations of Earthquake Related Atmospheric Signals over Major Geohazard Validation Sites

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Davindenko, D.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    We are conducting a scientific validation study involving multi-sensor observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several atmospheric and environmental parameters, which we found, are associated with the earthquakes, namely: thermal infrared radiation, outgoing long-wavelength radiation, ionospheric electron density, and atmospheric temperature and humidity. For first time we applied this approach to selected GEOSS sites prone to earthquakes or volcanoes. This provides a new opportunity to cross validate our results with the dense networks of in-situ and space measurements. We investigated two different seismic aspects, first the sites with recent large earthquakes, viz.- Tohoku-oki (M9, 2011, Japan) and Emilia region (M5.9, 2012,N. Italy). Our retrospective analysis of satellite data has shown the presence of anomalies in the atmosphere. Second, we did a retrospective analysis to check the re-occurrence of similar anomalous behavior in atmosphere/ionosphere over three regions with distinct geological settings and high seismicity: Taiwan, Japan and Kamchatka, which include 40 major earthquakes (M>5.9) for the period of 2005-2009. We found anomalous behavior before all of these events with no false negatives; false positives were less then 10%. Our initial results suggest that multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area that could be explained by a coupling between the observed physical parameters and earthquake preparation processes.

  10. Observing pre-earthquake features in the Earth atmosphere-ionosphere environment associated with 2017 Tehuantepec and Puebla earthquakes in Mexico

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Guiliani, G.; Hernandez-Pajares, M.; Garcia-Rigo, A.; Petrov, L.; Taylor, P. T.; Hatzopoulos, N.; Kafatos, M.

    2017-12-01

    We are presenting a multi parameter study of lithosphere/atmosphere /ionosphere transient phenomena observed in advance of the M8.2 Tehuantepec and M7.1Puebla earthquakes, the largest and most damaging earthquakes ever recorded in Mexico. We are collecting data from four instruments which recorded hourly and daily: 1.Ground Radon variations (Gamma network in Southern CA) ; 2. Outgoing long-wavelength radiation (OLR obtained from NPOES) on the top of the atmosphere (TOA), 3. Atmospheric chemical potential (ACP) obtained from NASA assimilation models and 4. Electron density variations in the ionosphere via GPS Total Electron Content (GPS/TEC). The September M8.2 earthquake was situated about 3200 kilometers south of two-radon monitoring stations in Orange, Southern California. Real time hourly data show a sharp increase on both sensors (160 kilometers apart) on Sept 2 ( 6 days prior to the M8.2 of 09.08.2017 ) and second anomaly appeared again on Sept 11 ( 7 days prior to the M7.1 of 09.19.2017). Those increases in radon coincide (with some delay) with an increase in the atmospheric chemical potential (on Sept. 03 and10 respectively) measured near the epicentral area from satellite data. And subsequently at the end of August there was an increase of infrared radiation observed which was associated with the acceleration of OLR at the TOA observed from NOAA polar orbit satellites reaching a maximum near the epicenter on Sept 5 and Sept 17. The GPS/Total Electron Content data indicated an increase of electron concentration in ionosphere on Sep 7 and Sep 18, 1-2 days before both earthquakes. Before the earthquake ground and satellite data both show a synergetic anomalous trend, a week before the M8.2 Tehuantepec of 09.08.2017 and continuously up to the Puebla earthquake(M7.1 of 09.19.2017) , although the radon variations were observed far from both epicentral areas. We examined the possible correlation between different pre-earthquake signals in the frame of a

  11. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model - An Unified Concept for Earthquake Precursors Validation

    NASA Technical Reports Server (NTRS)

    Pulinets, S.; Ouzounov, D.

    2010-01-01

    The paper presents a conception of complex multidisciplinary approach to the problem of clarification the nature of short-term earthquake precursors observed in atmosphere, atmospheric electricity and in ionosphere and magnetosphere. Our approach is based on the most fundamental principles of tectonics giving understanding that earthquake is an ultimate result of relative movement of tectonic plates and blocks of different sizes. Different kind of gases: methane, helium, hydrogen, and carbon dioxide leaking from the crust can serve as carrier gases for radon including underwater seismically active faults. Radon action on atmospheric gases is similar to the cosmic rays effects in upper layers of atmosphere: it is the air ionization and formation by ions the nucleus of water condensation. Condensation of water vapor is accompanied by the latent heat exhalation is the main cause for observing atmospheric thermal anomalies. Formation of large ion clusters changes the conductivity of boundary layer of atmosphere and parameters of the global electric circuit over the active tectonic faults. Variations of atmospheric electricity are the main source of ionospheric anomalies over seismically active areas. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model can explain most of these events as a synergy between different ground surface, atmosphere and ionosphere processes and anomalous variations which are usually named as short-term earthquake precursors. A newly developed approach of Interdisciplinary Space-Terrestrial Framework (ISTF) can provide also a verification of these precursory processes in seismically active regions. The main outcome of this paper is the unified concept for systematic validation of different types of earthquake precursors united by physical basis in one common theory.

  12. Validating of Atmospheric Signals Associated with some of the Major Earthquakes in Asia (2003-2009)

    NASA Technical Reports Server (NTRS)

    Ouzounov, D. P.; Pulinets, S.; Liu, J. Y.; Hattori, K.; Oarritm N,; Taylor, P. T.

    2010-01-01

    The recent catastrophic earthquake in Haiti (January 2010) has provided and renewed interest in the important question of the existence of precursory signals related to strong earthquakes. Latest studies (VESTO workshop in Japan 2009) have shown that there were precursory atmospheric signals observed on the ground and in space associated with several recent earthquakes. The major question, still widely debated in the scientific community is whether such signals systematically precede major earthquakes. To address this problem we have started to validate the anomalous atmospheric signals during the occurrence of large earthquakes. Our approach is based on integration analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, Radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. We performed hind-cast detection over three different regions with high seismicity Taiwan, Japan and Kamchatka for the period of 2003-2009. We are using existing thermal satellite data (Aqua and POES); in situ atmospheric data (NOAA/NCEP); and ionospheric variability data (GPS/TEC and DEMETER). The first part of this validation included 42 major earthquakes (M greater than 5.9): 10 events in Taiwan, 15 events in Japan, 15 events in Kamchatka and four most recent events for M8.0 Wenchuan earthquake (May 2008) in China and M7.9 Samoa earthquakes (Sep 2009). Our initial results suggest a systematic appearance of atmospheric anomalies near the epicentral area, 1 to 5 days prior to the largest earthquakes, that could be explained by a coupling process between the observed physical parameters, and the earthquake preparation processes.

  13. Earth-Atmospheric Coupling During Strong Earthquakes by Analyzing MODIS Data

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Williams, Robin G.; Freund, Friedemann

    2001-01-01

    Interactions between the Earth and the atmosphere during major earthquakes (M greater than 5) are the subject of this investigation. Recently a mechanism has been proposed predicting the build-up of positive ground potentials prior to strong earthquake activity. Connected phenomena include: transient conductivity of rocks, injection of currents, possibly also electromagnetic emission and light emission from high points at the surface of the Earth. To understand this process we analyze vertical atmospheric profiles, land surface and brightness (temperature) data, using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite launched in December 1999. MODIS covers the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km). Using MODIS data we look for correlations between the atmospheric dynamics and solid Earth processes for the January 2001 strong earthquakes in San Salvador and India. As part of the build-up of positive grounds potential, an IR luminescence is predicted to occur in the 8-12 micrometer band. We use the MODIS data to differentiate between true "thermal" signals and IR luminescence. Indeed, on the basis of a temporal and spatial distribution analysis, a thermal anomaly pattern is found that appears to be related to the seismic activity. Aerosol content and atmospheric instability parameters also change when ground charges build up causing ion emission and leading to a thin aerosol layer over land. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index. Anomalous trends have been identified in few days prior to the main shocks. The significance of this observation should be explored further using other data sets.

  14. Temporal-Spatial Pattern of Pre-earthquake Signatures in Atmosphere and Ionosphere Associated with Major Earthquakes in Greece.

    NASA Astrophysics Data System (ADS)

    Calderon, I. S.; Ouzounov, D.; Anagnostopoulos, G. C.; Pulinets, S. A.; Davidenko, D.; Karastathis, V. K.; Kafatos, M.

    2015-12-01

    We are conducting validation studies on atmosphere/ionosphere phenomena preceding major earthquakes in Greece in the last decade and in particular the largest (M6.9) earthquakes that occurred on May 24, 2014 in the Aegean Sea and on February 14, 2008 in South West Peloponisos (Methoni). Our approach is based on monitoring simultaneously a series of different physical parameters from space: Outgoing long-wavelength radiation (OLR) on the top of the atmosphere, electron and electron density variations in the ionosphere via GPS Total Electron Content (GPS/TEC), and ULF radiation and radiation belt electron precipitation (RBEP) accompanied by VLF wave activity into the topside ionosphere. In particular, we analyzed prospectively and retrospectively the temporal and spatial variations of various parameters characterizing the state of the atmosphere and ionosphere several days before the two M6.9 earthquakes. Concerning the Methoni EQ, DEMETER data confirm an almost standard profile before large EQs, with TEC, ULF, VLF and RBEP activity preceding some (four) days the EQ occurrence and silence the day of EQ; furthermore, during the period before the EQ, a progressive concentration of ULF emission centers around the future epicenter was confirmed. Concerning the recent Greek EQ of May 24, 2014, thermal anomaly was discovered 30 days and TEC anomaly 38 hours in advance accordingly. The spatial characteristics of pre-earthquake anomalous behavior were associated with the epicentral region. Our analysis of simultaneous space measurements before the great EQs suggests that they follow a general temporal-spatial pattern, which has been seen in other large EQs worldwide.

  15. Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes

    NASA Astrophysics Data System (ADS)

    Mahmood, Irfan; Iqbal, Muhammad Farooq; Shahzad, Muhammad Imran; Qaiser, Saddam

    2017-02-01

    The earthquake precursors' anomalies at diverse elevation ranges over the seismogenic region and prior to the seismic events are perceived using Satellite Remote Sensing (SRS) techniques and reanalysis datasets. In the current research, seismic precursors are obtained by analyzing anomalies in Outgoing Longwave Radiation (OLR), Air Temperature (AT), and Relative Humidity (RH) before the two strong Mw>7 earthquakes in Pakistan occurred on 8th October 2005 in Azad Jammu Kashmir with Mw 7.6, and 24th September 2013 in Awaran, Balochistan with Mw 7.7. Multi-parameter data were computed based on multi-year background data for anomalies computation. Results indicate significant transient variations in observed parameters before the main event. Detailed analysis suggests presence of pre-seismic activities one to three weeks prior to the main earthquake event that vanishes after the event. These anomalies are due to increase in temperature after release of gases and physical and chemical interactions on earth surface before the earthquake. The parameter variations behavior for both Kashmir and Awaran earthquake events are similar to other earthquakes in different regions of the world. This study suggests that energy release is not concentrated to a single fault but instead is released along the fault zone. The influence of earthquake events on lightning were also investigated and it was concluded that there is a significant atmospheric lightning activity after the earthquake suggesting a strong possibility for an earthquake induced thunderstorm. This study is valuable for identifying earthquake precursors especially in earthquake prone areas.

  16. Validation of Atmosphere/Ionosphere Signals Associated with Major Earthquakes by Multi-Instrument Space-Borne and Ground Observations

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Parrot, Michel; Liu, J. Y.; Yang, T. F.; Arellano-Baeza, Alonso; Kafatos, M.; Taylor, Patrick

    2012-01-01

    The latest catastrophic earthquake in Japan (March 2011) has renewed interest in the important question of the existence of pre-earthquake anomalous signals related to strong earthquakes. Recent studies have shown that there were precursory atmospheric/ionospheric signals observed in space associated with major earthquakes. The critical question, still widely debated in the scientific community, is whether such ionospheric/atmospheric signals systematically precede large earthquakes. To address this problem we have started to investigate anomalous ionospheric / atmospheric signals occurring prior to large earthquakes. We are studying the Earth's atmospheric electromagnetic environment by developing a multisensor model for monitoring the signals related to active tectonic faulting and earthquake processes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, lineament analysis, radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. A physical link between these parameters and earthquake processes has been provided by the recent version of Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model. Our experimental measurements have supported the new theoretical estimates of LAIC hypothesis for an increase in the surface latent heat flux, integrated variability of outgoing long wave radiation (OLR) and anomalous variations of the total electron content (TEC) registered over the epicenters. Some of the major earthquakes are accompanied by an intensification of gas migration to the surface, thermodynamic and hydrodynamic processes of transformation of latent heat into thermal energy and with vertical transport of charged aerosols in the lower atmosphere. These processes lead to the generation of external electric currents in specific

  17. Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Freund, F.; Ouzounov, D.

    2001-12-01

    Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.

  18. Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila

    2015-04-01

    Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss

  19. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Tsybulya, Konstantin; Davidenko, Dimitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    The recent M9 Tohoku Japan earthquake of March 11, 2011 was the largest recorded earthquake ever to hit this nation. We retrospectively analyzed the temporal and spatial variations of four different physical parameters - outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit tomography and critical frequency foF2. These changes characterize the state of the atmosphere and ionosphere several days before the onset of this earthquake. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which return to normal after the main earthquake. We found a positive correlation between the atmospheric and ionospheric anomalies and the Tohoku earthquake. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  20. Atmospheric Gravity Waves (AGWs) as the driver of seismo-ionospheric coupling: recent major earthquakes of Nepal and Imphal - case study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    An important channel of the lithosphere-atmosphere-ionosphere coupling (LAIC) is the acoustic and gravity wave channel where the atmospheric gravity waves (AGW) play the most important part. Atmospheric waves are excited due to seismic gravitational vibrations before earthquakes and their effects on the atmosphere are the sources for seismo-ionospheric coupling which are manifested as perturbations in Very Low Frequency (VLF)/Low Frequency (LF) signal (amplitude/phase). For our study, we chose the recent major earthquakes that took place in Nepal and Imphal. The Nepal earthquake occurred on 12th May, 2015 at 12:50 pm local time (07:05 UTC) with Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. The Imphal earthquake occurred on 4th January, 2016 at 4:35 am local time (23:05 UTC , 3rd January, UTC) with Richter scale magnitude of M = 6.7 and depth 55 km (34.2 miles). The data has been collected from Ionospheric and Earthquake Research Centre (IERC) of Indian Centre for Space Physics (ICSP) transmitted from JJI station of Japan. We performed both Fast Fourier Transform (FFT) and wavelet analysis on the VLF data for a couple of days before and after the major earthquakes. For both earthquakes, we observed wave like structures with periods of almost an hour before and after the earthquake day. The wave like oscillations after the earthquake may be due to the aftershock effects. We also observed that the amplitude of the wave like structures depends on the location of the epicenter between the transmitting and the receiving points and also on the depth of the earthquake.

  1. Anomalous changes in atmospheric radon concentration before and after the 2011 northern Wakayama Earthquake (Mj 5.5).

    PubMed

    Goto, Mikako; Yasuoka, Yumi; Nagahama, Hiroyuki; Muto, Jun; Omori, Yasutaka; Ihara, Hayato; Mukai, Takahiro

    2017-04-28

    A significant increase in atmospheric radon concentration was observed in the area around the epicentre before and after the occurrence of the shallow inland earthquake in the northern Wakayama Prefecture on 5 July 2011 (Mj 5.5, depth 7 km) in Japan. The seismic activity in the sampling site was evaluated to identify that this earthquake was the largest near the sampling site during the observation period. To determine whether this was an anomalous change, the atmospheric daily minimum radon concentration measured for a 13-year period was analysed. When the residual radon concentration values without the seasonal radon variation and the linear trend was > 3 standard deviations of the residual radon variation corresponding to the normal period, the values were deemed as anomalous. As a result, an anomalous increase in radon concentration was determined before and after the earthquake. In conclusion, anomalous change related to earthquakes with at least Mj 5.5 can be detected by monitoring atmospheric radon near the epicentre. © The Author 2016. Published by Oxford University Press.

  2. Study pre-earthquake features in the Earth atmosphere-ionosphere environment associated with 2016 Amatrice-Norcia (Central Italy) seismic sequence

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Giuliani, Gioacchino; Hernández-Pajares, Manuel; García-Rigo, Alberto

    2017-04-01

    The 2016 Amatrice-Norcia (Central Italy) seismic sequence (M6.3, M6.1 and M6.5), became one of the unusual and important modern earthquake events. Recent studies indicate (including April 6th 2009 Abruzzo earthquake) an enhanced coupling between the atmospheric boundary layer and the ionosphere, which have been proposed to be related with large (>M6) earthquakes. This relationship has been studied for the 2016 Central Italy sequence using an integrated set of observations of five physical and environmental parameters. We present observational data from January to November 2016 of five physical parameters- radon, seismicity, temperature of the atmosphere boundary layer, outgoing earth infrared radiation and GPS/TEC and their temporal and spatial variations several days before the onset of the Amatrice-Norcia earthquake sequence. The Aug 24 M6.2 foreshock was situated about 70 kilometers from the 2 stations of radon near L'Aquila. These data show an increase prior to the main earthquake beginning in July-August this enhancement of radon coincides (with some delay) with an increase in the atmospheric chemical potential (Aug 11) measured near the epicentral area from satellite. And subsequently from Aug12 there was an association with the acceleration of outgoing infrared radiation observed on the top of the atmosphere from EOS satellite (Aug 16). The GPS/Total Electron Content data indicate an increase of electron concentration in ionosphere on August 22 and October 26, 1-2 days before the M6.2 foreshock and the M6.5 main shock on Oct 30, 2016. Both ground and satellite data have in common that they were evident in about the last ten days before the M6.2 foreshock of Aug 24 and continuously up to the main shock of Oct 30, although the radon variations started 2 months earlier. We examined the possible correlation between different pre-earthquake signals in the frame of a multidisciplinary investigation of Lithosphere -Atmosphere -Ionosphere coupling concept.

  3. Statistical physics approach to earthquake occurrence and forecasting

    NASA Astrophysics Data System (ADS)

    de Arcangelis, Lucilla; Godano, Cataldo; Grasso, Jean Robert; Lippiello, Eugenio

    2016-04-01

    There is striking evidence that the dynamics of the Earth crust is controlled by a wide variety of mutually dependent mechanisms acting at different spatial and temporal scales. The interplay of these mechanisms produces instabilities in the stress field, leading to abrupt energy releases, i.e., earthquakes. As a consequence, the evolution towards instability before a single event is very difficult to monitor. On the other hand, collective behavior in stress transfer and relaxation within the Earth crust leads to emergent properties described by stable phenomenological laws for a population of many earthquakes in size, time and space domains. This observation has stimulated a statistical mechanics approach to earthquake occurrence, applying ideas and methods as scaling laws, universality, fractal dimension, renormalization group, to characterize the physics of earthquakes. In this review we first present a description of the phenomenological laws of earthquake occurrence which represent the frame of reference for a variety of statistical mechanical models, ranging from the spring-block to more complex fault models. Next, we discuss the problem of seismic forecasting in the general framework of stochastic processes, where seismic occurrence can be described as a branching process implementing space-time-energy correlations between earthquakes. In this context we show how correlations originate from dynamical scaling relations between time and energy, able to account for universality and provide a unifying description for the phenomenological power laws. Then we discuss how branching models can be implemented to forecast the temporal evolution of the earthquake occurrence probability and allow to discriminate among different physical mechanisms responsible for earthquake triggering. In particular, the forecasting problem will be presented in a rigorous mathematical framework, discussing the relevance of the processes acting at different temporal scales for different

  4. Space-borne Observations of Atmospheric Pre-Earthquake Signals in Seismically Active Areas: Case Study for Greece 2008-2009

    NASA Technical Reports Server (NTRS)

    Ouzounov, D. P.; Pulinets, S. A.; Davidenko, D. A.; Kafatos, M.; Taylor, P. T.

    2013-01-01

    We are conducting theoretical studies and practical validation of atm osphere/ionosphere phenomena preceding major earthquakes. Our approach is based on monitoring of two physical parameters from space: outgoi ng long-wavelength radiation (OLR) on the top of the atmosphere and e lectron and electron density variations in the ionosphere via GPS Tot al Electron Content (GPS/TEC). We retrospectively analyzed the temporal and spatial variations of OLR an GPS/TEC parameters characterizing the state of the atmosphere and ionosphere several days before four m ajor earthquakes (M>6) in Greece for 2008-2009: M6.9 of 02.12.08, M6. 2 02.20.08; M6.4 of 06.08.08 and M6.4 of 07.01.09.We found anomalous behavior before all of these events (over land and sea) over regions o f maximum stress. We expect that our analysis reveal the underlying p hysics of pre-earthquake signals associated with some of the largest earthquakes in Greece.

  5. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Multi-Instrument Space-Borne and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Romanov, Alexander; Tsbulya, Konstantin; Davidenko, Dmitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku Japan earthquake of March 11, 2011. Data include outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which returned to normal after the main earthquake The joined preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  6. In Brief: Earthquake, windstorm bills approved; Atmospheric map of nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-10-01

    The U.S. House of Representatives on 8 October unanimously approved legislation(H.R. 2608) to mitigate damage from earthquakes and windstorms. President Bush is expected to sign into law this bill which has been negotiated between the House and Senate. The European Space Agency's(ESA) Envisat satellite for environmental monitoring has produced a high-resolution global atmospheric map of nitrogen dioxide, the agency announced on 11 October.

  7. Intermediate-term earthquake prediction

    USGS Publications Warehouse

    Knopoff, L.

    1990-01-01

    The problems in predicting earthquakes have been attacked by phenomenological methods from pre-historic times to the present. The associations of presumed precursors with large earthquakes often have been remarked upon. the difficulty in identifying whether such correlations are due to some chance coincidence or are real precursors is that usually one notes the associations only in the relatively short time intervals before the large events. Only rarely, if ever, is notice taken of whether the presumed precursor is to be found in the rather long intervals that follow large earthquakes, or in fact is absent in these post-earthquake intervals. If there are enough examples, the presumed correlation fails as a precursor in the former case, while in the latter case the precursor would be verified. Unfortunately, the observer is usually not concerned with the 'uniteresting' intervals that have no large earthquakes

  8. TEC variations over the Mediterranean before and during the strong earthquake (M = 6.5) of 12th October 2013 in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Arabelos, D. N.; Vergos, G.; Spatalas, S. D.; Skordilis, M.

    In this paper, the total electron content (TEC) data from eight global positioning system (GPS) stations of the EUREF network, provided by IONOLAB (Turkey), were analyzed using discrete Fourier analysis to investigate the TEC variations over the Mediterranean before and during the strong earthquake of 12th October 2013, which occurred west of Crete, Greece. In accordance with the results of similar analyses in the area, the main conclusions of this study are the following: (a) TEC oscillations in a broad range of frequencies occur randomly over an area of several hundred km from the earthquake and (b) high frequency oscillations (f ⩾ 0.0003 Hz, periods T ⩽ 60 m) may point to the location of the earthquake with questionable accuracy. The fractal characteristics of the frequency distribution may point to the locus of the earthquake with higher accuracy. We conclude that the lithosphere-atmosphere-ionosphere coupling (LAIC) mechanism through acoustic or gravity waves could explain this phenomenology.

  9. Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.

    2012-01-01

    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct

  10. Atmospheric processes in reaction of Northern Sumatra Earthquake sequence Dec 2004-Apr 2005

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S.; Cervone, G.; Singh, R.; Taylor, P.

    2005-05-01

    This work describes our first results in analyzing data from different and independent sources ûemitted long-wavelength radiation (OLR), surface latent heat flux (SHLF) and GPS Total Electron Content (TEC) collected from ground based (GPS) and satellite TIR (thermal infra-red) data sources (NOAA/AVHRR, MODIS). We found atmosphere and ionosphere anomalies one week prior to both the Sumatra-Andaman Islands earthquake (Dec 26, 2004) and M 8.7 - Northern Sumatra, March 28, 2005. We analyzed 118 days of data from December 1, 2004 through April 1, 2005 for the area (0°-10°,north latitude and 90°-100° east longitude) which included 125 earthquakes with M>5.5. Recent analysis of the continuous OLR from the Earth surface indicates anomalous variations (on top of the atmosphere) prior to a number of medium to large earthquakes. In the case of M 9.0 - Sumatra-Andaman Islands event, compared to the reference fields for the months of December between 2001 and 2004, we found strongly OLR anomalous +80 W/m2 signals (two sigma) along the epicentral area on Dec 21, 2004 five days before the event. In the case of M8.7 March 28, 2005 anomalues signatures over the epicenter appears on March 26 is much weaker (only +20W/m2) and have a different topology. Anomalous values of SHLF associated with M9.0 - Sumatra-Andaman Islands were found on Dec 22, 2005 (SLHF +280Wm2) and less intensity on Mar 23, 2005 (SLHF +180Wm2). Ionospheric variations (GPS/TEC) associated with the Northern Sumatra events were determine by five Regional GPS network stations (COCO, BAKO, NTUS, HYDE and BAST2). For every station time series of the vertical TEC (VTEC) were computed together with correlation with the Dst index. On December 22, four days prior to the M9.0 quake GPS/TEC data reach the monthly maximum for COCO with minor DST activity. For the M 8.7-March 28 event, the increased values of GPS/TEC were observed during four days (March 22-25) in quiet geomagnetic background. Our results need additional

  11. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves (AGW) as precursory effects of May 2015 Nepal earthquakes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Sasmal, Sudipta; Chakrabarti, Sandip K.; Bhattacharya, Arnab

    2018-01-01

    Earthquake preparation processes may start 1-30 days before its actual occurrence. Measurements of outgoing longwave radiation (OLR) and detection of the presence of atmospheric gravity waves (AGW) in very low frequency (VLF) radio signals can be used as tools to identify such processes. We studied these signals monitored prior to a recent major earthquake that occurred in Nepal at southeast of Kodari on May 12, 2015 at 12:50 pm local time (07:05 UTC) with Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles). It was preceded by another major earthquake on April 25, 2015 with magnitude M = 7.9. First, to study the effects of seismic events on OLR, we used NOAA/IR daily (two degree gridded) data from April 16 to May 30, 2015 and followed the method of Eddy field calculation mean to find pre-seismic anomalies. We found singularities in Eddy field OLR curves around the earthquake epicenter starting 3 days prior to the earthquake days and disappearance of such singularities after the events. Such singularities can be associated with a large amount of energy released by the earthquakes. Second, we analyzed very low frequency (VLF) data recorded at Ionospheric and Earthquake Research Centre (IERC) of Indian Centre for Space Physics transmitted from JJI (22.2 kHz) station of Japan. We looked for the presence of atmospheric gravity waves in the ionosphere which can be considered as an important factor in finding seismo-ionospheric correlations. We performed both fast Fourier transform (FFT) and wavelet analysis on the signal and found significant presence of such waves (periods of almost 1 h) four days before the earthquake.

  12. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  13. Comparison of Regression Methods to Compute Atmospheric Pressure and Earth Tidal Coefficients in Water Level Associated with Wenchuan Earthquake of 12 May 2008

    NASA Astrophysics Data System (ADS)

    He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang

    2016-07-01

    The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.

  14. GPS Technologies as a Tool to Detect the Pre-Earthquake Signals Associated with Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Krankowski, A.; Hernandez-Pajares, M.; Liu, J. Y. G.; Hattori, K.; Davidenko, D.; Ouzounov, D.

    2015-12-01

    The existence of ionospheric anomalies before earthquakes is now widely accepted. These phenomena started to be considered by GPS community to mitigate the GPS signal degradation over the territories of the earthquake preparation. The question is still open if they could be useful for seismology and for short-term earthquake forecast. More than decade of intensive studies proved that ionospheric anomalies registered before earthquakes are initiated by processes in the boundary layer of atmosphere over earthquake preparation zone and are induced in the ionosphere by electromagnetic coupling through the Global Electric Circuit. Multiparameter approach based on the Lithosphere-Atmosphere-Ionosphere Coupling model demonstrated that earthquake forecast is possible only if we consider the final stage of earthquake preparation in the multidimensional space where every dimension is one from many precursors in ensemble, and they are synergistically connected. We demonstrate approaches developed in different countries (Russia, Taiwan, Japan, Spain, and Poland) within the framework of the ISSI and ESA projects) to identify the ionospheric precursors. They are also useful to determine the all three parameters necessary for the earthquake forecast: impending earthquake epicenter position, expectation time and magnitude. These parameters are calculated using different technologies of GPS signal processing: time series, correlation, spectral analysis, ionospheric tomography, wave propagation, etc. Obtained results from different teams demonstrate the high level of statistical significance and physical justification what gives us reason to suggest these methodologies for practical validation.

  15. The upper atmosphere layer height changes as a precursor of the Padang earthquake on 30 September 2009

    NASA Astrophysics Data System (ADS)

    Ednofri, Ednofri; Wu, Falin; Ahmed, Wasiu Akande; Zhao, Yan

    2017-09-01

    This research investigated the potential of the upper atmosphere layer height changes as precursor of the Padang Earthquake on 30 September 2009. We analyzed the occurrence of atmospheric gravity wave (AGW) in all-sky imager (ASI) images and h'F in ionosonde mounted on Kototabang (0.2°S, 100.3°E, -10.4° magnetic latitude) Indonesia from seven days before and after the earthquake and found that there was an unusual evening in h'F variation on 24 and 29 September 2009. A positive h'F deviation on 24 and 29 September 2009 are with a maximum value of 42 and 31.5. For both these dates, the maximum h'F value reached 234 km and 261 km at 00:30 LT and 20:30 LT with the median value of 192 km and 229.5 km, respectively. The increase in h'F on 24 September 2009 before the midnight was caused by encouragement from AGW observed at a wavelength of OH bands ( 86 km) that happened a few minutes earlier. While the increase in h'F on 29 September 2009, suspected to be caused by the emergence of the AGW, though it cannot be proven because ASI does not operate due to rainy weather over Kototabang. For Dst index during the month of September 2009, there is nothing worth under -50 nT, this means a change of altitude h'F six and one days before the earthquake is not caused by the influence of magnetic storm but caused by AGW resulting from the epicenter.

  16. Statistical tests of simple earthquake cycle models

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Evans, Eileen L.

    2016-12-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM < 4.0 × 1019 Pa s and ηM > 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  17. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    NASA Technical Reports Server (NTRS)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  18. Effects of strong earthquakes in variations of electrical and meteorological parameters of the near-surface atmosphere in Kamchatka region

    NASA Astrophysics Data System (ADS)

    Smirnov, S. E.; Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.

    2017-09-01

    The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1; January 30, 2016, M = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six-seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of "winter thunderstorm" conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.

  19. Statistical tests of simple earthquake cycle models

    USGS Publications Warehouse

    Devries, Phoebe M. R.; Evans, Eileen

    2016-01-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  20. The escaping "pneuma" - gas of ancient earthquake concepts in relation to animal, atmospheric and thermal precursors

    NASA Astrophysics Data System (ADS)

    Helmut, Tributsch

    2013-04-01

    The escaping "pneuma" - gas of ancient earthquake concepts in relation to animal, atmospheric and thermal precursors Helmut Tributsch Present affiliation: Carinthian University for Applied Sciences, Bio-mimetics program, Europastrasse 4, 9524 Villach, Austria, helmut.tributsch@alice.it Retired from: Free University Berlin, Institute for physical and theoretical chemistry, Takustr. 3, 14195 Berlin, Germany. For two thousand years ancient European and medieval (including islamic) natural philosophers have considered a dry, warm gas, the "pneuma" ( breath, exhalation), escaping from the earth, as precursor and trigger of earthquakes. Also in China an escaping gas or breath (the qi) was considered the cause of earthquake, first in a document from 780 BC. We know today that escaping gas is not causing earthquakes. But it may be that natural phenomena that supported such a pneuma-concept have again and again been observed. The unpolluted environment and the largely absence of distracting artificial stimuli may have allowed the recognition of distinct earthquake precursors, such as described by ancient observers: (1) the sun becomes veiled and has a dim appearance, turns reddish or dark (2) a narrow long stretched cloud becomes visible, like a line drawn by a ruler, (3) earthquakes preceded by a thin streak of cloud stretching over a wide space. (4) earthquakes in the morning sometimes preceded by a still and a strong frost, (5) a surf - line of the air sea is forming (near the horizon). The described phenomena may be interpreted as a kind of smog forming above the ground prior to an earthquake, a smog exhaled from the ground, which is triggering water condensation, releasing latent heat, changing visibility, temperature, heat conduction and radiation properties. This could perfectly match the phenomenon, which is at the origin of satellite monitored temperature anomalies preceding earthquakes. Based on a few examples it will be shown that the time window of temperature

  1. Transient Effects in Atmosphere and Ionosphere preceding the two 2015 M7.8 and M7.3 Earthquakes in Nepal

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Hernandez-Pajares, M.; Alberto Garcia Rigo, A. G.; Davidenko, D.; Hatzopoulos, N.; Kafatos, M.

    2015-12-01

    The recent M7.8 Nepal earthquake of April 25, 2015 was the largest recorded earthquake event to hit this nation since 1934. We prospectively and retrospectively analyzed the transient variations of three different physical parameters - outgoing earth radiation (OLR), GPS/TEC and the thermodynamic proprieties in the lower atmosphere. These changes characterize the state of the atmosphere and ionosphere several days before the onset of this earthquake. Our preliminary results show that in mid March 2015 a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly near the epicenter reached the maximum on April 21-22. The ongoing analysis of satellite radiation revealed another transient anomaly on May 3th, probably associated with the M7.3 of May 12, 2015. The analysis of air temperature form ground stations show similar patterns of rapid increases offset 1-2 days earlier to the satellite transient anomalies.The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value during April 22-24. We found a strong negative TEC anomaly in the crest of EIA (Equatorial Ionospheric Anomaly) on April 21st and strong positive on April 24th, 2015. Our results show strong ionospheric effects not only in the changes of the EIA intensity but also within the latitudinal movements of the crests of EIA.

  2. Chapter two: Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering

    USGS Publications Warehouse

    Geist, Eric L.

    2012-01-01

    Observations related to tsunami catalogs are reviewed and described in a phenomenological framework. An examination of scaling relationships between earthquake size (as expressed by scalar seismic moment and mean slip) and tsunami size (as expressed by mean and maximum local run-up and maximum far-field amplitude) indicates that scaling is significant at the 95% confidence level, although there is uncertainty in how well earthquake size can predict tsunami size (R2 ~ 0.4-0.6). In examining tsunami event statistics, current methods used to estimate the size distribution of earthquakes and landslides and the inter-event time distribution of earthquakes are first reviewed. These methods are adapted to estimate the size and inter-event distribution of tsunamis at a particular recording station. Using a modified Pareto size distribution, the best-fit power-law exponents of tsunamis recorded at nine Pacific tide-gauge stations exhibit marked variation, in contrast to the approximately constant power-law exponent for inter-plate thrust earthquakes. With regard to the inter-event time distribution, significant temporal clustering of tsunami sources is demonstrated. For tsunami sources occurring in close proximity to other sources in both space and time, a physical triggering mechanism, such as static stress transfer, is a likely cause for the anomalous clustering. Mechanisms of earthquake-to-earthquake and earthquake-to-landslide triggering are reviewed. Finally, a modification of statistical branching models developed for earthquake triggering is introduced to describe triggering among tsunami sources.

  3. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  4. Sun-earth environment study to understand earthquake prediction

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2007-05-01

    Earthquake prediction is possible by looking into the location of active sunspots before it harbours energy towards earth. Earth is a restless planet the restlessness turns deadly occasionally. Of all natural hazards, earthquakes are the most feared. For centuries scientists working in seismically active regions have noted premonitory signals. Changes in thermosphere, Ionosphere, atmosphere and hydrosphere are noted before the changes in geosphere. The historical records talk of changes of the water level in wells, of strange weather, of ground-hugging fog, of unusual behaviour of animals (due to change in magnetic field of the earth) that seem to feel the approach of a major earthquake. With the advent of modern science and technology the understanding of these pre-earthquake signals has become stronger enough to develop a methodology of earthquake prediction. A correlation of earth directed coronal mass ejection (CME) from the active sunspots has been possible to develop as a precursor of the earthquake. Occasional local magnetic field and planetary indices (Kp values) changes in the lower atmosphere that is accompanied by the formation of haze and a reduction of moisture in the air. Large patches, often tens to hundreds of thousands of square kilometres in size, seen in night-time infrared satellite images where the land surface temperature seems to fluctuate rapidly. Perturbations in the ionosphere at 90 - 120 km altitude have been observed before the occurrence of earthquakes. These changes affect the transmission of radio waves and a radio black out has been observed due to CME. Another heliophysical parameter Electron flux (Eflux) has been monitored before the occurrence of the earthquakes. More than hundreds of case studies show that before the occurrence of the earthquakes the atmospheric temperature increases and suddenly drops before the occurrence of the earthquakes. These changes are being monitored by using Sun Observatory Heliospheric observatory

  5. Atmosphere: On the Phenomenology of "Atmospheric" Alterations in Schizophrenia - Overall Sense of Reality, Familiarity, Vitality, Meaning, or Relevance (Ancillary Article to EAWE Domain 5).

    PubMed

    Sass, Louis; Ratcliffe, Matthew

    2017-01-01

    "Atmospheric" alterations are key aspects of altered subjectivity in mental disorder. Karl Jaspers famously described the "delusional mood": a sense of uncanny salience and ominousness that often precedes the onset of schizophrenic psychosis or of delusions. Such experiences, he writes, involve "a transformation in our total awareness of reality" that often verges on ineffability. In psychiatry, these experiential alterations are often referred to in terms of "derealization." Though derealization most obviously refers to a decline in the sense of objective presence or felt actuality, it can also refer to other unusual experiences in which things seem unlike normal or standard reality, including altered familiarity, vitality, meaning, or relevance. This paper first describes two complementary ways of approaching these phenomena: the notion of an "ontological" dimension (Sass) and that of "existential feeling" (Ratcliffe). It then offers a wider-ranging synopsis of work in phenomenological psychopathology that has sought to address atmospheric alterations believed to be especially characteristic of schizophrenia spectrum conditions, focusing on the themes of a diminished sense of reality, altered sense of meaning, disrupted feeling of familiarity, and diminished vitality and relevance. © 2017 S. Karger AG, Basel.

  6. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  7. Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations

    NASA Astrophysics Data System (ADS)

    Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.

    2017-12-01

    Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a

  8. An interdisciplinary approach to study Pre-Earthquake processes

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Hattori, K.; Taylor, P. T.

    2017-12-01

    We will summarize a multi-year research effort on wide-ranging observations of pre-earthquake processes. Based on space and ground data we present some new results relevant to the existence of pre-earthquake signals. Over the past 15-20 years there has been a major revival of interest in pre-earthquake studies in Japan, Russia, China, EU, Taiwan and elsewhere. Recent large magnitude earthquakes in Asia and Europe have shown the importance of these various studies in the search for earthquake precursors either for forecasting or predictions. Some new results were obtained from modeling of the atmosphere-ionosphere connection and analyses of seismic records (foreshocks /aftershocks), geochemical, electromagnetic, and thermodynamic processes related to stress changes in the lithosphere, along with their statistical and physical validation. This cross - disciplinary approach could make an impact on our further understanding of the physics of earthquakes and the phenomena that precedes their energy release. We also present the potential impact of these interdisciplinary studies to earthquake predictability. A detail summary of our approach and that of several international researchers will be part of this session and will be subsequently published in a new AGU/Wiley volume. This book is part of the Geophysical Monograph series and is intended to show the variety of parameters seismic, atmospheric, geochemical and historical involved is this important field of research and will bring this knowledge and awareness to a broader geosciences community.

  9. Response of Water Levels in Devils Hole, Death Valley National Park, Nevada, to Atmospheric Loading, Earth Tides, and Earthquakes

    NASA Astrophysics Data System (ADS)

    Cutillo, P. A.; Ge, S.

    2004-12-01

    Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the

  10. GPS detection of ionospheric perturbations following the January 17, 1994, northridge earthquake

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard

    1995-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements produce pressure waves that propagate at infrasonic speeds in the atmosphere. At ionospheric altitudes low frequency acoustic waves are coupled to ionispheric gravity waves and induce variations in the ionoispheric electron density. Global Positioning System (GPS) data recorded in Southern California were used to compute ionospheric electron content time series for several days preceding and following the January 17, 1994, M(sub w) = 6.7 Northridge earthquake. An anomalous signal beginning several minutes after the earthquake with time delays that increase with distance from the epicenter was observed. The signal frequency and phase velocity are consistent with results from numerical models of atmospheric-ionospheric acoustic-gravity waves excited by seismic sources as well as previous electromagnetic sounding results. It is believed that these perturbations are caused by the ionospheric response to the strong ground displacement associated with the Northridge earthquake.

  11. Variation of nitric oxide concentration before the Kobe earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Ikeya, Motoji

    The variation and spatial distribution of the atmospheric concentration of nitric oxide (NO) near the epicenter of the Kobe earthquake at local time 5:46, 17 January 1995 have been studied using data at monitoring stations of the local environmental protection agencies. The concentration of NO 8 days before the earthquake was 199 ppb, about ten times larger than the average peak level of 19 ppb, accompanying the retrospectively reported precursory earthquake lightning, increase of radon concentration in well water and of the counts of electromagnetic (EM) signals. The reported thunderstorm over the Japan Sea about 150 km away was too far for the thunder-generated NO to reach the epicenter area. The concentration of NO was also found to have increased before other major earthquakes (Magnitude>5.0) in Japan. Atmospheric discharges by electric charges or EM waves before earthquakes may have generated NO. However, the generation of NO by human activities of fuel combustion soon after holidays is enormously high every year, which makes it difficult to clearly link the increase with the earthquakes. The increase soon after the earthquake due to traffic jams is clear. The concentration of NO should be monitored at a several sites away from human activities as background data of natural variation and to study its generation at a seismic area before a large earthquake.

  12. The enigmatic Bala earthquake of 1974

    NASA Astrophysics Data System (ADS)

    Musson, R. M. W.

    2006-10-01

    The earthquake that shook most of North Wales on the night of 23 January 1974 appears unremarkable from its entry in the UK earthquake catalogue. With a magnitude of 3.5 ML it represents the size of earthquake to be expected in the UK with a return period of about one year. However, the prominent atmospheric lights observed at the time of the shock led to speculation that an aircraft had crashed, and search-and-rescue teams were deployed. Since nothing was discovered, it was concluded that a meteorite was responsible; more imaginative members of the public decided (and still believe) that a UFO had crashed. In this paper the record of events is set out, and the nature of the earthquake is discussed with reference to its geological setting.

  13. Next Generation Transport Phenomenology Model

    NASA Technical Reports Server (NTRS)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  14. Planetary Surface-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  15. Earthquake precursory events around epicenters and local active faults

    NASA Astrophysics Data System (ADS)

    Valizadeh Alvan, H.; Mansor, S. B.; Haydari Azad, F.

    2013-05-01

    The chain of underground events which are triggered by seismic activities and physical/chemical interactions prior to a shake in the earth's crust may produce surface and above surface phenomena. During the past decades many researchers have been carried away to seek the possibility of short term earthquake prediction using remote sensing data. Currently, there are several theories about the preparation stages of earthquakes most of which stress on raises in heat and seismic waves as the main signs of an impending earthquakes. Their differences only lie in the secondary phenomena which are triggered by these events. In any case, with the recent advances in remote sensing sensors and techniques now we are able to provide wider, more accurate monitoring of land, ocean and atmosphere. Among all theoretical factors, changes in Surface Latent Heat Flux (SLHF), Sea & Land Surface Temperature (SST & LST) and surface chlorophyll-a are easier to record from earth observing satellites. SLHF is the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere. Abnormal variations in this factor have been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. In case of oceanic earthquakes, higher temperature at the ocean beds may lead to higher amount of Chl-a on the sea surface. On the other hand, it has been also said that the leak of Radon gas which occurs as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT). We have chosen to perform a statistical, long-term, and short-term approach by considering the reoccurrence intervals of past

  16. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    NASA Astrophysics Data System (ADS)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  17. "Phenomenology" and qualitative research methods.

    PubMed

    Nakayama, Y

    1994-01-01

    Phenomenology is generally based on phenomenological tradition from Husserl to Heidegger and Merleau-Ponty. As philosophical stances provide the assumptions in research methods, different philosophical stances produce different methods. However, the term "phenomenology" is used in various ways without the definition being given, such as phenomenological approach, phenomenological method, phenomenological research, etc. The term "phenomenology" is sometimes used as a paradigm and it is sometimes even viewed as synonymous with qualitative methods. As a result, the term "phenomenology" leads to conceptual confusions in qualitative research methods. The purpose of this paper is to examine the term "phenomenology" and explore philosophical assumptions, and discuss the relationship between philosophical stance and phenomenology as a qualitative research method in nursing.

  18. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Kafatos, M.; Napoletani, D.; Singh, R. P.

    2004-05-01

    Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF) data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.

  19. [Phenomenology and phenomenological method: their usefulness for nursing knowledge and practice].

    PubMed

    Vellone, E; Sinapi, N; Rastelli, D

    2000-01-01

    Phenomenology is a thought movement the main aim of which is to study human fenomena as they are experienced and lived. Key concepts of phenomenology are: the study of lived experience and subjectivity of human beings, the intentionality of consciousness, perception and interpretation. Phenomenological research method has nine steps: definition of the research topic; superficial literature searching; sample selection; gathering of lived experiences; analysis of lived experiences; written synthesis of lived experiences; validation of written synthesis; deep literature searching; writing of the scientific document. Phenomenology and phenomenological method are useful for nursing either to develop knowledge or to guide practice. Qualitative-phenomenological and quantitative-positivistic research are complementary: the first one guides clinicians towards a person-centered approach, the second one allows the manipulation of phenomena which can damage health, worsen illness or decrease the quality of life of people who rely on nursing care.

  20. The Jet Stream's Precursor of M7.7 Russia Earthquake on 2017/07/17

    NASA Astrophysics Data System (ADS)

    Wu, H. C.

    2017-12-01

    Before M>6.0 earthquakes occurred, jet stream in the epicenter area will interrupt or velocity flow lines cross. That meaning is that before earthquake happen, atmospheric pressure in high altitude suddenly dropped during 6 12 hours (Wu & Tikhonov, 2014; Wu et.al,2015). The 70 knots speed line in jet stream was crossed at the epicenter on 2017/07/13, and then M7.7 Russia earthquake happened on 2017/07/17. Lithosphere-atmosphere-ionosphere (LAI) coupling model may be explained this phenomenon : Ionization of the air produced by an increased emanation of radon at epicenter. The water molecules in the air react with these ions, and then release heat. The heat result in temperature rise and pressure drop in the air(Pulinets, Ouzounov, 2011), and then the speed line of jet stream was changed. ps.Russia earthquake:M7.7 2017-07-17 23:34:13 (UTC) 54.471°N 168.815°E 11.0 kmReference: H.C Wu, I.N. Tikhonov, 2014, "Jet streams anomalies as possible short-term precursors of earthquakes with M>6.0", Research in geophysics. H.C.Wu., Ivan N. Tikhonov, and Ariel R. Ćesped,2015, Multi-parametric analysis of earthquake precursors, Russ. J. Earth. Sci., 15, ES3002, doi:10.2205/2015ES000553 S Pulinets, D Ouzounov, 2011,"Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation", Journal of Asian Earth Sciences 41 (4), 371-382.

  1. Normal fault earthquakes or graviquakes

    PubMed Central

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  2. Testing new methodologies for short -term earthquake forecasting: Multi-parameters precursors

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Tramutoli, Valerio; Lee, Lou; Liu, Tiger; Hattori, Katsumi; Kafatos, Menas

    2014-05-01

    We are conducting real-time tests involving multi-parameter observations over different seismo-tectonics regions in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several selected parameters, namely: gas discharge; thermal infrared radiation; ionospheric electron density; and atmospheric temperature and humidity, which we believe are all associated with the earthquake preparation phase. We are testing a methodology capable to produce alerts in advance of major earthquakes (M > 5.5) in different regions of active earthquakes and volcanoes. During 2012-2013 we established a collaborative framework with PRE-EARTHQUAKE (EU) and iSTEP3 (Taiwan) projects for coordinated measurements and prospective validation over seven testing regions: Southern California (USA), Eastern Honshu (Japan), Italy, Greece, Turkey, Taiwan (ROC), Kamchatka and Sakhalin (Russia). The current experiment provided a "stress test" opportunity to validate the physical based earthquake precursor approach over regions of high seismicity. Our initial results are: (1) Real-time tests have shown the presence of anomalies in the atmosphere and ionosphere before most of the significant (M>5.5) earthquakes; (2) False positives exist and ratios are different for each region, varying between 50% for (Southern Italy), 35% (California) down to 25% (Taiwan, Kamchatka and Japan) with a significant reduction of false positives as soon as at least two geophysical parameters are contemporarily used; (3) Main problems remain related to the systematic collection and real-time integration of pre-earthquake observations. Our findings suggest that real-time testing of physically based pre-earthquake signals provides a short-term predictive power (in all three important parameters, namely location, time and magnitude) for the occurrence of major earthquakes in the tested regions and this result encourages testing to continue with a more detailed analysis of

  3. Conducting phenomenological research: Rationalizing the methods and rigour of the phenomenology of practice.

    PubMed

    Errasti-Ibarrondo, Begoña; Jordán, José Antonio; Díez-Del-Corral, Mercedes P; Arantzamendi, María

    2018-07-01

    To offer a complete outlook in a readable easy way of van Manen's hermeneutic-phenomenological method to nurses interested in undertaking phenomenological research. Phenomenology, as research methodology, involves a certain degree of complexity. It is difficult to identify a single article or author which sets out the didactic guidelines that specifically guide research of this kind. In this context, the theoretical-practical view of Max van Manen's Phenomenology of Practice may be seen as a rigorous guide and directive on which researchers may find support to undertake phenomenological research. Discussion paper. This discussion paper is based on our own experiences and supported by literature and theory. Our central sources of data have been the books and writings of Max van Manen and his website "Phenomenologyonline". The principal methods of the hermeneutic-phenomenological method are addressed and explained providing an enriching overview of phenomenology of practice. A proposal is made for the way the suggestions made by van Manen might be organized for use with the methods involved in Phenomenology of Practice: Social sciences, philosophical and philological methods. Thereby, nurse researchers interested in conducting phenomenological research may find a global outlook and support to understand and conduct this type of inquiry which draws on the art. The approach in this article may help nurse scholars and researchers reach an overall, encompassing perspective of the main methods and activities involved in doing phenomenological research. Nurses interested in doing phenomenology of practice are expected to commit with reflection and writing. © 2018 John Wiley & Sons Ltd.

  4. Space technologies for short-term earthquake warning

    NASA Astrophysics Data System (ADS)

    Pulinets, S.

    Recent theoretical and experimental studies explicitly demonstrated the ability of space technologies to identify and monitor the specific variations at near-earth space plasma, atmosphere and ground surface associated with approaching severe earthquakes (named as earthquake precursors) appearing several days (from 1 to 5) before the seismic shock over the seismically active areas. Several countries and private companies are in the stage of preparation (or already launched) the dedicated spacecrafts for monitoring of the earthquake precursors from space and for short-term earthquake prediction. The present paper intends to outline the optimal algorithm for creation of the space-borne system for the earthquake precursors monitoring and for short-term earthquake prediction. It takes into account the following considerations: Selection of the precursors in the terms of priority, taking into account their statistical and physical parameters Configuration of the spacecraft payload Configuration of the satellite constellation (orbit selection, satellite distribution, operation schedule) Proposal of different options (cheap microsatellite or comprehensive multisatellite constellation) Taking into account that the most promising are the ionospheric precursors of earthquakes, the special attention will be devoted to the radiophysical techniques of the ionosphere monitoring. The advantages and disadvantages of such technologies as vertical sounding, in-situ probes, ionosphere tomography, GPS TEC and GPS MET technologies will be considered.

  5. Space technologies for short-term earthquake warning

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.

    Recent theoretical and experimental studies explicitly demonstrated the ability of space technologies to identify and monitor the specific variations at near-earth space plasma, atmosphere and ground surface associated with approaching severe earthquakes (named as earthquake precursors) which appear several days (from 1 to 5) before the seismic shock over the seismically active areas. Several countries and private companies are in the stage of preparation (or already launched) the dedicated spacecrafts for monitoring of the earthquake precursors from space and for short-term earthquake prediction. The present paper intends to outline the optimal algorithm for creation of the space-borne system for the earthquake precursors monitoring and for short-term earthquake prediction. It takes into account the following: Selection of the precursors in the terms of priority, considering their statistical and physical parameters.Configuration of the spacecraft payload.Configuration of the satellite constellation (orbit selection, satellite distribution, operation schedule).Different options of the satellite systems (cheap microsatellite or comprehensive multisatellite constellation). Taking into account that the most promising are the ionospheric precursors of earthquakes, the special attention is devoted to the radiophysical techniques of the ionosphere monitoring. The advantages and disadvantages of such technologies as vertical sounding, in-situ probes, ionosphere tomography, GPS TEC and GPS MET technologies are considered.

  6. What makes a phenomenological study phenomenological? An analysis of peer-reviewed empirical nursing studies.

    PubMed

    Norlyk, Annelise; Harder, Ingegerd

    2010-03-01

    This article contributes to the debate about phenomenology as a research approach in nursing by providing a systematic review of what nurse researchers hold as phenomenology in published empirical studies. Based on the assumption that presentations of phenomenological approaches in peer-reviewed journals have consequences for the quality of future research, the aim was to analyze articles presenting phenomenological studies and, in light of the findings, raise a discussion about addressing scientific criteria. The analysis revealed considerable variations, ranging from brief to detailed descriptions of the stated phenomenological approach, and from inconsistencies to methodological clarity and rigor. Variations, apparent inconsistencies, and omissions made it unclear what makes a phenomenological study phenomenological. There is a need for clarifying how the principles of the phenomenological philosophy are implemented in a particular study before publishing. This should include an articulation of methodological keywords of the investigated phenomenon, and how an open attitude was adopted.

  7. Co-located ionospheric and geomagnetic disturbances caused by great earthquakes

    NASA Astrophysics Data System (ADS)

    Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo

    2016-07-01

    Despite primary energy disturbances from the Sun, oscillations of the Earth surface due to a large earthquake will couple with the atmosphere and therefore the ionosphere, to generate so-called coseismic ionospheric disturbances (CIDs). In the cases of 2008 Wenchuan and 2011 Tohoku earthquakes, infrasonic waves accompanying the propagation of seismic Rayleigh waves were observed in the ionosphere by a combination of techniques, total electron content, HF Doppler, and ground magnetometer. This is the very first report to present CIDs recorded by different techniques at co-located sites and profiled with regard to changes of both ionospheric plasma and current (geomagnetic field) simultaneously. Comparison between the oceanic (2011 Tohoku) and inland (2008 Wenchuan) earthquakes revealed that the main directional lobe of latter case is more distinct which is perpendicular to the direction of the fault rupture. We argue that the different fault slip (inland or submarine) may affect the way of couplings of lithosphere with atmosphere. Zhao, B., and Y. Hao (2015), Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit, J. Geophys. Res., doi:10.1002/2015JA021035. Hao, Y. Q., et al. (2013), Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake, J. Geophys. Res., doi:10.1002/jgra.50326. Hao, Y. Q., et al. (2012), Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake, J. Geophys. Res., doi:10.1029/2011JA017036.

  8. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.

    2015-07-01

    This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

  9. Urban atmospheres

    PubMed Central

    Gandy, Matthew

    2017-01-01

    What is an urban atmosphere? How can we differentiate an ‘atmosphere’ from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an ‘affective atmosphere’ as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres. PMID:29278257

  10. GPS, Earthquakes, the Ionosphere, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic waves induce variations of the ionospheric electron density. The Global Positioning System provides a way of directly measuring the Total Electron Content in the ionosphere and, therefore. of detecting such perturbations in the upper atmosphere. In this work, we demonstrate the capabilities of the GPS technique to detect ionospheric perturbations caused by the January 17. 1994, M (sub w) =6.7, Northridge earthquake and the STS-58 Space Shuttle ascent. In both cases, we observe a perturbation of the ionospheric electron density lasting for about 30 m, with periods less than 10 m. The perturbation is complex and shows two sub-events separated by about 15 m. The phase velocities and waveform characteristics of the two sub-events lead us to interpret the first arrival as the direct propagation of 2 free wave, followed by oscillatory guided waves propagating along horizontal atmospheric interfaces at 120 km altitude and below.

  11. Thermal Radiation Anomalies Associated with Major Earthquakes

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Kafatos, Menas C.; Taylor, Patrick

    2017-01-01

    Recent developments of remote sensing methods for Earth satellite data analysis contribute to our understanding of earthquake related thermal anomalies. It was realized that the thermal heat fluxes over areas of earthquake preparation is a result of air ionization by radon (and other gases) and consequent water vapor condensation on newly formed ions. Latent heat (LH) is released as a result of this process and leads to the formation of local thermal radiation anomalies (TRA) known as OLR (outgoing Longwave radiation, Ouzounov et al, 2007). We compare the LH energy, obtained by integrating surface latent heat flux (SLHF) over the area and time with released energies associated with these events. Extended studies of the TRA using the data from the most recent major earthquakes allowed establishing the main morphological features. It was also established that the TRA are the part of more complex chain of the short-term pre-earthquake generation, which is explained within the framework of a lithosphere-atmosphere coupling processes.

  12. Phenomenology as research method or substantive metaphysics? An overview of phenomenology's uses in nursing.

    PubMed

    Earle, Vicki

    2010-10-01

    In exploring phenomenological literature, it is evident that the term 'phenomenology' holds rather different meanings depending upon the context. Phenomenology has been described as both a philosophical movement and an approach to human science research. The phenomenology of Husserl, Heidegger, Gadamer, and Merleau-Ponty was philosophical in nature and not intended to provide rules or procedures for conducting research. The Canadian social scientist, van Manen, however, introduced specific guidelines for conducting human science research, which is rooted in hermeneutic phenomenology and this particular method has been employed in professional disciplines such as education, nursing, clinical psychology, and law. The purpose of this paper is to explore the difference between the phenomenological method as described by van Manen and that of other philosophers such as Husserl, Heidegger, Gadamer, and Merleau-Ponty. In so doing, the author aims to address the blurred boundaries of phenomenology as a research method and as a philosophical movement and highlight the influence of these blurred boundaries on nursing knowledge development.

  13. Phenomenology and homeopathy.

    PubMed

    Whitmarsh, Tom

    2013-07-01

    There is a great overlap between the way of seeing the world in clinical homeopathy and in the technical philosophical system known as phenomenology. A knowledge of phenomenologic principles reveals Hahnemann to have been an unwitting phenomenologist. The ideas of phenomenology as applied to medicine show that homeopathy is the ideal medical system to fulfill the goals of coming ever closer to true patient concerns and experience of illness. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  14. Phenomenology in Its Original Sense.

    PubMed

    van Manen, Max

    2017-05-01

    In this article, I try to think through the question, "What distinguishes phenomenology in its original sense?" My intent is to focus on the project and methodology of phenomenology in a manner that is not overly technical and that may help others to further elaborate on or question the singular features that make phenomenology into a unique qualitative form of inquiry. I pay special attention to the notion of "lived" in the phenomenological term "lived experience" to demonstrate its critical role and significance for understanding phenomenological reflection, meaning, analysis, and insights. I also attend to the kind of experiential material that is needed to focus on a genuine phenomenological question that should guide any specific research project. Heidegger, van den Berg, and Marion provide some poignant exemplars of the use of narrative "examples" in phenomenological explorations of the phenomena of "boredom," "conversation," and "the meaningful look in eye-contact." Only what is given or what gives itself in lived experience (or conscious awareness) are proper phenomenological "data" or "givens," but these givens are not to be confused with data material that can be coded, sorted, abstracted, and accordingly analyzed in some "systematic" manner. The latter approach to experiential research may be appropriate and worthwhile for various types of qualitative inquiry but not for phenomenology in its original sense. Finally, I use the mythical figure of Kairos to show that the famous phenomenological couplet of the epoché-reduction aims for phenomenological insights that require experiential analysis and attentive (but serendipitous) methodical inquiry practices.

  15. Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin

    2004-01-01

    We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.

  16. Multi-instrument observations of pre-earthquake transient signatures associated with 2015 M8.3 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Hernandez-Pajares, M.; Garcia-Rigo, A.; De Santis, A.; Pavón, J.; Liu, J. Y. G.; Chen, C. H.; Cheng, K. C.; Hattori, K.; Stepanova, M. V.; Romanova, N.; Hatzopoulos, N.; Kafatos, M.

    2016-12-01

    We are conducting multi parameter validation study on lithosphere/atmosphere /ionosphere transient phenomena preceding major earthquakes particularly for the case of M8.3 of Sept 16th, 2015 in Chile. Our approach is based on monitoring simultaneously a series of different physical parameters from space: 1/Outgoing long-wavelength radiation (OLR obtained from NOAA/AVHRR); 2/ electron and electron density variations in the ionosphere via GPS Total Electron Content (GPS/TEC), and 3/geomagnetic field and plasma density variation (Swarm); and from ground: 3/ GPS crustal deformation and 4/ground-based magnetometers. The time and location of main shock was prospectively alerted in advance using the Multi Sensor Networking Approach (MSNA-LAIC) approach. We analyzed retrospectively several physical observations characterizing the state of the lithosphere, atmosphere and ionosphere several days before, during and after the M8.3 earthquakes in Illapel. Our continuous satellite monitoring of long-wave (LW) data over Chile, shows a rapid increase of emitted radiation during the end of August 2015 and an anomaly in the atmosphere was detected at 19 LT on Sept 1st, 2015, over the water near to the epicenter. On Sept 2nd Swarm magnetic measurements show an anomalous signature over the epicentral region. GPS/TEC analysis revealed an anomaly on Sept 14th and on the same day the degradation of Equatorial Ionospheric Anomaly (EIA) and disappearance of the crests of EIA as is characteristic for pre-dawn and early morning hours (11 LT) was observed. On Sept 16th co-seismic ionospheric signatures consistent with defined circular acoustic-gravity wave and different shock-acoustic waves were also observed. GPS TEC and deformation studies were computed from 48 GPS stations (2013-2015) of National Seismological Center of Chile (CSN) GPS network. A transient signal of deformation has been observed a week in advance correlated with ground-based magnetometers ULF signal fluctuation from closest

  17. Connecting slow earthquakes to huge earthquakes.

    PubMed

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  18. Results of meteorological monitoring in Gorny Altai before and after the Chuya earthquake in 2003

    NASA Astrophysics Data System (ADS)

    Aptikaeva, O. I.; Shitov, A. V.

    2014-12-01

    We consider the dynamics of some meteorological parameters in Gorny Altai from 2000 to 2011. We analyzed the variations in the meteorological parameters related to the strong Chuya earthquake (September 27, 2003). A number of anomalies were revealed in the time series. Before this strong earthquake, the winter temperatures at the nearest meteorological station to the earthquake source increased by 8-10°C (by 2009 they returned to the mean values), while the air humidity in winter decreased. In the winter of 2002, we observed a long negative anomaly in the time series of the atmospheric pressure. At the same time, the decrease in the released seismic energy was replaced by the tendency to its increase. Using wavelet analysis we revealed the synchronism in the dynamics of the atmospheric parameters, variations in the solar and geomagnetic activities, and geodynamic processes. We also discuss the relationship of the atmospheric and geodynamic processes and the comfort conditions of the population in the climate analyzed here.

  19. Report on the Aseismic Slip, Tremor, and Earthquakes Workshop

    USGS Publications Warehouse

    Gomberg, Joan; Roeloffs, Evelyn; Trehu, Anne; Dragert, Herb; Meertens, Charles

    2008-01-01

    This report summarizes the discussions and information presented during the workshop on Aseismic Slip, Tremor, and Earthquakes. Workshop goals included improving coordination among those involved in conducting research related to these phenomena, assessing the implications for earthquake hazard assessment, and identifying ways to capitalize on the education and outreach opportunities presented by these phenomena. Research activities of focus included making, disseminating, and analyzing relevant measurements; the relationships among tremor, aseismic or 'slow-slip', and earthquakes; and discovering the underlying causative physical processes. More than 52 participants contributed to the workshop, held February 25-28, 2008 in Sidney, British Columbia. The workshop was sponsored by the U.S. Geological Survey, the National Science Foundation?s Earthscope Program and UNAVCO Consortium, and the Geological Survey of Canada. This report has five parts. In the first part, we integrate the information exchanged at the workshop as it relates to advancing our understanding of earthquake generation and hazard. In the second part, we summarize the ideas and concerns discussed in workshop working groups on Opportunities for Education and Outreach, Data and Instrumentation, User and Public Needs, and Research Coordination. The third part presents summaries of the oral presentations. The oral presentations are grouped as they were at the workshop in the categories of phenomenology, underlying physical processes, and implications for earthquake hazards. The fourth part contains the meeting program and the fifth part lists the workshop participants. References noted in parentheses refer to the authors of presentations made at the workshop, and published references are noted in square brackets and listed in the Reference section. Appendix A contains abstracts of all participant presentations and posters, which also have been posted online, along with presentations and author contact

  20. Monitoring the ionosphere during the earthquake on GPS data

    NASA Astrophysics Data System (ADS)

    Smirnov, V. M.; Smirnova, E. V.

    The problem of stability estimation of physical state of an atmosphere attracts a rapt attention of the world community but it is still far from being solved A lot of global atmospheric processes which have direct influence upon all forms of the earth life have been detected The comprehension of cause effect relations stipulating their origin and development is possible only on the basis of long-term sequences of observations data of time-space variations of the atmosphere characteristics which should be received on a global scale and in the interval of altitudes as brand as possible Such data can be obtained only with application satellite systems The latest researches have shown that the satellite systems can be successfully used for global and continuous monitoring ionosphere of the Earth In turn the ionosphere can serve a reliable indicator of different kinds of effects on an environment both of natural and anthropogenic origin Nowadays the problem of the short-term forecast of earthquakes has achieved a new level of understanding There have been revealed indisputable factors which show that the ionosphere anomalies observed during the preparation of seismic events contain the information allowing to detect and to interpret them as earthquake precursors The partial decision of the forecast problem of earthquakes on ionospheric variations requires the processing data received simultaneously from extensive territories Such requirements can be met only on the basis of ground-space system of ionosphere monitoring The navigating systems

  1. The HayWired Earthquake Scenario—Earthquake Hazards

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  2. Teaching Phenomenological Research and Writing.

    PubMed

    Adams, Catherine; van Manen, Michael Anders

    2017-05-01

    In this article, we describe our approach and philosophical methodology of teaching and doing phenomenology. The human science seminar that we offer involves participants in the primary phenomenological literature as well as in a variety of carefully engaged writing exercises. Each seminar participant selects a personal phenomenological project that aims at producing a publishable research paper. We show how the qualitative methodology of hermeneutic phenomenology requires of its practitioner a sensitivity and attitudinal disposition that has to be internalized and that cannot be captured in a procedural or step-by-step program. Our experience is that seminar participants become highly motivated and committed to their phenomenological project while involved in the rather intense progression of lectures, workshop activities, readings, and discussions.

  3. Babies of the earthquake: follow-up study of their first 15 months.

    PubMed

    López, M I; León, N A

    1989-01-01

    This report reviews the phenomenology related to the rescue and later development of the newborn babies buried in the rubble of several collapsed maternity hospitals in Mexico City during the earthquake of September 1985. We describe the rescue process as well as the impact of this process on the community. The rescued babies' development has been followed through the first 15 months of their lives and we describe our observations. We also review the implications of the emotional burdens that these babies may bear and the possible repercussions later in their development.

  4. Atmosphere Mitigation in Precise Point Positioning Ambiguity Resolution for Earthquake Early Warning in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Geng, J.; Bock, Y.; Reuveni, Y.

    2014-12-01

    Earthquake early warning (EEW) is a time-critical system and typically relies on seismic instruments in the area around the source to detect P waves (or S waves) and rapidly issue alerts. Thanks to the rapid development of real-time Global Navigation Satellite Systems (GNSS), a good number of sensors have been deployed in seismic zones, such as the western U.S. where over 600 GPS stations are collecting 1-Hz high-rate data along the Cascadia subduction zone, San Francisco Bay area, San Andreas fault, etc. GNSS sensors complement the seismic sensors by recording the static offsets while seismic data provide highly-precise higher frequency motions. An optimal combination of GNSS and accelerometer data (seismogeodesy) has advantages compared to GNSS-only or seismic-only methods and provides seismic velocity and displacement waveforms that are precise enough to detect P wave arrivals, in particular in the near source region. Robust real-time GNSS and seismogeodetic analysis is challenging because it requires a period of initialization and continuous phase ambiguity resolution. One of the limiting factors is unmodeled atmospheric effects, both of tropospheric and ionospheric origin. One mitigation approach is to introduce atmospheric corrections into precise point positioning with ambiguity resolution (PPP-AR) of clients/stations within the monitored regions. NOAA generates hourly predictions of zenith troposphere delays at an accuracy of a few centimeters, and 15-minute slant ionospheric delays of a few TECU (Total Electron Content Unit) accuracy from both geodetic and meteorological data collected at hundreds of stations across the U.S. The Scripps Orbit and Permanent Array Center (SOPAC) is experimenting with a regional ionosphere grid using a few hundred stations in southern California, and the International GNSS Service (IGS) routinely estimates a Global Ionosphere Map using over 100 GNSS stations. With these troposphere and ionosphere data as additional

  5. Luminous phenomena and electromagnetic VHF wave emission originated from earthquake-related radon exhalation

    NASA Astrophysics Data System (ADS)

    Seki, A.; Tobo, I.; Omori, Y.; Muto, J.; Nagahama, H.

    2013-12-01

    Anomalous luminous phenomena and electromagnetic wave emission before or during earthquakes have been reported (e.g., the 1965 Matsushiro earthquake swarm). However, their mechanism is still unsolved, in spite of many models for these phenomena. Here, we propose a new model about luminous phenomena and electromagnetic wave emission during earthquake by focusing on atmospheric radon (Rn-222) and its daughter nuclides (Po-218 and Po-214). Rn-222, Po-218 and Po-214 are alpha emitters, and these alpha particles ionize atmospheric molecules. A light emission phenomenon, called 'the air luminescence', is caused by de-excitation of the ionized molecules of atmospheric nitrogen due to electron impact ionization from alpha particles. The de-excitation is from the second positive system of neutral nitrogen molecules and the first negative system of nitrogen molecule ion. Wavelengths of lights by these transitions include the visible light wavelength. So based on this mechanism, we proposed a new luminous phenomenon model before or during earthquake: 1. The concentration of atmospheric radon and its daughter nuclides increase anomalously before or during earthquakes, 2. Nitrogen molecules and their ions are excited by alpha particles emitted from Rn-222, Po-218 and Po-214, and air luminescence is generated by their de-excitation. Similarly, electromagnetic VHF wave emission can be explained by ionizing effect of radon and its daughter nuclides. Boyarchuk et al. (2005) proposed a model that electromagnetic VHF wave emission is originated when excited state of neutral clusters changes. Radon gas ionizes atmosphere and forms positively and negatively charged heavy particles. The process of ion hydration in ordinary air can be determined by the formation of complex chemically active structures of the various types of ion radicals. As a result of the association of such hydration radical ions, a neutral cluster, which is dipole quasi-molecules, is formed. A neutral cluster

  6. Earthquakes

    MedlinePlus

    ... Search Term(s): Main Content Home Be Informed Earthquakes Earthquakes An earthquake is the sudden, rapid shaking of the earth, ... by the breaking and shifting of underground rock. Earthquakes can cause buildings to collapse and cause heavy ...

  7. Toward a Better Nutritional Aiding in Disasters: Relying on Lessons Learned during the Bam Earthquake.

    PubMed

    Nekouie Moghadam, Mahmoud; Amiresmaieli, Mohammadreza; Hassibi, Mohammad; Doostan, Farideh; Khosravi, Sajad

    2017-08-01

    Introduction Examining various problems in the aftermath of disasters is very important to the disaster victims. Managing and coordinating food supply and its distribution among the victims is one of the most important problems after an earthquake. Therefore, the purpose of this study was to recognize problems and experiences in the field of nutritional aiding during an earthquake. This qualitative study was of phenomenological type. Using the purposive sampling method, 10 people who had experienced nutritional aiding during the Bam Earthquake (Iran; 2003) were interviewed. Colaizzi's method of analysis was used to analyze interview data. The findings of this study identified four main categories and 19 sub-categories concerning challenges in the nutritional aiding during the Bam Earthquake. The main topics included managerial, aiding, infrastructural, and administrative problems. The major problems in nutritional aiding include lack of prediction and development of a specific program of suitable nutritional pattern and nutritional assessment of the victims in critical conditions. Forming specialized teams, educating team members about nutrition, and making use of experts' knowledge are the most important steps to resolve these problems in the critical conditions; these measures are the duties of the relevant authorities. Nekouie Moghadam M , Amiresmaieli M , Hassibi M , Doostan F , Khosravi S . Toward a better nutritional aiding in disasters: relying on lessons learned during the Bam Earthquake. Prehosp Disaster Med. 2017;32(4):382-386.

  8. Earthquakes.

    ERIC Educational Resources Information Center

    Walter, Edward J.

    1977-01-01

    Presents an analysis of the causes of earthquakes. Topics discussed include (1) geological and seismological factors that determine the effect of a particular earthquake on a given structure; (2) description of some large earthquakes such as the San Francisco quake; and (3) prediction of earthquakes. (HM)

  9. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  10. Acoustic-gravity waves generated by atmospheric and near-surface sources

    NASA Astrophysics Data System (ADS)

    Kunitsyn, Viacheslav E.; Kholodov, Alexander S.; Krysanov, Boris Yu.; Andreeva, Elena S.; Nesterov, Ivan A.; Vorontsov, Artem M.

    2013-04-01

    Numerical simulation of the acoustic-gravity waves (AGW) generated by long-period oscillations of the Earth's (oceanic) surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. Wavelike disturbances are quite frequent phenomena in the atmosphere and ionosphere. These events can be caused by the impacts from space and atmosphere, by oscillations of the Earth'as surface and other near-surface events. These wavelike phenomena in the atmosphere and ionosphere appear as the alternating areas of enhanced and depleted density (in the atmosphere) or electron concentration (in the ionosphere). In the paper, AGW with typical frequencies of a few hertz - millihertz are analyzed. AGW are often observed after the atmospheric perturbations, during the earthquakes, and some time (a few days to hours) in advance of the earthquakes. Numerical simulation of the generation of AGW by long-period oscillations of the Earth's and oceanic surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. The AGW generated by the near-surface phenomena within a few hertz-millihertz frequency range build up at the mid-atmospheric and ionospheric altitudes, where they assume their typical spatial scales of the order of a few hundred kilometers. Oscillations of the ionospheric plasma within a few hertz-millihertz frequency range generate electromagnetic waves with corresponding frequencies as well as travelling ionospheric irregularities (TIDs). Such structures can be successfully monitored using satellite radio tomography (RT) techniques. For the purposes of RT diagnostics, 150/400 MHz transmissions from low-orbiting navigational satellites flying in polar orbits at the altitudes of about 1000 km as well as 1.2-1.5 GHz signals form high-orbiting (orbital altitudes about 20000 km) navigation systems like GPS/GLONASS are used. The results of experimental studies on generation of wavelike disturbances by particle precipitation are presented

  11. Philosophy of phenomenology: how understanding aids research.

    PubMed

    Converse, Mary

    2012-01-01

    To assist the researcher in understanding the similarities and differences between the Husserlian and Heideggerian philosophies of phenomenology, and how that philosophy can inform nursing research as a useful methodology. Nurse researchers using phenomenology as a methodology need to understand the philosophy of phenomenology to produce a research design that is philosophically congruent. However, phenomenology has a long and complex history of development, and may be difficult to understand and apply. The author draws from Heidegger (1962), Gadamer (2004), and nurse scholars and methodologists. To give the reader a sense of the development of the philosophy of phenomenology, the author briefly recounts its historical origins and interpretations, specifically related to Husserl, Heidegger and Gadamer. The author outlines the ontological and epistemological assumptions of Husserlian and Heideggerian phenomenology and guidance for methodology inspired by these philosophers. Difficulties with engaging in phenomenological research are addressed, especially the processes of phenomenological reduction and bracketing, and the lack of clarity about the methods of interpretation. Despite its complexity, phenomenology can provide the nurse researcher with indepth insight into nursing practice. An understanding of phenomenology can guide nurse researchers to produce results that have meaning in nursing patient care.

  12. Earthquakes.

    ERIC Educational Resources Information Center

    Pakiser, Louis C.

    One of a series of general interest publications on science topics, the booklet provides those interested in earthquakes with an introduction to the subject. Following a section presenting an historical look at the world's major earthquakes, the booklet discusses earthquake-prone geographic areas, the nature and workings of earthquakes, earthquake…

  13. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2017-04-01

    days. Associated with geomagnetic storm at similar time, radio occultation data provided by COSMIC were deeply investigated within the whole month. It's quite different that the storm or earthquake didn't trigger scintillation burst. This is probably due to the storm occurrence local time was in noon sector, which has little impact on ionospheric irregularities increase, but help to enhance the effect of westward electricity, which on the other hand diminishes scintillation bubbles (Li et al 2008). A small geomagnetic disturbance was also found almost a week prior to the earthquake, the relationship of this event to the major earthquake is worth further discussion. Similar analysis of GNSS TECs have been done, the results indicated that it can be also referred as precursor to the major earthquake. Li G, Ning B, Zhao B, et al. Effects of geomagnetic storm on GPS ionospheric scintillations at Sanya[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(7):1034-1045. Liu J Y, Chen Y I, Chuo Y J, et al. A statistical investigation of pre-earthquake ionospheric anomaly[J]. Journal of Geophysical Research Atmospheres, 2006, 111(A5). Liu J Y, Sun Y Y. Seismo-traveling ionospheric disturbances of ionograms observed during the 2011 Mw 9.0 Tohoku Earthquake[J]. Earth, Planets and Space, 2011, 63(7):897-902. Zhao B, Wang M, Yu T, et al. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake?[J]. Journal of Geophysical Research Atmospheres, 2008, 113(A11):A11304. Pulinets S A. Seismic activity as a source of the ionospheric variability [J]. Advances in Space Research, 1998, 22(6):903-906.

  14. Thermal emission before earthquakes by analyzing satellite infra-red data

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.

    2004-05-01

    Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.

  15. The search for Infrared radiation prior to major earthquakes

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Taylor, P.; Pulinets, S.

    2004-12-01

    This work describes our search for a relationship between tectonic stresses and electro-chemical and thermodynamic processes in the Earth and increases in mid-IR flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. Recent analysis of continuous ongoing long- wavelength Earth radiation (OLR) indicates significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and gas composition prior to the earthquake. The OLR anomaly covers large areas surrounding the main epicenter. We have use the NOAA IR data to differentiate between the global and seasonal variability and these transient local anomalies. Indeed, on the basis of a temporal and spatial distribution analysis, an anomaly pattern is found to occur several days prior some major earthquakes. The significance of these observations was explored using data sets of some recent worldwide events.

  16. Foundations of Phenomenological Psychology.

    ERIC Educational Resources Information Center

    Aanstoos, Christopher M.

    Phenomenology, hermeneutics and experiential psychology form the backbone of an emerging paradigm within psychology known as human science. Human science's use of phenomenology provides a way to set aside the naturalistic presupposition and directly study the irreducible involvement of human existence within a meaningful world, as it is given in…

  17. A seismoacoustic study of the 2011 January 3 Circleville earthquake

    NASA Astrophysics Data System (ADS)

    Arrowsmith, Stephen J.; Burlacu, Relu; Pankow, Kristine; Stump, Brian; Stead, Richard; Whitaker, Rod; Hayward, Chris

    2012-05-01

    We report on a unique set of infrasound observations from a single earthquake, the 2011 January 3 Circleville earthquake (Mw 4.7, depth of 8 km), which was recorded by nine infrasound arrays in Utah. Based on an analysis of the signal arrival times and backazimuths at each array, we find that the infrasound arrivals at six arrays can be associated to the same source and that the source location is consistent with the earthquake epicentre. Results of propagation modelling indicate that the lack of associated arrivals at the remaining three arrays is due to path effects. Based on these findings we form the working hypothesis that the infrasound is generated by body waves causing the epicentral region to pump the atmosphere, akin to a baffled piston. To test this hypothesis, we have developed a numerical seismoacoustic model to simulate the generation of epicentral infrasound from earthquakes. We model the generation of seismic waves using a 3-D finite difference algorithm that accounts for the earthquake moment tensor, source time function, depth and local geology. The resultant acceleration-time histories on a 2-D grid at the surface then provide the initial conditions for modelling the near-field infrasonic pressure wave using the Rayleigh integral. Finally, we propagate the near-field source pressure through the Ground-to-Space atmospheric model using a time-domain Parabolic Equation technique. By comparing the resultant predictions with the six epicentral infrasound observations from the 2011 January 3, Circleville earthquake, we show that the observations agree well with our predictions. The predicted and observed amplitudes are within a factor of 2 (on average, the synthetic amplitudes are a factor of 1.6 larger than the observed amplitudes). In addition, arrivals are predicted at all six arrays where signals are observed, and importantly not predicted at the remaining three arrays. Durations are typically predicted to within a factor of 2, and in some cases

  18. Long-term predictability of regions and dates of strong earthquakes

    NASA Astrophysics Data System (ADS)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation

  19. The 2004 Parkfield, CA Earthquake: A Teachable Moment for Exploring Earthquake Processes, Probability, and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.

    2004-12-01

    The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better

  20. Radon observations as an integrated part of the multi parameter approach to study pre-earthquake processes

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Lee, Lou; Giuliani, Guachino; Fu, Ching-Chou; Liu, Tiger; Hattori, Katsumi

    2017-04-01

    This work is part of international project to study the complex chain of interactions Lithosphere - Atmosphere -Ionosphere (LAI) in presence of ionization in atmosphere loaded by radon and other gases and is supported by International Space Science Institute (ISSI) in Bern and Beijing. We are presenting experimental measurements and theoretical estimates showing that radon measurements recorded before large earthquake are correlated with release of the heat flux in atmosphere during ionization of the atmospheric boundary layer .The recorded anomalous heat (observed by the remote sounding -infrared radiometers installed on satellites) are followed also by ionospheric anomalies (observed by GPS/TEC, ionosonde or satellite instruments). As ground proof we are using radon measurements installed and coordinated in four different seismic active regions California, Taiwan, Italy and Japan. Radon measurements are performed indirectly by means of gamma ray spectrometry of its radioactive progenies 214Pb and 214Bi (emitted at 351 keV and 609 keV, respectively) and also by Alfa detectors. We present data of five physical parameters- radon, seismicity, temperature of the atmosphere boundary layer, outgoing earth infrared radiation and GPS/TEC and their temporal and spatial variations several days before the onset of the following recent earthquakes: (1) 2016 M6.6 in California; (2) 2016 Amatrice-Norcia (Central Italy), (3) 2016 M6.4 of Feb 06 in Taiwan and (4) 2016 M7.0 of Nov 21 in Japan. Our preliminary results of simultaneous analysis of radon and space measurements in California, Italy, Taiwan and Japan suggests that pre-earthquake phase follows a general temporal-spatial evolution pattern in which radon plays a critical role in understanding the LAI coupling. This pattern could be reviled only with multi instruments observations and been seen and in other large earthquakes worldwide.

  1. Earthquakes

    MedlinePlus

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  2. Investigation of Pre-Earthquake Ionospheric Disturbances by 3D Tomographic Analysis

    NASA Astrophysics Data System (ADS)

    Yagmur, M.

    2016-12-01

    Ionospheric variations before earthquakes have been widely discussed phenomena in ionospheric studies. To clarify the source and mechanism of these phenomena is highly important for earthquake forecasting. To well understanding the mechanical and physical processes of pre-seismic Ionospheric anomalies that might be related even with Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling, both statistical and 3D modeling analysis are needed. For these purpose, firstly we have investigated the relation between Ionospheric TEC Anomalies and potential source mechanisms such as space weather activity and lithospheric phenomena like positive surface electric charges. To distinguish their effects on Ionospheric TEC, we have focused on pre-seismically active days. Then, we analyzed the statistical data of 54 earthquakes that M≽6 between 2000 and 2013 as well as the 2011 Tohoku and the 2016 Kumamoto Earthquakes in Japan. By comparing TEC anomaly and Solar activity by Dst Index, we have found that 28 events that might be related with Earthquake activity. Following the statistical analysis, we also investigate the Lithospheric effect on TEC change on selected days. Among those days, we have chosen two case studies as the 2011 Tohoku and the 2016 Kumamoto Earthquakes to make 3D reconstructed images by utilizing 3D Tomography technique with Neural Networks. The results will be presented in our presentation. Keywords : Earthquake, 3D Ionospheric Tomography, Positive and Negative Anomaly, Geomagnetic Storm, Lithosphere

  3. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  4. Being Mindful as a Phenomenological Attitude.

    PubMed

    Gustin, Lena Wiklund

    2017-08-01

    The purpose of this article is to reflect on being mindful as a phenomenological attitude rather than on describing mindfulness as a therapeutic intervention. I will also explore the possibilities that being mindful might open up in relation to nursing research and holistic nursing. I will describe and interpret mindfulness as a state of being by means of van Manen's phenomenological method, using the language of phenomenology rather than the language of reductionist science. Thus, this article can be considered a reflective narrative, describing both the process of orienting to the phenomenon, making preunderstandings-including own experiences of mindfulness-visible, and a thematic analysis of nine scientific articles describing the phenomenon. Being mindful as a phenomenological attitude can be described as a deliberate intentionality, where the person is present in the moment and open to what is going on, bridling personal values and accepting the unfamiliar, thus achieving a sense of being peacefully situated in the world, and able to apprehend one's being-in-the-world. Being mindful as a phenomenological attitude can contribute not only to phenomenological nursing research but also support nurses' presence and awareness.

  5. The 1868 Hayward Earthquake Alliance: A Case Study - Using an Earthquake Anniversary to Promote Earthquake Preparedness

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Garcia, S.; Aagaard, B. T.; Boatwright, J. J.; Dawson, T.; Hellweg, M.; Knudsen, K. L.; Perkins, J.; Schwartz, D. P.; Stoffer, P. W.; Zoback, M.

    2008-12-01

    Last October 21st marked the 140th anniversary of the M6.8 1868 Hayward Earthquake, the last damaging earthquake on the southern Hayward Fault. This anniversary was used to help publicize the seismic hazards associated with the fault because: (1) the past five such earthquakes on the Hayward Fault occurred about 140 years apart on average, and (2) the Hayward-Rodgers Creek Fault system is the most likely (with a 31 percent probability) fault in the Bay Area to produce a M6.7 or greater earthquake in the next 30 years. To promote earthquake awareness and preparedness, over 140 public and private agencies and companies and many individual joined the public-private nonprofit 1868 Hayward Earthquake Alliance (1868alliance.org). The Alliance sponsored many activities including a public commemoration at Mission San Jose in Fremont, which survived the 1868 earthquake. This event was followed by an earthquake drill at Bay Area schools involving more than 70,000 students. The anniversary prompted the Silver Sentinel, an earthquake response exercise based on the scenario of an earthquake on the Hayward Fault conducted by Bay Area County Offices of Emergency Services. 60 other public and private agencies also participated in this exercise. The California Seismic Safety Commission and KPIX (CBS affiliate) produced professional videos designed forschool classrooms promoting Drop, Cover, and Hold On. Starting in October 2007, the Alliance and the U.S. Geological Survey held a sequence of press conferences to announce the release of new research on the Hayward Fault as well as new loss estimates for a Hayward Fault earthquake. These included: (1) a ShakeMap for the 1868 Hayward earthquake, (2) a report by the U. S. Bureau of Labor Statistics forecasting the number of employees, employers, and wages predicted to be within areas most strongly shaken by a Hayward Fault earthquake, (3) new estimates of the losses associated with a Hayward Fault earthquake, (4) new ground motion

  6. Preseismic Lithosphere-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    Preseismic atmospheric and ionospheric disturbances besides preseismic geo-electric potential anomalies and ultra-low-frequency (ULF) geomagnetic variations observed on the ground have been reported. Both the phenomena have been found since the 1980s and a number of papers have been published. Since most of the reported phenomena transiently appear with accompanying quiescence before the mainshock, this prevents us to intuitively recognize a correlation between the anomaly appearance and the earthquake occurrence. Some of them, however, showed that anomalies monotonically grew into the mainshock, of which a variation supports the concept of seismic nucleation process under the pre-earthquake state. For example, Heki [GRL, 2011] reported that ionospheric electron density monotonically enhanced tens of minutes prior to the subduction mega-earthquake. However, this preseismic enhancement is apparent variation attributed to tsunamigenic ionospheric hole [Kakinami and Kamogawa et al, GRL, 2012], namely wide and long-duration depression of ionospheric electron after tsunami-excited acoustic waves reach the ionosphere. Since the tsunamigenic ionospheric hole could be simulated [Shinagawa et al., GRL, 2013], the reported variations are high-possibly pseudo phenomena [Kamogawa and Kakinami, JGR, 2013]. Thus, there are barely a few reports which show the preseismic monotonic variation supported by the concept of the seismic nucleation process. As far as we discuss the preseismic geoelectromagnetical and atmospheric-ionospheric anomalies, preseismic transient events from a few weeks to a few hours prior to the mainshock are paid attention to for the precursor study. In order to identify precursors from a number of anomalies, one has to show a statistical significance of correlation between the earthquake and the anomalies, to elucidate the physical mechanism, or to conduct both statistical and physical approach. Since many speculation of the physical mechanism have been

  7. Non-extensivity and complexity in the earthquake activity at the West Corinth rift (Greece)

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos; Sammonds, Peter

    2013-04-01

    Earthquakes exhibit complex phenomenology that is revealed from the fractal structure in space, time and magnitude. For that reason other tools rather than the simple Poissonian statistics seem more appropriate to describe the statistical properties of the phenomenon. Here we use Non-Extensive Statistical Physics [NESP] to investigate the inter-event time distribution of the earthquake activity at the west Corinth rift (central Greece). This area is one of the most seismotectonically active areas in Europe, with an important continental N-S extension and high seismicity rates. NESP concept refers to the non-additive Tsallis entropy Sq that includes Boltzmann-Gibbs entropy as a particular case. This concept has been successfully used for the analysis of a variety of complex dynamic systems including earthquakes, where fractality and long-range interactions are important. The analysis indicates that the cumulative inter-event time distribution can be successfully described with NESP, implying the complexity that characterizes the temporal occurrences of earthquakes. Further on, we use the Tsallis entropy (Sq) and the Fischer Information Measure (FIM) to investigate the complexity that characterizes the inter-event time distribution through different time windows along the evolution of the seismic activity at the West Corinth rift. The results of this analysis reveal a different level of organization and clusterization of the seismic activity in time. Acknowledgments. GM wish to acknowledge the partial support of the Greek State Scholarships Foundation (IKY).

  8. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  9. Seismoacoustic Coupled Signals From Earthquakes in Central Italy: Epicentral and Secondary Sources of Infrasound

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, Shahar; Assink, Jelle D.; Smets, Pieter S. M.; Evers, Läslo G.

    2018-01-01

    In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves. Epicentral seismic and infrasonic signals are detected at I26DE; however, a third type of signal, which arrives after the seismic wave train and before the epicentral infrasound signal, is also detected. This peculiar signal propagates across the array at acoustic wave speeds, but the celerity associated with it is 3 times the speed of sound. Atmosphere-independent backprojections and full 3-D ray tracing using atmospheric conditions of the European Centre for Medium-Range Weather Forecasts are used to demonstrate that this apparently fast-arriving infrasound signal originates from ground motions more than 400 km away from the epicenter. The location of the secondary infrasound patch coincides with the closest bounce point to I26DE as depicted by ray tracing backprojections.

  10. The Loma Prieta, California, Earthquake of October 17, 1989: Earthquake Occurrence

    USGS Publications Warehouse

    Coordinated by Bakun, William H.; Prescott, William H.

    1993-01-01

    Professional Paper 1550 seeks to understand the M6.9 Loma Prieta earthquake itself. It examines how the fault that generated the earthquake ruptured, searches for and evaluates precursors that may have indicated an earthquake was coming, reviews forecasts of the earthquake, and describes the geology of the earthquake area and the crustal forces that affect this geology. Some significant findings were: * Slip during the earthquake occurred on 35 km of fault at depths ranging from 7 to 20 km. Maximum slip was approximately 2.3 m. The earthquake may not have released all of the strain stored in rocks next to the fault and indicates a potential for another damaging earthquake in the Santa Cruz Mountains in the near future may still exist. * The earthquake involved a large amount of uplift on a dipping fault plane. Pre-earthquake conventional wisdom was that large earthquakes in the Bay area occurred as horizontal displacements on predominantly vertical faults. * The fault segment that ruptured approximately coincided with a fault segment identified in 1988 as having a 30% probability of generating a M7 earthquake in the next 30 years. This was one of more than 20 relevant earthquake forecasts made in the 83 years before the earthquake. * Calculations show that the Loma Prieta earthquake changed stresses on nearby faults in the Bay area. In particular, the earthquake reduced stresses on the Hayward Fault which decreased the frequency of small earthquakes on it. * Geological and geophysical mapping indicate that, although the San Andreas Fault can be mapped as a through going fault in the epicentral region, the southwest dipping Loma Prieta rupture surface is a separate fault strand and one of several along this part of the San Andreas that may be capable of generating earthquakes.

  11. Photochemical Phenomenology Model for the New Millenium

    NASA Technical Reports Server (NTRS)

    Bishop, James; Evans, J. Scott

    2000-01-01

    This project tackles the problem of conversion of validated a priori physics-based modeling capabilities, specifically those relevant to the analysis and interpretation of planetary atmosphere observations, to application-oriented software for use in science and science-support activities. The software package under development, named the Photochemical Phenomenology Modeling Tool (PPMT), has particular focus on the atmospheric remote sensing data to be acquired by the CIRS instrument during the CASSINI Jupiter flyby and orbital tour of the Saturnian system. Overall, the project has followed the development outline given in the original proposal, and the Year 1 design and architecture goals have been met. Specific accomplishments and the difficulties encountered are summarized in this report. Most of the effort has gone into complete definition of the PPMT interfaces within the context of today's IT arena: adoption and adherence to the CORBA Component Model (CCM) has yielded a solid architecture basis, and CORBA-related issues (services, specification options, development plans, etc.) have been largely resolved. Implementation goals have been redirected somewhat so as to be more relevant to the upcoming CASSINI flyby of Jupiter, with focus now being more on data analysis and remote sensing retrieval applications.

  12. PAGER--Rapid assessment of an earthquake?s impact

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M.

    2010-01-01

    PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts--which were formerly sent based only on event magnitude and location, or population exposure to shaking--now will also be generated based on the estimated range of fatalities and economic losses.

  13. IR spectral analysis for the diagnostics of crust earthquake precursors

    NASA Astrophysics Data System (ADS)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  14. Signals in the ionosphere generated by tsunami earthquakes: observations and modeling suppor

    NASA Astrophysics Data System (ADS)

    Rolland, L.; Sladen, A.; Mikesell, D.; Larmat, C. S.; Rakoto, V.; Remillieux, M.; Lee, R.; Khelfi, K.; Lognonne, P. H.; Astafyeva, E.

    2017-12-01

    Forecasting systems failed to predict the magnitude of the 2011 great tsunami in Japan due to the difficulty and cost of instrumenting the ocean with high-quality and dense networks. Melgar et al. (2013) show that using all of the conventional data (inland seismic, geodetic, and tsunami gauges) with the best inversion method still fails to predict the correct height of the tsunami before it breaks onto a coast near the epicenter (< 500 km). On the other hand, in the last decade, scientists have gathered convincing evidence of transient signals in the ionosphere Total Electron Content (TEC) observations that are associated to open ocean tsunami waves. Even though typical tsunami waves are only a few centimeters high, they are powerful enough to create atmospheric vibrations extending all the way to the ionosphere, 300 kilometers up in the atmosphere. Therefore, we are proposing to incorporate the ionospheric signals into tsunami early-warning systems. We anticipate that the method could be decisive for mitigating "tsunami earthquakes" which trigger tsunamis larger than expected from their short-period magnitude. These events are challenging to characterize as they rupture the near-trench subduction interface, in a distant region less constrained by onshore data. As a couple of devastating tsunami earthquakes happens per decade, they represent a real threat for onshore populations and a challenge for tsunami early-warning systems. We will present the TEC observations of the recent Java 2006 and Mentawaii 2010 tsunami earthquakes and base our analysis on acoustic ray tracing, normal modes summation and the simulation code SPECFEM, which solves the wave equation in coupled acoustic (ocean, atmosphere) and elastic (solid earth) domains. Rupture histories are entered as finite source models, which will allow us to evaluate the effect of a relatively slow rupture on the surrounding ocean and atmosphere.

  15. Annual variation in the atmospheric radon concentration in Japan.

    PubMed

    Kobayashi, Yuka; Yasuoka, Yumi; Omori, Yasutaka; Nagahama, Hiroyuki; Sanada, Tetsuya; Muto, Jun; Suzuki, Toshiyuki; Homma, Yoshimi; Ihara, Hayato; Kubota, Kazuhito; Mukai, Takahiro

    2015-08-01

    Anomalous atmospheric variations in radon related to earthquakes have been observed in hourly exhaust-monitoring data from radioisotope institutes in Japan. The extraction of seismic anomalous radon variations would be greatly aided by understanding the normal pattern of variation in radon concentrations. Using atmospheric daily minimum radon concentration data from five sampling sites, we show that a sinusoidal regression curve can be fitted to the data. In addition, we identify areas where the atmospheric radon variation is significantly affected by the variation in atmospheric turbulence and the onshore-offshore pattern of Asian monsoons. Furthermore, by comparing the sinusoidal regression curve for the normal annual (seasonal) variations at the five sites to the sinusoidal regression curve for a previously published dataset of radon values at the five Japanese prefectures, we can estimate the normal annual variation pattern. By fitting sinusoidal regression curves to the previously published dataset containing sites in all Japanese prefectures, we find that 72% of the Japanese prefectures satisfy the requirements of the sinusoidal regression curve pattern. Using the normal annual variation pattern of atmospheric daily minimum radon concentration data, these prefectures are suitable areas for obtaining anomalous radon variations related to earthquakes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Phenomenology Depends on Human Nature

    ERIC Educational Resources Information Center

    Reber, Rolf

    2006-01-01

    This paper comments on the article "Psychology and Phenomenology: A Clarification" by H. H. Kendler. Kendler contrasted objective phenomena going on in the mind with phenomenological convictions. He concluded, on the basis of a thoughtful analysis, that scientific psychology cannot validate moral principles, which have to be agreed upon by…

  17. Relationships of earthquakes (and earthquake-associated mass movements) and polar motion as determined by Kalman filtered, Very-Long-Baseline-Interferometry

    NASA Technical Reports Server (NTRS)

    Preisig, Joseph Richard Mark

    1988-01-01

    A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.

  18. From integrated observation of pre-earthquake signals towards physical-based forecasting: A prospective test experiment

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Tramutoli, V.; Lee, L.; Liu, J. G.; Hattori, K.; Kafatos, M.

    2013-12-01

    We are conducting an integrated study involving multi-parameter observations over different seismo- tectonics regions in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several selected parameters namely: gas discharge; thermal infrared radiation; ionospheric electron concentration; and atmospheric temperature and humidity, which we suppose are associated with earthquake preparation phase. We intended to test in prospective mode the set of geophysical measurements for different regions of active earthquakes and volcanoes. In 2012-13 we established a collaborative framework with the leading projects PRE-EARTHQUAKE (EU) and iSTEP3 (Taiwan) for coordinate measurements and prospective validation over seven test regions: Southern California (USA), Eastern Honshu (Japan), Italy, Turkey, Greece, Taiwan (ROC), Kamchatka and Sakhalin (Russia). The current experiment provided a 'stress test' opportunity to validate the physical based approach in teal -time over regions of high seismicity. Our initial results are: (1) Prospective tests have shown the presence in real time of anomalies in the atmosphere before most of the significant (M>5.5) earthquakes in all regions; (2) False positive rate alarm is different for each region and varying between 50% (Italy, Kamchatka and California) to 25% (Taiwan and Japan) with a significant reduction of false positives when at least two parameters are contemporary used; (3) One of most complex problem, which is still open, was the systematic collection and real-time integration of pre-earthquake observations. Our findings suggest that the physical based short-term forecast is feasible and more tests are needed. We discus the physical concept we used, the future integration of data observations and related developments.

  19. Operational earthquake forecasting can enhance earthquake preparedness

    USGS Publications Warehouse

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  20. Are phenomenology and postpositivism strange bedfellows?

    PubMed

    Racher, Frances E; Robinson, Steven

    2003-08-01

    Researchers are advocating that a necessary condition of scholarly research is congruence between philosophical positions and research approaches. Phenomenology and postpositivism, traditionally, may appear to be situated in scientific inquiry as polar opposites and mutually exclusive paradigms. This article (a) describes the reflections of a nurse researcher and clarifies her philosophical assumptions; (b) delineates the postpositive paradigm and the interpretive paradigm, which traditionally includes phenomenology; (c) discusses phenomenology as a philosophy, an approach, and a research method; and (d) demonstrates the consistency between postpositivism and phenomenology. Nurse researchers must be aware of their philosophical assumptions and appraise the philosophical underpinnings of the methodologies, but this process should not restrict and limit their exploration of possibilities and the creativity in their efforts to address the growing challenges that await nursing science research.

  1. Earthquakes for Kids

    MedlinePlus

    ... across a fault to learn about past earthquakes. Science Fair Projects A GPS instrument measures slow movements of the ground. Become an Earthquake Scientist Cool Earthquake Facts Today in Earthquake History A scientist stands in ...

  2. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    After a giant earthquake (EQ), acoustic and gravity waves are excited by the displacement of land and sea surface, propagate through atmosphere, and then reach thermosphere, which causes ionospheric disturbances. This phenomenon was detected first by ionosonde and by HF Doppler sounderin the 1964 M9.2 Great Alaskan EQ. Developing Global Positioning System (GPS), seismogenic ionospheric disturbance detected by total electron content (TEC) measurement has been reported. A value of TEC is estimated by the phase difference between two different carrier frequencies through the propagation in the dispersive ionospheric plasma. The variation of TEC is mostly similar to that of F-region plasma. Acoustic-gravity waves triggered by an earthquake [Heki and Ping, EPSL, 2005; Liu et al., JGR, 2010] and a tsunami [Artu et al., GJI, 2005; Liu et al., JGR, 2006; Rolland, GRL, 2010] disturb the ionosphere and travel in the ionosphere. Besides the traveling ionospheric disturbances, ionospheric disturbances excited by Rayleigh waves [Ducic et al, GRL, 2003; Liu et al., GRL, 2006] as well as post-seismic 4-minute monoperiodic atmospheric resonances [Choosakul et al., JGR, 2009] have been observed after the large earthquakes. Since GPS Earth Observation Network System (GEONET) with more than 1200 GPS receiving points in Japan is a dense GPS network, seismogenic ionospheric disturbance is spatially observed. In particular, the seismogenic ionospheric disturbance caused by the M9.0 off the Pacific coast of Tohoku EQ (henceforth the Tohoku EQ) on 11 March 2011 was clearly observed. Approximately 9 minutes after the mainshock, acoustic waves which propagated radially emitted from the tsunami source area were observed through the TEC measurement (e. g., Liu et al. [JGR, 2011]). Moreover, there was a depression of TEC lasting for several tens of minutes after a huge earthquake, which was a large-scale phenomenon extending to a radius of a few hundred kilometers. This TEC depression may be

  3. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    PubMed

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  4. Signals of ENPEMF Used in Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Hao, G.; Dong, H.; Zeng, Z.; Wu, G.; Zabrodin, S. M.

    2012-12-01

    The signals of Earth's natural pulse electromagnetic field (ENPEMF) is a combination of the abnormal crustal magnetic field pulse affected by the earthquake, the induced field of earth's endogenous magnetic field, the induced magnetic field of the exogenous variation magnetic field, geomagnetic pulsation disturbance and other energy coupling process between sun and earth. As an instantaneous disturbance of the variation field of natural geomagnetism, ENPEMF can be used to predict earthquakes. This theory was introduced by A.A Vorobyov, who expressed a hypothesis that pulses can arise not only in the atmosphere but within the Earth's crust due to processes of tectonic-to-electric energy conversion (Vorobyov, 1970; Vorobyov, 1979). The global field time scale of ENPEMF signals has specific stability. Although the wave curves may not overlap completely at different regions, the smoothed diurnal ENPEMF patterns always exhibit the same trend per month. The feature is a good reference for observing the abnormalities of the Earth's natural magnetic field in a specific region. The frequencies of the ENPEMF signals generally locate in kilo Hz range, where frequencies within 5-25 kilo Hz range can be applied to monitor earthquakes. In Wuhan, the best observation frequency is 14.5 kilo Hz. Two special devices are placed in accordance with the S-N and W-E direction. Dramatic variation from the comparison between the pulses waveform obtained from the instruments and the normal reference envelope diagram should indicate high possibility of earthquake. The proposed detection method of earthquake based on ENPEMF can improve the geodynamic monitoring effect and can enrich earthquake prediction methods. We suggest the prospective further researches are about on the exact sources composition of ENPEMF signals, the distinction between noise and useful signals, and the effect of the Earth's gravity tide and solid tidal wave. This method may also provide a promising application in

  5. Global Review of Induced and Triggered Earthquakes

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Wilson, M.; Gluyas, J.; Julian, B. R.; Davies, R. J.

    2016-12-01

    Natural processes associated with very small incremental stress changes can modulate the spatial and temporal occurrence of earthquakes. These processes include tectonic stress changes, the migration of fluids in the crust, Earth tides, surface ice and snow loading, heavy rain, atmospheric pressure, sediment unloading and groundwater loss. It is thus unsurprising that large anthropogenic projects which may induce stress changes of a similar size also modulate seismicity. As human development accelerates and industrial projects become larger in scale and more numerous, the number of such cases is increasing. That mining and water-reservoir impoundment can induce earthquakes has been accepted for several decades. Now, concern is growing about earthquakes induced by activities such as hydraulic fracturing for shale-gas extraction and waste-water disposal via injection into boreholes. As hydrocarbon reservoirs enter their tertiary phases of production, seismicity may also increase there. The full extent of human activities thought to induce earthquakes is, however, much wider than generally appreciated. We have assembled as near complete a catalog as possible of cases of earthquakes postulated to have been induced by human activity. Our database contains a total of 705 cases and is probably the largest compilation made to date. We include all cases where reasonable arguments have been made for anthropogenic induction, even where these have been challenged in later publications. Our database presents the results of our search but leaves judgment about the merits of individual cases to the user. We divide anthropogenic earthquake-induction processes into: a) Surface operations, b) Extraction of mass from the subsurface, c) Introduction of mass into the subsurface, and d) Explosions. Each of these categories is divided into sub-categories. In some cases, categorization of a particular case is tentative because more than one anthropogenic activity may have preceded or been

  6. Missing great earthquakes

    USGS Publications Warehouse

    Hough, Susan E.

    2013-01-01

    The occurrence of three earthquakes with moment magnitude (Mw) greater than 8.8 and six earthquakes larger than Mw 8.5, since 2004, has raised interest in the long-term global rate of great earthquakes. Past studies have focused on the analysis of earthquakes since 1900, which roughly marks the start of the instrumental era in seismology. Before this time, the catalog is less complete and magnitude estimates are more uncertain. Yet substantial information is available for earthquakes before 1900, and the catalog of historical events is being used increasingly to improve hazard assessment. Here I consider the catalog of historical earthquakes and show that approximately half of all Mw ≥ 8.5 earthquakes are likely missing or underestimated in the 19th century. I further present a reconsideration of the felt effects of the 8 February 1843, Lesser Antilles earthquake, including a first thorough assessment of felt reports from the United States, and show it is an example of a known historical earthquake that was significantly larger than initially estimated. The results suggest that incorporation of best available catalogs of historical earthquakes will likely lead to a significant underestimation of seismic hazard and/or the maximum possible magnitude in many regions, including parts of the Caribbean.

  7. The roles, barriers and experiences of rehabilitation therapists in disaster relief: post-earthquake Haiti 2010.

    PubMed

    Klappa, Susan; Audette, Jennifer; Do, Sandy

    2014-01-01

    This article describes the roles and experiences of rehabilitation therapists involved in disaster relief work (DRW) in Haiti after the 2010 earthquake. The results of a pilot study and phenomenological study are presented. A phenomenological study of rehabilitation providers' experiences in post-disaster relief care is presented along with preliminary pilot study results. The phenomenological study explored the experiences of therapists from a lived experience perspective through the roles they played in DRW. Participants provided disaster relief through direct patient care, adaptive equipment sourcing and allocation, education and training, community outreach and logistic or administrative duties. Barriers and challenges included: (1) emotions: ups and downs; (2) challenges: working at the edge of practice; (3) education: key to success and sustainability; (4) lessons learned: social responsibility is why we go; and (5) difficulty coming home: no one understands. Therapists play a key role in disaster relief situations. Data presented should encourage organizations to include therapists from early planning to implementation of relief services. Further studies are needed to evaluate the impact of rehabilitation interventions in disaster settings. Understanding the roles and experiences of therapists in disaster relief setting is important Certain barriers to providing care in post-disaster settings exist Those participating in disaster response should be well prepared and aware of that they might be asked to do.

  8. A phenomenological calculus of Wiener description space.

    PubMed

    Richardson, I W; Louie, A H

    2007-10-01

    The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium.

  9. Analog earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed.more » A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.« less

  10. Phenomenological Characteristics of Future Thinking in Alzheimer's Disease.

    PubMed

    Moustafa, Ahmed A; El Haj, Mohamad

    2018-05-11

    This study investigates phenomenological reliving of future thinking in Alzheimer's disease (AD) patients and matched controls. All participants were asked to imagine in detail a future event, and afterward, were asked to rate phenomenological characteristics of their future thinking. As compared to controls, AD participants showed poor rating for reliving, travel in time, visual imagery, auditory imagery, language, and spatiotemporal specificity. However, no significant differences were observed between both groups in emotion and importance of future thinking. Results also showed lower rating for visual imagery relative to remaining phenomenological features in AD participants compared to controls; conversely, these participants showed higher ratings for emotion and importance of future thinking. AD seems to compromise some phenomenological characteristics of future thinking, especially, visual imagery; however, other phenomenological characteristics, such as emotion, seem to be relatively preserved in these populations. By highlighting the phenomenological experience of future thinking in AD, our paper opens a unique window into the conscious experience of the future in AD patients.

  11. Earthquake clouds and physical mechanism of their formation.

    NASA Astrophysics Data System (ADS)

    Doda, L.; Pulinets, S.

    2006-12-01

    The Lithosphere-Atmosphere-Ionosphere (LAI) coupling model created recently permitted to explain some unknown phenomena observed around the time of strong earthquakes. One of them is formation of special shape clouds, usually presented as the thin linear structures. It was discovered that these clouds are associated with the active tectonic faults or with the tectonic plate borders. They repeat the fault shape but usually are turned in relation to the fault position. Their formation is explained by the anomalous vertical electric field generated in the vicinity of active tectonic structure due to air ionization produced by the radon increased emanation. The new formed ions through the hydration process do not recombine and growth with time due to increased water molecules attachment to the ion. Simultaneously they move up driven by the anomalous electric field and drift in the crossed ExB fields. At the higher altitudes the large ion clusters become the centers of condensation and the cloud formation. Examples for the recent major earthquakes (Sumatra 2004, Kashmir 2005, Java 2006) are presented. The size and the angle of the cloud rotation in relation to the fault position permit to estimate the magnitude of the impending earthquake.

  12. Phenomenology and adapted physical activity: philosophy and professional practice.

    PubMed

    Standal, Øyvind F

    2014-01-01

    Through the increased use of qualitative research methods, the term phenomenology has become a quite familiar notion for researchers in adapted physical activity (APA). In contrast to this increasing interest in phenomenology as methodology, relatively little work has focused on phenomenology as philosophy or as an approach to professional practice. Therefore, the purpose of this article is to examine the relevance of phenomenology as philosophy and as pedagogy to the field of APA. First, phenomenology as philosophy is introduced through three key notions, namely the first-person perspective, embodiment, and life-world. The relevance of these terms to APA is then outlined. Second, the concept of phenomenological pedagogy is introduced, and its application and potential for APA are discussed. In conclusion, it is argued that phenomenology can help theorize ways of understanding human difference in movement contexts and form a basis of action-oriented research aiming at developing professional practice.

  13. Choosing phenomenology as a guiding philosophy for nursing research.

    PubMed

    Matua, Gerald Amandu

    2015-03-01

    To provide an overview of important methodological considerations that nurse researchers need to adhere to when choosing phenomenology as a guiding philosophy and research method. Phenomenology is a major philosophy and research method in the humanities, human sciences and arts disciplines with a central goal of describing people's experiences. However, many nurse researchers continue to grapple with methodological issues related to their choice of phenomenological method. The author conducted online and manual searches of relevant research books and electronic databases. Using an integrative method, peer-reviewed research and discussion papers published between January 1990 and December 2011 and listed in the CINAHL, Science Direct, PubMed and Google Scholar databases were reviewed. In addition, textbooks that addressed research methodologies such as phenomenology were used. Although phenomenology is widely used today to broaden understanding of human phenomena relevant to nursing practice, nurse researchers often fail to adhere to acceptable scientific and phenomenological standards. Cognisant of these challenges, researchers are expected to indicate in their work the focus of their investigations, designs, and approaches to collecting and analysing data. They are also expected to present their findings in an evocative and expressive manner. Choosing phenomenology requires researchers to understand it as a philosophy, including basic assumptions and tenets of phenomenology as a research method. This awareness enables researchers, especially novices, to make important methodological decisions, particularly those necessary to indicate the study's scientific rigour and phenomenological validity. This paper adds to the discussion of phenomenology as a guiding philosophy for nursing research. It aims to guide new researchers on important methodological decisions they need to make to safeguard their study's scientific rigour and phenomenological validity.

  14. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  15. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm.

    PubMed

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-21

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO 2 /water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO 2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO 2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart's law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  16. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-01

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  17. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  18. Seasonal-scale Observational Data Analysis and Atmospheric Phenomenology for the Cold Land Processes Experiment

    NASA Technical Reports Server (NTRS)

    Poulos, Gregory S.; Stamus, Peter A.; Snook, John S.

    2005-01-01

    The Cold Land Processes Experiment (CLPX) experiment emphasized the development of a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. Our work sought to investigate which topographically- generated atmospheric phenomena are most relevant to the CLPX MSA's for the purpose of evaluating their climatic importance to net local moisture fluxes and snow transport through the use of high-resolution data assimilation/atmospheric numerical modeling techniques. Our task was to create three long-term, scientific quality atmospheric datasets for quantitative analysis (for all CLPX researchers) and provide a summary of the meteorologically-relevant phenomena of the three MSAs (see Figure) over northern Colorado. Our efforts required the ingest of a variety of CLPX datasets and the execution an atmospheric and land surface data assimilation system based on the Navier-Stokes equations (the Local Analysis and Prediction System, LAPS, and an atmospheric numerical weather prediction model, as required) at topographically- relevant grid spacing (approx. 500 m). The resulting dataset will be analyzed by the CLPX community as a part of their larger research goals to determine the relative influence of various atmospheric phenomena on processes relevant to CLPX scientific goals.

  19. Understanding earthquake from the granular physics point of view — Causes of earthquake, earthquake precursors and predictions

    NASA Astrophysics Data System (ADS)

    Lu, Kunquan; Hou, Meiying; Jiang, Zehui; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    We treat the earth crust and mantle as large scale discrete matters based on the principles of granular physics and existing experimental observations. Main outcomes are: A granular model of the structure and movement of the earth crust and mantle is established. The formation mechanism of the tectonic forces, which causes the earthquake, and a model of propagation for precursory information are proposed. Properties of the seismic precursory information and its relevance with the earthquake occurrence are illustrated, and principle of ways to detect the effective seismic precursor is elaborated. The mechanism of deep-focus earthquake is also explained by the jamming-unjamming transition of the granular flow. Some earthquake phenomena which were previously difficult to understand are explained, and the predictability of the earthquake is discussed. Due to the discrete nature of the earth crust and mantle, the continuum theory no longer applies during the quasi-static seismological process. In this paper, based on the principles of granular physics, we study the causes of earthquakes, earthquake precursors and predictions, and a new understanding, different from the traditional seismological viewpoint, is obtained.

  20. Redefining Earthquakes and the Earthquake Machine

    ERIC Educational Resources Information Center

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  1. Influence of very-long-distance earthquakes on the ionosphere?

    NASA Astrophysics Data System (ADS)

    Liperovskaya, E. V.; Meister, C.-V.; Biagi, P.-F.; Liperovsky, V. A.; Rodkin, M. V.

    2009-04-01

    In the present work, variations of the critical frequency foF2 obtained every hour by the ionospheric sounding station Tashkent (41.3oN, 69.6oE) in the years 1964-1996 are considered. Mean values of data found at day-time between 11 LT and 16 LT are investigated. Disturbances of foF2 related to earthquakes are studied on the background of seasonal, geomagnetic, 11-years and 27-days solar variations. Normalized values F are used in the analysis, which are obtained excluding the seasonal run by subtracting the mean value of foF2 during the time interval of 14 days, from 7 days before the earthquake until seven days after the event, and dividing the result on its standard deviation. Days with high solar (Wolf number > 200) and geomagnetic (ΣKp > 25) disturbances are excluded from the analysis. Using the method of superposition of epoches it is concluded, that at the day of the earthquake the foF2 value decreases a) in case of earthquakes with magnitudes M > 6.5 at any place on the Earth, if the depth h of the epicentre satisfies h < 200 km, b) in connection with earthquakes with magnitudes 6.5 > M > 6.0 occurring in the Middle Asia region, if h < 70 km is satisfied, and c) in connection with earthquakes with magnitudes 6.0 > M > 5.5 appearing at a distance from Tashkent smaller than 1000 km if one has h < 70 km. In all investigated cases the reliability of the effect is larger than 95 %. The ratio of the number of earthquakes with a decrease of the foF2-value to the number of earthquakes where foF2 grows is about 2. The decrease of the foF2-value is also obtained some hours before and some hours - a day - after the event. Thus, one may assume that before an earthquake happening at a long distance, in the vicinity of the sounding station seismo-gravity waves with periods between half an hour and a few hours propagate through the earth's core. After long-distance earthquakes, seismic waves propagate in the vicinity of the sounding station. But in both cases, the

  2. Differentiating between descriptive and interpretive phenomenological research approaches.

    PubMed

    Matua, Gerald Amandu; Van Der Wal, Dirk Mostert

    2015-07-01

    To provide insight into how descriptive and interpretive phenomenological research approaches can guide nurse researchers during the generation and application of knowledge. Phenomenology is a discipline that investigates people's experiences to reveal what lies 'hidden' in them. It has become a major philosophy and research method in the humanities, human sciences and arts. Phenomenology has transitioned from descriptive phenomenology, which emphasises the 'pure' description of people's experiences, to the 'interpretation' of such experiences, as in hermeneutic phenomenology. However, nurse researchers are still challenged by the epistemological and methodological tenets of these two methods. The data came from relevant online databases and research books. A review of selected peer-reviewed research and discussion papers published between January 1990 and December 2013 was conducted using CINAHL, Science Direct, PubMed and Google Scholar databases. In addition, selected textbooks that addressed phenomenology as a philosophy and as a research methodology were used. Evidence from the literature indicates that most studies following the 'descriptive approach' to research are used to illuminate poorly understood aspects of experiences. In contrast, the 'interpretive/hermeneutic approach' is used to examine contextual features of an experience in relation to other influences such as culture, gender, employment or wellbeing of people or groups experiencing the phenomenon. This allows investigators to arrive at a deeper understanding of the experience, so that caregivers can derive requisite knowledge needed to address such clients' needs. Novice nurse researchers should endeavour to understand phenomenology both as a philosophy and research method. This is vitally important because in-depth understanding of phenomenology ensures that the most appropriate method is chosen to implement a study and to generate knowledge for nursing practice. This paper adds to the current

  3. Chacterization of Teleseismic Earthquakes Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2016-12-01

    Broadband seismographs deployed atop large tabular icebergs and ice shelves record a rich superposition of atmospheric, oceanic, and solid earth signals. We characterize these signals, including body and surface wave arrivals from approximately 200 global earthquakes, using a 34-station broadband array spanning the Ross Ice Shelf, Antarctica. Teleseismic earthquake arrivals are essential for constructing models of crustal and upper mantle structure, and observations on the ice shelf are key to resolving the structure of the underlying West Antarctic Rift System. To test the plausibility of passive imaging in this unique environment, we examine seasonal and spatial dependence of signal-to-noise ratios of body wave arrivals and the impact of ice shelf dynamics on surface wave dispersion. We also note unusual phase mechanics arising from the floating platform geometry.

  4. The politics of phenomenological concepts in nursing.

    PubMed

    Holmes, C A

    1996-09-01

    This paper challenges those nurses who champion Heideggerian phenomenology, by outlining some of the possible political consequences of that philosophy. Some relationships between phenomenology and fascism are discussed, with special reference to anti-humanism and authenticity. Heidegger's commitment to Nazism is affirmed and, following the lead of other recent contributions to the debate, it is suggested that this was the likely, if not inevitable, result of his phenomenological philosophy. It is concluded that, because of its immanent fascism, Heideggerian phenomenology is at odds with the general value orientation publicly espoused by the nursing profession, and that this may render it not only unsuitable as a means of understanding and elaborating nursing knowledge, but also actively counter-productive to the conventional aspirations of nurses.

  5. Earthquake likelihood model testing

    USGS Publications Warehouse

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    wide range of possible testing procedures exist. Jolliffe and Stephenson (2003) present different forecast verifications from atmospheric science, among them likelihood testing of probability forecasts and testing the occurrence of binary events. Testing binary events requires that for each forecasted event, the spatial, temporal and magnitude limits be given. Although major earthquakes can be considered binary events, the models within the RELM project express their forecasts on a spatial grid and in 0.1 magnitude units; thus the results are a distribution of rates over space and magnitude. These forecasts can be tested with likelihood tests.In general, likelihood tests assume a valid null hypothesis against which a given hypothesis is tested. The outcome is either a rejection of the null hypothesis in favor of the test hypothesis or a nonrejection, meaning the test hypothesis cannot outperform the null hypothesis at a given significance level. Within RELM, there is no accepted null hypothesis and thus the likelihood test needs to be expanded to allow comparable testing of equipollent hypotheses.To test models against one another, we require that forecasts are expressed in a standard format: the average rate of earthquake occurrence within pre-specified limits of hypocentral latitude, longitude, depth, magnitude, time period, and focal mechanisms. Focal mechanisms should either be described as the inclination of P-axis, declination of P-axis, and inclination of the T-axis, or as strike, dip, and rake angles. Schorlemmer and Gerstenberger (2007, this issue) designed classes of these parameters such that similar models will be tested against each other. These classes make the forecasts comparable between models. Additionally, we are limited to testing only what is precisely defined and consistently reported in earthquake catalogs. Therefore it is currently not possible to test such information as fault rupture length or area, asperity location, etc. Also, to account

  6. OMG Earthquake! Can Twitter improve earthquake response?

    NASA Astrophysics Data System (ADS)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  7. Fractal analysis of the spatial distribution of earthquakes along the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Papadakis, Giorgos; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    The Hellenic Subduction Zone (HSZ) is the most seismically active region in Europe. Many destructive earthquakes have taken place along the HSZ in the past. The evolution of such active regions is expressed through seismicity and is characterized by complex phenomenology. The understanding of the tectonic evolution process and the physical state of subducting regimes is crucial in earthquake prediction. In recent years, there is a growing interest concerning an approach to seismicity based on the science of complex systems (Papadakis et al., 2013; Vallianatos et al., 2012). In this study we calculate the fractal dimension of the spatial distribution of earthquakes along the HSZ and we aim to understand the significance of the obtained values to the tectonic and geodynamic evolution of this area. We use the external seismic sources provided by Papaioannou and Papazachos (2000) to create a dataset regarding the subduction zone. According to the aforementioned authors, we define five seismic zones. Then, we structure an earthquake dataset which is based on the updated and extended earthquake catalogue for Greece and the adjacent areas by Makropoulos et al. (2012), covering the period 1976-2009. The fractal dimension of the spatial distribution of earthquakes is calculated for each seismic zone and for the HSZ as a unified system using the box-counting method (Turcotte, 1997; Robertson et al., 1995; Caneva and Smirnov, 2004). Moreover, the variation of the fractal dimension is demonstrated in different time windows. These spatiotemporal variations could be used as an additional index to inform us about the physical state of each seismic zone. As a precursor in earthquake forecasting, the use of the fractal dimension appears to be a very interesting future work. Acknowledgements Giorgos Papadakis wish to acknowledge the Greek State Scholarships Foundation (IKY). References Caneva, A., Smirnov, V., 2004. Using the fractal dimension of earthquake distributions and the

  8. Atmospheric sound propagation

    NASA Technical Reports Server (NTRS)

    Cook, R. K.

    1969-01-01

    The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.

  9. From Husserl to van Manen. A review of different phenomenological approaches.

    PubMed

    Dowling, Maura

    2007-01-01

    This paper traces the development of phenomenology as a philosophy originating from the writings of Husserl to its use in phenomenological research and theory development in nursing. The key issues of phenomenological reduction and bracketing are also discussed as they play a pivotal role in the how phenomenological research studies are approached. What has become to be known as "new" phenomenology is also explored and the key differences between it and "traditional" phenomenology are discussed. van Manen's phenomenology is also considered in light of its contemporary popularity among nurse researchers.

  10. Twitter earthquake detection: Earthquake monitoring in a social world

    USGS Publications Warehouse

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  11. Crustal earthquake triggering by pre-historic great earthquakes on subduction zone thrusts

    USGS Publications Warehouse

    Sherrod, Brian; Gomberg, Joan

    2014-01-01

    Triggering of earthquakes on upper plate faults during and shortly after recent great (M>8.0) subduction thrust earthquakes raises concerns about earthquake triggering following Cascadia subduction zone earthquakes. Of particular regard to Cascadia was the previously noted, but only qualitatively identified, clustering of M>~6.5 crustal earthquakes in the Puget Sound region between about 1200–900 cal yr B.P. and the possibility that this was triggered by a great Cascadia thrust subduction thrust earthquake, and therefore portends future such clusters. We confirm quantitatively the extraordinary nature of the Puget Sound region crustal earthquake clustering between 1200–900 cal yr B.P., at least over the last 16,000. We conclude that this cluster was not triggered by the penultimate, and possibly full-margin, great Cascadia subduction thrust earthquake. However, we also show that the paleoseismic record for Cascadia is consistent with conclusions of our companion study of the global modern record outside Cascadia, that M>8.6 subduction thrust events have a high probability of triggering at least one or more M>~6.5 crustal earthquakes.

  12. Micromechanics based phenomenological damage modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muju, S.; Anderson, P.M.; Popelar, C.H.

    A model is developed for the study of process zone effects on dominant cracks. The model proposed here is intended to bridge the gap between the micromechanics based and the phenomenological models for the class of problems involving microcracking, transforming inclusions etc. It is based on representation of localized eigenstrains using dislocation dipoles. The eigenstrain (fitting strain) is represented as the strength (Burgers vector) of the dipole which obeys a certain phenomenological constitutive relation.

  13. Impact of earthquakes on sex ratio at birth: Eastern Marmara earthquakes

    PubMed Central

    Doğer, Emek; Çakıroğlu, Yiğit; Köpük, Şule Yıldırım; Ceylan, Yasin; Şimşek, Hayal Uzelli; Çalışkan, Eray

    2013-01-01

    Objective: Previous reports suggest that maternal exposure to acute stress related to earthquakes affects the sex ratio at birth. Our aim was to examine the change in sex ratio at birth after Eastern Marmara earthquake disasters. Material and Methods: This study was performed using the official birth statistics from January 1997 to December 2002 – before and after 17 August 1999, the date of the Golcuk Earthquake – supplied from the Turkey Statistics Institute. The secondary sex ratio was expressed as the male proportion at birth, and the ratio of both affected and unaffected areas were calculated and compared on a monthly basis using data from gender with using the Chi-square test. Results: We observed significant decreases in the secondary sex ratio in the 4th and 8th months following an earthquake in the affected region compared to the unaffected region (p= 0.001 and p= 0.024). In the earthquake region, the decrease observed in the secondary sex ratio during the 8th month after an earthquake was specific to the period after the earthquake. Conclusion: Our study indicated a significant reduction in the secondary sex ratio after an earthquake. With these findings, events that cause sudden intense stress such as earthquakes can have an effect on the sex ratio at birth. PMID:24592082

  14. Causal mechanisms of seismo-EM phenomena during the 1965–1967 Matsushiro earthquake swarm

    PubMed Central

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-01-01

    The 1965–1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities. PMID:28322263

  15. Large-Scale Earthquake Countermeasures Act and the Earthquake Prediction Council in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikitake, T.

    1979-08-07

    The Large-Scale Earthquake Countermeasures Act was enacted in Japan in December 1978. This act aims at mitigating earthquake hazards by designating an area to be an area under intensified measures against earthquake disaster, such designation being based on long-term earthquake prediction information, and by issuing an earthquake warnings statement based on imminent prediction information, when possible. In an emergency case as defined by the law, the prime minister will be empowered to take various actions which cannot be taken at ordinary times. For instance, he may ask the Self-Defense Force to come into the earthquake-threatened area before the earthquake occurrence.more » A Prediction Council has been formed in order to evaluate premonitory effects that might be observed over the Tokai area, which was designated an area under intensified measures against earthquake disaster some time in June 1979. An extremely dense observation network has been constructed over the area.« less

  16. Critical appraisal of rigour in interpretive phenomenological nursing research.

    PubMed

    de Witt, Lorna; Ploeg, Jenny

    2006-07-01

    This paper reports a critical review of published nursing research for expressions of rigour in interpretive phenomenology, and a new framework of rigour specific to this methodology is proposed. The rigour of interpretive phenomenology is an important nursing research methods issue that has direct implications for the legitimacy of nursing science. The use of a generic set of qualitative criteria of rigour for interpretive phenomenological studies is problematic because it is philosophically inconsistent with the methodology and creates obstacles to full expression of rigour in such studies. A critical review was conducted of the published theoretical interpretive phenomenological nursing literature from 1994 to 2004 and the expressions of rigour in this literature identified. We used three sources to inform the derivation of a proposed framework of expressions of rigour for interpretive phenomenology: the phenomenological scholar van Manen, the theoretical interpretive phenomenological nursing literature, and Madison's criteria of rigour for hermeneutic phenomenology. The nursing literature reveals a broad range of criteria for judging the rigour of interpretive phenomenological research. The proposed framework for evaluating rigour in this kind of research contains the following five expressions: balanced integration, openness, concreteness, resonance, and actualization. Balanced integration refers to the intertwining of philosophical concepts in the study methods and findings and a balance between the voices of study participants and the philosophical explanation. Openness is related to a systematic, explicit process of accounting for the multiple decisions made throughout the study process. Concreteness relates to usefulness for practice of study findings. Resonance encompasses the experiential or felt effect of reading study findings upon the reader. Finally, actualization refers to the future realization of the resonance of study findings. Adoption of this

  17. Biological Anomalies around the 2009 L’Aquila Earthquake

    PubMed Central

    Fidani, Cristiano

    2013-01-01

    Simple Summary Earthquakes have been seldom associated with reported non-seismic phenomena observed weeks before and after shocks. Non-seismic phenomena are characterized by radio disturbances and light emissions as well as degassing of vast areas near the epicenter with chemical alterations of shallow geospheres (aquifers, soils) and the troposphere. Many animals are sensitive to even the weakest changes in the environment, typically responding with behavioral and physiological changes. A specific questionnaire was developed to collect data on these changes around the time of the 2009 L’Aquila earthquake. Abstract The April 6, 2009 L’Aquila earthquake was the strongest seismic event to occur in Italy over the last thirty years with a magnitude of M = 6.3. Around the time of the seismic swarm many instruments were operating in Central Italy, even if not dedicated to biological effects associated with the stress field variations, including seismicity. Testimonies were collected using a specific questionnaire immediately after the main shock, including data on earthquake lights, gas leaks, human diseases, and irregular animal behavior. The questionnaire was made up of a sequence of arguments, based upon past historical earthquake observations and compiled over seven months after the main shock. Data on animal behavior, before, during and after the main shocks, were analyzed in space/time distributions with respect to the epicenter area, evidencing the specific responses of different animals. Several instances of strange animal behavior were observed which could causally support the hypotheses that they were induced by the physical presence of gas, electric charges and electromagnetic waves in atmosphere. The aim of this study was to order the biological observations and thereby allow future work to determine whether these observations were influenced by geophysical parameters. PMID:26479529

  18. Lightning Phenomenology

    NASA Astrophysics Data System (ADS)

    Kawasaki, Zen

    This paper presents a phenomenological idea about lightning flash to share the back ground understanding for this special issue. Lightning discharges are one of the terrible phenomena, and Benjamin Franklin has led this natural phenomenon to the stage of scientific investigation. Technical aspects like monitoring and location are also summarized in this article.

  19. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    USGS Publications Warehouse

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  20. Earthquakes & Tsunamis flirting with the Ionosphere: the Sumatra gossip !!

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Coïsson, P.; Rolland, L. M.; Lognonne, P.

    2009-12-01

    The December 26, 2004 Sumatra Earthquake and the related Indian Ocean Tsunami generated the largest remote sensing data-set observing natural hazards. The observations showed both, ground motion and ocean sea surface displacement, as well as the related strong ionospheric anomalies. Total electron content (TEC) perturbations have been observed on a global scale, using ground-based GPS receivers [DasGupta et al., 2006, Liu et al., 2006b] and dual-frequency altimeters (e.g., Jason-1 and Topex/Poseidon [Artru et al., 2005]); plasma velocity perturbation has been observed by Doppler soundings [Liu et al., 2006b, Occhipinti et al., 2009]. The observed perturbations may be characterized as two different waves: the first one is an atmospheric wave in the acoustic domain induced by propagation of Rayleigh waves on the Earth surface; the second one is a slower atmospheric wave in the gravity domain strongly coupled with the generated tsunami. Both waves are reproduced by our accurate modeling taking into account the earthquake/tsunami-neutral atmosphere coupling at the base of the atmosphere, as well as the neutral-plasma coupling in the overlying ionosphere [Occhipinti et al., 2006, 2006, 2009]. Here we present a review of the ionospheric observations related to the Sumatra event in the light of modeling to deeply investigate the coupling mechanism between Solid-Earth/Ocean/Atmosphere/Ionosphere. The matching between data and modeling opens new perspectives in the solid earth research as well as in the tsunami detection providing a new insight into the role of the remote sensing in the monitoring of natural hazard. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006a] Geophys. Res. Lett., 33, L02103, 2006. [Liu et al., 2006b] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., 173, 3, 753-1135, 2008. [Occhipinti et

  1. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part B, historical earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax: the moment magnitude of the largest earthquake that is thought to be possible within a specified geographic region. The region specified in this report is the Central and Eastern United States and adjacent Canada. Parts A and B of this report describe the construction of a global catalog of moderate to large earthquakes that occurred worldwide in tectonic analogs of the Central and Eastern United States. Examination of histograms of the magnitudes of these earthquakes allows estimation of Central and Eastern United States Mmax. The catalog and Mmax estimates derived from it are used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. Part A deals with prehistoric earthquakes, and this part deals with historical events.

  2. A pilot study of the Earthquake Precursors in the Southwest Peloponnes, Greece

    NASA Astrophysics Data System (ADS)

    Velez, A. P.; Tsinganos, K.; Karastathis, V. K.; Kafatos, M.; Ouzounov, D.; Papadopoulos, G. A.; Tselentis, A.; Eleftheriou, G.; Mouzakiotis, E.; Gika, F.; Aspiotis, T.; Liakopoulos, S.; Voulgaris, N.

    2016-12-01

    A seismic array of the most contemporary technology has been recently installed in the area of Southwest Peloponnese, Greece, an area well known for its high seismic activity. The tectonic regime of the Hellenic arc was the reason for many lethal earthquakes with considerable damage to the broader area of East Mediterranean sea. The seismic array is based on nine 32-bit stations with broadband borehole seismometers. The seismogenic region, monitored by the array, is offshore. At this place the earthquake location suffers by poor azimuthal coverage and the stations of the national seismic network are very distant to this area. Therefore, the existing network cannot effectively monitor the microseismicity. The new array achieved a detailed monitoring of the small events dropping considerably the magnitude of completeness. The detectability of the microearthquakes has been drastically improved permitting so the statistical assessment of earthquake sequences in the area. In parallel the monitored seismicity is directly related with Radon measurement in the soil, taken at three stations in the area.. Radon measurements are performed indirectly by means γ-ray spectrometry of its radioactive progenies 214Pb and 214Bi (emitted at 351 keV and 609 keV, respectively). NaI(Tl) detectors have been installed at 1 m depth, at sites in vicinity of faults providing continuous real time data. Local meteorological records for atmospheric corrections are also continuously recorded. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model atmospheric thermal anomalies observed before strong events can be attributed to increased radon concentration. This is also supported by the statistical analysis of AVHRR/NOAA-18 satellite thermal infrared (TIR) daily records. A combined study of precursor's signals is expected to provide a reliable assessment of their ability on short-term forecasting.

  3. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

    PubMed Central

    Dixon, Timothy H.; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-01-01

    The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  4. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    PubMed

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-02

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

  5. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  6. Phenomenology as a resource for patients.

    PubMed

    Carel, Havi

    2012-04-01

    Patient support tools have drawn on a variety of disciplines, including psychotherapy, social psychology, and social care. One discipline that has not so far been used to support patients is philosophy. This paper proposes that a particular philosophical approach, phenomenology, could prove useful for patients, giving them tools to reflect on and expand their understanding of their illness. I present a framework for a resource that could help patients to philosophically examine their illness, its impact on their life, and its meaning. I explain the need for such a resource, provide philosophical grounding for it, and outline the epistemic and existential gains philosophy offers. Illness often begins as an intrusion on one's life but with time becomes a way of being. I argue that this transition impacts on core human features such as the experience of space and time, human abilities, and adaptability. It therefore requires philosophical analysis and response. The paper uses ideas from Husserl and Merleau-Ponty to present such a response in the form of a phenomenological toolkit for patients. The toolkit includes viewing illness as a form of phenomenological reduction, thematizing illness, and examining illness as altering the ill person's being in the world. I suggest that this toolkit could be offered to patients as a workshop, using phenomenological concepts, texts, and film clips to reflect on illness. I conclude by arguing that examining illness as a limit case of embodied existence deepens our understanding of phenomenology.

  7. The Domain-Specificity of Creativity: Insights from New Phenomenology

    ERIC Educational Resources Information Center

    Julmi, Christian; Scherm, Ewald

    2015-01-01

    The question of the domain-specificity of creativity represents one of the key questions in creativity research. This article contributes to the discussion by applying insights from "new phenomenology," which is a phenomenological movement from Germany initiated by philosopher Hermann Schmitz. The findings of new phenomenology suggest…

  8. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    NASA Technical Reports Server (NTRS)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  9. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Herman, Matthew W.; Barnhart, William D.; Furlong, Kevin P.; Riquelme, Sebástian; Benz, Harley M.; Bergman, Eric; Barrientos, Sergio; Earle, Paul S.; Samsonov, Sergey

    2014-01-01

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile which had not ruptured in a megathrust earthquake since a M ~8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March–April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  10. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake.

    PubMed

    Hayes, Gavin P; Herman, Matthew W; Barnhart, William D; Furlong, Kevin P; Riquelme, Sebástian; Benz, Harley M; Bergman, Eric; Barrientos, Sergio; Earle, Paul S; Samsonov, Sergey

    2014-08-21

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which had not ruptured in a megathrust earthquake since a M ∼8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March-April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  11. Earthquakes: Predicting the unpredictable?

    USGS Publications Warehouse

    Hough, Susan E.

    2005-01-01

    The earthquake prediction pendulum has swung from optimism in the 1970s to rather extreme pessimism in the 1990s. Earlier work revealed evidence of possible earthquake precursors: physical changes in the planet that signal that a large earthquake is on the way. Some respected earthquake scientists argued that earthquakes are likewise fundamentally unpredictable. The fate of the Parkfield prediction experiment appeared to support their arguments: A moderate earthquake had been predicted along a specified segment of the central San Andreas fault within five years of 1988, but had failed to materialize on schedule. At some point, however, the pendulum began to swing back. Reputable scientists began using the "P-word" in not only polite company, but also at meetings and even in print. If the optimism regarding earthquake prediction can be attributed to any single cause, it might be scientists' burgeoning understanding of the earthquake cycle.

  12. Curriculum as Post-Intentional Phenomenological Text: Working along the Edges and Margins of Phenomenology Using Post-Structuralist Ideas

    ERIC Educational Resources Information Center

    Vagle, Mark D.

    2015-01-01

    In this article, I experiment along the edges and margins of the phenomenological notion of intentionality using the Deleuzoguattarian concepts of multiplicity and line of flight. Working from Pinar et al.'s anticipation that phenomenology would undergo discursive shifts tending towards the post-structural, I theorize curriculum as…

  13. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    PubMed

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  14. Simultaneous infrasonic, seismic, magnetic and ionospheric observations in an earthquake epicentre

    NASA Astrophysics Data System (ADS)

    Laštovička, J.; Baše, J.; Hruška, F.; Chum, J.; Šindelářová, T.; Horálek, J.; Zedník, J.; Krasnov, V.

    2010-10-01

    Various pre-seismic and co-seismic effects have been reported in the literature in the solid Earth, hydrosphere, atmosphere, electric/magnetic field and in the ionosphere. Some of the effects observed above the surface, particularly some of the pre-seismic effects, are still a matter of debate. Here we analyze the co-seismic effects of a relatively weak earthquake of 28 October 2008, which was a part of an earthquake swarm in the westernmost region of the Czech Republic. Special attention is paid to unique measurements of infrasonic phenomena. As far as we know, these have been the first infrasonic measurements during earthquake in the epicentre zone. Infrasonic oscillations (˜1-12 Hz) in the epicentre region appear to be excited essentially by the vertical seismic oscillations. The observed oscillations are real epicentral infrasound not caused by seismic shaking of the instruments or by meteorological phenomena. Seismo-infrasonic oscillations observed 155 km apart from the epicentre were excited in situ by seismic waves. No earthquake-related infrasonic effects have been observed in the ionosphere. Necessity to make vibration tests of instruments is pointed out in order to be sure that observed effects are not effects of mechanical shaking of the instrument.

  15. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-07-01

    The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.

  16. On "being inspired" by Husserl's Phenomenology: reflections on Omery's exposition of phenomenology as a method of nursing research.

    PubMed

    Porter, E J

    1998-09-01

    The impact of Omery's article, "Phenomenology: A Method for Nursing Research," on nursing science is appraised. In particular, the influence of her emphasis on "being inspired" was compared with that of her detailed reviews of psychological phenomenologic methods. The author's experience of "being inspired" by Husserl's book, Ideas, is described. The author also discusses the tapping of this resource during three phases of her development as a researcher: (1) appraising methods derived from Husserl's phenomenology; (2) spelling out an approach, with help; and (3) "making clearer while glancing-toward." Omery's proposed linkage between philosophic inspiration and methodologic development is highlighted as a challenge to nurse researchers.

  17. Sour Fruits on the Trail: Renewing Phenomenological Practice

    PubMed Central

    De Monticelli, Roberta; Simionescu-Panait, Andrei

    2015-01-01

    This summer, Europe’s Journal of Psychology hosts a fruitful discussion about phenomenology, its method, the possibilities of application in today's context and its current troubled waters stemming from recent historical-ideological debates. Prof. Roberta De Monticelli offers lush and informative answers to provocative issues like overdriving the epoché, Heidegger's dark undertones, the relation between pedagogy and authorship in phenomenology and the idea of filtering politics through Husserlian phenomenology. PMID:27247664

  18. Injection-induced earthquakes

    USGS Publications Warehouse

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  19. Phenomenological aspects of the cognitive rumination construct.

    PubMed

    Meyer, Leonardo Fernandez; Taborda, José Geraldo Vernet; da Costa, Fábio Antônio; Soares, Ana Luiza Alfaya Galego; Mecler, Kátia; Valença, Alexandre Martins

    2015-01-01

    To evaluate the importance of phenomenological aspects of the cognitive rumination (CR) construct in current empirical psychiatric research. We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE), SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology. Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models. Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.

  20. Earthquakes; January-February 1982

    USGS Publications Warehouse

    Person, W.J.

    1982-01-01

    In the United States, a number of earthquakes occurred, but only minor damage was reported. Arkansas experienced a swarm of earthquakes beginning on January 12. Canada experienced one of its strongest earthquakes in a number of years on January 9; this earthquake caused slight damage in Maine. 

  1. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    PubMed

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  2. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California

    PubMed Central

    Lee, Ya-Ting; Turcotte, Donald L.; Holliday, James R.; Sachs, Michael K.; Rundle, John B.; Chen, Chien-Chih; Tiampo, Kristy F.

    2011-01-01

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M≥4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M≥4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor–Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most “successful” in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts. PMID:21949355

  3. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  4. Sport Sciences and the Promise of Phenomenology: Philosophy, Method, and Insight.

    ERIC Educational Resources Information Center

    Kerry, Daniel S.; Armour, Kathleen M.

    2000-01-01

    Examines how phenomenology might make a more significant contribution to knowledge and understanding within sport-related research. The paper discusses the philosophical roots of phenomenology; highlights the key contributions of and differences between Husserl and Heidegger; examines phenomenology as philosophy and phenomenology as method; and…

  5. Earthquakes, September-October 1986

    USGS Publications Warehouse

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  6. Post earthquake recovery in natural gas systems--1971 San Fernando Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.T. Jr.

    1983-01-01

    In this paper a concise summary of the post earthquake investigations for the 1971 San Fernando Earthquake is presented. The effects of the earthquake upon building and other above ground structures are briefly discussed. Then the damages and subsequent repairs in the natural gas systems are reported.

  7. Earthquakes; July-August, 1978

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    Earthquake activity during this period was about normal. Deaths from earthquakes were reported from Greece and Guatemala. Three major earthquakes (magnitude 7.0-7.9) occurred in Taiwan, Chile, and Costa Rica. In the United States, the most significant earthquake was a magnitude 5.6 on August 13 in southern California. 

  8. Improvements of the offshore earthquake locations in the Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, Ta-Yi; Hsu, Hsin-Chih

    2017-04-01

    Since 2014 the Earthworm Based Earthquake Alarm Reporting (eBEAR) system has been operated and been used to issue warnings to schools. In 2015 the system started to provide warnings to the public in Taiwan via television and the cell phone. Online performance of the eBEAR system indicated that the average reporting times afforded by the system are approximately 15 and 28 s for inland and offshore earthquakes, respectively. The eBEAR system in average can provide more warning time than the current EEW system (3.2 s and 5.5 s for inland and offshore earthquakes, respectively). However, offshore earthquakes were usually located poorly because only P-wave arrivals were used in the eBEAR system. Additionally, in the early stage of the earthquake early warning system, only fewer stations are available. The poor station coverage may be a reason to answer why offshore earthquakes are difficult to locate accurately. In the Geiger's inversion procedure of earthquake location, we need to put an initial hypocenter and origin time into the location program. For the initial hypocenter, we defined some test locations on the offshore area instead of using the average of locations from triggered stations. We performed 20 programs concurrently running the Geiger's method with different pre-defined initial position to locate earthquakes. We assume that if the program with the pre-defined initial position is close to the true earthquake location, during the iteration procedure of the Geiger's method the processing time of this program should be less than others. The results show that using pre-defined locations for trial-hypocenter in the inversion procedure is able to improve the accurate of offshore earthquakes. Especially for EEW system, in the initial stage of the EEW system, only use 3 or 5 stations to locate earthquakes may lead to bad results because of poor station coverage. In this study, the pre-defined trial-locations provide a feasible way to improve the estimations of

  9. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    NASA Astrophysics Data System (ADS)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  10. Earthquake-Induced Building Damage Assessment Based on SAR Correlation and Texture

    NASA Astrophysics Data System (ADS)

    Gong, Lixia; Li, Qiang; Zhang, Jingfa

    2016-08-01

    Comparing with optical Remote Sensing, the Synthetic Aperture Radar (SAR) has unique advantages as applied to seismic hazard monitoring and evaluation. SAR can be helpful in the whole process of after an earthquake, which can be divided into three stages. On the first stage, pre-disaster imagery provides history information of the attacked area. On the mid-term stage, up-to-date thematic maps are provided for disaster relief. On the later stage, information is provided to assist secondary disaster monitoring, post- disaster assessment and reconstruction second stage. In recent years, SAR has become an important data source of earthquake damage analysis and evaluation.Correlation between pre- and post-event SAR images is considered to be related with building damage. There will be a correlation decrease when the building collapsed in a shock. Whereas correlation decrease does not definitely indicate building changes. Correlation is also affected by perpendicular baseline, the ground coverage type, atmospheric change and other natural conditions, data processing and other factors. Building samples in the earthquake are used to discriminate the relation between damage degree and SAR correlation.

  11. Some Phenomenological Aspects of the Peak Experience

    ERIC Educational Resources Information Center

    Rosenblatt, Howard S.; Bartlett, Iris

    1976-01-01

    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  12. Application of GPS Technologies to study Pre-earthquake processes. A review and future prospects

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Liu, J. Y. G.; Ouzounov, D.; Hernandez-Pajares, M.; Hattori, K.; Krankowski, A.; Zakharenkova, I.; Cherniak, I.

    2016-12-01

    We present the progress reached by the GPS TEC technologies in study of pre-seismic anomalies in the ionosphere appearing few days before the strong earthquakes. Starting from the first case studies such as 17 August 1999 M7.6 Izmit earthquake in Turkey the technology has been developed and converted into the global near real-time monitoring of seismo-ionospheric effects which is used now in the multiparameter nowcast and forecast of the strong earthquakes. Development of the techniques of the seismo-ionospheric anomalies identification was carried out in parallel with the development of the physical mechanism explaining these anomalies generation. It was established that the seismo-ionospheric anomalies have a self-similarity property, are dependent on the local time and are persistent at least for 4 hours, deviation from undisturbed level could be both positive and negative depending on the leading time (in days) to the moment of impending earthquake and from longitude of anomaly in relation to the epicenter longitude. Low latitude and near equatorial earthquakes demonstrate the magnetically conjugated effect, while the middle and high latitude earthquakes demonstrate the single anomaly over the earthquake preparation zone. From the anomalies morphology the physical mechanism was derived within the framework of the more complex Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling concept. In addition to the multifactor analysis of the GPS TEC time series the GIM MAP technology was applied also clearly showing the seismo-ionospheric anomalies locality and their spatial size correspondence to the Dobrovolsky determination of the earthquake preparation zone radius. Application of ionospheric tomography techniques permitted to study not only the total electron content variations but also the modification of the vertical distribution of electron concentration in the ionosphere before earthquakes. The statistical check of the ionospheric precursors passed the

  13. Investigation of the TEC Changes in the vicinity of the Earthquake Preparation Zone

    NASA Astrophysics Data System (ADS)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    Recently, investigation of the anomalies in the ionosphere before the earthquake has taken too much attention. The Total Electron Content (TEC) data has been used to monitor the changes in the ionosphere. Hence, researchers use the TEC changes before the strong earthquakes to monitor the anomalies in the ionosphere. In this study, the GPS-TEC variations, obtained from the GNSS stations in the vicinity of the earthquake preparation zone, was investigated. Nidra earthquake (M6.5), which was occurred on the north-west of Greece on November 17th, 2015 (38.755°N, 20.552°E), was selected for this study. First, the equation proposed by Dobrovolsky et al. (1979) was used to calculate the radius of the earthquake preparation zone. International GNSS Service (IGS) stations in the region were classified with respect to the radius of the earthquake preparation zone. The observation data of each station was obtained from the Crustal Dynamics Data and Information System (CDDIS) archive to estimate GPS-TEC variations between 16 October 2015 and 16 December 2015. Global Ionosphere Maps (GIM) products, obtained from the IGS, was used to check the robustness of the GPS-TEC variations. Possible anomalies were analyzed for each GNSS station by using the 15-day moving median method. In order to analyze these pre-earthquake ionospheric anomalies, we investigated three indices (Kp, F10.7 and Dst) related to the space weather conditions between 16 October 2015 and 16 December 2015. Solar and geomagnetic indices were obtained from The Oceanic and Atmospheric Administration (NOAA), The Canadian Space Weather Forecast Centre (CSWFC), and the Data Analysis Center for Geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC). This study aims at investigating the possible effects of the earthquake on the TEC variations.

  14. Earthquakes; March-April 1975

    USGS Publications Warehouse

    Person, W.J.

    1975-01-01

    There were no major earthquakes (magnitude 7.0-7.9) in March or April; however, there were earthquake fatalities in Chile, Iran, and Venezuela and approximately 35 earthquake-related injuries were reported around the world. In the United States a magnitude 6.0 earthquake struck the Idaho-Utah border region. Damage was estimated at about a million dollars. The shock was felt over a wide area and was the largest to hit the continental Untied States since the San Fernando earthquake of February 1971. 

  15. Catalog of earthquakes along the San Andreas fault system in Central California, July-September 1972

    USGS Publications Warehouse

    Wesson, R.L.; Meagher, K.L.; Lester, F.W.

    1973-01-01

    Numerous small earthquakes occur each day in the coast ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period July - September, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b, c, d). Catalogs for the first and second quarters of 1972 have been prepared by Wessan and others (1972 a & b). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 1254 earthquakes in Central California. Arrival times at 129 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 104 are telemetered stations operated by NCER. Readings from the remaining 25 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB), the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley, have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement it, by describing the seismicity of a portion of central California in much greater detail.

  16. Protecting your family from earthquakes: The seven steps to earthquake safety

    USGS Publications Warehouse

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  17. The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016

    NASA Astrophysics Data System (ADS)

    Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen

    2017-04-01

    Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.

  18. Pragmatic phenomenological types.

    PubMed

    Goranson, Ted; Cardier, Beth; Devlin, Keith

    2015-12-01

    We approach a well-known problem: how to relate component physical processes in biological systems to governing imperatives in multiple system levels. The intent is to further practical tools that can be used in the clinical context. An example proposes a formal type system that would support this kind of reasoning, including in machines. Our example is based on a model of the connection between a quality of mind associated with creativity and neuropsychiatric dynamics: constructing narrative as a form of conscious introspection, which allows the manipulation of one's own driving imperatives. In this context, general creativity is indicated by an ability to manage multiple heterogeneous worldviews simultaneously in a developing narrative. 'Narrative' in this context is framed as the organizing concept behind rational linearization that can be applied to metaphysics as well as modeling perceptive dynamics. Introspection is framed as the phenomenological 'tip' that allows a perceiver to be within experience or outside it, reflecting on and modifying it. What distinguishes the approach is the rooting in well founded but disparate disciplines: phenomenology, ontic virtuality, two-sorted geometric logics, functional reactive programming, multi-level ontologies and narrative cognition. This paper advances the work by proposing a type strategy within a two-sorted reasoning system that supports cross-ontology structure. The paper describes influences on this approach, and presents an example that involves phenotype classes and monitored creativity enhanced by both soft methods and transcranial direct-current stimulation. The proposed solution integrates pragmatic phenomenology, situation theory, narratology and functional programming in one framework. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  20. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part A, Prehistoric earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax, the maximum earthquake magnitude thought to be possible within a specified geographic region. This report is Part A of an Open-File Report that describes the construction of a global catalog of moderate to large earthquakes, from which one can estimate Mmax for most of the Central and Eastern United States and adjacent Canada. The catalog and Mmax estimates derived from it were used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. This Part A discusses prehistoric earthquakes that occurred in eastern North America, northwestern Europe, and Australia, whereas a separate Part B deals with historical events.

  1. The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.

    1999-01-01

    We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.

  2. Terahertz Systems Engineering: Detectors, Sources, Propagation, Phenomenology, Design and Analysis

    NASA Astrophysics Data System (ADS)

    Suen, Jonathan Ying-Yan

    The terahertz (THz) band, from 300 GHz to 20 THz, is the last remaining frontier of the electromagnetic spectrum. Fundamentally, the frequency is too high to use current electronic technologies, yet the photon energy is too low for optical systems. However, there is a rich set of phenomenology, science, and applications, which are only available with THz radiation. In order to exploit this, the THz engineer who is designing systems must be adept at integrating components with very limited performance into a system. This requires understanding and knowledge of a wide range of fields, including microwaves, infrared optics, material science, software development, atmospheric science, and the overall analysis and design of a system. Any THz system involves the sensing of some phenomena, which can be under the direct control of the engineer, such as in a communication system, or set by the laws of physics, such as in an astronomical telescope, or some variant in between. Thus, the design of such a system is fundamentally related to sensing science. Here, we have to consider detector and source technology, the propagation of radiation, target phenomenology, and the overall design and analysis of the system. This dissertation presents research in all of these areas. Specifically, in the field of THz phenomenology, I conducted a study to show the primary contrast mechanism in reflective biomedical imaging is water concentration. For source technology, I detail the development and characterization of photoconductive switches with record-breaking optical efficiency. In a separate study I developed a model which explains the complex photocarrier dynamics in fast-trapping THz photoconductive materials and show that high-frequency THz generation (>1 THz) is caused by beaching saturation. My work in detectors shows the design of a quasi-optical radar that exploits low 1/f noise Schottky diodes for detection of slow moving objects, useful for biomedical sensing of respiration and

  3. Catalog of earthquakes along the San Andreas fault system in Central California: January-March, 1972

    USGS Publications Warehouse

    Wesson, R.L.; Bennett, R.E.; Meagher, K.L.

    1973-01-01

    Numerous small earthquakes occur each day in the Coast Ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period January - March, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b,c,d). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 1,718 earthquakes in Central California. Of particular interest is a sequence of earthquakes in the Bear Valley area which contained single shocks with local magnitudes of S.O and 4.6. Earthquakes from this sequence make up roughly 66% of the total and are currently the subject of an interpretative study. Arrival times at 118 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 94 are telemetered stations operated by NCER. Readings from the remaining 24 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB); the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley,have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement it, by describing the

  4. Catalog of earthquakes along the San Andreas fault system in Central California, April-June 1972

    USGS Publications Warehouse

    Wesson, R.L.; Bennett, R.E.; Lester, F.W.

    1973-01-01

    Numerous small earthquakes occur each day in the coast ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period April - June, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b, c, d). A catalog for the first quarter of 1972 has been prepared by Wesson and others (1972). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 910 earthquakes in Central California. A substantial portion of the earthquakes reported in this catalog represents a continuation of the sequence of earthquakes in the Bear Valley area which began in February, 1972 (Wesson and others, 1972). Arrival times at 126 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 101 are telemetered stations operated by NCER. Readings from the remaining 25 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB); the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley, have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement

  5. Identification of Deep Earthquakes

    DTIC Science & Technology

    2010-09-01

    discriminants that will reliably separate small, crustal earthquakes (magnitudes less than about 4 and depths less than about 40 to 50 km) from small...characteristics on discrimination plots designed to separate nuclear explosions from crustal earthquakes. Thus, reliably flagging these small, deep events is...Further, reliably identifying subcrustal earthquakes will allow us to eliminate deep events (previously misidentified as crustal earthquakes) from

  6. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    PubMed

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  7. The use of phenomenology in mental health nursing research.

    PubMed

    Picton, Caroline Jane; Moxham, Lorna; Patterson, Christopher

    2017-12-18

    Historically, mental health research has been strongly influenced by the underlying positivism of the quantitative paradigm. Quantitative research dominates scientific enquiry and contributes significantly to understanding our natural world. It has also greatly benefitted the medical model of healthcare. However, the more literary, silent, qualitative approach is gaining prominence in human sciences research, particularly mental healthcare research. To examine the qualitative methodological assumptions of phenomenology to illustrate the benefits to mental health research of studying the experiences of people with mental illness. Phenomenology is well positioned to ask how people with mental illness reflect on their experiences. Phenomenological research is congruent with the principles of contemporary mental healthcare, as person-centred care is favoured at all levels of mental healthcare, treatment, service and research. Phenomenology is a highly appropriate and suitable methodology for mental health research, given it includes people's experiences and enables silent voices to be heard. This overview of the development of phenomenology informs researchers new to phenomenological enquiry. ©2017 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  8. Phenomenology tools on cloud infrastructures using OpenStack

    NASA Astrophysics Data System (ADS)

    Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.

    2013-04-01

    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.

  9. A Proton Flare Triggered the Mw 8.1 Chiapos Mexican Earthquake

    NASA Astrophysics Data System (ADS)

    Elfaki, H.; Yousef, S.

    2017-12-01

    In a 2015 Cairo University M.Sc. thesis by Sarah Khodairy, very strong earthquakes were found to be highly correlated with proton flares. Strange blue and green bright flashes of light across Mexico accompanied the 8th of September 2017 Mw 1.8 Chiapas earthquake. Those lights were contemporary with a solar proton flare. Those green and blue lights are indicative of the arrival of proton streams over Mexico and their interaction with atmospheric Oxygen and Nitrogen atoms respectively in analogy with aurora lights. The proton streams attacked the weak spots of tectonic plates where the Coscos plate is being subducted below the North American plate. It is suggested that they induced telluric electric currents in the ground and in the magma thus caused motion and more subduction in the tectonic plates. Such motion immediately trigged the Chiapas earthquake in the near vicinity. The Bz component of the interplanetary magnetic field was highly negative, a door was opened in the magnetosphere and the proton stream easily leaked inside and targeted Mexico. This proton flare was accompanied by coronal mass ejection and extremely strong X.9.3- class X-ray flare as well as magnetic storms. On the other hand, the 19th of September Mw 7.1 Puebla central Mexico earthquake was initiated by fast solar wind coronal hole stream. Such stream if they hit ground they cause earthquakes, if they hit narrow seas like the Red Sea they cause flash floods. However if they target Oceans they initiate hurricanes.

  10. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  11. Crowdsourced earthquake early warning.

    PubMed

    Minson, Sarah E; Brooks, Benjamin A; Glennie, Craig L; Murray, Jessica R; Langbein, John O; Owen, Susan E; Heaton, Thomas H; Iannucci, Robert A; Hauser, Darren L

    2015-04-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an M w (moment magnitude) 7 earthquake on California's Hayward fault, and real data from the M w 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  12. Crowdsourced earthquake early warning

    PubMed Central

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing. PMID:26601167

  13. Earthquakes, November-December 1992

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    There were two major earthquakes (7.0≤M<8.0) during the last two months of the year, a magntidue 7.5 earthquake on December 12 in the Flores region, Indonesia, and a magnitude 7.0 earthquake on December 20 in the Banda Sea. Earthquakes caused fatalities in China and Indonesia. The greatest number of deaths (2,500) for the year occurred in Indonesia. In Switzerland, six people were killed by an accidental explosion recoreded by seismographs. In teh United States, a magnitude 5.3 earthquake caused slight damage at Big Bear in southern California. 

  14. Crowdsourced earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  15. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  16. Individualized assessment and phenomenological psychology.

    PubMed

    Fischer, C T

    1979-04-01

    Although there is growing openness to tailoring of assessment procedures and reports to the particular client, these efforts typically have been sporadic and incomplete. This article reviews a systematic approach to individualized assessment, one whose practices are referred to as collaborative, contextual, and interventional. Clinical examples of these practices are presented in terms of their grounding in phenomenological psychology. Prior to that, themes such as intentionality, situatedness, dialectics, structuralism, and hermeneutics are introduced briefly. Phenomenological psychology as such is not seen here as necessary for all individualized practices, but it is seen as a critical touchpoint for development of theory and further practices.

  17. Prototype operational earthquake prediction system

    USGS Publications Warehouse

    Spall, Henry

    1986-01-01

    An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.

  18. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    PubMed

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  19. Invesion of tsunami height using GPS TEC data. The case of the 2012 Haida Gwaii tsunami and Earthquake.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Lognonne, P. H.; Rolland, L. M.

    2015-12-01

    Large earthquakes (i.eM>6) and tsunamis associated are responsible for ionospheric perturbations. These perturbations can be observed in the total electron content (TEC) measured from multi- frequency Global Navigation Satellite systems (GNSS) data (e.g GPS). We will focus on the studies of the Haïda Gwaii earthquake and tsunami case. It happened the 28 october 2012 along the Queen Charlotte fault of the Canada Western Coast. First, we compare GPS data of perturbation TEC to our model. We model the TEC perturbation in several steps. (1) First, we compute tsunami normal modes modes in atmosphere in using PREM model with 4.7km of oceanic layer. (2) We sum all the tsunami modes to obtain the neutral displacement. (3) We couple the ionosphere with the neutral atmosphere. (4) We integrate the perturbed electron density along each satellite station line of sight. At last, we present first results of TEC inversion in order to retrieve the waveform of the tsunami. This inversion has been done on synthetics data assuming Queen Charlotte Earthquake and Tsunami can be considered as a point source in far field.

  20. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  1. Earthquakes, November-December 1973

    USGS Publications Warehouse

    Person, W.J.

    1974-01-01

    Other parts of the world suffered fatalities and significant damage from earthquakes. In Iran, an earthquake killed one person, injured many, and destroyed a number of homes. Earthquake fatalities also occurred in the Azores and in Algeria. 

  2. Different styles of postseismic deformation after the 2013 M7.7 Balochistan earthquake in Pakistan and the 2010 M7.2 El Mayor-Cucapah earthquake in Mexico

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Yague-Martinez, N.; Motagh, M.; Gonzalez-Ortega, J. A.; Huang, M. H.; Burgmann, R.; Freed, A. M.; Samsonov, S. V.

    2014-12-01

    We study postseismic deformation after the Mw 7.7 earthquake in the Balochistan region of western Pakistan on 24 September 2013 and the Mw 7.2 El Mayor-Cucapah (EMC) earthquake in Baja California of northern Mexico on 4 April 2010. Pakistan InSAR measurements from the German TerraSAR-X (TSX) and Canadian RADARSAT-2 (RS2) satellites include TSX narrow stripmap beams on a descending track, RS2 wide strip modes, and TSX wide-swath ScanSAR images on an ascending track, specially acquired with interferometric alignment of ScanSAR bursts. For the EMC earthquake, InSAR includes Envisat, ALOS, and RS2 satellites and NASA/JPL UAVSAR airborne InSAR, with piece-wise time coverage. Plate Boundary Observatory acquires continuous GPS data and others collect campaign GPS. Interferograms show significant afterslip on both main ruptures in the first weeks and months, not masked by the atmospheric effects. Balochistan shallow afterslip reaches at least 10 cm in 2-4 months in the same area as the largest coseismic slip, but less near the aftershock activity. Rapid afterslip was observed primarily at the ends of the EMC mainshock rupture where the strike changes, with magnitudes up to 30 cm. Large variations of tropospheric water vapor complicate measurement of small long-wavelength deformation so we do time series analysis. We expect viscoelastic relaxation after these two strike-slip earthquakes to differ due to completely opposite tectonic settings: EMC earthquake in the Salton Trough rift and fast-moving strike-slip system, where crust and lithosphere are thin and hot with very shallow asthenosphere, and Balochistan earthquake in the shortening Makran accretional prism with much slower strike-slip deformation rates and cold and thick lithosphere of the subducting Arabian plate directly beneath it, so asthenosphere is much deeper. Studies have found rapid and large viscoelastic relaxation for the EMC quake, but we don't expect measurable relaxation in the Balochistan area in the

  3. Comparative study of earthquake-related and non-earthquake-related head traumas using multidetector computed tomography

    PubMed Central

    Chu, Zhi-gang; Yang, Zhi-gang; Dong, Zhi-hui; Chen, Tian-wu; Zhu, Zhi-yu; Shao, Heng

    2011-01-01

    OBJECTIVE: The features of earthquake-related head injuries may be different from those of injuries obtained in daily life because of differences in circumstances. We aim to compare the features of head traumas caused by the Sichuan earthquake with those of other common head traumas using multidetector computed tomography. METHODS: In total, 221 patients with earthquake-related head traumas (the earthquake group) and 221 patients with other common head traumas (the non-earthquake group) were enrolled in our study, and their computed tomographic findings were compared. We focused the differences between fractures and intracranial injuries and the relationships between extracranial and intracranial injuries. RESULTS: More earthquake-related cases had only extracranial soft tissue injuries (50.7% vs. 26.2%, RR = 1.9), and fewer cases had intracranial injuries (17.2% vs. 50.7%, RR = 0.3) compared with the non-earthquake group. For patients with fractures and intracranial injuries, there were fewer cases with craniocerebral injuries in the earthquake group (60.6% vs. 77.9%, RR = 0.8), and the earthquake-injured patients had fewer fractures and intracranial injuries overall (1.5±0.9 vs. 2.5±1.8; 1.3±0.5 vs. 2.1±1.1). Compared with the non-earthquake group, the incidences of soft tissue injuries and cranial fractures combined with intracranial injuries in the earthquake group were significantly lower (9.8% vs. 43.7%, RR = 0.2; 35.1% vs. 82.2%, RR = 0.4). CONCLUSION: As depicted with computed tomography, the severity of earthquake-related head traumas in survivors was milder, and isolated extracranial injuries were more common in earthquake-related head traumas than in non-earthquake-related injuries, which may have been the result of different injury causes, mechanisms and settings. PMID:22012045

  4. Earthquakes, May-June 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    In the United States, a magnitude 5.8 earthquake in southern California on June 28 killed two people and caused considerable damage. Strong earthquakes hit Alaska on May 1 and May 30; the May 1 earthquake caused some minor damage. 

  5. Using Phenomenology to Conduct Environmental Education Research: Experience and Issues

    ERIC Educational Resources Information Center

    Nazir, Joanne

    2016-01-01

    Recently, I applied a phenomenological methodology to study environmental education at an outdoor education center. In this article, I reflect on my experience of doing phenomenological research to highlight issues researchers may want to consider in using this type of methodology. The main premise of the article is that phenomenology, with its…

  6. Infrasound associated with the deep M 7.3 northeastern China earthquake of June 28, 2002

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Kim, Geunyoung; Le Pichon, Alexis

    2013-02-01

    On 28 June, 2002, a deep-focus (566 km) earthquake with a moment magnitude of 7.3 occurred in the China-Russia-North Korea border region. Despite its deep focus, the earthquake produced an infrasound signal that was observed by the remote infrasound array (CHNAR), 682 km from the epicenter, in South Korea. Coherent infrasound signals were detected sequentially at the receiver, with different arrival times and azimuths indicating that the signals were generated both near the epicenter and elsewhere. On the basis of the azimuth, arrival time measurements, and atmospheric ray simulation results, the source area of the infrasonic signals that arrived earlier were located along the eastern coastal areas of North Korea and Russia, whereas later signals were sourced throughout Japan. The geographically-constrained, and discrete, distribution of the sources identified is explained by infrasound propagation effects caused by a westward zonal wind that was active when the event occurred. The amplitude of the deep quake's signal was equivalent to that of a shallow earthquake with a magnitude of approximately 5. This study expands the breadth of seismically-associated infrasound to include deep earthquakes, and also supports the possibility that infrasound measurements could help determine the depth of earthquakes.

  7. Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L.

    2018-01-01

    Nowcasting is a new method of statistically classifying seismicity and seismic risk (Rundle et al. 2016). In this paper, the method is applied to the induced seismicity at the Geysers geothermal region in California and the induced seismicity due to fluid injection in Oklahoma. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say M_{λ } ≥ 4, and one small say M_{σ } ≥ 2. The method utilizes the number of small earthquakes that occurs between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that has occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of M_{σ } ≥ 2.75 earthquakes in Oklahoma to nowcast the number of M_{λ } ≥ 4.0 earthquakes in Oklahoma. The applicability of the scaling is illustrated during the rapid build-up of injection-induced seismicity between 2012 and 2016, and the subsequent reduction in seismicity associated with a reduction in fluid injections. The same method is applied to the geothermal-induced seismicity at the Geysers, California, for comparison.

  8. The 1906 earthquake and a century of progress in understanding earthquakes and their hazards

    USGS Publications Warehouse

    Zoback, M.L.

    2006-01-01

    The 18 April 1906 San Francisco earthquake killed nearly 3000 people and left 225,000 residents homeless. Three days after the earthquake, an eight-person Earthquake Investigation Commission composed of 25 geologists, seismologists, geodesists, biologists and engineers, as well as some 300 others started work under the supervision of Andrew Lawson to collect and document physical phenomena related to the quake . On 31 May 1906, the commission published a preliminary 17-page report titled "The Report of the State Earthquake Investigation Commission". The report included the bulk of the geological and morphological descriptions of the faulting, detailed reports on shaking intensity, as well as an impressive atlas of 40 oversized maps and folios. Nearly 100 years after its publication, the Commission Report remains a model for post-earthquake investigations. Because the diverse data sets were so complete and carefully documented, researchers continue to apply modern analysis techniques to learn from the 1906 earthquake. While the earthquake marked a seminal event in the history of California, it served as impetus for the birth of modern earthquake science in the United States.

  9. Earthquakes; January-February, 1979

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    The first major earthquake (magnitude 7.0 to 7.9) of the year struck in southeastern Alaska in a sparsely populated area on February 28. On January 16, Iran experienced the first destructive earthquake of the year causing a number of casualties and considerable damage. Peru was hit by a destructive earthquake on February 16 that left casualties and damage. A number of earthquakes were experienced in parts of the Untied States, but only minor damage was reported. 

  10. Preliminary results on earthquake triggered landslides for the Haiti earthquake (January 2010)

    NASA Astrophysics Data System (ADS)

    van Westen, Cees; Gorum, Tolga

    2010-05-01

    This study presents the first results on an analysis of the landslides triggered by the Ms 7.0 Haiti earthquake that occurred on January 12, 2010 in the boundary region of the Pacific Plate and the North American plate. The fault is a left lateral strike slip fault with a clear surface expression. According to the USGS earthquake information the Enriquillo-Plantain Garden fault system has not produced any major earthquake in the last 100 years, and historical earthquakes are known from 1860, 1770, 1761, 1751, 1684, 1673, and 1618, though none of these has been confirmed in the field as associated with this fault. We used high resolution satellite imagery available for the pre and post earthquake situations, which were made freely available for the response and rescue operations. We made an interpretation of all co-seismic landslides in the epicentral area. We conclude that the earthquake mainly triggered landslide in the northern slope of the fault-related valley and in a number of isolated area. The earthquake apparently didn't trigger many visible landslides within the slum areas on the slopes in the southern part of Port-au-Prince and Carrefour. We also used ASTER DEM information to relate the landslide occurrences with DEM derivatives.

  11. Turkish Compulsory Earthquake Insurance (TCIP)

    NASA Astrophysics Data System (ADS)

    Erdik, M.; Durukal, E.; Sesetyan, K.

    2009-04-01

    Through a World Bank project a government-sponsored Turkish Catastrophic Insurance Pool (TCIP) is created in 2000 with the essential aim of transferring the government's financial burden of replacing earthquake-damaged housing to international reinsurance and capital markets. Providing coverage to about 2.9 Million homeowners TCIP is the largest insurance program in the country with about 0.5 Billion USD in its own reserves and about 2.3 Billion USD in total claims paying capacity. The total payment for earthquake damage since 2000 (mostly small, 226 earthquakes) amounts to about 13 Million USD. The country-wide penetration rate is about 22%, highest in the Marmara region (30%) and lowest in the south-east Turkey (9%). TCIP is the sole-source provider of earthquake loss coverage up to 90,000 USD per house. The annual premium, categorized on the basis of earthquake zones type of structure, is about US90 for a 100 square meter reinforced concrete building in the most hazardous zone with 2% deductible. The earthquake engineering related shortcomings of the TCIP is exemplified by fact that the average rate of 0.13% (for reinforced concrete buildings) with only 2% deductible is rather low compared to countries with similar earthquake exposure. From an earthquake engineering point of view the risk underwriting (Typification of housing units to be insured, earthquake intensity zonation and the sum insured) of the TCIP needs to be overhauled. Especially for large cities, models can be developed where its expected earthquake performance (and consequently the insurance premium) can be can be assessed on the basis of the location of the unit (microzoned earthquake hazard) and basic structural attributes (earthquake vulnerability relationships). With such an approach, in the future the TCIP can contribute to the control of construction through differentiation of premia on the basis of earthquake vulnerability.

  12. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  13. The cruel and unusual phenomenology of solitary confinement.

    PubMed

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a "cruel and unusual punishment," there is no consensus on the definition of the term "cruel" in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of "cruelty" by looking specifically at the phenomenology and psychology of solitary confinement.

  14. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  15. Sun, Moon and Earthquakes

    NASA Astrophysics Data System (ADS)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  16. Detection of Traveling Ionospheric Disturbances Induced by 2010 Mindanao Earthquakes

    NASA Astrophysics Data System (ADS)

    Shahbazi, A.; Park, J.; Huang, C.

    2017-12-01

    Earthquakes precipitate anomalous variations in the concentration of free electrons/ions in the ionosphere being known as the Traveling Ionospheric Disturbance (TID). The TIDs can be detected from the Total Electron Content (TEC), which can be extracted from the ionospheric delay along the ray path of the GNSS signal between a satellite and a receiver. In this study, we utilized the GNSS-derived TEC observed by Communication/Navigation Outage Forecasting System (C/NOFS), which is a Low Earth Orbit (LEO) satellite. As a case study, we detected the ionospheric perturbations triggered by 2010 Mindanao earthquakes in the Moro Gulf, southern Philippines. Since this sequence of the earthquakes was occurred in depths of about 600 km, the low detectability of TID signature was expected while the magnitude of the foreshock, primary shock and aftershock were of 7.3, 7.6, and 7.5 Mb, respectively. Hence, we introduced a novel filtering scheme to assess the performance of space-based TEC observations in identification of earthquake-induced TIDs as well as to cope with the challenge of investigating deep subsequent earthquakes. The proposed approach suppresses the dominant trend of TEC by Hodrick-Prescott (H-P) Filter, which identifies the extremums of the remained signal as the potential TIDs and associates them to the seismic waves. Considering the propagation mechanism of the seismic waves given in the literatures that the wave propagates upward from the earthquake epicenter to the upper atmosphere, and then, moves horizontally through the ionosphere, we applied the first order linear regression model to estimate the propagation velocity of TIDs. Our experimental result demonstrated the vertical propagation velocity of 0.980 km/s and the horizontal propagation velocity through the ionosphere of 1.066 km/s with the std. of 0.364 km/s. The correlation coefficient of the detected TIDs in this model is 0.78 that illustrates the detected TIDs are well correlated with the event

  17. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  18. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States

    USGS Publications Warehouse

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.

    2011-01-01

    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  19. Important Earthquake Engineering Resources

    Science.gov Websites

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research Engineering Resources Site Map Search Important Earthquake Engineering Resources - American Concrete Institute Motion Observation Systems (COSMOS) - Consortium of Universities for Research in Earthquake Engineering

  20. Repeating Earthquakes Following an Mw 4.4 Earthquake Near Luther, Oklahoma

    NASA Astrophysics Data System (ADS)

    Clements, T.; Keranen, K. M.; Savage, H. M.

    2015-12-01

    An Mw 4.4 earthquake on April 16, 2013 near Luther, OK was one of the earliest M4+ earthquakes in central Oklahoma, following the Prague sequence in 2011. A network of four local broadband seismometers deployed within a day of the Mw 4.4 event, along with six Oklahoma netquake stations, recorded more than 500 aftershocks in the two weeks following the Luther earthquake. Here we use HypoDD (Waldhauser & Ellsworth, 2000) and waveform cross-correlation to obtain precise aftershock locations. The location uncertainty, calculated using the SVD method in HypoDD, is ~15 m horizontally and ~ 35 m vertically. The earthquakes define a near vertical, NE-SW striking fault plane. Events occur at depths from 2 km to 3.5 km within the granitic basement, with a small fraction of events shallower, near the sediment-basement interface. Earthquakes occur within a zone of ~200 meters thickness on either side of the best-fitting fault surface. We use an equivalency class algorithm to identity clusters of repeating events, defined as event pairs with median three-component correlation > 0.97 across common stations (Aster & Scott, 1993). Repeating events occur as doublets of only two events in over 50% of cases; overall, 41% of earthquakes recorded occur as repeating events. The recurrence intervals for the repeating events range from minutes to days, with common recurrence intervals of less than two minutes. While clusters occur in tight dimensions, commonly of 80 m x 200 m, aftershocks occur in 3 distinct ~2km x 2km-sized patches along the fault. Our analysis suggests that with rapidly deployed local arrays, the plethora of ~Mw 4 earthquakes occurring in Oklahoma and Southern Kansas can be used to investigate the earthquake rupture process and the role of damage zones.

  1. Earthquake Hazards.

    ERIC Educational Resources Information Center

    Donovan, Neville

    1979-01-01

    Provides a survey and a review of earthquake activity and global tectonics from the advancement of the theory of continental drift to the present. Topics include: an identification of the major seismic regions of the earth, seismic measurement techniques, seismic design criteria for buildings, and the prediction of earthquakes. (BT)

  2. Earthquakes, May-June 1981

    USGS Publications Warehouse

    Person, W.J.

    1981-01-01

    The months of May and June were somewhat quiet, seismically speaking. There was one major earthquake (7.0-7.9) off the west coast of South Island, New Zealand. The most destructive earthquake during this reporting period was in southern Iran on June 11 which caused fatalities and extensive damage. Peru also experienced a destructive earthquake on June 22 which caused fatalities and damage. In the United States, a number of earthquakes were experienced, but none caused significant damage. 

  3. ViscoSim Earthquake Simulator

    USGS Publications Warehouse

    Pollitz, Fred

    2012-01-01

    Synthetic seismicity simulations have been explored by the Southern California Earthquake Center (SCEC) Earthquake Simulators Group in order to guide long‐term forecasting efforts related to the Unified California Earthquake Rupture Forecast (Tullis et al., 2012a). In this study I describe the viscoelastic earthquake simulator (ViscoSim) of Pollitz, 2009. Recapitulating to a large extent material previously presented by Pollitz (2009, 2011) I describe its implementation of synthetic ruptures and how it differs from other simulators being used by the group.

  4. Earthquake damage orientation to infer seismic parameters in archaeological sites and historical earthquakes

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel

    2018-01-01

    Studies to provide information concerning seismic parameters and seismic sources of historical and archaeological seismic events are used to better evaluate the seismic hazard of a region. This is of especial interest when no surface rupture is recorded or the seismogenic fault cannot be identified. The orientation pattern of the earthquake damage (ED) (e.g., fallen columns, dropped key stones) that affected architectonic elements of cities after earthquakes has been traditionally used in historical and archaeoseismological studies to infer seismic parameters. However, in the literature depending on the authors, the parameters that can be obtained are contradictory (it has been proposed: the epicenter location, the orientation of the P-waves, the orientation of the compressional strain and the fault kinematics) and authors even question these relations with the earthquake damage. The earthquakes of Lorca in 2011, Christchurch in 2011 and Emilia Romagna in 2012 present an opportunity to measure systematically a large number and wide variety of earthquake damage in historical buildings (the same structures that are used in historical and archaeological studies). The damage pattern orientation has been compared with modern instrumental data, which is not possible in historical and archaeoseismological studies. From measurements and quantification of the orientation patterns in the studied earthquakes, it is observed that there is a systematic pattern of the earthquake damage orientation (EDO) in the proximity of the seismic source (fault trace) (<10 km). The EDO in these earthquakes is normal to the fault trend (±15°). This orientation can be generated by a pulse of motion that in the near fault region has a distinguishable acceleration normal to the fault due to the polarization of the S-waves. Therefore, the earthquake damage orientation could be used to estimate the seismogenic fault trend of historical earthquakes studies where no instrumental data are available.

  5. Earthquakes, March-April, 1993

    USGS Publications Warehouse

    Person, Waverly J.

    1993-01-01

    Worldwide, only one major earthquake (7.0earthquake, a magnitude 7.2 shock, struck the Santa Cruz Islands region in the South Pacific on March 6. Earthquake-related deaths occurred in the Fiji Islands, China, and Peru.

  6. 2016 National Earthquake Conference

    Science.gov Websites

    Thank you to our Presenting Sponsor, California Earthquake Authority. What's New? What's Next ? What's Your Role in Building a National Strategy? The National Earthquake Conference (NEC) is a , state government leaders, social science practitioners, U.S. State and Territorial Earthquake Managers

  7. The music of earthquakes and Earthquake Quartet #1

    USGS Publications Warehouse

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  8. Earthquake triggering in southeast Africa following the 2012 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Neves, Miguel; Custódio, Susana; Peng, Zhigang; Ayorinde, Adebayo

    2018-02-01

    In this paper we present evidence of earthquake dynamic triggering in southeast Africa. We analysed seismic waveforms recorded at 53 broad-band and short-period stations in order to identify possible increases in the rate of microearthquakes and tremor due to the passage of teleseismic waves generated by the Mw8.6 2012 Indian Ocean earthquake. We found evidence of triggered local earthquakes and no evidence of triggered tremor in the region. We assessed the statistical significance of the increase in the number of local earthquakes using β-statistics. Statistically significant dynamic triggering of local earthquakes was observed at 7 out of the 53 analysed stations. Two of these stations are located in the northeast coast of Madagascar and the other five stations are located in the Kaapvaal Craton, southern Africa. We found no evidence of dynamically triggered seismic activity in stations located near the structures of the East African Rift System. Hydrothermal activity exists close to the stations that recorded dynamic triggering, however, it also exists near the East African Rift System structures where no triggering was observed. Our results suggest that factors other than solely tectonic regime and geothermalism are needed to explain the mechanisms that underlie earthquake triggering.

  9. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  10. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  11. Historical earthquake research in Austria

    NASA Astrophysics Data System (ADS)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  12. Unraveling earthquake stresses: Insights from dynamically triggered and induced earthquakes

    NASA Astrophysics Data System (ADS)

    Velasco, A. A.; Alfaro-Diaz, R. A.

    2017-12-01

    Induced seismicity, earthquakes caused by anthropogenic activity, has more than doubled in the last several years resulting from practices related to oil and gas production. Furthermore, large earthquakes have been shown to promote the triggering of other events within two fault lengths (static triggering), due to static stresses caused by physical movement along the fault, and also remotely from the passage of seismic waves (dynamic triggering). Thus, in order to understand the mechanisms for earthquake failure, we investigate regions where natural, induced, and dynamically triggered events occur, and specifically target Oklahoma. We first analyze data from EarthScope's USArray Transportable Array (TA) and local seismic networks implementing an optimized (STA/LTA) detector in order to develop local detection and earthquake catalogs. After we identify triggered events through statistical analysis, and perform a stress analysis to gain insight on the stress-states leading to triggered earthquake failure. We use our observations to determine the role of different transient stresses in contributing to natural and induced seismicity by comparing these stresses to regional stress orientation. We also delineate critically stressed regions of triggered seismicity that may indicate areas susceptible to earthquake hazards associated with sustained fluid injection in provinces of induced seismicity. Anthropogenic injection and extraction activity can alter the stress state and fluid flow within production basins. By analyzing the stress release of these ancient faults caused by dynamic stresses, we may be able to determine if fluids are solely responsible for increased seismic activity in induced regions.

  13. Earthquake triggering by seismic waves following the landers and hector mine earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.A.; Bodin, P.; Harris, R.A.

    2001-01-01

    The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake1-6. Here we quantify the spatial and temporal patterns of the seismicity rate changes7. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.

  14. The cruel and unusual phenomenology of solitary confinement

    PubMed Central

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a “cruel and unusual punishment,” there is no consensus on the definition of the term “cruel” in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of “cruelty” by looking specifically at the phenomenology and psychology of solitary confinement. PMID:24971072

  15. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    NASA Astrophysics Data System (ADS)

    Yao, Y. B.; Chen, P.; Zhang, S.; Chen, J. J.; Yan, F.; Peng, W. F.

    2012-03-01

    The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC) from the global ionosphere map (GIM). We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0-2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time). Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  16. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  17. Extending earthquakes' reach through cascading.

    PubMed

    Marsan, David; Lengliné, Olivier

    2008-02-22

    Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly. Here we show that this causal structure can be found probabilistically, with no a priori model nor parameterization. Large regional earthquakes are found to have a short direct influence in comparison to the overall aftershock sequence duration. Relative to these large mainshocks, small earthquakes collectively have a greater effect on triggering. Hence, cascade triggering is a key component in earthquake interactions.

  18. Limiting the effects of earthquakes on gravitational-wave interferometers

    USGS Publications Warehouse

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  19. Limiting the effects of earthquakes on gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-02-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  20. Merleau-Ponty's Phenomenology of Language and General Semantics.

    ERIC Educational Resources Information Center

    Lapointe, Francois H.

    A survey of Maurice Merleau-Ponty's views on the phenomenology of language yields insight into the basic semiotic nature of language. Merleau-ponty's conceptions stand in opposition to Saussure's linguistic postulations and Korzybski's scientism. That is, if language is studied phenomenologically, the acts of speech and gesture take on greater…

  1. Unspoken phenomena: using the photovoice method to enrich phenomenological inquiry.

    PubMed

    Plunkett, Robyn; Leipert, Beverly D; Ray, Susan L

    2013-06-01

    Photovoice is a powerful method that is gaining momentum in nursing research. As a relatively new method in nursing science, the situatedness of photovoice within or alongside various research methodologies in a single study remains in a stage of early development. The purpose of this paper is to discuss the photovoice method as a means to elicit phenomenological data when researching the lived experience. While the foundational bases of phenomenology and photovoice differ substantially, the argument presented in this paper suggests that the photovoice method can be successfully used in phenomenological inquiry provided that significant rigour checks are pursued. This includes reflecting upon the origins and understandings of both methodology and method to promote methodological congruency. Data collection and analysis approaches that contribute to phenomenological inquiry using the photovoice method in addition to rigour and ethical considerations are discussed. The use of data generated from photovoice in phenomenological inquiry may fill a void of understanding furnished by limitations of traditional phenomenological inquiry and of spoken language and can enhance understanding of the lived experience, which may not always be best understood by words alone. © 2012 John Wiley & Sons Ltd.

  2. A Multi-parametric Climatological Approach to Study the 2016 Amatrice-Norcia (Central Italy) Earthquake Preparatory Phase

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; De Santis, Angelo; Marchetti, Dedalo; Cianchini, Gianfranco

    2017-10-01

    Based on observations prior to earthquakes, recent theoretical considerations suggest that some geophysical quantities reveal abnormal changes that anticipate moderate and strong earthquakes, within a defined spatial area (the so-called Dobrovolsky area) according to a lithosphere-atmosphere-ionosphere coupling model. One of the possible pre-earthquake effects could be the appearance of some climatological anomalies in the epicentral region, weeks/months before the major earthquakes. In this paper, the period of 2 months preceding the Amatrice-Norcia (Central Italy) earthquake sequence, that started on 24 August 2016 with an M6 earthquake and a few months later produced other two major shocks (i.e. an M5.9 on 26 October and then an M6.5 on 30 October), was analyzed in terms of skin temperature, total column water vapour and total column of ozone, compared with the past 37-year trend. The novelty of the method stands in the way the complete time series is reduced, where also the possible effect of global warming is properly removed. The simultaneous analysis showed the presence of persistent contemporary anomalies in all of the analysed parameters. To validate the technique, a confutation/confirmation analysis was undertaken where these parameters were successfully analyzed in the same months but considering a seismically "calm" year, when significant seismicity was not present. We also extended the analysis to all available years to construct a confusion matrix comparing the occurrence of climatological data anomalies with real seismicity. This work confirms the potentiality of multi parameters in anticipating the occurrence of large earthquakes in Central Italy, thus reinforcing the idea of considering such behaviour an effective tool for an integrated system of future earthquake prediction.

  3. Earthquake Catalogue of the Caucasus

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  4. Earthquakes, July-August 1992

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There were two major earthquakes (7.0≤M<8.0) during this reporting period. A magnitude 7.5 earthquake occurred in Kyrgyzstan on August 19 and a magnitude 7.0 quake struck the Ascension Island region on August 28. In southern California, aftershocks of the magnitude 7.6 earthquake on June 28, 1992, continued. One of these aftershocks caused damage and injuries, and at least one other aftershock caused additional damage. Earthquake-related fatalities were reportred in Kyrgzstan and Pakistan. 

  5. Earthquakes: Recurrence and Interoccurrence Times

    NASA Astrophysics Data System (ADS)

    Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.; Yakovlev, G.; Goltz, C.; Newman, W. I.

    2008-04-01

    The purpose of this paper is to discuss the statistical distributions of recurrence times of earthquakes. Recurrence times are the time intervals between successive earthquakes at a specified location on a specified fault. Although a number of statistical distributions have been proposed for recurrence times, we argue in favor of the Weibull distribution. The Weibull distribution is the only distribution that has a scale-invariant hazard function. We consider three sets of characteristic earthquakes on the San Andreas fault: (1) The Parkfield earthquakes, (2) the sequence of earthquakes identified by paleoseismic studies at the Wrightwood site, and (3) an example of a sequence of micro-repeating earthquakes at a site near San Juan Bautista. In each case we make a comparison with the applicable Weibull distribution. The number of earthquakes in each of these sequences is too small to make definitive conclusions. To overcome this difficulty we consider a sequence of earthquakes obtained from a one million year “Virtual California” simulation of San Andreas earthquakes. Very good agreement with a Weibull distribution is found. We also obtain recurrence statistics for two other model studies. The first is a modified forest-fire model and the second is a slider-block model. In both cases good agreements with Weibull distributions are obtained. Our conclusion is that the Weibull distribution is the preferred distribution for estimating the risk of future earthquakes on the San Andreas fault and elsewhere.

  6. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  7. Researching Embodiment in Movement Contexts: A Phenomenological Approach

    ERIC Educational Resources Information Center

    Standal, Oyvind F.; Engelsrud, Gunn

    2013-01-01

    This article takes a phenomenological approach to understanding embodiment in relation to teaching and learning taking place in movement contexts. Recently a number of studies have pointed to the potential that phenomenology has to understand the meanings and experiences of moving subjects. By presenting two examples of our own work on embodied…

  8. Earthquake and Tsunami booklet based on two Indonesia earthquakes

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Aci, M.

    2014-12-01

    Many destructive earthquakes occurred during the last decade in Indonesia. These experiences are very important precepts for the world people who live in earthquake and tsunami countries. We are collecting the testimonies of tsunami survivors to clarify successful evacuation process and to make clear the characteristic physical behaviors of tsunami near coast. We research 2 tsunami events, 2004 Indian Ocean tsunami and 2010 Mentawai slow earthquake tsunami. Many video and photographs were taken by people at some places in 2004 Indian ocean tsunami disaster; nevertheless these were few restricted points. We didn't know the tsunami behavior in another place. In this study, we tried to collect extensive information about tsunami behavior not only in many places but also wide time range after the strong shake. In Mentawai case, the earthquake occurred in night, so there are no impressive photos. To collect detail information about evacuation process from tsunamis, we contrived the interview method. This method contains making pictures of tsunami experience from the scene of victims' stories. In 2004 Aceh case, all survivors didn't know tsunami phenomena. Because there were no big earthquakes with tsunami for one hundred years in Sumatra region, public people had no knowledge about tsunami. This situation was highly improved in 2010 Mentawai case. TV programs and NGO or governmental public education programs about tsunami evacuation are widespread in Indonesia. Many people know about fundamental knowledge of earthquake and tsunami disasters. We made drill book based on victim's stories and painted impressive scene of 2 events. We used the drill book in disaster education event in school committee of west Java. About 80 % students and teachers evaluated that the contents of the drill book are useful for correct understanding.

  9. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  10. Earthquakes, September-October 1993

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    The fatalities in the United States were caused by two earthquakes in southern Oregon on September 21. These earthquakes, both with magnitude 6.0 and separated in time by about 2 hrs, led to the deaths of two people. One of these deaths was apparently due to a heart attack induced by the earthquake

  11. Children's Ideas about Earthquakes

    ERIC Educational Resources Information Center

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  12. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    NASA Astrophysics Data System (ADS)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  13. Lost in Space? Located in Place: Geo-Phenomenological Exploration and School

    ERIC Educational Resources Information Center

    Hung, Ruyu; Stables, Andrew

    2011-01-01

    This paper aims at revealing the various meanings of schools as more than built physical environments from a geographical-phenomenological (or "geo-phenomenological") perspective. This paper consists of five sections: the first explicates the meaning of "geo-phenomenology"; the second reveals the meaning of "environment" and a dialectics of…

  14. Do Earthquakes Shake Stock Markets?

    PubMed

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  15. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  16. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  17. WGCEP Historical California Earthquake Catalog

    USGS Publications Warehouse

    Felzer, Karen R.; Cao, Tianqing

    2008-01-01

    This appendix provides an earthquake catalog for California and the surrounding area. Our goal is to provide a listing for all known M > 5.5 earthquakes that occurred from 1850-1932 and all known M > 4.0 earthquakes that occurred from 1932-2006 within the region of 31.0 to 43.0 degrees North and -126.0 to -114.0 degrees West. Some pre-1932 earthquakes 4 5, before the Northern California network was online. Some earthquakes from 1900-1932, and particularly from 1910-1932 are also based on instrumental readings, but the quality of the instrumental record and the resulting analysis are much less precise than for later listings. A partial exception is for some of the largest earthquakes, such as the San Francisco earthquake of April 18, 1906, for which global teleseismic records (Wald et al. 1993) and geodetic measurements (Thatcher et al. 1906) have been used to help determine magnitudes.

  18. Earthquakes, September-October 1978

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    The months of September and October were somewhat quiet seismically speaking. One major earthquake, magnitude (M) 7.7 occurred in Iran on September 16. In Germany, a magntidue 5.0 earthquake caused damage and considerable alarm to many people in parts of that country. In the United States, the largest earthquake occurred along the California-Nevada border region. 

  19. Earthquakes, March-April 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    Two major earthquakes (7.0-7.9) occurred during this reporting period: a magnitude 7.6 in Costa Rica on April 22 and a magntidue 7.0 in the USSR on April 29. Destructive earthquakes hit northern Peru on April 4 and 5. There were no destructive earthquakes in the United States during this period. 

  20. Can We Predict Earthquakes?

    ScienceCinema

    Johnson, Paul

    2018-01-16

    The only thing we know for sure about earthquakes is that one will happen again very soon. Earthquakes pose a vital yet puzzling set of research questions that have confounded scientists for decades, but new ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes — and when.

  1. Earthquake and Schools. [Videotape].

    ERIC Educational Resources Information Center

    Federal Emergency Management Agency, Washington, DC.

    Designing schools to make them more earthquake resistant and protect children from the catastrophic collapse of the school building is discussed in this videotape. It reveals that 44 of the 50 U.S. states are vulnerable to earthquake, but most schools are structurally unprepared to take on the stresses that earthquakes exert. The cost to the…

  2. Earthquakes, September-October 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There were two major earthquakes (7.0-7.9) during this reporting period. the first was in the Solomon Islands on October 14 and the second was in India on October 19. Earthquake-related deaths were reported in Guatemala and India. Htere were no significant earthquakes in the United States during the period covered in this report. 

  3. A Census of Atmospheric Variability From Seconds to Decades

    NASA Astrophysics Data System (ADS)

    Williams, Paul D.; Alexander, M. Joan; Barnes, Elizabeth A.; Butler, Amy H.; Davies, Huw C.; Garfinkel, Chaim I.; Kushnir, Yochanan; Lane, Todd P.; Lundquist, Julie K.; Martius, Olivia; Maue, Ryan N.; Peltier, W. Richard; Sato, Kaoru; Scaife, Adam A.; Zhang, Chidong

    2017-11-01

    This paper synthesizes and summarizes atmospheric variability on time scales from seconds to decades through a phenomenological census. We focus mainly on unforced variability in the troposphere, stratosphere, and mesosphere. In addition to atmosphere-only modes, our scope also includes coupled modes, in which the atmosphere interacts with the other components of the Earth system, such as the ocean, hydrosphere, and cryosphere. The topics covered include turbulence on time scales of seconds and minutes, gravity waves on time scales of hours, weather systems on time scales of days, atmospheric blocking on time scales of weeks, the Madden-Julian Oscillation on time scales of months, the Quasi-Biennial Oscillation and El Niño-Southern Oscillation on time scales of years, and the North Atlantic, Arctic, Antarctic, Pacific Decadal, and Atlantic Multidecadal Oscillations on time scales of decades. The paper serves as an introduction to a special collection of Geophysical Research Letters on atmospheric variability. We hope that both this paper and the collection will serve as a useful resource for the atmospheric science community and will act as inspiration for setting future research directions.

  4. Infrasonic waves in the ionosphere generated by a weak earthquake

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.; Chum, J.

    2011-08-01

    A computer code has been developed to simulate the generation of infrasonic waves (frequencies considered ≤80 Hz) by a weak earthquake (magnitude ˜3.6), their propagation through the atmosphere and their effects in the ionosphere. We provide estimates of the perturbations in the ionosphere at the height (˜160 km) where waves at the sounding frequency (3.59 MHz) of a continuous Doppler radar reflect. We have found that the pressure perturbation is 5.79×10-7 Pa (0.26% of the ambient value), the temperature perturbation is 0.088 K (0.015% of the ambient value) and the electron density perturbation is 2×108 m-3 (0.12% of the ambient value). The characteristic perturbation is found to be a bipolar pulse lasting ˜25 s, and the maximum Doppler shift is found to be ˜0.08 Hz, which is too small to be detected by the Doppler radar at the time of the earthquake.

  5. Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Zhou, Chen; Liu, Yi; Zhai, Changzhi; Wang, Zemin; Liu, Lei

    2018-01-01

    The Co-Seismic Ionospheric Disturbance of the 2015 Nepal earthquake is analyzed in this paper. GNSS data are used to obtain the Satellite-Station TEC sequences. After removing the de-trended TEC variation, a clear ionospheric disturbance was observed 10 min after the earthquake, while the geomagnetic conditions, solar activity, and weather condition remained calm according to the Kp, Dst, F10.7 indices and meteorological records during the period of interest. Computerized ionosphere tomography (CIT) is then used to present the tridimensional ionosphere variation with a 10-min time resolution. The CIT results indicate that (1) the disturbance of the ionospheric electron density above the epicenter during the 2015 Nepal earthquake is confined at a relatively low altitude (approximately 150-300 km); (2) the ionospheric disturbances on the west side and east sides of the epicenter are precisely opposite. A newly established electric field penetration model of the lithosphere-atmosphere-ionosphere coupling is used to investigate the potential physical mechanism.

  6. Earthquakes in Arkansas and vicinity 1699-2010

    USGS Publications Warehouse

    Dart, Richard L.; Ausbrooks, Scott M.

    2011-01-01

    This map summarizes approximately 300 years of earthquake activity in Arkansas. It is one in a series of similar State earthquake history maps. Work on the Arkansas map was done in collaboration with the Arkansas Geological Survey. The earthquake data plotted on the map are from several sources: the Arkansas Geological Survey, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Mississippi Department of Environmental Quality. In addition to earthquake locations, other materials presented include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Arkansas and parts of adjacent states. Arkansas has undergone a number of significant felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Arkansas and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  7. Earthquake Forecasting System in Italy

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  8. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  9. Earthquake impact scale

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    With the advent of the USGS prompt assessment of global earthquakes for response (PAGER) system, which rapidly assesses earthquake impacts, U.S. and international earthquake responders are reconsidering their automatic alert and activation levels and response procedures. To help facilitate rapid and appropriate earthquake response, an Earthquake Impact Scale (EIS) is proposed on the basis of two complementary criteria. On the basis of the estimated cost of damage, one is most suitable for domestic events; the other, on the basis of estimated ranges of fatalities, is generally more appropriate for global events, particularly in developing countries. Simple thresholds, derived from the systematic analysis of past earthquake impact and associated response levels, are quite effective in communicating predicted impact and response needed after an event through alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1,000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses reaching $1M, $100M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness predominate in countries in which local building practices typically lend themselves to high collapse and casualty rates, and these impacts lend to prioritization for international response. In contrast, financial and overall societal impacts often trigger the level of response in regions or countries in which prevalent earthquake resistant construction practices greatly reduce building collapse and resulting fatalities. Any newly devised alert, whether economic- or casualty-based, should be intuitive and consistent with established lexicons and procedures. Useful alerts should

  10. A post-Tohoku earthquake review of earthquake probabilities in the Southern Kanto District, Japan

    NASA Astrophysics Data System (ADS)

    Somerville, Paul G.

    2014-12-01

    The 2011 Mw 9.0 Tohoku earthquake generated an aftershock sequence that affected a large part of northern Honshu, and has given rise to widely divergent forecasts of changes in earthquake occurrence probabilities in northern Honshu. The objective of this review is to assess these forecasts as they relate to potential changes in the occurrence probabilities of damaging earthquakes in the Kanto Region. It is generally agreed that the 2011 Mw 9.0 Tohoku earthquake increased the stress on faults in the southern Kanto district. Toda and Stein (Geophys Res Lett 686, 40: doi:10.1002, 2013) further conclude that the probability of earthquakes in the Kanto Corridor has increased by a factor of 2.5 for the time period 11 March 2013 to 10 March 2018 in the Kanto Corridor. Estimates of earthquake probabilities in a wider region of the Southern Kanto District by Nanjo et al. (Geophys J Int, doi:10.1093, 2013) indicate that any increase in the probability of earthquakes is insignificant in this larger region. Uchida et al. (Earth Planet Sci Lett 374: 81-91, 2013) conclude that the Philippine Sea plate the extends well north of the northern margin of Tokyo Bay, inconsistent with the Kanto Fragment hypothesis of Toda et al. (Nat Geosci, 1:1-6,2008), which attributes deep earthquakes in this region, which they term the Kanto Corridor, to a broken fragment of the Pacific plate. The results of Uchida and Matsuzawa (J Geophys Res 115:B07309, 2013)support the conclusion that fault creep in southern Kanto may be slowly relaxing the stress increase caused by the Tohoku earthquake without causing more large earthquakes. Stress transfer calculations indicate a large stress transfer to the Off Boso Segment as a result of the 2011 Tohoku earthquake. However, Ozawa et al. (J Geophys Res 117:B07404, 2012) used onshore GPS measurements to infer large post-Tohoku creep on the plate interface in the Off-Boso region, and Uchida and Matsuzawa (ibid.) measured similar large creep off the Boso

  11. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    USGS Publications Warehouse

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  12. Interdisciplinary Research and Phenomenology as Parallel Processes of Consciousness

    ERIC Educational Resources Information Center

    Arvidson, P. Sven

    2016-01-01

    There are significant parallels between interdisciplinarity and phenomenology. Interdisciplinary conscious processes involve identifying relevant disciplines, evaluating each disciplinary insight, and creating common ground. In an analogous way, phenomenology involves conscious processes of epoché, reduction, and eidetic variation. Each stresses…

  13. Do Earthquakes Shake Stock Markets?

    PubMed Central

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan. PMID:26197482

  14. Continuing Megathrust Earthquake Potential in northern Chile after the 2014 Iquique Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Herman, M. W.; Barnhart, W. D.; Furlong, K. P.; Riquelme, S.; Benz, H.; Bergman, E.; Barrientos, S. E.; Earle, P. S.; Samsonov, S. V.

    2014-12-01

    The seismic gap theory, which identifies regions of elevated hazard based on a lack of recent seismicity in comparison to other portions of a fault, has successfully explained past earthquakes and is useful for qualitatively describing where future large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which until recently had not ruptured in a megathrust earthquake since a M~8.8 event in 1877. On April 1 2014, a M 8.2 earthquake occurred within this northern Chile seismic gap, offshore of the city of Iquique; the size and spatial extent of the rupture indicate it was not the earthquake that had been anticipated. Here, we present a rapid assessment of the seismotectonics of the March-April 2014 seismic sequence offshore northern Chile, including analyses of earthquake (fore- and aftershock) relocations, moment tensors, finite fault models, moment deficit calculations, and cumulative Coulomb stress transfer calculations over the duration of the sequence. This ensemble of information allows us to place the current sequence within the context of historic seismicity in the region, and to assess areas of remaining and/or elevated hazard. Our results indicate that while accumulated strain has been released for a portion of the northern Chile seismic gap, significant sections have not ruptured in almost 150 years. These observations suggest that large-to-great sized megathrust earthquakes will occur north and south of the 2014 Iquique sequence sooner than might be expected had the 2014 events ruptured the entire seismic gap.

  15. Why natural science needs phenomenological philosophy.

    PubMed

    Rosen, Steven M

    2015-12-01

    Through an exploration of theoretical physics, this paper suggests the need for regrounding natural science in phenomenological philosophy. To begin, the philosophical roots of the prevailing scientific paradigm are traced to the thinking of Plato, Descartes, and Newton. The crisis in modern science is then investigated, tracking developments in physics, science's premier discipline. Einsteinian special relativity is interpreted as a response to the threat of discontinuity implied by the Michelson-Morley experiment, a challenge to classical objectivism that Einstein sought to counteract. We see that Einstein's efforts to banish discontinuity ultimately fall into the "black hole" predicted in his general theory of relativity. The unavoidable discontinuity that haunts Einstein's theory is also central to quantum mechanics. Here too the attempt has been made to manage discontinuity, only to have this strategy thwarted in the end by the intractable problem of quantum gravity. The irrepressible discontinuity manifested in the phenomena of modern physics proves to be linked to a merging of subject and object that flies in the face of Cartesian philosophy. To accommodate these radically non-classical phenomena, a new philosophical foundation is called for: phenomenology. Phenomenological philosophy is elaborated through Merleau-Ponty's concept of depth and is then brought into focus for use in theoretical physics via qualitative work with topology and hypercomplex numbers. In the final part of this paper, a detailed summary is offered of the specific application of topological phenomenology to quantum gravity that was systematically articulated in The Self-Evolving Cosmos (Rosen, 2008a). Copyright © 2015. Published by Elsevier Ltd.

  16. Discrimination of the earthquake-origin microwave emission from the data of the spaceborne radiometer

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Takano, T.

    2007-12-01

    Formerly, we found the microwave emission during rock crash in a laboratory for the first time in the world, and calibrated the emitted power. The detected signal is a sequence of pulses which include microwaves at the selected frequency bands of 300MHz, 2GHz and 22GHz. This fact suggested another means to detect an earthquake which is associated with rock crash or plate slip. For this purpose, we have analyzed the data obtained by the microwave radiometer, AMSR-E loaded on the satellite Aqua. Generally, since a microwave emission observed by AMSR-E is affected by various factors (e.g., emission of the earth's surface and emission, absorption and scattering of the atmosphere), we developed some analysis techniques first. Then, we have successfully extracted features observed only at the earthquake occurrence by these techniques. This earthquake was occurred at Morocco in 2004. Since the depth of the seismic center was shallower and the magnitude was larger, we have specifically focused on analysis of this earthquake. This presentation first presents the estimation of the received power by a receiver aboard a satellite. Then, the data obtained by AMSR-E are described including the disturbances or ambiguity of the data. The techniques to extract microwave signatures out of disturbances are given. Finally, an example of the data analysis is explained in the case of Morocco earthquake to show distinct emission of microwaves in relation with geological features.

  17. The Mw 7.7 Bhuj earthquake: Global lessons for earthquake hazard in intra-plate regions

    USGS Publications Warehouse

    Schweig, E.; Gomberg, J.; Petersen, M.; Ellis, M.; Bodin, P.; Mayrose, L.; Rastogi, B.K.

    2003-01-01

    The Mw 7.7 Bhuj earthquake occurred in the Kachchh District of the State of Gujarat, India on 26 January 2001, and was one of the most damaging intraplate earthquakes ever recorded. This earthquake is in many ways similar to the three great New Madrid earthquakes that occurred in the central United States in 1811-1812, An Indo-US team is studying the similarities and differences of these sequences in order to learn lessons for earthquake hazard in intraplate regions. Herein we present some preliminary conclusions from that study. Both the Kutch and New Madrid regions have rift type geotectonic setting. In both regions the strain rates are of the order of 10-9/yr and attenuation of seismic waves as inferred from observations of intensity and liquefaction are low. These strain rates predict recurrence intervals for Bhuj or New Madrid sized earthquakes of several thousand years or more. In contrast, intervals estimated from paleoseismic studies and from other independent data are significantly shorter, probably hundreds of years. All these observations together may suggest that earthquakes relax high ambient stresses that are locally concentrated by rheologic heterogeneities, rather than loading by plate-tectonic forces. The latter model generally underlies basic assumptions made in earthquake hazard assessment, that the long-term average rate of energy released by earthquakes is determined by the tectonic loading rate, which thus implies an inherent average periodicity of earthquake occurrence. Interpreting the observations in terms of the former model therefore may require re-examining the basic assumptions of hazard assessment.

  18. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  19. Statistical turbulence theory and turbulence phenomenology

    NASA Technical Reports Server (NTRS)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  20. Earthquakes in Mississippi and vicinity 1811-2010

    USGS Publications Warehouse

    Dart, Richard L.; Bograd, Michael B.E.

    2011-01-01

    This map summarizes two centuries of earthquake activity in Mississippi. Work on the Mississippi map was done in collaboration with the Mississippi Department of Environmental Quality, Office of Geology. The earthquake data plotted on the map are from several sources: the Mississippi Department of Environmental Quality, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Arkansas Geological Survey. In addition to earthquake locations, other materials include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Mississippi and parts of adjacent States. Mississippi has undergone a number of felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Mississippi and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  1. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    NASA Astrophysics Data System (ADS)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  2. Simulating Earthquake Early Warning Systems in the Classroom as a New Approach to Teaching Earthquakes

    NASA Astrophysics Data System (ADS)

    D'Alessio, M. A.

    2010-12-01

    A discussion of P- and S-waves seems an ubiquitous part of studying earthquakes in the classroom. Textbooks from middle school through university level typically define the differences between the waves and illustrate the sense of motion. While many students successfully memorize the differences between wave types (often utilizing the first letter as a memory aide), textbooks rarely give tangible examples of how the two waves would "feel" to a person sitting on the ground. One reason for introducing the wave types is to explain how to calculate earthquake epicenters using seismograms and travel time charts -- very abstract representations of earthquakes. Even when the skill is mastered using paper-and-pencil activities or one of the excellent online interactive versions, locating an epicenter simply does not excite many of our students because it evokes little emotional impact, even in students located in earthquake-prone areas. Despite these limitations, huge numbers of students are mandated to complete the task. At the K-12 level, California requires that all students be able to locate earthquake epicenters in Grade 6; in New York, the skill is a required part of the Regent's Examination. Recent innovations in earthquake early warning systems around the globe give us the opportunity to address the same content standard, but with substantially more emotional impact on students. I outline a lesson about earthquakes focused on earthquake early warning systems. The introductory activities include video clips of actual earthquakes and emphasize the differences between the way P- and S-waves feel when they arrive (P arrives first, but is weaker). I include an introduction to the principle behind earthquake early warning (including a summary of possible uses of a few seconds warning about strong shaking) and show examples from Japan. Students go outdoors to simulate P-waves, S-waves, and occupants of two different cities who are talking to one another on cell phones

  3. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  4. Earthquakes on Your Dinner Table

    NASA Astrophysics Data System (ADS)

    Alexeev, N. A.; Tape, C.; Alexeev, V. A.

    2016-12-01

    Earthquakes have interesting physics applicable to other phenomena like propagation of waves, also, they affect human lives. This study focused on three questions, how: depth, distance from epicenter and ground hardness affect earthquake strength. Experimental setup consisted of a gelatin slab to simulate crust. The slab was hit with a weight and earthquake amplitude was measured. It was found that earthquake amplitude was larger when the epicenter was deeper, which contradicts observations and probably was an artifact of the design. Earthquake strength was inversely proportional to the distance from the epicenter, which generally follows reality. Soft and medium jello were implanted into hard jello. It was found that earthquakes are stronger in softer jello, which was a result of resonant amplification in soft ground. Similar results are found in Minto Flats, where earthquakes are stronger and last longer than in the nearby hills. Earthquakes waveforms from Minto Flats showed that that the oscillations there have longer periods compared to the nearby hills with harder soil. Two gelatin pieces with identical shapes and different hardness were vibrated on a platform at varying frequencies in order to demonstrate that their resonant frequencies are statistically different. This phenomenon also occurs in Yukon Flats.

  5. Pre-earthquake multiparameter analysis of the 2016 Amatrice-Norcia (Central Italy) seismic sequence: a case study for the application of the SAFE project concepts

    NASA Astrophysics Data System (ADS)

    De Santis, A.

    2017-12-01

    The SAFE (Swarm for Earthquake study) project (funded by European Space Agency in the framework "STSE Swarm+Innovation", 2014-2016) aimed at applying the new approach of geosystemics to the analysis of Swarm satellite (ESA) electromagnetic data for investigating the preparatory phase of earthquakes. We present in this talk the case study of the most recent seismic sequence in Italy. First a M6 earthquake on 24 August 2016 and then a M6.5 earthquake on 30 October 2016 shocked almost in the same region of Central Italy causing about 300 deaths in total (mostly on 24 August), with a revival of other significant seismicity on January 2017. Analysing both geophysical and climatological satellite and ground data preceding the major earthquakes of the sequence we present results that confirm a complex solid earth-atmosphere coupling in the preparation phase of the whole sequence.

  6. Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M8.1 Sept. 19, 1985 as a possible indicator of interaction between tectonic plates

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Dunajecka, M. A.

    2007-02-01

    The recent development of the Lithosphere-Atmosphere-Ionosphere (LAI) coupling model and experimental data of remote sensing satellites on thermal anomalies before major strong earthquakes have demonstrated that radon emanations in the area of earthquake preparation can produce variations of the air temperature and relative humidity. Specific repeating pattern of humidity and air temperature variations was revealed as a result of analysis of the meteorological data for several tens of strong earthquakes all over the world. The main physical process responsible for the observed variations is the latent heat release due to water vapor condensation on ions produced as a result of air ionization by energetic α-particles emitted by 222Rn. The high effectiveness of this process was proved by the laboratory and field experiments; hence the specific variations of air humidity and temperature can be used as indicator of radon variations before earthquakes. We analyzed the historical meteorological data all over the Mexico around the time of one of the most destructive earthquakes (Michoacan earthquake M8.1) that affected the Mexico City on September 19, 1985. Several distinct zones of specific variations of the air temperature and relative humidity were revealed that may indicate the different character of radon variations in different parts of Mexico before the Michoacan earthquake. The most interesting result on the specific variations of atmosphere parameters was obtained at Baja California region close to the border of Cocos and Rivera tectonic plates. This result demonstrates the possibility of the increased radon variations not only in the vicinity of the earthquake source but also at the border of interacting tectonic plates. Recent results on Thermal InfraRed (TIR) anomalies registered by Meteosat 5 before the Gujarat earthquake M7.9 on 26 of January 2001 supports the idea on the possibility of thermal effects at the border of interacting tectonic plates.

  7. A Statistical Study on VLF Subionospheric Perturbations Associated with Major Earthquakes: A View from Focal Mechanism

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Tatsuta, K.; Hobara, Y.

    2015-12-01

    Continuous monitoring of signal amplitudes of worldwide VLF transmitters is a powerful tool to study the lower ionospheric condition. Although, lower ionospheric perturbations prior to some of the major earthquakes have been reported for years, their occurrence and coupling mechanism between the ground and overlaying ionosphere prior to the earthquakes are not clear yet. In this paper, we carried out a statistical analysis based on the nighttime averaged signal amplitude data from the UEC's VLF/LF transmitter observation network. Two hundred forty three earthquakes were occurred within the 5th Fresnel zone of transmitter-receiver paths around Japan during the time period of 2007 to 2012. These earthquakes were characterized into three different groups based on the Centroid-Moment-Tensor (CMT) solution such as reverse fault type, normal fault type and stress slip type. The ionospheric anomaly was identified by a large change in the VLF/LF amplitude during nighttime. As a result, we found the ionospheric perturbations associated with both ground and sea earthquakes. Remarkably, the reverse fault type earthquakes have the highest occurrence rate of ionospheric perturbation among the three types both for sea (41%) and ground events (61%). The occurrence rates for normal type fault are 35% and 56% for sea and ground earthquakes respectively and the same for stress slip type are 39% and 20% for sea and ground earthquakes respectively. In both cases the occurrence rates are smaller than the reverse fault type. The clear difference of occurrence rate of the ionospheric perturbations may indicate that the coupling efficiency of seismic activity into the overlaying ionosphere is controlled by the pressure in the earth's crust. This gives us further physical insight of Lithosphere-Atmosphere-Ionosphere (LAI) coupling processes.

  8. U.S. Tsunami Information technology (TIM) Modernization: Performance Assessment of Tsunamigenic Earthquake Discrimination System

    NASA Astrophysics Data System (ADS)

    Hagerty, M. T.; Lomax, A.; Hellman, S. B.; Whitmore, P.; Weinstein, S.; Hirshorn, B. F.; Knight, W. R.

    2015-12-01

    Tsunami warning centers must rapidly decide whether an earthquake is likely to generate a destructive tsunami in order to issue a tsunami warning quickly after a large event. For very large events (Mw > 8 or so), magnitude and location alone are sufficient to warrant an alert. However, for events of smaller magnitude (e.g., Mw ~ 7.5), particularly for so-called "tsunami earthquakes", magnitude alone is insufficient to issue an alert and other measurements must be rapidly made and used to assess tsunamigenic potential. The Tsunami Information technology Modernization (TIM) is a National Oceanic and Atmospheric Administration (NOAA) project to update and standardize the earthquake and tsunami monitoring systems currently employed at the U.S. Tsunami Warning Centers in Ewa Beach, Hawaii (PTWC) and Palmer, Alaska (NTWC). We (ISTI) are responsible for implementing the seismic monitoring components in this new system, including real-time seismic data collection and seismic processing. The seismic data processor includes a variety of methods aimed at real-time discrimination of tsunamigenic events, including: Mwp, Me, slowness (Theta), W-phase, mantle magnitude (Mm), array processing and finite-fault inversion. In addition, it contains the ability to designate earthquake scenarios and play the resulting synthetic seismograms through the processing system. Thus, it is also a convenient tool that integrates research and monitoring and may be used to calibrate and tune the real-time monitoring system. Here we show results of the automated processing system for a large dataset of subduction zone earthquakes containing recent tsunami earthquakes and we examine the accuracy of the various discrimation methods and discuss issues related to their successful real-time application.

  9. Damaging earthquakes: A scientific laboratory

    USGS Publications Warehouse

    Hays, Walter W.; ,

    1996-01-01

    This paper reviews the principal lessons learned from multidisciplinary postearthquake investigations of damaging earthquakes throughout the world during the past 15 years. The unique laboratory provided by a damaging earthquake in culturally different but tectonically similar regions of the world has increased fundamental understanding of earthquake processes, added perishable scientific, technical, and socioeconomic data to the knowledge base, and led to changes in public policies and professional practices for earthquake loss reduction.

  10. A new multi-parametric climatological approach to the study of the earthquake preparatory phase: the 2016 Amatrice-Norcia (Central Italy) seismic sequence

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; De Santis, Angelo; Marchetti, Dedalo; Cianchini, Gianfranco

    2017-04-01

    Based on observations prior to earthquakes, recent theoretical considerations suggest that some geophysical quantities reveal abnormal changes that anticipate moderate and strong earthquakes, within a defined spatial area (the so-called Dobrovolsky area) according to a Lithosphere-Atmosphere-Ionosphere coupling (LAIC) model. One of the possible pre-earthquake effects could be the appearance of some climatological anomalies in the epicentral region, weeks/months before the major earthquakes. An ESA-funded project, SAFE (Swarm for Earthquake study) was dedicated to investigate the LAIC from ground to satellite. In this work, the period of two months preceding the Amatrice-Norcia (Central Italy) earthquake sequence that started on 24 August 2016 with an M6 earthquake, and some months later produced other two major shocks, i.e. an M5.9 on 26 October and then an M6.5 on 30 October, was analyzed in terms of some climatological parameters. In particular, starting from a date preceding of about two months the first major shock, we applied a new approach based on the comparison of the thirty-seven year time series at the same seasonal time of three land/atmospheric parameters, i.e. skin temperature (skt), total column water vapour (tcwv) and total column of ozone (tco3), collected from European Center Medium Weather Forecast (ECMWF), and the year in which the earthquake sequence occurred. The originality of the method stands in the way the complete time series is reduced, where also the possible effect of global warming is properly removed. A confutation/confirmation analysis was undertaken where these parameters were successfully analyzed in the same months but considering two seismically "calm" years, when significant seismicity was not present, in order to validate the technique. We also extended the analysis to all available years to construct a confusion matrix comparing the climatological anomalies with the real seismicity. This latter analysis has confirmed the

  11. Atmospheric resonances of the Rayleigh and tsunami normal modes and its sensitivity to local time and geographical location.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Astafyeva, E.; Lognonne, P. H.

    2017-12-01

    It is known that natural hazard events, such as earthquakes, tsunamis, volcano eruptions, etc. can generate atmospheric/ionospheric perturbations. During earthquakes, vertical displacements of the ground or of the ocean floor generate acoustic-gravity waves that further propagate upward in the upper atmosphere and ionosphere. In turn, tsunamis propagating in the open sea, generate gravity waves which propagate obliquely and reach the ionosphere in 45-60 min. The properties of the atmospheric "channel" in the vertical and oblique propagation depend on a variety of factors such as solar and geomagnetic conditions, latitude, local time, season, and their influence on propagation and properties of co-seismic and co-tsunamic perturbations is not well understood yet. In this work, we use present a detailed study of the coupling efficiency between solid earth, ocean and atmosphere. For this purpose, we use the normal mode technique extended to the whole solid Earth-ocean-atmosphere system. In our study, we focus on the Rayleigh modes (solid modes) and tsunami modes (oceanic modes). As the normal modes amplitude are also depending on the spatial and temporal variation of the structure of the atmosphere, we also performed a sensitivity study location of the normal modes amplitude with local time and geographical position.

  12. 2010 Chile Earthquake Aftershock Response

    NASA Astrophysics Data System (ADS)

    Barientos, Sergio

    2010-05-01

    The Mw=8.8 earthquake off the coast of Chile on 27 February 2010 is the 5th largest megathrust earthquake ever to be recorded and provides an unprecedented opportunity to advance our understanding of megathrust earthquakes and associated phenomena. The 2010 Chile earthquake ruptured the Concepcion-Constitucion segment of the Nazca/South America plate boundary, south of the Central Chile region and triggered a tsunami along the coast. Following the 2010 earthquake, a very energetic aftershock sequence is being observed in an area that is 600 km along strike from Valparaiso to 150 km south of Concepcion. Within the first three weeks there were over 260 aftershocks with magnitude 5.0 or greater and 18 with magnitude 6.0 or greater (NEIC, USGS). The Concepcion-Constitucion segment lies immediately north of the rupture zone associated with the great magnitude 9.5 Chile earthquake, and south of the 1906 and the 1985 Valparaiso earthquakes. The last great subduction earthquake in the region dates back to the February 1835 event described by Darwin (1871). Since 1835, part of the region was affected in the north by the Talca earthquake in December 1928, interpreted as a shallow dipping thrust event, and by the Chillan earthquake (Mw 7.9, January 1939), a slab-pull intermediate depth earthquake. For the last 30 years, geodetic studies in this area were consistent with a fully coupled elastic loading of the subduction interface at depth; this led to identify the area as a mature seismic gap with potential for an earthquake of magnitude of the order 8.5 or several earthquakes of lesser magnitude. What was less expected was the partial rupturing of the 1985 segment toward north. Today, the 2010 earthquake raises some disturbing questions: Why and how the rupture terminated where it did at the northern end? How did the 2010 earthquake load the adjacent segment to the north and did the 1985 earthquake only partially ruptured the plate interface leaving loaded asperities since

  13. Sensing the earthquake

    NASA Astrophysics Data System (ADS)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  14. Discrepancy between earthquake rates implied by historic earthquakes and a consensus geologic source model for California

    USGS Publications Warehouse

    Petersen, M.D.; Cramer, C.H.; Reichle, M.S.; Frankel, A.D.; Hanks, T.C.

    2000-01-01

    We examine the difference between expected earthquake rates inferred from the historical earthquake catalog and the geologic data that was used to develop the consensus seismic source characterization for the state of California [California Department of Conservation, Division of Mines and Geology (CDMG) and U.S. Geological Survey (USGS) Petersen et al., 1996; Frankel et al., 1996]. On average the historic earthquake catalog and the seismic source model both indicate about one M 6 or greater earthquake per year in the state of California. However, the overall earthquake rates of earthquakes with magnitudes (M) between 6 and 7 in this seismic source model are higher, by at least a factor of 2, than the mean historic earthquake rates for both southern and northern California. The earthquake rate discrepancy results from a seismic source model that includes earthquakes with characteristic (maximum) magnitudes that are primarily between M 6.4 and 7.1. Many of these faults are interpreted to accommodate high strain rates from geologic and geodetic data but have not ruptured in large earthquakes during historic time. Our sensitivity study indicates that the rate differences between magnitudes 6 and 7 can be reduced by adjusting the magnitude-frequency distribution of the source model to reflect more characteristic behavior, by decreasing the moment rate available for seismogenic slip along faults, by increasing the maximum magnitude of the earthquake on a fault, or by decreasing the maximum magnitude of the background seismicity. However, no single parameter can be adjusted, consistent with scientific consensus, to eliminate the earthquake rate discrepancy. Applying a combination of these parametric adjustments yields an alternative earthquake source model that is more compatible with the historic data. The 475-year return period hazard for peak ground and 1-sec spectral acceleration resulting from this alternative source model differs from the hazard resulting from the

  15. Earthquake Fingerprints: Representing Earthquake Waveforms for Similarity-Based Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2016-12-01

    New earthquake detection methods, such as Fingerprint and Similarity Thresholding (FAST), use fast approximate similarity search to identify similar waveforms in long-duration data without templates (Yoon et al. 2015). These methods have two key components: fingerprint extraction and an efficient search algorithm. Fingerprint extraction converts waveforms into fingerprints, compact signatures that represent short-duration waveforms for identification and search. Earthquakes are detected using an efficient indexing and search scheme, such as locality-sensitive hashing, that identifies similar waveforms in a fingerprint database. The quality of the search results, and thus the earthquake detection results, is strongly dependent on the fingerprinting scheme. Fingerprint extraction should map similar earthquake waveforms to similar waveform fingerprints to ensure a high detection rate, even under additive noise and small distortions. Additionally, fingerprints corresponding to noise intervals should have mutually dissimilar fingerprints to minimize false detections. In this work, we compare the performance of multiple fingerprint extraction approaches for the earthquake waveform similarity search problem. We apply existing audio fingerprinting (used in content-based audio identification systems) and time series indexing techniques and present modified versions that are specifically adapted for seismic data. We also explore data-driven fingerprinting approaches that can take advantage of labeled or unlabeled waveform data. For each fingerprinting approach we measure its ability to identify similar waveforms in a low signal-to-noise setting, and quantify the trade-off between true and false detection rates in the presence of persistent noise sources. We compare the performance using known event waveforms from eight independent stations in the Northern California Seismic Network.

  16. Earthquake-related versus non-earthquake-related injuries in spinal injury patients: differentiation with multidetector computed tomography

    PubMed Central

    2010-01-01

    Introduction In recent years, several massive earthquakes have occurred across the globe. Multidetector computed tomography (MDCT) is reliable in detecting spinal injuries. The purpose of this study was to compare the features of spinal injuries resulting from the Sichuan earthquake with those of non-earthquake-related spinal trauma using MDCT. Methods Features of spinal injuries of 223 Sichuan earthquake-exposed patients and 223 non-earthquake-related spinal injury patients were retrospectively compared using MDCT. The date of non-earthquake-related spinal injury patients was collected from 1 May 2009 to 22 July 2009 to avoid the confounding effects of seasonal activity and clothing. We focused on anatomic sites, injury types and neurologic deficits related to spinal injuries. Major injuries were classified according to the grid 3-3-3 scheme of the Magerl (AO) classification system. Results A total of 185 patients (82.96%) in the earthquake-exposed cohort experienced crush injuries. In the earthquake and control groups, 65 and 92 patients, respectively, had neurologic deficits. The anatomic distribution of these two cohorts was significantly different (P < 0.001). Cervical spinal injuries were more common in the control group (risk ratio (RR) = 2.12, P < 0.001), whereas lumbar spinal injuries were more common in the earthquake-related spinal injuries group (277 of 501 injured vertebrae; 55.29%). The major types of injuries were significantly different between these cohorts (P = 0.002). Magerl AO type A lesions composed most of the lesions seen in both of these cohorts. Type B lesions were more frequently seen in earthquake-related spinal injuries (RR = 1.27), while we observed type C lesions more frequently in subjects with non-earthquake-related spinal injuries (RR = 1.98, P = 0.0029). Conclusions Spinal injuries sustained in the Sichuan earthquake were located mainly in the lumbar spine, with a peak prevalence of type A lesions and a high occurrence of

  17. Earthquake Emergency Education in Dushanbe, Tajikistan

    ERIC Educational Resources Information Center

    Mohadjer, Solmaz; Bendick, Rebecca; Halvorson, Sarah J.; Saydullaev, Umed; Hojiboev, Orifjon; Stickler, Christine; Adam, Zachary R.

    2010-01-01

    We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six science activities describing physical processes related to earthquakes, five activities on earthquake hazards and mitigation…

  18. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  19. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    USGS Publications Warehouse

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  20. Interpretive and Critical Phenomenological Crime Studies: A Model Design

    ERIC Educational Resources Information Center

    Miner-Romanoff, Karen

    2012-01-01

    The critical and interpretive phenomenological approach is underutilized in the study of crime. This commentary describes this approach, guided by the question, "Why are interpretive phenomenological methods appropriate for qualitative research in criminology?" Therefore, the purpose of this paper is to describe a model of the interpretive…

  1. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    NASA Astrophysics Data System (ADS)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  2. The Virtual Quake Earthquake Simulator: Earthquake Probability Statistics for the El Mayor-Cucapah Region and Evidence of Predictability in Simulated Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Schultz, K.; Yoder, M. R.; Heien, E. M.; Rundle, J. B.; Turcotte, D. L.; Parker, J. W.; Donnellan, A.

    2015-12-01

    We introduce a framework for developing earthquake forecasts using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California (VC) earthquake simulator. We discuss the basic merits and mechanics of the simulator, and we present several statistics of interest for earthquake forecasting. We also show that, though the system as a whole (in aggregate) behaves quite randomly, (simulated) earthquake sequences limited to specific fault sections exhibit measurable predictability in the form of increasing seismicity precursory to large m > 7 earthquakes. In order to quantify this, we develop an alert based forecasting metric similar to those presented in Keilis-Borok (2002); Molchan (1997), and show that it exhibits significant information gain compared to random forecasts. We also discuss the long standing question of activation vs quiescent type earthquake triggering. We show that VQ exhibits both behaviors separately for independent fault sections; some fault sections exhibit activation type triggering, while others are better characterized by quiescent type triggering. We discuss these aspects of VQ specifically with respect to faults in the Salton Basin and near the El Mayor-Cucapah region in southern California USA and northern Baja California Norte, Mexico.

  3. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    NASA Technical Reports Server (NTRS)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  4. Rupture, waves and earthquakes.

    PubMed

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  5. Rupture, waves and earthquakes

    PubMed Central

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  6. The CATDAT damaging earthquakes database

    NASA Astrophysics Data System (ADS)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  7. Bayesian historical earthquake relocation: an example from the 1909 Taipei earthquake

    USGS Publications Warehouse

    Minson, Sarah E.; Lee, William H.K.

    2014-01-01

    Locating earthquakes from the beginning of the modern instrumental period is complicated by the fact that there are few good-quality seismograms and what traveltimes do exist may be corrupted by both large phase-pick errors and clock errors. Here, we outline a Bayesian approach to simultaneous inference of not only the hypocentre location but also the clock errors at each station and the origin time of the earthquake. This methodology improves the solution for the source location and also provides an uncertainty analysis on all of the parameters included in the inversion. As an example, we applied this Bayesian approach to the well-studied 1909 Mw 7 Taipei earthquake. While our epicentre location and origin time for the 1909 Taipei earthquake are consistent with earlier studies, our focal depth is significantly shallower suggesting a higher seismic hazard to the populous Taipei metropolitan area than previously supposed.

  8. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    NASA Astrophysics Data System (ADS)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  9. TEC variations over Mediteranean before and during the strong earthquake (M=6.2) of 12th October 2013 in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Contadakis, Michael; Arabelos, Dimitrios; Vergos, Georgios; Spatalas, Spyridon

    2014-05-01

    In this paper the Total Electron Content (TEC) data of 9 Global Positioning System (GPS) stations of the EUREF network, which are being provided by IONOLAB (Turkey), were analysed using Discrete Fourier Analysis in order to investigate the TEC variations over Mediteranean before and during the strong earthquake of 12th of October 2013, Which occur in western of Crete, Greece. In accordance to the results of similar analysis on the occasion of earthquakes in the area (Contadakis et al 2008, 2012a,2012b) the main conclusions of this analysis are the following. (a) TEC oscillations in a broad range of frequencies occur randomly over a broad area of several hundred km from the earthquake and (b) high frequency oscillations (f ≥ 0.0003Hz, periods T ≤ 60m) seems to point to the location of the earthquake with a questionable accuracy but the fractal characteristics of the frequencies distribution, points to the locus of the earthquake with a rather higher accuracy. We conclude that the LAIC mechanism through acoustic or gravity wave could explain this phenomenology. Key words: GPS network, ionospheric total electron content, wavelet analysis References Contadakis, M.E., Arabelos, D.N. G. Asteriadis, S.D. Spatalas and Ch. Pikridas, 2008. TEC variations over the Mediterranean during the seismic activity period of the last quarter of 2005 in the area of Greece, Nat. Hazards Earth Syst. Sci., 8, 1267-1276 M.E. Contadakis, D.N. Arabelos, Ch. Pikridas and S.D. Spatalas, 2012a,TEC variations over Southern Europe before and during the M6.3 Abruzzo earthquake of 6th April 2009, Annals of Geophysics, Vol.55,1, p.83-93 M.E.Contadakis, D.N.Arabelos, and G.Vergos, 2012b, TEC variations over North-western Balkan peninsula before and during the seismic activity of 24th May 2009, EGU GA, Geoph. Res. Abs., Vol. 14, EGU2012-2319-2

  10. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography.

    PubMed

    Dong, Zhi-Hui; Yang, Zhi-Gang; Chen, Tian-Wu; Chu, Zhi-Gang; Deng, Wen; Shao, Heng

    2011-01-01

    Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  11. Earthquake hazards: a national threat

    USGS Publications Warehouse

    ,

    2006-01-01

    Earthquakes are one of the most costly natural hazards faced by the Nation, posing a significant risk to 75 million Americans in 39 States. The risks that earthquakes pose to society, including death, injury, and economic loss, can be greatly reduced by (1) better planning, construction, and mitigation practices before earthquakes happen, and (2) providing critical and timely information to improve response after they occur. As part of the multi-agency National Earthquake Hazards Reduction Program, the U.S. Geological Survey (USGS) has the lead Federal responsibility to provide notification of earthquakes in order to enhance public safety and to reduce losses through effective forecasts based on the best possible scientific information.

  12. Discussion of New Approaches to Medium-Short-Term Earthquake Forecast in Practice of The Earthquake Prediction in Yunnan

    NASA Astrophysics Data System (ADS)

    Hong, F.

    2017-12-01

    After retrospection of years of practice of the earthquake prediction in Yunnan area, it is widely considered that the fixed-point earthquake precursory anomalies mainly reflect the field information. The increase of amplitude and number of precursory anomalies could help to determine the original time of earthquakes, however it is difficult to obtain the spatial relevance between earthquakes and precursory anomalies, thus we can hardly predict the spatial locations of earthquakes using precursory anomalies. The past practices have shown that the seismic activities are superior to the precursory anomalies in predicting earthquakes locations, resulting from the increased seismicity were observed before 80% M=6.0 earthquakes in Yunnan area. While the mobile geomagnetic anomalies are turned out to be helpful in predicting earthquakes locations in recent year, for instance, the forecasted earthquakes occurring time and area derived form the 1-year-scale geomagnetic anomalies before the M6.5 Ludian earthquake in 2014 are shorter and smaller than which derived from the seismicity enhancement region. According to the past works, the author believes that the medium-short-term earthquake forecast level, as well as objective understanding of the seismogenic mechanisms, could be substantially improved by the densely laying observation array and capturing the dynamic process of physical property changes in the enhancement region of medium to small earthquakes.

  13. The Phenomenological Circle and the Unity of Life and Thought.

    PubMed

    Atwood, George E; Stolorow, Robert D

    2016-06-01

    This paper describes the important role of our deep immersions in philosophy in the development of our phenomenological-contextualist approach to psychoanalysis. Influenced most particularly by the phenomenological movement, our collaborative dialogue over more than four decades has led us to a shared commitment to reflection upon the philosophical underpinnings and constitutive contexts of origin of all our theoretical ideas. The growth of our thinking follows an endlessly recurring phenomenological circle joining theoretical perspectives with the inquirers from whose emotional worlds they arise.

  14. Earthquakes, May-June, 1992

    USGS Publications Warehouse

    Person, Waverly J.

    1992-01-01

    The months of May and June were very active in terms of earthquake occurrence. Six major earthquakes (7.0earthquakes included a magnitude 7.1 in Papua New Guinea on May 15, a magnitude 7.1 followed by a magnitude 7.5 in the Philippine Islands on May 17, a magnitude 7.0 in the Cuba region on May 25, and a magnitude 7.3 in the Santa Cruz Islands of the Pacific on May 27. In the United States, a magnitude 7.6 earthquake struck in southern California on June 28 followed by a magnitude 6.7 quake about three hours later.

  15. Particle precipitation prior to large earthquakes of both the Sumatra and Philippine Regions: A statistical analysis

    NASA Astrophysics Data System (ADS)

    Fidani, Cristiano

    2015-12-01

    A study of statistical correlation between low L-shell electrons precipitating into the atmosphere and strong earthquakes is presented. More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA-15 Sun-synchronous polar orbiting satellite were analysed. Electron fluxes were analysed using a set of adiabatic coordinates. From this, significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicentre geographical positions to a given altitude towards the zenith. Counting rates were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. NOAA-15 electron data from July 1998 to December 2011 were compared for nearly 1800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30-100 keV precipitating electrons detected by the vertical NOAA-15 telescope and earthquake epicentre projections at altitudes greater that 1300 km, a significant correlation appeared where a 2-3 h electron precipitation was detected prior to large events in the Sumatra and Philippine Regions. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The Discussion below of satellite orbits and detectors is useful for future satellite missions for earthquake mitigation.

  16. Normal Fault Type Earthquakes Off Fukushima Region - Comparison of the 1938 Events and Recent Earthquakes -

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Satake, K.

    2017-12-01

    Off Fukushima region, Mjma 7.4 (event A) and 6.9 (event B) events occurred on November 6, 1938, following the thrust fault type earthquakes of Mjma 7.5 and 7.3 on the previous day. These earthquakes were estimated as normal fault earthquakes by Abe (1977, Tectonophysics). An Mjma 7.0 earthquake occurred on July 12, 2014 near event B and an Mjma 7.4 earthquake occurred on November 22, 2016 near event A. These recent events are the only M 7 class earthquakes occurred off Fukushima since 1938. Except for the two 1938 events, normal fault earthquakes have not occurred until many aftershocks of the 2011 Tohoku earthquake. We compared the observed tsunami and seismic waveforms of the 1938, 2014, and 2016 earthquakes to examine the normal fault earthquakes occurred off Fukushima region. It is difficult to compare the tsunami waveforms of the 1938, 2014 and 2016 events because there were only a few observations at the same station. The teleseismic body wave inversion of the 2016 earthquake yielded with the focal mechanism of strike 42°, dip 35°, and rake -94°. Other source parameters were as follows: source area 70 km x 40 km, average slip 0.2 m, maximum slip 1.2 m, seismic moment 2.2 x 1019 Nm, and Mw 6.8. A large slip area is located near the hypocenter, and it is compatible with the tsunami source area estimated from tsunami travel times. The 2016 tsunami source area is smaller than that of the 1938 event, consistent with the difference in Mw: 7.7 for event A estimated by Abe (1977) and 6.8 for the 2016 event. Although the 2014 epicenter is very close to that of event B, the teleseismic waveforms of the 2014 event are similar to those of event A and the 2016 event. While Abe (1977) assumed that the mechanism of event B was the same as event A, the initial motions at some stations are opposite, indicating that the focal mechanisms of events A and B are different and more detailed examination is needed. The normal fault type earthquake seems to occur following the

  17. Karl Jaspers' phenomenology in the light of histological and X-ray metaphors.

    PubMed

    Vlasova, Olga Alexandrovna; Beveridge, Allan

    2014-03-01

    The study considers the origins of Karl Jaspers' phenomenology. What did phenomenology mean to Jaspers and what was his personal perspective? What metaphors did he associate with it? This paper describes his phenomenological method by using the metaphors of histology and the X-ray. This perspective enables a better understanding, not only of the origins and essence of his phenomenology but also of its value for Jaspers himself. In Jaspers' daily life, he would have been familiar with microscopes and X-ray machines.

  18. Phenomenology of BWR fuel assembly degradation

    NASA Astrophysics Data System (ADS)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  19. What Can Sounds Tell Us About Earthquake Interactions?

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  20. Looking Inward: Philosophical and Methodological Perspectives on Phenomenological Self-Reflection.

    PubMed

    Pool, Natalie M

    2018-07-01

    Engaging in early and ongoing self-reflection during interpretive phenomenological research is critical for ensuring trustworthiness or rigor. However, the lack of guidelines and clarity about the role of self-reflection in this methodology creates both theoretical and procedural confusion. The purpose of this article is to describe key philosophical underpinnings, characteristics, and hallmarks of the process of self-reflection in interpretive phenomenological investigation and to provide a list of guidelines that facilitate this process. Excerpts from an interpretive phenomenological study are used to illustrate characteristics of quality self-reflection. The guidelines are intended to be particularly beneficial for novice researchers who may find self-reflective writing to be daunting and unclear. Facilitating use of self-reflection may strengthen both the interpretive phenomenological body of work as well as that of all qualitative research.

  1. Introducing Postphenomenological Research: A Brief and Selective Sketch of Phenomenological Research Methods

    ERIC Educational Resources Information Center

    Aagaard, Jesper

    2017-01-01

    In time, phenomenology has become a viable approach to conducting qualitative studies in education. Popular and well-established methods include descriptive and hermeneutic phenomenology. Based on critiques of the essentialism and receptivity of these two methods, however, this article offers a third variation of empirical phenomenology:…

  2. Earthquake Testing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    During NASA's Apollo program, it was necessary to subject the mammoth Saturn V launch vehicle to extremely forceful vibrations to assure the moonbooster's structural integrity in flight. Marshall Space Flight Center assigned vibration testing to a contractor, the Scientific Services and Systems Group of Wyle Laboratories, Norco, California. Wyle-3S, as the group is known, built a large facility at Huntsville, Alabama, and equipped it with an enormously forceful shock and vibration system to simulate the liftoff stresses the Saturn V would encounter. Saturn V is no longer in service, but Wyle-3S has found spinoff utility for its vibration facility. It is now being used to simulate earthquake effects on various kinds of equipment, principally equipment intended for use in nuclear power generation. Government regulations require that such equipment demonstrate its ability to survive earthquake conditions. In upper left photo, Wyle3S is preparing to conduct an earthquake test on a 25ton diesel generator built by Atlas Polar Company, Ltd., Toronto, Canada, for emergency use in a Canadian nuclear power plant. Being readied for test in the lower left photo is a large circuit breaker to be used by Duke Power Company, Charlotte, North Carolina. Electro-hydraulic and electro-dynamic shakers in and around the pit simulate earthquake forces.

  3. Earthquakes in the United States

    USGS Publications Warehouse

    Stover, C.

    1977-01-01

    To supplement data in the report Preliminary Determination of Epicenters (PDE), the National earthquake Information Service (NEIS) also publishes a quarterly circular, Earthquakes in the United States. This provides information on the felt area of U.S earthquakes and their intensity. The main purpose is to describe the larger effects of these earthquakes so that they can be used in seismic risk studies, site evaluations for nuclear power plants, and answering inquiries by the general public.

  4. A smartphone application for earthquakes that matter!

    NASA Astrophysics Data System (ADS)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  5. Nowcasting Earthquakes and Tsunamis

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  6. Introduction to the special issue on the 2004 Parkfield earthquake and the Parkfield earthquake prediction experiment

    USGS Publications Warehouse

    Harris, R.A.; Arrowsmith, J.R.

    2006-01-01

    The 28 September 2004 M 6.0 Parkfield earthquake, a long-anticipated event on the San Andreas fault, is the world's best recorded earthquake to date, with state-of-the-art data obtained from geologic, geodetic, seismic, magnetic, and electrical field networks. This has allowed the preearthquake and postearthquake states of the San Andreas fault in this region to be analyzed in detail. Analyses of these data provide views into the San Andreas fault that show a complex geologic history, fault geometry, rheology, and response of the nearby region to the earthquake-induced ground movement. Although aspects of San Andreas fault zone behavior in the Parkfield region can be modeled simply over geological time frames, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake indicate that predicting the fine details of future earthquakes is still a challenge. Instead of a deterministic approach, forecasting future damaging behavior, such as that caused by strong ground motions, will likely continue to require probabilistic methods. However, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake have provided ample data to understand most of what did occur in 2004, culminating in significant scientific advances.

  7. Japanese earthquake predictability experiment with multiple runs before and after the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Tsuruoka, H.; Yokoi, S.

    2011-12-01

    The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.

  8. Japanese earthquake predictability experiment with multiple runs before and after the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Tsuruoka, H.; Yokoi, S.

    2013-12-01

    The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.

  9. Seismicity map tools for earthquake studies

    NASA Astrophysics Data System (ADS)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  10. Earthquakes, November-December 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There were three major earthquakes (7.0-7.9) during the last two months of the year: a magntidue 7.0 on November 19 in Columbia, a magnitude 7.4 in the Kuril Islands on December 22, and a magnitude 7.1 in the South Sandwich Islands on December 27. Earthquake-related deaths were reported in Colombia, Yemen, and Iran. there were no significant earthquakes in the United States during this reporting period. 

  11. Earthquakes, September-October 1980

    USGS Publications Warehouse

    Person, W.J.

    1981-01-01

    There were two major (magnitudes 7.0-7.9) earthquakes during this reporting period; a magnitude (M) 7.3 in Algeria where many people were killed or injured and extensive damage occurred, and an M=7.2 in the Loyalty Islands region of the South Pacific. Japan was struck by a damaging earthquake on September 24, killing two people and causing injuries. There were no damaging earthquakes in the United States. 

  12. Solar modulation of earthquake occurrence in areas penetrated by L of 2.0 populated by anomalous cosmic rays

    NASA Astrophysics Data System (ADS)

    Khachikyan, Galina; Inchin, Alexander; Toyshiev, Nursultan

    An analysis of data of global seismological catalog NEIC (National Earthquake Information Center of the U.S. Geological Survey) for 1973-2011 (182933 events with magnitude equal to 4.5 and more) has been carried out with taken into account the geometry of the main geomagnetic field as gives the International Geomagnetic Reference Field (IGRF-11) model. It is found that the greatest number of earthquakes occurs in seismic areas penetrated by the geomagnetic force lines L=1.0-1.1, and additionally, the L-shell distribution of earthquake counting rate is peaked at the L equal to 2.0-2.2, which are inhabited by the Anomalous Cosmic Rays (ACRs). It is revealed that occurrence of strong earthquakes (with magnitude 7.0 and more) in these areas is modulated by the 11 year solar cycle. Namely, during 1973-2011, twenty strong earthquakes occurred in regions where the L=2.0-2.2 are loaned into the earth’s crust and, surprisingly, all of these earthquakes occurred only at the declining phase of the 11 year solar cycles while were absent at the ascending phase. Solar modulation of earthquake occurrence may be explained at present in the frame of a modern idea that earthquake is triggered by the electric currents flowing into the global electric circuit (GEC), where the charged geomagnetic force lines play the role of conductors (field align currents). The operation of GEC depends on intensity of cosmic rays which provide ionization and conductivity of the air in the middle atmosphere. Since the ACRs are especially sensitive to solar modulation, and since they populate the L of 2.0, it may be expected that earthquake occurrence in the areas penetrated by L of 2.0 would be especially sensitive to solar modulation. Our results prove this expectation, but much work is required to study this problem in more details.

  13. Retrospective stress-forecasting of earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  14. Earthquake watch

    USGS Publications Warehouse

    Hill, M.

    1976-01-01

     When the time comes that earthquakes can be predicted accurately, what shall we do with the knowledge? This was the theme of a November 1975 conference on earthquake warning and response held in San Francisco called by Assistant Secretary of the Interior Jack W. Carlson. Invited were officials of State and local governments from Alaska, California, Hawaii, Idaho, Montana, Nevada, utah, Washington, and Wyoming and representatives of the news media. 

  15. Charles Darwin's earthquake reports

    NASA Astrophysics Data System (ADS)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  16. Phenomenology of TMDs

    NASA Astrophysics Data System (ADS)

    Melis, Stefano

    2015-01-01

    We present a review of current Transverse Momentum Dependent (TMD) phenomenology focusing our attention on the unpolarized TMD parton distribution function and the Sivers function. The paper introduces and comments about the new Collins-Soper-Sterman (CSS) TMD evolution formalism [1]. We make use of a selection of results obtained by several groups to illustrate the achievements and the failures of the simple Gaussian approach and the TMD CSS evolution formalism.

  17. Focal mechanisms of earthquakes in Mongolia

    NASA Astrophysics Data System (ADS)

    Sodnomsambuu, D.; Natalia, R.; Gangaadorj, B.; Munkhuu, U.; Davaasuren, G.; Danzansan, E.; Yan, R.; Valentina, M.; Battsetseg, B.

    2011-12-01

    Focal mechanism data provide information on the relative magnitudes of the principal stresses, so that a tectonic regime can be assigned. Especially such information is useful for the study of intraplate seismic active regions. A study of earthquake focal mechanisms in the territory of Mongolia as landlocked and intraplate region was conducted. We present map of focal mechanisms of earthquakes with M4.5 which occurred in Mongolia and neighboring regions. Focal mechanisms solutions were constrained by the first motion solutions, as well as by waveform modeling, particularly CMT solutions. Four earthquakes have been recorded in Mongolia in XX century with magnitude more than 8, the 1905 M7.9 Tsetserleg and M8.4 Bolnai earthquakes, the 1931 M8.0 Fu Yun earthquake, the 1957 M8.1 Gobi-Altai earthquake. However the map of focal mechanisms of earthquakes in Mongolia allows seeing all seismic active structures: Gobi Altay, Mongolian Altay, active fringe of Hangay dome, Hentii range etc. Earthquakes in the most of Mongolian territory and neighboring China regions are characterized by strike-slip and reverse movements. Strike-slip movements also are typical for earthquakes in Altay Range in Russia. The north of Mongolia and south part of the Baikal area is a region where have been occurred earthquakes with different focal mechanisms. This region is a zone of the transition between compressive regime associated to India-Eurasian collision and extensive structures localized in north of the country as Huvsgul area and Baykal rift. Earthquakes in the Baikal basin itself are characterized by normal movements. Earthquakes in Trans-Baikal zone and NW of Mongolia are characterized dominantly by strike-slip movements. Analysis of stress-axis orientations, the tectonic stress tensor is presented. The map of focal mechanisms of earthquakes in Mongolia could be useful tool for researchers in their study on Geodynamics of Central Asia, particularly of Mongolian and Baikal regions.

  18. Earthquakes and emergence

    NASA Astrophysics Data System (ADS)

    Earthquakes and emerging infections may not have a direct cause and effect relationship like tax evasion and jail, but new evidence suggests that there may be a link between the two human health hazards. Various media accounts have cited a massive 1993 earthquake in Maharashtra as a potential catalyst of the recent outbreak of plague in India that has claimed more than 50 lives and alarmed the world. The hypothesis is that the earthquake may have uprooted underground rat populations that carry the fleas infected with the bacterium that causes bubonic plague and can lead to the pneumonic form of the disease that is spread through the air.

  19. Earthquake predictions using seismic velocity ratios

    USGS Publications Warehouse

    Sherburne, R. W.

    1979-01-01

    Since the beginning of modern seismology, seismologists have contemplated predicting earthquakes. The usefulness of earthquake predictions to the reduction of human and economic losses and the value of long-range earthquake prediction to planning is obvious. Not as clear are the long-range economic and social impacts of earthquake prediction to a speicifc area. The general consensus of opinion among scientists and government officials, however, is that the quest of earthquake prediction is a worthwhile goal and should be prusued with a sense of urgency. 

  20. Earthquakes and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  1. Is there a basis for preferring characteristic earthquakes over a Gutenberg–Richter distribution in probabilistic earthquake forecasting?

    USGS Publications Warehouse

    Parsons, Thomas E.; Geist, Eric L.

    2009-01-01

    The idea that faults rupture in repeated, characteristic earthquakes is central to most probabilistic earthquake forecasts. The concept is elegant in its simplicity, and if the same event has repeated itself multiple times in the past, we might anticipate the next. In practice however, assembling a fault-segmented characteristic earthquake rupture model can grow into a complex task laden with unquantified uncertainty. We weigh the evidence that supports characteristic earthquakes against a potentially simpler model made from extrapolation of a Gutenberg–Richter magnitude-frequency law to individual fault zones. We find that the Gutenberg–Richter model satisfies key data constraints used for earthquake forecasting equally well as a characteristic model. Therefore, judicious use of instrumental and historical earthquake catalogs enables large-earthquake-rate calculations with quantifiable uncertainty that should get at least equal weighting in probabilistic forecasting.

  2. Smoking prevalence increases following Canterbury earthquakes.

    PubMed

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  3. Defining "Acceptable Risk" for Earthquakes Worldwide

    NASA Astrophysics Data System (ADS)

    Tucker, B.

    2001-05-01

    The greatest and most rapidly growing earthquake risk for mortality is in developing countries. Further, earthquake risk management actions of the last 50 years have reduced the average lethality of earthquakes in earthquake-threatened industrialized countries. (This is separate from the trend of the increasing fiscal cost of earthquakes there.) Despite these clear trends, every new earthquake in developing countries is described in the media as a "wake up" call, announcing the risk these countries face. GeoHazards International (GHI) works at both the community and the policy levels to try to reduce earthquake risk. GHI reduces death and injury by helping vulnerable communities recognize their risk and the methods to manage it, by raising awareness of its risk, building local institutions to manage that risk, and strengthening schools to protect and train the community's future generations. At the policy level, GHI, in collaboration with research partners, is examining whether "acceptance" of these large risks by people in these countries and by international aid and development organizations explains the lack of activity in reducing these risks. The goal of this pilot project - The Global Earthquake Safety Initiative (GESI) - is to develop and evaluate a means of measuring the risk and the effectiveness of risk mitigation actions in the world's largest, most vulnerable cities: in short, to develop an earthquake risk index. One application of this index is to compare the risk and the risk mitigation effort of "comparable" cities. By this means, Lima, for example, can compare the risk of its citizens dying due to earthquakes with the risk of citizens in Santiago and Guayaquil. The authorities of Delhi and Islamabad can compare the relative risk from earthquakes of their school children. This index can be used to measure the effectiveness of alternate mitigation projects, to set goals for mitigation projects, and to plot progress meeting those goals. The preliminary

  4. The Audience Performs: A Phenomenological Model for Criticism of Oral Interpretation Performance.

    ERIC Educational Resources Information Center

    Langellier, Kristin M.

    Richard Lanigan's phenomenology of human communication is applicable to the development of a model for critiquing oral interpretation performance. This phenomenological model takes conscious experience of the relationship of a person and the lived-world as its data base, and assumes a phenomenology of performance which creates text in the triadic…

  5. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy)

    NASA Astrophysics Data System (ADS)

    di Giovambattista, R.; Tyupkin, Yu

    The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.

  6. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    NASA Astrophysics Data System (ADS)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a

  7. The Phenomenology of Democracy

    ERIC Educational Resources Information Center

    Shaw, Robert

    2009-01-01

    Human beings originate votes, and democracy constitutes decisions. This is the essence of democracy. A phenomenological analysis of the vote and of the decision reveals for us the inherent strength of democracy and its deficiencies. Alexis de Tocqueville pioneered this form of enquiry into democracy and produced positive results from it.…

  8. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    PubMed Central

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR = 1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR = 1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR = 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR = 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR = 1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  9. Issues on the Japanese Earthquake Hazard Evaluation

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Fukushima, Y.; Sagiya, T.

    2013-12-01

    The 2011 Great East Japan Earthquake forced the policy of counter-measurements to earthquake disasters, including earthquake hazard evaluations, to be changed in Japan. Before the March 11, Japanese earthquake hazard evaluation was based on the history of earthquakes that repeatedly occurs and the characteristic earthquake model. The source region of an earthquake was identified and its occurrence history was revealed. Then the conditional probability was estimated using the renewal model. However, the Japanese authorities changed the policy after the megathrust earthquake in 2011 such that the largest earthquake in a specific seismic zone should be assumed on the basis of available scientific knowledge. According to this policy, three important reports were issued during these two years. First, the Central Disaster Management Council issued a new estimate of damages by a hypothetical Mw9 earthquake along the Nankai trough during 2011 and 2012. The model predicts a 34 m high tsunami on the southern Shikoku coast and intensity 6 or higher on the JMA scale in most area of Southwest Japan as the maximum. Next, the Earthquake Research Council revised the long-term earthquake hazard evaluation of earthquakes along the Nankai trough in May 2013, which discarded the characteristic earthquake model and put much emphasis on the diversity of earthquakes. The so-called 'Tokai' earthquake was negated in this evaluation. Finally, another report by the CDMC concluded that, with the current knowledge, it is hard to predict the occurrence of large earthquakes along the Nankai trough using the present techniques, based on the diversity of earthquake phenomena. These reports created sensations throughout the country and local governments are struggling to prepare counter-measurements. These reports commented on large uncertainty in their evaluation near their ends, but are these messages transmitted properly to the public? Earthquake scientists, including authors, are involved in

  10. The physics of an earthquake

    NASA Astrophysics Data System (ADS)

    McCloskey, John

    2008-03-01

    The Sumatra-Andaman earthquake of 26 December 2004 (Boxing Day 2004) and its tsunami will endure in our memories as one of the worst natural disasters of our time. For geophysicists, the scale of the devastation and the likelihood of another equally destructive earthquake set out a series of challenges of how we might use science not only to understand the earthquake and its aftermath but also to help in planning for future earthquakes in the region. In this article a brief account of these efforts is presented. Earthquake prediction is probably impossible, but earth scientists are now able to identify particularly dangerous places for future events by developing an understanding of the physics of stress interaction. Having identified such a dangerous area, a series of numerical Monte Carlo simulations is described which allow us to get an idea of what the most likely consequences of a future earthquake are by modelling the tsunami generated by lots of possible, individually unpredictable, future events. As this article was being written, another earthquake occurred in the region, which had many expected characteristics but was enigmatic in other ways. This has spawned a series of further theories which will contribute to our understanding of this extremely complex problem.

  11. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  12. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China

    ERIC Educational Resources Information Center

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun

    2011-01-01

    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  13. The Electronic Encyclopedia of Earthquakes

    NASA Astrophysics Data System (ADS)

    Benthien, M.; Marquis, J.; Jordan, T.

    2003-12-01

    The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will

  14. Energy Partition and Variability of Earthquakes

    NASA Astrophysics Data System (ADS)

    Kanamori, H.

    2003-12-01

    During an earthquake the potential energy (strain energy + gravitational energy + rotational energy) is released, and the released potential energy (Δ W) is partitioned into radiated energy (ER), fracture energy (EG), and thermal energy (E H). How Δ W is partitioned into these energies controls the behavior of an earthquake. The merit of the slip-weakening concept is that only ER and EG control the dynamics, and EH can be treated separately to discuss the thermal characteristics of an earthquake. In general, if EG/E_R is small, the event is ``brittle", if EG /ER is large, the event is ``quasi static" or, in more common terms, ``slow earthquakes" or ``creep". If EH is very large, the event may well be called a thermal runaway rather than an earthquake. The difference in energy partition has important implications for the rupture initiation, evolution and excitation of long-period ground motions from very large earthquakes. We review the current state of knowledge on this problem in light of seismological observations and the basic physics of fracture. With seismological methods, we can measure only ER and the lower-bound of Δ W, Δ W0, and estimation of other energies involves many assumptions. ER: Although ER can be directly measured from the radiated waves, its determination is difficult because a large fraction of energy radiated at the source is attenuated during propagation. With the commonly used teleseismic and regional methods, only for events with MW>7 and MW>4, respectively, we can directly measure more than 10% of the total radiated energy. The rest must be estimated after correction for attenuation. Thus, large uncertainties are involved, especially for small earthquakes. Δ W0: To estimate Δ W0, estimation of the source dimension is required. Again, only for large earthquakes, the source dimension can be estimated reliably. With the source dimension, the static stress drop, Δ σ S, and Δ W0, can be estimated. EG: Seismologically, EG is the energy

  15. Earthquake effects in thermal neutron variations at the high-altitude station of Northern

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim

    2016-04-01

    Results of study of thermal neutron variations under various space and geophysical conditions on the basis of measurements on stationary installations with high statistical accuracy are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 43.02 N, 76.56 E, 20 km from Almaty) in the mountains of Northern Tien-Shan. Responses of the most effective gelio- and geophysical events (variations of atmospheric pressure, coronal mass ejections, earthquakes) has consistently considered in the variations of the thermal neutron flux and compared with variations of high-energy neutrons (standard monitor 18NM64) of galactic origin during these periods. Coefficients of correlation were calculated between data of thermal neutron detectors and data of the neutron monitor, recording the intensity of high-energy particles. High correlation coefficients and similarity of responses to changes of space and geophysical conditions are obtained, that confirms the conclusion of the genetic connection of thermal neutrons with high-energy neutrons of galactic origin and suggests same sources of disturbances in the absence of seismic activity. Observations and analysis of experimental data during the activation of seismic activity in the vicinity of Almaty showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the additional thermal neutron flux of the lithospheric origin appears under these conditions. Method of separating of thermal neutron flux variations of the lithospheric origin from neutrons variations generated in the atmosphere by subtracting the normalized data is proposed, taking into account the conclusion that variations caused with the atmospheric and interplanetary origins in thermal neutron detectors are similar to variations of high-energy neutrons

  16. Deviant Earthquakes: Data-driven Constraints on the Variability in Earthquake Source Properties and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel Taylor

    The complexity of the earthquake rupture process makes earthquakes inherently unpredictable. Seismic hazard forecasts often presume that the rate of earthquake occurrence can be adequately modeled as a space-time homogenenous or stationary Poisson process and that the relation between the dynamical source properties of small and large earthquakes obey self-similar scaling relations. While these simplified models provide useful approximations and encapsulate the first-order statistical features of the historical seismic record, they are inconsistent with the complexity underlying earthquake occurrence and can lead to misleading assessments of seismic hazard when applied in practice. The six principle chapters of this thesis explore the extent to which the behavior of real earthquakes deviates from these simplified models, and the implications that the observed deviations have for our understanding of earthquake rupture processes and seismic hazard. Chapter 1 provides a brief thematic overview and introduction to the scope of this thesis. Chapter 2 examines the complexity of the 2010 M7.2 El Mayor-Cucapah earthquake, focusing on the relation between its unexpected and unprecedented occurrence and anthropogenic stresses from the nearby Cerro Prieto Geothermal Field. Chapter 3 compares long-term changes in seismicity within California's three largest geothermal fields in an effort to characterize the relative influence of natural and anthropogenic stress transients on local seismic hazard. Chapter 4 describes a hybrid, hierarchical clustering algorithm that can be used to relocate earthquakes using waveform cross-correlation, and applies the new algorithm to study the spatiotemporal evolution of two recent seismic swarms in western Nevada. Chapter 5 describes a new spectral decomposition technique that can be used to analyze the dynamic source properties of large datasets of earthquakes, and applies this approach to revisit the question of self-similar scaling of

  17. Situated phenomenology and biological systems: Eastern and Western synthesis.

    PubMed

    Schroeder, Marcin J; Vallverdú, Jordi

    2015-12-01

    Phenomenology was born with the mission to give foundations for science of experience and to open consciousness to scientific study. The influence of phenomenology initiated in the works of Husserl and continued in a wide range of works of others was immense, but mainly within the confines of philosophy and the humanities. The actual attempts to develop a scientific discipline of the study of consciousness and to carry out research on cognition and consciousness were always based on the methods of traditional science in which elimination of the subjective has been always a primary tenet. Thus, focus was mainly on neurological correlates of conscious phenomena. The present paper is an attempt to initiate an extension and revision of phenomenological methodology with the use of philosophical and scientific experience and knowledge accumulated in a century of inquiry and research in relevant disciplines. The question which disciplines are relevant is crucial and our answer is innovative. The range of disciplines involved here is from information science and studies of computation, up to cultural psychology and the studies of philosophical traditions of the East. Concepts related to information and computation studies provide a general conceptual framework free from the limitations of particular languages and of linguistic analysis. This conceptual framework is extending the original perspective of phenomenology to issues of modern technology and science. Cultural psychology gives us tools to root out what in phenomenology was considered universal for humanity, but was a result of European ethnocentrism. Most important here is the contrast between individualistic and collectivistic cultural determinants of consciousness. Finally, philosophical tradition of the East gives alternatives in seeking solutions for fundamental problems. This general outline of the research methodology is illustrated by an example of its use when phenomenology is studied within the conceptual

  18. [Social actors and phenomenologic modelling].

    PubMed

    Laflamme, Simon

    2012-05-01

    The phenomenological approach has a quasi-monopoly in the individual and subjectivity analyses in social sciences. However, the conceptual apparatus associated with this approach is very restrictive. The human being has to be understood as rational, conscious, intentional, interested, and autonomous. Because of this, a large dimension of human activity cannot be taken into consideration: all that does not fit into the analytical categories (nonrational, nonconscious, etc.). Moreover, this approach cannot really move toward a relational analysis unless it is between individuals predefined by its conceptual apparatus. This lack of complexity makes difficult the establishment of links between phenomenology and systemic analysis in which relation (and its derivatives such as recursiveness, dialectic, correlation) plays an essential role. This article intends to propose a way for systemic analysis to apprehend the individual with respect to his complexity.

  19. Predecessors of the giant 1960 Chile earthquake

    USGS Publications Warehouse

    Cisternas, M.; Atwater, B.F.; Torrejon, F.; Sawai, Y.; Machuca, G.; Lagos, M.; Eipert, A.; Youlton, C.; Salgado, I.; Kamataki, T.; Shishikura, M.; Rajendran, C.P.; Malik, J.K.; Rizal, Y.; Husni, M.

    2005-01-01

    It is commonly thought that the longer the time since last earthquake, the larger the next earthquake's slip will be. But this logical predictor of earthquake size, unsuccessful for large earthquakes on a strike-slip fault, fails also with the giant 1960 Chile earthquake of magnitude 9.5 (ref. 3). Although the time since the preceding earthquake spanned 123 years (refs 4, 5), the estimated slip in 1960, which occurred on a fault between the Nazca and South American tectonic plates, equalled 250-350 years' worth of the plate motion. Thus the average interval between such giant earthquakes on this fault should span several centuries. Here we present evidence that such long intervals were indeed typical of the last two millennia. We use buried soils and sand layers as records of tectonic subsidence and tsunami inundation at an estuary midway along the 1960 rupture. In these records, the 1960 earthquake ended a recurrence interval that had begun almost four centuries before, with an earthquake documented by Spanish conquistadors in 1575. Two later earthquakes, in 1737 and 1837, produced little if any subsidence or tsunami at the estuary and they therefore probably left the fault partly loaded with accumulated plate motion that the 1960 earthquake then expended. ?? 2005 Nature Publishing Group.

  20. Predecessors of the giant 1960 Chile earthquake.

    PubMed

    Cisternas, Marco; Atwater, Brian F; Torrejón, Fernando; Sawai, Yuki; Machuca, Gonzalo; Lagos, Marcelo; Eipert, Annaliese; Youlton, Cristián; Salgado, Ignacio; Kamataki, Takanobu; Shishikura, Masanobu; Rajendran, C P; Malik, Javed K; Rizal, Yan; Husni, Muhammad

    2005-09-15

    It is commonly thought that the longer the time since last earthquake, the larger the next earthquake's slip will be. But this logical predictor of earthquake size, unsuccessful for large earthquakes on a strike-slip fault, fails also with the giant 1960 Chile earthquake of magnitude 9.5 (ref. 3). Although the time since the preceding earthquake spanned 123 years (refs 4, 5), the estimated slip in 1960, which occurred on a fault between the Nazca and South American tectonic plates, equalled 250-350 years' worth of the plate motion. Thus the average interval between such giant earthquakes on this fault should span several centuries. Here we present evidence that such long intervals were indeed typical of the last two millennia. We use buried soils and sand layers as records of tectonic subsidence and tsunami inundation at an estuary midway along the 1960 rupture. In these records, the 1960 earthquake ended a recurrence interval that had begun almost four centuries before, with an earthquake documented by Spanish conquistadors in 1575. Two later earthquakes, in 1737 and 1837, produced little if any subsidence or tsunami at the estuary and they therefore probably left the fault partly loaded with accumulated plate motion that the 1960 earthquake then expended.

  1. Toward a Phenomenological Account of Embodied Subjectivity in Autism.

    PubMed

    Boldsen, Sofie

    2018-06-18

    Sensorimotor research is currently challenging the dominant understanding of autism as a deficit in the cognitive ability to 'mindread'. This marks an emerging shift in autism research from a focus on the structure and processes of the mind to a focus on autistic behavior as grounded in the body. Contemporary researchers in sensorimotor differences in autism call for a reconciliation between the scientific understanding of autism and the first-person experience of autistic individuals. I argue that fulfilling this ambition requires a phenomenological understanding of the body as it presents itself in ordinary experience, namely as the subject of experience rather than a physical object. On this basis, I investigate how the phenomenology of Maurice Merleau-Ponty can be employed as a frame of understanding for bodily experience in autism. Through a phenomenological analysis of Tito Mukhopadhyay's autobiographical work, How can I talk if my lips don't move (2009), I illustrate the relevance and potential of phenomenological philosophy in autism research, arguing that this approach enables a deeper understanding of bodily and subjective experiences related to autism.

  2. Next-Day Earthquake Forecasts for California

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Jackson, D. D.; Kagan, Y. Y.

    2008-12-01

    We implemented a daily forecast of m > 4 earthquakes for California in the format suitable for testing in community-based earthquake predictability experiments: Regional Earthquake Likelihood Models (RELM) and the Collaboratory for the Study of Earthquake Predictability (CSEP). The forecast is based on near-real time earthquake reports from the ANSS catalog above magnitude 2 and will be available online. The model used to generate the forecasts is based on the Epidemic-Type Earthquake Sequence (ETES) model, a stochastic model of clustered and triggered seismicity. Our particular implementation is based on the earlier work of Helmstetter et al. (2006, 2007), but we extended the forecast to all of Cali-fornia, use more data to calibrate the model and its parameters, and made some modifications. Our forecasts will compete against the Short-Term Earthquake Probabilities (STEP) forecasts of Gersten-berger et al. (2005) and other models in the next-day testing class of the CSEP experiment in California. We illustrate our forecasts with examples and discuss preliminary results.

  3. Looks Good on Paper: A Phenomenological Study of Reflective High School Teaching

    ERIC Educational Resources Information Center

    Skemp, Charles John

    2010-01-01

    This study is a phenomenology of the practice of high school teaching. It is an examination of the day-to-day lived experience of high school teachers. The research is grounded in Heidegger's (1962) theory of hermeneutic phenomenology, as well as Polanyi's (1961) theory of tacit knowing. The study uses a phenomenological research design influenced…

  4. The mechanism of earthquake

    NASA Astrophysics Data System (ADS)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The

  5. A comparison study of 2006 Java earthquake and other Tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.

    2006-12-01

    We revise the slip processes of July 17 2006 Java earthquakes by combined inverting teleseismic body wave, long period surface waves, as well as the broadband records at Christmas island (XMIS), which is 220 km away from the hypocenter and so far the closest observation for a Tsunami earthquake. Comparing with the previous studies, our approach considers the amplitude variations of surface waves with source depths as well as the contribution of ScS phase, which usually has amplitudes compatible with that of direct S phase for such low angle thrust earthquakes. The fault dip angles are also refined using the Love waves observed along fault strike direction. Our results indicate that the 2006 event initiated at a depth around 12 km and unilaterally rupture southeast for 150 sec with a speed of 1.0 km/sec. The revised fault dip is only about 6 degrees, smaller than the Harvard CMT (10.5 degrees) but consistent with that of 1994 Java earthquake. The smaller fault dip results in a larger moment magnitude (Mw=7.9) for a PREM earth, though it is dependent on the velocity structure used. After verified with 3D SEM forward simulation, we compare the inverted result with the revised slip models of 1994 Java and 1992 Nicaragua earthquakes derived using the same wavelet based finite fault inversion methodology.

  6. Turkish Children's Ideas about Earthquakes

    ERIC Educational Resources Information Center

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  7. Differential energy radiation from two earthquakes in Japan with identical Mw: The Kyushu 1996 and Tottori 2000 earthquakes

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2009-01-01

    We examine two closely located earthquakes in Japan that had identical moment magnitudes Mw but significantly different energy magnitudes Me. We use teleseismic data from the Global Seismograph Network and strong-motion data from the National Research Institute for Earth Science and Disaster Prevention's K-Net to analyze the 19 October 1996 Kyushu earthquake (Mw 6.7, Me 6.6) and the 6 October 2000 Tottori earthquake (Mw 6.7, Me 7.4). To obtain regional estimates of radiated energy ES we apply a spectral technique to regional (<200 km) waveforms that are dominated by S and Lg waves. For the thrust-fault Kyushu earthquake, we estimate an average regional attenuation Q(f) 230f0:65. For the strike-slip Tottori earthquake, the average regional attenuation is Q(f) 180f0:6. These attenuation functions are similar to those derived from studies of both California and Japan earthquakes. The regional estimate of ES for the Kyushu earthquake, 3:8 ?? 1014 J, is significantly smaller than that for the Tottori earthquake, ES 1:3 ?? 1015 J. These estimates correspond well with the teleseismic estimates of 3:9 ?? 1014 J and 1:8 ?? 1015 J, respectively. The apparent stress (Ta = ??Es/M0 with ?? equal to rigidity) for the Kyushu earthquake is 4 times smaller than the apparent stress for the Tottori earthquake. In terms of the fault maturity model, the significantly greater release of energy by the strike-slip Tottori earthquake can be related to strong deformation in an immature intraplate setting. The relatively lower energy release of the thrust-fault Kyushu earthquake can be related to rupture on mature faults at a subduction environment. The consistence between teleseismic and regional estimates of ES is particularly significant as teleseismic data for computing ES are routinely available for all large earthquakes whereas often there are no near-field data.

  8. Global earthquake fatalities and population

    USGS Publications Warehouse

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  9. Large earthquakes and creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  10. How fault geometry controls earthquake magnitude

    NASA Astrophysics Data System (ADS)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  11. Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations

    NASA Astrophysics Data System (ADS)

    Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.

    2016-12-01

    We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should

  12. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  13. In the shadow of 1857-the effect of the great Ft. Tejon earthquake on subsequent earthquakes in southern California

    USGS Publications Warehouse

    Harris, R.A.; Simpson, R.W.

    1996-01-01

    The great 1857 Fort Tejon earthquake is the largest earthquake to have hit southern California during the historic period. We investigated if seismicity patterns following 1857 could be due to static stress changes generated by the 1857 earthquake. When post-1857 earthquakes with unknown focal mechanisms were assigned strike-slip mechanisms with strike and rake determined by the nearest active fault, 13 of the 13 southern California M???5.5 earthquakes between 1857 and 1907 were encouraged by the 1857 rupture. When post-1857 earthquakes in the Transverse Ranges with unknown focal mechanisms were assigned reverse mechanisms and all other events were assumed strike-slip, 11 of the 13 earthquakes were encouraged by the 1857 earthquake. These results show significant correlations between static stress changes and seismicity patterns. The correlation disappears around 1907, suggesting that tectonic loading began to overwhelm the effect of the 1857 earthquake early in the 20th century.

  14. Intraplate triggered earthquakes: Observations and interpretation

    USGS Publications Warehouse

    Hough, S.E.; Seeber, L.; Armbruster, J.G.

    2003-01-01

    We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of

  15. Earthquakes, July-August 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There was one major earthquake during this reporting period-a magnitude 7.1 shock off the coast of Northern California on August 17. Earthquake-related deaths were reported from Indonesia, Romania, Peru, and Iraq. 

  16. Earthquakes-Rattling the Earth's Plumbing System

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  17. Measuring the size of an earthquake

    USGS Publications Warehouse

    Spence, W.

    1977-01-01

    Earthquakes occur in a broad range of sizes. A rock burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat island earthquake in the Aleutian arc involved a 650-kilometer lenght of Earth's crust. Earthquakes can be even smaller and even larger. if an earthquake is felt or causes perceptible surface damage, then its intesnity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic area or at great focal depths. These are either simply not felt or their felt pattern does not really indicate their true size. 

  18. Volunteers in the earthquake hazard reduction program

    USGS Publications Warehouse

    Ward, P.L.

    1978-01-01

    With this in mind, I organized a small workshop for approximately 30 people on February 2 and 3, 1978, in Menlo Park, Calif. the purpose of the meeting was to discuss methods of involving volunteers in a meaningful way in earthquake research and in educating the public about earthquake hazards. The emphasis was on earthquake prediction research, but the discussions covered the whole earthquake hazard reduction program. Representatives attended from the earthquake research community, from groups doing socioeconomic research on earthquake matters, and from a wide variety of organizations who might sponsor volunteers. 

  19. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  20. Protecting Your Family From Earthquakes-The Seven Steps to Earthquake Safety (in Spanish and English)

    USGS Publications Warehouse

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here to share an important message on emergency preparedness. Historically, we have suffered earthquakes here in the San Francisco Bay Area that have caused severe hardship for residents and incredible damage to our cities. It is likely we will experience a severe earthquake within the next 30 years. Many of us come from other countries where we have experienced earth- quakes, so we believe that we understand them. However, the way we prepare for earthquakes in our home country may be different from the way it is necessary to prepare for earthquakes here. Very f w people die from collapsing buildings in the Bay Area because most structures are built to stand up to the shaking. But it is quite possible that your family will be without medical care or grocery stores and separated from one another for several days to weeks. It will ultimately be up to you to keep your family safe until help arrives, so we are asking you to join us in learning to take care of your family before, during, and after an earthquake. The first step is to read this book. Everyone in your family, children and adults, can learn how to prepare for an earthquake. Then take advantage of the American Red Cross Earthquake Preparedness training courses offered in your community. These preparedness courses are free, and also offered in Spanish and available to everyone in the community regardless of family history, leg al status, gender, or age. We encourage you to take one of these free training workshops. Look on the back cover for more information. Remember that an earthquake can occur without warning, and the only way that we can reduce the harm caused by earthquakes is to be prepared. Get Prepared!

  1. Phenomenology of future-oriented mind-wandering episodes

    PubMed Central

    Stawarczyk, David; Cassol, Helena; D'Argembeau, Arnaud

    2013-01-01

    Recent research suggests that prospective and non-prospective forms of mind-wandering possess distinct properties, yet little is known about what exactly differentiates between future-oriented and non-future-oriented mind-wandering episodes. In the present study, we used multilevel exploratory factor analyses (MEFA) to examine the factorial structure of various phenomenological dimensions of mind-wandering, and we then investigated whether future-oriented mind-wandering episodes differ from other classes of mind-wandering along the identified factors. We found that the phenomenological dimensions of mind-wandering are structured in four factors: representational format (inner speech vs. visual imagery), personal relevance, realism/concreteness, and structuration. Prospective mind-wandering differed from non-prospective mind-wandering along each of these factors. Specifically, future-oriented mind-wandering episodes involved inner speech to a greater extent, were more personally relevant, more realistic/concrete, and more often part of structured sequences of thoughts. These results show that future-oriented mind-wandering possesses a unique phenomenological signature and provide new insights into how this particular form of mind-wandering may adaptively contribute to autobiographical planning. PMID:23882236

  2. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  3. Earthquakes, September-October 1984

    USGS Publications Warehouse

    Person, W.J.

    1985-01-01

    In the United States, Wyoming experienced a couple of moderate earthquakes, and off the coast of northern California, a strong earthquake shook much of the northern coast of California and parts of the Oregon coast. 

  4. Earthquakes, November-December 1977

    USGS Publications Warehouse

    Person, W.J.

    1978-01-01

    In the United States, the largest earthquake during this reporting period was a magntidue 6.6 in the Andreanof Islands, which are part of the Aleutian Islands chain, on November 4 that caused some minor damage. Northern California was struck by a magnitude 4.8 earthquake on November 22 causing moderate damage in the Willits area. This was the most damaging quake in the United States during the year. Two major earthquakes of magntidues 7.0 or above to 14 for the year. 

  5. Early Earthquakes of the Americas

    NASA Astrophysics Data System (ADS)

    Ni, James

    2004-11-01

    Robert Kovach's second book looks at the interplay of earthquake and volcanic events, archeology, and history in the Americas. Throughout history, major earthquakes have caused the deaths of millions of people and have damaged countless cities. Earthquakes undoubtedly damaged prehistoric cities in the Americas, and evidence of these events could be preserved in archeological records. Kovach asks, Did indigenous native cultures-Indians of the Pacific Northwest, Aztecs, Mayas, and Incas-document their natural history? Some events have been explicitly documented, for example, in Mayan codices, but many may have been recorded as myth and legend. Kovach's discussions of how early cultures dealt with fearful events such as earthquakes and volcanic eruptions are colorful, informative, and entertaining, and include, for example, a depiction of how the Maya would talk to maize plants in their fields during earthquakes to reassure them.

  6. Limiting the Effects of Earthquake Shaking on Gravitational-Wave Interferometers

    NASA Astrophysics Data System (ADS)

    Perry, M. R.; Earle, P. S.; Guy, M. R.; Harms, J.; Coughlin, M.; Biscans, S.; Buchanan, C.; Coughlin, E.; Fee, J.; Mukund, N.

    2016-12-01

    Second-generation ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-amplitude waves from teleseismic events, which can cause astronomical detectors to fall out of mechanical lock (lockloss). This causes the data to be useless for gravitational wave detection around the time of the seismic arrivals and for several hours thereafter while the detector stabilizes enough to return to the locked state. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining lock even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is typically available within 5 to 20 minutes of the origin time of significant earthquakes, generally before the arrival of high-amplitude waves from these teleseisms at LIGO. These alerts are used to estimate arrival times and ground velocities at the gravitational wave detectors. In general, 94% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal with about 90% of the events falling within a factor of 2 of the final predicted value. By using a Machine Learning Algorithm, we develop a lockloss prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could save lockloss from 40-100 earthquake events in a 6-month time-period.

  7. Advances in analysis of pre-earthquake thermal anomalies by analyzing IR satellite data

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Bryant, N.; Filizzola, C.; Pergola, N.; Taylor, P.; Tramutoli, V.

    Presented work addresses the possible relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing infrared (IR) flux as part of a larger family of electromagnetic (EM) phenomena related to earthquake activity. Thermal infra-red (TIR) surveys performed by polar orbiting (NOAA/AVHRR, MODIS) and geosynchronous weather satellites (GOES, METEOSAT) seems to indicate the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients associated with the place (epicentral area, linear structures and fault systems) and the time of occurrence of a number of major earthquakes with M>5 and focal depths no deeper than 50km. As Earth emitted in 8-14 microns range the TIR signal measured from satellite strongly vary depending on meteorological conditions and other factors (space-time changes in atmospheric transmittance, time/season, solar and satellite zenithal angles and etc) independent from seismic activity, a preliminary definition of "anomalous TIR signal" should be given. To provide reliable discrimination of thermal anomalous area from the natural events (seasonal changes, local morphology) new robust approach (RAT) has been recently proposed (and successfully applied in the field of the monitoring of the major environmental risks) that permits to give a statistically based definition of thermal info-red (TIR) anomaly and reduce of false events detection. New techniques also were specifically developed to assure the precise co-registration of all satellite scenes and permit accurate time-series analysis of satellite observations. As final results we present examples of most recent 2000/2004 worldwide strong earthquakes and the techniques used to capture the tracks of thermal emission mid-IR anomalies and methodology for practical future use of such phenomena in the early warning systems.

  8. The earthquake disaster risk characteristic and the problem in the earthquake emergency rescue of mountainous southwestern Sichuan

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Xin, C.; Ying, Z.

    2016-12-01

    In recent years, earthquake disaster occurred frequently in Chinese mainland, the secondary disaster which have been caused by it is more serious in mountainous region. Because of the influence of terrain and geological conditions, the difficulty of earthquake emergency rescue work greatly increased, rescue force is also urged. Yet, it has been studied less on earthquake emergency rescue in mountainous region, the research in existing equipment whether can meet the actual needs of local earthquake emergency rescue is poorly. This paper intends to discuss and solve these problems. Through the mountainous regions Ganzi and Liangshan states in Sichuan field research, we investigated the process of earthquake emergency response and the projects for rescue force after an earthquake, and we also collected and collated local rescue force based data. By consulting experts and statistical analyzing the basic data, there are mainly two problems: The first is about local rescue force, they are poorly equipped and lack in the knowledge of medical help or identify architectural structure. There are no countries to establish a sound financial investment protection mechanism. Also, rescue equipment's updates and maintenance; The second problem is in earthquake emergency rescue progress. In the complicated geologic structure of mountainous regions, traffic and communication may be interrupted by landslides and mud-rock flows after earthquake. The outside rescue force may not arrive in time, rescue equipment was transported by manpower. Because of unknown earthquake disaster information, the local rescue force was deployed unreasonable. From the above, the local government worker should analyze the characteristics of the earthquake disaster in mountainous regions, and research how to improve their earthquake emergency rescue ability. We think they can do that by strengthening and regulating the rescue force structure, enhancing the skills and knowledge, training rescue workers

  9. Simulating Earthquakes for Science and Society: New Earthquake Visualizations Ideal for Use in Science Communication

    NASA Astrophysics Data System (ADS)

    de Groot, R. M.; Benthien, M. L.

    2006-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin &Brick, 2002). Earthquakes are ideal candidates for visualization products: they cannot be predicted, are completed in a matter of seconds, occur deep in the earth, and the time between events can be on a geologic time scale. For example, the southern part of the San Andreas fault has not seen a major earthquake since about 1690, setting the stage for an earthquake as large as magnitude 7.7 -- the "big one." Since no one has experienced such an earthquake, visualizations can help people understand the scale of such an event. Accordingly, SCEC has developed a revolutionary simulation of this earthquake, with breathtaking visualizations that are now being distributed. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  10. Earthquake number forecasts testing

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  11. Earthquake- and tsunami-induced ionospheric disturbances detected by GPS total electron content observation

    NASA Astrophysics Data System (ADS)

    Tsugawa, T.; Nishioka, M.; Matsumura, M.; Shinagawa, H.; Maruyama, T.; Ogawa, T.; Saito, A.; Otsuka, Y.; Nagatsuma, T.; Murata, T.

    2012-12-01

    Ionospheric disturbances induced by the 2011 Tohoku earthquake and tsunami were studied by the high-resolution GPS total electron content (TEC) observation in Japan and in the world. The initial ionospheric disturbance appeared as sudden depletions by about 6 TEC unit (20%) about seven minutes after the earthquake onset, near the epicenter. From 06:00UT to 06:15UT, circular waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, shortperiod oscillations with period of about 4 minutes were observed after 06:00 UT for 3 hours or more. We focus on the the circular and concentric waves in this paper. The circular or concentric structures indicate that these ionospheric disturbances had a point source. The center of these structures, termed as "ionospheric epicenter", was located around 37.5 deg N of latitude and 144.0 deg E of longitude, 170 km far from the epicenter to the southeast direction, and corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. Long-propagation of these TEC disturbances were studied also using high-resolution GPS-TEC data in North America and Europe. Medium-scale wave structures with wavelengths of several 100 km appeared in the west part of North America at the

  12. Phenomenological characteristics of autobiographical memory in Korsakoff's syndrome.

    PubMed

    El Haj, Mohamad; Nandrino, Jean-Louis

    2017-10-01

    A body of research suggests compromise of autobiographical memory in Korsakoff's syndrome (KS). The present paper extends this literature by investigating the subjective experience of autobiographical recall in the syndrome. Patients with KS and controls were asked to retrieve autobiographical memories. After memory retrieval, participants were asked to rate phenomenological characteristics of their memories (i.e., reliving, back in time, remembering, realness, visual imagery, auditory imagery, language, emotion, rehearsal, importance, spatial recall and temporal recall). Analysis showed lower "Mean Phenomenological Experience" in the Korsakoff patients than in controls. However, the Korsakoff patients attributed relatively high emotional value and importance to their memories. Although our findings suggest compromised phenomenological reliving of autobiographical memory in patients with KS, affective characteristics such as emotion and importance are likely to play a main role in the subjective experience of the past in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake

    USGS Publications Warehouse

    Gomberg, J.; Bodin, P.; Larson, K.; Dragert, H.

    2004-01-01

    The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered wide-spread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable.

  14. Space Earthquake Perturbation Simulation (SEPS) an application based on Geant4 tools to model and simulate the interaction between the Earthquake and the particle trapped on the Van Allen belt

    NASA Astrophysics Data System (ADS)

    Ambroglini, Filippo; Jerome Burger, William; Battiston, Roberto; Vitale, Vincenzo; Zhang, Yu

    2014-05-01

    During last decades, few space experiments revealed anomalous bursts of charged particles, mainly electrons with energy larger than few MeV. A possible source of these bursts are the low-frequency seismo-electromagnetic emissions, which can cause the precipitation of the electrons from the lower boundary of their inner belt. Studies of these bursts reported also a short-term pre-seismic excess. Starting from simulation tools traditionally used on high energy physics we developed a dedicated application SEPS (Space Perturbation Earthquake Simulation), based on the Geant4 tool and PLANETOCOSMICS program, able to model and simulate the electromagnetic interaction between the earthquake and the particles trapped in the inner Van Allen belt. With SEPS one can study the transport of particles trapped in the Van Allen belts through the Earth's magnetic field also taking into account possible interactions with the Earth's atmosphere. SEPS provides the possibility of: testing different models of interaction between electromagnetic waves and trapped particles, defining the mechanism of interaction as also shaping the area in which this takes place,assessing the effects of perturbations in the magnetic field on the particles path, performing back-tracking analysis and also modelling the interaction with electric fields. SEPS is in advanced development stage, so that it could be already exploited to test in details the results of correlation analysis between particle bursts and earthquakes based on NOAA and SAMPEX data. The test was performed both with a full simulation analysis, (tracing from the position of the earthquake and going to see if there were paths compatible with the burst revealed) and with a back-tracking analysis (tracing from the burst detection point and checking the compatibility with the position of associated earthquake).

  15. Prediction of earthquake-triggered landslide event sizes

    NASA Astrophysics Data System (ADS)

    Braun, Anika; Havenith, Hans-Balder; Schlögel, Romy

    2016-04-01

    Seismically induced landslides are a major environmental effect of earthquakes, which may significantly contribute to related losses. Moreover, in paleoseismology landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes and thus allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. We present here a review of factors contributing to earthquake triggered slope failures based on an "event-by-event" classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, 'Intensity', 'Fault', 'Topographic energy', 'Climatic conditions' and 'Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. The relative weight of these factors was extracted from published data for numerous past earthquakes; topographic inputs were checked in Google Earth and through geographic information systems. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be cross-checked. One of our main findings is that the 'Fault' factor, which is based on characteristics of the fault, the surface rupture and its location with respect to mountain areas, has the most important

  16. A PHENOMENOLOGICAL STUDY OF DELUSIONS IN SCHIZOPHRENIA

    PubMed Central

    Kulhara, P.; Chandiramani, K.; Mattoo, S.K.; Awasthi, A.

    1986-01-01

    SUMMARY 112 patients with final clinical diagnosis of schizophrenia were subjected to detailed mental sums examination using, a structured interview schedule the present state examination. Phenomenology of delusions was determined according to the definitions and criteria of this schedule. The relationships of phenomenology will) socio-demography variables were also studied. It was seen that delusions of persecution were significantly more in males and in patients above the age of 30 years. Educated patients had more delusional misinterpretation, delusions of references and delusions of thoughts being read. Systematization of delusions was more in younger patients. Married patients had more delusions of reference. PMID:21927190

  17. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe

    2017-01-01

    A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic

  18. Evidence for Ancient Mesoamerican Earthquakes

    NASA Astrophysics Data System (ADS)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  19. Earthquake Potential Models for China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Jackson, D. D.

    2002-12-01

    We present three earthquake potential estimates for magnitude 5.4 and larger earthquakes for China. The potential is expressed as the rate density (probability per unit area, magnitude and time). The three methods employ smoothed seismicity-, geologic slip rate-, and geodetic strain rate data. We tested all three estimates, and the published Global Seismic Hazard Assessment Project (GSHAP) model, against earthquake data. We constructed a special earthquake catalog which combines previous catalogs covering different times. We used the special catalog to construct our smoothed seismicity model and to evaluate all models retrospectively. All our models employ a modified Gutenberg-Richter magnitude distribution with three parameters: a multiplicative ``a-value," the slope or ``b-value," and a ``corner magnitude" marking a strong decrease of earthquake rate with magnitude. We assumed the b-value to be constant for the whole study area and estimated the other parameters from regional or local geophysical data. The smoothed seismicity method assumes that the rate density is proportional to the magnitude of past earthquakes and approximately as the reciprocal of the epicentral distance out to a few hundred kilometers. We derived the upper magnitude limit from the special catalog and estimated local a-values from smoothed seismicity. Earthquakes since January 1, 2000 are quite compatible with the model. For the geologic forecast we adopted the seismic source zones (based on geological, geodetic and seismicity data) of the GSHAP model. For each zone, we estimated a corner magnitude by applying the Wells and Coppersmith [1994] relationship to the longest fault in the zone, and we determined the a-value from fault slip rates and an assumed locking depth. The geological model fits the earthquake data better than the GSHAP model. We also applied the Wells and Coppersmith relationship to individual faults, but the results conflicted with the earthquake record. For our geodetic

  20. Time series of GNSS-derived ionospheric maps to detect anomalies as possible precursors of high magnitude earthquakes

    NASA Astrophysics Data System (ADS)

    Barbarella, M.; De Giglio, M.; Galeandro, A.; Mancini, F.

    2012-04-01

    The modification of some atmospheric physical properties prior to a high magnitude earthquake has been recently debated within the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena the ionization of air at the higher level of the atmosphere, called ionosphere, is investigated in this work. Such a ionization occurrences could be caused by possible leaking of gases from earth crust and their presence was detected around the time of high magnitude earthquakes by several authors. However, the spatial scale and temporal domain over which such a disturbances come into evidence is still a controversial item. Even thought the ionospheric activity could be investigated by different methodologies (satellite or terrestrial measurements), we selected the production of ionospheric maps by the analysis of GNSS (Global Navigation Satellite Data) data as possible way to detect anomalies prior of a seismic event over a wide area around the epicentre. It is well known that, in the GNSS sciences, the ionospheric activity could be probed by the analysis of refraction phenomena occurred on the dual frequency signals along the satellite to receiver path. The analysis of refraction phenomena affecting data acquired by the GNSS permanent trackers is able to produce daily to hourly maps representing the spatial distribution of the ionospheric Total Electron Content (TEC) as an index of the ionization degree in the upper atmosphere. The presence of large ionospheric anomalies could be therefore interpreted in the LAI Coupling model like a precursor signal of a strong earthquake, especially when the appearance of other different precursors (thermal anomalies and/or gas fluxes) could be detected. In this work, a six-month long series of ionospheric maps produced from GNSS data collected by a network of 49 GPS permanent stations distributed within an area around the city of L'Aquila (Abruzzi, Italy), where an earthquake (M = 6.3) occurred on April 6, 2009

  1. Far-field coseismic ionospheric disturbances of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.; Chum, J.

    2015-12-01

    A computer code has been developed to simulate the generation of infrasonic waves by a strong earthquake at a distance of 9000 km from the epicenter, their propagation through the atmosphere and their effects in the ionosphere. We provide estimates of the perturbations in the ionosphere at the height (210-220 km) where radiowaves at the sounding frequency (3.595 MHz) of a continuous Doppler radar reflect. Ionospheric perturbations have a global character and amplitudes of 1.5-7.5% of ambient value. Perturbations exist for ~1 h. The form of calculated ionospheric disturbances coincides with the experimental results. The correlation coefficient between calculated and experimental forms was from 0.68 to 0.9.

  2. Post-earthquake building safety assessments for the Canterbury Earthquakes

    USGS Publications Warehouse

    Marshall, J.; Barnes, J.; Gould, N.; Jaiswal, K.; Lizundia, B.; Swanson, David A.; Turner, F.

    2012-01-01

    This paper explores the post-earthquake building assessment program that was utilized in Christchurch, New Zealand following the Canterbury Sequence of earthquakes beginning with the Magnitude (Mw.) 7.1 Darfield event in September 2010. The aftershocks or triggered events, two of which exceeded Mw 6.0, continued with events in February and June 2011 causing the greatest amount of damage. More than 70,000 building safety assessments were completed following the February event. The timeline and assessment procedures will be discussed including the use of rapid response teams, selection of indicator buildings to monitor damage following aftershocks, risk assessments for demolition of red-tagged buildings, the use of task forces to address management of the heavily damaged downtown area and the process of demolition. Through the post-event safety assessment program that occurred throughout the Canterbury Sequence of earthquakes, many important lessons can be learned that will benefit future response to natural hazards that have potential to damage structures.

  3. Testing earthquake source inversion methodologies

    USGS Publications Warehouse

    Page, M.; Mai, P.M.; Schorlemmer, D.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  4. Testing an earthquake prediction algorithm

    USGS Publications Warehouse

    Kossobokov, V.G.; Healy, J.H.; Dewey, J.W.

    1997-01-01

    A test to evaluate earthquake prediction algorithms is being applied to a Russian algorithm known as M8. The M8 algorithm makes intermediate term predictions for earthquakes to occur in a large circle, based on integral counts of transient seismicity in the circle. In a retroactive prediction for the period January 1, 1985 to July 1, 1991 the algorithm as configured for the forward test would have predicted eight of ten strong earthquakes in the test area. A null hypothesis, based on random assignment of predictions, predicts eight earthquakes in 2.87% of the trials. The forward test began July 1, 1991 and will run through December 31, 1997. As of July 1, 1995, the algorithm had forward predicted five out of nine earthquakes in the test area, which success ratio would have been achieved in 53% of random trials with the null hypothesis.

  5. Earthquakes, July-August, 1979

    USGS Publications Warehouse

    Person, W.J.

    1980-01-01

    In the United States, on August 6, central California experienced a moderately strong earthquake, which injured several people and caused some damage. A number of earthquakes occurred in other parts of the United States but caused very little damage. 

  6. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    NASA Astrophysics Data System (ADS)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  7. Mega-earthquakes rupture flat megathrusts.

    PubMed

    Bletery, Quentin; Thomas, Amanda M; Rempel, Alan W; Karlstrom, Leif; Sladen, Anthony; De Barros, Louis

    2016-11-25

    The 2004 Sumatra-Andaman and 2011 Tohoku-Oki earthquakes highlighted gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution: A fast convergence rate and young buoyant lithosphere are not required to produce mega-earthquakes. We calculated the curvature along the major subduction zones of the world, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces. A simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature. Shear strength on flat megathrusts is more homogeneous, and hence more likely to be exceeded simultaneously over large areas, than on highly curved faults. Copyright © 2016, American Association for the Advancement of Science.

  8. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, C. H.; Sun, Y. Y.; Chen, C. H.; Tsai, H. F.; Yen, H. Y.; Chum, J.; Lastovicka, J.; Yang, Q. S.; Chen, W. S.; Wen, S.

    2016-02-01

    In this paper, concurrent/colocated measurements of seismometers, infrasonic systems, magnetometers, HF-CW (high frequency-continuous wave) Doppler sounding systems, and GPS receivers are employed to detect disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake. No time delay between colocated infrasonic (i.e., super long acoustic) waves and seismic waves indicates that the triggered acoustic and/or gravity waves in the atmosphere (or seismo-traveling atmospheric disturbances, STADs) near the Earth's surface can be immediately activated by vertical ground motions. The circle method is used to find the origin and compute the observed horizontal traveling speed of the triggered infrasonic waves. The speed of about 3.3 km/s computed from the arrival time versus the epicentral distance suggests that the infrasonic waves (i.e., STADs) are mainly induced by the Rayleigh waves. The agreements in the travel time at various heights between the observation and theoretical calculation suggest that the STADs triggered by the vertical motion of ground surface caused by the Tohoku earthquake traveled vertically from the ground to the ionosphere with speed of the sound in the atmosphere over Taiwan.

  9. The USGS Earthquake Notification Service (ENS): Customizable notifications of earthquakes around the globe

    USGS Publications Warehouse

    Wald, Lisa A.; Wald, David J.; Schwarz, Stan; Presgrave, Bruce; Earle, Paul S.; Martinez, Eric; Oppenheimer, David

    2008-01-01

    At the beginning of 2006, the U.S. Geological Survey (USGS) Earthquake Hazards Program (EHP) introduced a new automated Earthquake Notification Service (ENS) to take the place of the National Earthquake Information Center (NEIC) "Bigquake" system and the various other individual EHP e-mail list-servers for separate regions in the United States. These included northern California, southern California, and the central and eastern United States. ENS is a "one-stop shopping" system that allows Internet users to subscribe to flexible and customizable notifications for earthquakes anywhere in the world. The customization capability allows users to define the what (magnitude threshold), the when (day and night thresholds), and the where (specific regions) for their notifications. Customization is achieved by employing a per-user based request profile, allowing the notifications to be tailored for each individual's requirements. Such earthquake-parameter-specific custom delivery was not possible with simple e-mail list-servers. Now that event and user profiles are in a structured query language (SQL) database, additional flexibility is possible. At the time of this writing, ENS had more than 114,000 subscribers, with more than 200,000 separate user profiles. On a typical day, more than 188,000 messages get sent to a variety of widely distributed users for a wide range of earthquake locations and magnitudes. The purpose of this article is to describe how ENS works, highlight the features it offers, and summarize plans for future developments.

  10. A note on evaluating VAN earthquake predictions

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-Akis; Melis, Nicos S.

    The evaluation of the success level of an earthquake prediction method should not be based on approaches that apply generalized strict statistical laws and avoid the specific nature of the earthquake phenomenon. Fault rupture processes cannot be compared to gambling processes. The outcome of the present note is that even an ideal earthquake prediction method is still shown to be a matter of a “chancy” association between precursors and earthquakes if we apply the same procedure proposed by Mulargia and Gasperini [1992] in evaluating VAN earthquake predictions. Each individual VAN prediction has to be evaluated separately, taking always into account the specific circumstances and information available. The success level of epicenter prediction should depend on the earthquake magnitude, and magnitude and time predictions may depend on earthquake clustering and the tectonic regime respectively.

  11. Perceptual Anomalies in Schizophrenia: Integrating Phenomenology and Cognitive Neuroscience

    PubMed Central

    Uhlhaas, Peter J.; Mishara, Aaron L.

    2007-01-01

    From phenomenological and experimental perspectives, research in schizophrenia has emphasized deficits in “higher” cognitive functions, including attention, executive function, as well as memory. In contrast, general consensus has viewed dysfunctions in basic perceptual processes to be relatively unimportant in the explanation of more complex aspects of the disorder, including changes in self-experience and the development of symptoms such as delusions. We present evidence from phenomenology and cognitive neuroscience that changes in the perceptual field in schizophrenia may represent a core impairment. After introducing the phenomenological approach to perception (Husserl, the Gestalt School), we discuss the views of Paul Matussek, Klaus Conrad, Ludwig Binswanger, and Wolfgang Blankenburg on perception in schizophrenia. These 4 psychiatrists describe changes in perception and automatic processes that are related to the altered experience of self. The altered self-experience, in turn, may be responsible for the emergence of delusions. The phenomenological data are compatible with current research that conceptualizes dysfunctions in perceptual processing as a deficit in the ability to combine stimulus elements into coherent object representations. Relationships of deficits in perceptual organization to cognitive and social dysfunction as well as the possible neurobiological mechanisms are discussed. PMID:17118973

  12. Strategies for rapid global earthquake impact estimation: the Prompt Assessment of Global Earthquakes for Response (PAGER) system

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, D.J.

    2013-01-01

    This chapter summarizes the state-of-the-art for rapid earthquake impact estimation. It details the needs and challenges associated with quick estimation of earthquake losses following global earthquakes, and provides a brief literature review of various approaches that have been used in the past. With this background, the chapter introduces the operational earthquake loss estimation system developed by the U.S. Geological Survey (USGS) known as PAGER (for Prompt Assessment of Global Earthquakes for Response). It also details some of the ongoing developments of PAGER’s loss estimation models to better supplement the operational empirical models, and to produce value-added web content for a variety of PAGER users.

  13. Stigma in science: the case of earthquake prediction.

    PubMed

    Joffe, Helene; Rossetto, Tiziana; Bradley, Caroline; O'Connor, Cliodhna

    2018-01-01

    This paper explores how earthquake scientists conceptualise earthquake prediction, particularly given the conviction of six earthquake scientists for manslaughter (subsequently overturned) on 22 October 2012 for having given inappropriate advice to the public prior to the L'Aquila earthquake of 6 April 2009. In the first study of its kind, semi-structured interviews were conducted with 17 earthquake scientists and the transcribed interviews were analysed thematically. The scientists primarily denigrated earthquake prediction, showing strong emotive responses and distancing themselves from earthquake 'prediction' in favour of 'forecasting'. Earthquake prediction was regarded as impossible and harmful. The stigmatisation of the subject is discussed in the light of research on boundary work and stigma in science. The evaluation reveals how mitigation becomes the more favoured endeavour, creating a normative environment that disadvantages those who continue to pursue earthquake prediction research. Recommendations are made for communication with the public on earthquake risk, with a focus on how scientists portray uncertainty. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  14. Insignificant solar-terrestrial triggering of earthquakes

    USGS Publications Warehouse

    Love, Jeffrey J.; Thomas, Jeremy N.

    2013-01-01

    We examine the claim that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity, might play a role in triggering earthquakes. We count the number of earthquakes having magnitudes that exceed chosen thresholds in calendar years, months, and days, and we order these counts by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure the statistical significance of the difference between the earthquake-number distributions below and above the median of the solar-terrestrial averages by χ2 and Student's t tests. Across a range of earthquake magnitude thresholds, we find no consistent and statistically significant distributional differences. We also introduce time lags between the solar-terrestrial variables and the number of earthquakes, but again no statistically significant distributional difference is found. We cannot reject the null hypothesis of no solar-terrestrial triggering of earthquakes.

  15. Laboratory investigations of earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Xia, Kaiwen

    In this thesis this will be attempted through controlled laboratory experiments that are designed to mimic natural earthquake scenarios. The earthquake dynamic rupturing process itself is a complicated phenomenon, involving dynamic friction, wave propagation, and heat production. Because controlled experiments can produce results without assumptions needed in theoretical and numerical analysis, the experimental method is thus advantageous over theoretical and numerical methods. Our laboratory fault is composed of carefully cut photoelastic polymer plates (Homahte-100, Polycarbonate) held together by uniaxial compression. As a unique unit of the experimental design, a controlled exploding wire technique provides the triggering mechanism of laboratory earthquakes. Three important components of real earthquakes (i.e., pre-existing fault, tectonic loading, and triggering mechanism) correspond to and are simulated by frictional contact, uniaxial compression, and the exploding wire technique. Dynamic rupturing processes are visualized using the photoelastic method and are recorded via a high-speed camera. Our experimental methodology, which is full-field, in situ, and non-intrusive, has better control and diagnostic capacity compared to other existing experimental methods. Using this experimental approach, we have investigated several problems: dynamics of earthquake faulting occurring along homogeneous faults separating identical materials, earthquake faulting along inhomogeneous faults separating materials with different wave speeds, and earthquake faulting along faults with a finite low wave speed fault core. We have observed supershear ruptures, subRayleigh to supershear rupture transition, crack-like to pulse-like rupture transition, self-healing (Heaton) pulse, and rupture directionality.

  16. Physics of Earthquake Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  17. Real Time Earthquake Information System in Japan

    NASA Astrophysics Data System (ADS)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  18. 2011 Tohoku Earthquake and Japan's Nuclear Disaster - Implications for Indian Ocean Rim countries

    NASA Astrophysics Data System (ADS)

    Chadha, R. K.

    2011-12-01

    The Nuclear disaster in Japan after the M9.0 Tohoku earthquake on March 11, 2011 has elicited global response to have a relook at the safety aspects of the nuclear power plants from all angles including natural hazards like earthquakes and tsunami. Several countries have gone into safety audits of their nuclear programs in view of the experience in Japan. Tectonically speaking, countries located close to subduction zones or in direct line of impact of the subduction zones are the most vulnerable to earthquake or tsunami hazard, as these regions are the locale of great tsunamigenic earthquakes. The Japan disaster has also cautioned to the possibility of great impact to the critical structures along the coasts due to other ocean processes caused by ocean-atmosphere interactions and also due to global warming and sea level rise phenomena in future. This is particular true for island countries. The 2011 Tohoku earthquake in Japan will be remembered more because of its nuclear tragedy and tsunami rather than the earthquake itself. The disaster happened as a direct impact of a tsunami generated by the earthquake 130 km off the coast of Sendai in the Honshu region of Japan. The depth of the earthquake was about 25 km below the ocean floor and it occurred on a thrust fault causing a displacement of more than 20 meters. At few places, water is reported to have inundated areas up to 8-10 km inland. The height of the tsunami varied between 10 and 3 meters along the coast. Generally, during an earthquake damage to buildings or other structures occur due to strong shaking which is expressed in the form of ground accelerations 'g'. Although, Peak Ground Accelerations (PGA) consistently exceeded 2g at several places from Sendai down south, structures at the Fukushima Daiichi Nuclear Power Plant did not collapse due to the earthquake. In the Indian Ocean Rim countries, Indian, Pakistan and South Africa are the three countries where Nuclear power plants are operational, few of them

  19. Tip-of-the-tongue phenomena: an introductory phenomenological analysis.

    PubMed

    Brown, S R

    2000-12-01

    The issue of meaningful yet unexpressed background-to language and to our experiences of the body-is one whose exploration is still in its infancy. There are various aspects of "invisible," implicit, or background experiences which have been investigated from the viewpoints of phenomenology, cognitive psychology, and linguistics. I will argue that James's concept of the phenomenon of fringes, as explicated by Gurwitsch, provides a structural framework from which to investigate and better understand ideas and concepts that are indeterminate, particularly those experienced in the sense of being sought-after. Johnson's conception of the image-schematic gestalt (ISG) provides an approach to bridging the descriptive gap between phenomenology and cognitive psychology. Starting from an analysis of the fringes, I will turn to a consideration of the tip-of-tongue (TOT) state, as a kind of feeling-of-knowing (FOK) state, from a variety of approaches, focusing mainly on cognitive psychology and phenomenology. I will then integrate a phenomenological analysis of these experiences, from the James/Gurwitsch structural viewpoint, with a cognitive/phenomenological analysis in terms of ISGs, and further integrate that with a cognitive/functional analysis of the relation between consciousness and retrieval, employing Anderson et al's theory of inhibitory mechanisms in cognition. This synthesis of these viewpoints will be employed to explore the thesis that the TOT state and similar experiences may relate to the gestalt nature of schemas, and that figure/ground and other contrast-enhancing structures may be both explanatory and descriptive characterizations of the field of consciousness. Copyright 2000 Academic Press.

  20. Historical and recent large megathrust earthquakes in Chile

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Madariaga, R.

    2018-05-01

    Recent earthquakes in Chile, 2014, Mw 8.2 Iquique, 2015, Mw 8.3 Illapel and 2016, Mw 7.6 Chiloé have put in evidence some problems with the straightforward application of ideas about seismic gaps, earthquake periodicity and the general forecast of large megathrust earthquakes. In northern Chile, before the 2014 Iquique earthquake 4 large earthquakes were reported in written chronicles, 1877, 1786, 1615 and 1543; in North-Central Chile, before the 2015 Illapel event, 3 large earthquakes 1943, 1880, 1730 were reported; and the 2016 Chiloé earthquake occurred in the southern zone of the 1960 Valdivia megathrust rupture, where other large earthquakes occurred in 1575, 1737 and 1837. The periodicity of these events has been proposed as a good long-term forecasting. However, the seismological aspects of historical Chilean earthquakes were inferred mainly from old chronicles written before subduction in Chile was discovered. Here we use the original description of earthquakes to re-analyze the historical archives. Our interpretation shows that a-priori ideas, like seismic gaps and characteristic earthquakes, influenced the estimation of magnitude, location and rupture area of the older Chilean events. On the other hand, the advance in the characterization of the rheological aspects that controlled the contact between Nazca and South-American plate and the study of tsunami effects provide better estimations of the location of historical earthquakes along the seismogenic plate interface. Our re-interpretation of historical earthquakes shows a large diversity of earthquakes types; there is a major difference between giant earthquakes that break the entire plate interface and those of Mw 8.0 that only break a portion of it.

  1. A selective phenomenology of the seismicity of Southern California.

    PubMed Central

    Knopoff, L

    1996-01-01

    Predictions of earthquakes that are based on observations of precursory seismicity cannot depend on the average properties of the seismicity, such as the Gutenberg-Richter (G-R) distribution. Instead it must depend on the fluctuations in seismicity. We summarize the observational data of the fluctuations of seismicity in space, in time, and in a coupled space-time regime over the past 60 yr in Southern California, to provide a basis for determining whether these fluctuations are correlated with the times and locations of future strong earthquakes in an appropriate time- and space-scale. The simple extrapolation of the G-R distribution must lead to an overestimate of the risk due to large earthquakes. There may be two classes of earthquakes: the small earthquakes that satisfy the G-R law and the larger and large ones. Most observations of fluctuations of seismicity are of the rate of occurrence of smaller earthquakes. Large earthquakes are observed to be preceded by significant quiescence on the faults on which they occur and by an intensification of activity at distance. It is likely that the fluctuations are due to the nature of fractures on individual faults of the network of faults. There are significant inhomogeneities on these faults, which we assume will have an important influence on the nature of self-organization of seismicity. The principal source of the inhomogeneity on the large scale is the influence of geometry--i.e., of the nonplanarity of faults and the system of faults. PMID:11607661

  2. Volcano-earthquake interaction at Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.; Amelung, Falk

    2006-05-01

    The activity at Mauna Loa volcano, Hawaii, is characterized by eruptive fissures that propagate into the Southwest Rift Zone (SWRZ) or into the Northeast Rift Zone (NERZ) and by large earthquakes at the basal decollement fault. In this paper we examine the historic eruption and earthquake catalogues, and we test the hypothesis that the events are interconnected in time and space. Earthquakes in the Kaoiki area occur in sequence with eruptions from the NERZ, and earthquakes in the Kona and Hilea areas occur in sequence with eruptions from the SWRZ. Using three-dimensional numerical models, we demonstrate that elastic stress transfer can explain the observed volcano-earthquake interaction. We examine stress changes due to typical intrusions and earthquakes. We find that intrusions change the Coulomb failure stress along the decollement fault so that NERZ intrusions encourage Kaoiki earthquakes and SWRZ intrusions encourage Kona and Hilea earthquakes. On the other hand, earthquakes decompress the magma chamber and unclamp part of the Mauna Loa rift zone, i.e., Kaoiki earthquakes encourage NERZ intrusions, whereas Kona and Hilea earthquakes encourage SWRZ intrusions. We discuss how changes of the static stress field affect the occurrence of earthquakes as well as the occurrence, location, and volume of dikes and of associated eruptions and also the lava composition and fumarolic activity.

  3. Seismicity in the source areas of the 1896 and 1933 Sanriku earthquakes and implications for large near-trench earthquake faults

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Nakamura, Yasuyuki; Fujie, Gou; Kodaira, Shuichi; Kaiho, Yuka; Yamamoto, Yojiro; Miura, Seiichi

    2018-03-01

    In the northern part of the Japan Trench, the 1933 Showa-Sanriku earthquake (Mw 8.4), an outer-trench, normal-faulting earthquake, occurred 37 yr after the 1896 Meiji-Sanriku tsunami earthquake (Mw 8.0), a shallow, near-trench, plate-interface rupture. Tsunamis generated by both earthquakes caused severe damage along the Sanriku coast. Precise locations of earthquakes in the source areas of the 1896 and 1933 earthquakes have not previously been obtained because they occurred at considerable distances from the coast in deep water beyond the maximum operational depth of conventional ocean bottom seismographs (OBSs). In 2015, we incorporated OBSs designed for operation in deep water (ultradeep OBSs) in an OBS array during two months of seismic observations in the source areas of the 1896 and 1933 Sanriku earthquakes to investigate the relationship of seismicity there to outer-rise normal-faulting earthquakes and near-trench tsunami earthquakes. Our analysis showed that seismicity during our observation period occurred along three roughly linear trench-parallel trends in the outer-trench region. Seismic activity along these trends likely corresponds to aftershocks of the 1933 Showa-Sanriku earthquake and the Mw 7.4 normal-faulting earthquake that occurred 40 min after the 2011 Tohoku-Oki earthquake. Furthermore, changes of the clarity of reflections from the oceanic Moho on seismic reflection profiles and low-velocity anomalies within the oceanic mantle were observed near the linear trends of the seismicity. The focal mechanisms we determined indicate that an extensional stress regime extends to about 40 km depth, below which the stress regime is compressional. These observations suggest that rupture during the 1933 Showa-Sanriku earthquake did not extend to the base of the oceanic lithosphere and that compound rupture of multiple or segmented faults is a more plausible explanation for that earthquake. The source area of the 1896 Meiji-Sanriku tsunami earthquake is

  4. Earthquakes in the New Zealand Region.

    ERIC Educational Resources Information Center

    Wallace, Cleland

    1995-01-01

    Presents a thorough overview of earthquakes in New Zealand, discussing plate tectonics, seismic measurement, and historical occurrences. Includes 10 figures illustrating such aspects as earthquake distribution, intensity, and fissures in the continental crust. Tabular data includes a list of most destructive earthquakes and descriptive effects…

  5. Napa Earthquake impact on water systems

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  6. Earthquake Hazard Analysis Methods: A Review

    NASA Astrophysics Data System (ADS)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  7. Acceleration spectra for subduction zone earthquakes

    USGS Publications Warehouse

    Boatwright, J.; Choy, G.L.

    1989-01-01

    We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P wave groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction zone earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P wave acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface waves and normal modes are used to extend these P wave spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction zone earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors

  8. Multispectral infrared target detection: phenomenology and modeling

    NASA Astrophysics Data System (ADS)

    Cederquist, Jack N.; Rogne, Timothy J.; Schwartz, Craig R.

    1993-10-01

    Many targets of interest provide only very small signature differences from the clutter background. The ability to detect these small difference targets should be improved by using data which is diverse in space, time, wavelength or some other observable. Target materials often differ from background materials in the variation of their reflectance or emittance with wavelength. A multispectral sensor is therefore considered as a means to improve detection of small signal targets. If this sensor operates in the thermal infrared, it will not need solar illumination and will be useful at night as well as during the day. An understanding of the phenomenology of the spectral properties of materials and an ability to model and simulate target and clutter signatures is needed to understand potential target detection performance from multispectral infrared sensor data. Spectral variations in material emittance are due to vibrational energy transitions in molecular bonds. The spectral emittances of many materials of interest have been measured. Examples are vegetation, soil, construction and road materials, and paints. A multispectral infrared signature model has been developed which includes target and background temperature and emissivity, sky, sun, cloud and background irradiance, multiple reflection effects, path radiance, and atmospheric attenuation. This model can be used to predict multispectral infrared signatures for small signal targets.

  9. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    NASA Astrophysics Data System (ADS)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    Japan frequently suffers from many kinds of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. On average, we lose about 120 people a year due to natural hazards in this decade. Above all, earthquakes are noteworthy, since it may kill thousands of people in a moment like in Kobe in 1995. People know that we may have "a big one" some day as long as we live on this land and that what to do; retrofit houses, appliance heavy furniture to walls, add latches to kitchen cabinets, and prepare emergency packs. Yet most of them do not take the action, and result in the loss of many lives. It is only the victims that learn something from the earthquake, and it has never become the lore of the nations. One of the most essential ways to reduce the damage is to educate the general public to be able to make the sound decision on what to do at the moment when an earthquake hits. This will require the knowledge of the backgrounds of the on-going phenomenon. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools. This presentation is the report of a year and half courses that we had at the model elementary school in Tokyo Metropolitan Area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1923 Kanto earthquake (M 7.9) making 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global

  10. Earthquake Simulator Finds Tremor Triggers

    ScienceCinema

    Johnson, Paul

    2018-01-16

    Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher has found that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often long after a quake has subsided. The research provides insight into how earthquakes may be triggered and how they recur. Los Alamos researcher Paul Johnson and colleague Chris Marone at Penn State have discovered how wave energy can be stored in certain types of granular materials-like the type found along certain fault lines across the globe-and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional “aftershock zone” of a main quake. Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.

  11. Emergency medical rescue efforts after a major earthquake: lessons from the 2008 Wenchuan earthquake.

    PubMed

    Zhang, Lulu; Liu, Xu; Li, Youping; Liu, Yuan; Liu, Zhipeng; Lin, Juncong; Shen, Ji; Tang, Xuefeng; Zhang, Yi; Liang, Wannian

    2012-03-03

    Major earthquakes often result in incalculable environmental damage, loss of life, and threats to health. Tremendous progress has been made in response to many medical challenges resulting from earthquakes. However, emergency medical rescue is complicated, and great emphasis should be placed on its organisation to achieve the best results. The 2008 Wenchuan earthquake was one of the most devastating disasters in the past 10 years and caused more than 370,000 casualties. The lessons learnt from the medical disaster relief effort and the subsequent knowledge gained about the regulation and capabilities of medical and military back-up teams should be widely disseminated. In this Review we summarise and analyse the emergency medical rescue efforts after the Wenchuan earthquake. Establishment of a national disaster medical response system, an active and effective commanding system, successful coordination between rescue forces and government agencies, effective treatment, a moderate, timely and correct public health response, and long-term psychological support are all crucial to reduce mortality and morbidity and promote overall effectiveness of rescue efforts after a major earthquake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Applications of Phenomenology in Transpersonal, Person-Centered, and Existential Counseling.

    ERIC Educational Resources Information Center

    Souza, Katherine Zimmer; Do, Vinh The

    This article explains that the phenomenological approach in counseling began as a movement to counterbalance the influence of psychoanalysis in psychotherapy and counseling. Phenomenology is defined as the study of the world as we immediately experience it, pre-reflectively rather than as we conceptualize, categorize, or reflect on it. Through…

  13. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  14. Spatial Evaluation and Verification of Earthquake Simulators

    NASA Astrophysics Data System (ADS)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  15. Plasmas in the atmosphere, tectonics and earthquake: a possible link for the crustal diagnosis?

    NASA Astrophysics Data System (ADS)

    Straser, V.

    2017-12-01

    An important aspect in the crustal surmise is the potential link between luminous phenomena and the earthquake . The study want to added data to this new geophysics concepts. The method is based on the comparison approach and consist in the data connection on a field in the area of Po Plain (Italy) with professional equipment: cameras, video cameras, spectroscopes, ELF / VLF receivers, Geiger counters and EM fields detectors. The Luminous phenomena sighting is compared 24/7 online with INGV and USGS database. The results show the formation of 2 types of plasma near the soil: Spheroidal shape, yellow-orange, constant brightness, sudden appearances, elevation from the ground between 10 ° -20 °, no noise, no wake emitted, estimated size about 2m, and duration of few seconds. Spheroidal shape, intense red fuzzy coloration, constant brightness, sudden appearances and fast movements in a linear fashion or slow movements, elevation from the ground between 2° to 7 °, no noise, no waves emitted, estimated dimensions over 2m, with a duration from a few seconds to a few minutes. We suppose that the formation of gas, also radioactive such as radon, and the electric charges necessary to trigger plasma, are related to the crustal stress. The rocks are exposed to important tectonics efforts and the outcome is the air ionizations near the soil that produce plasma if there are gas. The appearance of plasma forerun the earthquake that will happen some days later. The Anomalous Luminous phenomena may be related to tectonic activity, and the area of investigation can become a "lab" for research in Physics and Geology for the crustal diagnosis of pre-seismic phase.

  16. Earthquakes March-April 1992

    USGS Publications Warehouse

    Person, Waverly J.

    1992-01-01

    The months of March and April were quite active seismically speaking. There was one major earthquake (7.0Earthquake-related deaths were reported in Iran, Costa Rica, Turkey, and Germany.

  17. Children's emotional experience two years after an earthquake: An exploration of knowledge of earthquakes and associated emotions

    PubMed Central

    Burro, Roberto; Hall, Rob

    2017-01-01

    A major earthquake has a potentially highly traumatic impact on children’s psychological functioning. However, while many studies on children describe negative consequences in terms of mental health and psychiatric disorders, little is known regarding how the developmental processes of emotions can be affected following exposure to disasters. Objectives We explored whether and how the exposure to a natural disaster such as the 2012 Emilia Romagna earthquake affected the development of children’s emotional competence in terms of understanding, regulating, and expressing emotions, after two years, when compared with a control group not exposed to the earthquake. We also examined the role of class level and gender. Method The sample included two groups of children (n = 127) attending primary school: The experimental group (n = 65) experienced the 2012 Emilia Romagna earthquake, while the control group (n = 62) did not. The data collection took place two years after the earthquake, when children were seven or ten-year-olds. Beyond assessing the children’s understanding of emotions and regulating abilities with standardized instruments, we employed semi-structured interviews to explore their knowledge of earthquakes and associated emotions, and a structured task on the intensity of some target emotions. Results We applied Generalized Linear Mixed Models. Exposure to the earthquake did not influence the understanding and regulation of emotions. The understanding of emotions varied according to class level and gender. Knowledge of earthquakes, emotional language, and emotions associated with earthquakes were, respectively, more complex, frequent, and intense for children who had experienced the earthquake, and at increasing ages. Conclusions Our data extend the generalizability of theoretical models on children’s psychological functioning following disasters, such as the dose-response model and the organizational-developmental model for child resilience, and

  18. A Phenomenological Exploration of Adoption

    ERIC Educational Resources Information Center

    Baltimore, Diana L.; Crase, Sedahlia Jasper

    2009-01-01

    This qualitative analysis explored children's and adults' experiences with adoption. We used phenomenological methodology and individually interviewed 25 participants and included adoptive mothers and fathers, and their children, each adopted before 18 months of age. Two research questions guided the data analysis: (a) What are children's and…

  19. The global distribution of magnitude 9 earthquakes

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2011-12-01

    The 2011 Tohoku M9 earthquake once again caught some in the earthquake community by surprise. The expectation of these massive quakes has been driven in the past by the over-reliance on our short, incomplete history of earthquakes and causal relationships derived from it. The logic applied is that if a great earthquake has not happened in the past, that we know of, one cannot happen in the future. Using the ~100-year global earthquake history, seismologists have promoted relationships between maximum earthquake sizes and other properties of subduction zones, leading to the notion that some subduction zones, like the Japan Trench, would never produce a magnitude ~9 event. The 2004 Andaman Mw = 9.2 earthquake, that occurred where there is slow subduction of old crust and a history of only moderate-sized earthquakes, seriously undermined such ideas. Given multi-century return times of the greatest earthquakes, ignorance of those return times and our very limited observation span, I suggest that we cannot yet make such determinations. Alternatively, using the length of a subduction zone that is available for slip as the predominant factor in determining maximum earthquake size, we cannot rule out that any subduction zone of a few hundred kilometers or more in length may be capable of producing a magnitude 9 or larger earthquake. Based on this method, the expected maximum size for the Japan Trench was 9.0 (McCaffrey, Geology, p. 263, 2008). The same approach portends a M > 9 for Java, with twice the population density as Honshu and much lower building standards. The Java Trench, and others where old crust subducts (Hikurangi, Marianas, Tonga, Kermadec), require increased awareness of the possibility for a great earthquake.

  20. Children's emotional experience two years after an earthquake: An exploration of knowledge of earthquakes and associated emotions.

    PubMed

    Raccanello, Daniela; Burro, Roberto; Hall, Rob

    2017-01-01

    We explored whether and how the exposure to a natural disaster such as the 2012 Emilia Romagna earthquake affected the development of children's emotional competence in terms of understanding, regulating, and expressing emotions, after two years, when compared with a control group not exposed to the earthquake. We also examined the role of class level and gender. The sample included two groups of children (n = 127) attending primary school: The experimental group (n = 65) experienced the 2012 Emilia Romagna earthquake, while the control group (n = 62) did not. The data collection took place two years after the earthquake, when children were seven or ten-year-olds. Beyond assessing the children's understanding of emotions and regulating abilities with standardized instruments, we employed semi-structured interviews to explore their knowledge of earthquakes and associated emotions, and a structured task on the intensity of some target emotions. We applied Generalized Linear Mixed Models. Exposure to the earthquake did not influence the understanding and regulation of emotions. The understanding of emotions varied according to class level and gender. Knowledge of earthquakes, emotional language, and emotions associated with earthquakes were, respectively, more complex, frequent, and intense for children who had experienced the earthquake, and at increasing ages. Our data extend the generalizability of theoretical models on children's psychological functioning following disasters, such as the dose-response model and the organizational-developmental model for child resilience, and provide further knowledge on children's emotional resources related to natural disasters, as a basis for planning educational prevention programs.

  1. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  2. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  3. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  4. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  5. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  6. Phenomenological model of visual acuity

    NASA Astrophysics Data System (ADS)

    Gómez-Pedrero, José A.; Alonso, José

    2016-12-01

    We propose in this work a model for describing visual acuity (V) as a function of defocus and pupil diameter. Although the model is mainly based on geometrical optics, it also incorporates nongeometrical effects phenomenologically. Compared to similar visual acuity models, the proposed one considers the effect of astigmatism and the variability of best corrected V among individuals; it also takes into account the accommodation and the "tolerance to defocus," the latter through a phenomenological parameter. We have fitted the model to the V data provided in the works of Holladay et al. and Peters, showing the ability of this model to accurately describe the variation of V against blur and pupil diameter. We have also performed a comparison between the proposed model and others previously published in the literature. The model is mainly intended for use in the design of ophthalmic compensations, but it can also be useful in other fields such as visual ergonomics, design of visual tests, and optical instrumentation.

  7. Earthquakes at North Atlantic passive margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, S.; Basham, P.W.

    1989-01-01

    The main focus of this volume is the earthquakes that occur at and near the continental margins on both sides of the North Atlantic. The book, which contains the proceedings of the NATO workshop on Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on Both Sides of the North Atlantic, draws together the fields of geophysics, geology and geodesy to address the stress and strain in the Earth's crust. The resulting earthquakes produced on ancient geological fault zones and the associated seismic hazards these pose to man are also addressed. Postglacial rebound in Northmore » America and Fennoscandia is a minor source of earthquakes today, during the interglacial period, but evidence is presented to suggest that the ice sheets suppressed earthquake strain while they were in place, and released this strain as a pulse of significant earthquakes after the ice melted about 9000 years ago.« less

  8. Method development at Nordic School of Public Health NHV: Phenomenology and Grounded Theory.

    PubMed

    Strandmark, Margaretha

    2015-08-01

    Qualitative methods such as phenomenology and grounded theory have been valuable tools in studying public health problems. A description and comparison of these methods. Phenomenology emphasises an inside perspective in form of consciousness and subjectively lived experiences, whereas grounded theory emanates from the idea that interactions between people create new insights and knowledge. Fundamental aspects of phenomenology include life world, consciousness, phenomenological reduction and essence. Significant elements in grounded theory are coding, categories and core categories, which develop a theory. There are differences in the philosophical approach, the name of the concept and the systematic tools between the methods. Thus, the phenomenological method is appropriate when studying emotional and existential research problems, and grounded theory is a method more suited to investigate processes. © 2015 the Nordic Societies of Public Health.

  9. Widespread Triggering of Earthquakes in the Central US by the 2011 M9.0 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Rubinstein, J. L.; Savage, H. M.

    2011-12-01

    The strong shaking of the 2011 M9.0 off-Tohoku earthquake triggered tectonic tremor and earthquakes in many locations around the world. We analyze broadband records from the USARRAY to identify triggered seismicity in more than 10 different locations in the Central United States. We identify triggered events in many states including: Kansas, Nebraska, Arkansas, Minnesota, and Iowa. The locally triggered earthquakes are obscured in broadband records by the Tohoku-Oki mainshock but can be revealed with high-pass filtering. With the exception of one location (central Arkansas), the triggered seismicity occurred in regions that are seismically quiet. The coincidence of this seismicity with the Tohoku-Oki event suggests that these earthquakes were triggered. The triggered seismicity in Arkansas occurred in a region where there has been an active swarm of seismicity since August 2010. There are two lines of evidence to indicate that the seismicity in Arkansas is triggered instead of part of the swarm: (1) we observe two earthquakes that initiate coincident with the arrival of shear wave and Love wave; (2) the seismicity rate increased dramatically following the Tohoku-Oki mainshock. Our observations of widespread earthquake triggering in regions thought to be seismically quiet remind us that earthquakes can occur in most any location. Studying additional teleseismic events has the potential to reveal regions with a propensity for earthquake triggering.

  10. Idols of the psychologist: Johannes Linschoten and the demise of phenomenological psychology in the Netherlands.

    PubMed

    van Hezewijk, René; Stam, Henderikus J

    2008-08-01

    Before and after World War II, a loose movement within Dutch psychology solidified as a nascent phenomenological psychology. Dutch phenomenological psychologists attempted to generate an understanding of psychology that was based on Husserlian interpretations of phenomenological philosophy. This movement came to a halt in the 1960s, even though it had been exported to North America and elsewhere as "phenomenological psychology." Frequently referred to as the "Utrecht school," most of the activity of the group was centered at Utrecht University. In this article, the authors examine the role played by Johannes Linschoten in both aspects of the development of a phenomenological psychology: its rise in North America and Europe, and its institutional demise. By the time of his early death in 1964, Linschoten had cast considerable doubt on the possibilities of a purely phenomenological psychology. Nonetheless, his own empirical work, especially his 1956 dissertation published in German, can be seen to be a form of empiricism inspired by phenomenology but that clearly distanced itself from the more elitist and esoteric aspects of Dutch phenomenological psychology.

  11. Update earthquake risk assessment in Cairo, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  12. Revisiting the 1872 Owens Valley, California, Earthquake

    USGS Publications Warehouse

    Hough, S.E.; Hutton, K.

    2008-01-01

    The 26 March 1872 Owens Valley earthquake is among the largest historical earthquakes in California. The felt area and maximum fault displacements have long been regarded as comparable to, if not greater than, those of the great San Andreas fault earthquakes of 1857 and 1906, but mapped surface ruptures of the latter two events were 2-3 times longer than that inferred for the 1872 rupture. The preferred magnitude estimate of the Owens Valley earthquake has thus been 7.4, based largely on the geological evidence. Reinterpreting macroseismic accounts of the Owens Valley earthquake, we infer generally lower intensity values than those estimated in earlier studies. Nonetheless, as recognized in the early twentieth century, the effects of this earthquake were still generally more dramatic at regional distances than the macroseismic effects from the 1906 earthquake, with light damage to masonry buildings at (nearest-fault) distances as large as 400 km. Macroseismic observations thus suggest a magnitude greater than that of the 1906 San Francisco earthquake, which appears to be at odds with geological observations. However, while the mapped rupture length of the Owens Valley earthquake is relatively low, the average slip was high. The surface rupture was also complex and extended over multiple fault segments. It was first mapped in detail over a century after the earthquake occurred, and recent evidence suggests it might have been longer than earlier studies indicated. Our preferred magnitude estimate is Mw 7.8-7.9, values that we show are consistent with the geological observations. The results of our study suggest that either the Owens Valley earthquake was larger than the 1906 San Francisco earthquake or that, by virtue of source properties and/or propagation effects, it produced systematically higher ground motions at regional distances. The latter possibility implies that some large earthquakes in California will generate significantly larger ground motions than San

  13. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk

    USGS Publications Warehouse

    Celsi, R.; Wolfinbarger, M.; Wald, D.

    2005-01-01

    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  14. Earthquake triggering at alaskan volcanoes following the 3 November 2002 denali fault earthquake

    USGS Publications Warehouse

    Moran, S.C.; Power, J.A.; Stihler, S.D.; Sanchez, J.J.; Caplan-Auerbach, J.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake provided an excellent opportunity to investigate triggered earthquakes at Alaskan volcanoes. The Alaska Volcano Observatory operates short-period seismic networks on 24 historically active volcanoes in Alaska, 247-2159 km distant from the mainshock epicenter. We searched for evidence of triggered seismicity by examining the unfiltered waveforms for all stations in each volcano network for ???1 hr after the Mw 7.9 arrival time at each network and for significant increases in located earthquakes in the hours after the mainshock. We found compelling evidence for triggering only at the Katmai volcanic cluster (KVC, 720-755 km southwest of the epicenter), where small earthquakes with distinct P and 5 arrivals appeared within the mainshock coda at one station and a small increase in located earthquakes occurred for several hours after the mainshock. Peak dynamic stresses of ???0.1 MPa at Augustine Volcano (560 km southwest of the epicenter) are significantly lower than those recorded in Yellowstone and Utah (>3000 km southeast of the epicenter), suggesting that strong directivity effects were at least partly responsible for the lack of triggering at Alaskan volcanoes. We describe other incidents of earthquake-induced triggering in the KVC, and outline a qualitative magnitude/distance-dependent triggering threshold. We argue that triggering results from the perturbation of magmatic-hydrothermal systems in the KVC and suggest that the comparative lack of triggering at other Alaskan volcanoes could be a result of differences in the nature of magmatic-hydrothermal systems.

  15. Understanding Earthquake Hazard & Disaster in Himalaya - A Perspective on Earthquake Forecast in Himalayan Region of South Central Tibet

    NASA Astrophysics Data System (ADS)

    Shanker, D.; Paudyal, ,; Singh, H.

    2010-12-01

    It is not only the basic understanding of the phenomenon of earthquake, its resistance offered by the designed structure, but the understanding of the socio-economic factors, engineering properties of the indigenous materials, local skill and technology transfer models are also of vital importance. It is important that the engineering aspects of mitigation should be made a part of public policy documents. Earthquakes, therefore, are and were thought of as one of the worst enemies of mankind. Due to the very nature of release of energy, damage is evident which, however, will not culminate in a disaster unless it strikes a populated area. The word mitigation may be defined as the reduction in severity of something. The Earthquake disaster mitigation, therefore, implies that such measures may be taken which help reduce severity of damage caused by earthquake to life, property and environment. While “earthquake disaster mitigation” usually refers primarily to interventions to strengthen the built environment, and “earthquake protection” is now considered to include human, social and administrative aspects of reducing earthquake effects. It should, however, be noted that reduction of earthquake hazards through prediction is considered to be the one of the effective measures, and much effort is spent on prediction strategies. While earthquake prediction does not guarantee safety and even if predicted correctly the damage to life and property on such a large scale warrants the use of other aspects of mitigation. While earthquake prediction may be of some help, mitigation remains the main focus of attention of the civil society. Present study suggests that anomalous seismic activity/ earthquake swarm existed prior to the medium size earthquakes in the Nepal Himalaya. The mainshocks were preceded by the quiescence period which is an indication for the occurrence of future seismic activity. In all the cases, the identified episodes of anomalous seismic activity were

  16. Thermal Infrared Anomalies of Several Strong Earthquakes

    PubMed Central

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  17. Thermal infrared anomalies of several strong earthquakes.

    PubMed

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  18. Pre-Earthquake Unipolar Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Freund, F.

    2013-12-01

    Transient ultralow frequency (ULF) electromagnetic (EM) emissions have been reported to occur before earthquakes [1,2]. They suggest powerful transient electric currents flowing deep in the crust [3,4]. Prior to the M=5.4 Alum Rock earthquake of Oct. 21, 2007 in California a QuakeFinder triaxial search-coil magnetometer located about 2 km from the epicenter recorded unusual unipolar pulses with the approximate shape of a half-cycle of a sine wave, reaching amplitudes up to 30 nT. The number of these unipolar pulses increased as the day of the earthquake approached. These pulses clearly originated around the hypocenter. The same pulses have since been recorded prior to several medium to moderate earthquakes in Peru, where they have been used to triangulate the location of the impending earthquakes [5]. To understand the mechanism of the unipolar pulses, we first have to address the question how single current pulses can be generated deep in the Earth's crust. Key to this question appears to be the break-up of peroxy defects in the rocks in the hypocenter as a result of the increase in tectonic stresses prior to an earthquake. We investigate the mechanism of the unipolar pulses by coupling the drift-diffusion model of semiconductor theory to Maxwell's equations, thereby producing a model describing the rock volume that generates the pulses in terms of electromagnetism and semiconductor physics. The system of equations is then solved numerically to explore the electromagnetic radiation associated with drift-diffusion currents of electron-hole pairs. [1] Sharma, A. K., P. A. V., and R. N. Haridas (2011), Investigation of ULF magnetic anomaly before moderate earthquakes, Exploration Geophysics 43, 36-46. [2] Hayakawa, M., Y. Hobara, K. Ohta, and K. Hattori (2011), The ultra-low-frequency magnetic disturbances associated with earthquakes, Earthquake Science, 24, 523-534. [3] Bortnik, J., T. E. Bleier, C. Dunson, and F. Freund (2010), Estimating the seismotelluric current

  19. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  20. Earthquake Shaking - Finding the "Hot Spots"

    USGS Publications Warehouse

    Field, Edward; Jones, Lucile; Jordan, Tom; Benthien, Mark; Wald, Lisa

    2001-01-01

    A new Southern California Earthquake Center study has quantified how local geologic conditions affect the shaking experienced in an earthquake. The important geologic factors at a site are softness of the rock or soil near the surface and thickness of the sediments above hard bedrock. Even when these 'site effects' are taken into account, however, each earthquake exhibits unique 'hotspots' of anomalously strong shaking. Better predictions of strong ground shaking will therefore require additional geologic data and more comprehensive computer simulations of individual earthquakes.

  1. Earth's rotation variations and earthquakes 2010-2011

    NASA Astrophysics Data System (ADS)

    Ostřihanský, L.

    2012-01-01

    In contrast to unsuccessful searching (lasting over 150 years) for correlation of earthquakes with biweekly tides, the author found correlation of earthquakes with sidereal 13.66 days Earth's rotation variations expressed as length of a day (LOD) measured daily by International Earth's Rotation Service. After short mention about earthquakes M 8.8 Denali Fault Alaska 3 November 2002 triggered on LOD maximum and M 9.1 Great Sumatra earthquake 26 December 2004 triggered on LOD minimum and the full Moon, the main object of this paper are earthquakes of period 2010-June 2011: M 7.0 Haiti (12 January 2010 on LOD minimum, M 8.8 Maule Chile 12 February 2010 on LOD maximum, map constructed on the Indian plate revealing 6 earthquakes from 7 on LOD minimum in Sumatra and Andaman Sea region, M 7.1 New Zealand Christchurch 9 September 2010 on LOD minimum and M 6.3 Christchurch 21 February 2011 on LOD maximum, and M 9.1 Japan near coast of Honshu 11 March 2011 on LOD minimum. It was found that LOD minimums coincide with full or new Moon only twice in a year in solstices. To prove that determined coincidences of earthquakes and LOD extremes stated above are not accidental events, histograms were constructed of earthquake occurrences and their position on LOD graph deeply in the past, in some cases from the time the IERS (International Earth's Rotation Service) started to measure the Earth's rotation variations in 1962. Evaluations of histograms and the Schuster's test have proven that majority of earthquakes are triggered in both Earth's rotation deceleration and acceleration. Because during these coincidences evident movements of lithosphere occur, among others measured by GPS, it is concluded that Earth's rotation variations effectively contribute to the lithospheric plates movement. Retrospective overview of past earthquakes revealed that the Great Sumatra earthquake 26 December 2004 had its equivalent in the shape of LOD graph, full Moon position, and character of aftershocks

  2. Pre-earthquake magnetic pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J.; Freund, F.

    2015-08-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  3. Automatic Earthquake Detection by Active Learning

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  4. Urban Earthquakes - Reducing Building Collapse Through Education

    NASA Astrophysics Data System (ADS)

    Bilham, R.

    2004-12-01

    Fatalities from earthquakes rose from 6000k to 9000k/year in the past decade, yet the ratio of numbers of earthquake fatalities to instantaneous population continues to fall. Since 1950 the ratio declined worldwide by a factor of three, but in some countries the ratio has changed little. E.g in Iran, 1 in 3000 people can expect to die in an earthquake, a percentage that has not changed significantly since 1890. Fatalities from earthquakes remain high in those countries that have traditionally suffered from frequent large earthquakes (Turkey, Iran, Japan, and China), suggesting that the exposure time of recently increased urban populations in other countries may be too short to have interacted with earthquakes with long recurrence intervals. This in turn, suggests that disasters of unprecendented size will occur (more than 1 million fatalities) when future large earthquakes occur close to megacities. However, population growth is most rapid in cities of less than 1 million people in the developing nations, where the financial ability to implement earthquake resistant construction methods is limited. In that structural collapse can often be traced to ignorance about the forces at work in an earthquake, the future collapse of buildings presently under construction could be much reduced were contractors, builders and occupants educated in the principles of earthquake resistant assembly. Education of builders who are tempted to cut assembly costs is likely to be more cost effective than material aid.

  5. An integrated observational site for monitoring pre-earthquake processes in Peloponnese, Greece. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Tsinganos, Kanaris; Karastathis, Vassilios K.; Kafatos, Menas; Ouzounov, Dimitar; Tselentis, Gerassimos; Papadopoulos, Gerassimos A.; Voulgaris, Nikolaos; Eleftheriou, Georgios; Mouzakiotis, Evangellos; Liakopoulos, Spyridon; Aspiotis, Theodoros; Gika, Fevronia; E Psiloglou, Basil

    2017-04-01

    We are presenting the first results of developing a new integrated observational site in Greece to study pre-earthquake processes in Peloponnese, lead by the National Observatory of Athens. We have developed a prototype of multiparameter network approach using an integrated system aimed at monitoring and thorough studies of pre-earthquake processes at the high seismicity area of the Western Hellenic Arc (SW Peloponnese, Greece). The initial prototype of the new observational systems consists of: (1) continuous real-time monitoring of Radon accumulation in the ground through a network of radon sensors, consisting of three gamma radiation detectors [NaI(Tl) scintillators], (2) nine-station seismic array installed to detect and locate events of low magnitude (less than 1.0 R) in the offshore area of the Hellenic arc, (3) real-time weather monitoring systems (air temperature, relative humidity, precipitation, pressure) and (4) satellite thermal radiation from AVHRR/NOAA-18 polar orbit sensing. The first few moths of operations revealed a number of pre-seismic radon variation anomalies before several earthquakes (M>3.6). The radon increases systematically before the larger events. For example a radon anomaly was predominant before the event of Sep 28, M 5.0 (36.73°N, 21.87°E), 18 km ESE of Methoni. The seismic array assists in the evaluation of current seismicity and may yield identification of foreshock activity. Thermal anomalies in satellite images are also examined as an additional tool for evaluation and verification of the Radon increase. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept, atmospheric thermal anomalies observed before large seismic events are associated with the increase of Radon concentration on the ground. Details about the integrating ground and space observations, overall performance of the observational sites, future plans in advancing the cooperation in observations will be discussed.

  6. Earthquake effects at nuclear reactor facilities: San Fernando earthquake of February 9th, 1971

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, G.; Ibanez, P.; Matthiesen, F.

    1972-02-01

    The effects of the San Fernando earthquake of February 9, 1971 on 26 reactor facilities located in California, Arizona, and Nevada are reported. The safety performance of the facilities during the earthquake is discussed. (JWR)

  7. On near-source earthquake triggering

    USGS Publications Warehouse

    Parsons, T.; Velasco, A.A.

    2009-01-01

    When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.

  8. Remotely triggered earthquakes following moderate main shocks

    USGS Publications Warehouse

    Hough, S.E.

    2007-01-01

    Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.

  9. Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.

    PubMed

    McCaffrey, R; Goldfinger, C

    1995-02-10

    The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.

  10. Frog Swarms: Earthquake Precursors or False Alarms?

    PubMed Central

    Grant, Rachel A.; Conlan, Hilary

    2013-01-01

    Simple Summary Media reports linking unusual animal behaviour with earthquakes can potentially create false alarms and unnecessary anxiety among people that live in earthquake risk zones. Recently large frog swarms in China and elsewhere have been reported as earthquake precursors in the media. By examining international media reports of frog swarms since 1850 in comparison to earthquake data, it was concluded that frog swarms are naturally occurring dispersal behaviour of juveniles and are not associated with earthquakes. However, the media in seismic risk areas may be more likely to report frog swarms, and more likely to disseminate reports on frog swarms after earthquakes have occurred, leading to an apparent link between frog swarms and earthquakes. Abstract In short-term earthquake risk forecasting, the avoidance of false alarms is of utmost importance to preclude the possibility of unnecessary panic among populations in seismic hazard areas. Unusual animal behaviour prior to earthquakes has been reported for millennia but has rarely been scientifically documented. Recently large migrations or unusual behaviour of amphibians have been linked to large earthquakes, and media reports of large frog and toad migrations in areas of high seismic risk such as Greece and China have led to fears of a subsequent large earthquake. However, at certain times of year large migrations are part of the normal behavioural repertoire of amphibians. News reports of “frog swarms” from 1850 to the present day were examined for evidence that this behaviour is a precursor to large earthquakes. It was found that only two of 28 reported frog swarms preceded large earthquakes (Sichuan province, China in 2008 and 2010). All of the reported mass migrations of amphibians occurred in late spring, summer and autumn and appeared to relate to small juvenile anurans (frogs and toads). It was concluded that most reported “frog swarms” are actually normal behaviour, probably caused by

  11. Incubation of Chile's 1960 Earthquake

    NASA Astrophysics Data System (ADS)

    Atwater, B. F.; Cisternas, M.; Salgado, I.; Machuca, G.; Lagos, M.; Eipert, A.; Shishikura, M.

    2003-12-01

    Infrequent occurrence of giant events may help explain how the 1960 Chile earthquake attained M 9.5. Although old documents imply that this earthquake followed great earthquakes of 1575, 1737 and 1837, only three earthquakes of the past 1000 years produced geologic records like those for 1960. These earlier earthquakes include the 1575 event but not 1737 or 1837. Because the 1960 earthquake had nearly twice the seismic slip expected from plate convergence since 1837, much of the strain released in 1960 may have been accumulating since 1575. Geologic evidence for such incubation comes from new paleoseismic findings at the R¡o Maullin estuary, which indents the Pacific coast at 41.5§ S midway along the 1960 rupture. The 1960 earthquake lowered the area by 1.5 m, and the ensuing tsunami spread sand across lowland soils. The subsidence killed forests and changed pastures into sandy tidal flats. Guided by these 1960 analogs, we inferred tsunami and earthquake history from sand sheets, tree rings, and old maps. At Chuyaquen, 10 km upriver from the sea, we studied sand sheets in 31 backhoe pits on a geologic transect 1 km long. Each sheet overlies the buried soil of a former marsh or meadow. The sand sheet from 1960 extends the entire length of the transect. Three earlier sheets can be correlated at least half that far. The oldest one, probably a tsunami deposit, surrounds herbaceous plants that date to AD 990-1160. Next comes a sandy tidal-flat deposit dated by stratigraphic position to about 1000-1500. The penultimate sheet is a tsunami deposit younger than twigs from 1410-1630. It probably represents the 1575 earthquake, whose accounts of shaking, tsunami, and landslides rival those of 1960. In that case, the record excludes the 1737 and 1837 events. The 1737 and 1837 events also appear missing in tree-ring evidence from islands of Misquihue, 30 km upriver from the sea. Here the subsidence in 1960 admitted brackish tidal water that defoliated tens of thousands of

  12. Bayesian exploration of recent Chilean earthquakes

    NASA Astrophysics Data System (ADS)

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Liang, Cunren; Agram, Piyush; Owen, Susan; Ortega, Francisco; Minson, Sarah

    2016-04-01

    The South-American subduction zone is an exceptional natural laboratory for investigating the behavior of large faults over the earthquake cycle. It is also a playground to develop novel modeling techniques combining different datasets. Coastal Chile was impacted by two major earthquakes in the last two years: the 2015 M 8.3 Illapel earthquake in central Chile and the 2014 M 8.1 Iquique earthquake that ruptured the central portion of the 1877 seismic gap in northern Chile. To gain better understanding of the distribution of co-seismic slip for those two earthquakes, we derive joint kinematic finite fault models using a combination of static GPS offsets, radar interferograms, tsunami measurements, high-rate GPS waveforms and strong motion data. Our modeling approach follows a Bayesian formulation devoid of a priori smoothing thereby allowing us to maximize spatial resolution of the inferred family of models. The adopted approach also attempts to account for major sources of uncertainty in the Green's functions. The results reveal different rupture behaviors for the 2014 Iquique and 2015 Illapel earthquakes. The 2014 Iquique earthquake involved a sharp slip zone and did not rupture to the trench. The 2015 Illapel earthquake nucleated close to the coast and propagated toward the trench with significant slip apparently reaching the trench or at least very close to the trench. At the inherent resolution of our models, we also present the relationship of co-seismic models to the spatial distribution of foreshocks, aftershocks and fault coupling models.

  13. Scoring annual earthquake predictions in China

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Jiang, Changsheng

    2012-02-01

    The Annual Consultation Meeting on Earthquake Tendency in China is held by the China Earthquake Administration (CEA) in order to provide one-year earthquake predictions over most China. In these predictions, regions of concern are denoted together with the corresponding magnitude range of the largest earthquake expected during the next year. Evaluating the performance of these earthquake predictions is rather difficult, especially for regions that are of no concern, because they are made on arbitrary regions with flexible magnitude ranges. In the present study, the gambling score is used to evaluate the performance of these earthquake predictions. Based on a reference model, this scoring method rewards successful predictions and penalizes failures according to the risk (probability of being failure) that the predictors have taken. Using the Poisson model, which is spatially inhomogeneous and temporally stationary, with the Gutenberg-Richter law for earthquake magnitudes as the reference model, we evaluate the CEA predictions based on 1) a partial score for evaluating whether issuing the alarmed regions is based on information that differs from the reference model (knowledge of average seismicity level) and 2) a complete score that evaluates whether the overall performance of the prediction is better than the reference model. The predictions made by the Annual Consultation Meetings on Earthquake Tendency from 1990 to 2003 are found to include significant precursory information, but the overall performance is close to that of the reference model.

  14. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake.

    PubMed

    Donnellan, Andrea; Grant Ludwig, Lisa; Parker, Jay W; Rundle, John B; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-09-01

    Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933  M 6.4 Long Beach and 1994  M 6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M 5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left-lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still-locked deeper structures. A future M 6.1-6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping.

  15. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake

    PubMed Central

    Grant Ludwig, Lisa; Parker, Jay W.; Rundle, John B.; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-01-01

    Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike‐slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike‐slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north‐south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left‐lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still‐locked deeper structures. A future M6.1–6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping. PMID:27981074

  16. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    USGS Publications Warehouse

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  17. Quantifying 10 years of improved earthquake-monitoring performance in the Caribbean region

    USGS Publications Warehouse

    McNamara, Daniel E.; Hillebrandt-Andrade, Christa; Saurel, Jean-Marie; Huerfano-Moreno, V.; Lynch, Lloyd

    2015-01-01

    Over 75 tsunamis have been documented in the Caribbean and adjacent regions during the past 500 years. Since 1500, at least 4484 people are reported to have perished in these killer waves. Hundreds of thousands are currently threatened along the Caribbean coastlines. Were a great tsunamigenic earthquake to occur in the Caribbean region today, the effects would potentially be catastrophic due to an increasingly vulnerable region that has seen significant population increases in the past 40–50 years and currently hosts an estimated 500,000 daily beach visitors from North America and Europe, a majority of whom are not likely aware of tsunami and earthquake hazards. Following the magnitude 9.1 Sumatra–Andaman Islands earthquake of 26 December 2004, the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Early Warning System for the Caribbean and Adjacent Regions (CARIBE‐EWS) was established and developed minimum performance standards for the detection and analysis of earthquakes. In this study, we model earthquake‐magnitude detection threshold and P‐wave detection time and demonstrate that the requirements established by the UNESCO ICG CARIBE‐EWS are met with 100% of the network operating. We demonstrate that earthquake‐monitoring performance in the Caribbean Sea region has improved significantly in the past decade as the number of real‐time seismic stations available to the National Oceanic and Atmospheric Administration tsunami warning centers have increased. We also identify weaknesses in the current international network and provide guidance for selecting the optimal distribution of seismic stations contributed from existing real‐time broadband national networks in the region.

  18. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  19. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  20. The Road to Total Earthquake Safety

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.