Sample records for earthquake prediction based

  1. Study of Earthquake Disaster Prediction System of Langfang city Based on GIS

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Zhang, Dian; Li, Pan; Zhang, YunHui; Zhang, RuoFei

    2017-07-01

    In this paper, according to the status of China’s need to improve the ability of earthquake disaster prevention, this paper puts forward the implementation plan of earthquake disaster prediction system of Langfang city based on GIS. Based on the GIS spatial database, coordinate transformation technology, GIS spatial analysis technology and PHP development technology, the seismic damage factor algorithm is used to predict the damage of the city under different intensity earthquake disaster conditions. The earthquake disaster prediction system of Langfang city is based on the B / S system architecture. Degree and spatial distribution and two-dimensional visualization display, comprehensive query analysis and efficient auxiliary decision-making function to determine the weak earthquake in the city and rapid warning. The system has realized the transformation of the city’s earthquake disaster reduction work from static planning to dynamic management, and improved the city’s earthquake and disaster prevention capability.

  2. Testing an earthquake prediction algorithm

    USGS Publications Warehouse

    Kossobokov, V.G.; Healy, J.H.; Dewey, J.W.

    1997-01-01

    A test to evaluate earthquake prediction algorithms is being applied to a Russian algorithm known as M8. The M8 algorithm makes intermediate term predictions for earthquakes to occur in a large circle, based on integral counts of transient seismicity in the circle. In a retroactive prediction for the period January 1, 1985 to July 1, 1991 the algorithm as configured for the forward test would have predicted eight of ten strong earthquakes in the test area. A null hypothesis, based on random assignment of predictions, predicts eight earthquakes in 2.87% of the trials. The forward test began July 1, 1991 and will run through December 31, 1997. As of July 1, 1995, the algorithm had forward predicted five out of nine earthquakes in the test area, which success ratio would have been achieved in 53% of random trials with the null hypothesis.

  3. Scoring annual earthquake predictions in China

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Jiang, Changsheng

    2012-02-01

    The Annual Consultation Meeting on Earthquake Tendency in China is held by the China Earthquake Administration (CEA) in order to provide one-year earthquake predictions over most China. In these predictions, regions of concern are denoted together with the corresponding magnitude range of the largest earthquake expected during the next year. Evaluating the performance of these earthquake predictions is rather difficult, especially for regions that are of no concern, because they are made on arbitrary regions with flexible magnitude ranges. In the present study, the gambling score is used to evaluate the performance of these earthquake predictions. Based on a reference model, this scoring method rewards successful predictions and penalizes failures according to the risk (probability of being failure) that the predictors have taken. Using the Poisson model, which is spatially inhomogeneous and temporally stationary, with the Gutenberg-Richter law for earthquake magnitudes as the reference model, we evaluate the CEA predictions based on 1) a partial score for evaluating whether issuing the alarmed regions is based on information that differs from the reference model (knowledge of average seismicity level) and 2) a complete score that evaluates whether the overall performance of the prediction is better than the reference model. The predictions made by the Annual Consultation Meetings on Earthquake Tendency from 1990 to 2003 are found to include significant precursory information, but the overall performance is close to that of the reference model.

  4. A note on evaluating VAN earthquake predictions

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-Akis; Melis, Nicos S.

    The evaluation of the success level of an earthquake prediction method should not be based on approaches that apply generalized strict statistical laws and avoid the specific nature of the earthquake phenomenon. Fault rupture processes cannot be compared to gambling processes. The outcome of the present note is that even an ideal earthquake prediction method is still shown to be a matter of a “chancy” association between precursors and earthquakes if we apply the same procedure proposed by Mulargia and Gasperini [1992] in evaluating VAN earthquake predictions. Each individual VAN prediction has to be evaluated separately, taking always into account the specific circumstances and information available. The success level of epicenter prediction should depend on the earthquake magnitude, and magnitude and time predictions may depend on earthquake clustering and the tectonic regime respectively.

  5. Large-Scale Earthquake Countermeasures Act and the Earthquake Prediction Council in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikitake, T.

    1979-08-07

    The Large-Scale Earthquake Countermeasures Act was enacted in Japan in December 1978. This act aims at mitigating earthquake hazards by designating an area to be an area under intensified measures against earthquake disaster, such designation being based on long-term earthquake prediction information, and by issuing an earthquake warnings statement based on imminent prediction information, when possible. In an emergency case as defined by the law, the prime minister will be empowered to take various actions which cannot be taken at ordinary times. For instance, he may ask the Self-Defense Force to come into the earthquake-threatened area before the earthquake occurrence.more » A Prediction Council has been formed in order to evaluate premonitory effects that might be observed over the Tokai area, which was designated an area under intensified measures against earthquake disaster some time in June 1979. An extremely dense observation network has been constructed over the area.« less

  6. Collaboratory for the Study of Earthquake Predictability

    NASA Astrophysics Data System (ADS)

    Schorlemmer, D.; Jordan, T. H.; Zechar, J. D.; Gerstenberger, M. C.; Wiemer, S.; Maechling, P. J.

    2006-12-01

    Earthquake prediction is one of the most difficult problems in physical science and, owing to its societal implications, one of the most controversial. The study of earthquake predictability has been impeded by the lack of an adequate experimental infrastructure---the capability to conduct scientific prediction experiments under rigorous, controlled conditions and evaluate them using accepted criteria specified in advance. To remedy this deficiency, the Southern California Earthquake Center (SCEC) is working with its international partners, which include the European Union (through the Swiss Seismological Service) and New Zealand (through GNS Science), to develop a virtual, distributed laboratory with a cyberinfrastructure adequate to support a global program of research on earthquake predictability. This Collaboratory for the Study of Earthquake Predictability (CSEP) will extend the testing activities of SCEC's Working Group on Regional Earthquake Likelihood Models, from which we will present first results. CSEP will support rigorous procedures for registering prediction experiments on regional and global scales, community-endorsed standards for assessing probability-based and alarm-based predictions, access to authorized data sets and monitoring products from designated natural laboratories, and software to allow researchers to participate in prediction experiments. CSEP will encourage research on earthquake predictability by supporting an environment for scientific prediction experiments that allows the predictive skill of proposed algorithms to be rigorously compared with standardized reference methods and data sets. It will thereby reduce the controversies surrounding earthquake prediction, and it will allow the results of prediction experiments to be communicated to the scientific community, governmental agencies, and the general public in an appropriate research context.

  7. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    some understanding of their sources and the physical properties of the crust, which also vary from place to place and time to time. Anomalies are not necessarily due to stress or earthquake preparation, and separating the extraneous ones is a problem as daunting as understanding earthquake behavior itself. Fourth, the associations presented between anomalies and earthquakes are generally based on selected data. Validating a proposed association requires complete data on the earthquake record and the geophysical measurements over a large area and time, followed by prospective testing which allows no adjustment of parameters, criteria, etc. The Collaboratory for Study of Earthquake Predictability (CSEP) is dedicated to providing such prospective testing. Any serious proposal for prediction research should deal with the problems above, and anticipate the huge investment in time required to test hypotheses.

  8. Earthquakes: Predicting the unpredictable?

    USGS Publications Warehouse

    Hough, Susan E.

    2005-01-01

    The earthquake prediction pendulum has swung from optimism in the 1970s to rather extreme pessimism in the 1990s. Earlier work revealed evidence of possible earthquake precursors: physical changes in the planet that signal that a large earthquake is on the way. Some respected earthquake scientists argued that earthquakes are likewise fundamentally unpredictable. The fate of the Parkfield prediction experiment appeared to support their arguments: A moderate earthquake had been predicted along a specified segment of the central San Andreas fault within five years of 1988, but had failed to materialize on schedule. At some point, however, the pendulum began to swing back. Reputable scientists began using the "P-word" in not only polite company, but also at meetings and even in print. If the optimism regarding earthquake prediction can be attributed to any single cause, it might be scientists' burgeoning understanding of the earthquake cycle.

  9. Earthquake prediction in seismogenic areas of the Iberian Peninsula based on computational intelligence

    NASA Astrophysics Data System (ADS)

    Morales-Esteban, A.; Martínez-Álvarez, F.; Reyes, J.

    2013-05-01

    A method to predict earthquakes in two of the seismogenic areas of the Iberian Peninsula, based on Artificial Neural Networks (ANNs), is presented in this paper. ANNs have been widely used in many fields but only very few and very recent studies have been conducted on earthquake prediction. Two kinds of predictions are provided in this study: a) the probability of an earthquake, of magnitude equal or larger than a preset threshold magnitude, within the next 7 days, to happen; b) the probability of an earthquake of a limited magnitude interval to happen, during the next 7 days. First, the physical fundamentals related to earthquake occurrence are explained. Second, the mathematical model underlying ANNs is explained and the configuration chosen is justified. Then, the ANNs have been trained in both areas: The Alborán Sea and the Western Azores-Gibraltar fault. Later, the ANNs have been tested in both areas for a period of time immediately subsequent to the training period. Statistical tests are provided showing meaningful results. Finally, ANNs were compared to other well known classifiers showing quantitatively and qualitatively better results. The authors expect that the results obtained will encourage researchers to conduct further research on this topic. Development of a system capable of predicting earthquakes for the next seven days Application of ANN is particularly reliable to earthquake prediction. Use of geophysical information modeling the soil behavior as ANN's input data Successful analysis of one region with large seismic activity

  10. Landscape scale prediction of earthquake-induced landsliding based on seismological and geomorphological parameters.

    NASA Astrophysics Data System (ADS)

    Marc, O.; Hovius, N.; Meunier, P.; Rault, C.

    2017-12-01

    In tectonically active areas, earthquakes are an important trigger of landslides with significant impact on hillslopes and river evolutions. However, detailed prediction of landslides locations and properties for a given earthquakes remain difficult.In contrast we propose, landscape scale, analytical prediction of bulk coseismic landsliding, that is total landslide area and volume (Marc et al., 2016a) as well as the regional area within which most landslide must distribute (Marc et al., 2017). The prediction is based on a limited number of seismological (seismic moment, source depth) and geomorphological (landscape steepness, threshold acceleration) parameters, and therefore could be implemented in landscape evolution model aiming at engaging with erosion dynamics at the scale of the seismic cycle. To assess the model we have compiled and normalized estimates of total landslide volume, total landslide area and regional area affected by landslides for 40, 17 and 83 earthquakes, respectively. We have found that low landscape steepness systematically leads to overprediction of the total area and volume of landslides. When this effect is accounted for, the model is able to predict within a factor of 2 the landslide areas and associated volumes for about 70% of the cases in our databases. The prediction of regional area affected do not require a calibration for the landscape steepness and gives a prediction within a factor of 2 for 60% of the database. For 7 out of 10 comprehensive inventories we show that our prediction compares well with the smallest region around the fault containing 95% of the total landslide area. This is a significant improvement on a previously published empirical expression based only on earthquake moment.Some of the outliers seems related to exceptional rock mass strength in the epicentral area or shaking duration and other seismic source complexities ignored by the model. Applications include prediction on the mass balance of earthquakes and

  11. On some methods for assessing earthquake predictions

    NASA Astrophysics Data System (ADS)

    Molchan, G.; Romashkova, L.; Peresan, A.

    2017-09-01

    A regional approach to the problem of assessing earthquake predictions inevitably faces a deficit of data. We point out some basic limits of assessment methods reported in the literature, considering the practical case of the performance of the CN pattern recognition method in the prediction of large Italian earthquakes. Along with the classical hypothesis testing, a new game approach, the so-called parimutuel gambling (PG) method, is examined. The PG, originally proposed for the evaluation of the probabilistic earthquake forecast, has been recently adapted for the case of 'alarm-based' CN prediction. The PG approach is a non-standard method; therefore it deserves careful examination and theoretical analysis. We show that the PG alarm-based version leads to an almost complete loss of information about predicted earthquakes (even for a large sample). As a result, any conclusions based on the alarm-based PG approach are not to be trusted. We also show that the original probabilistic PG approach does not necessarily identifies the genuine forecast correctly among competing seismicity rate models, even when applied to extensive data.

  12. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    NASA Astrophysics Data System (ADS)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (<6.5R) can be predicted with very good accuracy window (+-1 day). In this contribution we present an improvement modification to the FDL method, the MFDL method, which performs better than the FDL. We use the FDL numbers to develop possible earthquakes dates but with the important difference that the starting seed date is a trigger planetary aspect prior to the earthquake. Typical planetary aspects are Moon conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with

  13. Hypothesis testing and earthquake prediction.

    PubMed

    Jackson, D D

    1996-04-30

    Requirements for testing include advance specification of the conditional rate density (probability per unit time, area, and magnitude) or, alternatively, probabilities for specified intervals of time, space, and magnitude. Here I consider testing fully specified hypotheses, with no parameter adjustments or arbitrary decisions allowed during the test period. Because it may take decades to validate prediction methods, it is worthwhile to formulate testable hypotheses carefully in advance. Earthquake prediction generally implies that the probability will be temporarily higher than normal. Such a statement requires knowledge of "normal behavior"--that is, it requires a null hypothesis. Hypotheses can be tested in three ways: (i) by comparing the number of actual earth-quakes to the number predicted, (ii) by comparing the likelihood score of actual earthquakes to the predicted distribution, and (iii) by comparing the likelihood ratio to that of a null hypothesis. The first two tests are purely self-consistency tests, while the third is a direct comparison of two hypotheses. Predictions made without a statement of probability are very difficult to test, and any test must be based on the ratio of earthquakes in and out of the forecast regions.

  14. Hypothesis testing and earthquake prediction.

    PubMed Central

    Jackson, D D

    1996-01-01

    Requirements for testing include advance specification of the conditional rate density (probability per unit time, area, and magnitude) or, alternatively, probabilities for specified intervals of time, space, and magnitude. Here I consider testing fully specified hypotheses, with no parameter adjustments or arbitrary decisions allowed during the test period. Because it may take decades to validate prediction methods, it is worthwhile to formulate testable hypotheses carefully in advance. Earthquake prediction generally implies that the probability will be temporarily higher than normal. Such a statement requires knowledge of "normal behavior"--that is, it requires a null hypothesis. Hypotheses can be tested in three ways: (i) by comparing the number of actual earth-quakes to the number predicted, (ii) by comparing the likelihood score of actual earthquakes to the predicted distribution, and (iii) by comparing the likelihood ratio to that of a null hypothesis. The first two tests are purely self-consistency tests, while the third is a direct comparison of two hypotheses. Predictions made without a statement of probability are very difficult to test, and any test must be based on the ratio of earthquakes in and out of the forecast regions. PMID:11607663

  15. Earthquake prediction; new studies yield promising results

    USGS Publications Warehouse

    Robinson, R.

    1974-01-01

    On Agust 3, 1973, a small earthquake (magnitude 2.5) occurred near Blue Mountain Lake in the Adirondack region of northern New York State. This seemingly unimportant event was of great significance, however, because it was predicted. Seismologsits at the Lamont-Doherty geologcal Observatory of Columbia University accurately foretold the time, place, and magnitude of the event. Their prediction was based on certain pre-earthquake processes that are best explained by a hypothesis known as "dilatancy," a concept that has injected new life and direction into the science of earthquake prediction. Although much mroe reserach must be accomplished before we can expect to predict potentially damaging earthquakes with any degree of consistency, results such as this indicate that we are on a promising road. 

  16. Understanding earthquake from the granular physics point of view — Causes of earthquake, earthquake precursors and predictions

    NASA Astrophysics Data System (ADS)

    Lu, Kunquan; Hou, Meiying; Jiang, Zehui; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    We treat the earth crust and mantle as large scale discrete matters based on the principles of granular physics and existing experimental observations. Main outcomes are: A granular model of the structure and movement of the earth crust and mantle is established. The formation mechanism of the tectonic forces, which causes the earthquake, and a model of propagation for precursory information are proposed. Properties of the seismic precursory information and its relevance with the earthquake occurrence are illustrated, and principle of ways to detect the effective seismic precursor is elaborated. The mechanism of deep-focus earthquake is also explained by the jamming-unjamming transition of the granular flow. Some earthquake phenomena which were previously difficult to understand are explained, and the predictability of the earthquake is discussed. Due to the discrete nature of the earth crust and mantle, the continuum theory no longer applies during the quasi-static seismological process. In this paper, based on the principles of granular physics, we study the causes of earthquakes, earthquake precursors and predictions, and a new understanding, different from the traditional seismological viewpoint, is obtained.

  17. Prototype operational earthquake prediction system

    USGS Publications Warehouse

    Spall, Henry

    1986-01-01

    An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.

  18. Prediction of earthquake-triggered landslide event sizes

    NASA Astrophysics Data System (ADS)

    Braun, Anika; Havenith, Hans-Balder; Schlögel, Romy

    2016-04-01

    Seismically induced landslides are a major environmental effect of earthquakes, which may significantly contribute to related losses. Moreover, in paleoseismology landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes and thus allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. We present here a review of factors contributing to earthquake triggered slope failures based on an "event-by-event" classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, 'Intensity', 'Fault', 'Topographic energy', 'Climatic conditions' and 'Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. The relative weight of these factors was extracted from published data for numerous past earthquakes; topographic inputs were checked in Google Earth and through geographic information systems. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be cross-checked. One of our main findings is that the 'Fault' factor, which is based on characteristics of the fault, the surface rupture and its location with respect to mountain areas, has the most important

  19. Earthquake predictions using seismic velocity ratios

    USGS Publications Warehouse

    Sherburne, R. W.

    1979-01-01

    Since the beginning of modern seismology, seismologists have contemplated predicting earthquakes. The usefulness of earthquake predictions to the reduction of human and economic losses and the value of long-range earthquake prediction to planning is obvious. Not as clear are the long-range economic and social impacts of earthquake prediction to a speicifc area. The general consensus of opinion among scientists and government officials, however, is that the quest of earthquake prediction is a worthwhile goal and should be prusued with a sense of urgency. 

  20. Earthquake Prediction is Coming

    ERIC Educational Resources Information Center

    MOSAIC, 1977

    1977-01-01

    Describes (1) several methods used in earthquake research, including P:S ratio velocity studies, dilatancy models; and (2) techniques for gathering base-line data for prediction using seismographs, tiltmeters, laser beams, magnetic field changes, folklore, animal behavior. The mysterious Palmdale (California) bulge is discussed. (CS)

  1. Earthquake Prediction in Large-scale Faulting Experiments

    NASA Astrophysics Data System (ADS)

    Junger, J.; Kilgore, B.; Beeler, N.; Dieterich, J.

    2004-12-01

    We study repeated earthquake slip of a 2 m long laboratory granite fault surface with approximately homogenous frictional properties. In this apparatus earthquakes follow a period of controlled, constant rate shear stress increase, analogous to tectonic loading. Slip initiates and accumulates within a limited area of the fault surface while the surrounding fault remains locked. Dynamic rupture propagation and slip of the entire fault surface is induced when slip in the nucleating zone becomes sufficiently large. We report on the event to event reproducibility of loading time (recurrence interval), failure stress, stress drop, and precursory activity. We tentatively interpret these variations as indications of the intrinsic variability of small earthquake occurrence and source physics in this controlled setting. We use the results to produce measures of earthquake predictability based on the probability density of repeating occurrence and the reproducibility of near-field precursory strain. At 4 MPa normal stress and a loading rate of 0.0001 MPa/s, the loading time is ˜25 min, with a coefficient of variation of around 10%. Static stress drop has a similar variability which results almost entirely from variability of the final (rather than initial) stress. Thus, the initial stress has low variability and event times are slip-predictable. The variability of loading time to failure is comparable to the lowest variability of recurrence time of small repeating earthquakes at Parkfield (Nadeau et al., 1998) and our result may be a good estimate of the intrinsic variability of recurrence. Distributions of loading time can be adequately represented by a log-normal or Weibel distribution but long term prediction of the next event time based on probabilistic representation of previous occurrence is not dramatically better than for field-observed small- or large-magnitude earthquake datasets. The gradually accelerating precursory aseismic slip observed in the region of

  2. Quantitative Earthquake Prediction on Global and Regional Scales

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir G.

    2006-03-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  3. On Earthquake Prediction in Japan

    PubMed Central

    UYEDA, Seiya

    2013-01-01

    Japan’s National Project for Earthquake Prediction has been conducted since 1965 without success. An earthquake prediction should be a short-term prediction based on observable physical phenomena or precursors. The main reason of no success is the failure to capture precursors. Most of the financial resources and manpower of the National Project have been devoted to strengthening the seismographs networks, which are not generally effective for detecting precursors since many of precursors are non-seismic. The precursor research has never been supported appropriately because the project has always been run by a group of seismologists who, in the present author’s view, are mainly interested in securing funds for seismology — on pretense of prediction. After the 1995 Kobe disaster, the project decided to give up short-term prediction and this decision has been further fortified by the 2011 M9 Tohoku Mega-quake. On top of the National Project, there are other government projects, not formally but vaguely related to earthquake prediction, that consume many orders of magnitude more funds. They are also un-interested in short-term prediction. Financially, they are giants and the National Project is a dwarf. Thus, in Japan now, there is practically no support for short-term prediction research. Recently, however, substantial progress has been made in real short-term prediction by scientists of diverse disciplines. Some promising signs are also arising even from cooperation with private sectors. PMID:24213204

  4. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  5. The nature of earthquake prediction

    USGS Publications Warehouse

    Lindh, A.G.

    1991-01-01

    Earthquake prediction is inherently statistical. Although some people continue to think of earthquake prediction as the specification of the time, place, and magnitude of a future earthquake, it has been clear for at least a decade that this is an unrealistic and unreasonable definition. the reality is that earthquake prediction starts from the long-term forecasts of place and magnitude, with very approximate time constraints, and progresses, at least in principle, to a gradual narrowing of the time window as data and understanding permit. Primitive long-term forecasts are clearly possible at this time on a few well-characterized fault systems. Tightly focuses monitoring experiments aimed at short-term prediction are already underway in Parkfield, California, and in the Tokai region in Japan; only time will tell how much progress will be possible. 

  6. The 2004 Parkfield, CA Earthquake: A Teachable Moment for Exploring Earthquake Processes, Probability, and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.

    2004-12-01

    The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better

  7. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models: 2. Laboratory earthquakes

    NASA Astrophysics Data System (ADS)

    Rubinstein, Justin L.; Ellsworth, William L.; Beeler, Nicholas M.; Kilgore, Brian D.; Lockner, David A.; Savage, Heather M.

    2012-02-01

    The behavior of individual stick-slip events observed in three different laboratory experimental configurations is better explained by a "memoryless" earthquake model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. We make similar findings in the companion manuscript for the behavior of natural repeating earthquakes. Taken together, these results allow us to conclude that the predictions of a characteristic earthquake model that assumes either fixed slip or fixed recurrence interval should be preferred to the predictions of the time- and slip-predictable models for all earthquakes. Given that the fixed slip and recurrence models are the preferred models for all of the experiments we examine, we infer that in an event-to-event sense the elastic rebound model underlying the time- and slip-predictable models does not explain earthquake behavior. This does not indicate that the elastic rebound model should be rejected in a long-term-sense, but it should be rejected for short-term predictions. The time- and slip-predictable models likely offer worse predictions of earthquake behavior because they rely on assumptions that are too simple to explain the behavior of earthquakes. Specifically, the time-predictable model assumes a constant failure threshold and the slip-predictable model assumes that there is a constant minimum stress. There is experimental and field evidence that these assumptions are not valid for all earthquakes.

  8. Testing prediction methods: Earthquake clustering versus the Poisson model

    USGS Publications Warehouse

    Michael, A.J.

    1997-01-01

    Testing earthquake prediction methods requires statistical techniques that compare observed success to random chance. One technique is to produce simulated earthquake catalogs and measure the relative success of predicting real and simulated earthquakes. The accuracy of these tests depends on the validity of the statistical model used to simulate the earthquakes. This study tests the effect of clustering in the statistical earthquake model on the results. Three simulation models were used to produce significance levels for a VLF earthquake prediction method. As the degree of simulated clustering increases, the statistical significance drops. Hence, the use of a seismicity model with insufficient clustering can lead to overly optimistic results. A successful method must pass the statistical tests with a model that fully replicates the observed clustering. However, a method can be rejected based on tests with a model that contains insufficient clustering. U.S. copyright. Published in 1997 by the American Geophysical Union.

  9. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    USGS Publications Warehouse

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  10. Stigma in science: the case of earthquake prediction.

    PubMed

    Joffe, Helene; Rossetto, Tiziana; Bradley, Caroline; O'Connor, Cliodhna

    2018-01-01

    This paper explores how earthquake scientists conceptualise earthquake prediction, particularly given the conviction of six earthquake scientists for manslaughter (subsequently overturned) on 22 October 2012 for having given inappropriate advice to the public prior to the L'Aquila earthquake of 6 April 2009. In the first study of its kind, semi-structured interviews were conducted with 17 earthquake scientists and the transcribed interviews were analysed thematically. The scientists primarily denigrated earthquake prediction, showing strong emotive responses and distancing themselves from earthquake 'prediction' in favour of 'forecasting'. Earthquake prediction was regarded as impossible and harmful. The stigmatisation of the subject is discussed in the light of research on boundary work and stigma in science. The evaluation reveals how mitigation becomes the more favoured endeavour, creating a normative environment that disadvantages those who continue to pursue earthquake prediction research. Recommendations are made for communication with the public on earthquake risk, with a focus on how scientists portray uncertainty. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  11. The U.S. Earthquake Prediction Program

    USGS Publications Warehouse

    Wesson, R.L.; Filson, J.R.

    1981-01-01

    There are two distinct motivations for earthquake prediction. The mechanistic approach aims to understand the processes leading to a large earthquake. The empirical approach is governed by the immediate need to protect lives and property. With our current lack of knowledge about the earthquake process, future progress cannot be made without gathering a large body of measurements. These are required not only for the empirical prediction of earthquakes, but also for the testing and development of hypotheses that further our understanding of the processes at work. The earthquake prediction program is basically a program of scientific inquiry, but one which is motivated by social, political, economic, and scientific reasons. It is a pursuit that cannot rely on empirical observations alone nor can it carried out solely on a blackboard or in a laboratory. Experiments must be carried out in the real Earth. 

  12. Recent Achievements of the Collaboratory for the Study of Earthquake Predictability

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Jackson, D. D.; Rhoades, D. A.; Zechar, J. D.; Marzocchi, W.

    2016-12-01

    The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 442 models under evaluation. The California testing center, started by SCEC, Sept 1, 2007, currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. Our tests are now based on the hypocentral locations and magnitudes of cataloged earthquakes, but we plan to test focal mechanisms, seismic hazard models, ground motion forecasts, and finite rupture forecasts as well. We have increased computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model, introduced Bayesian ensemble models, and implemented support for non-Poissonian simulation-based forecasts models. We are currently developing formats and procedures to evaluate externally hosted forecasts and predictions. CSEP supports the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. We found that earthquakes as small as magnitude 2.5 provide important information on subsequent earthquakes larger than magnitude 5. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence showed that some physics-based and hybrid models outperform catalog-based (e.g., ETAS) models. This experiment also demonstrates the ability of the CSEP infrastructure to support retrospective forecast testing. Current CSEP development activities include adoption of the Comprehensive Earthquake Catalog (ComCat) as an authorized data source, retrospective testing of simulation-based forecasts, and support for additive ensemble methods. We describe the open-source CSEP software that is available to researchers as

  13. Four Examples of Short-Term and Imminent Prediction of Earthquakes

    NASA Astrophysics Data System (ADS)

    zeng, zuoxun; Liu, Genshen; Wu, Dabin; Sibgatulin, Victor

    2014-05-01

    We show here 4 examples of short-term and imminent prediction of earthquakes in China last year. They are Nima Earthquake(Ms5.2), Minxian Earthquake(Ms6.6), Nantou Earthquake (Ms6.7) and Dujiangyan Earthquake (Ms4.1) Imminent Prediction of Nima Earthquake(Ms5.2) Based on the comprehensive analysis of the prediction of Victor Sibgatulin using natural electromagnetic pulse anomalies and the prediction of Song Song and Song Kefu using observation of a precursory halo, and an observation for the locations of a degasification of the earth in the Naqu, Tibet by Zeng Zuoxun himself, the first author made a prediction for an earthquake around Ms 6 in 10 days in the area of the degasification point (31.5N, 89.0 E) at 0:54 of May 8th, 2013. He supplied another degasification point (31N, 86E) for the epicenter prediction at 8:34 of the same day. At 18:54:30 of May 15th, 2013, an earthquake of Ms5.2 occurred in the Nima County, Naqu, China. Imminent Prediction of Minxian Earthquake (Ms6.6) At 7:45 of July 22nd, 2013, an earthquake occurred at the border between Minxian and Zhangxian of Dingxi City (34.5N, 104.2E), Gansu province with magnitude of Ms6.6. We review the imminent prediction process and basis for the earthquake using the fingerprint method. 9 channels or 15 channels anomalous components - time curves can be outputted from the SW monitor for earthquake precursors. These components include geomagnetism, geoelectricity, crust stresses, resonance, crust inclination. When we compress the time axis, the outputted curves become different geometric images. The precursor images are different for earthquake in different regions. The alike or similar images correspond to earthquakes in a certain region. According to the 7-year observation of the precursor images and their corresponding earthquake, we usually get the fingerprint 6 days before the corresponding earthquakes. The magnitude prediction needs the comparison between the amplitudes of the fingerpringts from the same

  14. Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure

    NASA Astrophysics Data System (ADS)

    Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F.

    2018-06-01

    Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analysis of massive datasets. These new methods make use of physical resources like cloud based architectures. California is known for being one of the regions with highest seismic activity in the world and many data are available. In this work, the use of several regression algorithms combined with ensemble learning is explored in the context of big data (1 GB catalog is used), in order to predict earthquakes magnitude within the next seven days. Apache Spark framework, H2 O library in R language and Amazon cloud infrastructure were been used, reporting very promising results.

  15. Strong ground motion prediction using virtual earthquakes.

    PubMed

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  16. Earthquake Prediction in a Big Data World

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.

    2016-12-01

    The digital revolution started just about 15 years ago has already surpassed the global information storage capacity of more than 5000 Exabytes (in optimally compressed bytes) per year. Open data in a Big Data World provides unprecedented opportunities for enhancing studies of the Earth System. However, it also opens wide avenues for deceptive associations in inter- and transdisciplinary data and for inflicted misleading predictions based on so-called "precursors". Earthquake prediction is not an easy task that implies a delicate application of statistics. So far, none of the proposed short-term precursory signals showed sufficient evidence to be used as a reliable precursor of catastrophic earthquakes. Regretfully, in many cases of seismic hazard assessment (SHA), from term-less to time-dependent (probabilistic PSHA or deterministic DSHA), and short-term earthquake forecasting (StEF), the claims of a high potential of the method are based on a flawed application of statistics and, therefore, are hardly suitable for communication to decision makers. Self-testing must be done in advance claiming prediction of hazardous areas and/or times. The necessity and possibility of applying simple tools of Earthquake Prediction Strategies, in particular, Error Diagram, introduced by G.M. Molchan in early 1990ies, and Seismic Roulette null-hypothesis as a metric of the alerted space, is evident. The set of errors, i.e. the rates of failure and of the alerted space-time volume, can be easily compared to random guessing, which comparison permits evaluating the SHA method effectiveness and determining the optimal choice of parameters in regard to a given cost-benefit function. These and other information obtained in such a simple testing may supply us with a realistic estimates of confidence and accuracy of SHA predictions and, if reliable but not necessarily perfect, with related recommendations on the level of risks for decision making in regard to engineering design, insurance

  17. Geochemical challenge to earthquake prediction.

    PubMed Central

    Wakita, H

    1996-01-01

    The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented. PMID:11607665

  18. Intermediate-term earthquake prediction

    USGS Publications Warehouse

    Knopoff, L.

    1990-01-01

    The problems in predicting earthquakes have been attacked by phenomenological methods from pre-historic times to the present. The associations of presumed precursors with large earthquakes often have been remarked upon. the difficulty in identifying whether such correlations are due to some chance coincidence or are real precursors is that usually one notes the associations only in the relatively short time intervals before the large events. Only rarely, if ever, is notice taken of whether the presumed precursor is to be found in the rather long intervals that follow large earthquakes, or in fact is absent in these post-earthquake intervals. If there are enough examples, the presumed correlation fails as a precursor in the former case, while in the latter case the precursor would be verified. Unfortunately, the observer is usually not concerned with the 'uniteresting' intervals that have no large earthquakes

  19. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    USGS Publications Warehouse

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  20. 76 FR 69761 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... DEPARTMENT OF THE INTERIOR U.S. Geological Survey National Earthquake Prediction Evaluation... 96-472, the National Earthquake Prediction Evaluation Council (NEPEC) will hold a 1\\1/2\\-day meeting.... Geological Survey on proposed earthquake predictions, on the completeness and scientific validity of the...

  1. 76 FR 19123 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... Earthquake Prediction Evaluation Council (NEPEC) AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: Pursuant to Public Law 96-472, the National Earthquake Prediction Evaluation Council... proposed earthquake predictions, on the completeness and scientific validity of the available data related...

  2. The October 1992 Parkfield, California, earthquake prediction

    USGS Publications Warehouse

    Langbein, J.

    1992-01-01

    A magnitude 4.7 earthquake occurred near Parkfield, California, on October 20, 992, at 05:28 UTC (October 19 at 10:28 p.m. local or Pacific Daylight Time).This moderate shock, interpreted as the potential foreshock of a damaging earthquake on the San Andreas fault, triggered long-standing federal, state and local government plans to issue a public warning of an imminent magnitude 6 earthquake near Parkfield. Although the predicted earthquake did not take place, sophisticated suites of instruments deployed as part of the Parkfield Earthquake Prediction Experiment recorded valuable data associated with an unusual series of events. this article describes the geological aspects of these events, which occurred near Parkfield in October 1992. The accompnaying article, an edited version of a press conference b Richard Andrews, the Director of the California Office of Emergency Service (OES), describes governmental response to the prediction.   

  3. Prediction of the area affected by earthquake-induced landsliding based on seismological parameters

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Meunier, Patrick; Hovius, Niels

    2017-07-01

    We present an analytical, seismologically consistent expression for the surface area of the region within which most landslides triggered by an earthquake are located (landslide distribution area). This expression is based on scaling laws relating seismic moment, source depth, and focal mechanism with ground shaking and fault rupture length and assumes a globally constant threshold of acceleration for onset of systematic mass wasting. The seismological assumptions are identical to those recently used to propose a seismologically consistent expression for the total volume and area of landslides triggered by an earthquake. To test the accuracy of the model we gathered geophysical information and estimates of the landslide distribution area for 83 earthquakes. To reduce uncertainties and inconsistencies in the estimation of the landslide distribution area, we propose an objective definition based on the shortest distance from the seismic wave emission line containing 95 % of the total landslide area. Without any empirical calibration the model explains 56 % of the variance in our dataset, and predicts 35 to 49 out of 83 cases within a factor of 2, depending on how we account for uncertainties on the seismic source depth. For most cases with comprehensive landslide inventories we show that our prediction compares well with the smallest region around the fault containing 95 % of the total landslide area. Aspects ignored by the model that could explain the residuals include local variations of the threshold of acceleration and processes modulating the surface ground shaking, such as the distribution of seismic energy release on the fault plane, the dynamic stress drop, and rupture directivity. Nevertheless, its simplicity and first-order accuracy suggest that the model can yield plausible and useful estimates of the landslide distribution area in near-real time, with earthquake parameters issued by standard detection routines.

  4. Risk and return: evaluating Reverse Tracing of Precursors earthquake predictions

    NASA Astrophysics Data System (ADS)

    Zechar, J. Douglas; Zhuang, Jiancang

    2010-09-01

    In 2003, the Reverse Tracing of Precursors (RTP) algorithm attracted the attention of seismologists and international news agencies when researchers claimed two successful predictions of large earthquakes. These researchers had begun applying RTP to seismicity in Japan, California, the eastern Mediterranean and Italy; they have since applied it to seismicity in the northern Pacific, Oregon and Nevada. RTP is a pattern recognition algorithm that uses earthquake catalogue data to declare alarms, and these alarms indicate that RTP expects a moderate to large earthquake in the following months. The spatial extent of alarms is highly variable and each alarm typically lasts 9 months, although the algorithm may extend alarms in time and space. We examined the record of alarms and outcomes since the prospective application of RTP began, and in this paper we report on the performance of RTP to date. To analyse these predictions, we used a recently developed approach based on a gambling score, and we used a simple reference model to estimate the prior probability of target earthquakes for each alarm. Formally, we believe that RTP investigators did not rigorously specify the first two `successful' predictions in advance of the relevant earthquakes; because this issue is contentious, we consider analyses with and without these alarms. When we included contentious alarms, RTP predictions demonstrate statistically significant skill. Under a stricter interpretation, the predictions are marginally unsuccessful.

  5. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  6. The Virtual Quake earthquake simulator: a simulation-based forecast of the El Mayor-Cucapah region and evidence of predictability in simulated earthquake sequences

    NASA Astrophysics Data System (ADS)

    Yoder, Mark R.; Schultz, Kasey W.; Heien, Eric M.; Rundle, John B.; Turcotte, Donald L.; Parker, Jay W.; Donnellan, Andrea

    2015-12-01

    In this manuscript, we introduce a framework for developing earthquake forecasts using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California (VC) earthquake simulator. We discuss the basic merits and mechanics of the simulator, and we present several statistics of interest for earthquake forecasting. We also show that, though the system as a whole (in aggregate) behaves quite randomly, (simulated) earthquake sequences limited to specific fault sections exhibit measurable predictability in the form of increasing seismicity precursory to large m > 7 earthquakes. In order to quantify this, we develop an alert-based forecasting metric, and show that it exhibits significant information gain compared to random forecasts. We also discuss the long-standing question of activation versus quiescent type earthquake triggering. We show that VQ exhibits both behaviours separately for independent fault sections; some fault sections exhibit activation type triggering, while others are better characterized by quiescent type triggering. We discuss these aspects of VQ specifically with respect to faults in the Salton Basin and near the El Mayor-Cucapah region in southern California, USA and northern Baja California Norte, Mexico.

  7. Material contrast does not predict earthquake rupture propagation direction

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    2005-01-01

    Earthquakes often occur on faults that juxtapose different rocks. The result is rupture behavior that differs from that of an earthquake occurring on a fault in a homogeneous material. Previous 2D numerical simulations have studied simple cases of earthquake rupture propagation where there is a material contrast across a fault and have come to two different conclusions: 1) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake rupture propagation direction cannot be predicted from the material contrast. In this paper we provide observational evidence from 70 years of earthquakes at Parkfield, CA, and new 3D numerical simulations. Both the observations and the numerical simulations demonstrate that earthquake rupture propagation direction is unlikely to be predictable on the basis of a material contrast. Copyright 2005 by the American Geophysical Union.

  8. Testing an Earthquake Prediction Algorithm: The 2016 New Zealand and Chile Earthquakes

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir G.

    2017-05-01

    The 13 November 2016, M7.8, 54 km NNE of Amberley, New Zealand and the 25 December 2016, M7.6, 42 km SW of Puerto Quellon, Chile earthquakes happened outside the area of the on-going real-time global testing of the intermediate-term middle-range earthquake prediction algorithm M8, accepted in 1992 for the M7.5+ range. Naturally, over the past two decades, the level of registration of earthquakes worldwide has grown significantly and by now is sufficient for diagnosis of times of increased probability (TIPs) by the M8 algorithm on the entire territory of New Zealand and Southern Chile as far as below 40°S. The mid-2016 update of the M8 predictions determines TIPs in the additional circles of investigation (CIs) where the two earthquakes have happened. Thus, after 50 semiannual updates in the real-time prediction mode, we (1) confirm statistically approved high confidence of the M8-MSc predictions and (2) conclude a possibility of expanding the territory of the Global Test of the algorithms M8 and MSc in an apparently necessary revision of the 1992 settings.

  9. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne

    2018-03-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  10. Earthquake prediction evaluation standards applied to the VAN Method

    NASA Astrophysics Data System (ADS)

    Jackson, David D.

    Earthquake prediction research must meet certain standards before it can be suitably evaluated for potential application in decision making. For methods that result in a binary (on or off) alarm condition, requirements include (1) a quantitative description of observables that trigger an alarm, (2) a quantitative description, including ranges of time, location, and magnitude, of the predicted earthquakes, (3) documented evidence of all previous alarms, (4) a complete list of predicted earthquakes, (5) a complete list of unpredicted earthquakes. The VAN technique [Varotsos and Lazaridou, 1991; Varotsos et al., 1996] has not yet been stated as a testable hypothesis. It fails criteria (1) and (2) so it is not ready to be evaluated properly. Although telegrams were transmitted in advance of claimed successes, these telegrams did not fully specify the predicted events, and all of the published statistical evaluations involve many subjective ex post facto decisions. Lacking a statistically demonstrated relationship to earthquakes, a candidate prediction technique should satisfy several plausibility criteria, including: (1) a reasonable relationship between the location of the candidate precursor and that of the predicted earthquake, (2) some demonstration that the candidate precursory observations are related to stress, strain, or other quantities related to earthquakes, and (3) the existence of co-seismic as well as pre-seismic variations of the candidate precursor. The VAN technique meets none of these criteria.

  11. A test to evaluate the earthquake prediction algorithm, M8

    USGS Publications Warehouse

    Healy, John H.; Kossobokov, Vladimir G.; Dewey, James W.

    1992-01-01

    A test of the algorithm M8 is described. The test is constructed to meet four rules, which we propose to be applicable to the test of any method for earthquake prediction:  1. An earthquake prediction technique should be presented as a well documented, logical algorithm that can be used by  investigators without restrictions. 2. The algorithm should be coded in a common programming language and implementable on widely available computer systems. 3. A test of the earthquake prediction technique should involve future predictions with a black box version of the algorithm in which potentially adjustable parameters are fixed in advance. The source of the input data must be defined and ambiguities in these data must be resolved automatically by the algorithm. 4. At least one reasonable null hypothesis should be stated in advance of testing the earthquake prediction method, and it should be stated how this null hypothesis will be used to estimate the statistical significance of the earthquake predictions. The M8 algorithm has successfully predicted several destructive earthquakes, in the sense that the earthquakes occurred inside regions with linear dimensions from 384 to 854 km that the algorithm had identified as being in times of increased probability for strong earthquakes. In addition, M8 has successfully "post predicted" high percentages of strong earthquakes in regions to which it has been applied in retroactive studies. The statistical significance of previous predictions has not been established, however, and post-prediction studies in general are notoriously subject to success-enhancement through hindsight. Nor has it been determined how much more precise an M8 prediction might be than forecasts and probability-of-occurrence estimates made by other techniques. We view our test of M8 both as a means to better determine the effectiveness of M8 and as an experimental structure within which to make observations that might lead to improvements in the algorithm

  12. Empirical models for the prediction of ground motion duration for intraplate earthquakes

    NASA Astrophysics Data System (ADS)

    Anbazhagan, P.; Neaz Sheikh, M.; Bajaj, Ketan; Mariya Dayana, P. J.; Madhura, H.; Reddy, G. R.

    2017-07-01

    Many empirical relationships for the earthquake ground motion duration were developed for interplate region, whereas only a very limited number of empirical relationships exist for intraplate region. Also, the existing relationships were developed based mostly on the scaled recorded interplate earthquakes to represent intraplate earthquakes. To the author's knowledge, none of the existing relationships for the intraplate regions were developed using only the data from intraplate regions. Therefore, an attempt is made in this study to develop empirical predictive relationships of earthquake ground motion duration (i.e., significant and bracketed) with earthquake magnitude, hypocentral distance, and site conditions (i.e., rock and soil sites) using the data compiled from intraplate regions of Canada, Australia, Peninsular India, and the central and southern parts of the USA. The compiled earthquake ground motion data consists of 600 records with moment magnitudes ranging from 3.0 to 6.5 and hypocentral distances ranging from 4 to 1000 km. The non-linear mixed-effect (NLMEs) and logistic regression techniques (to account for zero duration) were used to fit predictive models to the duration data. The bracketed duration was found to be decreased with an increase in the hypocentral distance and increased with an increase in the magnitude of the earthquake. The significant duration was found to be increased with the increase in the magnitude and hypocentral distance of the earthquake. Both significant and bracketed durations were predicted higher in rock sites than in soil sites. The predictive relationships developed herein are compared with the existing relationships for interplate and intraplate regions. The developed relationship for bracketed duration predicts lower durations for rock and soil sites. However, the developed relationship for a significant duration predicts lower durations up to a certain distance and thereafter predicts higher durations compared to the

  13. Japanese earthquake predictability experiment with multiple runs before and after the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Tsuruoka, H.; Yokoi, S.

    2011-12-01

    The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.

  14. Japanese earthquake predictability experiment with multiple runs before and after the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Tsuruoka, H.; Yokoi, S.

    2013-12-01

    The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.

  15. Applications of the gambling score in evaluating earthquake predictions and forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Zechar, Jeremy D.; Jiang, Changsheng; Console, Rodolfo; Murru, Maura; Falcone, Giuseppe

    2010-05-01

    This study presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points bet by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. For discrete predictions, we apply this method to evaluate performance of Shebalin's predictions made by using the Reverse Tracing of Precursors (RTP) algorithm and of the outputs of the predictions from the Annual Consultation Meeting on Earthquake Tendency held by China Earthquake Administration. For the continuous case, we use it to compare the probability forecasts of seismicity in the Abruzzo region before and after the L'aquila earthquake based on the ETAS model and the PPE model.

  16. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    PubMed

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  17. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries

    PubMed Central

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006–2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year. PMID:26812351

  18. Prediction of Strong Earthquake Ground Motion for the M=7.4 and M=7.2 1999, Turkey Earthquakes based upon Geological Structure Modeling and Local Earthquake Recordings

    NASA Astrophysics Data System (ADS)

    Gok, R.; Hutchings, L.

    2004-05-01

    We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  19. The Ordered Network Structure and Prediction Summary for M≥7 Earthquakes in Xinjiang Region of China

    NASA Astrophysics Data System (ADS)

    Men, Ke-Pei; Zhao, Kai

    2014-12-01

    M ≥7 earthquakes have showed an obvious commensurability and orderliness in Xinjiang of China and its adjacent region since 1800. The main orderly values are 30 a × k (k = 1,2,3), 11 12 a, 41 43 a, 18 19 a, and 5 6 a. In the guidance of the information forecasting theory of Wen-Bo Weng, based on previous research results, combining ordered network structure analysis with complex network technology, we focus on the prediction summary of M ≥ 7 earthquakes by using the ordered network structure, and add new information to further optimize network, hence construct the 2D- and 3D-ordered network structure of M ≥ 7 earthquakes. In this paper, the network structure revealed fully the regularity of seismic activity of M ≥ 7 earthquakes in the study region during the past 210 years. Based on this, the Karakorum M7.1 earthquake in 1996, the M7.9 earthquake on the frontier of Russia, Mongol, and China in 2003, and two Yutian M7.3 earthquakes in 2008 and 2014 were predicted successfully. At the same time, a new prediction opinion is presented that the future two M ≥ 7 earthquakes will probably occur around 2019 - 2020 and 2025 - 2026 in this region. The results show that large earthquake occurred in defined region can be predicted. The method of ordered network structure analysis produces satisfactory results for the mid-and-long term prediction of M ≥ 7 earthquakes.

  20. Discussion of New Approaches to Medium-Short-Term Earthquake Forecast in Practice of The Earthquake Prediction in Yunnan

    NASA Astrophysics Data System (ADS)

    Hong, F.

    2017-12-01

    After retrospection of years of practice of the earthquake prediction in Yunnan area, it is widely considered that the fixed-point earthquake precursory anomalies mainly reflect the field information. The increase of amplitude and number of precursory anomalies could help to determine the original time of earthquakes, however it is difficult to obtain the spatial relevance between earthquakes and precursory anomalies, thus we can hardly predict the spatial locations of earthquakes using precursory anomalies. The past practices have shown that the seismic activities are superior to the precursory anomalies in predicting earthquakes locations, resulting from the increased seismicity were observed before 80% M=6.0 earthquakes in Yunnan area. While the mobile geomagnetic anomalies are turned out to be helpful in predicting earthquakes locations in recent year, for instance, the forecasted earthquakes occurring time and area derived form the 1-year-scale geomagnetic anomalies before the M6.5 Ludian earthquake in 2014 are shorter and smaller than which derived from the seismicity enhancement region. According to the past works, the author believes that the medium-short-term earthquake forecast level, as well as objective understanding of the seismogenic mechanisms, could be substantially improved by the densely laying observation array and capturing the dynamic process of physical property changes in the enhancement region of medium to small earthquakes.

  1. Introduction to the special issue on the 2004 Parkfield earthquake and the Parkfield earthquake prediction experiment

    USGS Publications Warehouse

    Harris, R.A.; Arrowsmith, J.R.

    2006-01-01

    The 28 September 2004 M 6.0 Parkfield earthquake, a long-anticipated event on the San Andreas fault, is the world's best recorded earthquake to date, with state-of-the-art data obtained from geologic, geodetic, seismic, magnetic, and electrical field networks. This has allowed the preearthquake and postearthquake states of the San Andreas fault in this region to be analyzed in detail. Analyses of these data provide views into the San Andreas fault that show a complex geologic history, fault geometry, rheology, and response of the nearby region to the earthquake-induced ground movement. Although aspects of San Andreas fault zone behavior in the Parkfield region can be modeled simply over geological time frames, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake indicate that predicting the fine details of future earthquakes is still a challenge. Instead of a deterministic approach, forecasting future damaging behavior, such as that caused by strong ground motions, will likely continue to require probabilistic methods. However, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake have provided ample data to understand most of what did occur in 2004, culminating in significant scientific advances.

  2. 75 FR 63854 - National Earthquake Prediction Evaluation Council (NEPEC) Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... DEPARTMENT OF THE INTERIOR Geological Survey National Earthquake Prediction Evaluation Council...: Pursuant to Public Law 96-472, the National Earthquake Prediction Evaluation Council (NEPEC) will hold a 2... proposed earthquake predictions, on the completeness and scientific validity of the available data related...

  3. The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.

    1999-01-01

    We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.

  4. Measurement of neutron and charged particle fluxes toward earthquake prediction

    NASA Astrophysics Data System (ADS)

    Maksudov, Asatulla U.; Zufarov, Mars A.

    2017-12-01

    In this paper, we describe a possible method for predicting the earthquakes, which is based on simultaneous recording of the intensity of fluxes of neutrons and charged particles by detectors, commonly used in nuclear physics. These low-energy particles originate from radioactive nuclear processes in the Earth's crust. The variations in the particle flux intensity can be the precursor of the earthquake. A description is given of an electronic installation that records the fluxes of charged particles in the radial direction, which are a possible response to the accumulated tectonic stresses in the Earth's crust. The obtained results showed an increase in the intensity of the fluxes for 10 or more hours before the occurrence of the earthquake. The previous version of the installation was able to indicate for the possibility of an earthquake (Maksudov et al. in Instrum Exp Tech 58:130-131, 2015), but did not give information about the direction of the epicenter location. In this regard, the installation was modified by adding eight directional detectors. With the upgraded setup, we have received both the predictive signals, and signals determining the directions of the location of the forthcoming earthquake, starting 2-3 days before its origin.

  5. A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Yu, Xiaohui; Zhang, Yanjuan; Zhai, Changhai

    2018-01-01

    Casualty prediction in a building during earthquakes benefits to implement the economic loss estimation in the performance-based earthquake engineering methodology. Although after-earthquake observations reveal that the evacuation has effects on the quantity of occupant casualties during earthquakes, few current studies consider occupant movements in the building in casualty prediction procedures. To bridge this knowledge gap, a numerical simulation method using refined cellular automata model is presented, which can describe various occupant dynamic behaviors and building dimensions. The simulation on the occupant evacuation is verified by a recorded evacuation process from a school classroom in real-life 2013 Ya'an earthquake in China. The occupant casualties in the building under earthquakes are evaluated by coupling the building collapse process simulation by finite element method, the occupant evacuation simulation, and the casualty occurrence criteria with time and space synchronization. A case study of casualty prediction in a building during an earthquake is provided to demonstrate the effect of occupant movements on casualty prediction.

  6. Earthquake prediction: the interaction of public policy and science.

    PubMed Central

    Jones, L M

    1996-01-01

    Earthquake prediction research has searched for both informational phenomena, those that provide information about earthquake hazards useful to the public, and causal phenomena, causally related to the physical processes governing failure on a fault, to improve our understanding of those processes. Neither informational nor causal phenomena are a subset of the other. I propose a classification of potential earthquake predictors of informational, causal, and predictive phenomena, where predictors are causal phenomena that provide more accurate assessments of the earthquake hazard than can be gotten from assuming a random distribution. Achieving higher, more accurate probabilities than a random distribution requires much more information about the precursor than just that it is causally related to the earthquake. PMID:11607656

  7. The earthquake prediction experiment at Parkfield, California

    USGS Publications Warehouse

    Roeloffs, E.; Langbein, J.

    1994-01-01

    Since 1985, a focused earthquake prediction experiment has been in progress along the San Andreas fault near the town of Parkfield in central California. Parkfield has experienced six moderate earthquakes since 1857 at average intervals of 22 years, the most recent a magnitude 6 event in 1966. The probability of another moderate earthquake soon appears high, but studies assigning it a 95% chance of occurring before 1993 now appear to have been oversimplified. The identification of a Parkfield fault "segment" was initially based on geometric features in the surface trace of the San Andreas fault, but more recent microearthquake studies have demonstrated that those features do not extend to seismogenic depths. On the other hand, geodetic measurements are consistent with the existence of a "locked" patch on the fault beneath Parkfield that has presently accumulated a slip deficit equal to the slip in the 1966 earthquake. A magnitude 4.7 earthquake in October 1992 brought the Parkfield experiment to its highest level of alert, with a 72-hour public warning that there was a 37% chance of a magnitude 6 event. However, this warning proved to be a false alarm. Most data collected at Parkfield indicate that strain is accumulating at a constant rate on this part of the San Andreas fault, but some interesting departures from this behavior have been recorded. Here we outline the scientific arguments bearing on when the next Parkfield earthquake is likely to occur and summarize geophysical observations to date.

  8. Signals of ENPEMF Used in Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Hao, G.; Dong, H.; Zeng, Z.; Wu, G.; Zabrodin, S. M.

    2012-12-01

    The signals of Earth's natural pulse electromagnetic field (ENPEMF) is a combination of the abnormal crustal magnetic field pulse affected by the earthquake, the induced field of earth's endogenous magnetic field, the induced magnetic field of the exogenous variation magnetic field, geomagnetic pulsation disturbance and other energy coupling process between sun and earth. As an instantaneous disturbance of the variation field of natural geomagnetism, ENPEMF can be used to predict earthquakes. This theory was introduced by A.A Vorobyov, who expressed a hypothesis that pulses can arise not only in the atmosphere but within the Earth's crust due to processes of tectonic-to-electric energy conversion (Vorobyov, 1970; Vorobyov, 1979). The global field time scale of ENPEMF signals has specific stability. Although the wave curves may not overlap completely at different regions, the smoothed diurnal ENPEMF patterns always exhibit the same trend per month. The feature is a good reference for observing the abnormalities of the Earth's natural magnetic field in a specific region. The frequencies of the ENPEMF signals generally locate in kilo Hz range, where frequencies within 5-25 kilo Hz range can be applied to monitor earthquakes. In Wuhan, the best observation frequency is 14.5 kilo Hz. Two special devices are placed in accordance with the S-N and W-E direction. Dramatic variation from the comparison between the pulses waveform obtained from the instruments and the normal reference envelope diagram should indicate high possibility of earthquake. The proposed detection method of earthquake based on ENPEMF can improve the geodynamic monitoring effect and can enrich earthquake prediction methods. We suggest the prospective further researches are about on the exact sources composition of ENPEMF signals, the distinction between noise and useful signals, and the effect of the Earth's gravity tide and solid tidal wave. This method may also provide a promising application in

  9. From a physical approach to earthquake prediction, towards long and short term warnings ahead of large earthquakes

    NASA Astrophysics Data System (ADS)

    Stefansson, R.; Bonafede, M.

    2012-04-01

    For 20 years the South Iceland Seismic Zone (SISZ) was a test site for multinational earthquake prediction research, partly bridging the gap between laboratory tests samples, and the huge transform zones of the Earth. The approach was to explore the physics of processes leading up to large earthquakes. The book Advances in Earthquake Prediction, Research and Risk Mitigation, by R. Stefansson (2011), published by Springer/PRAXIS, and an article in the August issue of the BSSA by Stefansson, M. Bonafede and G. Gudmundsson (2011) contain a good overview of the findings, and more references, as well as examples of partially successful long and short term warnings based on such an approach. Significant findings are: Earthquakes that occurred hundreds of years ago left scars in the crust, expressed in volumes of heterogeneity that demonstrate the size of their faults. Rheology and stress heterogeneity within these volumes are significantly variable in time and space. Crustal processes in and near such faults may be observed by microearthquake information decades before the sudden onset of a new large earthquake. High pressure fluids of mantle origin may in response to strain, especially near plate boundaries, migrate upward into the brittle/elastic crust to play a significant role in modifying crustal conditions on a long and short term. Preparatory processes of various earthquakes can not be expected to be the same. We learn about an impending earthquake by observing long term preparatory processes at the fault, finding a constitutive relationship that governs the processes, and then extrapolating that relationship into near space and future. This is a deterministic approach in earthquake prediction research. Such extrapolations contain many uncertainties. However the long time pattern of observations of the pre-earthquake fault process will help us to put probability constraints on our extrapolations and our warnings. The approach described is different from the usual

  10. Triggering Factor of Strong Earthquakes and Its Prediction Verification

    NASA Astrophysics Data System (ADS)

    Ren, Z. Q.; Ren, S. H.

    After 30 yearsS research, we have found that great earthquakes are triggered by tide- generation force of the moon. ItSs not the tide-generation force in classical view- points, but is a non-classical viewpoint tide-generation force. We call it as TGFR (Tide-Generation ForcesS Resonance). TGFR strongly depends on the tide-generation force at time of the strange astronomical points (SAP). The SAP mostly are when the moon and another celestial body are arranged with the earth along a straight line (with the same apparent right ascension or 180o difference), the other SAP are the turning points of the moonSs relatively motion to the earth. Moreover, TGFR have four different types effective areas. Our study indicates that a majority of earthquakes are triggering by the rare superimposition of TGFRsS effective areas. In China the great earthquakes in the plain area of Hebei Province, Taiwan, Yunnan Province and Sichuan province are trigger by the decompression TGFR; Other earthquakes are trig- gered by compression TGFR which are in Gansu Province, Ningxia Provinces and northwest direction of Beijing. The great earthquakes in Japan, California, southeast of Europe also are triggered by compression of the TGFR. and in the other part of the world like in Philippines, Central America countries, and West Asia, great earthquakes are triggered by decompression TGFR. We have carried out examinational immediate prediction cooperate TGFR method with other earthquake impending signals such as suggested by Professor Li Junzhi. The successful ratio is about 40%(from our fore- cast reports to the China Seismological Administration). Thus we could say the great earthquake can be predicted (include immediate earthquake prediction). Key words: imminent prediction; triggering factor; TGFR (Tide-Generation ForcesS Resonance); TGFR compression; TGFR compression zone; TGFR decompression; TGFR decom- pression zone

  11. Using remote sensing to predict earthquake impacts

    NASA Astrophysics Data System (ADS)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  12. Sociological aspects of earthquake prediction

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    Henry Spall talked recently with Denis Mileti who is in the Department of Sociology, Colorado State University, Fort Collins, Colo. Dr. Mileti is a sociologst involved with research programs that study the socioeconomic impact of earthquake prediction

  13. The Virtual Quake Earthquake Simulator: Earthquake Probability Statistics for the El Mayor-Cucapah Region and Evidence of Predictability in Simulated Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Schultz, K.; Yoder, M. R.; Heien, E. M.; Rundle, J. B.; Turcotte, D. L.; Parker, J. W.; Donnellan, A.

    2015-12-01

    We introduce a framework for developing earthquake forecasts using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California (VC) earthquake simulator. We discuss the basic merits and mechanics of the simulator, and we present several statistics of interest for earthquake forecasting. We also show that, though the system as a whole (in aggregate) behaves quite randomly, (simulated) earthquake sequences limited to specific fault sections exhibit measurable predictability in the form of increasing seismicity precursory to large m > 7 earthquakes. In order to quantify this, we develop an alert based forecasting metric similar to those presented in Keilis-Borok (2002); Molchan (1997), and show that it exhibits significant information gain compared to random forecasts. We also discuss the long standing question of activation vs quiescent type earthquake triggering. We show that VQ exhibits both behaviors separately for independent fault sections; some fault sections exhibit activation type triggering, while others are better characterized by quiescent type triggering. We discuss these aspects of VQ specifically with respect to faults in the Salton Basin and near the El Mayor-Cucapah region in southern California USA and northern Baja California Norte, Mexico.

  14. Earthquake prediction in Japan and natural time analysis of seismicity

    NASA Astrophysics Data System (ADS)

    Uyeda, S.; Varotsos, P.

    2011-12-01

    M9 super-giant earthquake with huge tsunami devastated East Japan on 11 March, causing more than 20,000 casualties and serious damage of Fukushima nuclear plant. This earthquake was predicted neither short-term nor long-term. Seismologists were shocked because it was not even considered possible to happen at the East Japan subduction zone. However, it was not the only un-predicted earthquake. In fact, throughout several decades of the National Earthquake Prediction Project, not even a single earthquake was predicted. In reality, practically no effective research has been conducted for the most important short-term prediction. This happened because the Japanese National Project was devoted for construction of elaborate seismic networks, which was not the best way for short-term prediction. After the Kobe disaster, in order to parry the mounting criticism on their no success history, they defiantly changed their policy to "stop aiming at short-term prediction because it is impossible and concentrate resources on fundamental research", that meant to obtain "more funding for no prediction research". The public were and are not informed about this change. Obviously earthquake prediction would be possible only when reliable precursory phenomena are caught and we have insisted this would be done most likely through non-seismic means such as geochemical/hydrological and electromagnetic monitoring. Admittedly, the lack of convincing precursors for the M9 super-giant earthquake has adverse effect for us, although its epicenter was far out off shore of the range of operating monitoring systems. In this presentation, we show a new possibility of finding remarkable precursory signals, ironically, from ordinary seismological catalogs. In the frame of the new time domain termed natural time, an order parameter of seismicity, κ1, has been introduced. This is the variance of natural time kai weighted by normalised energy release at χ. In the case that Seismic Electric Signals

  15. A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.

    2015-12-01

    Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.

  16. Recent Achievements of the Collaboratory for the Study of Earthquake Predictability

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Zechar, J. D.; Jordan, T. H.

    2015-12-01

    Maria Liukis, SCEC, USC; Maximilian Werner, University of Bristol; Danijel Schorlemmer, GFZ Potsdam; John Yu, SCEC, USC; Philip Maechling, SCEC, USC; Jeremy Zechar, Swiss Seismological Service, ETH; Thomas H. Jordan, SCEC, USC, and the CSEP Working Group The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 435 models under evaluation. The California testing center, operated by SCEC, has been operational since Sept 1, 2007, and currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. We have reduced testing latency, implemented prototype evaluation of M8 forecasts, and are currently developing formats and procedures to evaluate externally-hosted forecasts and predictions. These efforts are related to CSEP support of the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence has been completed, and the results indicate that some physics-based and hybrid models outperform purely statistical (e.g., ETAS) models. The experiment also demonstrates the power of the CSEP cyberinfrastructure for retrospective testing. Our current development includes evaluation strategies that increase computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model. We describe the open-source CSEP software that is available to researchers as they develop their forecast models (http://northridge.usc.edu/trac/csep/wiki/MiniCSEP). We also discuss applications of CSEP infrastructure to geodetic transient detection and how CSEP procedures are being

  17. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  18. ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations

    USGS Publications Warehouse

    Cauzzi, Carlo; Fah, Donat; Wald, David J.; Clinton, John; Losey, Stephane; Wiemer, Stefan

    2018-01-01

    In Switzerland, nearly all historical Mw ~ 6 earthquakes have induced damaging landslides, rockslides and snow avalanches that, in some cases, also resulted in damage to infrastructure and loss of lives. We describe the customisation to Swiss conditions of a globally calibrated statistical approach originally developed to rapidly assess earthquake-induced landslide likelihoods worldwide. The probability of occurrence of such earthquake-induced effects is modelled through a set of geospatial susceptibility proxies and peak ground acceleration. The predictive model is tuned to capture the observations from past events and optimised for near-real-time estimates based on USGS-style ShakeMaps routinely produced by the Swiss Seismological Service. Our emphasis is on the use of high-resolution geospatial datasets along with additional local information on ground failure susceptibility. Even if calibrated on historic events with moderate magnitudes, the methodology presented in this paper yields sensible results also for low-magnitude recent events. The model is integrated in the Swiss ShakeMap framework. This study has a high practical relevance to many Swiss ShakeMap stakeholders, especially those managing lifeline systems, and to other global users interested in conducting a similar customisation for their region of interest.

  19. Earthquake prediction analysis based on empirical seismic rate: the M8 algorithm

    NASA Astrophysics Data System (ADS)

    Molchan, G.; Romashkova, L.

    2010-12-01

    The quality of space-time earthquake prediction is usually characterized by a 2-D error diagram (n, τ), where n is the fraction of failures-to-predict and τ is the local rate of alarm averaged in space. The most reasonable averaging measure for analysis of a prediction strategy is the normalized rate of target events λ(dg) in a subarea dg. In that case the quantity H = 1 - (n + τ) determines the prediction capability of the strategy. The uncertainty of λ(dg) causes difficulties in estimating H and the statistical significance, α, of prediction results. We investigate this problem theoretically and show how the uncertainty of the measure can be taken into account in two situations, viz., the estimation of α and the construction of a confidence zone for the (n, τ)-parameters of the random strategies. We use our approach to analyse the results from prediction of M >= 8.0 events by the M8 method for the period 1985-2009 (the M8.0+ test). The model of λ(dg) based on the events Mw >= 5.5, 1977-2004, and the magnitude range of target events 8.0 <= M < 8.5 are considered as basic to this M8 analysis. We find the point and upper estimates of α and show that they are still unstable because the number of target events in the experiment is small. However, our results argue in favour of non-triviality of the M8 prediction algorithm.

  20. Predictability of population displacement after the 2010 Haiti earthquake

    PubMed Central

    Lu, Xin; Bengtsson, Linus; Holme, Petter

    2012-01-01

    Most severe disasters cause large population movements. These movements make it difficult for relief organizations to efficiently reach people in need. Understanding and predicting the locations of affected people during disasters is key to effective humanitarian relief operations and to long-term societal reconstruction. We collaborated with the largest mobile phone operator in Haiti (Digicel) and analyzed the movements of 1.9 million mobile phone users during the period from 42 d before, to 341 d after the devastating Haiti earthquake of January 12, 2010. Nineteen days after the earthquake, population movements had caused the population of the capital Port-au-Prince to decrease by an estimated 23%. Both the travel distances and size of people’s movement trajectories grew after the earthquake. These findings, in combination with the disorder that was present after the disaster, suggest that people’s movements would have become less predictable. Instead, the predictability of people’s trajectories remained high and even increased slightly during the three-month period after the earthquake. Moreover, the destinations of people who left the capital during the first three weeks after the earthquake was highly correlated with their mobility patterns during normal times, and specifically with the locations in which people had significant social bonds. For the people who left Port-au-Prince, the duration of their stay outside the city, as well as the time for their return, all followed a skewed, fat-tailed distribution. The findings suggest that population movements during disasters may be significantly more predictable than previously thought. PMID:22711804

  1. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    NASA Astrophysics Data System (ADS)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  2. A prototype of the procedure of strong ground motion prediction for intraslab earthquake based on characterized source model

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Sekiguchi, H.

    2011-12-01

    We propose a prototype of the procedure to construct source models for strong motion prediction during intraslab earthquakes based on the characterized source model (Irikura and Miyake, 2011). The key is the characterized source model which is based on the empirical scaling relationships for intraslab earthquakes and involve the correspondence between the SMGA (strong motion generation area, Miyake et al., 2003) and the asperity (large slip area). Iwata and Asano (2011) obtained the empirical relationships of the rupture area (S) and the total asperity area (Sa) to the seismic moment (Mo) as follows, with assuming power of 2/3 dependency of S and Sa on M0, S (km**2) = 6.57×10**(-11)×Mo**(2/3) (Nm) (1) Sa (km**2) = 1.04 ×10**(-11)×Mo**(2/3) (Nm) (2). Iwata and Asano (2011) also pointed out that the position and the size of SMGA approximately corresponds to the asperity area for several intraslab events. Based on the empirical relationships, we gave a procedure for constructing source models of intraslab earthquakes for strong motion prediction. [1] Give the seismic moment, Mo. [2] Obtain the total rupture area and the total asperity area according to the empirical scaling relationships between S, Sa, and Mo given by Iwata and Asano (2011). [3] Square rupture area and asperities are assumed. [4] The source mechanism is assumed to be the same as that of small events in the source region. [5] Plural scenarios including variety of the number of asperities and rupture starting points are prepared. We apply this procedure by simulating strong ground motions for several observed events for confirming the methodology.

  3. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction

  4. Sun-earth environment study to understand earthquake prediction

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2007-05-01

    Earthquake prediction is possible by looking into the location of active sunspots before it harbours energy towards earth. Earth is a restless planet the restlessness turns deadly occasionally. Of all natural hazards, earthquakes are the most feared. For centuries scientists working in seismically active regions have noted premonitory signals. Changes in thermosphere, Ionosphere, atmosphere and hydrosphere are noted before the changes in geosphere. The historical records talk of changes of the water level in wells, of strange weather, of ground-hugging fog, of unusual behaviour of animals (due to change in magnetic field of the earth) that seem to feel the approach of a major earthquake. With the advent of modern science and technology the understanding of these pre-earthquake signals has become stronger enough to develop a methodology of earthquake prediction. A correlation of earth directed coronal mass ejection (CME) from the active sunspots has been possible to develop as a precursor of the earthquake. Occasional local magnetic field and planetary indices (Kp values) changes in the lower atmosphere that is accompanied by the formation of haze and a reduction of moisture in the air. Large patches, often tens to hundreds of thousands of square kilometres in size, seen in night-time infrared satellite images where the land surface temperature seems to fluctuate rapidly. Perturbations in the ionosphere at 90 - 120 km altitude have been observed before the occurrence of earthquakes. These changes affect the transmission of radio waves and a radio black out has been observed due to CME. Another heliophysical parameter Electron flux (Eflux) has been monitored before the occurrence of the earthquakes. More than hundreds of case studies show that before the occurrence of the earthquakes the atmospheric temperature increases and suddenly drops before the occurrence of the earthquakes. These changes are being monitored by using Sun Observatory Heliospheric observatory

  5. Earthquake prediction research at the Seismological Laboratory, California Institute of Technology

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    Nevertheless, basic earthquake-related information has always been of consuming interest to the public and the media in this part of California (fig. 2.). So it is not surprising that earthquake prediction continues to be a significant reserach program at the laboratory. Several of the current spectrum of projects related to prediction are discussed below. 

  6. Dim prospects for earthquake prediction

    NASA Astrophysics Data System (ADS)

    Geller, Robert J.

    I was misquoted by C. Lomnitz's [1998] Forum letter (Eos, August 4, 1998, p. 373), which said: [I wonder whether Sasha Gusev [1998] actually believes that branding earthquake prediction a ‘proven nonscience’ [Geller, 1997a] is a paradigm for others to copy.”Readers are invited to verify for themselves that neither “proven nonscience” norv any similar phrase was used by Geller [1997a].

  7. Turning the rumor of May 11, 2011 earthquake prediction In Rome, Italy, into an information day on earthquake hazard

    NASA Astrophysics Data System (ADS)

    Amato, A.; Cultrera, G.; Margheriti, L.; Nostro, C.; Selvaggi, G.; INGVterremoti Team

    2011-12-01

    A devastating earthquake had been predicted for May 11, 2011 in Rome. This prediction was never released officially by anyone, but it grew up in the Internet and was amplified by media. It was erroneously ascribed to Raffaele Bendandi, an Italian self-taught natural scientist who studied planetary motions. Indeed, around May 11, 2011, a planetary alignment was really expected and this contributed to give credibility to the earthquake prediction among people. During the previous months, INGV was overwhelmed with requests for information about this supposed prediction by Roman inhabitants and tourists. Given the considerable mediatic impact of this expected earthquake, INGV decided to organize an Open Day in its headquarter in Rome for people who wanted to learn more about the Italian seismicity and the earthquake as natural phenomenon. The Open Day was preceded by a press conference two days before, in which we talked about this prediction, we presented the Open Day, and we had a scientific discussion with journalists about the earthquake prediction and more in general on the real problem of seismic risk in Italy. About 40 journalists from newspapers, local and national tv's, press agencies and web news attended the Press Conference and hundreds of articles appeared in the following days, advertising the 11 May Open Day. The INGV opened to the public all day long (9am - 9pm) with the following program: i) meetings with INGV researchers to discuss scientific issues; ii) visits to the seismic monitoring room, open 24h/7 all year; iii) guided tours through interactive exhibitions on earthquakes and Earth's deep structure; iv) lectures on general topics from the social impact of rumors to seismic risk reduction; v) 13 new videos on channel YouTube.com/INGVterremoti to explain the earthquake process and give updates on various aspects of seismic monitoring in Italy; vi) distribution of books and brochures. Surprisingly, more than 3000 visitors came to visit INGV

  8. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy

    NASA Astrophysics Data System (ADS)

    Szakács, Alexandru

    2011-04-01

    Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations

  9. Earthquake prediction with electromagnetic phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp; Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo; Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQsmore » prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.« less

  10. Long-term predictability of regions and dates of strong earthquakes

    NASA Astrophysics Data System (ADS)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation

  11. Implications of fault constitutive properties for earthquake prediction

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance D(c), apparent fracture energy at a rupture front, time- dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of D, apply to faults in nature. However, scaling of D(c) is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  12. Implications of fault constitutive properties for earthquake prediction.

    PubMed Central

    Dieterich, J H; Kilgore, B

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks. Images Fig. 3 PMID:11607666

  13. Implications of fault constitutive properties for earthquake prediction.

    PubMed

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  14. The Parkfield earthquake prediction of October 1992; the emergency services response

    USGS Publications Warehouse

    Andrews, R.

    1992-01-01

    The science of earthquake prediction is interesting and worthy of support. In many respects the ultimate payoff of earthquake prediction or earthquake forecasting is how the information can be used to enhance public safety and public preparedness. This is a particularly important issue here in California where we have such a high level of seismic risk historically, and currently, as a consequence of activity in 1989 in the San Francisco Bay Area, in Humboldt County in April of this year (1992), and in southern California in the Landers-Big Bear area in late June of this year (1992). We are currently very concerned about the possibility of a major earthquake, one or more, happening close to one of our metropolitan areas. Within that context, the Parkfield experiment becomes very important. 

  15. Predicted liquefaction of East Bay fills during a repeat of the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Holzer, T.L.; Blair, J.L.; Noce, T.E.; Bennett, M.J.

    2006-01-01

    Predicted conditional probabilities of surface manifestations of liquefaction during a repeat of the 1906 San Francisco (M7.8) earthquake range from 0.54 to 0.79 in the area underlain by the sandy artificial fills along the eastern shore of San Francisco Bay near Oakland, California. Despite widespread liquefaction in 1906 of sandy fills in San Francisco, most of the East Bay fills were emplaced after 1906 without soil improvement to increase their liquefaction resistance. They have yet to be shaken strongly. Probabilities are based on the liquefaction potential index computed from 82 CPT soundings using median (50th percentile) estimates of PGA based on a ground-motion prediction equation. Shaking estimates consider both distance from the San Andreas Fault and local site conditions. The high probabilities indicate extensive and damaging liquefaction will occur in East Bay fills during the next M ??? 7.8 earthquake on the northern San Andreas Fault. ?? 2006, Earthquake Engineering Research Institute.

  16. Earthquake prediction rumors can help in building earthquake awareness: the case of May the 11th 2011 in Rome (Italy)

    NASA Astrophysics Data System (ADS)

    Amato, A.; Arcoraci, L.; Casarotti, E.; Cultrera, G.; Di Stefano, R.; Margheriti, L.; Nostro, C.; Selvaggi, G.; May-11 Team

    2012-04-01

    Banner headlines in an Italian newspaper read on May 11, 2011: "Absence boom in offices: the urban legend in Rome become psychosis". This was the effect of a large-magnitude earthquake prediction in Rome for May 11, 2011. This prediction was never officially released, but it grew up in Internet and was amplified by media. It was erroneously ascribed to Raffaele Bendandi, an Italian self-taught natural scientist who studied planetary motions and related them to earthquakes. Indeed, around May 11, 2011, there was a planetary alignment and this increased the earthquake prediction credibility. Given the echo of this earthquake prediction, INGV decided to organize on May 11 (the same day the earthquake was predicted to happen) an Open Day in its headquarter in Rome to inform on the Italian seismicity and the earthquake physics. The Open Day was preceded by a press conference two days before, attended by about 40 journalists from newspapers, local and national TV's, press agencies and web news magazines. Hundreds of articles appeared in the following two days, advertising the 11 May Open Day. On May 11 the INGV headquarter was peacefully invaded by over 3,000 visitors from 9am to 9pm: families, students, civil protection groups and many journalists. The program included conferences on a wide variety of subjects (from social impact of rumors to seismic risk reduction) and distribution of books and brochures, in addition to several activities: meetings with INGV researchers to discuss scientific issues, visits to the seismic monitoring room (open 24h/7 all year), guided tours through interactive exhibitions on earthquakes and Earth's deep structure. During the same day, thirteen new videos have also been posted on our youtube/INGVterremoti channel to explain the earthquake process and hazard, and to provide real time periodic updates on seismicity in Italy. On May 11 no large earthquake happened in Italy. The initiative, built up in few weeks, had a very large feedback

  17. Comparisons of ground motions from five aftershocks of the 1999 Chi-Chi, Taiwan, earthquake with empirical predictions largely based on data from California

    USGS Publications Warehouse

    Wang, G.-Q.; Boore, D.M.; Igel, H.; Zhou, X.-Y.

    2004-01-01

    The observed ground motions from five large aftershocks of the 1999 Chi-Chi, Taiwan, earthquake are compared with predictions from four equations based primarily on data from California. The four equations for active tectonic regions are those developed by Abrahamson and Silva (1997), Boore et al. (1997), Campbell (1997, 2001), and Sadigh et al. (1997). Comparisons are made for horizontal-component peak ground accelerations and 5%-damped pseudoacceleration response spectra at periods between 0.02 sec and 5 sec. The observed motions are in reasonable agreement with the predictions, particularly for distances from 10 to 30 km. This is in marked contrast to the motions from the Chi-Chi mainshock, which are much lower than the predicted motions for periods less than about 1 sec. The results indicate that the low motions in the mainshock are not due to unusual, localized absorption of seismic energy, because waves from the mainshock and the aftershocks generally traverse the same section of the crust and are recorded at the same stations. The aftershock motions at distances of 30-60 km are somewhat lower than the predictions (but not nearly by as small a factor as those for the mainshock), suggesting that the ground motion attenuates more rapidly in this region of Taiwan than it does in the areas we compare with it. We provide equations for the regional attenuation of response spectra, which show increasing decay of motion with distance for decreasing oscillator periods. This observational study also demonstrates that ground motions have large earthquake-location-dependent variability for a specific site. This variability reduces the accuracy with which an earthquake-specific prediction of site response can be predicted. Online Material: PGAs and PSAs from the 1999 Chi-Chi earthquake and five aftershocks.

  18. Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area

    NASA Astrophysics Data System (ADS)

    Zhan, Weiwei; Fan, Xuanmei; Huang, Runqiu; Pei, Xiangjun; Xu, Qiang; Li, Weile

    2017-06-01

    Rock avalanches are extremely rapid, massive flow-like movements of fragmented rock. The travel path of the rock avalanches may be confined by channels in some cases, which are referred to as channelized rock avalanches. Channelized rock avalanches are potentially dangerous due to their difficult-to-predict travel distance. In this study, we constructed a dataset with detailed characteristic parameters of 38 channelized rock avalanches triggered by the 2008 Wenchuan earthquake using the visual interpretation of remote sensing imagery, field investigation and literature review. Based on this dataset, we assessed the influence of different factors on the runout distance and developed prediction models of the channelized rock avalanches using the multivariate regression method. The results suggested that the movement of channelized rock avalanche was dominated by the landslide volume, total relief and channel gradient. The performance of both models was then tested with an independent validation dataset of eight rock avalanches that were induced by the 2008 Wenchuan earthquake, the Ms 7.0 Lushan earthquake and heavy rainfall in 2013, showing acceptable good prediction results. Therefore, the travel-distance prediction models for channelized rock avalanches constructed in this study are applicable and reliable for predicting the runout of similar rock avalanches in other regions.

  19. Gambling score in earthquake prediction analysis

    NASA Astrophysics Data System (ADS)

    Molchan, G.; Romashkova, L.

    2011-03-01

    The number of successes and the space-time alarm rate are commonly used to characterize the strength of an earthquake prediction method and the significance of prediction results. It has been recently suggested to use a new characteristic to evaluate the forecaster's skill, the gambling score (GS), which incorporates the difficulty of guessing each target event by using different weights for different alarms. We expand parametrization of the GS and use the M8 prediction algorithm to illustrate difficulties of the new approach in the analysis of the prediction significance. We show that the level of significance strongly depends (1) on the choice of alarm weights, (2) on the partitioning of the entire alarm volume into component parts and (3) on the accuracy of the spatial rate measure of target events. These tools are at the disposal of the researcher and can affect the significance estimate. Formally, all reasonable GSs discussed here corroborate that the M8 method is non-trivial in the prediction of 8.0 ≤M < 8.5 events because the point estimates of the significance are in the range 0.5-5 per cent. However, the conservative estimate 3.7 per cent based on the number of successes seems preferable owing to two circumstances: (1) it is based on relative values of the spatial rate and hence is more stable and (2) the statistic of successes enables us to construct analytically an upper estimate of the significance taking into account the uncertainty of the spatial rate measure.

  20. Real-time 3-D space numerical shake prediction for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Wang, Tianyun; Jin, Xing; Huang, Yandan; Wei, Yongxiang

    2017-12-01

    In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake prediction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.

  1. The susceptibility analysis of landslides induced by earthquake in Aso volcanic area, Japan, scoping the prediction

    NASA Astrophysics Data System (ADS)

    Kubota, Tetsuya; Takeda, Tsuyoshi

    2017-04-01

    Kumamoto earthquake on April 16th 2016 in Kumamoto prefecture, Kyushu Island, Japan with intense seismic scale of M7.3 (maximum acceleration = 1316 gal in Aso volcanic region) yielded countless instances of landslide and debris flow that induced serious damages and causalities in the area, especially in the Aso volcanic mountain range. Hence, field investigation and numerical slope stability analysis were conducted to delve into the characteristics or the prediction factors of the landslides induced by this earthquake. For the numerical analysis, Finite Element Method (FEM) and CSSDP (Critical Slip Surface analysis by Dynamic Programming theory based on limit equilibrium method) were applied to the landslide slopes with seismic acceleration observed. These numerical analysis methods can automatically detect the landslide slip surface which has minimum Fs (factor of safety). The various results and the information obtained through this investigation and analysis were integrated to predict the landslide susceptible slopes in volcanic area induced by earthquakes and rainfalls of their aftermath, considering geologic-geomorphologic features, geo-technical characteristics of the landslides and vegetation effects on the slope stability. Based on the FEM or CSSDP results, the landslides occurred in this earthquake at the mild gradient slope on the ridge have the safety factor of slope Fs=2.20 approximately (without rainfall nor earthquake, and Fs>=1.0 corresponds to stable slope without landslide) and 1.78 2.10 (with the most severe rainfall in the past) while they have approximately Fs=0.40 with the seismic forces in this earthquake (horizontal direction 818 gal, vertical direction -320 gal respectively, observed in the earthquake). It insists that only in case of earthquakes the landslide in volcanic sediment apt to occur at the mild gradient slopes as well as on the ridges with convex cross section. Consequently, the following results are obtained. 1) At volcanic

  2. Next-Day Earthquake Forecasts for California

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Jackson, D. D.; Kagan, Y. Y.

    2008-12-01

    We implemented a daily forecast of m > 4 earthquakes for California in the format suitable for testing in community-based earthquake predictability experiments: Regional Earthquake Likelihood Models (RELM) and the Collaboratory for the Study of Earthquake Predictability (CSEP). The forecast is based on near-real time earthquake reports from the ANSS catalog above magnitude 2 and will be available online. The model used to generate the forecasts is based on the Epidemic-Type Earthquake Sequence (ETES) model, a stochastic model of clustered and triggered seismicity. Our particular implementation is based on the earlier work of Helmstetter et al. (2006, 2007), but we extended the forecast to all of Cali-fornia, use more data to calibrate the model and its parameters, and made some modifications. Our forecasts will compete against the Short-Term Earthquake Probabilities (STEP) forecasts of Gersten-berger et al. (2005) and other models in the next-day testing class of the CSEP experiment in California. We illustrate our forecasts with examples and discuss preliminary results.

  3. Can We Predict Earthquakes?

    ScienceCinema

    Johnson, Paul

    2018-01-16

    The only thing we know for sure about earthquakes is that one will happen again very soon. Earthquakes pose a vital yet puzzling set of research questions that have confounded scientists for decades, but new ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes — and when.

  4. Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.

    2012-12-01

    It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Irikura and Miyake (2001, 2011) proposed the characterized source model for strong ground motion prediction, which consists of plural strong ground motion generation area (SMGA, Miyake et al., 2003) patches on the source fault. We obtained the SMGA source models for many events using the empirical Green's function method and found the SMGA size has an empirical scaling relationship with seismic moment. Therefore, the SMGA size can be assumed from that empirical relation under giving the seismic moment for anticipated earthquakes. Concerning to the setting of the SMGAs position, the information of the fault segment is useful for inland crustal earthquakes. For the 1995 Kobe earthquake, three SMGA patches are obtained and each Nojima, Suma, and Suwayama segment respectively has one SMGA from the SMGA modeling (e.g. Kamae and Irikura, 1998). For the 2011 Tohoku earthquake, Asano and Iwata (2012) estimated the SMGA source model and obtained four SMGA patches on the source fault. Total SMGA area follows the extension of the empirical scaling relationship between the seismic moment and the SMGA area for subduction plate-boundary earthquakes, and it shows the applicability of the empirical scaling relationship for the SMGA. The positions of two SMGAs are in Miyagi-Oki segment and those other two SMGAs are in Fukushima-Oki and Ibaraki-Oki segments, respectively. Asano and Iwata (2012) also pointed out that all SMGAs are corresponding to the historical source areas of 1930's. Those SMGAs do not overlap the huge slip area in the shallower part of the source fault which estimated by teleseismic data, long-period strong motion data, and/or geodetic data during the 2011 mainshock. This fact shows the huge slip area does not contribute to strong ground motion generation (10-0.1s). The information of the fault segment in the subduction zone, or

  5. Construction of Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2013-12-01

    It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Iwata and Asano (2012, AGU) summarized the scaling relationships of large slip area of heterogeneous slip model and total SMGA sizes on seismic moment for subduction earthquakes and found the systematic change between the ratio of SMGA to the large slip area and the seismic moment. They concluded this tendency would be caused by the difference of period range of source modeling analysis. In this paper, we try to construct the methodology of construction of the source model for strong ground motion prediction for huge subduction earthquakes. Following to the concept of the characterized source model for inland crustal earthquakes (Irikura and Miyake, 2001; 2011) and intra-slab earthquakes (Iwata and Asano, 2011), we introduce the proto-type of the source model for huge subduction earthquakes and validate the source model by strong ground motion modeling.

  6. A forecast experiment of earthquake activity in Japan under Collaboratory for the Study of Earthquake Predictability (CSEP)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Yokoi, S.; Nanjo, K. Z.; Tsuruoka, H.

    2012-04-01

    One major focus of the current Japanese earthquake prediction research program (2009-2013), which is now integrated with the research program for prediction of volcanic eruptions, is to move toward creating testable earthquake forecast models. For this purpose we started an experiment of forecasting earthquake activity in Japan under the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) through an international collaboration. We established the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan, and to conduct verifiable prospective tests of their model performance. We started the 1st earthquake forecast testing experiment in Japan within the CSEP framework. We use the earthquake catalogue maintained and provided by the Japan Meteorological Agency (JMA). The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year, and 3 years) and 3 testing regions called "All Japan," "Mainland," and "Kanto." A total of 105 models were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. The experiments were completed for 92 rounds for 1-day, 6 rounds for 3-month, and 3 rounds for 1-year classes. For 1-day testing class all models passed all the CSEP's evaluation tests at more than 90% rounds. The results of the 3-month testing class also gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space distribution with most models when many earthquakes occurred at a spot. Now we prepare the 3-D forecasting experiment with a depth range of 0 to 100 km in Kanto region. The testing center is improving an evaluation system for 1-day class experiment to finish forecasting and testing results within one day. The special issue of 1st part titled Earthquake Forecast

  7. 78 FR 64973 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... updates on past topics of discussion, including work with social and behavioral scientists on improving... probabilities; USGS collaborative work with the Collaboratory for Study of Earthquake Predictability (CSEP...

  8. Possibility of Earthquake-prediction by analyzing VLF signals

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Prediction of seismic events is one of the most challenging jobs for the scientific community. Conventional ways for prediction of earthquakes are to monitor crustal structure movements, though this method has not yet yield satisfactory results. Furthermore, this method fails to give any short-term prediction. Recently, it is noticed that prior to any seismic event a huge amount of energy is released which may create disturbances in the lower part of D-layer/E-layer of the ionosphere. This ionospheric disturbance may be used as a precursor of earthquakes. Since VLF radio waves propagate inside the wave-guide formed by lower ionosphere and Earth's surface, this signal may be used to identify ionospheric disturbances due to seismic activity. We have analyzed VLF signals to find out the correlations, if any, between the VLF signal anomalies and seismic activities. We have done both the case by case study and also the statistical analysis using a whole year data. In both the methods we found that the night time amplitude of VLF signals fluctuated anomalously three days before the seismic events. Also we found that the terminator time of the VLF signals shifted anomalously towards night time before few days of any major seismic events. We calculate the D-layer preparation time and D-layer disappearance time from the VLF signals. We have observed that this D-layer preparation time and D-layer disappearance time become anomalously high 1-2 days before seismic events. Also we found some strong evidences which indicate that it may possible to predict the location of epicenters of earthquakes in future by analyzing VLF signals for multiple propagation paths.

  9. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    USGS Publications Warehouse

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  10. Spatio-Temporal Fluctuations of the Earthquake Magnitude Distribution: Robust Estimation and Predictive Power

    NASA Astrophysics Data System (ADS)

    Olsen, S.; Zaliapin, I.

    2008-12-01

    We establish positive correlation between the local spatio-temporal fluctuations of the earthquake magnitude distribution and the occurrence of regional earthquakes. In order to accomplish this goal, we develop a sequential Bayesian statistical estimation framework for the b-value (slope of the Gutenberg-Richter's exponential approximation to the observed magnitude distribution) and for the ratio a(t) between the earthquake intensities in two non-overlapping magnitude intervals. The time-dependent dynamics of these parameters is analyzed using Markov Chain Models (MCM). The main advantage of this approach over the traditional window-based estimation is its "soft" parameterization, which allows one to obtain stable results with realistically small samples. We furthermore discuss a statistical methodology for establishing lagged correlations between continuous and point processes. The developed methods are applied to the observed seismicity of California, Nevada, and Japan on different temporal and spatial scales. We report an oscillatory dynamics of the estimated parameters, and find that the detected oscillations are positively correlated with the occurrence of large regional earthquakes, as well as with small events with magnitudes as low as 2.5. The reported results have important implications for further development of earthquake prediction and seismic hazard assessment methods.

  11. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  12. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  13. Seismo-induced effects in the near-earth space: Combined ground and space investigations as a contribution to earthquake prediction

    NASA Astrophysics Data System (ADS)

    Sgrigna, V.; Buzzi, A.; Conti, L.; Picozza, P.; Stagni, C.; Zilpimiani, D.

    2007-02-01

    The paper aims at giving a few methodological suggestions in deterministic earthquake prediction studies based on combined ground-based and space observations of earthquake precursors. Up to now what is lacking is the demonstration of a causal relationship with explained physical processes and looking for a correlation between data gathered simultaneously and continuously by space observations and ground-based measurements. Coordinated space and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of LEO satellites. At this purpose a new result reported in the paper is an original and specific space mission project (ESPERIA) and two instruments of its payload. The ESPERIA space project has been performed for the Italian Space Agency and three ESPERIA instruments (ARINA and LAZIO particle detectors, and EGLE search-coil magnetometer) have been built and tested in space. The EGLE experiment started last April 15, 2005 on board the ISS, within the ENEIDE mission. The launch of ARINA occurred on June 15, 2006, on board the RESURS DK-1 Russian LEO satellite. As an introduction and justification to these experiments the paper clarifies some basic concepts and critical methodological aspects concerning deterministic and statistic approaches and their use in earthquake prediction. We also take the liberty of giving the scientific community a few critical hints based on our personal experience in the field and propose a joint study devoted to earthquake prediction and warning.

  14. Statistical short-term earthquake prediction.

    PubMed

    Kagan, Y Y; Knopoff, L

    1987-06-19

    A statistical procedure, derived from a theoretical model of fracture growth, is used to identify a foreshock sequence while it is in progress. As a predictor, the procedure reduces the average uncertainty in the rate of occurrence for a future strong earthquake by a factor of more than 1000 when compared with the Poisson rate of occurrence. About one-third of all main shocks with local magnitude greater than or equal to 4.0 in central California can be predicted in this way, starting from a 7-year database that has a lower magnitude cut off of 1.5. The time scale of such predictions is of the order of a few hours to a few days for foreshocks in the magnitude range from 2.0 to 5.0.

  15. Gambling scores for earthquake predictions and forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  16. A Cooperative Test of the Load/Unload Response Ratio Proposed Method of Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Trotta, J. E.; Tullis, T. E.

    2004-12-01

    The Load/Unload Response Ratio (LURR) method is a proposed technique to predict earthquakes that was first put forward by Yin in 1984 (Yin, 1987). LURR is based on the idea that when a region is near failure, there is an increase in the rate of seismic activity during loading of the tidal cycle relative to the rate of seismic activity during unloading of the tidal cycle. Typically the numerator of the LURR ratio is the number, or the sum of some measure of the size (e.g. Benioff strain), of small earthquakes that occur during loading of the tidal cycle, whereas the denominator is the same as the numerator except it is calculated during unloading. LURR method suggests this ratio should increase in the months to year preceding a large earthquake. Regions near failure have tectonic stresses nearly high enough for a large earthquake to occur, thus it seems more likely that smaller earthquakes in the region would be triggered when the tidal stresses add to the tectonic ones. However, until recently even the most careful studies suggested that the effect of tidal stresses on earthquake occurrence is very small and difficult to detect. New studies have shown that there is a tidal triggering effect on shallow thrust faults in areas with strong tides from ocean loading (Tanaka et al., 2002; Cochran et al., 2004). We have been conducting an independent test of the LURR method, since there would be important scientific and social implications if the LURR method were proven to be a robust method of earthquake prediction. Smith and Sammis (2003) also undertook a similar study. Following both the parameters of Yin et al. (2000) and the somewhat different ones of Smith and Sammis (2003), we have repeated calculations of LURR for the Northridge and Loma Prieta earthquakes in California. Though we have followed both sets of parameters closely, we have been unable to reproduce either set of results. A general agreement was made at the recent ACES Workshop in China between research

  17. Prediction of Earthquakes by Lunar Cicles

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.

    2007-05-01

    Prediction of Earthquakes by Lunar Cicles Author ; Guillermo Rodriguez Rodriguez Afiliation Geophysic and Astrophysicist. Retired I have exposed this idea to many meetings of EGS, UGS, IUGG 95, from 80, 82.83,and AGU 2002 Washington and 2003 Niza I have thre aproximition in Time 1º Earthquakes hapen The same day of the years every 18 or 19 years (cicle Saros ) Some times in the same place or anhother very far . In anhother moments of the year , teh cicle can be are ; 14 years, 26 years, 32 years or the multiples o 18.61 years expecial 55, 93, 224, 150 ,300 etcetc. For To know the day in the year 2º Over de cicle o one Lunation ( Days over de date of new moon) The greats Earthquakes hapens with diferents intervals of days in the sucesives lunations (aproximately one month) like we can be see in the grafic enclosed. For to know the day of month 3º Over each day I have find that each 28 day repit aproximately the same hour and minute. The same longitude and the same latitud in all earthquakes , also the littles ones . This is very important because we can to proposse only the precaution of wait it in the street or squares Whenever some times the cicles can be longuers or more littles This is my special way of cientific metode As consecuence of the 1º and 2º principe we can look The correlation between years separated by cicles of the 1º tipe For example 1984 and 2002 0r 2003 and consecutive years include 2007...During 30 years I have look de dates. I am in my subconcense the way but I can not make it in scientific formalisme

  18. New predictive equations for Arias intensity from crustal earthquakes in New Zealand

    NASA Astrophysics Data System (ADS)

    Stafford, Peter J.; Berrill, John B.; Pettinga, Jarg R.

    2009-01-01

    Arias Intensity (Arias, MIT Press, Cambridge MA, pp 438-483, 1970) is an important measure of the strength of a ground motion, as it is able to simultaneously reflect multiple characteristics of the motion in question. Recently, the effectiveness of Arias Intensity as a predictor of the likelihood of damage to short-period structures has been demonstrated, reinforcing the utility of Arias Intensity for use in both structural and geotechnical applications. In light of this utility, Arias Intensity has begun to be considered as a ground-motion measure suitable for use in probabilistic seismic hazard analysis (PSHA) and earthquake loss estimation. It is therefore timely to develop predictive equations for this ground-motion measure. In this study, a suite of four predictive equations, each using a different functional form, is derived for the prediction of Arias Intensity from crustal earthquakes in New Zealand. The provision of a suite of models is included to allow for epistemic uncertainty to be considered within a PSHA framework. Coefficients are presented for four different horizontal-component definitions for each of the four models. The ground-motion dataset for which the equations are derived include records from New Zealand crustal earthquakes as well as near-field records from worldwide crustal earthquakes. The predictive equations may be used to estimate Arias Intensity for moment magnitudes between 5.1 and 7.5 and for distances (both rjb and rrup) up to 300 km.

  19. Earthquake-triggered liquefaction in Southern Siberia and surroundings: a base for predictive models and seismic hazard estimation

    NASA Astrophysics Data System (ADS)

    Lunina, Oksana

    2016-04-01

    The forms and location patterns of soil liquefaction induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in 1950 through 2014 have been investigated, using field methods and a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. Statistical analysis of the data has revealed regional relationships between the magnitude (Ms) of an earthquake and the maximum distance of its environmental effect to the epicenter and to the causative fault (Lunina et al., 2014). Estimated limit distances to the fault for the Ms = 8.1 largest event are 130 km that is 3.5 times as short as those to the epicenter, which is 450 km. Along with this the wider of the fault the less liquefaction cases happen. 93% of them are within 40 km from the causative fault. Analysis of liquefaction locations relative to nearest faults in southern East Siberia shows the distances to be within 8 km but 69% of all cases are within 1 km. As a result, predictive models have been created for locations of seismic liquefaction, assuming a fault pattern for some parts of the Baikal rift zone. Base on our field and world data, equations have been suggested to relate the maximum sizes of liquefaction-induced clastic dikes (maximum width, visible maximum height and intensity index of clastic dikes) with Ms and local shaking intensity corresponding to the MSK-64 macroseismic intensity scale (Lunina and Gladkov, 2015). The obtained results make basis for modeling the distribution of the geohazard for the purposes of prediction and for estimating the earthquake parameters from liquefaction-induced clastic dikes. The author would like to express their gratitude to the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences for providing laboratory to carry out this research and Russian Scientific Foundation for their financial support (Grant 14-17-00007).

  20. Earthquakes.

    ERIC Educational Resources Information Center

    Walter, Edward J.

    1977-01-01

    Presents an analysis of the causes of earthquakes. Topics discussed include (1) geological and seismological factors that determine the effect of a particular earthquake on a given structure; (2) description of some large earthquakes such as the San Francisco quake; and (3) prediction of earthquakes. (HM)

  1. Predicting Posttraumatic Stress Symptom Prevalence and Local Distribution after an Earthquake with Scarce Data.

    PubMed

    Dussaillant, Francisca; Apablaza, Mauricio

    2017-08-01

    After a major earthquake, the assignment of scarce mental health emergency personnel to different geographic areas is crucial to the effective management of the crisis. The scarce information that is available in the aftermath of a disaster may be valuable in helping predict where are the populations that are in most need. The objectives of this study were to derive algorithms to predict posttraumatic stress (PTS) symptom prevalence and local distribution after an earthquake and to test whether there are algorithms that require few input data and are still reasonably predictive. A rich database of PTS symptoms, informed after Chile's 2010 earthquake and tsunami, was used. Several model specifications for the mean and centiles of the distribution of PTS symptoms, together with posttraumatic stress disorder (PTSD) prevalence, were estimated via linear and quantile regressions. The models varied in the set of covariates included. Adjusted R2 for the most liberal specifications (in terms of numbers of covariates included) ranged from 0.62 to 0.74, depending on the outcome. When only including peak ground acceleration (PGA), poverty rate, and household damage in linear and quadratic form, predictive capacity was still good (adjusted R2 from 0.59 to 0.67 were obtained). Information about local poverty, household damage, and PGA can be used as an aid to predict PTS symptom prevalence and local distribution after an earthquake. This can be of help to improve the assignment of mental health personnel to the affected localities. Dussaillant F , Apablaza M . Predicting posttraumatic stress symptom prevalence and local distribution after an earthquake with scarce data. Prehosp Disaster Med. 2017;32(4):357-367.

  2. Combining multiple earthquake models in real time for earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.

    2017-01-01

    The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.

  3. GIS Based System for Post-Earthquake Crisis Managment Using Cellular Network

    NASA Astrophysics Data System (ADS)

    Raeesi, M.; Sadeghi-Niaraki, A.

    2013-09-01

    Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS) can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post-earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post-earthquake crisis.

  4. Earthquake forecasts for the CSEP Japan experiment based on the RI algorithm

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.

    2011-03-01

    An earthquake forecast testing experiment for Japan, the first of its kind, is underway within the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) under a controlled environment. Here we give an overview of the earthquake forecast models, based on the RI algorithm, which we have submitted to the CSEP Japan experiment. Models have been submitted to a total of 9 categories, corresponding to 3 testing classes (3 years, 1 year, and 3 months) and 3 testing regions. The RI algorithm is originally a binary forecast system based on the working assumption that large earthquakes are more likely to occur in the future at locations of higher seismicity in the past. It is based on simple counts of the number of past earthquakes, which is called the Relative Intensity (RI) of seismicity. To improve its forecast performance, we first expand the RI algorithm by introducing spatial smoothing. We then convert the RI representation from a binary system to a CSEP-testable model that produces forecasts for the number of earthquakes of predefined magnitudes. We use information on past seismicity to tune the parameters. The final submittal consists of 36 executable computer codes: 4 variants corresponding to different smoothing parameters for each of the 9 categories. They will help to elucidate which categories and which smoothing parameters are the most meaningful for the RI hypothesis. The main purpose of our participation in the experiment is to better understand the significance of the relative intensity of seismicity for earthquake forecastability in Japan.

  5. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    PubMed

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  6. Learning from physics-based earthquake simulators: a minimal approach

    NASA Astrophysics Data System (ADS)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2017-04-01

    Physics-based earthquake simulators are aimed to generate synthetic seismic catalogs of arbitrary length, accounting for fault interaction, elastic rebound, realistic fault networks, and some simple earthquake nucleation process like rate and state friction. Through comparison of synthetic and real catalogs seismologists can get insights on the earthquake occurrence process. Moreover earthquake simulators can be used to to infer some aspects of the statistical behavior of earthquakes within the simulated region, by analyzing timescales not accessible through observations. The develoment of earthquake simulators is commonly led by the approach "the more physics, the better", pushing seismologists to go towards simulators more earth-like. However, despite the immediate attractiveness, we argue that this kind of approach makes more and more difficult to understand which physical parameters are really relevant to describe the features of the seismic catalog at which we are interested. For this reason, here we take an opposite minimal approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple model may be more informative than a complex one for some specific scientific objectives, because it is more understandable. The model has three main components: the first one is a realistic tectonic setting, i.e., a fault dataset of California; the other two components are quantitative laws for earthquake generation on each single fault, and the Coulomb Failure Function for modeling fault interaction. The final goal of this work is twofold. On one hand, we aim to identify the minimum set of physical ingredients that can satisfactorily reproduce the features of the real seismic catalog, such as short-term seismic cluster, and to investigate on the hypothetical long-term behavior, and faults synchronization. On the other hand, we want to investigate the limits of predictability of the model itself.

  7. Study on China’s Earthquake Prediction by Mathematical Analysis and its Application in Catastrophe Insurance

    NASA Astrophysics Data System (ADS)

    Jianjun, X.; Bingjie, Y.; Rongji, W.

    2018-03-01

    The purpose of this paper was to improve catastrophe insurance level. Firstly, earthquake predictions were carried out using mathematical analysis method. Secondly, the foreign catastrophe insurances’ policies and models were compared. Thirdly, the suggestions on catastrophe insurances to China were discussed. The further study should be paid more attention on the earthquake prediction by introducing big data.

  8. Application of a time-magnitude prediction model for earthquakes

    NASA Astrophysics Data System (ADS)

    An, Weiping; Jin, Xueshen; Yang, Jialiang; Dong, Peng; Zhao, Jun; Zhang, He

    2007-06-01

    In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4° × 4° for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.

  9. A New Network-Based Approach for the Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Alessandro, C.; Zollo, A.; Colombelli, S.; Elia, L.

    2017-12-01

    Here we propose a new method which allows for issuing an early warning based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The system includes the techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. For stations providing high quality data, the characteristic P-wave period (τc) and the P-wave displacement, velocity and acceleration amplitudes (Pd, Pv and Pa) are jointly measured on a progressively expanded P-wave time window. The evolutionary estimate of these parameters at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (IMM) and by interpolating the measured and predicted P-wave amplitude at a dense spatial grid, including the nodes of the accelerometer/velocimeter array deployed in the earthquake source area. Depending of the network density and spatial source coverage, this method naturally accounts for effects related to the earthquake rupture extent (e.g. source directivity) and spatial variability of strong ground motion related to crustal wave propagation and site amplification. We have tested this system by a retrospective analysis of three earthquakes: 2016 Italy 6.5 Mw, 2008 Iwate-Miyagi 6.9 Mw and 2011 Tohoku 9.0 Mw. Source parameters characterization are stable and reliable, also the intensity map shows extended source effects consistent with kinematic fracture models of

  10. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  11. Feasibility study of short-term earthquake prediction using ionospheric anomalies immediately before large earthquakes

    NASA Astrophysics Data System (ADS)

    Heki, K.; He, L.

    2017-12-01

    We showed that positive and negative electron density anomalies emerge above the fault immediately before they rupture, 40/20/10 minutes before Mw9/8/7 earthquakes (Heki, 2011 GRL; Heki and Enomoto, 2013 JGR; He and Heki 2017 JGR). These signals are stronger for earthquake with larger Mw and under higher background vertical TEC (total electron conetent) (Heki and Enomoto, 2015 JGR). The epicenter, the positive and the negative anomalies align along the local geomagnetic field (He and Heki, 2016 GRL), suggesting electric fields within ionosphere are responsible for making the anomalies (Kuo et al., 2014 JGR; Kelley et al., 2017 JGR). Here we suppose the next Nankai Trough earthquake that may occur within a few tens of years in Southwest Japan, and will discuss if we can recognize its preseismic signatures in TEC by real-time observations with GNSS.During high geomagnetic activities, large-scale traveling ionospheric disturbances (LSTID) often propagate from auroral ovals toward mid-latitude regions, and leave similar signatures to preseismic anomalies. This is a main obstacle to use preseismic TEC changes for practical short-term earthquake prediction. In this presentation, we show that the same anomalies appeared 40 minutes before the mainshock above northern Australia, the geomagnetically conjugate point of the 2011 Tohoku-oki earthquake epicenter. This not only demonstrates that electric fields play a role in making the preseismic TEC anomalies, but also offers a possibility to discriminate preseismic anomalies from those caused by LSTID. By monitoring TEC in the conjugate areas in the two hemisphere, we can recognize anomalies with simultaneous onset as those caused by within-ionosphere electric fields (e.g. preseismic anomalies, night-time MSTID) and anomalies without simultaneous onset as gravity-wave origin disturbances (e.g. LSTID, daytime MSTID).

  12. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    USGS Publications Warehouse

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  13. Real time numerical shake prediction incorporating attenuation structure: a case for the 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Ogiso, M.; Hoshiba, M.; Shito, A.; Matsumoto, S.

    2016-12-01

    Needless to say, heterogeneous attenuation structure is important for ground motion prediction, including earthquake early warning, that is, real time ground motion prediction. Hoshiba and Ogiso (2015, AGU Fall meeting) showed that the heterogeneous attenuation and scattering structure will lead to earlier and more accurate ground motion prediction in the numerical shake prediction scheme proposed by Hoshiba and Aoki (2015, BSSA). Hoshiba and Ogiso (2015) used assumed heterogeneous structure, and we discuss the effect of them in the case of 2016 Kumamoto Earthquake, using heterogeneous structure estimated by actual observation data. We conducted Multiple Lapse Time Window Analysis (Hoshiba, 1993, JGR) to the seismic stations located on western part of Japan to estimate heterogeneous attenuation and scattering structure. The characteristics are similar to the previous work of Carcole and Sato (2010, GJI), e.g. strong intrinsic and scattering attenuation around the volcanoes located on the central part of Kyushu, and relatively weak heterogeneities in the other area. Real time ground motion prediction simulation for the 2016 Kumamoto Earthquake was conducted using the numerical shake prediction scheme with 474 strong ground motion stations. Comparing the snapshot of predicted and observed wavefield showed a tendency for underprediction around the volcanic area in spite of the heterogeneous structure. These facts indicate the necessity of improving the heterogeneous structure for the numerical shake prediction scheme.In this study, we used the waveforms of Hi-net, K-NET, KiK-net stations operated by the NIED for estimating structure and conducting ground motion prediction simulation. Part of this study was supported by the Earthquake Research Institute, the University of Tokyo cooperative research program and JSPS KAKENHI Grant Number 25282114.

  14. Predicting the spatial extent of liquefaction from geospatial and earthquake specific parameters

    USGS Publications Warehouse

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.; Wald, David J.; Knudsen, Keith L.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.

    2014-01-01

    The spatially extensive damage from the 2010-2011 Christchurch, New Zealand earthquake events are a reminder of the need for liquefaction hazard maps for anticipating damage from future earthquakes. Liquefaction hazard mapping as traditionally relied on detailed geologic mapping and expensive site studies. These traditional techniques are difficult to apply globally for rapid response or loss estimation. We have developed a logistic regression model to predict the probability of liquefaction occurrence in coastal sedimentary areas as a function of simple and globally available geospatial features (e.g., derived from digital elevation models) and standard earthquake-specific intensity data (e.g., peak ground acceleration). Some of the geospatial explanatory variables that we consider are taken from the hydrology community, which has a long tradition of using remotely sensed data as proxies for subsurface parameters. As a result of using high resolution, remotely-sensed, and spatially continuous data as a proxy for important subsurface parameters such as soil density and soil saturation, and by using a probabilistic modeling framework, our liquefaction model inherently includes the natural spatial variability of liquefaction occurrence and provides an estimate of spatial extent of liquefaction for a given earthquake. To provide a quantitative check on how the predicted probabilities relate to spatial extent of liquefaction, we report the frequency of observed liquefaction features within a range of predicted probabilities. The percentage of liquefaction is the areal extent of observed liquefaction within a given probability contour. The regional model and the results show that there is a strong relationship between the predicted probability and the observed percentage of liquefaction. Visual inspection of the probability contours for each event also indicates that the pattern of liquefaction is well represented by the model.

  15. On a report that the 2012 M 6.0 earthquake in Italy was predicted after seeing an unusual cloud formation

    USGS Publications Warehouse

    Thomas, J.N.; Masci, F; Love, Jeffrey J.

    2015-01-01

    Several recently published reports have suggested that semi-stationary linear-cloud formations might be causally precursory to earthquakes. We examine the report of Guangmeng and Jie (2013), who claim to have predicted the 2012 M 6.0 earthquake in the Po Valley of northern Italy after seeing a satellite photograph (a digital image) showing a linear-cloud formation over the eastern Apennine Mountains of central Italy. From inspection of 4 years of satellite images we find numerous examples of linear-cloud formations over Italy. A simple test shows no obvious statistical relationship between the occurrence of these cloud formations and earthquakes that occurred in and around Italy. All of the linear-cloud formations we have identified in satellite images, including that which Guangmeng and Jie (2013) claim to have used to predict the 2012 earthquake, appear to be orographic – formed by the interaction of moisture-laden wind flowing over mountains. Guangmeng and Jie (2013) have not clearly stated how linear-cloud formations can be used to predict the size, location, and time of an earthquake, and they have not published an account of all of their predictions (including any unsuccessful predictions). We are skeptical of the validity of the claim by Guangmeng and Jie (2013) that they have managed to predict any earthquakes.

  16. Earthquake and Tsunami booklet based on two Indonesia earthquakes

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Aci, M.

    2014-12-01

    Many destructive earthquakes occurred during the last decade in Indonesia. These experiences are very important precepts for the world people who live in earthquake and tsunami countries. We are collecting the testimonies of tsunami survivors to clarify successful evacuation process and to make clear the characteristic physical behaviors of tsunami near coast. We research 2 tsunami events, 2004 Indian Ocean tsunami and 2010 Mentawai slow earthquake tsunami. Many video and photographs were taken by people at some places in 2004 Indian ocean tsunami disaster; nevertheless these were few restricted points. We didn't know the tsunami behavior in another place. In this study, we tried to collect extensive information about tsunami behavior not only in many places but also wide time range after the strong shake. In Mentawai case, the earthquake occurred in night, so there are no impressive photos. To collect detail information about evacuation process from tsunamis, we contrived the interview method. This method contains making pictures of tsunami experience from the scene of victims' stories. In 2004 Aceh case, all survivors didn't know tsunami phenomena. Because there were no big earthquakes with tsunami for one hundred years in Sumatra region, public people had no knowledge about tsunami. This situation was highly improved in 2010 Mentawai case. TV programs and NGO or governmental public education programs about tsunami evacuation are widespread in Indonesia. Many people know about fundamental knowledge of earthquake and tsunami disasters. We made drill book based on victim's stories and painted impressive scene of 2 events. We used the drill book in disaster education event in school committee of west Java. About 80 % students and teachers evaluated that the contents of the drill book are useful for correct understanding.

  17. Shaking table test and dynamic response prediction on an earthquake-damaged RC building

    NASA Astrophysics Data System (ADS)

    Xianguo, Ye; Jiaru, Qian; Kangning, Li

    2004-12-01

    This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.

  18. Earthquake Forecasting System in Italy

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  19. The U.S. Geological Survey's Earthquake Summary Posters: A GIS-based Education and Communication Product for Presenting Consolidated Post-Earthquake Information

    NASA Astrophysics Data System (ADS)

    Tarr, A.; Benz, H.; Earle, P.; Wald, D. J.

    2003-12-01

    Earthquake Summary Posters (ESP's), a new product of the U.S. Geological Survey's Earthquake Program, are produced at the National Earthquake Information Center (NEIC) in Golden. The posters consist of rapidly-generated, GIS-based maps made following significant earthquakes worldwide (typically M>7.0, or events of significant media/public interest). ESP's consolidate, in an attractive map format, a large-scale epicentral map, several auxiliary regional overviews (showing tectonic and geographical setting, seismic history, seismic hazard, and earthquake effects), depth sections (as appropriate), a table of regional earthquakes, and a summary of the reional seismic history and tectonics. The immediate availability of the latter text summaries has been facilitated by the availability of Rapid, Accurate Tectonic Summaries (RATS) produced at NEIC and posted on the web following significant events. The rapid production of ESP's has been facilitated by generating, during the past two years, regional templates for tectonic areas around the world by organizing the necessary spatially-referenced data for the map base and the thematic layers that overlay the base. These GIS databases enable scripted Arc Macro Language (AML) production of routine elements of the maps (for example background seismicity, tectonic features, and probabilistic hazard maps). However, other elements of the maps are earthquake-specific and are produced manually to reflect new data, earthquake effects, and special characteristics. By the end of this year, approximately 85% of the Earth's seismic zones will be covered for generating future ESP's. During the past year, 13 posters were completed, comparable to the yearly average expected for significant earthquakes. Each year, all ESPs will be published on a CD in PDF format as an Open-File Report. In addition, each is linked to the special event earthquake pages on the USGS Earthquake Program web site (http://earthquake.usgs.gov). Although three formats

  20. Earthquake Fingerprints: Representing Earthquake Waveforms for Similarity-Based Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2016-12-01

    New earthquake detection methods, such as Fingerprint and Similarity Thresholding (FAST), use fast approximate similarity search to identify similar waveforms in long-duration data without templates (Yoon et al. 2015). These methods have two key components: fingerprint extraction and an efficient search algorithm. Fingerprint extraction converts waveforms into fingerprints, compact signatures that represent short-duration waveforms for identification and search. Earthquakes are detected using an efficient indexing and search scheme, such as locality-sensitive hashing, that identifies similar waveforms in a fingerprint database. The quality of the search results, and thus the earthquake detection results, is strongly dependent on the fingerprinting scheme. Fingerprint extraction should map similar earthquake waveforms to similar waveform fingerprints to ensure a high detection rate, even under additive noise and small distortions. Additionally, fingerprints corresponding to noise intervals should have mutually dissimilar fingerprints to minimize false detections. In this work, we compare the performance of multiple fingerprint extraction approaches for the earthquake waveform similarity search problem. We apply existing audio fingerprinting (used in content-based audio identification systems) and time series indexing techniques and present modified versions that are specifically adapted for seismic data. We also explore data-driven fingerprinting approaches that can take advantage of labeled or unlabeled waveform data. For each fingerprinting approach we measure its ability to identify similar waveforms in a low signal-to-noise setting, and quantify the trade-off between true and false detection rates in the presence of persistent noise sources. We compare the performance using known event waveforms from eight independent stations in the Northern California Seismic Network.

  1. Earthquake Predictability: Results From Aggregating Seismicity Data And Assessment Of Theoretical Individual Cases Via Synthetic Data

    NASA Astrophysics Data System (ADS)

    Adamaki, A.; Roberts, R.

    2016-12-01

    For many years an important aim in seismological studies has been forecasting the occurrence of large earthquakes. Despite some well-established statistical behavior of earthquake sequences, expressed by e.g. the Omori law for aftershock sequences and the Gutenburg-Richter distribution of event magnitudes, purely statistical approaches to short-term earthquake prediction have in general not been successful. It seems that better understanding of the processes leading to critical stress build-up prior to larger events is necessary to identify useful precursory activity, if this exists, and statistical analyses are an important tool in this context. There has been considerable debate on the usefulness or otherwise of foreshock studies for short-term earthquake prediction. We investigate generic patterns of foreshock activity using aggregated data and by studying not only strong but also moderate magnitude events. Aggregating empirical local seismicity time series prior to larger events observed in and around Greece reveals a statistically significant increasing rate of seismicity over 20 days prior to M>3.5 earthquakes. This increase cannot be explained by tempo-spatial clustering models such as ETAS, implying genuine changes in the mechanical situation just prior to larger events and thus the possible existence of useful precursory information. Because of tempo-spatial clustering, including aftershocks to foreshocks, even if such generic behavior exists it does not necessarily follow that foreshocks have the potential to provide useful precursory information for individual larger events. Using synthetic catalogs produced based on different clustering models and different presumed system sensitivities we are now investigating to what extent the apparently established generic foreshock rate acceleration may or may not imply that the foreshocks have potential in the context of routine forecasting of larger events. Preliminary results suggest that this is the case, but

  2. Prospects for earthquake prediction and control

    USGS Publications Warehouse

    Healy, J.H.; Lee, W.H.K.; Pakiser, L.C.; Raleigh, C.B.; Wood, M.D.

    1972-01-01

    The San Andreas fault is viewed, according to the concepts of seafloor spreading and plate tectonics, as a transform fault that separates the Pacific and North American plates and along which relative movements of 2 to 6 cm/year have been taking place. The resulting strain can be released by creep, by earthquakes of moderate size, or (as near San Francisco and Los Angeles) by great earthquakes. Microearthquakes, as mapped by a dense seismograph network in central California, generally coincide with zones of the San Andreas fault system that are creeping. Microearthquakes are few and scattered in zones where elastic energy is being stored. Changes in the rate of strain, as recorded by tiltmeter arrays, have been observed before several earthquakes of about magnitude 4. Changes in fluid pressure may control timing of seismic activity and make it possible to control natural earthquakes by controlling variations in fluid pressure in fault zones. An experiment in earthquake control is underway at the Rangely oil field in Colorado, where the rates of fluid injection and withdrawal in experimental wells are being controlled. ?? 1972.

  3. Current affairs in earthquake prediction in Japan

    NASA Astrophysics Data System (ADS)

    Uyeda, Seiya

    2015-12-01

    As of mid-2014, the main organizations of the earthquake (EQ hereafter) prediction program, including the Seismological Society of Japan (SSJ), the MEXT Headquarters for EQ Research Promotion, hold the official position that they neither can nor want to make any short-term prediction. It is an extraordinary stance of responsible authorities when the nation, after the devastating 2011 M9 Tohoku EQ, most urgently needs whatever information that may exist on forthcoming EQs. Japan's national project for EQ prediction started in 1965, but it has made no success. The main reason for no success is the failure to capture precursors. After the 1995 Kobe disaster, the project decided to give up short-term prediction and this stance has been further fortified by the 2011 M9 Tohoku Mega-quake. This paper tries to explain how this situation came about and suggest that it may in fact be a legitimate one which should have come a long time ago. Actually, substantial positive changes are taking place now. Some promising signs are arising even from cooperation of researchers with private sectors and there is a move to establish an "EQ Prediction Society of Japan". From now on, maintaining the high scientific standards in EQ prediction will be of crucial importance.

  4. VAN method of short-term earthquake prediction shows promise

    NASA Astrophysics Data System (ADS)

    Uyeda, Seiya

    Although optimism prevailed in the 1970s, the present consensus on earthquake prediction appears to be quite pessimistic. However, short-term prediction based on geoelectric potential monitoring has stood the test of time in Greece for more than a decade [VarotsosandKulhanek, 1993] Lighthill, 1996]. The method used is called the VAN method.The geoelectric potential changes constantly due to causes such as magnetotelluric effects, lightning, rainfall, leakage from manmade sources, and electrochemical instabilities of electrodes. All of this noise must be eliminated before preseismic signals are identified, if they exist at all. The VAN group apparently accomplished this task for the first time. They installed multiple short (100-200m) dipoles with different lengths in both north-south and east-west directions and long (1-10 km) dipoles in appropriate orientations at their stations (one of their mega-stations, Ioannina, for example, now has 137 dipoles in operation) and found that practically all of the noise could be eliminated by applying a set of criteria to the data.

  5. A prospective earthquake forecast experiment in the western Pacific

    NASA Astrophysics Data System (ADS)

    Eberhard, David A. J.; Zechar, J. Douglas; Wiemer, Stefan

    2012-09-01

    Since the beginning of 2009, the Collaboratory for the Study of Earthquake Predictability (CSEP) has been conducting an earthquake forecast experiment in the western Pacific. This experiment is an extension of the Kagan-Jackson experiments begun 15 years earlier and is a prototype for future global earthquake predictability experiments. At the beginning of each year, seismicity models make a spatially gridded forecast of the number of Mw≥ 5.8 earthquakes expected in the next year. For the three participating statistical models, we analyse the first two years of this experiment. We use likelihood-based metrics to evaluate the consistency of the forecasts with the observed target earthquakes and we apply measures based on Student's t-test and the Wilcoxon signed-rank test to compare the forecasts. Overall, a simple smoothed seismicity model (TripleS) performs the best, but there are some exceptions that indicate continued experiments are vital to fully understand the stability of these models, the robustness of model selection and, more generally, earthquake predictability in this region. We also estimate uncertainties in our results that are caused by uncertainties in earthquake location and seismic moment. Our uncertainty estimates are relatively small and suggest that the evaluation metrics are relatively robust. Finally, we consider the implications of our results for a global earthquake forecast experiment.

  6. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    worship. The waveforms recorded could be promptly used to determine ground-shaking parameters, like peak ground acceleration/velocity/displacement, Arias and Housner intensity, that could be all used to create, few seconds after a strong earthquakes, shaking maps at urban scale. These shaking maps could allow to quickly identify areas of the town center that have had the greatest earthquake resentment. When a strong seismic event occur, the beginning of the ground motion observed at the site could be used to predict the ensuing ground motion at the same site and so to realize a short term earthquake early warning system. The data acquired after a moderate magnitude earthquake, would provide valuable information for the detail seismic microzonation of the area based on direct earthquake shaking observations rather than from a model-based or indirect methods. In this work, we evaluate the feasibility and effectiveness of such seismic network taking in to account both technological, scientific and economic issues. For this purpose, we have simulated the creation of a MEMS based urban seismic network in a medium size city. For the selected town, taking into account the instrumental specifics, the array geometry and the environmental noise, we investigated the ability of the planned network to detect and measure earthquakes of different magnitude generated from realistic near seismogentic sources.

  7. Earthquake insurance pricing: a risk-based approach.

    PubMed

    Lin, Jeng-Hsiang

    2018-04-01

    Flat earthquake premiums are 'uniformly' set for a variety of buildings in many countries, neglecting the fact that the risk of damage to buildings by earthquakes is based on a wide range of factors. How these factors influence the insurance premiums is worth being studied further. Proposed herein is a risk-based approach to estimate the earthquake insurance rates of buildings. Examples of application of the approach to buildings located in Taipei city of Taiwan were examined. Then, the earthquake insurance rates for the buildings investigated were calculated and tabulated. To fulfil insurance rating, the buildings were classified into 15 model building types according to their construction materials and building height. Seismic design levels were also considered in insurance rating in response to the effect of seismic zone and construction years of buildings. This paper may be of interest to insurers, actuaries, and private and public sectors of insurance. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  8. Space-Time Earthquake Prediction: The Error Diagrams

    NASA Astrophysics Data System (ADS)

    Molchan, G.

    2010-08-01

    The quality of earthquake prediction is usually characterized by a two-dimensional diagram n versus τ, where n is the rate of failures-to-predict and τ is a characteristic of space-time alarm. Unlike the time prediction case, the quantity τ is not defined uniquely. We start from the case in which τ is a vector with components related to the local alarm times and find a simple structure of the space-time diagram in terms of local time diagrams. This key result is used to analyze the usual 2-d error sets { n, τ w } in which τ w is a weighted mean of the τ components and w is the weight vector. We suggest a simple algorithm to find the ( n, τ w ) representation of all random guess strategies, the set D, and prove that there exists the unique case of w when D degenerates to the diagonal n + τ w = 1. We find also a confidence zone of D on the ( n, τ w ) plane when the local target rates are known roughly. These facts are important for correct interpretation of ( n, τ w ) diagrams when we discuss the prediction capability of the data or prediction methods.

  9. CSEP-Japan: The Japanese node of the collaboratory for the study of earthquake predictability

    NASA Astrophysics Data System (ADS)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2011-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project of earthquake predictability research. The final goal of this project is to have a look for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined the CSEP and started the Japanese testing center called as CSEP-Japan. This testing center constitutes an open access to researchers contributing earthquake forecast models for applied to Japan. A total of 91 earthquake forecast models were submitted on the prospective experiment starting from 1 November 2009. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by the CSEP. The experiments of 1-day, 3-month, 1-year and 3-year forecasting classes were implemented for 92 rounds, 4 rounds, 1round and 0 round (now in progress), respectively. The results of the 3-month class gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space-distribution with most models in some cases where many earthquakes occurred at the same spot. Throughout the experiment, it has been clarified that some properties of the CSEP's evaluation tests such as the L-test show strong correlation with the N-test. We are now processing to own (cyber-) infrastructure to support the forecast experiment as follows. (1) Japanese seismicity has changed since the 2011 Tohoku earthquake. The 3rd call for forecasting models was announced in order to promote model improvement for forecasting earthquakes after this earthquake. So, we provide Japanese seismicity catalog maintained by JMA for modelers to study how seismicity

  10. Ground Motion Prediction for M7+ scenarios on the San Andreas Fault using the Virtual Earthquake Approach

    NASA Astrophysics Data System (ADS)

    Denolle, M.; Dunham, E. M.; Prieto, G.; Beroza, G. C.

    2013-05-01

    There is no clearer example of the increase in hazard due to prolonged and amplified shaking in sedimentary, than the case of Mexico City in the 1985 Michoacan earthquake. It is critically important to identify what other cities might be susceptible to similar basin amplification effects. Physics-based simulations in 3D crustal structure can be used to model and anticipate those effects, but they rely on our knowledge of the complexity of the medium. We propose a parallel approach to validate ground motion simulations using the ambient seismic field. We compute the Earth's impulse response combining the ambient seismic field and coda-wave enforcing causality and symmetry constraints. We correct the surface impulse responses to account for the source depth, mechanism and duration using a 1D approximation of the local surface-wave excitation. We call the new responses virtual earthquakes. We validate the ground motion predicted from the virtual earthquakes against moderate earthquakes in southern California. We then combine temporary seismic stations on the southern San Andreas Fault and extend the point source approximation of the Virtual Earthquake Approach to model finite kinematic ruptures. We confirm the coupling between source directivity and amplification in downtown Los Angeles seen in simulations.

  11. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  12. Modeling the behavior of an earthquake base-isolated building.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coveney, V. A.; Jamil, S.; Johnson, D. E.

    1997-11-26

    Protecting a structure against earthquake excitation by supporting it on laminated elastomeric bearings has become a widely accepted practice. The ability to perform accurate simulation of the system, including FEA of the bearings, would be desirable--especially for key installations. In this paper attempts to model the behavior of elastomeric earthquake bearings are outlined. Attention is focused on modeling highly-filled, low-modulus, high-damping elastomeric isolator systems; comparisons are made between standard triboelastic solid model predictions and test results.

  13. Thermal Infrared Anomalies of Several Strong Earthquakes

    PubMed Central

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  14. Thermal infrared anomalies of several strong earthquakes.

    PubMed

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  15. QuakeUp: An advanced tool for a network-based Earthquake Early Warning system

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo; Colombelli, Simona; Caruso, Alessandro; Elia, Luca; Brondi, Piero; Emolo, Antonio; Festa, Gaetano; Martino, Claudio; Picozzi, Matteo

    2017-04-01

    The currently developed and operational Earthquake Early warning, regional systems ground on the assumption of a point-like earthquake source model and 1-D ground motion prediction equations to estimate the earthquake impact. Here we propose a new network-based method which allows for issuing an alert based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The platform includes the most advanced techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The new software platform (QuakeUp) is under development at the Seismological Laboratory (RISSC-Lab) of the Department of Physics at the University of Naples Federico II, in collaboration with the academic spin-off company RISS s.r.l., recently gemmated by the research group. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. The signal quality is preliminary assessed by checking the signal-to-noise ratio both in acceleration, velocity and displacement and through dedicated filtering algorithms. For stations providing high quality data, the characteristic P-wave period (τ_c) and the P-wave displacement, velocity and acceleration amplitudes (P_d, Pv and P_a) are jointly measured on a progressively expanded P-wave time window. The evolutionary measurements of the early P-wave amplitude and characteristic period at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (I_MM) and by mapping the measured and

  16. Fault- and Area-Based PSHA in Nepal using OpenQuake: New Insights from the 2015 M7.8 Gorkha-Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Stevens, Victoria

    2017-04-01

    The 2015 Gorkha-Nepal M7.8 earthquake (hereafter known simply as the Gorkha earthquake) highlights the seismic risk in Nepal, allows better characterization of the geometry of the Main Himalayan Thrust (MHT), and enables comparison of recorded ground-motions with predicted ground-motions. These new data, together with recent paleoseismic studies and geodetic-based coupling models, allow for good parameterization of the fault characteristics. Other faults in Nepal remain less well studied. Unlike previous PSHA studies in Nepal that are exclusively area-based, we use a mix of faults and areas to describe six seismic sources in Nepal. For each source, the Gutenberg-Richter a and b values are found, and the maximum magnitude earthquake estimated, using a combination of earthquake catalogs, moment conservation principals and similarities to other tectonic regions. The MHT and Karakoram fault are described as fault sources, whereas four other sources - normal faulting in N-S trending grabens of northern Nepal, strike-slip faulting in both eastern and western Nepal, and background seismicity - are described as area sources. We use OpenQuake (http://openquake.org/) to carry out the analysis, and peak ground acceleration (PGA) at 2 and 10% chance in 50 years is found for Nepal, along with hazard curves at various locations. We compare this PSHA model with previous area-based models of Nepal. The Main Himalayan Thrust is the principal seismic hazard in Nepal so we study the effects of changing several parameters associated with this fault. We compare ground shaking predicted from various fault geometries suggested from the Gorkha earthquake with each other, and with a simple model of a flat fault. We also show the results from incorporating a coupling model based on geodetic data and microseismicity, which limits the down-dip extent of rupture. There have been no ground-motion prediction equations (GMPEs) developed specifically for Nepal, so we compare the results of

  17. Earthquake forecasting test for Kanto district to reduce vulnerability of urban mega earthquake disasters

    NASA Astrophysics Data System (ADS)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2012-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project on earthquake predictability research. The final goal of this project is to search for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined CSEP and started the Japanese testing center called as CSEP-Japan. This testing center provides an open access to researchers contributing earthquake forecast models applied to Japan. Now more than 100 earthquake forecast models were submitted on the prospective experiment. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by CSEP. The total number of experiments was implemented for approximately 300 rounds. These results provide new knowledge concerning statistical forecasting models. We started a study for constructing a 3-dimensional earthquake forecasting model for Kanto district in Japan based on CSEP experiments under the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters. Because seismicity of the area ranges from shallower part to a depth of 80 km due to subducting Philippine Sea plate and Pacific plate, we need to study effect of depth distribution. We will develop models for forecasting based on the results of 2-D modeling. We defined the 3D - forecasting area in the Kanto region with test classes of 1 day, 3 months, 1 year and 3 years, and magnitudes from 4.0 to 9.0 as in CSEP-Japan. In the first step of the study, we will install RI10K model (Nanjo, 2011) and the HISTETAS models (Ogata, 2011) to know if those models have good performance as in the 3 months 2-D CSEP-Japan experiments in the Kanto region before the 2011 Tohoku event (Yokoi et al., in preparation). We use CSEP

  18. Interevent times in a new alarm-based earthquake forecasting model

    NASA Astrophysics Data System (ADS)

    Talbi, Abdelhak; Nanjo, Kazuyoshi; Zhuang, Jiancang; Satake, Kenji; Hamdache, Mohamed

    2013-09-01

    This study introduces a new earthquake forecasting model that uses the moment ratio (MR) of the first to second order moments of earthquake interevent times as a precursory alarm index to forecast large earthquake events. This MR model is based on the idea that the MR is associated with anomalous long-term changes in background seismicity prior to large earthquake events. In a given region, the MR statistic is defined as the inverse of the index of dispersion or Fano factor, with MR values (or scores) providing a biased estimate of the relative regional frequency of background events, here termed the background fraction. To test the forecasting performance of this proposed MR model, a composite Japan-wide earthquake catalogue for the years between 679 and 2012 was compiled using the Japan Meteorological Agency catalogue for the period between 1923 and 2012, and the Utsu historical seismicity records between 679 and 1922. MR values were estimated by sampling interevent times from events with magnitude M ≥ 6 using an earthquake random sampling (ERS) algorithm developed during previous research. Three retrospective tests of M ≥ 7 target earthquakes were undertaken to evaluate the long-, intermediate- and short-term performance of MR forecasting, using mainly Molchan diagrams and optimal spatial maps obtained by minimizing forecasting error defined by miss and alarm rate addition. This testing indicates that the MR forecasting technique performs well at long-, intermediate- and short-term. The MR maps produced during long-term testing indicate significant alarm levels before 15 of the 18 shallow earthquakes within the testing region during the past two decades, with an alarm region covering about 20 per cent (alarm rate) of the testing region. The number of shallow events missed by forecasting was reduced by about 60 per cent after using the MR method instead of the relative intensity (RI) forecasting method. At short term, our model succeeded in forecasting the

  19. A New Distance Metric in Ground Motion Prediction Equations Based On Array Back-Projections

    NASA Astrophysics Data System (ADS)

    Feng, T.; Meng, L.

    2017-12-01

    Traditional Ground Motion Prediction Equations (GMPEs) measure the distances either relative to the epicenter (Repi) or the hypocenter (Rhyp) assuming point-sources, or relative to the closest point of the fault rupture (Rrup) or its surface projection (Rjb) to account for finite earthquake dimensions. However, it has long been proven that for large megathrust earthquakes (M>8), the over-simplification of the earthquake source characteristics in these distance metrics result in significant bias and uncertainty of the ground motion predictions. Recent advances in earthquake source imaging of major subduction earthquakes highlight the frequency-dependent and depth-varying seismic radiations at the plate interfaces. Low-frequency energy mainly emanated from the shallower portion of the megathrusts while dominant high-frequency energy often radiates from the deeper portion of the megathrust. In the 2011 Tohoku-Oki earthquake, all these distance metrics produce severe biases, underestimating the ground accelerations at short distances (<100km) and overestimating them at long distances (>100km). This phenomenon motivates an alternative distance metric based on the array back-projection (BP) technique that effectively captures regions releasing high-frequency energy. Herein, we define Rbp as the distance between nearest BP radiators and the station sites. We studied five large earthquakes in Japan, and found that Rbp outperforms conventional distance metrics in predicting the Psa (Pseudo Spectral Acceleration) in the high-frequency band (0.5-4 Hz). And at low frequencies (0.1-0.5Hz), we find that Rhyp produces better fits to the Psa spectrum. Thus, we propose to combine Rhyp and Rbp in low-frequency (0.1-0.5Hz) and high-frequency (0.5-4 Hz) range to improve the GMPEs. We consider that Rbp reflects the high-frequency characters of the rupture that are complementary to conventional GMPE distance metrics and a more suitable ground motion predictors in many cases. Based on

  20. Uncertainty, variability, and earthquake physics in ground‐motion prediction equations

    USGS Publications Warehouse

    Baltay, Annemarie S.; Hanks, Thomas C.; Abrahamson, Norm A.

    2017-01-01

    Residuals between ground‐motion data and ground‐motion prediction equations (GMPEs) can be decomposed into terms representing earthquake source, path, and site effects. These terms can be cast in terms of repeatable (epistemic) residuals and the random (aleatory) components. Identifying the repeatable residuals leads to a GMPE with reduced uncertainty for a specific source, site, or path location, which in turn can yield a lower hazard level at small probabilities of exceedance. We illustrate a schematic framework for this residual partitioning with a dataset from the ANZA network, which straddles the central San Jacinto fault in southern California. The dataset consists of more than 3200 1.15≤M≤3 earthquakes and their peak ground accelerations (PGAs), recorded at close distances (R≤20  km). We construct a small‐magnitude GMPE for these PGA data, incorporating VS30 site conditions and geometrical spreading. Identification and removal of the repeatable source, path, and site terms yield an overall reduction in the standard deviation from 0.97 (in ln units) to 0.44, for a nonergodic assumption, that is, for a single‐source location, single site, and single path. We give examples of relationships between independent seismological observables and the repeatable terms. We find a correlation between location‐based source terms and stress drops in the San Jacinto fault zone region; an explanation of the site term as a function of kappa, the near‐site attenuation parameter; and a suggestion that the path component can be related directly to elastic structure. These correlations allow the repeatable source location, site, and path terms to be determined a priori using independent geophysical relationships. Those terms could be incorporated into location‐specific GMPEs for more accurate and precise ground‐motion prediction.

  1. Research on response spectrum of dam based on scenario earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Zhang, Yushan

    2017-10-01

    Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.

  2. Probabilistic Tsunami Hazard Assessment along Nankai Trough (1) An assessment based on the information of the forthcoming earthquake that Earthquake Research Committee(2013) evaluated

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Morikawa, N.; Kawai, S.; Ohsumi, T.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.

    2015-12-01

    The Earthquake Research Committee(ERC)/HERP, Government of Japan (2013) revised their long-term evaluation of the forthcoming large earthquake along the Nankai Trough; the next earthquake is estimated M8 to 9 class, and the probability (P30) that the next earthquake will occur within the next 30 years (from Jan. 1, 2013) is 60% to 70%. In this study, we assess tsunami hazards (maximum coastal tsunami heights) in the near future, in terms of a probabilistic approach, from the next earthquake along Nankai Trough, on the basis of ERC(2013)'s report. The probabilistic tsunami hazard assessment that we applied is as follows; (1) Characterized earthquake fault models (CEFMs) are constructed on each of the 15 hypothetical source areas (HSA) that ERC(2013) showed. The characterization rule follows Toyama et al.(2015, JpGU). As results, we obtained total of 1441 CEFMs. (2) We calculate tsunamis due to CEFMs by solving nonlinear, finite-amplitude, long-wave equations with advection and bottom friction terms by finite-difference method. Run-up computation on land is included. (3) A time predictable model predicts the recurrent interval of the present seismic cycle is T=88.2 years (ERC,2013). We fix P30 = 67% by applying the renewal process based on BPT distribution with T and alpha=0.24 as its aperiodicity. (4) We divide the probability P30 into P30(i) for i-th subgroup consisting of the earthquakes occurring in each of 15 HSA by following a probability re-distribution concept (ERC,2014). Then each earthquake (CEFM) in i-th subgroup is assigned a probability P30(i)/N where N is the number of CEFMs in each sub-group. Note that such re-distribution concept of the probability is nothing but tentative because the present seismology cannot give deep knowledge enough to do it. Epistemic logic-tree approach may be required in future. (5) We synthesize a number of tsunami hazard curves at every evaluation points on coasts by integrating the information about 30 years occurrence

  3. Web-Based Real Time Earthquake Forecasting and Personal Risk Management

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2012-12-01

    Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and

  4. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

    NASA Astrophysics Data System (ADS)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza

    2017-08-01

    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  5. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  6. A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities

    USGS Publications Warehouse

    Ellsworth, William L.; Matthews, Mark V.; Nadeau, Robert M.; Nishenko, Stuart P.; Reasenberg, Paul A.; Simpson, Robert W.

    1999-01-01

    A physically-motivated model for earthquake recurrence based on the Brownian relaxation oscillator is introduced. The renewal process defining this point process model can be described by the steady rise of a state variable from the ground state to failure threshold as modulated by Brownian motion. Failure times in this model follow the Brownian passage time (BPT) distribution, which is specified by the mean time to failure, μ, and the aperiodicity of the mean, α (equivalent to the familiar coefficient of variation). Analysis of 37 series of recurrent earthquakes, M -0.7 to 9.2, suggests a provisional generic value of α = 0.5. For this value of α, the hazard function (instantaneous failure rate of survivors) exceeds the mean rate for times > μ⁄2, and is ~ ~ 2 ⁄ μ for all times > μ. Application of this model to the next M 6 earthquake on the San Andreas fault at Parkfield, California suggests that the annual probability of the earthquake is between 1:10 and 1:13.

  7. Statistical validation of earthquake related observations

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.

    2011-12-01

    The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable or, conversely, delicately-designed models. The widespread practice of deceptive modeling considered as a "reasonable proxy" of the natural seismic process leads to seismic hazard assessment of unknown quality, which errors propagate non-linearly into inflicted estimates of risk and, eventually, into unexpected societal losses of unacceptable level. The studies aimed at forecast/prediction of earthquakes must include validation in the retro- (at least) and, eventually, in prospective tests. In the absence of such control a suggested "precursor/signal" remains a "candidate", which link to target seismic event is a model assumption. Predicting in advance is the only decisive test of forecast/predictions and, therefore, the score-card of any "established precursor/signal" represented by the empirical probabilities of alarms and failures-to-predict achieved in prospective testing must prove statistical significance rejecting the null-hypothesis of random coincidental occurrence in advance target earthquakes. We reiterate suggesting so-called "Seismic Roulette" null-hypothesis as the most adequate undisturbed random alternative accounting for the empirical spatial distribution of earthquakes: (i) Consider a roulette wheel with as many sectors as the number of earthquake locations from a sample catalog representing seismic locus, a sector per each location and (ii) make your bet according to prediction (i.e., determine, which locations are inside area of alarm, and put one chip in each of the corresponding sectors); (iii) Nature turns the wheel; (iv) accumulate statistics of wins and losses along with the number of chips spent. If a precursor in charge of prediction exposes an imperfection of Seismic Roulette then, having in mind

  8. Predictive factors of depression symptoms among adolescents in the 18-month follow-up after Wenchuan earthquake in China.

    PubMed

    Chui, Cheryl H K; Ran, Mao-Sheng; Li, Rong-Hui; Fan, Mei; Zhang, Zhen; Li, Yuan-Hao; Ou, Guo Jing; Jiang, Zhe; Tong, Yu-Zhen; Fang, Ding-Zhi

    2017-02-01

    It is unclear about the change and risk factors of depression among adolescent survivors after earthquake. This study aimed to explore the change of depression, and identify the predictive factors of depression among adolescent survivors after the 2008 Wenchuan earthquake in China. The depression among high school students at 6, 12 and 18 months after the Wenchuan earthquake were investigated. The Beck Depression Inventory (BDI) was used in this study to assess the severity of depression. Subjects included 548 student survivors in an affected high school. The rates of depression among the adolescent survivors at 6-, 12- and 18-month after the earthquake were 27.3%, 42.9% and 33.3%, respectively, for males, and 42.9%, 61.9% and 53.4%, respectively, for females. Depression symptoms, trauma-related self-injury, suicidal ideation and PTSD symptoms at the 6-month follow-up were significant predictive factors for depression at the 18-month time interval following the earthquake. This study highlights the need for considering disaster-related psychological sequela and risk factors of depression symptoms in the planning and implementation of mental health services. Long-term mental and psychological supports for victims of natural disasters are imperative.

  9. Earthquake: Game-based learning for 21st century STEM education

    NASA Astrophysics Data System (ADS)

    Perkins, Abigail Christine

    To play is to learn. A lack of empirical research within game-based learning literature, however, has hindered educational stakeholders to make informed decisions about game-based learning for 21st century STEM education. In this study, I modified a research and development (R&D) process to create a collaborative-competitive educational board game illuminating elements of earthquake engineering. I oriented instruction- and game-design principles around 21st century science education to adapt the R&D process to develop the educational game, Earthquake. As part of the R&D, I evaluated Earthquake for empirical evidence to support the claim that game-play results in student gains in critical thinking, scientific argumentation, metacognitive abilities, and earthquake engineering content knowledge. I developed Earthquake with the aid of eight focus groups with varying levels of expertise in science education research, teaching, administration, and game-design. After developing a functional prototype, I pilot-tested Earthquake with teacher-participants (n=14) who engaged in semi-structured interviews after their game-play. I analyzed teacher interviews with constant comparison methodology. I used teachers' comments and feedback from content knowledge experts to integrate game modifications, implementing results to improve Earthquake. I added player roles, simplified phrasing on cards, and produced an introductory video. I then administered the modified Earthquake game to two groups of high school student-participants (n = 6), who played twice. To seek evidence documenting support for my knowledge claim, I analyzed videotapes of students' game-play using a game-based learning checklist. My assessment of learning gains revealed increases in all categories of students' performance: critical thinking, metacognition, scientific argumentation, and earthquake engineering content knowledge acquisition. Players in both student-groups improved mostly in critical thinking, having

  10. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  11. Cluster-search based monitoring of local earthquakes in SeisComP3

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Becker, J.; Ellguth, E.; Herrnkind, S.; Weber, B.; Henneberger, R.; Blanck, H.

    2016-12-01

    We present a new cluster-search based SeisComP3 module for locating local and regional earthquakes in real time. Real-time earthquake monitoring systems such as SeisComP3 provide the backbones for earthquake early warning (EEW), tsunami early warning (TEW) and the rapid assessment of natural and induced seismicity. For any earthquake monitoring system fast and accurate event locations are fundamental determining the reliability and the impact of further analysis. SeisComP3 in the OpenSource version includes a two-stage detector for picking P waves and a phase associator for locating earthquakes based on P-wave detections. scanloc is a more advanced earthquake location program developed by gempa GmbH with seamless integration into SeisComP3. scanloc performs advanced cluster search to discriminate earthquakes occurring closely in space and time and makes additional use of S-wave detections. It has proven to provide fast and accurate earthquake locations at local and regional distances where it outperforms the base SeisComP3 tools. We demonstrate the performance of scanloc for monitoring induced seismicity as well as local and regional earthquakes in different tectonic regimes including subduction, spreading and intra-plate regions. In particular we present examples and catalogs from real-time monitoring of earthquake in Northern Chile based on data from the IPOC network by GFZ German Research Centre for Geosciences for the recent years. Depending on epicentral distance and data transmission, earthquake locations are available within a few seconds after origin time when using scanloc. The association of automatic S-wave detections provides a better constraint on focal depth.

  12. Prospective Validation of Pre-earthquake Atmospheric Signals and Their Potential for Short–term Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Lee, Lou; Liu, Tiger; Kafatos, Menas

    2015-04-01

    We are presenting the latest development in multi-sensors observations of short-term pre-earthquake phenomena preceding major earthquakes. Our challenge question is: "Whether such pre-earthquake atmospheric/ionospheric signals are significant and could be useful for early warning of large earthquakes?" To check the predictive potential of atmospheric pre-earthquake signals we have started to validate anomalous ionospheric / atmospheric signals in retrospective and prospective modes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (Satellite thermal infrared radiation (STIR), electron concentration in the ionosphere (GPS/TEC), radon/ion activities, air temperature and seismicity patterns) that were found to be associated with earthquakes. The science rationale for multidisciplinary analysis is based on concept Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) [Pulinets and Ouzounov, 2011], which explains the synergy of different geospace processes and anomalous variations, usually named short-term pre-earthquake anomalies. Our validation processes consist in two steps: (1) A continuous retrospective analysis preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009 (2) Prospective testing of STIR anomalies with potential for M5.5+ events. The retrospective tests (100+ major earthquakes, M>5.9, Taiwan and Japan) show STIR anomalous behavior before all of these events with false negatives close to zero. False alarm ratio for false positives is less then 25%. The initial prospective testing for STIR shows systematic appearance of anomalies in advance (1-30 days) to the M5.5+ events for Taiwan, Kamchatka-Sakhalin (Russia) and Japan. Our initial prospective results suggest that our approach show a systematic appearance of atmospheric anomalies, one to several days prior to the largest earthquakes That feature could be

  13. Stochastic Earthquake Rupture Modeling Using Nonparametric Co-Regionalization

    NASA Astrophysics Data System (ADS)

    Lee, Kyungbook; Song, Seok Goo

    2017-09-01

    Accurate predictions of the intensity and variability of ground motions are essential in simulation-based seismic hazard assessment. Advanced simulation-based ground motion prediction methods have been proposed to complement the empirical approach, which suffers from the lack of observed ground motion data, especially in the near-source region for large events. It is important to quantify the variability of the earthquake rupture process for future events and to produce a number of rupture scenario models to capture the variability in simulation-based ground motion predictions. In this study, we improved the previously developed stochastic earthquake rupture modeling method by applying the nonparametric co-regionalization, which was proposed in geostatistics, to the correlation models estimated from dynamically derived earthquake rupture models. The nonparametric approach adopted in this study is computationally efficient and, therefore, enables us to simulate numerous rupture scenarios, including large events ( M > 7.0). It also gives us an opportunity to check the shape of true input correlation models in stochastic modeling after being deformed for permissibility. We expect that this type of modeling will improve our ability to simulate a wide range of rupture scenario models and thereby predict ground motions and perform seismic hazard assessment more accurately.

  14. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    NASA Astrophysics Data System (ADS)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Zhao, L. Q.; Jiang, Y. H.; Tang, D.; Leng, X. P.

    2016-02-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.

  15. Operational earthquake forecasting can enhance earthquake preparedness

    USGS Publications Warehouse

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  16. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    NASA Astrophysics Data System (ADS)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median

  17. Earthquake Hazards.

    ERIC Educational Resources Information Center

    Donovan, Neville

    1979-01-01

    Provides a survey and a review of earthquake activity and global tectonics from the advancement of the theory of continental drift to the present. Topics include: an identification of the major seismic regions of the earth, seismic measurement techniques, seismic design criteria for buildings, and the prediction of earthquakes. (BT)

  18. In-situ fluid-pressure measurements for earthquake prediction: An example from a deep well at Hi Vista, California

    USGS Publications Warehouse

    Healy, J.H.; Urban, T.C.

    1985-01-01

    Short-term earthquake prediction requires sensitive instruments for measuring the small anomalous changes in stress and strain that precede earthquakes. Instruments installed at or near the surface have proven too noisy for measuring anomalies of the size expected to occur, and it is now recognized that even to have the possibility of a reliable earthquake-prediction system will require instruments installed in drill holes at depths sufficient to reduce the background noise to a level below that of the expected premonitory signals. We are conducting experiments to determine the maximum signal-to-noise improvement that can be obtained in drill holes. In a 592 m well in the Mojave Desert near Hi Vista, California, we measured water-level changes with amplitudes greater than 10 cm, induced by earth tides. By removing the effects of barometric pressure and the stress related to earth tides, we have achieved a sensitivity to volumetric strain rates of 10-9 to 10-10 per day. Further improvement may be possible, and it appears that a successful earthquake-prediction capability may be achieved with an array of instruments installed in drill holes at depths of about 1 km, assuming that the premonitory strain signals are, in fact, present. ?? 1985 Birkha??user Verlag.

  19. The 1868 Hayward Earthquake Alliance: A Case Study - Using an Earthquake Anniversary to Promote Earthquake Preparedness

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Garcia, S.; Aagaard, B. T.; Boatwright, J. J.; Dawson, T.; Hellweg, M.; Knudsen, K. L.; Perkins, J.; Schwartz, D. P.; Stoffer, P. W.; Zoback, M.

    2008-12-01

    Last October 21st marked the 140th anniversary of the M6.8 1868 Hayward Earthquake, the last damaging earthquake on the southern Hayward Fault. This anniversary was used to help publicize the seismic hazards associated with the fault because: (1) the past five such earthquakes on the Hayward Fault occurred about 140 years apart on average, and (2) the Hayward-Rodgers Creek Fault system is the most likely (with a 31 percent probability) fault in the Bay Area to produce a M6.7 or greater earthquake in the next 30 years. To promote earthquake awareness and preparedness, over 140 public and private agencies and companies and many individual joined the public-private nonprofit 1868 Hayward Earthquake Alliance (1868alliance.org). The Alliance sponsored many activities including a public commemoration at Mission San Jose in Fremont, which survived the 1868 earthquake. This event was followed by an earthquake drill at Bay Area schools involving more than 70,000 students. The anniversary prompted the Silver Sentinel, an earthquake response exercise based on the scenario of an earthquake on the Hayward Fault conducted by Bay Area County Offices of Emergency Services. 60 other public and private agencies also participated in this exercise. The California Seismic Safety Commission and KPIX (CBS affiliate) produced professional videos designed forschool classrooms promoting Drop, Cover, and Hold On. Starting in October 2007, the Alliance and the U.S. Geological Survey held a sequence of press conferences to announce the release of new research on the Hayward Fault as well as new loss estimates for a Hayward Fault earthquake. These included: (1) a ShakeMap for the 1868 Hayward earthquake, (2) a report by the U. S. Bureau of Labor Statistics forecasting the number of employees, employers, and wages predicted to be within areas most strongly shaken by a Hayward Fault earthquake, (3) new estimates of the losses associated with a Hayward Fault earthquake, (4) new ground motion

  20. Earthquake Forecasting Methodology Catalogue - A collection and comparison of the state-of-the-art in earthquake forecasting and prediction methodologies

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2015-04-01

    Earthquake forecasting and prediction has been one of the key struggles of modern geosciences for the last few decades. A large number of approaches for various time periods have been developed for different locations around the world. A categorization and review of more than 20 of new and old methods was undertaken to develop a state-of-the-art catalogue in forecasting algorithms and methodologies. The different methods have been categorised into time-independent, time-dependent and hybrid methods, from which the last group represents methods where additional data than just historical earthquake statistics have been used. It is necessary to categorize in such a way between pure statistical approaches where historical earthquake data represents the only direct data source and also between algorithms which incorporate further information e.g. spatial data of fault distributions or which incorporate physical models like static triggering to indicate future earthquakes. Furthermore, the location of application has been taken into account to identify methods which can be applied e.g. in active tectonic regions like California or in less active continental regions. In general, most of the methods cover well-known high-seismicity regions like Italy, Japan or California. Many more elements have been reviewed, including the application of established theories and methods e.g. for the determination of the completeness magnitude or whether the modified Omori law was used or not. Target temporal scales are identified as well as the publication history. All these different aspects have been reviewed and catalogued to provide an easy-to-use tool for the development of earthquake forecasting algorithms and to get an overview in the state-of-the-art.

  1. PAGER--Rapid assessment of an earthquake?s impact

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M.

    2010-01-01

    PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts--which were formerly sent based only on event magnitude and location, or population exposure to shaking--now will also be generated based on the estimated range of fatalities and economic losses.

  2. Statistical analysis of earthquakes after the 1999 MW 7.7 Chi-Chi, Taiwan, earthquake based on a modified Reasenberg-Jones model

    NASA Astrophysics Data System (ADS)

    Chen, Yuh-Ing; Huang, Chi-Shen; Liu, Jann-Yenq

    2015-12-01

    We investigated the temporal-spatial hazard of the earthquakes after the 1999 September 21 MW = 7.7 Chi-Chi shock in a continental region of Taiwan. The Reasenberg-Jones (RJ) model (Reasenberg and Jones, 1989, 1994) that combines the frequency-magnitude distribution (Gutenberg and Richter, 1944) and time-decaying occurrence rate (Utsu et al., 1995) is conventionally employed for assessing the earthquake hazard after a large shock. However, it is found that the b values in the frequency-magnitude distribution of the earthquakes in the study region dramatically decreased from background values after the Chi-Chi shock, and then gradually increased up. The observation of a time-dependent frequency-magnitude distribution motivated us to propose a modified RJ model (MRJ) to assess the earthquake hazard. To see how the models perform on assessing short-term earthquake hazard, the RJ and MRJ models were separately used to sequentially forecast earthquakes in the study region. To depict the potential rupture area for future earthquakes, we further constructed relative hazard (RH) maps based on the two models. The Receiver Operating Characteristics (ROC) curves (Swets, 1988) finally demonstrated that the RH map based on the MRJ model was, in general, superior to the one based on the original RJ model for exploring the spatial hazard of earthquakes in a short time after the Chi-Chi shock.

  3. Predicting earthquake effects—Learning from Northridge and Loma Prieta

    USGS Publications Warehouse

    Holzer, Thomas L.

    1994-01-01

    The continental United States has been rocked by two particularly damaging earthquakes in the last 4.5 years, Loma Prieta in northern California in 1989 and Northridge in southern California in 1994. Combined losses from these two earthquakes approached $30 billion. Approximately half these losses were reimbursed by the federal government. Because large earthquakes typically overwhelm state resources and place unplanned burdens on the federal government, it is important to learn from these earthquakes how to reduce future losses. My purpose here is to explore a potential implication of the Northridge and Loma Prieta earthquakes for hazard-mitigation strategies: earth scientists should increase their efforts to map hazardous areas within urban regions. 

  4. Parallelization of the Coupled Earthquake Model

    NASA Technical Reports Server (NTRS)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  5. Fear based Education or Curiosity based Education as an Example of Earthquake and Natural Disaster Education: Results of Statistical Study in Primary Schools in Istanbul-Turkey

    NASA Astrophysics Data System (ADS)

    Ozcep, T.; Ozcep, F.

    2012-04-01

    Natural disaster reduction focuses on the urgent need for prevention activities to reduce loss of life, damage to property, infrastructure and environment, and the social and economic disruption caused by natural hazards. One of the most important factors in reduction of the potential damage of earthquakes is trained manpower. To understanding the causes of earthquakes and other natural phenomena (landslides, avalanches, floods, volcanoes, etc.) is one of the pre-conditions to show a conscious behavior. The aim of the study is to analysis and to investigate, how earthquakes and other natural phenomena are perceived by the students and the possible consequences of this perception, and their effects of reducing earthquake damage. One of the crucial questions is that is our education system fear or curiosity based education system? Effects of the damages due to earthquakes have led to look like a fear subject. In fact, due to the results of the effects, the earthquakes are perceived scary phenomena. In the first stage of the project, the learning (or perception) levels of earthquakes and other natural disasters for the students of primary school are investigated with a survey. Aim of this survey study of earthquakes and other natural phenomena is that have the students fear based or curiosity based approaching to the earthquakes and other natural events. In the second stage of the project, the path obtained by the survey are evaluated with the statistical point of approach. A questionnaire associated with earthquakes and natural disasters are applied to primary school students (that total number of them is approximately 700 pupils) to measure the curiosity and/or fear levels. The questionnaire consists of 17 questions related to natural disasters. The questions are: "What is the Earthquake ?", "What is power behind earthquake?", "What is the mental response during the earthquake ?", "Did we take lesson from earthquake's results ?", "Are you afraid of earthquake

  6. Operational Earthquake Forecasting and Decision-Making in a Low-Probability Environment

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; the International Commission on Earthquake ForecastingCivil Protection

    2011-12-01

    Operational earthquake forecasting (OEF) is the dissemination of authoritative information about the time dependence of seismic hazards to help communities prepare for potentially destructive earthquakes. Most previous work on the public utility of OEF has anticipated that forecasts would deliver high probabilities of large earthquakes; i.e., deterministic predictions with low error rates (false alarms and failures-to-predict) would be possible. This expectation has not been realized. An alternative to deterministic prediction is probabilistic forecasting based on empirical statistical models of aftershock triggering and seismic clustering. During periods of high seismic activity, short-term earthquake forecasts can attain prospective probability gains in excess of 100 relative to long-term forecasts. The utility of such information is by no means clear, however, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing OEF in this sort of "low-probability environment." The need to move more quickly has been underscored by recent seismic crises, such as the 2009 L'Aquila earthquake sequence, in which an anxious public was confused by informal and inaccurate earthquake predictions. After the L'Aquila earthquake, the Italian Department of Civil Protection appointed an International Commission on Earthquake Forecasting (ICEF), which I chaired, to recommend guidelines for OEF utilization. Our report (Ann. Geophys., 54, 4, 2011; doi: 10.4401/ag-5350) concludes: (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and timely, and need to convey epistemic uncertainties. (b) Earthquake probabilities should be based on operationally qualified, regularly updated forecasting systems. (c) All operational models should be evaluated

  7. Measuring the effectiveness of earthquake forecasting in insurance strategies

    NASA Astrophysics Data System (ADS)

    Mignan, A.; Muir-Wood, R.

    2009-04-01

    Given the difficulty of judging whether the skill of a particular methodology of earthquake forecasts is offset by the inevitable false alarms and missed predictions, it is important to find a means to weigh the successes and failures according to a common currency. Rather than judge subjectively the relative costs and benefits of predictions, we develop a simple method to determine if the use of earthquake forecasts can increase the profitability of active financial risk management strategies employed in standard insurance procedures. Three types of risk management transactions are employed: (1) insurance underwriting, (2) reinsurance purchasing and (3) investment in CAT bonds. For each case premiums are collected based on modelled technical risk costs and losses are modelled for the portfolio in force at the time of the earthquake. A set of predetermined actions follow from the announcement of any change in earthquake hazard, so that, for each earthquake forecaster, the financial performance of an active risk management strategy can be compared with the equivalent passive strategy in which no notice is taken of earthquake forecasts. Overall performance can be tracked through time to determine which strategy gives the best long term financial performance. This will be determined by whether the skill in forecasting the location and timing of a significant earthquake (where loss is avoided) is outweighed by false predictions (when no premium is collected). This methodology is to be tested in California, where catastrophe modeling is reasonably mature and where a number of researchers issue earthquake forecasts.

  8. Purposes and methods of scoring earthquake forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2010-12-01

    There are two kinds of purposes in the studies on earthquake prediction or forecasts: one is to give a systematic estimation of earthquake risks in some particular region and period in order to give advice to governments and enterprises for the use of reducing disasters, the other one is to search for reliable precursors that can be used to improve earthquake prediction or forecasts. For the first case, a complete score is necessary, while for the latter case, a partial score, which can be used to evaluate whether the forecasts or predictions have some advantages than a well know model, is necessary. This study reviews different scoring methods for evaluating the performance of earthquake prediction and forecasts. Especially, the gambling scoring method, which is developed recently, shows its capacity in finding good points in an earthquake prediction algorithm or model that are not in a reference model, even if its overall performance is no better than the reference model.

  9. Earthquake Hazard and Risk Assessment based on Unified Scaling Law for Earthquakes: Altai-Sayan Region

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.; Nekrasova, A.

    2017-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 - M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum credible magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g. peak ground acceleration, PGA, or macro-seismic intensity etc.). After a rigorous testing against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory, etc.). This, USLE based, methodology of seismic hazard and risks assessment is applied to the territory of Altai-Sayan Region, of Russia. The study supported by the Russian Science Foundation Grant No. 15-17-30020.

  10. Report of the International Commission on Earthquake Forecasting for Civil Protection (Invited)

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2009-12-01

    The destructive L’Aquila earthquake of 6 April 2009 (Mw 6.3) illustrates the challenges of operational earthquake forecasting. The earthquake ruptured a mapped normal fault in a region identified by long-term forecasting models as one of the most seismically dangerous in Italy; it was the strongest of a rich sequence that started several months earlier and included a M3.9 foreshock less than five hours prior to the mainshock. According to widely circulated news reports, the earthquake had been predicted by a local resident using unpublished radon-based techniques, provoking a public controversy prior to the event that intensified in its wake. Several weeks after the earthquake, the Italian Department of Civil Protection appointed an international commission with the mandate to report on the current state of knowledge of prediction and forecasting and guidelines for operational utilization. The commission included geoscientists from China, France, Germany, Greece, Italy, Japan, Russia, United Kingdom, and United States with experience in earthquake forecasting and prediction. This presentation by the chair of the commission will report on its findings and recommendations.

  11. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  12. Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models

    USGS Publications Warehouse

    Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas

    2013-01-01

    The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.

  13. Issues on the Japanese Earthquake Hazard Evaluation

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Fukushima, Y.; Sagiya, T.

    2013-12-01

    The 2011 Great East Japan Earthquake forced the policy of counter-measurements to earthquake disasters, including earthquake hazard evaluations, to be changed in Japan. Before the March 11, Japanese earthquake hazard evaluation was based on the history of earthquakes that repeatedly occurs and the characteristic earthquake model. The source region of an earthquake was identified and its occurrence history was revealed. Then the conditional probability was estimated using the renewal model. However, the Japanese authorities changed the policy after the megathrust earthquake in 2011 such that the largest earthquake in a specific seismic zone should be assumed on the basis of available scientific knowledge. According to this policy, three important reports were issued during these two years. First, the Central Disaster Management Council issued a new estimate of damages by a hypothetical Mw9 earthquake along the Nankai trough during 2011 and 2012. The model predicts a 34 m high tsunami on the southern Shikoku coast and intensity 6 or higher on the JMA scale in most area of Southwest Japan as the maximum. Next, the Earthquake Research Council revised the long-term earthquake hazard evaluation of earthquakes along the Nankai trough in May 2013, which discarded the characteristic earthquake model and put much emphasis on the diversity of earthquakes. The so-called 'Tokai' earthquake was negated in this evaluation. Finally, another report by the CDMC concluded that, with the current knowledge, it is hard to predict the occurrence of large earthquakes along the Nankai trough using the present techniques, based on the diversity of earthquake phenomena. These reports created sensations throughout the country and local governments are struggling to prepare counter-measurements. These reports commented on large uncertainty in their evaluation near their ends, but are these messages transmitted properly to the public? Earthquake scientists, including authors, are involved in

  14. A seismoacoustic study of the 2011 January 3 Circleville earthquake

    NASA Astrophysics Data System (ADS)

    Arrowsmith, Stephen J.; Burlacu, Relu; Pankow, Kristine; Stump, Brian; Stead, Richard; Whitaker, Rod; Hayward, Chris

    2012-05-01

    We report on a unique set of infrasound observations from a single earthquake, the 2011 January 3 Circleville earthquake (Mw 4.7, depth of 8 km), which was recorded by nine infrasound arrays in Utah. Based on an analysis of the signal arrival times and backazimuths at each array, we find that the infrasound arrivals at six arrays can be associated to the same source and that the source location is consistent with the earthquake epicentre. Results of propagation modelling indicate that the lack of associated arrivals at the remaining three arrays is due to path effects. Based on these findings we form the working hypothesis that the infrasound is generated by body waves causing the epicentral region to pump the atmosphere, akin to a baffled piston. To test this hypothesis, we have developed a numerical seismoacoustic model to simulate the generation of epicentral infrasound from earthquakes. We model the generation of seismic waves using a 3-D finite difference algorithm that accounts for the earthquake moment tensor, source time function, depth and local geology. The resultant acceleration-time histories on a 2-D grid at the surface then provide the initial conditions for modelling the near-field infrasonic pressure wave using the Rayleigh integral. Finally, we propagate the near-field source pressure through the Ground-to-Space atmospheric model using a time-domain Parabolic Equation technique. By comparing the resultant predictions with the six epicentral infrasound observations from the 2011 January 3, Circleville earthquake, we show that the observations agree well with our predictions. The predicted and observed amplitudes are within a factor of 2 (on average, the synthetic amplitudes are a factor of 1.6 larger than the observed amplitudes). In addition, arrivals are predicted at all six arrays where signals are observed, and importantly not predicted at the remaining three arrays. Durations are typically predicted to within a factor of 2, and in some cases

  15. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors?

    NASA Astrophysics Data System (ADS)

    Dolan, James F.; Meade, Brendan J.

    2017-12-01

    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  16. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  17. A Crowdsourcing-based Taiwan Scientific Earthquake Reporting System

    NASA Astrophysics Data System (ADS)

    Liang, W. T.; Lee, J. C.; Lee, C. F.

    2017-12-01

    To collect immediately field observations for any earthquake-induced ground damages, such as surface fault rupture, landslide, rock fall, liquefaction, and landslide-triggered dam or lake, etc., we are developing an earthquake damage reporting system which particularly relies on school teachers as volunteers after taking a series of training courses organized by this project. This Taiwan Scientific Earthquake Reporting (TSER) system is based on the Ushahidi mapping platform, which has been widely used for crowdsourcing on different purposes. Participants may add an app-like icon for mobile devices to this website at https://ies-tser.iis.sinica.edu.tw. Right after a potential damaging earthquake occurred in the Taiwan area, trained volunteers will be notified/dispatched to the source area to carry out field surveys and to describe the ground damages through this system. If the internet is available, they may also upload some relevant images in the field right away. This collected information will be shared with all public after a quick screen by the on-duty scientists. To prepare for the next strong earthquake, we set up a specific project on TSER for sharing spectacular/remarkable geologic features wherever possible. This is to help volunteers get used to this system and share any teachable material on this platform. This experimental, science-oriented crowdsourcing system was launched early this year. Together with a DYFI-like intensity reporting system, Taiwan Quake-Catcher Network, and some online games and teaching materials, the citizen seismology has been much improved in Taiwan in the last decade. All these constructed products are now either operated or promoted at the Taiwan Earthquake Research Center (TEC). With these newly developed platforms and materials, we are aiming not only to raise the earthquake awareness and preparedness, but also to encourage public participation in earthquake science in Taiwan.

  18. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  19. Statistical aspects and risks of human-caused earthquakes

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2013-12-01

    The seismological community invests ample human capital and financial resources to research and predict risks associated with earthquakes. Industries such as the insurance and re-insurance sector are equally interested in using probabilistic risk models developed by the scientific community to transfer risks. These models are used to predict expected losses due to naturally occurring earthquakes. But what about the risks associated with human-caused earthquakes? Such risk models are largely absent from both industry and academic discourse. In countries around the world, informed citizens are becoming increasingly aware and concerned that this economic bias is not sustainable for long-term economic growth, environmental and human security. Ultimately, citizens look to their government officials to hold industry accountable. In the Netherlands, for example, the hydrocarbon industry is held accountable for causing earthquakes near Groningen. In Switzerland, geothermal power plants were shut down or suspended because they caused earthquakes in canton Basel and St. Gallen. The public and the private non-extractive industry needs access to information about earthquake risks in connection with sub/urban geoengineeing activities, including natural gas production through fracking, geothermal energy production, carbon sequestration, mining and water irrigation. This presentation illuminates statistical aspects of human-caused earthquakes with respect to different geologic environments. Statistical findings are based on the first catalog of human-caused earthquakes (in Klose 2013). Findings are discussed which include the odds to die during a medium-size earthquake that is set off by geomechanical pollution. Any kind of geoengineering activity causes this type of pollution and increases the likelihood of triggering nearby faults to rupture.

  20. Development of optimization-based probabilistic earthquake scenarios for the city of Tehran

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Peyghaleh, E.

    2016-01-01

    This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less

  1. Microearthquake networks and earthquake prediction

    USGS Publications Warehouse

    Lee, W.H.K.; Steward, S. W.

    1979-01-01

    A microearthquake network is a group of highly sensitive seismographic stations designed primarily to record local earthquakes of magnitudes less than 3. Depending on the application, a microearthquake network will consist of several stations or as many as a few hundred . They are usually classified as either permanent or temporary. In a permanent network, the seismic signal from each is telemetered to a central recording site to cut down on the operating costs and to allow more efficient and up-to-date processing of the data. However, telemetering can restrict the location sites because of the line-of-site requirement for radio transmission or the need for telephone lines. Temporary networks are designed to be extremely portable and completely self-contained so that they can be very quickly deployed. They are most valuable for recording aftershocks of a major earthquake or for studies in remote areas.  

  2. Simulation of earthquake ground motions in the eastern United States using deterministic physics‐based and site‐based stochastic approaches

    USGS Publications Warehouse

    Rezaeian, Sanaz; Hartzell, Stephen; Sun, Xiaodan; Mendoza, Carlos

    2017-01-01

    Earthquake ground‐motion recordings are scarce in the central and eastern United States (CEUS) for large‐magnitude events and at close distances. We use two different simulation approaches, a deterministic physics‐based method and a site‐based stochastic method, to simulate ground motions over a wide range of magnitudes. Drawing on previous results for the modeling of recordings from the 2011 Mw 5.8 Mineral, Virginia, earthquake and using the 2001 Mw 7.6 Bhuj, India, earthquake as a tectonic analog for a large magnitude CEUS event, we are able to calibrate the two simulation methods over this magnitude range. Both models show a good fit to the Mineral and Bhuj observations from 0.1 to 10 Hz. Model parameters are then adjusted to obtain simulations for Mw 6.5, 7.0, and 7.6 events in the CEUS. Our simulations are compared with the 2014 U.S. Geological Survey weighted combination of existing ground‐motion prediction equations in the CEUS. The physics‐based simulations show comparable response spectral amplitudes and a fairly similar attenuation with distance. The site‐based stochastic simulations suggest a slightly faster attenuation of the response spectral amplitudes with distance for larger magnitude events and, as a result, slightly lower amplitudes at distances greater than 200 km. Both models are plausible alternatives and, given the few available data points in the CEUS, can be used to represent the epistemic uncertainty in modeling of postulated CEUS large‐magnitude events.

  3. Operational Earthquake Forecasting: Proposed Guidelines for Implementation (Invited)

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2010-12-01

    The goal of operational earthquake forecasting (OEF) is to provide the public with authoritative information about how seismic hazards are changing with time. During periods of high seismic activity, short-term earthquake forecasts based on empirical statistical models can attain nominal probability gains in excess of 100 relative to the long-term forecasts used in probabilistic seismic hazard analysis (PSHA). Prospective experiments are underway by the Collaboratory for the Study of Earthquake Predictability (CSEP) to evaluate the reliability and skill of these seismicity-based forecasts in a variety of tectonic environments. How such information should be used for civil protection is by no means clear, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing formal procedures for OEF in this sort of “low-probability environment.” Nevertheless, the need to move more quickly towards OEF has been underscored by recent experiences, such as the 2009 L’Aquila earthquake sequence and other seismic crises in which an anxious public has been confused by informal, inconsistent earthquake forecasts. Whether scientists like it or not, rising public expectations for real-time information, accelerated by the use of social media, will require civil protection agencies to develop sources of authoritative information about the short-term earthquake probabilities. In this presentation, I will discuss guidelines for the implementation of OEF informed by my experience on the California Earthquake Prediction Evaluation Council, convened by CalEMA, and the International Commission on Earthquake Forecasting, convened by the Italian government following the L’Aquila disaster. (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and

  4. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    NASA Astrophysics Data System (ADS)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  5. Prediction of spectral acceleration response ordinates based on PGA attenuation

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  6. Comparison of Ground Motion Prediction Equations (GMPE) for Chile and Canada With Recent Chilean Megathust Earthquakes

    NASA Astrophysics Data System (ADS)

    Herrera, C.; Cassidy, J. F.; Dosso, S. E.

    2017-12-01

    The ground shaking assessment allows quantifying the hazards associated with the occurrence of earthquakes. Chile and western Canada are two areas that have experienced, and are susceptible to imminent large crustal, in-slab and megathrust earthquakes that can affect the population significantly. In this context, we compare the current GMPEs used in the 2015 National Building Code of Canada and the most recent GMPEs calculated for Chile, with observed accelerations generated by four recent Chilean megathrust earthquakes (MW ≥ 7.7) that have occurred during the past decade, which is essential to quantify how well current models predict observations of major events.We collected the 3-component waveform data of more than 90 stations from the Centro Sismologico Nacional and the Universidad de Chile, and processed them by removing the trend and applying a band-pass filter. Then, for each station, we obtained the Peak Ground Acceleration (PGA), and by using a damped response spectra, we calculated the Pseudo Spectral Acceleration (PSA). Finally, we compared those observations with the most recent Chilean and Canadian GMPEs. Given the lack of geotechnical information for most of the Chilean stations, we also used a new method to obtain the VS30 by inverting the H/V ratios using a trans-dimensional Bayesian inversion, which allows us to improve the correction of observations according to soil conditions.As expected, our results show a good fit between observations and the Chilean GMPEs, but we observe that although the shape of the Canadian GMPEs is coherent with the distribution of observations, in general they under predict the observations for PGA and PSA at shorter periods for most of the considered earthquakes. An example of this can be seen in the attached figure for the case of the 2014 Iquique earthquake.These results present important implications related to the hazards associated to large earthquakes, especially for western Canada, where the probability of a

  7. e-Science on Earthquake Disaster Mitigation by EUAsiaGrid

    NASA Astrophysics Data System (ADS)

    Yen, Eric; Lin, Simon; Chen, Hsin-Yen; Chao, Li; Huang, Bor-Shoh; Liang, Wen-Tzong

    2010-05-01

    Although earthquake is not predictable at this moment, with the aid of accurate seismic wave propagation analysis, we could simulate the potential hazards at all distances from possible fault sources by understanding the source rupture process during large earthquakes. With the integration of strong ground-motion sensor network, earthquake data center and seismic wave propagation analysis over gLite e-Science Infrastructure, we could explore much better knowledge on the impact and vulnerability of potential earthquake hazards. On the other hand, this application also demonstrated the e-Science way to investigate unknown earth structure. Regional integration of earthquake sensor networks could aid in fast event reporting and accurate event data collection. Federation of earthquake data center entails consolidation and sharing of seismology and geology knowledge. Capability building of seismic wave propagation analysis implies the predictability of potential hazard impacts. With gLite infrastructure and EUAsiaGrid collaboration framework, earth scientists from Taiwan, Vietnam, Philippine, Thailand are working together to alleviate potential seismic threats by making use of Grid technologies and also to support seismology researches by e-Science. A cross continental e-infrastructure, based on EGEE and EUAsiaGrid, is established for seismic wave forward simulation and risk estimation. Both the computing challenge on seismic wave analysis among 5 European and Asian partners, and the data challenge for data center federation had been exercised and verified. Seismogram-on-Demand service is also developed for the automatic generation of seismogram on any sensor point to a specific epicenter. To ease the access to all the services based on users workflow and retain the maximal flexibility, a Seismology Science Gateway integating data, computation, workflow, services and user communities would be implemented based on typical use cases. In the future, extension of the

  8. Earthquake number forecasts testing

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2017-10-01

    and kurtosis both tend to zero for large earthquake rates: for the Gaussian law, these values are identically zero. A calculation of the NBD skewness and kurtosis levels based on the values of the first two statistical moments of the distribution, shows rapid increase of these upper moments levels. However, the observed catalogue values of skewness and kurtosis are rising even faster. This means that for small time intervals, the earthquake number distribution is even more heavy-tailed than the NBD predicts. Therefore for small time intervals, we propose using empirical number distributions appropriately smoothed for testing forecasted earthquake numbers.

  9. A new scoring method for evaluating the performance of earthquake forecasts and predictions

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2009-12-01

    This study presents a new method, namely the gambling score, for scoring the performance of earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. A fair scoring scheme should reward the success in a way that is compatible with the risk taken. Suppose that we have the reference model, usually the Poisson model for usual cases or Omori-Utsu formula for the case of forecasting aftershocks, which gives probability p0 that at least 1 event occurs in a given space-time-magnitude window. The forecaster, similar to a gambler, who starts with a certain number of reputation points, bets 1 reputation point on ``Yes'' or ``No'' according to his forecast, or bets nothing if he performs a NA-prediction. If the forecaster bets 1 reputation point of his reputations on ``Yes" and loses, the number of his reputation points is reduced by 1; if his forecasts is successful, he should be rewarded (1-p0)/p0 reputation points. The quantity (1-p0)/p0 is the return (reward/bet) ratio for bets on ``Yes''. In this way, if the reference model is correct, the expected return that he gains from this bet is 0. This rule also applies to probability forecasts. Suppose that p is the occurrence probability of an earthquake given by the forecaster. We can regard the forecaster as splitting 1 reputation point by betting p on ``Yes'' and 1-p on ``No''. In this way, the forecaster's expected pay-off based on the reference model is still 0. From the viewpoints of both the reference model and the forecaster, the rule for rewarding and punishment is fair. This method is also extended to the continuous case of point process models, where the reputation points bet by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when

  10. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  11. Two grave issues concerning the expected Tokai Earthquake

    NASA Astrophysics Data System (ADS)

    Mogi, K.

    2004-08-01

    The possibility of a great shallow earthquake (M 8) in the Tokai region, central Honshu, in the near future was pointed out by Mogi in 1969 and by the Coordinating Committee for Earthquake Prediction (CCEP), Japan (1970). In 1978, the government enacted the Large-Scale Earthquake Countermeasures Law and began to set up intensified observations in this region for short-term prediction of the expected Tokai earthquake. In this paper, two serious issues are pointed out, which may contribute to catastrophic effects in connection with the Tokai earthquake: 1. The danger of black-and-white predictions: According to the scenario based on the Large-Scale Earthquake Countermeasures Law, if abnormal crustal changes are observed, the Earthquake Assessment Committee (EAC) will determine whether or not there is an imminent danger. The findings are reported to the Prime Minister who decides whether to issue an official warning statement. Administrative policy clearly stipulates the measures to be taken in response to such a warning, and because the law presupposes the ability to predict a large earthquake accurately, there are drastic measures appropriate to the situation. The Tokai region is a densely populated region with high social and economic activity, and it is traversed by several vital transportation arteries. When a warning statement is issued, all transportation is to be halted. The Tokyo capital region would be cut off from the Nagoya and Osaka regions, and there would be a great impact on all of Japan. I (the former chairman of EAC) maintained that in view of the variety and complexity of precursory phenomena, it was inadvisable to attempt a black-and-white judgment as the basis for a "warning statement". I urged that the government adopt a "soft warning" system that acknowledges the uncertainty factor and that countermeasures be designed with that uncertainty in mind. 2. The danger of nuclear power plants in the focal region: Although the possibility of the

  12. An interdisciplinary approach to study Pre-Earthquake processes

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Hattori, K.; Taylor, P. T.

    2017-12-01

    We will summarize a multi-year research effort on wide-ranging observations of pre-earthquake processes. Based on space and ground data we present some new results relevant to the existence of pre-earthquake signals. Over the past 15-20 years there has been a major revival of interest in pre-earthquake studies in Japan, Russia, China, EU, Taiwan and elsewhere. Recent large magnitude earthquakes in Asia and Europe have shown the importance of these various studies in the search for earthquake precursors either for forecasting or predictions. Some new results were obtained from modeling of the atmosphere-ionosphere connection and analyses of seismic records (foreshocks /aftershocks), geochemical, electromagnetic, and thermodynamic processes related to stress changes in the lithosphere, along with their statistical and physical validation. This cross - disciplinary approach could make an impact on our further understanding of the physics of earthquakes and the phenomena that precedes their energy release. We also present the potential impact of these interdisciplinary studies to earthquake predictability. A detail summary of our approach and that of several international researchers will be part of this session and will be subsequently published in a new AGU/Wiley volume. This book is part of the Geophysical Monograph series and is intended to show the variety of parameters seismic, atmospheric, geochemical and historical involved is this important field of research and will bring this knowledge and awareness to a broader geosciences community.

  13. First Results of the Regional Earthquake Likelihood Models Experiment

    USGS Publications Warehouse

    Schorlemmer, D.; Zechar, J.D.; Werner, M.J.; Field, E.H.; Jackson, D.D.; Jordan, T.H.

    2010-01-01

    The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment-a truly prospective earthquake prediction effort-is underway within the U. S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary-the forecasts were meant for an application of 5 years-we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one. ?? 2010 The Author(s).

  14. First Results of the Regional Earthquake Likelihood Models Experiment

    NASA Astrophysics Data System (ADS)

    Schorlemmer, Danijel; Zechar, J. Douglas; Werner, Maximilian J.; Field, Edward H.; Jackson, David D.; Jordan, Thomas H.

    2010-08-01

    The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment—a truly prospective earthquake prediction effort—is underway within the U.S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary—the forecasts were meant for an application of 5 years—we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one.

  15. Physics-based and statistical earthquake forecasting in a continental rift zone: the case study of Corinth Gulf (Greece)

    NASA Astrophysics Data System (ADS)

    Segou, Margarita

    2016-01-01

    I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth <15 km) with magnitude M ≥ 3.0 for the time period between 1995 and 2013. I compare two short-term earthquake clustering models, based on epidemic-type aftershock sequence (ETAS) statistics, four physics-based (CRS) models, combining static stress change estimations and the rate-and-state laboratory law and one hybrid model. For the latter models, I incorporate the stress changes imparted from 31 earthquakes with magnitude M ≥ 4.5 at the extended area of wCG. Special attention is given on the 3-D representation of active faults, acting as potential receiver planes for the estimation of static stress changes. I use reference seismicity between 1990 and 1995, corresponding to the learning phase of physics-based models, and I evaluate the forecasts for six months following the 1995 M = 6.4 Aigio earthquake using log-likelihood performance metrics. For the ETAS realizations, I use seismic events with magnitude M ≥ 2.5 within daily update intervals to enhance their predictive power. For assessing the role of background seismicity, I implement a stochastic reconstruction (aka declustering) aiming to answer whether M > 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio RN = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches RN = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable

  16. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  17. Simulation Based Earthquake Forecasting with RSQSim

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. J.; Jordan, T. H.; Dieterich, J. H.; Richards-Dinger, K. B.

    2016-12-01

    We are developing a physics-based forecasting model for earthquake ruptures in California. We employ the 3D boundary element code RSQSim to generate synthetic catalogs with millions of events that span up to a million years. The simulations incorporate rate-state fault constitutive properties in complex, fully interacting fault systems. The Unified California Earthquake Rupture Forecast Version 3 (UCERF3) model and data sets are used for calibration of the catalogs and specification of fault geometry. Fault slip rates match the UCERF3 geologic slip rates and catalogs are tuned such that earthquake recurrence matches the UCERF3 model. Utilizing the Blue Waters Supercomputer, we produce a suite of million-year catalogs to investigate the epistemic uncertainty in the physical parameters used in the simulations. In particular, values of the rate- and state-friction parameters a and b, the initial shear and normal stress, as well as the earthquake slip speed, are varied over several simulations. In addition to testing multiple models with homogeneous values of the physical parameters, the parameters a, b, and the normal stress are varied with depth as well as in heterogeneous patterns across the faults. Cross validation of UCERF3 and RSQSim is performed within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM) to determine the affect of the uncertainties in physical parameters observed in the field and measured in the lab, on the uncertainties in probabilistic forecasting. We are particularly interested in the short-term hazards of multi-event sequences due to complex faulting and multi-fault ruptures.

  18. Classification of Earthquake-triggered Landslide Events - Review of Classical and Particular Cases

    NASA Astrophysics Data System (ADS)

    Braun, A.; Havenith, H. B.; Schlögel, R.

    2016-12-01

    Seismically induced landslides often contribute to a significant degree to the losses related to earthquakes. The identification of possible extends of landslide affected areas can help to target emergency measures when an earthquake occurs or improve the resilience of inhabited areas and critical infrastructure in zones of high seismic hazard. Moreover, landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes in paleoseismic studies, allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. Inspired by classical reviews of earthquake induced landslides, e.g. by Keefer or Jibson, we present here a review of factors contributing to earthquake triggered slope failures based on an `event-by-event' classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, `Intensity', `Fault', `Topographic energy', `Climatic conditions' and `Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be crosschecked. We present cases where our prediction model performs well and discuss particular cases

  19. Magnitude Dependent Seismic Quiescence of 2008 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Suyehiro, K.; Sacks, S. I.; Takanami, T.; Smith, D. E.; Rydelek, P. A.

    2014-12-01

    The change in seismicity leading to the Wenchuan Earthquake in 2008 (Mw 7.9) has been studied by various authors based on statistics and/or pattern recognitions (Huang, 2008; Yan et al., 2009; Chen and Wang, 2010; Yi et al., 2011). We show, in particular, that the magnitude-dependent seismic quiescence is observed for the Wenchuan earthquake and that it adds to other similar observations. Such studies on seismic quiescence prior to major earthquakes include 1982 Urakawa-Oki earthquake (M 7.1) (Taylor et al., 1992), 1994 Hokkaido-Toho-Oki earthquake (Mw=8.2) (Takanami et al., 1996), 2011 Tohoku earthquake (Mw=9.0) (Katsumata, 2011). Smith and Sacks (2013) proposed a magnitude-dependent quiescence based on a physical earthquake model (Rydelek and Sacks, 1995) and demonstrated the quiescence can be reproduced by the introduction of "asperities" (dilantacy hardened zones). Actual observations indicate the change occurs in a broader area than the eventual earthquake fault zone. In order to accept the explanation, we need to verify the model as the model predicts somewhat controversial features of earthquakes such as the magnitude dependent stress drop at lower magnitude range or the dynamically appearing asperities and repeating slips in some parts of the rupture zone. We show supportive observations. We will also need to verify the dilatancy diffusion to be taking place. So far, we only seem to have indirect evidences, which need to be more quantitatively substantiated.

  20. Understanding Earthquake Hazard & Disaster in Himalaya - A Perspective on Earthquake Forecast in Himalayan Region of South Central Tibet

    NASA Astrophysics Data System (ADS)

    Shanker, D.; Paudyal, ,; Singh, H.

    2010-12-01

    It is not only the basic understanding of the phenomenon of earthquake, its resistance offered by the designed structure, but the understanding of the socio-economic factors, engineering properties of the indigenous materials, local skill and technology transfer models are also of vital importance. It is important that the engineering aspects of mitigation should be made a part of public policy documents. Earthquakes, therefore, are and were thought of as one of the worst enemies of mankind. Due to the very nature of release of energy, damage is evident which, however, will not culminate in a disaster unless it strikes a populated area. The word mitigation may be defined as the reduction in severity of something. The Earthquake disaster mitigation, therefore, implies that such measures may be taken which help reduce severity of damage caused by earthquake to life, property and environment. While “earthquake disaster mitigation” usually refers primarily to interventions to strengthen the built environment, and “earthquake protection” is now considered to include human, social and administrative aspects of reducing earthquake effects. It should, however, be noted that reduction of earthquake hazards through prediction is considered to be the one of the effective measures, and much effort is spent on prediction strategies. While earthquake prediction does not guarantee safety and even if predicted correctly the damage to life and property on such a large scale warrants the use of other aspects of mitigation. While earthquake prediction may be of some help, mitigation remains the main focus of attention of the civil society. Present study suggests that anomalous seismic activity/ earthquake swarm existed prior to the medium size earthquakes in the Nepal Himalaya. The mainshocks were preceded by the quiescence period which is an indication for the occurrence of future seismic activity. In all the cases, the identified episodes of anomalous seismic activity were

  1. Earthquake hazard and risk assessment based on Unified Scaling Law for Earthquakes: Greater Caucasus and Crimea

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir G.; Nekrasova, Anastasia K.

    2018-05-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10 N(M, L) = A + B·(5 - M) + C·log10 L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.

  2. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  3. Earthquake watch

    USGS Publications Warehouse

    Hill, M.

    1976-01-01

     When the time comes that earthquakes can be predicted accurately, what shall we do with the knowledge? This was the theme of a November 1975 conference on earthquake warning and response held in San Francisco called by Assistant Secretary of the Interior Jack W. Carlson. Invited were officials of State and local governments from Alaska, California, Hawaii, Idaho, Montana, Nevada, utah, Washington, and Wyoming and representatives of the news media. 

  4. Knowledge base about earthquakes as a tool to minimize strong events consequences

    NASA Astrophysics Data System (ADS)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej

    2017-04-01

    The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653

  5. An atlas of ShakeMaps for selected global earthquakes

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.; Hotovec, Alicia J.; Lin, Kuo-Wan; Earle, Paul S.; Marano, Kristin D.

    2008-01-01

    An atlas of maps of peak ground motions and intensity 'ShakeMaps' has been developed for almost 5,000 recent and historical global earthquakes. These maps are produced using established ShakeMap methodology (Wald and others, 1999c; Wald and others, 2005) and constraints from macroseismic intensity data, instrumental ground motions, regional topographically-based site amplifications, and published earthquake-rupture models. Applying the ShakeMap methodology allows a consistent approach to combine point observations with ground-motion predictions to produce descriptions of peak ground motions and intensity for each event. We also calculate an estimated ground-motion uncertainty grid for each earthquake. The Atlas of ShakeMaps provides a consistent and quantitative description of the distribution and intensity of shaking for recent global earthquakes (1973-2007) as well as selected historic events. As such, the Atlas was developed specifically for calibrating global earthquake loss estimation methodologies to be used in the U.S. Geological Survey Prompt Assessment of Global Earthquakes for Response (PAGER) Project. PAGER will employ these loss models to rapidly estimate the impact of global earthquakes as part of the USGS National Earthquake Information Center's earthquake-response protocol. The development of the Atlas of ShakeMaps has also led to several key improvements to the Global ShakeMap system. The key upgrades include: addition of uncertainties in the ground motion mapping, introduction of modern ground-motion prediction equations, improved estimates of global seismic-site conditions (VS30), and improved definition of stable continental region polygons. Finally, we have merged all of the ShakeMaps in the Atlas to provide a global perspective of earthquake ground shaking for the past 35 years, allowing comparison with probabilistic hazard maps. The online Atlas and supporting databases can be found at http://earthquake.usgs.gov/eqcenter/shakemap/atlas.php/.

  6. Safety and survival in an earthquake

    USGS Publications Warehouse

    ,

    1969-01-01

    Many earth scientists in this country and abroad are focusing their studies on the search for means of predicting impending earthquakes, but, as yet, an accurate prediction of the time and place of such an event cannot be made. From past experience, however, one can assume that earthquakes will continue to harass mankind and that they will occur most frequently in the areas where they have been relatively common in the past. In the United States, earthquakes can be expected to occur most frequently in the western states, particularly in Alaska, California, Washington, Oregon, Nevada, Utah, and Montana. The danger, however, is not confined to any one part of the country; major earthquakes have occurred at widely scattered locations.

  7. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    NASA Astrophysics Data System (ADS)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  8. A novel tree-based algorithm to discover seismic patterns in earthquake catalogs

    NASA Astrophysics Data System (ADS)

    Florido, E.; Asencio-Cortés, G.; Aznarte, J. L.; Rubio-Escudero, C.; Martínez-Álvarez, F.

    2018-06-01

    A novel methodology is introduced in this research study to detect seismic precursors. Based on an existing approach, the new methodology searches for patterns in the historical data. Such patterns may contain statistical or soil dynamics information. It improves the original version in several aspects. First, new seismicity indicators have been used to characterize earthquakes. Second, a machine learning clustering algorithm has been applied in a very flexible way, thus allowing the discovery of new data groupings. Third, a novel search strategy is proposed in order to obtain non-overlapped patterns. And, fourth, arbitrary lengths of patterns are searched for, thus discovering long and short-term behaviors that may influence in the occurrence of medium-large earthquakes. The methodology has been applied to seven different datasets, from three different regions, namely the Iberian Peninsula, Chile and Japan. Reported results show a remarkable improvement with respect to the former version, in terms of all evaluated quality measures. In particular, the number of false positives has decreased and the positive predictive values increased, both of them in a very remarkable manner.

  9. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning

    NASA Astrophysics Data System (ADS)

    Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene

    2016-07-01

    Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.

  10. Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Muslim, Buldan; Eka Sakya, Andi; Rohadi, Supriyanto; Sulastri; Murjaya, Jaya

    2018-03-01

    Advances in science and technology showed that ground-based GPS receiver was able to detect ionospheric Total Electron Content (TEC) disturbances caused by various natural phenomena such as earthquakes. One study of Tohoku (Japan) earthquake, March 11, 2011, magnitude M 9.0 showed TEC fluctuations observed from GPS observation network spread around the disaster area. This paper discussed the ionospheric earthquake effects detection using TEC GPS data. The case studies taken were Kebumen earthquake, January 25, 2014, magnitude M 6.2, Sumba earthquake, February 12, 2016, M 6.2 and Halmahera earthquake, February 17, 2016, M 6.1. TEC-GIM (Global Ionosphere Map) correlation methods for 31 days were used to monitor TEC anomaly in ionosphere. To ensure the geomagnetic disturbances due to solar activity, we also compare with Dst index in the same time window. The results showed anomalous ratio of correlation coefficient deviation to its standard deviation upon occurrences of Kebumen and Sumba earthquake, but not detected a similar anomaly for the Halmahera earthquake. It was needed a continous monitoring of TEC GPS data to detect the earthquake effects in ionosphere. This study giving hope in strengthening the earthquake effect early warning system using TEC GPS data. The method development of continuous TEC GPS observation derived from GPS observation network that already exists in Indonesia is needed to support earthquake effects early warning systems.

  11. The 26 January 2001 M 7.6 Bhuj, India, earthquake: Observed and predicted ground motions

    USGS Publications Warehouse

    Hough, S.E.; Martin, S.; Bilham, R.; Atkinson, G.M.

    2002-01-01

    Although local and regional instrumental recordings of the devastating 26, January 2001, Bhuj earthquake are sparse, the distribution of macroseismic effects can provide important constraints on the mainshock ground motions. We compiled available news accounts describing damage and other effects and interpreted them to obtain modified Mercalli intensities (MMIs) at >200 locations throughout the Indian subcontinent. These values are then used to map the intensity distribution throughout the subcontinent using a simple mathematical interpolation method. Although preliminary, the maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated toward the western edge of the inferred fault, consistent with western directivity. Significant sediment-induced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region, intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium, such as mudflats and salt pans. In addition, we use fault-rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0-1000 km. We then convert the predicted hard-rock ground-motion parameters to MMI by using a relationship (derived from Internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1-3 units than those estimated from news accounts, although they do predict near-field ground motions of approximately 80%g and potentially damaging ground motions on hard-rock sites to distances of approximately 300 km. For the most part, this discrepancy is consistent with the expected effect of sediment response, but it could also reflect other factors, such as unusually high building vulnerability in the Bhuj region and a tendency for media accounts to focus on the most dramatic damage, rather than

  12. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    . The usable and realistic ground motion maps for urban areas are generated: - either from the assumption of a "reference earthquake" - or directly, showing values of macroseimic intensity generated by a damaging, real earthquake. In the study, applying deterministic approach, earthquake scenario in macroseismic intensity ("model" earthquake scenario) for the city of Sofia is generated. The deterministic "model" intensity scenario based on assumption of a "reference earthquake" is compared with a scenario based on observed macroseimic effects caused by the damaging 2012 earthquake (MW5.6). The difference between observed (Io) and predicted (Ip) intensities values is analyzed.

  13. An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes.

    PubMed

    Shapira, Stav; Novack, Lena; Bar-Dayan, Yaron; Aharonson-Daniel, Limor

    2016-01-01

    A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities' preparedness and response capabilities and to mitigate future consequences. An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model's algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel. the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard. The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties.

  14. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3< M < 7, M and M­L are coincident; for earthquakes smaller than M3, ML log M0 [Hanks and Boore, 1984]. This is a consequence of the saturation of the apparent corner frequency fc as it becoming greater than the largest observable frequency, fmax; In this regime, stress drop no longer controls ground motion. This implies that ML and M differ by a factor of 1.5 for these small events. While this idea is not new, its implications are important as more small-magnitude data are incorporated into earthquake hazard research. With a large dataset of M<3 earthquakes recorded on the ANZA network, we demonstrate striking consequences of the difference between M and ML. ML scales as the log peak ground motions (e.g., PGA or PGV) for these small earthquakes, which yields log PGA log M0 [Boore, 1986]. We plot nearly 15,000 records of PGA and PGV at close stations, adjusted for site conditions and for geometrical spreading to 10 km. The slope of the log of ground motion is 1.0*ML­, or 1.5*M, confirming the relationship, and that fc >> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for

  15. A landslide susceptibility prediction on a sample slope in Kathmandu Nepal associated with the 2015's Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Kubota, Tetsuya; Prasad Paudel, Prem

    2016-04-01

    In 2013, some landslides induced by heavy rainfalls occurred in southern part of Kathmandu, Nepal which is located southern suburb of Kathmandu, the capital. These landslide slopes hit by the strong Gorkha Earthquake in April 2015 and seemed to destabilize again. Hereby, to clarify their susceptibility of landslide in the earthquake, one of these landslide slopes was analyzed its slope stability by CSSDP (Critical Slip Surface analysis by Dynamic Programming based on limit equilibrium method, especially Janbu method) against slope failure with various seismic acceleration observed around Kathmandu in the Gorkha Earthquake. The CSSDP can detect the landslide slip surface which has minimum Fs (factor of safety) automatically using dynamic programming theory. The geology in this area mainly consists of fragile schist and it is prone to landslide occurrence. Field survey was conducted to obtain topological data such as ground surface and slip surface cross section. Soil parameters obtained by geotechnical tests with field sampling were applied. Consequently, the slope has distinctive characteristics followings in terms of slope stability: (1) With heavy rainfall, it collapsed and had a factor of safety Fs <1.0 (0.654 or more). (2) With seismic acceleration of 0.15G (147gal) observed around Kathmandu, it has Fs=1.34. (3) With possible local seismic acceleration of 0.35G (343gal) estimated at Kathmandu, it has Fs=0.989. If it were very shallow landslide and covered with cedars, it could have Fs =1.055 due to root reinforcement effect to the soil strength. (4) Without seismic acceleration and with no rainfall condition, it has Fs=1.75. These results can explain the real landslide occurrence in this area with the maximum seismic acceleration estimated as 0.15G in the vicinity of Kathmandu by the Gorkha Earthquake. Therefore, these results indicate landslide susceptibility of the slopes in this area with strong earthquake. In this situation, it is possible to predict

  16. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

    PubMed Central

    Dixon, Timothy H.; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-01-01

    The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  17. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    PubMed

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-02

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

  18. Earthquake scenarios based on lessons from the past

    NASA Astrophysics Data System (ADS)

    Solakov, Dimcho; Simeonova, Stella; Aleksandrova, Irena; Popova, Iliana

    2010-05-01

    Earthquakes are the most deadly of the natural disasters affecting the human environment; indeed catastrophic earthquakes have marked the whole human history. Global seismic hazard and vulnerability to earthquakes are increasing steadily as urbanization and development occupy more areas that are prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The implementation of the earthquake scenarios into the policies for seismic risk reduction will allow focusing on the prevention of earthquake effects rather than on intervention following the disasters. The territory of Bulgaria (situated in the eastern part of the Balkan Peninsula) represents a typical example of high seismic risk area. Over the centuries, Bulgaria has experienced strong earthquakes. At the beginning of the 20-the century (from 1901 to 1928) five earthquakes with magnitude larger than or equal to MS=7.0 occurred in Bulgaria. However, no such large earthquakes occurred in Bulgaria since 1928, which may induce non-professionals to underestimate the earthquake risk. The 1986 earthquake of magnitude MS=5.7 occurred in the central northern Bulgaria (near the town of Strazhitsa) is the strongest quake after 1928. Moreover, the seismicity of the neighboring countries, like Greece, Turkey, former Yugoslavia and Romania (especially Vrancea-Romania intermediate earthquakes), influences the seismic hazard in Bulgaria. In the present study deterministic scenarios (expressed in seismic intensity) for two Bulgarian cities (Rouse and Plovdiv) are presented. The work on

  19. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    NASA Astrophysics Data System (ADS)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  20. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    PubMed

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  1. Preliminary Results of Earthquake-Induced Building Damage Detection with Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Uca Avci, Z. D.; Sunar, F.

    2016-06-01

    Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.

  2. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribadi, Sugeng, E-mail: sugengpribadimsc@gmail.com; Afnimar,; Puspito, Nanang T.

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994more » Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake.« less

  3. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  4. Retrospective validation of renewal-based, medium-term earthquake forecasts

    NASA Astrophysics Data System (ADS)

    Rotondi, R.

    2013-10-01

    In this paper, some methods for scoring the performances of an earthquake forecasting probability model are applied retrospectively for different goals. The time-dependent occurrence probabilities of a renewal process are tested against earthquakes of Mw ≥ 5.3 recorded in Italy according to decades of the past century. An aim was to check the capability of the model to reproduce the data by which the model was calibrated. The scoring procedures used can be distinguished on the basis of the requirement (or absence) of a reference model and of probability thresholds. Overall, a rank-based score, information gain, gambling scores, indices used in binary predictions and their loss functions are considered. The definition of various probability thresholds as percentages of the hazard functions allows proposals of the values associated with the best forecasting performance as alarm level in procedures for seismic risk mitigation. Some improvements are then made to the input data concerning the completeness of the historical catalogue and the consistency of the composite seismogenic sources with the hypotheses of the probability model. Another purpose of this study was thus to obtain hints on what is the most influential factor and on the suitability of adopting the consequent changes of the data sets. This is achieved by repeating the estimation procedure of the occurrence probabilities and the retrospective validation of the forecasts obtained under the new assumptions. According to the rank-based score, the completeness appears to be the most influential factor, while there are no clear indications of the usefulness of the decomposition of some composite sources, although in some cases, it has led to improvements of the forecast.

  5. Volunteers in the earthquake hazard reduction program

    USGS Publications Warehouse

    Ward, P.L.

    1978-01-01

    With this in mind, I organized a small workshop for approximately 30 people on February 2 and 3, 1978, in Menlo Park, Calif. the purpose of the meeting was to discuss methods of involving volunteers in a meaningful way in earthquake research and in educating the public about earthquake hazards. The emphasis was on earthquake prediction research, but the discussions covered the whole earthquake hazard reduction program. Representatives attended from the earthquake research community, from groups doing socioeconomic research on earthquake matters, and from a wide variety of organizations who might sponsor volunteers. 

  6. Development of an Earthquake Impact Scale

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Marano, K. D.; Jaiswal, K. S.

    2009-12-01

    With the advent of the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system, domestic (U.S.) and international earthquake responders are reconsidering their automatic alert and activation levels as well as their response procedures. To help facilitate rapid and proportionate earthquake response, we propose and describe an Earthquake Impact Scale (EIS) founded on two alerting criteria. One, based on the estimated cost of damage, is most suitable for domestic events; the other, based on estimated ranges of fatalities, is more appropriate for most global events. Simple thresholds, derived from the systematic analysis of past earthquake impact and response levels, turn out to be quite effective in communicating predicted impact and response level of an event, characterized by alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (major disaster, necessitating international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses exceeding 1M, 10M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness dominate in countries where vernacular building practices typically lend themselves to high collapse and casualty rates, and it is these impacts that set prioritization for international response. In contrast, it is often financial and overall societal impacts that trigger the level of response in regions or countries where prevalent earthquake resistant construction practices greatly reduce building collapse and associated fatalities. Any newly devised alert protocols, whether financial or casualty based, must be intuitive and consistent with established lexicons and procedures. In this analysis, we make an attempt

  7. Rapid earthquake detection through GPU-Based template matching

    NASA Astrophysics Data System (ADS)

    Mu, Dawei; Lee, En-Jui; Chen, Po

    2017-12-01

    The template-matching algorithm (TMA) has been widely adopted for improving the reliability of earthquake detection. The TMA is based on calculating the normalized cross-correlation coefficient (NCC) between a collection of selected template waveforms and the continuous waveform recordings of seismic instruments. In realistic applications, the computational cost of the TMA is much higher than that of traditional techniques. In this study, we provide an analysis of the TMA and show how the GPU architecture provides an almost ideal environment for accelerating the TMA and NCC-based pattern recognition algorithms in general. So far, our best-performing GPU code has achieved a speedup factor of more than 800 with respect to a common sequential CPU code. We demonstrate the performance of our GPU code using seismic waveform recordings from the ML 6.6 Meinong earthquake sequence in Taiwan.

  8. An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes

    PubMed Central

    Shapira, Stav; Novack, Lena; Bar-Dayan, Yaron; Aharonson-Daniel, Limor

    2016-01-01

    Background A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities’ preparedness and response capabilities and to mitigate future consequences. Methods An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model’s algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel. Results the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard. Conclusion The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties. PMID:26959647

  9. Adaptive vibration control of structures under earthquakes

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung

    2017-04-01

    techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.

  10. A prospective earthquake forecast experiment for Japan

    NASA Astrophysics Data System (ADS)

    Yokoi, Sayoko; Nanjo, Kazuyoshi; Tsuruoka, Hiroshi; Hirata, Naoshi

    2013-04-01

    One major focus of the current Japanese earthquake prediction research program (2009-2013) is to move toward creating testable earthquake forecast models. For this purpose we started an experiment of forecasting earthquake activity in Japan under the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) through an international collaboration. We established the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan, and to conduct verifiable prospective tests of their model performance. On 1 November in 2009, we started the 1st earthquake forecast testing experiment for the Japan area. We use the unified JMA catalogue compiled by the Japan Meteorological Agency as authorized catalogue. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year, and 3 years) and 3 testing regions called All Japan, Mainland, and Kanto. A total of 91 models were submitted to CSEP-Japan, and are evaluated with the CSEP official suite of tests about forecast performance. In this presentation, we show the results of the experiment of the 3-month testing class for 5 rounds. HIST-ETAS7pa, MARFS and RI10K models corresponding to the All Japan, Mainland and Kanto regions showed the best score based on the total log-likelihood. It is also clarified that time dependency of model parameters is no effective factor to pass the CSEP consistency tests for the 3-month testing class in all regions. Especially, spatial distribution in the All Japan region was too difficult to pass consistency test due to multiple events at a bin. Number of target events for a round in the Mainland region tended to be smaller than model's expectation during all rounds, which resulted in rejections of consistency test because of overestimation. In the Kanto region, pass ratios of consistency tests in each model showed more than 80%, which was associated with good balanced forecasting of event

  11. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    NASA Astrophysics Data System (ADS)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  12. Earthquake impact scale

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    With the advent of the USGS prompt assessment of global earthquakes for response (PAGER) system, which rapidly assesses earthquake impacts, U.S. and international earthquake responders are reconsidering their automatic alert and activation levels and response procedures. To help facilitate rapid and appropriate earthquake response, an Earthquake Impact Scale (EIS) is proposed on the basis of two complementary criteria. On the basis of the estimated cost of damage, one is most suitable for domestic events; the other, on the basis of estimated ranges of fatalities, is generally more appropriate for global events, particularly in developing countries. Simple thresholds, derived from the systematic analysis of past earthquake impact and associated response levels, are quite effective in communicating predicted impact and response needed after an event through alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1,000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses reaching $1M, $100M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness predominate in countries in which local building practices typically lend themselves to high collapse and casualty rates, and these impacts lend to prioritization for international response. In contrast, financial and overall societal impacts often trigger the level of response in regions or countries in which prevalent earthquake resistant construction practices greatly reduce building collapse and resulting fatalities. Any newly devised alert, whether economic- or casualty-based, should be intuitive and consistent with established lexicons and procedures. Useful alerts should

  13. Testing and comparison of three frequency-based magnitude estimating parameters for earthquake early warning based events in the Yunnan region, China in 2014

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjing; Li, Hongjie

    2018-06-01

    To mitigate potential seismic disasters in the Yunnan region, China, building up suitable magnitude estimation scaling laws for an earthquake early warning system (EEWS) is in high demand. In this paper, the records from the main and after-shocks of the Yingjiang earthquake (M W 5.9), the Ludian earthquake (M W 6.2) and the Jinggu earthquake (M W 6.1), which occurred in Yunnan in 2014, were used to develop three estimators, including the maximum of the predominant period ({{τ }{{p}}}\\max ), the characteristic period (τ c) and the log-average period (τ log), for estimating earthquake magnitude. The correlations between these three frequency-based parameters and catalog magnitudes were developed, compared and evaluated against previous studies. The amplitude and period of seismic waves might be amplified in the Ludian mountain-canyon area by multiple reflections and resonance, leading to excessive values of the calculated parameters, which are consistent with Sichuan’s scaling. As a result, τ log was best correlated with magnitude and τ c had the highest slope of regression equation, while {{τ }{{p}}}\\max performed worst with large scatter and less sensitivity for the change of magnitude. No evident saturation occurred in the case of M 6.1 and M 6.2 in this study. Even though both τ c and τ log performed similarly and can well reflect the size of the Earthquake, τ log has slightly fewer prediction errors for small scale earthquakes (M ≤ 4.5), which was also observed by previous research. Our work offers an insight into the feasibility of a EEWS in Yunnan, China, and this study shows that it is necessary to build up an appropriate scaling law suitable for the warning region.

  14. Earthquake Shaking - Finding the "Hot Spots"

    USGS Publications Warehouse

    Field, Edward; Jones, Lucile; Jordan, Tom; Benthien, Mark; Wald, Lisa

    2001-01-01

    A new Southern California Earthquake Center study has quantified how local geologic conditions affect the shaking experienced in an earthquake. The important geologic factors at a site are softness of the rock or soil near the surface and thickness of the sediments above hard bedrock. Even when these 'site effects' are taken into account, however, each earthquake exhibits unique 'hotspots' of anomalously strong shaking. Better predictions of strong ground shaking will therefore require additional geologic data and more comprehensive computer simulations of individual earthquakes.

  15. Octree-based Global Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Juarez, A.; Bielak, J.; Salazar Monroy, E. F.

    2017-12-01

    Seismological research has motivated recent efforts to construct more accurate three-dimensional (3D) velocity models of the Earth, perform global simulations of wave propagation to validate models, and also to study the interaction of seismic fields with 3D structures. However, traditional methods for seismogram computation at global scales are limited by computational resources, relying primarily on traditional methods such as normal mode summation or two-dimensional numerical methods. We present an octree-based mesh finite element implementation to perform global earthquake simulations with 3D models using topography and bathymetry with a staircase approximation, as modeled by the Carnegie Mellon Finite Element Toolchain Hercules (Tu et al., 2006). To verify the implementation, we compared the synthetic seismograms computed in a spherical earth against waveforms calculated using normal mode summation for the Preliminary Earth Model (PREM) for a point source representation of the 2014 Mw 7.3 Papanoa, Mexico earthquake. We considered a 3 km-thick ocean layer for stations with predominantly oceanic paths. Eigen frequencies and eigen functions were computed for toroidal, radial, and spherical oscillations in the first 20 branches. Simulations are valid at frequencies up to 0.05 Hz. Matching among the waveforms computed by both approaches, especially for long period surface waves, is excellent. Additionally, we modeled the Mw 9.0 Tohoku-Oki earthquake using the USGS finite fault inversion. Topography and bathymetry from ETOPO1 are included in a mesh with more than 3 billion elements; constrained by the computational resources available. We compared estimated velocity and GPS synthetics against observations at regional and teleseismic stations of the Global Seismological Network and discuss the differences among observations and synthetics, revealing that heterogeneity, particularly in the crust, needs to be considered.

  16. Postseismic deformation and stress changes following the 1819 Rann of Kachchh, India earthquake: Was the 2001 Bhuj earthquake a triggered event?

    USGS Publications Warehouse

    To, A.; Burgmann, R.; Pollitz, F.

    2004-01-01

    The 2001 Mw 7.6 Bhuj earthquake occurred in an intraplate region with rather unusual active seismicity, including an earlier major earthquake, the 1819 Rann of Kachchh earthquake (M7.7). We examine if static coseismic and transient postseismic deformation following the 1819 earthquake contributed to the enhanced seismicity in the region and the occurrence of the 2001 Bhuj earthquake, ???100 km away and almost two centuries later. Based on the Indian shield setting, great rupture depth of the 2001 event and lack of significant early postseismic deformation measured following the 2001 event, we infer that little viscous relaxation occurs in the lower crust and choose an upper mantle effective viscosity of 1019 Pas. The predicted Coulomb failure stress (DCFS) on the rupture plane of the 2001 event increased by more than 0.1 bar at 20 km depth, which is a small but possibly significant amount. Stress change from the 1819 event may have also affected the occurrence of other historic earthquakes in this region. We also evaluate the postseismic deformation and ??CFS in this region due to the 2001 event. Positive ??CFS from the 2001 event occur to the NW and SE of the Bhuj earthquake rupture. Copyright 2004 by the American Geophysical Union.

  17. A Trial for Earthquake Prediction by Precise Monitoring of Deep Ground Water Temperature

    NASA Astrophysics Data System (ADS)

    Nasuhara, Y.; Otsuki, K.; Yamauchi, T.

    2006-12-01

    A near future large earthquake is estimated to occur off Miyagi prefecture, northeast Japan within 20 years at a probability of about 80 %. In order to predict this earthquake, we have observed groundwater temperature in a borehole at Sendai city 100 km west of the asperity. This borehole penetrates the fault zone of NE-trending active reverse fault, Nagamachi-Rifu fault zone, at 820m depth. Our concept of the ground water observation is that fault zones are natural amplifier of crustal strain, and hence at 820m depth we set a very precise quartz temperature sensor with the resolution of 0.0002 deg. C. We confirmed our observation system to work normally by both the pumping up tests and the systematic temperature changes at different depths. Since the observation started on June 20 in 2004, we found mysterious intermittent temperature fluctuations of two types; one is of a period of 5-10 days and an amplitude of ca. 0.1 deg. C, and the other is of a period of 11-21 days and an amplitude of ca. 0.2 deg. C. Based on the examination using the product of Grashof number and Prantl number, natural convection of water can be occurred in the borehole. However, since these temperature fluctuations are observed only at the depth around 820 m, thus it is likely that they represent the hydrological natures proper to the Nagamachi-Rifu fault zone. It is noteworthy that the small temperature changes correlatable with earth tide are superposed on the long term and large amplitude fluctuations. The amplitude on the days of the full moon and new moon is ca. 0.001 deg. C. The bottoms of these temperature fluctuations always delay about 6 hours relative to peaks of earth tide. This is interpreted as that water in the borehole is sucked into the fault zone on which tensional normal stress acts on the days of the full moon and new moon. The amplitude of the crustal strain by earth tide was measured at ca. 2∗10^-8 strain near our observation site. High frequency temperature noise of

  18. An earthquake rate forecast for Europe based on smoothed seismicity and smoothed fault contribution

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Woessner, Jochen; Basili, Roberto; Wiemer, Stefan

    2013-04-01

    The main objective of project SHARE (Seismic Hazard Harmonization in Europe) is to develop a community-based seismic hazard model for the Euro-Mediterranean region. The logic tree of earthquake rupture forecasts comprises several methodologies including smoothed seismicity approaches. Smoothed seismicity thus represents an alternative concept to express the degree of spatial stationarity of seismicity and provides results that are more objective, reproducible, and testable. Nonetheless, the smoothed-seismicity approach suffers from the common drawback of being generally based on earthquake catalogs alone, i.e. the wealth of knowledge from geology is completely ignored. We present a model that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults and subductions. The result is mainly driven by the data, being independent of subjective delineation of seismic source zones. The core parts of our model are two distinct location probability densities: The first is computed by smoothing past seismicity (using variable kernel smoothing to account for varying data density). The second is obtained by smoothing fault moment rate contributions. The fault moment rates are calculated by summing the moment rate of each fault patch on a fully parameterized and discretized fault as available from the SHARE fault database. We assume that the regional frequency-magnitude distribution of the entire study area is well known and estimate the a- and b-value of a truncated Gutenberg-Richter magnitude distribution based on a maximum likelihood approach that considers the spatial and temporal completeness history of the seismic catalog. The two location probability densities are linearly weighted as a function of magnitude assuming that (1) the occurrence of past seismicity is a good proxy to forecast occurrence of future seismicity and (2) future large-magnitude events occur more likely in the vicinity of known faults. Consequently

  19. Retrospective Evaluation of the Long-Term CSEP-Italy Earthquake Forecasts

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Zechar, J. D.; Marzocchi, W.; Wiemer, S.

    2010-12-01

    On 1 August 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP) launched a prospective and comparative earthquake predictability experiment in Italy. The goal of the CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented eighteen five-year and ten-year earthquake forecasts to the European CSEP Testing Center at ETH Zurich. We considered the twelve time-independent earthquake forecasts among this set and evaluated them with respect to past seismicity data from two Italian earthquake catalogs. Here, we present the results of tests that measure the consistency of the forecasts with the past observations. Besides being an evaluation of the submitted time-independent forecasts, this exercise provided insight into a number of important issues in predictability experiments with regard to the specification of the forecasts, the performance of the tests, and the trade-off between the robustness of results and experiment duration.

  20. Impact-based earthquake alerts with the U.S. Geological Survey's PAGER system: what's next?

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Garcia, D.; So, E.; Hearne, M.

    2012-01-01

    In September 2010, the USGS began publicly releasing earthquake alerts for significant earthquakes around the globe based on estimates of potential casualties and economic losses with its Prompt Assessment of Global Earthquakes for Response (PAGER) system. These estimates significantly enhanced the utility of the USGS PAGER system which had been, since 2006, providing estimated population exposures to specific shaking intensities. Quantifying earthquake impacts and communicating estimated losses (and their uncertainties) to the public, the media, humanitarian, and response communities required a new protocol—necessitating the development of an Earthquake Impact Scale—described herein and now deployed with the PAGER system. After two years of PAGER-based impact alerting, we now review operations, hazard calculations, loss models, alerting protocols, and our success rate for recent (2010-2011) events. This review prompts analyses of the strengths, limitations, opportunities, and pressures, allowing clearer definition of future research and development priorities for the PAGER system.

  1. Prediction of maximum earthquake intensities for the San Francisco Bay region

    USGS Publications Warehouse

    Borcherdt, Roger D.; Gibbs, James F.

    1975-01-01

    The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.

  2. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China

    NASA Astrophysics Data System (ADS)

    Xu, Chong; Dai, Fuchu; Xu, Xiwei; Lee, Yuan Hsi

    2012-04-01

    Support vector machine (SVM) modeling is based on statistical learning theory. It involves a training phase with associated input and target output values. In recent years, the method has become increasingly popular. The main purpose of this study is to evaluate the mapping power of SVM modeling in earthquake triggered landslide-susceptibility mapping for a section of the Jianjiang River watershed using a Geographic Information System (GIS) software. The river was affected by the Wenchuan earthquake of May 12, 2008. Visual interpretation of colored aerial photographs of 1-m resolution and extensive field surveys provided a detailed landslide inventory map containing 3147 landslides related to the 2008 Wenchuan earthquake. Elevation, slope angle, slope aspect, distance from seismogenic faults, distance from drainages, and lithology were used as the controlling parameters. For modeling, three groups of positive and negative training samples were used in concert with four different kernel functions. Positive training samples include the centroids of 500 large landslides, those of all 3147 landslides, and 5000 randomly selected points in landslide polygons. Negative training samples include 500, 3147, and 5000 randomly selected points on slopes that remained stable during the Wenchuan earthquake. The four kernel functions are linear, polynomial, radial basis, and sigmoid. In total, 12 cases of landslide susceptibility were mapped. Comparative analyses of landslide-susceptibility probability and area relation curves show that both the polynomial and radial basis functions suitably classified the input data as either landslide positive or negative though the radial basis function was more successful. The 12 generated landslide-susceptibility maps were compared with known landslide centroid locations and landslide polygons to verify the success rate and predictive accuracy of each model. The 12 results were further validated using area-under-curve analysis. Group 3 with

  3. A review on remotely sensed land surface temperature anomaly as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anshuman; Singh, Shaktiman; Sam, Lydia; Joshi, P. K.; Bhardwaj, Akanksha; Martín-Torres, F. Javier; Kumar, Rajesh

    2017-12-01

    The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.

  4. Temporal variation characteristics of shear-wave splitting for the Rushan earthquake swarm of Shandong Province

    NASA Astrophysics Data System (ADS)

    Miao, Qingjie; Liu, Xiqiang

    2017-03-01

    The seismicity in Rushan region of Shandong Province is characterized by small swarms after the ML3.8 Rushan earthquake on October 1, 2013, and this situation continues up to now. Four earthquakes with ML4.7, ML4.5, ML4.1 and ML5.0 occurred from January of 2014 to May of 2015 cause great social effects. Based on the seismic records from the Rushan station, this paper calculated the shear-wave splitting parameters of 224 small earthquakes of Rushan earthquake swarm. The result shows that the polarization direction of the fast shear-wave is consistent with the principal compressive stress direction of the Shandong peninsula; on the other hand, the time delay has obvious change before and after the four earthquakes, that is, it raised about one month and declined about twelve days before earthquake. All the characteristics can be taken as the precursor indicator for earthquake prediction based on stress.

  5. Testing new methodologies for short -term earthquake forecasting: Multi-parameters precursors

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Tramutoli, Valerio; Lee, Lou; Liu, Tiger; Hattori, Katsumi; Kafatos, Menas

    2014-05-01

    We are conducting real-time tests involving multi-parameter observations over different seismo-tectonics regions in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several selected parameters, namely: gas discharge; thermal infrared radiation; ionospheric electron density; and atmospheric temperature and humidity, which we believe are all associated with the earthquake preparation phase. We are testing a methodology capable to produce alerts in advance of major earthquakes (M > 5.5) in different regions of active earthquakes and volcanoes. During 2012-2013 we established a collaborative framework with PRE-EARTHQUAKE (EU) and iSTEP3 (Taiwan) projects for coordinated measurements and prospective validation over seven testing regions: Southern California (USA), Eastern Honshu (Japan), Italy, Greece, Turkey, Taiwan (ROC), Kamchatka and Sakhalin (Russia). The current experiment provided a "stress test" opportunity to validate the physical based earthquake precursor approach over regions of high seismicity. Our initial results are: (1) Real-time tests have shown the presence of anomalies in the atmosphere and ionosphere before most of the significant (M>5.5) earthquakes; (2) False positives exist and ratios are different for each region, varying between 50% for (Southern Italy), 35% (California) down to 25% (Taiwan, Kamchatka and Japan) with a significant reduction of false positives as soon as at least two geophysical parameters are contemporarily used; (3) Main problems remain related to the systematic collection and real-time integration of pre-earthquake observations. Our findings suggest that real-time testing of physically based pre-earthquake signals provides a short-term predictive power (in all three important parameters, namely location, time and magnitude) for the occurrence of major earthquakes in the tested regions and this result encourages testing to continue with a more detailed analysis of

  6. Understanding dynamic friction through spontaneously evolving laboratory earthquakes

    PubMed Central

    Rubino, V.; Rosakis, A. J.; Lapusta, N.

    2017-01-01

    Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876

  7. Numerical Modeling and Forecasting of Strong Sumatra Earthquakes

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Yin, C.

    2007-12-01

    ESyS-Crustal, a finite element based computational model and software has been developed and applied to simulate the complex nonlinear interacting fault systems with the goal to accurately predict earthquakes and tsunami generation. With the available tectonic setting and GPS data around the Sumatra region, the simulation results using the developed software have clearly indicated that the shallow part of the subduction zone in the Sumatra region between latitude 6S and 2N has been locked for a long time, and remained locked even after the Northern part of the zone underwent a major slip event resulting into the infamous Boxing Day tsunami. Two strong earthquakes that occurred in the distant past in this region (between 6S and 1S) in 1797 (M8.2) and 1833 (M9.0) respectively are indicative of the high potential for very large destructive earthquakes to occur in this region with relatively long periods of quiescence in between. The results have been presented in the 5th ACES International Workshop in 2006 before the recent 2007 Sumatra earthquakes occurred which exactly fell into the predicted zone (see the following web site for ACES2006 and detailed presentation file through workshop agenda). The preliminary simulation results obtained so far have shown that there seem to be a few obvious events around the previously locked zone before it is totally ruptured, but apparently no indication of a giant earthquake similar to the 2004 M9 event in the near future which is believed to happen by several earthquake scientists. Further detailed simulations will be carried out and presented in the meeting.

  8. Statistical tests of simple earthquake cycle models

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Evans, Eileen L.

    2016-12-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM < 4.0 × 1019 Pa s and ηM > 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  9. Development of a Low Cost Earthquake Early Warning System in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Y. M.

    2017-12-01

    The National Taiwan University (NTU) developed an earthquake early warning (EEW) system for research purposes using low-cost accelerometers (P-Alert) since 2010. As of 2017, a total of 650 stations have been deployed and configured. The NTU system can provide earthquake information within 15 s of an earthquake occurrence. Thus, this system may provide early warnings for cities located more than 50 km from the epicenter. Additionally, the NTU system also has an onsite alert function that triggers a warning for incoming P-waves greater than a certain magnitude threshold, thus providing a 2-3 s lead time before peak ground acceleration (PGA) for regions close to an epicenter. Detailed shaking maps are produced by the NTU system within one or two minutes after an earthquake. Recently, a new module named ShakeAlarm has been developed. Equipped with real-time acceleration signals and the time-dependent anisotropic attenuation relationship of the PGA, ShakingAlarm can provide an accurate PGA estimation immediately before the arrival of the observed PGA. This unique advantage produces sufficient lead time for hazard assessment and emergency response, which is unavailable for traditional shakemap, which are based on only the PGA observed in real time. The performance of ShakingAlarm was tested with six M > 5.5 inland earthquakes from 2013 to 2016. Taking the 2016 M6.4 Meinong earthquake simulation as an example, the predicted PGA converges to a stable value and produces a predicted shake map and an isocontour map of the predicted PGA within 16 seconds of earthquake occurrence. Compared with traditional regional EEW system, ShakingAlarm can effectively identify possible damage regions and provide valuable early warning information (magnitude and PGA) for risk mitigation.

  10. CyberShake-derived ground-motion prediction models for the Los Angeles region with application to earthquake early warning

    USGS Publications Warehouse

    Bose, Maren; Graves, Robert; Gill, David; Callaghan, Scott; Maechling, Phillip J.

    2014-01-01

    Real-time applications such as earthquake early warning (EEW) typically use empirical ground-motion prediction equations (GMPEs) along with event magnitude and source-to-site distances to estimate expected shaking levels. In this simplified approach, effects due to finite-fault geometry, directivity and site and basin response are often generalized, which may lead to a significant under- or overestimation of shaking from large earthquakes (M > 6.5) in some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-propagation effects, we develop support vector regression (SVR) models from the SCEC CyberShake low-frequency (<0.5 Hz) and broad-band (0–10 Hz) data sets. CyberShake encompasses 3-D wave-propagation simulations of >415 000 finite-fault rupture scenarios (6.5 ≤ M ≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate the application of synthetic waveform data to EEW as a ‘proof of concept’, being aware that these simulations are not yet fully validated and might not appropriately sample the range of rupture uncertainty. Our regression models predict the maximum and the temporal evolution of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression approach is completely data-driven (where here the CyberShake simulations are considered data) and does not enforce pre-defined functional forms or dependencies among input parameters. The models were established from a subset (∼20 per cent) of CyberShake simulations, but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about 0.4 intensity units. We apply our models to determine threshold magnitudes (and warning times) for various active faults in southern California that earthquakes need to exceed to cause at least ‘moderate’, ‘strong’ or ‘very strong’ shaking

  11. Space technologies for short-term earthquake warning

    NASA Astrophysics Data System (ADS)

    Pulinets, S.

    Recent theoretical and experimental studies explicitly demonstrated the ability of space technologies to identify and monitor the specific variations at near-earth space plasma, atmosphere and ground surface associated with approaching severe earthquakes (named as earthquake precursors) appearing several days (from 1 to 5) before the seismic shock over the seismically active areas. Several countries and private companies are in the stage of preparation (or already launched) the dedicated spacecrafts for monitoring of the earthquake precursors from space and for short-term earthquake prediction. The present paper intends to outline the optimal algorithm for creation of the space-borne system for the earthquake precursors monitoring and for short-term earthquake prediction. It takes into account the following considerations: Selection of the precursors in the terms of priority, taking into account their statistical and physical parameters Configuration of the spacecraft payload Configuration of the satellite constellation (orbit selection, satellite distribution, operation schedule) Proposal of different options (cheap microsatellite or comprehensive multisatellite constellation) Taking into account that the most promising are the ionospheric precursors of earthquakes, the special attention will be devoted to the radiophysical techniques of the ionosphere monitoring. The advantages and disadvantages of such technologies as vertical sounding, in-situ probes, ionosphere tomography, GPS TEC and GPS MET technologies will be considered.

  12. Space technologies for short-term earthquake warning

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.

    Recent theoretical and experimental studies explicitly demonstrated the ability of space technologies to identify and monitor the specific variations at near-earth space plasma, atmosphere and ground surface associated with approaching severe earthquakes (named as earthquake precursors) which appear several days (from 1 to 5) before the seismic shock over the seismically active areas. Several countries and private companies are in the stage of preparation (or already launched) the dedicated spacecrafts for monitoring of the earthquake precursors from space and for short-term earthquake prediction. The present paper intends to outline the optimal algorithm for creation of the space-borne system for the earthquake precursors monitoring and for short-term earthquake prediction. It takes into account the following: Selection of the precursors in the terms of priority, considering their statistical and physical parameters.Configuration of the spacecraft payload.Configuration of the satellite constellation (orbit selection, satellite distribution, operation schedule).Different options of the satellite systems (cheap microsatellite or comprehensive multisatellite constellation). Taking into account that the most promising are the ionospheric precursors of earthquakes, the special attention is devoted to the radiophysical techniques of the ionosphere monitoring. The advantages and disadvantages of such technologies as vertical sounding, in-situ probes, ionosphere tomography, GPS TEC and GPS MET technologies are considered.

  13. Modified Mercalli Intensity for scenario earthquakes in Evansville, Indiana

    USGS Publications Warehouse

    Cramer, Chris; Haase, Jennifer; Boyd, Oliver

    2012-01-01

    Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the fact that Evansville is close to the Wabash Valley and New Madrid seismic zones, there is concern about the hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake. Earthquake-hazard maps provide one way of conveying such estimates of strong ground shaking and will help the region prepare for future earthquakes and reduce earthquake-caused losses.

  14. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, A.; Luzio, D.; D'Anna, G.

    2014-09-01

    In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system.

  15. Evaluation of impact of earthquake on agriculture in Nepal based on remote sensing

    NASA Astrophysics Data System (ADS)

    Sekiyama, Ayako; Shimada, Sawahiko; Okazawa, Hiromu; Mihara, Machito; Kuo, Kuang Ting

    2016-07-01

    The big earthquake happening on April, 2015 killed over than 8000 people in Nepal. The effect of earthquake not only affected safety of local people but also agricultural field. Agricultural economy dominates income of local people. Therefore, restoration of agricultural areas are required for improving life of local people. However, lack of information about agricultural areas is main problem for local government to assess and restore damaged agricultural areas. Remote sensing was applied for accessing damaged agricultural field due to its advantages in observing responds of environment without temporal and spatial restriction. Accordingly, the objective of the study is to evaluate impact of earthquake on agriculture in Nepal based on remote sensing. The experimental procedure includes conducting the impact of earthquake on changes of total agricultural area, and analysis of response of greenness affected by earthquake in agricultural land. For conducting agricultural land changes, land use map was first created and classified into four categories: road, city, forest, and agricultural land. Changes before and after earthquake in total area of agricultural land were analyzed by GIS. Moreover, vegetation index was used as indicator for evaluating greenness responds in agricultural land and computed based on high-resolution satellite imagery such as World view-3. Finally, the conclusion of the study and suggestions will be made and provided for helping local government in Nepal restore agricultural areas.

  16. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    NASA Technical Reports Server (NTRS)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  17. Insights into earthquake hazard map performance from shaking history simulations

    NASA Astrophysics Data System (ADS)

    Stein, S.; Vanneste, K.; Camelbeeck, T.; Vleminckx, B.

    2017-12-01

    Why recent large earthquakes caused shaking stronger than predicted by earthquake hazard maps is under debate. This issue has two parts. Verification involves how well maps implement probabilistic seismic hazard analysis (PSHA) ("have we built the map right?"). Validation asks how well maps forecast shaking ("have we built the right map?"). We explore how well a map can ideally perform by simulating an area's shaking history and comparing "observed" shaking to that predicted by a map generated for the same parameters. The simulations yield shaking distributions whose mean is consistent with the map, but individual shaking histories show large scatter. Infrequent large earthquakes cause shaking much stronger than mapped, as observed. Hence, PSHA seems internally consistent and can be regarded as verified. Validation is harder because an earthquake history can yield shaking higher or lower than that predicted while being consistent with the hazard map. The scatter decreases for longer observation times because the largest earthquakes and resulting shaking are increasingly likely to have occurred. For the same reason, scatter is much less for the more active plate boundary than for a continental interior. For a continental interior, where the mapped hazard is low, even an M4 event produces exceedances at some sites. Larger earthquakes produce exceedances at more sites. Thus many exceedances result from small earthquakes, but infrequent large ones may cause very large exceedances. However, for a plate boundary, an M6 event produces exceedance at only a few sites, and an M7 produces them in a larger, but still relatively small, portion of the study area. As reality gives only one history, and a real map involves assumptions about more complicated source geometries and occurrence rates, which are unlikely to be exactly correct and thus will contribute additional scatter, it is hard to assess whether misfit between actual shaking and a map — notably higher

  18. Long aftershock sequences within continents and implications for earthquake hazard assessment.

    PubMed

    Stein, Seth; Liu, Mian

    2009-11-05

    One of the most powerful features of plate tectonics is that the known plate motions give insight into both the locations and average recurrence interval of future large earthquakes on plate boundaries. Plate tectonics gives no insight, however, into where and when earthquakes will occur within plates, because the interiors of ideal plates should not deform. As a result, within plate interiors, assessments of earthquake hazards rely heavily on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. Here, however, we show that many of these recent earthquakes are probably aftershocks of large earthquakes that occurred hundreds of years ago. We present a simple model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Aftershock sequences within the slowly deforming continents are predicted to be significantly longer than the decade typically observed at rapidly loaded plate boundaries. These predictions are in accord with observations. So the common practice of treating continental earthquakes as steady-state seismicity overestimates the hazard in presently active areas and underestimates it elsewhere.

  19. Geoethical suggestions for reducing risk of next (not only strong) earthquakes

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2013-04-01

    deaths (incomparably lower than tragic events from 1923) the tsunami has broken any known record. The existing anti-tsunami measures have appeared to be appropriate to expectations given by unsatisfactory safety limits extended to the human memory experience. Conclusions of geoethics: a) a new legal interpretation of "false alarms" and reasonable risk and danger levels is to be established (up-dating internationally acceptable definitions and protection measures); b) any positive prediction for any known real natural disaster (whoever made it) is to be precisely analysed by competent institutes avoiding any underestimation of "incompetent" researchers and amateurs and respecting diversity of scientific research "schools"; c) a reciprocal respect between scientists and the population is to be based on the use of a reciprocally understandable language; d) scientists as well as media are obliged to respect and publish the complete truth about facts with clearly defined words to avoid any misinterpretation of results; e) consequences of relatively "minor" earthquakes are no more limited only to an adjacent local area; f) the appropriate programs for computerized predictions are to be under a permanent control of validity (using alternative parameters and incorporating verified or supposed time-tables of events from the past); g) any scientist when accepting a function in a State organ has to accept his role with high personal responsibility for and respect to the goals, work and results of such a commission; h) any effective prevention of the population is to be based on a mutual consensus preferring in any stage the common good instead of particular or personal interests and respecting human lives as the top value priority.

  20. Earthquake warning system for Japan Railways’ bullet train; implications for disaster prevention in California

    USGS Publications Warehouse

    Nakamura, Y.; Tucker, B. E.

    1988-01-01

    Today, Japanese society is well aware of the prediction of the Tokai earthquake. It is estimated by the Tokyo earthquake. It is estimated by the Tokyo muncipal government that this predicted earthquake could kill 30,000 people. (this estimate is viewed by many as conservative; other Japanese government agencies have made estimates but they have not been published.) Reduction in the number deaths from 120,000 to 30,000 between the Kanto earthquake and the predicted Tokai earthquake is due in large part to the reduction in the proportion of wooden construction (houses). 

  1. Weather Satellite Thermal IR Responses Prior to Earthquakes

    NASA Technical Reports Server (NTRS)

    OConnor, Daniel P.

    2005-01-01

    A number of observers claim to have seen thermal anomalies prior to earthquakes, but subsequent analysis by others has failed to produce similar findings. What exactly are these anomalies? Might they be useful for earthquake prediction? It is the purpose of this study to determine if thermal anomalies can be found in association with known earthquakes by systematically co-registering weather satellite images at the sub-pixel level and then determining if statistically significant responses occurred prior to the earthquake event. A new set of automatic co-registration procedures was developed for this task to accommodate all properties particular to weather satellite observations taken at night, and it relies on the general condition that the ground cools after sunset. Using these procedures, we can produce a set of temperature-sensitive satellite images for each of five selected earthquakes (Algeria 2003; Bhuj, India 2001; Izmit, Turkey 2001; Kunlun Shan, Tibet 2001; Turkmenistan 2000) and thus more effectively investigate heating trends close to the epicenters a few hours prior to the earthquake events. This study will lay tracks for further work in earthquake prediction and provoke the question of the exact nature of the thermal anomalies.

  2. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi

    2007-01-01

    It is recently recognized that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes, seems to be very promising for short-term earthquake prediction. We have proposed a possible use of VLF/LF (very low frequency (3-30 kHz) /low frequency (30-300 kHz)) radio sounding of the seismo-ionospheric perturbations. A brief history of the use of subionospheric VLF/LF propagation for the short-term earthquake prediction is given, followed by a significant finding of ionospheric perturbation for the Kobe earthquake in 1995. After showing previous VLF/LF results, we present the latest VLF/LF findings; One is the statistical correlation of the ionospheric perturbation with earthquakes and the second is a case study for the Sumatra earthquake in December, 2004, indicating the spatical scale and dynamics of ionospheric perturbation for this earthquake.

  3. Predicted Surface Displacements for Scenario Earthquakes in the San Francisco Bay Region

    USGS Publications Warehouse

    Murray-Moraleda, Jessica R.

    2008-01-01

    In the immediate aftermath of a major earthquake, the U.S. Geological Survey (USGS) will be called upon to provide information on the characteristics of the event to emergency responders and the media. One such piece of information is the expected surface displacement due to the earthquake. In conducting probabilistic hazard analyses for the San Francisco Bay Region, the Working Group on California Earthquake Probabilities (WGCEP) identified a series of scenario earthquakes involving the major faults of the region, and these were used in their 2003 report (hereafter referred to as WG03) and the recently released 2008 Uniform California Earthquake Rupture Forecast (UCERF). Here I present a collection of maps depicting the expected surface displacement resulting from those scenario earthquakes. The USGS has conducted frequent Global Positioning System (GPS) surveys throughout northern California for nearly two decades, generating a solid baseline of interseismic measurements. Following an earthquake, temporary GPS deployments at these sites will be important to augment the spatial coverage provided by continuous GPS sites for recording postseismic deformation, as will the acquisition of Interferometric Synthetic Aperture Radar (InSAR) scenes. The information provided in this report allows one to anticipate, for a given event, where the largest displacements are likely to occur. This information is valuable both for assessing the need for further spatial densification of GPS coverage before an event and prioritizing sites to resurvey and InSAR data to acquire in the immediate aftermath of the earthquake. In addition, these maps are envisioned to be a resource for scientists in communicating with emergency responders and members of the press, particularly during the time immediately after a major earthquake before displacements recorded by continuous GPS stations are available.

  4. What Can We Learn from a Simple Physics-Based Earthquake Simulator?

    NASA Astrophysics Data System (ADS)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2018-03-01

    Physics-based earthquake simulators are becoming a popular tool to investigate on the earthquake occurrence process. So far, the development of earthquake simulators is commonly led by the approach "the more physics, the better". However, this approach may hamper the comprehension of the outcomes of the simulator; in fact, within complex models, it may be difficult to understand which physical parameters are the most relevant to the features of the seismic catalog at which we are interested. For this reason, here, we take an opposite approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple simulator may be more informative than a complex one for some specific scientific objectives, because it is more understandable. Our earthquake simulator has three main components: the first one is a realistic tectonic setting, i.e., a fault data set of California; the second is the application of quantitative laws for earthquake generation on each single fault, and the last is the fault interaction modeling through the Coulomb Failure Function. The analysis of this simple simulator shows that: (1) the short-term clustering can be reproduced by a set of faults with an almost periodic behavior, which interact according to a Coulomb failure function model; (2) a long-term behavior showing supercycles of the seismic activity exists only in a markedly deterministic framework, and quickly disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault; (3) faults that are strongly coupled in terms of Coulomb failure function model are synchronized in time only in a marked deterministic framework, and as before, such a synchronization disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault. Overall, the results show that even in a simple and perfectly known earthquake occurrence world, introducing a small degree of

  5. A media-based assessment of damage and ground motions from the January 26th, 2001 M 7.6 Bhuj, India earthquake

    USGS Publications Warehouse

    Hough, S.E.; Martin, S.; Bilham, R.; Atkinson, G.M.

    2003-01-01

    We compiled available news and internet accounts of damage and other effects from the 26th January, 2001, Bhuj earthquake, and interpreted them to obtain modified Mercalli intensities at over 200 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. The maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated towards the western edge of the inferred fault, consistent with western directivity. Significant sediment-induced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium such as mud flats and salt pans. In addition we use fault rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0-1000 km. We then convert the predicted hard rock ground motion parameters to MMI using a relationship (derived from internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1-2 units than those estimated from news accounts. This discrepancy is generally consistent with the expected effect of sediment response, but it could also reflect other factors such as a tendency for media accounts to focus on the most dramatic damage, rather than the average effects. Our modeling results also suggest, however, that the Bhuj earthquake generated more high-frequency shaking than is expected for earthquakes of similar magnitude in California, and may therefore have been especially damaging.

  6. Assessing the capability of numerical methods to predict earthquake ground motion: the Euroseistest verification and validation project

    NASA Astrophysics Data System (ADS)

    Chaljub, E. O.; Bard, P.; Tsuno, S.; Kristek, J.; Moczo, P.; Franek, P.; Hollender, F.; Manakou, M.; Raptakis, D.; Pitilakis, K.

    2009-12-01

    During the last decades, an important effort has been dedicated to develop accurate and computationally efficient numerical methods to predict earthquake ground motion in heterogeneous 3D media. The progress in methods and increasing capability of computers have made it technically feasible to calculate realistic seismograms for frequencies of interest in seismic design applications. In order to foster the use of numerical simulation in practical prediction, it is important to (1) evaluate the accuracy of current numerical methods when applied to realistic 3D applications where no reference solution exists (verification) and (2) quantify the agreement between recorded and numerically simulated earthquake ground motion (validation). Here we report the results of the Euroseistest verification and validation project - an ongoing international collaborative work organized jointly by the Aristotle University of Thessaloniki, Greece, the Cashima research project (supported by the French nuclear agency, CEA, and the Laue-Langevin institute, ILL, Grenoble), and the Joseph Fourier University, Grenoble, France. The project involves more than 10 international teams from Europe, Japan and USA. The teams employ the Finite Difference Method (FDM), the Finite Element Method (FEM), the Global Pseudospectral Method (GPSM), the Spectral Element Method (SEM) and the Discrete Element Method (DEM). The project makes use of a new detailed 3D model of the Mygdonian basin (about 5 km wide, 15 km long, sediments reach about 400 m depth, surface S-wave velocity is 200 m/s). The prime target is to simulate 8 local earthquakes with magnitude from 3 to 5. In the verification, numerical predictions for frequencies up to 4 Hz for a series of models with increasing structural and rheological complexity are analyzed and compared using quantitative time-frequency goodness-of-fit criteria. Predictions obtained by one FDM team and the SEM team are close and different from other predictions

  7. The Value, Protocols, and Scientific Ethics of Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Jordan, Thomas H.

    2013-04-01

    Earthquakes are different from other common natural hazards because precursory signals diagnostic of the magnitude, location, and time of impending seismic events have not yet been found. Consequently, the short-term, localized prediction of large earthquakes at high probabilities with low error rates (false alarms and failures-to-predict) is not yet feasible. An alternative is short-term probabilistic forecasting based on empirical statistical models of seismic clustering. During periods of high seismic activity, short-term earthquake forecasts can attain prospective probability gains up to 1000 relative to long-term forecasts. The value of such information is by no means clear, however, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing operational forecasting protocols in this sort of "low-probability environment." This paper will explore the complex interrelations among the valuation of low-probability earthquake forecasting, which must account for social intangibles; the protocols of operational forecasting, which must factor in large uncertainties; and the ethics that guide scientists as participants in the forecasting process, who must honor scientific principles without doing harm. Earthquake forecasts possess no intrinsic societal value; rather, they acquire value through their ability to influence decisions made by users seeking to mitigate seismic risk and improve community resilience to earthquake disasters. According to the recommendations of the International Commission on Earthquake Forecasting (www.annalsofgeophysics.eu/index.php/annals/article/view/5350), operational forecasting systems should appropriately separate the hazard-estimation role of scientists from the decision-making role of civil protection authorities and individuals. They should

  8. Statistical tests of simple earthquake cycle models

    USGS Publications Warehouse

    Devries, Phoebe M. R.; Evans, Eileen

    2016-01-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  9. Ground-motion parameters of the southwestern Indiana earthquake of 18 June 2002 and the disparity between the observed and predicted values

    USGS Publications Warehouse

    Street, R.; Wiegand, J.; Woolery, E.W.; Hart, P.

    2005-01-01

    The M 4.5 southwestern Indiana earthquake of 18 June 2002 triggered 46 blast monitors in Indiana, Illinois, and Kentucky. The resulting free-field particle velocity records, along with similar data from previous earthquakes in the study area, provide a clear standard for judging the reliability of current maps for predicting ground motions greater than 2 Hz in southwestern Indiana and southeastern Illinois. Peak horizontal accelerations and velocities, and 5% damped pseudo-accelerations for the earthquake, generally exceeded ground motions predicted for the top of the bedrock by factors of 2 or more, even after soil amplifications were taken into consideration. It is suggested, but not proven, that the low shear-wave velocity and weathered bedrock in the area are also amplifying the higher-frequency ground motions that have been repeatedly recorded by the blast monitors in the study area. It is also shown that there is a good correlation between the peak ground motions and 5% pseudo-accelerations recorded for the event, and the Modified Mercalli intensities interpreted for the event by the U.S. Geological Survey.

  10. Initiation process of earthquakes and its implications for seismic hazard reduction strategy.

    PubMed Central

    Kanamori, H

    1996-01-01

    For the average citizen and the public, "earthquake prediction" means "short-term prediction," a prediction of a specific earthquake on a relatively short time scale. Such prediction must specify the time, place, and magnitude of the earthquake in question with sufficiently high reliability. For this type of prediction, one must rely on some short-term precursors. Examinations of strain changes just before large earthquakes suggest that consistent detection of such precursory strain changes cannot be expected. Other precursory phenomena such as foreshocks and nonseismological anomalies do not occur consistently either. Thus, reliable short-term prediction would be very difficult. Although short-term predictions with large uncertainties could be useful for some areas if their social and economic environments can tolerate false alarms, such predictions would be impractical for most modern industrialized cities. A strategy for effective seismic hazard reduction is to take full advantage of the recent technical advancements in seismology, computers, and communication. In highly industrialized communities, rapid earthquake information is critically important for emergency services agencies, utilities, communications, financial companies, and media to make quick reports and damage estimates and to determine where emergency response is most needed. Long-term forecast, or prognosis, of earthquakes is important for development of realistic building codes, retrofitting existing structures, and land-use planning, but the distinction between short-term and long-term predictions needs to be clearly communicated to the public to avoid misunderstanding. Images Fig. 8 PMID:11607657

  11. Initiation process of earthquakes and its implications for seismic hazard reduction strategy.

    PubMed

    Kanamori, H

    1996-04-30

    For the average citizen and the public, "earthquake prediction" means "short-term prediction," a prediction of a specific earthquake on a relatively short time scale. Such prediction must specify the time, place, and magnitude of the earthquake in question with sufficiently high reliability. For this type of prediction, one must rely on some short-term precursors. Examinations of strain changes just before large earthquakes suggest that consistent detection of such precursory strain changes cannot be expected. Other precursory phenomena such as foreshocks and nonseismological anomalies do not occur consistently either. Thus, reliable short-term prediction would be very difficult. Although short-term predictions with large uncertainties could be useful for some areas if their social and economic environments can tolerate false alarms, such predictions would be impractical for most modern industrialized cities. A strategy for effective seismic hazard reduction is to take full advantage of the recent technical advancements in seismology, computers, and communication. In highly industrialized communities, rapid earthquake information is critically important for emergency services agencies, utilities, communications, financial companies, and media to make quick reports and damage estimates and to determine where emergency response is most needed. Long-term forecast, or prognosis, of earthquakes is important for development of realistic building codes, retrofitting existing structures, and land-use planning, but the distinction between short-term and long-term predictions needs to be clearly communicated to the public to avoid misunderstanding.

  12. Estimation of vulnerability functions based on a global earthquake damage database

    NASA Astrophysics Data System (ADS)

    Spence, R. J. S.; Coburn, A. W.; Ruffle, S. J.

    2009-04-01

    Developing a better approach to the estimation of future earthquake losses, and in particular to the understanding of the inherent uncertainties in loss models, is vital to confidence in modelling potential losses in insurance or for mitigation. For most areas of the world there is currently insufficient knowledge of the current building stock for vulnerability estimates to be based on calculations of structural performance. In such areas, the most reliable basis for estimating vulnerability is performance of the building stock in past earthquakes, using damage databases, and comparison with consistent estimates of ground motion. This paper will present a new approach to the estimation of vulnerabilities using the recently launched Cambridge University Damage Database (CUEDD). CUEDD is based on data assembled by the Martin Centre at Cambridge University since 1980, complemented by other more-recently published and some unpublished data. The database assembles in a single, organised, expandable and web-accessible database, summary information on worldwide post-earthquake building damage surveys which have been carried out since the 1960's. Currently it contains data on the performance of more than 750,000 individual buildings, in 200 surveys following 40 separate earthquakes. The database includes building typologies, damage levels, location of each survey. It is mounted on a GIS mapping system and links to the USGS Shakemaps of each earthquake which enables the macroseismic intensity and other ground motion parameters to be defined for each survey and location. Fields of data for each building damage survey include: · Basic earthquake data and its sources · Details of the survey location and intensity and other ground motion observations or assignments at that location · Building and damage level classification, and tabulated damage survey results · Photos showing typical examples of damage. In future planned extensions of the database information on human

  13. Frequency Spectrum Method-Based Stress Analysis for Oil Pipelines in Earthquake Disaster Areas

    PubMed Central

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline. PMID:25692790

  14. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    PubMed

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  15. Use of QuakeSim and UAVSAR for Earthquake Damage Mitigation and Response

    NASA Technical Reports Server (NTRS)

    Donnellan, A.; Parker, J. W.; Bawden, G.; Hensley, S.

    2009-01-01

    Spaceborne, airborne, and modeling and simulation techniques are being applied to earthquake risk assessment and response for mitigation from this natural disaster. QuakeSim is a web-based portal for modeling interseismic strain accumulation using paleoseismic and crustal deformation data. The models are used for understanding strain accumulation and release from earthquakes as well as stress transfer to neighboring faults. Simulations of the fault system can be used for understanding the likelihood and patterns of earthquakes as well as the likelihood of large aftershocks from events. UAVSAR is an airborne L-band InSAR system for collecting crustal deformation data. QuakeSim, UAVSAR, and DESDynI (following launch) can be used for monitoring earthquakes, the associated rupture and damage, and postseismic motions for prediction of aftershock locations.

  16. Fast Identification of Near-Trench Earthquakes Along the Mexican Subduction Zone Based on Characteristics of Ground Motion in Mexico City

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Rodríguez, Q.; Iglesias, A.

    2015-12-01

    The disastrous 1985 Michoacan earthquake gave rise to a seismic alert system for Mexico City which became operational in 1991. Initially limited to earthquakes along the Guerrero coast, the system now has a much wider coverage. Also, the 2004 Sumatra earthquake exposed the need for a tsunami early warning along the Mexican subduction zone. A fast identification of near-trench earthquakes along this zone may be useful in issuing a reliable early tsunami alert. The confusion caused by low PGA for the magnitude of an earthquake, leading to "missed" seismic alert, would be averted if its near-trench origin can be quickly established. It may also help reveal the spatial extent and degree of seismic coupling on the near-trench portion of the plate interface. This would lead to a better understanding of tsunami potential and seismic hazard along the Mexican subduction zone. We explore three methods for quick detection of near-trench earthquakes, testing them on recordings of 65 earthquakes at station CU in Mexico City (4.8 ≤Mw≤8.0; 270≤R≤615 km). The first method is based on the ratio of total to high-frequency energy, ER (Shapiro et al., 1998). The second method is based on parameter Sa*(6) which is the pseudo-acceleration response spectrum with 5% damping, Sa, at 6 s normalized by the PGA. The third parameter is the PGA residual, RESN, at CU, with respect to a newly-derived ground motion prediction equation at CU for coastal shallow-dipping thrust earthquakes following a bayesian approach. Since the near-trench earthquakes are relatively deficient in high-frequency radiation, we expect ER and Sa*(6) to be relatively large and RESN to be negative for such events. Tests on CU recordings show that if ER ≥ 100 and/or Sa*(6) ≥ 0.70, then the earthquake is near trench; for these events RESN ≤ 0. Such an event has greater tsunami potential. Few misidentifications and missed events are most probably a consequence of poor location, although unusual depth and source

  17. Earthquake mechanism and predictability shown by a laboratory fault

    USGS Publications Warehouse

    King, C.-Y.

    1994-01-01

    Slip events generated in a laboratory fault model consisting of a circulinear chain of eight spring-connected blocks of approximately equal weight elastically driven to slide on a frictional surface are studied. It is found that most of the input strain energy is released by a relatively few large events, which are approximately time predictable. A large event tends to roughen stress distribution along the fault, whereas the subsequent smaller events tend to smooth the stress distribution and prepare a condition of simultaneous criticality for the occurrence of the next large event. The frequency-size distribution resembles the Gutenberg-Richter relation for earthquakes, except for a falloff for the largest events due to the finite energy-storage capacity of the fault system. Slip distributions, in different events are commonly dissimilar. Stress drop, slip velocity, and rupture velocity all tend to increase with event size. Rupture-initiation locations are usually not close to the maximum-slip locations. ?? 1994 Birkha??user Verlag.

  18. Testimonies to the L'Aquila earthquake (2009) and to the L'Aquila process

    NASA Astrophysics Data System (ADS)

    Kalenda, Pavel; Nemec, Vaclav

    2014-05-01

    Lot of confusions, misinformation, false solidarity, efforts to misuse geoethics and other unethical activities in favour of the top Italian seismologists responsible for a bad and superficial evaluation of the situation 6 days prior to the earthquake - that is a general characteristics for the whole period of 5 years separating us from the horrible morning of April 6, 2009 in L'Aquila with 309 human victims. The first author of this presentation as a seismologist had unusual opportunity to visit the unfortunate city in April 2009. He got all "first-hand" information that a real scientifically based prediction did exist already for some shocks in the area on March 29 and 30, 2009. The author of the prediction Gianpaolo Giuliani was obliged to stop any public information diffused by means of internet. A new prediction was known to him on March 31 - in the day when the "Commission of Great Risks" offered a public assurance that any immediate earthquake can be practically excluded. In reality the members of the commission completely ignored such a prediction declaring it as a false alarm of "somebody" (even without using the name of Giuliani). The observations by Giuliani were of high quality from the scientific point of view. G. Giuliani predicted L'Aquila earthquake in the professional way - for the first time during many years of observations. The anomalies, which preceded L'Aquila earthquake were detected on many places in Europe in the same time. The question is, what locality would be signed as potential focal area, if G. Giuliani would know the other observations in Europe. The deformation (and other) anomalies are observable before almost all of global M8 earthquakes. Earthquakes are preceded by deformation and are predictable. The testimony of the second author is based on many unfortunate personal experiences with representatives of the INGV Rome and their supporters from India and even Australia. In July 2010, prosecutor Fabio Picuti charged the Commission

  19. High Attenuation Rate for Shallow, Small Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Si, Hongjun; Koketsu, Kazuki; Miyake, Hiroe

    2017-09-01

    We compared the attenuation characteristics of peak ground accelerations (PGAs) and velocities (PGVs) of strong motion from shallow, small earthquakes that occurred in Japan with those predicted by the equations of Si and Midorikawa (J Struct Constr Eng 523:63-70, 1999). The observed PGAs and PGVs at stations far from the seismic source decayed more rapidly than the predicted ones. The same tendencies have been reported for deep, moderate, and large earthquakes, but not for shallow, moderate, and large earthquakes. This indicates that the peak values of ground motion from shallow, small earthquakes attenuate more steeply than those from shallow, moderate or large earthquakes. To investigate the reason for this difference, we numerically simulated strong ground motion for point sources of M w 4 and 6 earthquakes using a 2D finite difference method. The analyses of the synthetic waveforms suggested that the above differences are caused by surface waves, which are predominant at stations far from the seismic source for shallow, moderate earthquakes but not for shallow, small earthquakes. Thus, although loss due to reflection at the boundaries of the discontinuous Earth structure occurs in all shallow earthquakes, the apparent attenuation rate for a moderate or large earthquake is essentially the same as that of body waves propagating in a homogeneous medium due to the dominance of surface waves.

  20. Earthquake likelihood model testing

    USGS Publications Warehouse

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  1. An improvement of the Earthworm Based Earthquake Alarm Reporting system in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, D. Y.; Hsiao, N. C.; Yih-Min, W.

    2017-12-01

    The Central Weather Bureau of Taiwan (CWB) has operated the Earthworm Based Earthquake Alarm Reporting (eBEAR) system for the purpose of earthquake early warning (EEW). The system has been used to report EEW messages to the general public since 2016 through text message from the mobile phones and the television programs. The system for inland earthquakes is able to provide accurate and fast warnings. The average epicenter error is about 5 km and the processing time is about 15 seconds. The epicenter error is defined as the distance between the epicenter estimated by the EEW system and the epicenter estimated by man. The processing time is defined as the time difference between the time earthquakes occurred and the time the system issued warning. The CWB seismic network consist about 200 seismic stations. In some area of Taiwan the distance between each seismic station is about 10 km. It means that when an earthquake occurred the seismic P wave is able to propagate through 6 stations, which is the minimum number of required stations in the EEW system, within 20 km. If the latency of data transmitting is about 1 sec, the P-wave velocity is about 6 km per sec and we take 3-sec length time window to estimate earthquake magnitude, then the processing should be around 8 sec. In fact, however, the average processing time is larger than this figure. Because some outliers of P-wave onset picks may exist in the beginning of the earthquake occurrence, the Geiger's method we used in the EEW system for earthquake location is not stable. It usually takes more time to wait for enough number of good picks. In this study we used grid search method to improve the estimations of earthquake location. The MAXEL algorithm (Sheen et al., 2015, 2016) was tested in the EEW system by simulating historical earthquakes occurred in Taiwan. The results show the processing time can be reduced and the location accuracy is acceptable for EEW purpose.

  2. Global earthquake fatalities and population

    USGS Publications Warehouse

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  3. Statistical earthquake focal mechanism forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2014-04-01

    Forecasts of the focal mechanisms of future shallow (depth 0-70 km) earthquakes are important for seismic hazard estimates and Coulomb stress, and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude and focal mechanism. In previous publications we reported forecasts of 0.5° spatial resolution, covering the latitude range from -75° to +75°, based on the Global Central Moment Tensor earthquake catalogue. In the new forecasts we have improved the spatial resolution to 0.1° and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each gridpoint. Simultaneously, we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method of Kagan & Jackson proposed in 1994. This average angle reveals the level of tectonic complexity of a region and indicates the accuracy of the prediction. The procedure becomes problematical where longitude lines are not approximately parallel, and where shallow earthquakes are so sparse that an adequate sample spans very large distances. North or south of 75°, the azimuths of points 1000 km away may vary by about 35°. We solved this problem by calculating focal mechanisms on a plane tangent to the Earth's surface at each forecast point, correcting for the rotation of the longitude lines at the locations of earthquakes included in the averaging. The corrections are negligible between -30° and +30° latitude, but outside that band uncorrected rotations can be significantly off. Improved forecasts at 0.5° and 0.1° resolution are posted at http://eq.ess.ucla.edu/kagan/glob_gcmt_index.html.

  4. Comparison of the sand liquefaction estimated based on codes and practical earthquake damage phenomena

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Huang, Yahong

    2017-12-01

    Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.

  5. OMG Earthquake! Can Twitter improve earthquake response?

    NASA Astrophysics Data System (ADS)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  6. Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.

    2010-01-01

    Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.

  7. The Application of Speaker Recognition Techniques in the Detection of Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Gorbatov, A.; O'Connell, J.; Paliwal, K.

    2015-12-01

    Tsunami warning procedures adopted by national tsunami warning centres largely rely on the classical approach of earthquake location, magnitude determination, and the consequent modelling of tsunami waves. Although this approach is based on known physics theories of earthquake and tsunami generation processes, this may be the main shortcoming due to the need to satisfy minimum seismic data requirement to estimate those physical parameters. At least four seismic stations are necessary to locate the earthquake and a minimum of approximately 10 minutes of seismic waveform observation to reliably estimate the magnitude of a large earthquake similar to the 2004 Indian Ocean Tsunami Earthquake of M9.2. Consequently the total time to tsunami warning could be more than half an hour. In attempt to reduce the time of tsunami alert a new approach is proposed based on the classification of tsunamigenic and non tsunamigenic earthquakes using speaker recognition techniques. A Tsunamigenic Dataset (TGDS) was compiled to promote the development of machine learning techniques for application to seismic trace analysis and, in particular, tsunamigenic event detection, and compare them to existing seismological methods. The TGDS contains 227 off shore events (87 tsunamigenic and 140 non-tsunamigenic earthquakes with M≥6) from Jan 2000 to Dec 2011, inclusive. A Support Vector Machine classifier using a radial-basis function kernel was applied to spectral features derived from 400 sec frames of 3-comp. 1-Hz broadband seismometer data. Ten-fold cross-validation was used during training to choose classifier parameters. Voting was applied to the classifier predictions provided from each station to form an overall prediction for an event. The F1 score (harmonic mean of precision and recall) was chosen to rate each classifier as it provides a compromise between type-I and type-II errors, and due to the imbalance between the representative number of events in the tsunamigenic and non

  8. Quasi-static earthquake cycle simulation based on nonlinear viscoelastic finite element analyses

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hyodo, M.; Barbot, S.; Hori, T.

    2017-12-01

    To explain earthquake generation processes, simulation methods of earthquake cycles have been studied. For such simulations, the combination of the rate- and state-dependent friction law at the fault plane and the boundary integral method based on Green's function in an elastic half space is widely used (e.g. Hori 2009; Barbot et al. 2012). In this approach, stress change around the fault plane due to crustal deformation can be computed analytically, while the effects of complex physics such as mantle rheology and gravity are generally not taken into account. To consider such effects, we seek to develop an earthquake cycle simulation combining crustal deformation computation based on the finite element (FE) method with the rate- and state-dependent friction law. Since the drawback of this approach is the computational cost associated with obtaining numerical solutions, we adopt a recently developed fast and scalable FE solver (Ichimura et al. 2016), which assumes use of supercomputers, to solve the problem in a realistic time. As in the previous approach, we solve the governing equations consisting of the rate- and state-dependent friction law. In solving the equations, we compute stress changes along the fault plane due to crustal deformation using FE simulation, instead of computing them by superimposing slip response function as in the previous approach. In stress change computation, we take into account nonlinear viscoelastic deformation in the asthenosphere. In the presentation, we will show simulation results in a normative three-dimensional problem, where a circular-shaped velocity-weakening area is set in a square-shaped fault plane. The results with and without nonlinear viscosity in the asthenosphere will be compared. We also plan to apply the developed code to simulate the post-earthquake deformation of a megathrust earthquake, such as the 2011 Tohoku earthquake. Acknowledgment: The results were obtained using the K computer at the RIKEN (Proposal number

  9. Earthquake early warning using P-waves that appear after initial S-waves

    NASA Astrophysics Data System (ADS)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  10. Earthquakes triggered by fluid extraction

    USGS Publications Warehouse

    Segall, P.

    1989-01-01

    Seismicity is correlated in space and time with production from some oil and gas fields where pore pressures have declined by several tens of megapascals. Reverse faulting has occurred both above and below petroleum reservoirs, and normal faulting has occurred on the flanks of at least one reservoir. The theory of poroelasticity requires that fluid extraction locally alter the state of stress. Calculations with simple geometries predict stress perturbations that are consistent with observed earthquake locations and focal mechanisms. Measurements of surface displacement and strain, pore pressure, stress, and poroelastic rock properties in such areas could be used to test theoretical predictions and improve our understanding of earthquake mechanics. -Author

  11. Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake

    PubMed Central

    Nimiya, Hiro; Ikeda, Tatsunori; Tsuji, Takeshi

    2017-01-01

    Monitoring of earthquake faults and volcanoes contributes to our understanding of their dynamic mechanisms and to our ability to predict future earthquakes and volcanic activity. We report here on spatial and temporal variations of seismic velocity around the seismogenic fault of the 2016 Kumamoto earthquake [moment magnitude (Mw) 7.0] based on ambient seismic noise. Seismic velocity near the rupture faults and Aso volcano decreased during the earthquake. The velocity reduction near the faults may have been due to formation damage, a change in stress state, and an increase in pore pressure. Further, we mapped the post-earthquake fault-healing process. The largest seismic velocity reduction observed at Aso volcano during the earthquake was likely caused by pressurized volcanic fluids, and the large increase in seismic velocity at the volcano’s magma body observed ~3 months after the earthquake may have been a response to depressurization caused by the eruption. This study demonstrates the usefulness of continuous monitoring of faults and volcanoes. PMID:29202026

  12. FORECAST MODEL FOR MODERATE EARTHQUAKES NEAR PARKFIELD, CALIFORNIA.

    USGS Publications Warehouse

    Stuart, William D.; Archuleta, Ralph J.; Lindh, Allan G.

    1985-01-01

    The paper outlines a procedure for using an earthquake instability model and repeated geodetic measurements to attempt an earthquake forecast. The procedure differs from other prediction methods, such as recognizing trends in data or assuming failure at a critical stress level, by using a self-contained instability model that simulates both preseismic and coseismic faulting in a natural way. In short, physical theory supplies a family of curves, and the field data select the member curves whose continuation into the future constitutes a prediction. Model inaccuracy and resolving power of the data determine the uncertainty of the selected curves and hence the uncertainty of the earthquake time.

  13. Near-Field Tsunami Models with Rapid Earthquake Source Inversions from Land and Ocean-Based Observations: The Potential for Forecast and Warning

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Bock, Y.; Crowell, B. W.; Haase, J. S.

    2013-12-01

    Computation of predicted tsunami wave heights and runup in the regions adjacent to large earthquakes immediately after rupture initiation remains a challenging problem. Limitations of traditional seismological instrumentation in the near field which cannot be objectively employed for real-time inversions and the non-unique source inversion results are a major concern for tsunami modelers. Employing near-field seismic, GPS and wave gauge data from the Mw 9.0 2011 Tohoku-oki earthquake, we test the capacity of static finite fault slip models obtained from newly developed algorithms to produce reliable tsunami forecasts. First we demonstrate the ability of seismogeodetic source models determined from combined land-based GPS and strong motion seismometers to forecast near-source tsunamis in ~3 minutes after earthquake origin time (OT). We show that these models, based on land-borne sensors only tend to underestimate the tsunami but are good enough to provide a realistic first warning. We then demonstrate that rapid ingestion of offshore shallow water (100 - 1000 m) wave gauge data significantly improves the model forecasts and possible warnings. We ingest data from 2 near-source ocean-bottom pressure sensors and 6 GPS buoys into the earthquake source inversion process. Tsunami Green functions (tGFs) are generated using the GeoClaw package, a benchmarked finite volume code with adaptive mesh refinement. These tGFs are used for a joint inversion with the land-based data and substantially improve the earthquake source and tsunami forecast. Model skill is assessed by detailed comparisons of the simulation output to 2000+ tsunami runup survey measurements collected after the event. We update the source model and tsunami forecast and warning at 10 min intervals. We show that by 20 min after OT the tsunami is well-predicted with a high variance reduction to the survey data and by ~30 minutes a model that can be considered final, since little changed is observed afterwards, is

  14. Seismogeodesy for rapid earthquake and tsunami characterization

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2016-12-01

    Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of

  15. A Real-Time Earthquake Precursor Detection Technique Using TEC from a GPS Network

    NASA Astrophysics Data System (ADS)

    Alp Akyol, Ali; Arikan, Feza; Arikan, Orhan

    2016-07-01

    Anomalies have been observed in the ionospheric electron density distribution prior to strong earthquakes. However, most of the reported results are obtained by earthquake analysis. Therefore, their implementation in practice is highly problematic. Recently, a novel earthquake precursor detection technique based on spatio-temporal analysis of Total Electron Content (TEC) data obtained from Turkish National Permanent GPS Network (TNPGN) is developed by IONOLAB group (www.ionolab.org). In the present study, the developed detection technique is implemented in a causal setup over the available data set in test phase that enables the real time implementation. The performance of the developed earthquake prediction technique is evaluated by using 10 fold cross validation over the data obtained in 2011. Among the 23 earthquakes that have magnitudes higher than 5, the developed technique can detect precursors of 14 earthquakes while producing 8 false alarms. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  16. Earthquake chemical precursors in groundwater: a review

    NASA Astrophysics Data System (ADS)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Wagle, Amrita; Freund, Friedemann T.

    2018-03-01

    We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (•OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.

  17. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir

    2013-04-01

    demonstrated and sufficient justification of hazard assessment protocols; (b) a more complete learning of the actual range of earthquake hazards to local communities and populations, and (c) a more ethically responsible control over how seismic hazard and seismic risk is implemented to protect public safety. It follows that the international project GEM is on the wrong track, if it continues to base seismic risk estimates on the standard method to assess seismic hazard. The situation is not hopeless and could be improved dramatically due to available geological, geomorphologic, seismic, and tectonic evidences and data combined with deterministic pattern recognition methodologies, specifically, when intending to PREDICT PREDICTABLE, but not the exact size, site, date, and probability of a target event. Understanding the complexity of non-linear dynamics of hierarchically organized systems of blocks-and-faults has led already to methodologies of neo-deterministic seismic hazard analysis and intermediate-term middle- to narrow-range earthquake prediction algorithms tested in real-time applications over the last decades. It proves that Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such info in advance extreme catastrophes, which are LOW PROBABILITY EVENTS THAT HAPPEN WITH CERTAINTY. Geoscientists must initiate shifting the minds of community from pessimistic disbelieve to optimistic challenging issues of neo-deterministic Hazard Predictability.

  18. The physics of an earthquake

    NASA Astrophysics Data System (ADS)

    McCloskey, John

    2008-03-01

    The Sumatra-Andaman earthquake of 26 December 2004 (Boxing Day 2004) and its tsunami will endure in our memories as one of the worst natural disasters of our time. For geophysicists, the scale of the devastation and the likelihood of another equally destructive earthquake set out a series of challenges of how we might use science not only to understand the earthquake and its aftermath but also to help in planning for future earthquakes in the region. In this article a brief account of these efforts is presented. Earthquake prediction is probably impossible, but earth scientists are now able to identify particularly dangerous places for future events by developing an understanding of the physics of stress interaction. Having identified such a dangerous area, a series of numerical Monte Carlo simulations is described which allow us to get an idea of what the most likely consequences of a future earthquake are by modelling the tsunami generated by lots of possible, individually unpredictable, future events. As this article was being written, another earthquake occurred in the region, which had many expected characteristics but was enigmatic in other ways. This has spawned a series of further theories which will contribute to our understanding of this extremely complex problem.

  19. Possible seasonality in large deep-focus earthquakes

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongwen; Shearer, Peter M.

    2015-09-01

    Large deep-focus earthquakes (magnitude > 7.0, depth > 500 km) have exhibited strong seasonality in their occurrence times since the beginning of global earthquake catalogs. Of 60 such events from 1900 to the present, 42 have occurred in the middle half of each year. The seasonality appears strongest in the northwest Pacific subduction zones and weakest in the Tonga region. Taken at face value, the surplus of northern hemisphere summer events is statistically significant, but due to the ex post facto hypothesis testing, the absence of seasonality in smaller deep earthquakes, and the lack of a known physical triggering mechanism, we cannot rule out that the observed seasonality is just random chance. However, we can make a testable prediction of seasonality in future large deep-focus earthquakes, which, given likely earthquake occurrence rates, should be verified or falsified within a few decades. If confirmed, deep earthquake seasonality would challenge our current understanding of deep earthquakes.

  20. The Mw 7.7 Bhuj earthquake: Global lessons for earthquake hazard in intra-plate regions

    USGS Publications Warehouse

    Schweig, E.; Gomberg, J.; Petersen, M.; Ellis, M.; Bodin, P.; Mayrose, L.; Rastogi, B.K.

    2003-01-01

    The Mw 7.7 Bhuj earthquake occurred in the Kachchh District of the State of Gujarat, India on 26 January 2001, and was one of the most damaging intraplate earthquakes ever recorded. This earthquake is in many ways similar to the three great New Madrid earthquakes that occurred in the central United States in 1811-1812, An Indo-US team is studying the similarities and differences of these sequences in order to learn lessons for earthquake hazard in intraplate regions. Herein we present some preliminary conclusions from that study. Both the Kutch and New Madrid regions have rift type geotectonic setting. In both regions the strain rates are of the order of 10-9/yr and attenuation of seismic waves as inferred from observations of intensity and liquefaction are low. These strain rates predict recurrence intervals for Bhuj or New Madrid sized earthquakes of several thousand years or more. In contrast, intervals estimated from paleoseismic studies and from other independent data are significantly shorter, probably hundreds of years. All these observations together may suggest that earthquakes relax high ambient stresses that are locally concentrated by rheologic heterogeneities, rather than loading by plate-tectonic forces. The latter model generally underlies basic assumptions made in earthquake hazard assessment, that the long-term average rate of energy released by earthquakes is determined by the tectonic loading rate, which thus implies an inherent average periodicity of earthquake occurrence. Interpreting the observations in terms of the former model therefore may require re-examining the basic assumptions of hazard assessment.

  1. The influence of one earthquake on another

    NASA Astrophysics Data System (ADS)

    Kilb, Deborah Lyman

    1999-12-01

    Part one of my dissertation examines the initiation of earthquake rupture. We study the initial subevent (ISE) of the Mw 6.7 1994 Northridge, California earthquake to distinguish between two end-member hypotheses of an organized and predictable earthquake rupture initiation process or, alternatively, a random process. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both end-member models, and do not allow us to distinguish between them. However, further tests show the ISE's waveform characteristics are similar to those of typical nearby small earthquakes (i.e., dynamic ruptures). The second part of my dissertation examines aftershocks of the M 7.1 1989 Loma Prieta, California earthquake to determine if theoretical models of static Coulomb stress changes correctly predict the fault plane geometries and slip directions of Loma Prieta aftershocks. Our work shows individual aftershock mechanisms cannot be successfully predicted because a similar degree of predictability can be obtained using a randomized catalogue. This result is probably a function of combined errors in the models of mainshock slip distribution, background stress field, and aftershock locations. In the final part of my dissertation, we test the idea that earthquake triggering occurs when properties of a fault and/or its loading are modified by Coulomb failure stress changes that may be transient and oscillatory (i.e., dynamic) or permanent (i.e., static). We propose a triggering threshold failure stress change exists, above which the earthquake nucleation process begins although failure need not occur instantaneously. We test these ideas using data from the 1992 M 7.4 Landers earthquake and its aftershocks. Stress changes can be categorized as either dynamic (generated during the passage of seismic waves), static (associated with permanent fault offsets

  2. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  3. Earthquake Forecasting in Northeast India using Energy Blocked Model

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Mohanty, D. K.

    2009-12-01

    In the present study, the cumulative seismic energy released by earthquakes (M ≥ 5) for a period 1897 to 2007 is analyzed for Northeast (NE) India. It is one of the most seismically active regions of the world. The occurrence of three great earthquakes like 1897 Shillong plateau earthquake (Mw= 8.7), 1934 Bihar Nepal earthquake with (Mw= 8.3) and 1950 Upper Assam earthquake (Mw= 8.7) signify the possibility of great earthquakes in future from this region. The regional seismicity map for the study region is prepared by plotting the earthquake data for the period 1897 to 2007 from the source like USGS,ISC catalogs, GCMT database, Indian Meteorological department (IMD). Based on the geology, tectonic and seismicity the study region is classified into three source zones such as Zone 1: Arakan-Yoma zone (AYZ), Zone 2: Himalayan Zone (HZ) and Zone 3: Shillong Plateau zone (SPZ). The Arakan-Yoma Range is characterized by the subduction zone, developed by the junction of the Indian Plate and the Eurasian Plate. It shows a dense clustering of earthquake events and the 1908 eastern boundary earthquake. The Himalayan tectonic zone depicts the subduction zone, and the Assam syntaxis. This zone suffered by the great earthquakes like the 1950 Assam, 1934 Bihar and the 1951 Upper Himalayan earthquakes with Mw > 8. The Shillong Plateau zone was affected by major faults like the Dauki fault and exhibits its own style of the prominent tectonic features. The seismicity and hazard potential of Shillong Plateau is distinct from the Himalayan thrust. Using energy blocked model by Tsuboi, the forecasting of major earthquakes for each source zone is estimated. As per the energy blocked model, the supply of energy for potential earthquakes in an area is remarkably uniform with respect to time and the difference between the supply energy and cumulative energy released for a span of time, is a good indicator of energy blocked and can be utilized for the forecasting of major earthquakes

  4. The next new Madrid earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, W.

    1988-01-01

    Scientists who specialize in the study of Mississippi Valley earthquakes say that the region is overdue for a powerful tremor that will cause major damage and undoubtedly some casualties. The inevitability of a future quake and the lack of preparation by both individuals and communities provided the impetus for this book. It brings together applicable information from many disciplines: history, geology and seismology, engineering, zoology, politics and community planning, economics, environmental science, sociology, and psychology and mental health to provide a perspective of the myriad impacts of a major earthquake on the Mississippi Valley. The author addresses such basic questionsmore » as What, actually, are earthquakes How do they occur Can they be predicted, perhaps even prevented He also addresses those steps that individuals can take to improve their chances for survival both during and after an earthquake.« less

  5. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    PubMed

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  6. Distribution and Characteristics of Repeating Earthquakes in Northern California

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.; Zechar, J. D.; Shaw, B. E.

    2012-12-01

    show burst-like behavior with mean recurrence times smaller than one month. 5% of the RES have mean recurrence times greater than one year and include more than 10 earthquakes. Earthquakes in the 50 most periodic sequences (CV<0.2) do not appear to be predictable by either time- or slip-predictable models, consistent with previous findings. We demonstrate that changes in recurrence intervals of repeating earthquakes can be routinely monitored. This is especially important for sequences with CV~0, as they may indicate changes in the loading rate. We also present results from retrospective forecast experiments based on near-real time hazard functions.

  7. If pandas scream. an earthquake is coming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magida, P.

    Feature article:Use of the behavior of animals to predict weather has spanned several ages and dozens of countries. While animals may behave in diverse ways to indicate weather changes, they all tend to behave in more or less the same way before earthquakes. The geophysical community in the U.S. has begun testing animal behavior before earthquakes. It has been determined that animals have the potential of acting as accurate geosensors to detect earthquakes before they occur. (5 drawings)

  8. Limiting the effects of earthquakes on gravitational-wave interferometers

    USGS Publications Warehouse

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  9. Limiting the effects of earthquakes on gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-02-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  10. Future of Earthquake Early Warning: Quantifying Uncertainty and Making Fast Automated Decisions for Applications

    NASA Astrophysics Data System (ADS)

    Wu, Stephen

    Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications. Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake. To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that

  11. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  12. Connecting slow earthquakes to huge earthquakes.

    PubMed

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  13. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    NASA Astrophysics Data System (ADS)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-10-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  14. Predicting earthquakes by analyzing accelerating precursory seismic activity

    USGS Publications Warehouse

    Varnes, D.J.

    1989-01-01

    During 11 sequences of earthquakes that in retrospect can be classed as foreshocks, the accelerating rate at which seismic moment is released follows, at least in part, a simple equation. This equation (1) is {Mathematical expression},where {Mathematical expression} is the cumulative sum until time, t, of the square roots of seismic moments of individual foreshocks computed from reported magnitudes;C and n are constants; and tfis a limiting time at which the rate of seismic moment accumulation becomes infinite. The possible time of a major foreshock or main shock, tf,is found by the best fit of equation (1), or its integral, to step-like plots of {Mathematical expression} versus time using successive estimates of tfin linearized regressions until the maximum coefficient of determination, r2,is obtained. Analyzed examples include sequences preceding earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China 2/4/75; Oaxaca, Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In 29 estimates of main-shock time, made as the sequences developed, the errors in 20 were less than one-half and in 9 less than one tenth the time remaining between the time of the last data used and the main shock. Some precursory sequences, or parts of them, yield no solution. Two sequences appear to include in their first parts the aftershocks of a previous event; plots using the integral of equation (1) show that the sequences are easily separable into aftershock and foreshock segments. Synthetic seismic sequences of shocks at equal time intervals were constructed to follow equation (1), using four values of n. In each series the resulting distributions of magnitudes closely follow the linear Gutenberg-Richter relation log N=a-bM, and the product n times b for each series is the same constant. In various forms and for decades, equation (1) has been used successfully to predict failure times of stressed metals and ceramics, landslides in soil and rock slopes, and volcanic

  15. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    USGS Publications Warehouse

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  16. Regional Earthquake Shaking and Loss Estimation

    NASA Astrophysics Data System (ADS)

    Sesetyan, K.; Demircioglu, M. B.; Zulfikar, C.; Durukal, E.; Erdik, M.

    2009-04-01

    This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses in the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Both Level 0 (similar to PAGER system of USGS) and Level 1 analyses of the ELER routine are based on obtaining intensity distributions analytically and estimating total number of casualties and their geographic distribution either using regionally adjusted intensity-casualty or magnitude-casualty correlations (Level 0) of using regional building inventory data bases (Level 1). Level 0 analysis is similar to the PAGER system being developed by USGS. For given

  17. The California Earthquake Advisory Plan: A history

    USGS Publications Warehouse

    Roeloffs, Evelyn A.; Goltz, James D.

    2017-01-01

    Since 1985, the California Office of Emergency Services (Cal OES) has issued advisory statements to local jurisdictions and the public following seismic activity that scientists on the California Earthquake Prediction Evaluation Council view as indicating elevated probability of a larger earthquake in the same area during the next several days. These advisory statements are motivated by statistical studies showing that about 5% of moderate earthquakes in California are followed by larger events within a 10-km, five-day space-time window (Jones, 1985; Agnew and Jones, 1991; Reasenberg and Jones, 1994). Cal OES issued four earthquake advisories from 1985 to 1989. In October, 1990, the California Earthquake Advisory Plan formalized this practice, and six Cal OES Advisories have been issued since then. This article describes that protocol’s scientific basis and evolution.

  18. PROPOSAL FOR IMPROVEMENT OF BUINESS CONTINUITY PLAN (BCP) BASED ON THE LESSONS OF THE GREAT EAST JAPAN EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Maruya, Hiroaki

    For most Japanese companies and organizations, the enormous damage of the Great East Japan Earthquake was more than expected. In addition to great tsunami and earthquake motion, the lack of electricity and fuel disturbed to business activities seriously, and they should be considered important constraint factors in future earthquakes. Furthermore, disruption of supply chains also led considerable decline of production in many industries across Japan and foreign countries. Therefore it becomes urgent need for Japanese government and industries to utilize the lessons of the Great Earthquake and execute effective countermeasures, considering great earthquakes such as Tonankai & Nankai earthquakes and Tokyo Inland Earthquakes. Obviously most basic step is improving earthquake-resistant ability of buildings and facilities. In addition the spread of BCP and BCM to enterprises and organizations is indispensable. Based on the lessons, the BCM should include the point of view of the supply chain management more clearly, and emphasize "substitute strategy" more explicitly because a company should survive even if it completely loses its present production base. The central and local governments are requested, in addition to develop their own BCP, to improve related systematic conditions for BCM of the private sectors.

  19. Limiting the Effects of Earthquake Shaking on Gravitational-Wave Interferometers

    NASA Astrophysics Data System (ADS)

    Perry, M. R.; Earle, P. S.; Guy, M. R.; Harms, J.; Coughlin, M.; Biscans, S.; Buchanan, C.; Coughlin, E.; Fee, J.; Mukund, N.

    2016-12-01

    Second-generation ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-amplitude waves from teleseismic events, which can cause astronomical detectors to fall out of mechanical lock (lockloss). This causes the data to be useless for gravitational wave detection around the time of the seismic arrivals and for several hours thereafter while the detector stabilizes enough to return to the locked state. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining lock even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is typically available within 5 to 20 minutes of the origin time of significant earthquakes, generally before the arrival of high-amplitude waves from these teleseisms at LIGO. These alerts are used to estimate arrival times and ground velocities at the gravitational wave detectors. In general, 94% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal with about 90% of the events falling within a factor of 2 of the final predicted value. By using a Machine Learning Algorithm, we develop a lockloss prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could save lockloss from 40-100 earthquake events in a 6-month time-period.

  20. Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  1. A Computer-Based Subduction-Zone-Earthquake Exercise for Introductory-Geology Classes.

    ERIC Educational Resources Information Center

    Shea, James Herbert

    1991-01-01

    Describes the author's computer-based program for a subduction-zone-earthquake exercise. Instructions for conducting the activity and obtaining the program from the author are provided. Written in IBM QuickBasic. (PR)

  2. Coseismic landsliding associated with the 2015 April 25th Gorkha earthquake, Nepal

    NASA Astrophysics Data System (ADS)

    Clark, Marin; Zekkos, Dimitrios; West, A. Joshua; Gallen, Sean; Roback, Kevin; Chamlagain, Deepak; Athanasopoulos-Zekkos, Adda; Greenwood, William; Bateman, Julie; Partenio, Michael; Li, Gen; Cook, Kristen; Godt, Jonathan; Howat, Ian; Morin, Paul

    2016-04-01

    . We estimate higher PGA values than those predicted based on GMPE, which could in part explain the concentration of hillslope landsliding. An additional effect that may explain higher landslide density may be the concentration of high-frequency seismic energy, which is observed from high-rate GPS and teleseismic back-projections, since high-frequency spectra promote slope failure. Spatial variability in rock strength could also influence regional landslide distributions; this factor will be investigated with future shallow seismic and field observations. If the observed rupture characteristics of the Gorkha earthquake are typical of large earthquakes in the Himalaya, concentrated landsliding could locally deliver coarse sediment to river channels. Over the long term, spatially focused delivery of coarse sediment may lead to steepened river gradients and higher erosion rates that vary along strike of the Himalaya, provided that coseismic sediment production is mobilized and transported efficiently during the interseismic period. Ongoing work includes evaluating river sediment grain size. If a spatial correlation between coseismic landsliding, increased sediment grain size, and elevated erosion rates can be shown, it would demonstrate a new example of tectonic-erosion coupling based on the seismic cycle and fault behavior.

  3. Analysis of Seismotektonic Patterns in Sumatra Region Based on the Focal Mechanism of Earthquake Period 1976-2016

    NASA Astrophysics Data System (ADS)

    Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.

    2018-04-01

    Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.

  4. Twitter earthquake detection: Earthquake monitoring in a social world

    USGS Publications Warehouse

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  5. Seismicity map tools for earthquake studies

    NASA Astrophysics Data System (ADS)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  6. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Herman, Matthew W.; Barnhart, William D.; Furlong, Kevin P.; Riquelme, Sebástian; Benz, Harley M.; Bergman, Eric; Barrientos, Sergio; Earle, Paul S.; Samsonov, Sergey

    2014-01-01

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile which had not ruptured in a megathrust earthquake since a M ~8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March–April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  7. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake.

    PubMed

    Hayes, Gavin P; Herman, Matthew W; Barnhart, William D; Furlong, Kevin P; Riquelme, Sebástian; Benz, Harley M; Bergman, Eric; Barrientos, Sergio; Earle, Paul S; Samsonov, Sergey

    2014-08-21

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which had not ruptured in a megathrust earthquake since a M ∼8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March-April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  8. Probability estimates of seismic event occurrence compared to health hazards - Forecasting Taipei's Earthquakes

    NASA Astrophysics Data System (ADS)

    Fung, D. C. N.; Wang, J. P.; Chang, S. H.; Chang, S. C.

    2014-12-01

    Using a revised statistical model built on past seismic probability models, the probability of different magnitude earthquakes occurring within variable timespans can be estimated. The revised model is based on Poisson distribution and includes the use of best-estimate values of the probability distribution of different magnitude earthquakes recurring from a fault from literature sources. Our study aims to apply this model to the Taipei metropolitan area with a population of 7 million, which lies in the Taipei Basin and is bounded by two normal faults: the Sanchaio and Taipei faults. The Sanchaio fault is suggested to be responsible for previous large magnitude earthquakes, such as the 1694 magnitude 7 earthquake in northwestern Taipei (Cheng et. al., 2010). Based on a magnitude 7 earthquake return period of 543 years, the model predicts the occurrence of a magnitude 7 earthquake within 20 years at 1.81%, within 79 years at 6.77% and within 300 years at 21.22%. These estimates increase significantly when considering a magnitude 6 earthquake; the chance of one occurring within the next 20 years is estimated to be 3.61%, 79 years at 13.54% and 300 years at 42.45%. The 79 year period represents the average lifespan of the Taiwan population. In contrast, based on data from 2013, the probability of Taiwan residents experiencing heart disease or malignant neoplasm is 11.5% and 29%. The inference of this study is that the calculated risk that the Taipei population is at from a potentially damaging magnitude 6 or greater earthquake occurring within their lifetime is just as great as of suffering from a heart attack or other health ailments.

  9. Real-time neural network earthquake profile predictor

    DOEpatents

    Leach, R.R.; Dowla, F.U.

    1996-02-06

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion. 17 figs.

  10. Real-time neural network earthquake profile predictor

    DOEpatents

    Leach, Richard R.; Dowla, Farid U.

    1996-01-01

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion.

  11. Development of damage probability matrices based on Greek earthquake damage data

    NASA Astrophysics Data System (ADS)

    Eleftheriadou, Anastasia K.; Karabinis, Athanasios I.

    2011-03-01

    A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio α g/ a o, where α g is the maximum peak ground acceleration (PGA) of the earthquake event and a o is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.

  12. Prospectively Evaluating the Collaboratory for the Study of Earthquake Predictability: An Evaluation of the UCERF2 and Updated Five-Year RELM Forecasts

    NASA Astrophysics Data System (ADS)

    Strader, Anne; Schneider, Max; Schorlemmer, Danijel; Liukis, Maria

    2016-04-01

    The Collaboratory for the Study of Earthquake Predictability (CSEP) was developed to rigorously test earthquake forecasts retrospectively and prospectively through reproducible, completely transparent experiments within a controlled environment (Zechar et al., 2010). During 2006-2011, thirteen five-year time-invariant prospective earthquake mainshock forecasts developed by the Regional Earthquake Likelihood Models (RELM) working group were evaluated through the CSEP testing center (Schorlemmer and Gerstenberger, 2007). The number, spatial, and magnitude components of the forecasts were compared to the respective observed seismicity components using a set of consistency tests (Schorlemmer et al., 2007, Zechar et al., 2010). In the initial experiment, all but three forecast models passed every test at the 95% significance level, with all forecasts displaying consistent log-likelihoods (L-test) and magnitude distributions (M-test) with the observed seismicity. In the ten-year RELM experiment update, we reevaluate these earthquake forecasts over an eight-year period from 2008-2016, to determine the consistency of previous likelihood testing results over longer time intervals. Additionally, we test the Uniform California Earthquake Rupture Forecast (UCERF2), developed by the U.S. Geological Survey (USGS), and the earthquake rate model developed by the California Geological Survey (CGS) and the USGS for the National Seismic Hazard Mapping Program (NSHMP) against the RELM forecasts. Both the UCERF2 and NSHMP forecasts pass all consistency tests, though the Helmstetter et al. (2007) and Shen et al. (2007) models exhibit greater information gain per earthquake according to the T- and W- tests (Rhoades et al., 2011). Though all but three RELM forecasts pass the spatial likelihood test (S-test), multiple forecasts fail the M-test due to overprediction of the number of earthquakes during the target period. Though there is no significant difference between the UCERF2 and NSHMP

  13. Short- and Long-Term Earthquake Forecasts Based on Statistical Models

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Taroni, Matteo; Murru, Maura; Falcone, Giuseppe; Marzocchi, Warner

    2017-04-01

    The epidemic-type aftershock sequences (ETAS) models have been experimentally used to forecast the space-time earthquake occurrence rate during the sequence that followed the 2009 L'Aquila earthquake and for the 2012 Emilia earthquake sequence. These forecasts represented the two first pioneering attempts to check the feasibility of providing operational earthquake forecasting (OEF) in Italy. After the 2009 L'Aquila earthquake the Italian Department of Civil Protection nominated an International Commission on Earthquake Forecasting (ICEF) for the development of the first official OEF in Italy that was implemented for testing purposes by the newly established "Centro di Pericolosità Sismica" (CPS, the seismic Hazard Center) at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). According to the ICEF guidelines, the system is open, transparent, reproducible and testable. The scientific information delivered by OEF-Italy is shaped in different formats according to the interested stakeholders, such as scientists, national and regional authorities, and the general public. The communication to people is certainly the most challenging issue, and careful pilot tests are necessary to check the effectiveness of the communication strategy, before opening the information to the public. With regard to long-term time-dependent earthquake forecast, the application of a newly developed simulation algorithm to Calabria region provided typical features in time, space and magnitude behaviour of the seismicity, which can be compared with those of the real observations. These features include long-term pseudo-periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the moderate and higher magnitude range.

  14. Dynamic stress changes during earthquake rupture

    USGS Publications Warehouse

    Day, S.M.; Yu, G.; Wald, D.J.

    1998-01-01

    We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stress-drop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.

  15. Urban Earthquake Shaking and Loss Assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Zulfikar, C.; Durukal, E.; Erdik, M.

    2009-04-01

    This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Level 2 analysis of the ELER Software (similar to HAZUS and SELENA) is essentially intended for earthquake risk assessment (building damage, consequential human casualties and macro economic loss quantifiers) in urban areas. The basic Shake Mapping is similar to the Level 0 and Level 1 analysis however, options are available for more sophisticated treatment of site response through externally entered data and improvement of the shake map through incorporation

  16. Prospective Evaluation of the Global Earthquake Activity Rate Model (GEAR1) Earthquake Forecast: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas

    2017-04-01

    The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.

  17. From integrated observation of pre-earthquake signals towards physical-based forecasting: A prospective test experiment

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Tramutoli, V.; Lee, L.; Liu, J. G.; Hattori, K.; Kafatos, M.

    2013-12-01

    We are conducting an integrated study involving multi-parameter observations over different seismo- tectonics regions in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several selected parameters namely: gas discharge; thermal infrared radiation; ionospheric electron concentration; and atmospheric temperature and humidity, which we suppose are associated with earthquake preparation phase. We intended to test in prospective mode the set of geophysical measurements for different regions of active earthquakes and volcanoes. In 2012-13 we established a collaborative framework with the leading projects PRE-EARTHQUAKE (EU) and iSTEP3 (Taiwan) for coordinate measurements and prospective validation over seven test regions: Southern California (USA), Eastern Honshu (Japan), Italy, Turkey, Greece, Taiwan (ROC), Kamchatka and Sakhalin (Russia). The current experiment provided a 'stress test' opportunity to validate the physical based approach in teal -time over regions of high seismicity. Our initial results are: (1) Prospective tests have shown the presence in real time of anomalies in the atmosphere before most of the significant (M>5.5) earthquakes in all regions; (2) False positive rate alarm is different for each region and varying between 50% (Italy, Kamchatka and California) to 25% (Taiwan and Japan) with a significant reduction of false positives when at least two parameters are contemporary used; (3) One of most complex problem, which is still open, was the systematic collection and real-time integration of pre-earthquake observations. Our findings suggest that the physical based short-term forecast is feasible and more tests are needed. We discus the physical concept we used, the future integration of data observations and related developments.

  18. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    NASA Astrophysics Data System (ADS)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  19. Media exposure related to the 2008 Sichuan Earthquake predicted probable PTSD among Chinese adolescents in Kunming, China: A longitudinal study.

    PubMed

    Yeung, Nelson C Y; Lau, Joseph T F; Yu, Nancy Xiaonan; Zhang, Jianping; Xu, Zhening; Choi, Kai Chow; Zhang, Qi; Mak, Winnie W S; Lui, Wacy W S

    2018-03-01

    This study examined the prevalence and the psychosocial predictors of probable PTSD among Chinese adolescents in Kunming (approximately 444 miles from the epicenter), China, who were indirectly exposed to the Sichuan Earthquake in 2008. Using a longitudinal study design, primary and secondary school students (N = 3577) in Kunming completed questionnaires at baseline (June 2008) and 6 months afterward (December 2008) in classroom settings. Participants' exposure to earthquake-related imagery and content, perceptions and emotional reactions related to the earthquake, and posttraumatic stress symptoms were measured. Univariate and forward stepwise multivariable logistic regression models were fit to identify significant predictors of probable PTSD at the 6-month follow-up. Prevalences of probable PTSD (with a Children's Revised Impact of Event Scale score ≥30) among the participants at baseline and 6-month follow-up were 16.9% and 11.1% respectively. In the multivariable analysis, those who were frequently exposed to distressful imagery had experienced at least two types of negative life events, perceived that teachers were distressed due to the earthquake, believed that the earthquake resulted from damages to the ecosystem, and felt apprehensive and emotionally disturbed due to the earthquake reported a higher risk of probable PTSD at 6-month follow-up (all ps < .05). Exposure to distressful media images, emotional responses, and disaster-related perceptions at baseline were found to be predictive of probable PTSD several months after indirect exposure to the event. Parents, teachers, and the mass media should be aware of the negative impacts of disaster-related media exposure on adolescents' psychological health. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. An application of synthetic seismicity in earthquake statistics - The Middle America Trench

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1992-01-01

    The way in which seismicity calculations which are based on the concept of fault segmentation incorporate the physics of faulting through static dislocation theory can improve earthquake recurrence statistics and hone the probabilities of hazard is shown. For the Middle America Trench, the spread parameters of the best-fitting lognormal or Weibull distributions (about 0.75) are much larger than the 0.21 intrinsic spread proposed in the Nishenko Buland (1987) hypothesis. Stress interaction between fault segments disrupts time or slip predictability and causes earthquake recurrence to be far more aperiodic than has been suggested.

  1. Damaging earthquakes: A scientific laboratory

    USGS Publications Warehouse

    Hays, Walter W.; ,

    1996-01-01

    This paper reviews the principal lessons learned from multidisciplinary postearthquake investigations of damaging earthquakes throughout the world during the past 15 years. The unique laboratory provided by a damaging earthquake in culturally different but tectonically similar regions of the world has increased fundamental understanding of earthquake processes, added perishable scientific, technical, and socioeconomic data to the knowledge base, and led to changes in public policies and professional practices for earthquake loss reduction.

  2. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    NASA Astrophysics Data System (ADS)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    getting a hit is N%" or "the probability of an earthquake is N%" involves specifying the assumptions made. Different plausible assumptions yield a wide range of estimates. In both seismology and sports, how to better predict future performance remains an important question.

  3. The characteristic of the earthquake damage in Kyoto during the historical period

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akihito

    2017-04-01

    The Kyoto city is located in the northern part of the Kyoto basin, central Japan and has a history of more than 1200 years. Kyoto has long been populated area with many buildings, and the center of politics, economics and culture of Japan. Due to historical large earthquakes, the Kyoto city was severely damaged such as collapses of buildings and human casualties. In the historical period, the Kyoto city has experienced six damaging large earthquake of 976, 1185, 1449, 1596, 1662 and 1830. Among them, Kyoto has experienced three damaging large earthquakes from the end of the 16th century to the middle of the 19th century, when the urban area was being expanded. All of these earthquakes are considered to be not the earthquakes in the Kyoto basin but inland earthquakes occurred in the surrounding area. The earthquake damage in Kyoto during the historical period is strongly controlled by ground conditions and earthquakes resistance of buildings rather than distance from the estimated source fault. To better estimate seismic intensity based on building damage, it is necessary to consider the state of buildings (e.g., elapsed years since established, histories of repairs and/or reinforcements, building structures) as well as the strength of ground shakings. By considering the strength of buildings at the time of an earthquake occurrence, the seismic intensity distribution due to historical large earthquakes can be estimated with higher reliability than before. The estimated seismic intensity distribution map for such historical earthquakes can be utilized for developing the strong ground motion prediction in the Kyoto basin.

  4. Source parameters of the 2013 Lushan, Sichuan, Ms7.0 earthquake and estimation of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhou, L.; Liu, J.

    2013-12-01

    Abstract: The April 20, 2013 Ms 7.0 earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The Lushan earthquake caused a great of loss of property and 196 deaths. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process and calculated source spectral parameters, estimated the strong ground motion in the near-fault field based on the Brune's circle model at first. A dynamical composite source model (DCSM) has been developed further to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Based on the simulated results of the near-fault strong ground motion, described the intensity distribution of the Lushan earthquake field. The simulated intensity indicated that, the maximum intensity value is IX, and region with and above VII almost 16,000km2, which is consistence with observation intensity published online by China Earthquake Administration (CEA) on April 25. Moreover, the numerical modeling developed in this study has great application in the strong ground motion prediction and intensity estimation for the earthquake rescue purpose. In fact, the estimation methods based on the empirical relationship and numerical modeling developed in this study has great application in the strong ground motion prediction for the earthquake source process understand purpose. Keywords: Lushan, Ms7.0 earthquake; near-fault strong ground motion; DCSM; simulated intensity

  5. Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth

    PubMed Central

    Sornette, Didier

    2002-01-01

    We propose that catastrophic events are “outliers” with statistically different properties than the rest of the population and result from mechanisms involving amplifying critical cascades. We describe a unifying approach for modeling and predicting these catastrophic events or “ruptures,” that is, sudden transitions from a quiescent state to a crisis. Such ruptures involve interactions between structures at many different scales. Applications and the potential for prediction are discussed in relation to the rupture of composite materials, great earthquakes, turbulence, and abrupt changes of weather regimes, financial crashes, and human parturition (birth). Future improvements will involve combining ideas and tools from statistical physics and artificial/computational intelligence, to identify and classify possible universal structures that occur at different scales, and to develop application-specific methodologies to use these structures for prediction of the “crises” known to arise in each application of interest. We live on a planet and in a society with intermittent dynamics rather than a state of equilibrium, and so there is a growing and urgent need to sensitize students and citizens to the importance and impacts of ruptures in their multiple forms. PMID:11875205

  6. The HayWired Earthquake Scenario—Earthquake Hazards

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  7. Global earthquake casualties due to secondary effects: A quantitative analysis for improving PAGER losses

    USGS Publications Warehouse

    Wald, David J.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey’s (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER’s overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra–Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability.

  8. Attenuation Characteristics of Strong Motions during the 2016 Kumamoto Earthquakes including Near-Field Records

    NASA Astrophysics Data System (ADS)

    Si, H.; Koketsu, K.; Miyake, H.; Ibrahim, R.

    2016-12-01

    During the two major earthquakes occurred in Kumamoto prefecture, at 21:26 on 14 April, 2016 (Mw 6.2, GCMT), and at 1:25 on 16 April, 2016 (Mw7.0, GCMT), a large number of strong ground motions were recorded, including those very close to the surface fault. In this study, we will discuss the attenuation characteristics of strong ground motions observed during the earthquakes. The data used in this study are mainly observed by K-NET, KiK-net, Osaka University, JMA and Kumamoto prefecture. The 5% damped acceleration response spectra (GMRotI50) are calculated based on the method proposed by Boore et al. (2006). PGA and PGV is defined as the larger one among the PGAs and PGVs of two horizontal components. The PGA, PGV, and GMRotI50 data were corrected to the bedrock with Vs of 1.5km/s based on the method proposed by Si et al. (2016) using the average shear wave velocity (Vs30) and the thickness of sediments over the bedrock. The thickness is estimated based on the velocity structure model provided by J-SHIS. We use a source model proposed by Koketsu et al. (2016) to calculate the fault distance and the median distance (MED) which defined as the closest distance from a station to the median line of the fault plane (Si et al., 2014). We compared the observed PGAs, PGVs, and GMRotI50 with the GMPEs developed in Japan using MED (Si et al., 2014). The predictions by the GMPEs are generally consistent with the observations during the two Kumamoto earthquakes. The results of the comparison also indicated that, (1) strong motion records from the earthquake on April 14th are generally consistent with the predictions by GMPE, however, at the periods of 0.5 to 2 seconds, several records close to the fault plane show larger amplitudes than the predictions by GMPE, including the KiK-net station Mashiki (KMMH16); (2) for the earthquake on April 16, the PGAs and GMRotI50 at periods from 0.1s to 0.4s with short distance from the fault plane are slightly smaller than the predictions by

  9. Simulating Earthquakes for Science and Society: New Earthquake Visualizations Ideal for Use in Science Communication

    NASA Astrophysics Data System (ADS)

    de Groot, R. M.; Benthien, M. L.

    2006-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin &Brick, 2002). Earthquakes are ideal candidates for visualization products: they cannot be predicted, are completed in a matter of seconds, occur deep in the earth, and the time between events can be on a geologic time scale. For example, the southern part of the San Andreas fault has not seen a major earthquake since about 1690, setting the stage for an earthquake as large as magnitude 7.7 -- the "big one." Since no one has experienced such an earthquake, visualizations can help people understand the scale of such an event. Accordingly, SCEC has developed a revolutionary simulation of this earthquake, with breathtaking visualizations that are now being distributed. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  10. Predicted liquefaction in the greater Oakland area and northern Santa Clara Valley during a repeat of the 1868 Hayward Fault (M6.7-7.0) earthquake

    USGS Publications Warehouse

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2010-01-01

    Probabilities of surface manifestations of liquefaction due to a repeat of the 1868 (M6.7-7.0) earthquake on the southern segment of the Hayward Fault were calculated for two areas along the margin of San Francisco Bay, California: greater Oakland and the northern Santa Clara Valley. Liquefaction is predicted to be more common in the greater Oakland area than in the northern Santa Clara Valley owing to the presence of 57 km2 of susceptible sandy artificial fill. Most of the fills were placed into San Francisco Bay during the first half of the 20th century to build military bases, port facilities, and shoreline communities like Alameda and Bay Farm Island. Probabilities of liquefaction in the area underlain by this sandy artificial fill range from 0.2 to ~0.5 for a M7.0 earthquake, and decrease to 0.1 to ~0.4 for a M6.7 earthquake. In the greater Oakland area, liquefaction probabilities generally are less than 0.05 for Holocene alluvial fan deposits, which underlie most of the remaining flat-lying urban area. In the northern Santa Clara Valley for a M7.0 earthquake on the Hayward Fault and an assumed water-table depth of 1.5 m (the historically shallowest water level), liquefaction probabilities range from 0.1 to 0.2 along Coyote and Guadalupe Creeks, but are less than 0.05 elsewhere. For a M6.7 earthquake, probabilities are greater than 0.1 along Coyote Creek but decrease along Guadalupe Creek to less than 0.1. Areas with high probabilities in the Santa Clara Valley are underlain by young Holocene levee deposits along major drainages where liquefaction and lateral spreading occurred during large earthquakes in 1868 and 1906.

  11. Long-period building response to earthquakes in the San Francisco Bay Area

    USGS Publications Warehouse

    Olsen, A.H.; Aagaard, Brad T.; Heaton, T.H.

    2008-01-01

    This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area.

  12. Critical behavior in earthquake energy dissipation

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  13. Investigation of the relationship between ionospheric foF2 and earthquakes

    NASA Astrophysics Data System (ADS)

    Karaboga, Tuba; Canyilmaz, Murat; Ozcan, Osman

    2018-04-01

    Variations of the ionospheric F2 region critical frequency (foF2) have been investigated statistically before earthquakes during 1980-2008 periods in Japan area. Ionosonde data was taken from Kokubunji station which is in the earthquake preparation zone for all earthquakes. Standard Deviations and Inter-Quartile Range methods are applied to the foF2 data. It is observed that there are anomalous variations in foF2 before earthquakes. These variations can be regarded as ionospheric precursors and may be used for earthquake prediction.

  14. Practical Applications for Earthquake Scenarios Using ShakeMap

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Worden, B.; Quitoriano, V.; Goltz, J.

    2001-12-01

    In planning and coordinating emergency response, utilities, local government, and other organizations are best served by conducting training exercises based on realistic earthquake situations-ones that they are most likely to face. Scenario earthquakes can fill this role; they can be generated for any geologically plausible earthquake or for actual historic earthquakes. ShakeMap Web pages now display selected earthquake scenarios (www.trinet.org/shake/archive/scenario/html) and more events will be added as they are requested and produced. We will discuss the methodology and provide practical examples where these scenarios are used directly for risk reduction. Given a selected event, we have developed tools to make it relatively easy to generate a ShakeMap earthquake scenario using the following steps: 1) Assume a particular fault or fault segment will (or did) rupture over a certain length, 2) Determine the magnitude of the earthquake based on assumed rupture dimensions, 3) Estimate the ground shaking at all locations in the chosen area around the fault, and 4) Represent these motions visually by producing ShakeMaps and generating ground motion input for loss estimation modeling (e.g., FEMA's HAZUS). At present, ground motions are estimated using empirical attenuation relationships to estimate peak ground motions on rock conditions. We then correct the amplitude at that location based on the local site soil (NEHRP) conditions as we do in the general ShakeMap interpolation scheme. Finiteness is included explicitly, but directivity enters only through the empirical relations. Although current ShakeMap earthquake scenarios are empirically based, substantial improvements in numerical ground motion modeling have been made in recent years. However, loss estimation tools, HAZUS for example, typically require relatively high frequency (3 Hz) input for predicting losses, above the range of frequencies successfully modeled to date. Achieving full-synthetic ground motion

  15. S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Li, Zhiwei

    2018-06-01

    S-wave velocity and attenuation structures of shallow sediments play important roles in accurate prediction of strong ground motion. However, it is more difficult to investigate the attenuation than velocity structures. In this study, we developed a new approach for estimating frequency-dependent S-wave attenuation (Q_S^{ - 1}) structures of shallow sediments based on multiple time window analysis of borehole seismograms from local earthquakes. Multiple time windows for separating direct and surface-reflected S-waves in local earthquake waveforms at borehole stations are selected with a global optimization scheme. With respect to different time windows, the transfer functions between direct and surface-reflected S-waves are achieved with a weighted averaging scheme, based on which frequency dependent Q_S^{ - 1} values are obtained. Synthetic tests suggest that the proposed method can restore robust and reliableQ_S^{ - 1} values, especially when the dataset of local earthquakes is not abundant. We utilize this method for local earthquake waveforms at 14 borehole seismic stations in the North China basin, and obtain Q_S^{ - 1} values in 2 ˜ 10 Hz frequency band, as well as average {V_P}, {V_S} and {V_P}/{{}}{V_S} ratio for shallow sediments deep to a few hundred meters. Results suggest that Q_S^{ - 1} values are to 0.01˜0.06, and generally decrease with frequency. The average attenuation structure of shallow sediments within the depth of a few hundred meters beneath 14 borehole stations in the North China basin can be modeled as Q_S^{ - 1} = 0.056{f^{ - 0.61}}. It is generally consistent with the attenuation structure of sedimentary basins in other areas, such as Mississippi Embayment sediments in the United States and Sendai basin in Japan.

  16. Earthquake Early Warning ShakeAlert System: Testing and certification platform

    USGS Publications Warehouse

    Cochran, Elizabeth S.; Kohler, Monica D.; Given, Douglas; Guiwits, Stephen; Andrews, Jennifer; Meier, Men-Andrin; Ahmad, Mohammad; Henson, Ivan; Hartog, Renate; Smith, Deborah

    2017-01-01

    Earthquake early warning systems provide warnings to end users of incoming moderate to strong ground shaking from earthquakes. An earthquake early warning system, ShakeAlert, is providing alerts to beta end users in the western United States, specifically California, Oregon, and Washington. An essential aspect of the earthquake early warning system is the development of a framework to test modifications to code to ensure functionality and assess performance. In 2016, a Testing and Certification Platform (TCP) was included in the development of the Production Prototype version of ShakeAlert. The purpose of the TCP is to evaluate the robustness of candidate code that is proposed for deployment on ShakeAlert Production Prototype servers. TCP consists of two main components: a real‐time in situ test that replicates the real‐time production system and an offline playback system to replay test suites. The real‐time tests of system performance assess code optimization and stability. The offline tests comprise a stress test of candidate code to assess if the code is production ready. The test suite includes over 120 events including local, regional, and teleseismic historic earthquakes, recentering and calibration events, and other anomalous and potentially problematic signals. Two assessments of alert performance are conducted. First, point‐source assessments are undertaken to compare magnitude, epicentral location, and origin time with the Advanced National Seismic System Comprehensive Catalog, as well as to evaluate alert latency. Second, we describe assessment of the quality of ground‐motion predictions at end‐user sites by comparing predicted shaking intensities to ShakeMaps for historic events and implement a threshold‐based approach that assesses how often end users initiate the appropriate action, based on their ground‐shaking threshold. TCP has been developed to be a convenient streamlined procedure for objectively testing algorithms, and it has

  17. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe

    2017-01-01

    A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic

  18. Application of Geostatistical Methods and Machine Learning for spatio-temporal Earthquake Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Schaefer, A. M.; Daniell, J. E.; Wenzel, F.

    2014-12-01

    Earthquake clustering tends to be an increasingly important part of general earthquake research especially in terms of seismic hazard assessment and earthquake forecasting and prediction approaches. The distinct identification and definition of foreshocks, aftershocks, mainshocks and secondary mainshocks is taken into account using a point based spatio-temporal clustering algorithm originating from the field of classic machine learning. This can be further applied for declustering purposes to separate background seismicity from triggered seismicity. The results are interpreted and processed to assemble 3D-(x,y,t) earthquake clustering maps which are based on smoothed seismicity records in space and time. In addition, multi-dimensional Gaussian functions are used to capture clustering parameters for spatial distribution and dominant orientations. Clusters are further processed using methodologies originating from geostatistics, which have been mostly applied and developed in mining projects during the last decades. A 2.5D variogram analysis is applied to identify spatio-temporal homogeneity in terms of earthquake density and energy output. The results are mitigated using Kriging to provide an accurate mapping solution for clustering features. As a case study, seismic data of New Zealand and the United States is used, covering events since the 1950s, from which an earthquake cluster catalogue is assembled for most of the major events, including a detailed analysis of the Landers and Christchurch sequences.

  19. Experimental validation of finite element model analysis of a steel frame in simulated post-earthquake fire environments

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Bevans, W. J.; Xiao, Hai; Zhou, Zhi; Chen, Genda

    2012-04-01

    During or after an earthquake event, building system often experiences large strains due to shaking effects as observed during recent earthquakes, causing permanent inelastic deformation. In addition to the inelastic deformation induced by the earthquake effect, the post-earthquake fires associated with short fuse of electrical systems and leakage of gas devices can further strain the already damaged structures during the earthquakes, potentially leading to a progressive collapse of buildings. Under these harsh environments, measurements on the involved building by various sensors could only provide limited structural health information. Finite element model analysis, on the other hand, if validated by predesigned experiments, can provide detail structural behavior information of the entire structures. In this paper, a temperature dependent nonlinear 3-D finite element model (FEM) of a one-story steel frame is set up by ABAQUS based on the cited material property of steel from EN 1993-1.2 and AISC manuals. The FEM is validated by testing the modeled steel frame in simulated post-earthquake environments. Comparisons between the FEM analysis and the experimental results show that the FEM predicts the structural behavior of the steel frame in post-earthquake fire conditions reasonably. With experimental validations, the FEM analysis of critical structures could be continuously predicted for structures in these harsh environments for a better assistant to fire fighters in their rescue efforts and save fire victims.

  20. Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction and tremor

    USGS Publications Warehouse

    Johnston, M.J.S.; Borcherdt, R.D.; Linde, A.T.; Gladwin, M.T.

    2006-01-01

    Near-field observations of high-precision borehole strain and pore pressure, show no indication of coherent accelerating strain or pore pressure during the weeks to seconds before the 28 September 2004 M 6.0 Parkfield earthquake. Minor changes in strain rate did occur at a few sites during the last 24 hr before the earthquake but these changes are neither significant nor have the form expected for strain during slip coalescence initiating fault failure. Seconds before the event, strain is stable at the 10-11 level. Final prerupture nucleation slip in the hypocentral region is constrained to have a moment less than 2 ?? 1012 N m (M 2.2) and a source size less than 30 m. Ground displacement data indicate similar constraints. Localized rupture nucleation and runaway precludes useful prediction of damaging earthquakes. Coseismic dynamic strains of about 10 microstrain peak-to-peak were superimposed on volumetric strain offsets of about 0.5 microstrain to the northwest of the epicenter and about 0.2 microstrain to the southeast of the epicenter, consistent with right lateral slip. Observed strain and Global Positioning System (GPS) offsets can be simply fit with 20 cm of slip between 4 and 10 km on a 20-km segment of the fault north of Gold Hill (M0 = 7 ?? 1017 N m). Variable slip inversion models using GPS data and seismic data indicate similar moments. Observed postseismic strain is 60% to 300% of the coseismic strain, indicating incomplete release of accumulated strain. No measurable change in fault zone compliance preceding or following the earthquake is indicated by stable earth tidal response. No indications of strain change accompany nonvolcanic tremor events reported prior to and following the earthquake.

  1. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation.

    PubMed

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-10

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  2. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    PubMed Central

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-01-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011. PMID:27161897

  3. Space-Time Earthquake Rate Models for One-Year Hazard Forecasts in Oklahoma

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Michael, A. J.

    2017-12-01

    The recent one-year seismic hazard assessments for natural and induced seismicity in the central and eastern US (CEUS) (Petersen et al., 2016, 2017) rely on earthquake rate models based on declustered catalogs (i.e., catalogs with foreshocks and aftershocks removed), as is common practice in probabilistic seismic hazard analysis. However, standard declustering can remove over 90% of some induced sequences in the CEUS. Some of these earthquakes may still be capable of causing damage or concern (Petersen et al., 2015, 2016). The choices of whether and how to decluster can lead to seismicity rate estimates that vary by up to factors of 10-20 (Llenos and Michael, AGU, 2016). Therefore, in order to improve the accuracy of hazard assessments, we are exploring ways to make forecasts based on full, rather than declustered, catalogs. We focus on Oklahoma, where earthquake rates began increasing in late 2009 mainly in central Oklahoma and ramped up substantially in 2013 with the expansion of seismicity into northern Oklahoma and southern Kansas. We develop earthquake rate models using the space-time Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988; Ogata, AISM, 1998; Zhuang et al., JASA, 2002), which characterizes both the background seismicity rate as well as aftershock triggering. We examine changes in the model parameters over time, focusing particularly on background rate, which reflects earthquakes that are triggered by external driving forces such as fluid injection rather than other earthquakes. After the model parameters are fit to the seismicity data from a given year, forecasts of the full catalog for the following year can then be made using a suite of 100,000 ETAS model simulations based on those parameters. To evaluate this approach, we develop pseudo-prospective yearly forecasts for Oklahoma from 2013-2016 and compare them with the observations using standard Collaboratory for the Study of Earthquake Predictability tests for consistency.

  4. Response of high-rise and base-isolated buildings to a hypothetical M w 7.0 blind thrust earthquake

    USGS Publications Warehouse

    Heaton, T.H.; Hall, J.F.; Wald, D.J.; Halling, M.W.

    1995-01-01

    High-rise flexible-frame buildings are commonly considered to be resistant to shaking from the largest earthquakes. In addition, base isolation has become increasingly popular for critical buildings that should still function after an earthquake. How will these two types of buildings perform if a large earthquake occurs beneath a metropolitan area? To answer this question, we simulated the near-source ground motions of a Mw 7.0 thrust earthquake and then mathematically modeled the response of a 20-story steel-frame building and a 3-story base-isolated building. The synthesized ground motions were characterized by large displacement pulses (up to 2 meters) and large ground velocities. These ground motions caused large deformation and possible collapse of the frame building, and they required exceptional measures in the design of the base-isolated building if it was to remain functional.

  5. Earthquakes

    MedlinePlus

    ... Search Term(s): Main Content Home Be Informed Earthquakes Earthquakes An earthquake is the sudden, rapid shaking of the earth, ... by the breaking and shifting of underground rock. Earthquakes can cause buildings to collapse and cause heavy ...

  6. The Seismicity of the Central Apennines Region Studied by Means of a Physics-Based Earthquake Simulator

    NASA Astrophysics Data System (ADS)

    Console, R.; Vannoli, P.; Carluccio, R.

    2016-12-01

    The application of a physics-based earthquake simulation algorithm to the central Apennines region, where the 24 August 2016 Amatrice earthquake occurred, allowed the compilation of a synthetic seismic catalog lasting 100 ky, and containing more than 500,000 M ≥ 4.0 events, without the limitations that real catalogs suffer in terms of completeness, homogeneity and time duration. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate for every single fault in the investigated fault systems, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one fault are allowed to expand into neighboring faults, even belonging to a different fault system, if they are separated by less than a given maximum distance. The seismogenic model upon which we applied the simulator code, was derived from the DISS 3.2.0 database (http://diss.rm.ingv.it/diss/), selecting all the fault systems that are recognized in the central Apennines region, for a total of 24 fault systems. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with those of real observations. These features include long-term periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the linear Gutenberg-Richter distribution in the moderate and higher magnitude range. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.3-0.6. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a

  7. Discoveries and Controversies in Geodetic Imaging of Deformation Before and After the M=9 Tohoku-oki Earthquake

    NASA Astrophysics Data System (ADS)

    Wang, K.; Sun, T.; Hino, R.; Iinuma, T.; Tomita, F.; Kido, M.

    2017-12-01

    Numerous observations pertaining to the M=9.0 2011 Tohoku-oki earthquake have led to new understanding of subduction zone earthquakes. By synthesizing published research results and our own findings, we explore what has been learned about fault behavior and Earth rheology from geodetic imaging of crustal deformation before and after the earthquake. Before the earthquake, megathrust locking models based on land-based geodetic observations correctly outlined the along-strike location of the future rupture zone, showing that land-based observations are capable of resolving along-strike variations in locking and creep at wavelengths comparable to distances from the network. But they predicted a locked zone that was much deeper than the actual rupture in 2011. The incorrect definition of the locking pattern in the dip direction demonstrates not only the need for seafloor geodesy but also the importance of modeling interseismic viscoelastic stress relaxation and stress shadowing. The discovery of decade-long accelerated slip downdip of the future rupture zone raises new questions on fault mechanics. After the earthquake, seafloor geodetic discovery of opposing motion offshore provided unambiguous evidence for the dominance of viscoelastic relaxation in short-term postseismic deformation. There is little deep afterslip in the fault area where the decade-long pre-earthquake slip acceleration is observed. The complementary spatial distribution of pre-slip and afterslip calls for new scientific research. However, the near absence of deep afterslip directly downdip of the main rupture is perceived to be controversial because some viscoelastic models do predict large afterslip here, although less than predicted by purely elastic models. We show that the large afterslip in these models is largely an artefact due to the use of a layered Earth model without a subducting slab. The slab acts as an "anchor" in the mantle and retards landward motion following a subduction earthquake

  8. Ground Motions Due to Earthquakes on Creeping Faults

    NASA Astrophysics Data System (ADS)

    Harris, R.; Abrahamson, N. A.

    2014-12-01

    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  9. Psychological distress among Bam earthquake survivors in Iran: a population-based study.

    PubMed

    Montazeri, Ali; Baradaran, Hamid; Omidvari, Sepideh; Azin, Seyed Ali; Ebadi, Mehdi; Garmaroudi, Gholamreza; Harirchi, Amir Mahmood; Shariati, Mohammad

    2005-01-11

    An earthquake measuring 6.3 on the Richter scale struck the city of Bam in Iran on the 26th of December 2003 at 5.26 A.M. It was devastating, and left over 40,000 dead and around 30,000 injured. The profound tragedy of thousands killed has caused emotional and psychological trauma for tens of thousands of people who have survived. A study was carried out to assess psychological distress among Bam earthquake survivors and factors associated with severe mental health in those who survived the tragedy. This was a population-based study measuring psychological distress among the survivors of Bam earthquake in Iran. Using a multi-stage stratified sampling method a random sample of individuals aged 15 years and over living in Bam were interviewed. Psychological distress was measured using the 12-item General Health Questionnaire (GHQ-12). In all 916 survivors were interviewed. The mean age of the respondents was 32.9 years (SD = 12.4), mostly were males (53%), married (66%) and had secondary school education (50%). Forty-one percent reported they lost 3 to 5 members of their family in the earthquake. In addition the findings showed that 58% of the respondents suffered from severe mental health as measured by the GHQ-12 and this was three times higher than reported psychological distress among the general population. There were significant differences between sub-groups of the study sample with regard to their psychological distress. The results of the logistic regression analysis also indicated that female gender; lower education, unemployment, and loss of family members were associated with severe psychological distress among earthquake victims. The study findings indicated that the amount of psychological distress among earthquake survivors was high and there is an urgent need to deliver mental health care to disaster victims in local medical settings and to reduce negative health impacts of the earthquake adequate psychological counseling is needed for those who

  10. Psychological distress among Bam earthquake survivors in Iran: a population-based study

    PubMed Central

    Montazeri, Ali; Baradaran, Hamid; Omidvari, Sepideh; Azin, Seyed Ali; Ebadi, Mehdi; Garmaroudi, Gholamreza; Harirchi, Amir Mahmood; Shariati, Mohammad

    2005-01-01

    Background An earthquake measuring 6.3 on the Richter scale struck the city of Bam in Iran on the 26th of December 2003 at 5.26 A.M. It was devastating, and left over 40,000 dead and around 30,000 injured. The profound tragedy of thousands killed has caused emotional and psychological trauma for tens of thousands of people who have survived. A study was carried out to assess psychological distress among Bam earthquake survivors and factors associated with severe mental health in those who survived the tragedy. Methods This was a population-based study measuring psychological distress among the survivors of Bam earthquake in Iran. Using a multi-stage stratified sampling method a random sample of individuals aged 15 years and over living in Bam were interviewed. Psychological distress was measured using the 12-item General Health Questionnaire (GHQ-12). Results In all 916 survivors were interviewed. The mean age of the respondents was 32.9 years (SD = 12.4), mostly were males (53%), married (66%) and had secondary school education (50%). Forty-one percent reported they lost 3 to 5 members of their family in the earthquake. In addition the findings showed that 58% of the respondents suffered from severe mental health as measured by the GHQ-12 and this was three times higher than reported psychological distress among the general population. There were significant differences between sub-groups of the study sample with regard to their psychological distress. The results of the logistic regression analysis also indicated that female gender; lower education, unemployment, and loss of family members were associated with severe psychological distress among earthquake victims. Conclusion The study findings indicated that the amount of psychological distress among earthquake survivors was high and there is an urgent need to deliver mental health care to disaster victims in local medical settings and to reduce negative health impacts of the earthquake adequate psychological

  11. Seismic damage to structures in the M s6.5 Ludian earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu

    2016-03-01

    On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.

  12. Dynamic strains for earthquake source characterization

    USGS Publications Warehouse

    Barbour, Andrew J.; Crowell, Brendan W

    2017-01-01

    Strainmeters measure elastodynamic deformation associated with earthquakes over a broad frequency band, with detection characteristics that complement traditional instrumentation, but they are commonly used to study slow transient deformation along active faults and at subduction zones, for example. Here, we analyze dynamic strains at Plate Boundary Observatory (PBO) borehole strainmeters (BSM) associated with 146 local and regional earthquakes from 2004–2014, with magnitudes from M 4.5 to 7.2. We find that peak values in seismic strain can be predicted from a general regression against distance and magnitude, with improvements in accuracy gained by accounting for biases associated with site–station effects and source–path effects, the latter exhibiting the strongest influence on the regression coefficients. To account for the influence of these biases in a general way, we include crustal‐type classifications from the CRUST1.0 global velocity model, which demonstrates that high‐frequency strain data from the PBO BSM network carry information on crustal structure and fault mechanics: earthquakes nucleating offshore on the Blanco fracture zone, for example, generate consistently lower dynamic strains than earthquakes around the Sierra Nevada microplate and in the Salton trough. Finally, we test our dynamic strain prediction equations on the 2011 M 9 Tohoku‐Oki earthquake, specifically continuous strain records derived from triangulation of 137 high‐rate Global Navigation Satellite System Earth Observation Network stations in Japan. Moment magnitudes inferred from these data and the strain model are in agreement when Global Positioning System subnetworks are unaffected by spatial aliasing.

  13. Public Release of Estimated Impact-Based Earthquake Alerts - An Update to the U.S. Geological Survey PAGER System

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Jaiswal, K. S.; Marano, K.; Hearne, M.; Earle, P. S.; So, E.; Garcia, D.; Hayes, G. P.; Mathias, S.; Applegate, D.; Bausch, D.

    2010-12-01

    The U.S. Geological Survey (USGS) has begun publicly releasing earthquake alerts for significant earthquakes around the globe based on estimates of potential casualties and economic losses. These estimates should significantly enhance the utility of the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system that has been providing estimated ShakeMaps and computing population exposures to specific shaking intensities since 2007. Quantifying earthquake impacts and communicating loss estimates (and their uncertainties) to the public has been the culmination of several important new and evolving components of the system. First, the operational PAGER system now relies on empirically-based loss models that account for estimated shaking hazard, population exposure, and employ country-specific fatality and economic loss functions derived using analyses of losses due to recent and past earthquakes. In some countries, our empirical loss models are informed in part by PAGER’s semi-empirical and analytical loss models, and building exposure and vulnerability data sets, all of which are being developed in parallel to the empirical approach. Second, human and economic loss information is now portrayed as a supplement to existing intensity/exposure content on both PAGER summary alert (available via cell phone/email) messages and web pages. Loss calculations also include estimates of the economic impact with respect to the country’s gross domestic product. Third, in order to facilitate rapid and appropriate earthquake responses based on our probable loss estimates, in early 2010 we proposed a four-level Earthquake Impact Scale (EIS). Instead of simply issuing median estimates for losses—which can be easily misunderstood and misused—this scale provides ranges of losses from which potential responders can gauge expected overall impact from strong shaking. EIS is based on two complementary criteria: the estimated cost of damage, which is most suitable for U

  14. Prevalence and predictors of stress disorders following two earthquakes.

    PubMed

    Yuan, Kang Chuan; Ruo Yao, Zhao; Zhen Yu, Shi; Xu Dong, Zhao; Jian Zhong, Yang; Edwards, Jason Glen; Edwards, Glen David

    2013-09-01

    Studies about stress disorders following a disaster have mainly been based on single-event trauma with little emphasis on multiple traumas. This study investigated the prevalence and predictors of stress disorders following two earthquakes in China. Subjects were randomly sampled from 11 villages in rural China. A total of 624 subjects were administered with the 12-item General Health Questionnaire (GHQ-12), Symptom Checklist -90-R (SCL-90-R), Coping Style Scale and Social Support Rating Scale. This was followed by a structural clinical interview using the Chinese translation of the Structured Clinical Interview for Diagnostic and Statistical Manual (DSM)-IV-TR axis 1 disorders (SCID-I-P) for acute stress disorder (ASD) and post-traumatic stress disorder (PTSD). The prevalence of ASD and PTSD was 15% and 29%, respectively. Regression analysis indicated that high intensity of trauma exposure, lower educational level, subjective feeling of economic status and psychological stress after the first earthquake significantly predicted the outcome of PTSD. The study suggested that the prevalence of stress disorders in two earthquakes were higher than that experienced in a single disaster. The intensity of trauma exposure, low educational level, bad subjective feeling of economic status, and psychological stress after the first earthquake could be used to identify survivors at risk of developing PTSD in two earthquakes.

  15. Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    NASA Astrophysics Data System (ADS)

    Williams, Jack G.; Rosser, Nick J.; Kincey, Mark E.; Benjamin, Jessica; Oven, Katie J.; Densmore, Alexander L.; Milledge, David G.; Robinson, Tom R.; Jordan, Colm A.; Dijkstra, Tom A.

    2018-01-01

    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response.

  16. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  17. NGA-West 2 Equations for predicting PGA, PGV, and 5%-Damped PSA for shallow crustal earthquakes

    USGS Publications Warehouse

    Boore, David M.; Stewart, Jon P.; Seyhan, Emel; Atkinson, Gail M.

    2013-01-01

    We provide ground-motion prediction equations for computing medians and standard deviations of average horizontal component intensity measures (IMs) for shallow crustal earthquakes in active tectonic regions. The equations were derived from a global database with M 3.0–7.9 events. We derived equations for the primary M- and distance-dependence of the IMs after fixing the VS30-based nonlinear site term from a parallel NGA-West 2 study. We then evaluated additional effects using mixed effects residuals analysis, which revealed no trends with source depth over the M range of interest, indistinct Class 1 and 2 event IMs, and basin depth effects that increase and decrease long-period IMs for depths larger and smaller, respectively, than means from regional VS30-depth relations. Our aleatory variability model captures decreasing between-event variability with M, as well as within-event variability that increases or decreases with M depending on period, increases with distance, and decreases for soft sites.

  18. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  19. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    PubMed Central

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  20. Analysis of post-earthquake reconstruction for Wenchuan earthquake based on night-time light data from DMSP/OLS

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhang, Jing; Yang, Mingxiang; Lei, Xiaohui

    2017-07-01

    At present, most of Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) night-time light data are applied to large-scale regional development assessment, while there are little for the study of earthquake and other disasters. This study has extracted night-time light information before and after earthquake within Wenchuan county with adoption of DMSP/OLS night-time light data. The analysis results show that the night-time light index and average intensity of Wenchuan county were decreased by about 76% and 50% respectively from the year of 2007 to 2008. From the year of 2008 to 2011, the two indicators were increased by about 200% and 556% respectively. These research results show that the night-time light data can be used to extract the information of earthquake and evaluate the occurrence of earthquakes and other disasters.

  1. Probing failure susceptibilities of earthquake faults using small-quake tidal correlations.

    PubMed

    Brinkman, Braden A W; LeBlanc, Michael; Ben-Zion, Yehuda; Uhl, Jonathan T; Dahmen, Karin A

    2015-01-27

    Mitigating the devastating economic and humanitarian impact of large earthquakes requires signals for forecasting seismic events. Daily tide stresses were previously thought to be insufficient for use as such a signal. Recently, however, they have been found to correlate significantly with small earthquakes, just before large earthquakes occur. Here we present a simple earthquake model to investigate whether correlations between daily tidal stresses and small earthquakes provide information about the likelihood of impending large earthquakes. The model predicts that intervals of significant correlations between small earthquakes and ongoing low-amplitude periodic stresses indicate increased fault susceptibility to large earthquake generation. The results agree with the recent observations of large earthquakes preceded by time periods of significant correlations between smaller events and daily tide stresses. We anticipate that incorporating experimentally determined parameters and fault-specific details into the model may provide new tools for extracting improved probabilities of impending large earthquakes.

  2. The free oscillations of the earth excited by three strongest earthquakes of the past decade according to deformation observations

    NASA Astrophysics Data System (ADS)

    Milyukov, V. K.; Vinogradov, M. P.; Mironov, A. P.; Myasnikov, A. V.; Perelygin, N. A.

    2015-03-01

    Based on the deformation data provided by the Baksan laser interferometer-strainmeter measurements, the free oscillations of the Earth (FOE) excited by the three strongest earthquakes of the past decade are analyzed. These seismic events include the Great Sumatra-Andaman earthquake that occurred in 2004 in the Indian Ocean, the Mauli earthquake of 2010 in Chile, and the Great Tohoku earthquake of March 2011 in Japan. The frequency-time structure of the free oscillations is studied, and the pattern of interaction between the modes with close frequencies (cross-coupling effect) is explored. For each earthquake, the correspondence of the observed FOE modes to the model predictions by the PREM model is investigated. A reliable consistent shift towards the high frequency of the toroidal modes with angular degree l = 12-19 is revealed. The maximal energy density of the toroidal oscillations is concentrated in the upper mantle of the Earth. Therefore, the established effect corresponds to the higher velocity of the shear waves in the upper mantle than it is predicted by the PREM model.

  3. The Extraction of Post-Earthquake Building Damage Informatiom Based on Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wang, X.; Dou, A.; Wu, X.

    2018-04-01

    The seismic damage information of buildings extracted from remote sensing (RS) imagery is meaningful for supporting relief and effective reduction of losses caused by earthquake. Both traditional pixel-based and object-oriented methods have some shortcoming in extracting information of object. Pixel-based method can't make fully use of contextual information of objects. Object-oriented method faces problem that segmentation of image is not ideal, and the choice of feature space is difficult. In this paper, a new stratage is proposed which combines Convolution Neural Network (CNN) with imagery segmentation to extract building damage information from remote sensing imagery. the key idea of this method includes two steps. First to use CNN to predicate the probability of each pixel and then integrate the probability within each segmentation spot. The method is tested through extracting the collapsed building and uncollapsed building from the aerial image which is acquired in Longtoushan Town after Ms 6.5 Ludian County, Yunnan Province earthquake. The results show that the proposed method indicates its effectiveness in extracting damage information of buildings after earthquake.

  4. Global earthquake casualties due to secondary effects: A quantitative analysis for improving rapid loss analyses

    USGS Publications Warehouse

    Marano, K.D.; Wald, D.J.; Allen, T.I.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER's overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra-Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability. ?? Springer Science+Business Media B.V. 2009.

  5. Application of a long-range forecasting model to earthquakes in the Japan mainland testing region

    NASA Astrophysics Data System (ADS)

    Rhoades, David A.

    2011-03-01

    The Every Earthquake a Precursor According to Scale (EEPAS) model is a long-range forecasting method which has been previously applied to a number of regions, including Japan. The Collaboratory for the Study of Earthquake Predictability (CSEP) forecasting experiment in Japan provides an opportunity to test the model at lower magnitudes than previously and to compare it with other competing models. The model sums contributions to the rate density from past earthquakes based on predictive scaling relations derived from the precursory scale increase phenomenon. Two features of the earthquake catalogue in the Japan mainland region create difficulties in applying the model, namely magnitude-dependence in the proportion of aftershocks and in the Gutenberg-Richter b-value. To accommodate these features, the model was fitted separately to earthquakes in three different target magnitude classes over the period 2000-2009. There are some substantial unexplained differences in parameters between classes, but the time and magnitude distributions of the individual earthquake contributions are such that the model is suitable for three-month testing at M ≥ 4 and for one-year testing at M ≥ 5. In retrospective analyses, the mean probability gain of the EEPAS model over a spatially smoothed seismicity model increases with magnitude. The same trend is expected in prospective testing. The Proximity to Past Earthquakes (PPE) model has been submitted to the same testing classes as the EEPAS model. Its role is that of a spatially-smoothed reference model, against which the performance of time-varying models can be compared.

  6. Lessons of L'Aquila for Operational Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2012-12-01

    The L'Aquila earthquake of 6 Apr 2009 (magnitude 6.3) killed 309 people and left tens of thousands homeless. The mainshock was preceded by a vigorous seismic sequence that prompted informal earthquake predictions and evacuations. In an attempt to calm the population, the Italian Department of Civil Protection (DPC) convened its Commission on the Forecasting and Prevention of Major Risk (MRC) in L'Aquila on 31 March 2009 and issued statements about the hazard that were widely received as an "anti-alarm"; i.e., a deterministic prediction that there would not be a major earthquake. On October 23, 2012, a court in L'Aquila convicted the vice-director of DPC and six scientists and engineers who attended the MRC meeting on charges of criminal manslaughter, and it sentenced each to six years in prison. A few weeks after the L'Aquila disaster, the Italian government convened an International Commission on Earthquake Forecasting for Civil Protection (ICEF) with the mandate to assess the status of short-term forecasting methods and to recommend how they should be used in civil protection. The ICEF, which I chaired, issued its findings and recommendations on 2 Oct 2009 and published its final report, "Operational Earthquake Forecasting: Status of Knowledge and Guidelines for Implementation," in Aug 2011 (www.annalsofgeophysics.eu/index.php/annals/article/view/5350). As defined by the Commission, operational earthquake forecasting (OEF) involves two key activities: the continual updating of authoritative information about the future occurrence of potentially damaging earthquakes, and the officially sanctioned dissemination of this information to enhance earthquake preparedness in threatened communities. Among the main lessons of L'Aquila is the need to separate the role of science advisors, whose job is to provide objective information about natural hazards, from that of civil decision-makers who must weigh the benefits of protective actions against the costs of false alarms

  7. The Northridge earthquake: community-based approaches to unmet recovery needs.

    PubMed

    Bolin, R; Stanford, L

    1998-03-01

    The 1994 Northridge, California earthquake has proven to be one of the most costly disasters in United States history. Federal and state assistance programmes received some 681,000 applications from victims for various forms of relief. In spite of the flow of US$11 billion in federal assistance into Los Angeles and Ventura counties, many victims have failed to obtain adequate relief. These unmet needs relate to the vulnerability of particular class and ethnic groups. In response to unmet needs, a number of non-governmental organisations (NGOs) have become involved in the recovery process. This paper, based on evidence collected from hundreds of in-depth interviews with the people involved, examines the activities of several community-based organisations (CBOs) and other NGOs as they have attempted to assist vulnerable people with unmet post-disaster needs. We discuss two small ethnically diverse communities in Ventura County, on the periphery of the Los Angeles metropolitan region. The earthquake and resultant disaster declaration provided an opportunity for local government and NGOs to acquire federal resources not normally available for economic development. At the same time the earthquake created political openings in which longer-term issues of community development could be addressed by various local stakeholders. A key issue in recovery has been the availability of affordable housing for those on low incomes, particularly Latinos, the elderly and farm workers. We discuss the successes and limitations of CBOs and NGOs as mechanisms for dealing with vulnerable populations, unmet needs and recovery issues in the two communities.

  8. High resolution strain sensor for earthquake precursor observation and earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang

    2016-05-01

    We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.

  9. From Tornadoes to Earthquakes: Forecast Verification for Binary Events Applied to the 1999 Chi-Chi, Taiwan, Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, C.; Rundle, J. B.; Holliday, J. R.; Nanjo, K.; Turcotte, D. L.; Li, S.; Tiampo, K. F.

    2005-12-01

    Forecast verification procedures for statistical events with binary outcomes typically rely on the use of contingency tables and Relative Operating Characteristic (ROC) diagrams. Originally developed for the statistical evaluation of tornado forecasts on a county-by-county basis, these methods can be adapted to the evaluation of competing earthquake forecasts. Here we apply these methods retrospectively to two forecasts for the m = 7.3 1999 Chi-Chi, Taiwan, earthquake. These forecasts are based on a method, Pattern Informatics (PI), that locates likely sites for future large earthquakes based on large change in activity of the smallest earthquakes. A competing null hypothesis, Relative Intensity (RI), is based on the idea that future large earthquake locations are correlated with sites having the greatest frequency of small earthquakes. We show that for Taiwan, the PI forecast method is superior to the RI forecast null hypothesis. Inspection of the two maps indicates that their forecast locations are indeed quite different. Our results confirm an earlier result suggesting that the earthquake preparation process for events such as the Chi-Chi earthquake involves anomalous changes in activation or quiescence, and that signatures of these processes can be detected in precursory seismicity data. Furthermore, we find that our methods can accurately forecast the locations of aftershocks from precursory seismicity changes alone, implying that the main shock together with its aftershocks represent a single manifestation of the formation of a high-stress region nucleating prior to the main shock.

  10. Models of recurrent strike-slip earthquake cycles and the state of crustal stress

    NASA Technical Reports Server (NTRS)

    Lyzenga, Gregory A.; Raefsky, Arthur; Mulligan, Stephanie G.

    1991-01-01

    Numerical models of the strike-slip earthquake cycle, assuming a viscoelastic asthenosphere coupling model, are examined. The time-dependent simulations incorporate a stress-driven fault, which leads to tectonic stress fields and earthquake recurrence histories that are mutually consistent. Single-fault simulations with constant far-field plate motion lead to a nearly periodic earthquake cycle and a distinctive spatial distribution of crustal shear stress. The predicted stress distribution includes a local minimum in stress at depths less than typical seismogenic depths. The width of this stress 'trough' depends on the magnitude of crustal stress relative to asthenospheric drag stresses. The models further predict a local near-fault stress maximum at greater depths, sustained by the cyclic transfer of strain from the elastic crust to the ductile asthenosphere. Models incorporating both low-stress and high-stress fault strength assumptions are examined, under Newtonian and non-Newtonian rheology assumptions. Model results suggest a preference for low-stress (a shear stress level of about 10 MPa) fault models, in agreement with previous estimates based on heat flow measurements and other stress indicators.

  11. Source Model of the MJMA 6.5 Plate-Boundary Earthquake at the Nankai Trough, Southwest Japan, on April 1, 2016, Based on Strong Motion Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Asano, K.

    2017-12-01

    An MJMA 6.5 earthquake occurred offshore the Kii peninsula, southwest Japan on April 1, 2016. This event was interpreted as a thrust-event on the plate-boundary along the Nankai trough where (Wallace et al., 2016). This event is the largest plate-boundary earthquake in the source region of the 1944 Tonankai earthquake (MW 8.0) after that event. The significant point of this event regarding to seismic observation is that this event occurred beneath an ocean-bottom seismic network called DONET1, which is jointly operated by NIED and JAMSTEC. Since moderate-to-large earthquake of this focal type is very rare in this region in the last half century, it is a good opportunity to investigate the source characteristics relating to strong motion generation of subduction-zone plate-boundary earthquakes along the Nankai trough. Knowledge obtained from the study of this earthquake would contribute to ground motion prediction and seismic hazard assessment for future megathrust earthquakes expected in the Nankai trough. In this study, the source model of the 2016 offshore the Kii peninsula earthquake was estimated by broadband strong motion waveform modeling using the empirical Green's function method (Irikura, 1986). The source model is characterized by strong motion generation area (SMGA) (Miyake et al., 2003), which is defined as a rectangular area with high-stress drop or high slip-velocity. SMGA source model based on the empirical Green's function method has great potential to reproduce ground motion time history in broadband frequency range. We used strong motion data from offshore stations (DONET1 and LTBMS) and onshore stations (NIED F-net and DPRI). The records of an MJMA 3.2 aftershock at 13:04 on April 1, 2016 were selected for the empirical Green's functions. The source parameters of SMGA are optimized by the waveform modeling in the frequency range 0.4-10 Hz. The best estimate of SMGA size is 19.4 km2, and SMGA of this event does not follow the source scaling

  12. Effects of Breathing-Based Meditation on Earthquake-Affected Health Professionals.

    PubMed

    Iwakuma, Miho; Oshita, Daien; Yamamoto, Akihiro; Urushibara-Miyachi, Yuka

    On March 11, 2013, the Great East Japan Earthquake (magnitude 9) hit the northern part of Japan (Tohoku), killing more than 15 000 people and leaving long-lasting scars, including psychological damage among evacuees, some of whom were health professionals. Little is known about meditation efficacy on disaster-affected health professionals. The present study investigated the effects of breathing-based meditation on seminar participants who were health professionals who had survived the earthquake. This study employed a mixed methods approach, using both survey data and handwritten qualitative data. Quantitative results of pre- and postmeditation practice indicated that all mood scales (anger, confusion, depression, fatigue, strain, and vigor) were significantly improved (N = 17). Qualitative results revealed several common themes (emancipation from chronic and bodily senses; holistic sense: transcending mind-body; re-turning an axis in life through reflection, self-control, and/or gratitude; meditation into mundane, everyday life; and coming out of pain in the aftermath of the earthquake) that had emerged as expressions of participant meditation experiences. Following the 45-minute meditation session, the present study participants reported improvements in all psychological states (anger, confusion, depression, fatigue, strain, and vigor) in the quantitative portion, which indicated efficacy of the meditation. Our analysis of the qualitative portion revealed what and how participants felt during meditating.

  13. Short-term earthquake forecasting based on an epidemic clustering model

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Murru, Maura; Falcone, Giuseppe

    2016-04-01

    The application of rigorous statistical tools, with the aim of verifying any prediction method, requires a univocal definition of the hypothesis, or the model, characterizing the concerned anomaly or precursor, so as it can be objectively recognized in any circumstance and by any observer. This is mandatory to build up on the old-fashion approach consisting only of the retrospective anecdotic study of past cases. A rigorous definition of an earthquake forecasting hypothesis should lead to the objective identification of particular sub-volumes (usually named alarm volumes) of the total time-space volume within which the probability of occurrence of strong earthquakes is higher than the usual. The test of a similar hypothesis needs the observation of a sufficient number of past cases upon which a statistical analysis is possible. This analysis should be aimed to determine the rate at which the precursor has been followed (success rate) or not followed (false alarm rate) by the target seismic event, or the rate at which a target event has been preceded (alarm rate) or not preceded (failure rate) by the precursor. The binary table obtained from this kind of analysis leads to the definition of the parameters of the model that achieve the maximum number of successes and the minimum number of false alarms for a specific class of precursors. The mathematical tools suitable for this purpose may include the definition of Probability Gain or the R-Score, as well as the application of popular plots such as the Molchan error-diagram and the ROC diagram. Another tool for evaluating the validity of a forecasting method is the concept of the likelihood ratio (also named performance factor) of occurrence and non-occurrence of seismic events under different hypotheses. Whatever is the method chosen for building up a new hypothesis, usually based on retrospective data, the final assessment of its validity should be carried out by a test on a new and independent set of observations

  14. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  15. Seismic, structural, and individual factors associated with earthquake related injury

    PubMed Central

    Peek-Asa, C; Ramirez, M; Seligson, H; Shoaf, K

    2003-01-01

    Background: Earthquakes cause thousands of deaths worldwide every year, and systematic study of the causes of these deaths can lead to their prevention. Few studies have examined how multiple types of risk factors are related to physical injury during an earthquake. Methods: A population based case-control study was conducted to examine how individual characteristics, building characteristics, and seismic features of the 1994 Northridge, California, earthquake contributed to physical injury. Cases included fatal and hospital-admitted injuries caused by the earthquake. Controls were drawn from a population based phone survey of county residents. Cases were individually matched to two sets of controls: one matched by age and gender and one matched by location at the time of the earthquake. Results: Individuals over age 65 had 2.9 times the risk of injury as younger people (95% confidence interval (CI) 1.2 to 7.4) and women had a 2.4 times greater risk than men (95% CI 1.2 to 5.1). Location in multiple unit residential and commercial structures each led to increased injury risk compared with single unit residential structures, but the exact estimate varied depending on the control group used. With every increase in ground motion of 10%g, injury risk increased 2.2 times (95% CI 1.6 to 3.3). Conclusions: Controlling for other factors, it was found that individual, building, and seismic characteristics were independently predictive of increased injury risk. Prevention and preparedness efforts should focus on each of these as potential points of intervention. PMID:12642562

  16. Earthquakes.

    ERIC Educational Resources Information Center

    Pakiser, Louis C.

    One of a series of general interest publications on science topics, the booklet provides those interested in earthquakes with an introduction to the subject. Following a section presenting an historical look at the world's major earthquakes, the booklet discusses earthquake-prone geographic areas, the nature and workings of earthquakes, earthquake…

  17. Earthquake hazards: a national threat

    USGS Publications Warehouse

    ,

    2006-01-01

    Earthquakes are one of the most costly natural hazards faced by the Nation, posing a significant risk to 75 million Americans in 39 States. The risks that earthquakes pose to society, including death, injury, and economic loss, can be greatly reduced by (1) better planning, construction, and mitigation practices before earthquakes happen, and (2) providing critical and timely information to improve response after they occur. As part of the multi-agency National Earthquake Hazards Reduction Program, the U.S. Geological Survey (USGS) has the lead Federal responsibility to provide notification of earthquakes in order to enhance public safety and to reduce losses through effective forecasts based on the best possible scientific information.

  18. WGCEP Historical California Earthquake Catalog

    USGS Publications Warehouse

    Felzer, Karen R.; Cao, Tianqing

    2008-01-01

    This appendix provides an earthquake catalog for California and the surrounding area. Our goal is to provide a listing for all known M > 5.5 earthquakes that occurred from 1850-1932 and all known M > 4.0 earthquakes that occurred from 1932-2006 within the region of 31.0 to 43.0 degrees North and -126.0 to -114.0 degrees West. Some pre-1932 earthquakes 4 5, before the Northern California network was online. Some earthquakes from 1900-1932, and particularly from 1910-1932 are also based on instrumental readings, but the quality of the instrumental record and the resulting analysis are much less precise than for later listings. A partial exception is for some of the largest earthquakes, such as the San Francisco earthquake of April 18, 1906, for which global teleseismic records (Wald et al. 1993) and geodetic measurements (Thatcher et al. 1906) have been used to help determine magnitudes.

  19. Rapid Extraction of Landslide and Spatial Distribution Analysis after Jiuzhaigou Ms7.0 Earthquake Based on Uav Images

    NASA Astrophysics Data System (ADS)

    Jiao, Q. S.; Luo, Y.; Shen, W. H.; Li, Q.; Wang, X.

    2018-04-01

    Jiuzhaigou earthquake led to the collapse of the mountains and formed lots of landslides in Jiuzhaigou scenic spot and surrounding roads which caused road blockage and serious ecological damage. Due to the urgency of the rescue, the authors carried unmanned aerial vehicle (UAV) and entered the disaster area as early as August 9 to obtain the aerial images near the epicenter. On the basis of summarizing the earthquake landslides characteristics in aerial images, by using the object-oriented analysis method, landslides image objects were obtained by multi-scale segmentation, and the feature rule set of each level was automatically built by SEaTH (Separability and Thresholds) algorithm to realize the rapid landslide extraction. Compared with visual interpretation, object-oriented automatic landslides extraction method achieved an accuracy of 94.3 %. The spatial distribution of the earthquake landslide had a significant positive correlation with slope and relief and had a negative correlation with the roughness, but no obvious correlation with the aspect. The relationship between the landslide and the aspect was not found and the probable reason may be that the distance between the study area and the seismogenic fault was too far away. This work provided technical support for the earthquake field emergency, earthquake landslide prediction and disaster loss assessment.

  20. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    NASA Astrophysics Data System (ADS)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  1. The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake?

    NASA Astrophysics Data System (ADS)

    Tilmann, F.; Zhang, Y.; Moreno, M.; Saul, J.; Eckelmann, F.; Palo, M.; Deng, Z.; Babeyko, A.; Chen, K.; Baez, J. C.; Schurr, B.; Wang, R.; Dahm, T.

    2016-01-01

    On 16 September 2015, the MW = 8.2 Illapel megathrust earthquake ruptured the Central Chilean margin. Combining inversions of displacement measurements and seismic waveforms with high frequency (HF) teleseismic backprojection, we derive a comprehensive description of the rupture, which also predicts deep ocean tsunami wave heights. We further determine moment tensors and obtain accurate depth estimates for the aftershock sequence. The earthquake nucleated near the coast but then propagated to the north and updip, attaining a peak slip of 5-6 m. In contrast, HF seismic radiation is mostly emitted downdip of the region of intense slip and arrests earlier than the long period rupture, indicating smooth slip along the shallow plate interface in the final phase. A superficially similar earthquake in 1943 with a similar aftershock zone had a much shorter source time function, which matches the duration of HF seismic radiation in the recent event, indicating that the 1943 event lacked the shallow slip.

  2. How Should Disaster Base Hospitals Prepare for Dialysis Therapy after Earthquakes? Introduction of Double Water Piping Circuits Provided by Well Water System

    PubMed Central

    Ohta, Nobutaka

    2016-01-01

    After earthquakes, continuing dialysis for patients with ESRD and patients suffering from crush syndrome is the serious problem. In this paper, we analyzed the failure of the provision of dialysis services observed in recent disasters and discussed how to prepare for disasters to continue dialysis therapy. Japan has frequently experienced devastating earthquakes. A lot of dialysis centers could not continue dialysis treatment owing to damage caused by these earthquakes. The survey by Japanese Society for Dialysis Treatment (JSDT) after the Great East Japan Earthquake in 2011 showed that failure of lifelines such as electric power and water supply was the leading cause of the malfunction of dialysis treatment. Our hospital is located in Shizuoka Prefecture, where one of the biggest earthquakes is predicted to occur in the near future. In addition to reconstructing earthquake-resistant buildings and facilities, we therefore have adopted double electric and water lifelines by introducing emergency generators and well water supply systems. It is very important to inform politicians, bureaucrats, and local water departments that dialysis treatment, a life sustaining therapy for patients with end stage renal diseases, requires a large amount of water. We cannot prevent an earthquake but can curb the extent of a disaster by preparing for earthquakes. PMID:27999820

  3. How Should Disaster Base Hospitals Prepare for Dialysis Therapy after Earthquakes? Introduction of Double Water Piping Circuits Provided by Well Water System.

    PubMed

    Ikegaya, Naoki; Seki, George; Ohta, Nobutaka

    2016-01-01

    After earthquakes, continuing dialysis for patients with ESRD and patients suffering from crush syndrome is the serious problem. In this paper, we analyzed the failure of the provision of dialysis services observed in recent disasters and discussed how to prepare for disasters to continue dialysis therapy. Japan has frequently experienced devastating earthquakes. A lot of dialysis centers could not continue dialysis treatment owing to damage caused by these earthquakes. The survey by Japanese Society for Dialysis Treatment (JSDT) after the Great East Japan Earthquake in 2011 showed that failure of lifelines such as electric power and water supply was the leading cause of the malfunction of dialysis treatment. Our hospital is located in Shizuoka Prefecture, where one of the biggest earthquakes is predicted to occur in the near future. In addition to reconstructing earthquake-resistant buildings and facilities, we therefore have adopted double electric and water lifelines by introducing emergency generators and well water supply systems. It is very important to inform politicians, bureaucrats, and local water departments that dialysis treatment, a life sustaining therapy for patients with end stage renal diseases, requires a large amount of water. We cannot prevent an earthquake but can curb the extent of a disaster by preparing for earthquakes.

  4. Improvements of the offshore earthquake locations in the Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, Ta-Yi; Hsu, Hsin-Chih

    2017-04-01

    Since 2014 the Earthworm Based Earthquake Alarm Reporting (eBEAR) system has been operated and been used to issue warnings to schools. In 2015 the system started to provide warnings to the public in Taiwan via television and the cell phone. Online performance of the eBEAR system indicated that the average reporting times afforded by the system are approximately 15 and 28 s for inland and offshore earthquakes, respectively. The eBEAR system in average can provide more warning time than the current EEW system (3.2 s and 5.5 s for inland and offshore earthquakes, respectively). However, offshore earthquakes were usually located poorly because only P-wave arrivals were used in the eBEAR system. Additionally, in the early stage of the earthquake early warning system, only fewer stations are available. The poor station coverage may be a reason to answer why offshore earthquakes are difficult to locate accurately. In the Geiger's inversion procedure of earthquake location, we need to put an initial hypocenter and origin time into the location program. For the initial hypocenter, we defined some test locations on the offshore area instead of using the average of locations from triggered stations. We performed 20 programs concurrently running the Geiger's method with different pre-defined initial position to locate earthquakes. We assume that if the program with the pre-defined initial position is close to the true earthquake location, during the iteration procedure of the Geiger's method the processing time of this program should be less than others. The results show that using pre-defined locations for trial-hypocenter in the inversion procedure is able to improve the accurate of offshore earthquakes. Especially for EEW system, in the initial stage of the EEW system, only use 3 or 5 stations to locate earthquakes may lead to bad results because of poor station coverage. In this study, the pre-defined trial-locations provide a feasible way to improve the estimations of

  5. Update of the Graizer-Kalkan ground-motion prediction equations for shallow crustal continental earthquakes

    USGS Publications Warehouse

    Graizer, Vladimir; Kalkan, Erol

    2015-01-01

    A ground-motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration and 5-percent damped pseudo spectral acceleration response ordinates of maximum horizontal component of randomly oriented ground motions was developed by Graizer and Kalkan (2007, 2009) to be used for seismic hazard analyses and engineering applications. This GMPE was derived from the greatly expanded Next Generation of Attenuation (NGA)-West1 database. In this study, Graizer and Kalkan’s GMPE is revised to include (1) an anelastic attenuation term as a function of quality factor (Q0) in order to capture regional differences in large-distance attenuation and (2) a new frequency-dependent sedimentary-basin scaling term as a function of depth to the 1.5-km/s shear-wave velocity isosurface to improve ground-motion predictions for sites on deep sedimentary basins. The new model (GK15), developed to be simple, is applicable to the western United States and other regions with shallow continental crust in active tectonic environments and may be used for earthquakes with moment magnitudes 5.0–8.0, distances 0–250 km, average shear-wave velocities 200–1,300 m/s, and spectral periods 0.01–5 s. Directivity effects are not explicitly modeled but are included through the variability of the data. Our aleatory variability model captures inter-event variability, which decreases with magnitude and increases with distance. The mixed-effects residuals analysis shows that the GK15 reveals no trend with respect to the independent parameters. The GK15 is a significant improvement over Graizer and Kalkan (2007, 2009), and provides a demonstrable, reliable description of ground-motion amplitudes recorded from shallow crustal earthquakes in active tectonic regions over a wide range of magnitudes, distances, and site conditions.

  6. Near-real-time Earthquake Notification and Response in the Classroom: Exploiting the Teachable Moment

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Whitlock, J. S.; Benz, H. M.

    2002-12-01

    Earthquakes occur globally, on a regular but (as yet) non-predictable basis, and their effects are both dramatic and often devastating. Additionally they serve as a primary tool to image the earth and define the active processes that drive tectonics. As a result, earthquakes can be an extremely effective tool for helping students to learn about active earth processes, natural hazards, and the myriad of issues that arise with non-predictable but potentially devastating natural events. We have developed and implemented a real-time earthquake alert system (EAS) built on the USGS Earthworm system to bring earthquakes into the classroom. Through our EAS, students in our General Education class on Natural Hazards (Earth101 - Natural Disasters: Hollywood vs. Reality) participate in earthquake response activities in ways similar to earthquake hazard professionals - they become part of the response to the event. Our implementation of the Earthworm system allows our students to be paged via cell-phone text messaging (Yes, we provide cell phones to the 'duty seismologists'), and they respond to those pages as appropriate for their role. A parallel web server is maintained that provides the earthquake details (location maps, waveforms etc.) and students produce time-critical output such as news releases, analyses of earthquake trends in the region, and reports detailing implications of the events. Since this is a course targeted at non-science majors, we encourage that they bring their own expertise into the analyses. For example, business of economic majors may investigate the economic impacts of an earthquake, secondary education majors may work on teaching modules based on the information they gather etc. Since the students know that they are responding to real events they develop ownership of the information they gather and they recognize the value of real-time response. Our educational goals in developing this system include: (1) helping students develop a sense of the

  7. Earthquake Rate Model 2.2 of the 2007 Working Group for California Earthquake Probabilities, Appendix D: Magnitude-Area Relationships

    USGS Publications Warehouse

    Stein, Ross S.

    2007-01-01

    Summary To estimate the down-dip coseismic fault dimension, W, the Executive Committee has chosen the Nazareth and Hauksson (2004) method, which uses the 99% depth of background seismicity to assign W. For the predicted earthquake magnitude-fault area scaling used to estimate the maximum magnitude of an earthquake rupture from a fault's length, L, and W, the Committee has assigned equal weight to the Ellsworth B (Working Group on California Earthquake Probabilities, 2003) and Hanks and Bakun (2002) (as updated in 2007) equations. The former uses a single relation; the latter uses a bilinear relation which changes slope at M=6.65 (A=537 km2).

  8. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault

    NASA Astrophysics Data System (ADS)

    Scuderi, M. M.; Collettini, C.; Marone, C.

    2017-11-01

    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  9. An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm

    NASA Astrophysics Data System (ADS)

    Heaton, T. H.; Karakus, G.; Beck, J. L.

    2016-12-01

    Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.

  10. One research from turkey on groundwater- level changes related earthquake

    NASA Astrophysics Data System (ADS)

    Kirmizitas, H.; Göktepe, G.

    2003-04-01

    Groundwater levels are recorded by limnigraphs in drilling wells in order to determine groundwater potential accurately and reliable under hydrogeological studies in Turkey State Haydraulic Works (DSI) set the limnigraphs to estimate mainly groundwater potential. Any well is drilled to determine and to obtain data on water level changes related earthquake up today. The main purpose of these studies are based on groundwater potential and to expose the hydrodynamic structure of an aquifer. In this study, abnormal oscillations, water rising and water drops were observed on graphs which is related with water level changes in groundwater. These observations showed that, some earthquakes has been effective on water level changes. There is a distance ranging to 2000 km between this epicentral and water wells. Water level changes occur in groundwater bearing layers that could be consisting of grained materials such as, alluvium or consolidated rocks such as, limestones. The biggest water level change is ranging to 1,48 m on diagrams and it is recorded as oscillation movement. Water level changes related earthquake are observed in different types of movements below in this research. 1-Rise-drop oscillation changes on same point. 2-Water level drop in certain periods or permanent periods after earthquakes. 3-Water level rise in certain periods or permanent periods after earthquakes. (For example, during Gölcük Earthquake with magnitude of 7.8 on August, 17, 1999 one artesian occured in DSI well ( 49160 numbered ) in Adapazari, Dernekkiri Village. Groundwater level changes might easily be changed because of atmosferic pressure that comes in first range, precipitation, irrigation or water pumping. Owing to relate groundwater level changes with earthquake on any time, such changes should be observed accurately, carefully and at right time. Thus, first of all, the real reason of this water level changes must be determined From 1970 to 2001 many earthquakes occured in Turkey

  11. A new Bayesian Inference-based Phase Associator for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Meier, Men-Andrin; Heaton, Thomas; Clinton, John; Wiemer, Stefan

    2013-04-01

    State of the art network-based Earthquake Early Warning (EEW) systems can provide warnings for large magnitude 7+ earthquakes. Although regions in the direct vicinity of the epicenter will not receive warnings prior to damaging shaking, real-time event characterization is available before the destructive S-wave arrival across much of the strongly affected region. In contrast, in the case of the more frequent medium size events, such as the devastating 1994 Mw6.7 Northridge, California, earthquake, providing timely warning to the smaller damage zone is more difficult. For such events the "blind zone" of current systems (e.g. the CISN ShakeAlert system in California) is similar in size to the area over which severe damage occurs. We propose a faster and more robust Bayesian inference-based event associator, that in contrast to the current standard associators (e.g. Earthworm Binder), is tailored to EEW and exploits information other than only phase arrival times. In particular, the associator potentially allows for reliable automated event association with as little as two observations, which, compared to the ShakeAlert system, would speed up the real-time characterizations by about ten seconds and thus reduce the blind zone area by up to 80%. We compile an extensive data set of regional and teleseismic earthquake and noise waveforms spanning a wide range of earthquake magnitudes and tectonic regimes. We pass these waveforms through a causal real-time filterbank with passband filters between 0.1 and 50Hz, and, updating every second from the event detection, extract the maximum amplitudes in each frequency band. Using this dataset, we define distributions of amplitude maxima in each passband as a function of epicentral distance and magnitude. For the real-time data, we pass incoming broadband and strong motion waveforms through the same filterbank and extract an evolving set of maximum amplitudes in each passband. We use the maximum amplitude distributions to check

  12. Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter

    NASA Astrophysics Data System (ADS)

    Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.

    2018-04-01

    Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.

  13. Earthquake early warning for Romania - most recent improvements

    NASA Astrophysics Data System (ADS)

    Marmureanu, Alexandru; Elia, Luca; Martino, Claudio; Colombelli, Simona; Zollo, Aldo; Cioflan, Carmen; Toader, Victorin; Marmureanu, Gheorghe; Marius Craiu, George; Ionescu, Constantin

    2014-05-01

    EWS for Vrancea earthquakes uses the time interval (28-32 sec.) between the moment when the earthquake is detected by the local seismic network installed in the epicenter area (Vrancea) and the arrival time of the seismic waves in the protected area (Bucharest) to send earthquake warning to users. In the last years, National Institute for Earth Physics (NIEP) upgraded its seismic network in order to cover better the seismic zones of Romania. Currently the National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Ranger, gs21, Mark l22) and acceleration sensors (Episensor). Recent improvement of the seismic network and real-time communication technologies allows implementation of a nation-wide EEWS for Vrancea and other seismic sources from Romania. We present a regional approach to Earthquake Early Warning for Romania earthquakes. The regional approach is based on PRESTo (Probabilistic and Evolutionary early warning SysTem) software platform: PRESTo processes in real-time three channel acceleration data streams: once the P-waves arrival have been detected, it provides earthquake location and magnitude estimations, and peak ground motion predictions at target sites. PRESTo is currently implemented in real- time at National Institute for Earth Physics, Bucharest for several months in parallel with a secondary EEWS. The alert notification is issued only when both systems validate each other. Here we present the results obtained using offline earthquakes originating from Vrancea area together with several real

  14. An interdisciplinary approach for earthquake modelling and forecasting

    NASA Astrophysics Data System (ADS)

    Han, P.; Zhuang, J.; Hattori, K.; Ogata, Y.

    2016-12-01

    Earthquake is one of the most serious disasters, which may cause heavy casualties and economic losses. Especially in the past two decades, huge/mega earthquakes have hit many countries. Effective earthquake forecasting (including time, location, and magnitude) becomes extremely important and urgent. To date, various heuristically derived algorithms have been developed for forecasting earthquakes. Generally, they can be classified into two types: catalog-based approaches and non-catalog-based approaches. Thanks to the rapid development of statistical seismology in the past 30 years, now we are able to evaluate the performances of these earthquake forecast approaches quantitatively. Although a certain amount of precursory information is available in both earthquake catalogs and non-catalog observations, the earthquake forecast is still far from satisfactory. In most case, the precursory phenomena were studied individually. An earthquake model that combines self-exciting and mutually exciting elements was developed by Ogata and Utsu from the Hawkes process. The core idea of this combined model is that the status of the event at present is controlled by the event itself (self-exciting) and all the external factors (mutually exciting) in the past. In essence, the conditional intensity function is a time-varying Poisson process with rate λ(t), which is composed of the background rate, the self-exciting term (the information from past seismic events), and the external excitation term (the information from past non-seismic observations). This model shows us a way to integrate the catalog-based forecast and non-catalog-based forecast. Against this background, we are trying to develop a new earthquake forecast model which combines catalog-based and non-catalog-based approaches.

  15. Satellite Relay Telemetry of Seismic Data in Earthquake Prediction and Control

    NASA Technical Reports Server (NTRS)

    Jackson, W. H.; Eaton, J. P.

    1971-01-01

    The Satellite Telemetry Earthquake Monitoring Program was started to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project. The principal advantages of the satellite relay system over commercial telephone or microwave systems were: (1) it could be made less prone to massive failure during a major earthquake; (2) it could be extended readily into undeveloped regions; and (3) it could provide flexible, uniform communications over large sections of major global tectonic zones. Fundamental characteristics of a communications system to cope with the large volume of raw data collected by a short-period seismograph network are discussed.

  16. Seismo-ionospheric Precursors of the Total Electron Content Associated with Global Large Earthquakes Examined by Using Ground-based and Space-based Radio Occultation GNSS Observations

    NASA Astrophysics Data System (ADS)

    Liu, J. Y. G.

    2017-12-01

    To verify seismo-ionospheric precursors (SIPs), statistical analyses are implemented on the relationship between the total electron content (TEC) in the global ionosphere map (GIM) derived from measurements of ground-based GNSS (global navigation satellite system) receivers and worldwide M≥7.0 earthquakes during 2000-2016. A median-based method is employed to determine the characteristic of TEC anomalies related to the earthquakes. It is found that the polarity of both negative (decrease) and positive (increase) in the GIM TEC, which varies location-by location, can be observed few days before the earthquakes. In general, PEIAs with the negative polarity associated with the earthquakes are more frequently detected. Meanwhile, FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) or F3/C in was launched into a circular low-Earth orbit on 15 April 2006. Six F3/C microsatellites with 72-degree inclination angle and 30-degree separation in longitude orbit at 800 km altitude, and conduct the ionospheric radio occultation (RO) observations by receiving signals from GNSS satellites and globally observing about 2500 vertical electron density profiles per day. Both ground-based and space-based RO GNSS observations are used to three dimensionally study SIPs related to the 11 March 2011 M9.0 Tohoku earthquake.

  17. Distant, delayed and ancient earthquake-induced landslides

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Torgoev, Almaz; Braun, Anika; Schlögel, Romy; Micu, Mihai

    2016-04-01

    On the basis of a new classification of seismically induced landslides we outline particular effects related to the delayed and distant triggering of landslides. Those cannot be predicted by state-of-the-art methods. First, for about a dozen events the 'predicted' extension of the affected area is clearly underestimated. The most problematic cases are those for which far-distant triggering of landslides had been reported, such as for the 1988 Saguenay earthquake. In Central Asia reports for such cases are known for areas marked by a thick cover of loess. One possible contributing effect could be a low-frequency resonance of the thick soils induced by distant earthquakes, especially those in the Pamir - Hindu Kush seismic region. Such deep focal and high magnitude (>>7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this area and others in Central Asia we computed landslide event sizes related to scenario earthquakes with M>7.5. The second particular and challenging type of triggering is the one delayed with respect to the main earthquake event: case histories have been reported for the Racha earthquake in 1991 when several larger landslides only started moving 2 or 3 days after the main shock. Similar observations were also made after other earthquake events in the U.S., such as after the 1906 San Francisco, the 1949 Tacoma, the 1959 Hebgen Lake and the 1983 Bora Peak earthquakes. Here, we will present a series of detailed examples of (partly monitored) mass movements in Central Asia that mainly developed after earthquakes, some even several weeks after the main shock: e.g. the Tektonik and Kainama landslides triggered in 1992 and 2004, respectively. We believe that the development of the massive failures is a consequence of the opening of tension cracks during the seismic shaking and their filling up with water during precipitations that followed the earthquakes. The third particular aspect analysed here is the use of large

  18. Determination Hypocentre and Focal Mechanism Earthquake of Oct 31, 2016 in Bone, South Sulawesi

    NASA Astrophysics Data System (ADS)

    Altin Massinai, Muhammad; Fawzy Ismullah M, Muhammad

    2018-03-01

    Indonesian Meteorology, Climatology and Geophysics Agency (BMKG) recorded an earthquake with M4.6 on at October 31, 2016 at Bone District, around 80 Km northeast form Makassar, South Sulawesi. The earthquake occurred 18:18:14 local time in 4.7°S, 120°E with depth 10 Km. Seismicity around location predicted caused by activity Walennae fault. We reprocessed earthquake data to determine precise hypocentre location and focal mechanism. The P- and S-wave arrival time got from BMKG used as input HYPOELLIPSE code to determine hypocentre. The results showed that the earthquake occurred 10:18:14.46 UTC in 4.638°S, 119.966°E with depth 24.76 Km. The hypocentre resolved 10 Km fix depth and had lower travel time residual than BMKG result. Focal mechanism determination used Azmtak code based on the first arrival polarity at earthquake waveform manually picked. The result showed a reverse mechanism with strike direction 38°, dip 44°, rake angle 134° on fault plane I and strike direction 164°, dip 60°, rake angle 56° on fault plane II. So, the earthquake which may be related to a reverse East Walennae Fault.

  19. Future Earth: Reducing Loss By Automating Response to Earthquake Shaking

    NASA Astrophysics Data System (ADS)

    Allen, R. M.

    2014-12-01

    Earthquakes pose a significant threat to society in the U.S. and around the world. The risk is easily forgotten given the infrequent recurrence of major damaging events, yet the likelihood of a major earthquake in California in the next 30 years is greater than 99%. As our societal infrastructure becomes ever more interconnected, the potential impacts of these future events are difficult to predict. Yet, the same inter-connected infrastructure also allows us to rapidly detect earthquakes as they begin, and provide seconds, tens or seconds, or a few minutes warning. A demonstration earthquake early warning system is now operating in California and is being expanded to the west coast (www.ShakeAlert.org). In recent earthquakes in the Los Angeles region, alerts were generated that could have provided warning to the vast majority of Los Angelinos who experienced the shaking. Efforts are underway to build a public system. Smartphone technology will be used not only to issue that alerts, but could also be used to collect data, and improve the warnings. The MyShake project at UC Berkeley is currently testing an app that attempts to turn millions of smartphones into earthquake-detectors. As our development of the technology continues, we can anticipate ever-more automated response to earthquake alerts. Already, the BART system in the San Francisco Bay Area automatically stops trains based on the alerts. In the future, elevators will stop, machinery will pause, hazardous materials will be isolated, and self-driving cars will pull-over to the side of the road. In this presentation we will review the current status of the earthquake early warning system in the US. We will illustrate how smartphones can contribute to the system. Finally, we will review applications of the information to reduce future losses.

  20. GIS learning tool for world's largest earthquakes and their causes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Moumita

    The objective of this thesis is to increase awareness about earthquakes among people, especially young students by showing the five largest and two most predictable earthquake locations in the world and their plate tectonic settings. This is a geographic based interactive tool which could be used for learning about the cause of great earthquakes in the past and the safest places on the earth in order to avoid direct effect of earthquakes. This approach provides an effective way of learning for the students as it is very user friendly and more aligned to the interests of the younger generation. In this tool the user can click on the various points located on the world map which will open a picture and link to the webpage for that point, showing detailed information of the earthquake history of that place including magnitude of quake, year of past quakes and the plate tectonic settings that made this place earthquake prone. Apart from knowing the earthquake related information students will also be able to customize the tool to suit their needs or interests. Students will be able to add/remove layers, measure distance between any two points on the map, select any place on the map and know more information for that place, create a layer from this set to do a detail analysis, run a query, change display settings, etc. At the end of this tool the user has to go through the earthquake safely guidelines in order to be safe during an earthquake. This tool uses Java as programming language and uses Map Objects Java Edition (MOJO) provided by ESRI. This tool is developed for educational purpose and hence its interface has been kept simple and easy to use so that students can gain maximum knowledge through it instead of having a hard time to install it. There are lots of details to explore which can help more about what a GIS based tool is capable of. Only thing needed to run this tool is latest JAVA edition installed in their machine. This approach makes study more fun and

  1. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  2. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a

  3. Combining Multiple Rupture Models in Real-Time for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Wu, S.; Beck, J. L.; Heaton, T. H.

    2015-12-01

    The ShakeAlert earthquake early warning system for the west coast of the United States is designed to combine information from multiple independent earthquake analysis algorithms in order to provide the public with robust predictions of shaking intensity at each user's location before they are affected by strong shaking. The current contributing analyses come from algorithms that determine the origin time, epicenter, and magnitude of an earthquake (On-site, ElarmS, and Virtual Seismologist). A second generation of algorithms will provide seismic line source information (FinDer), as well as geodetically-constrained slip models (BEFORES, GPSlip, G-larmS, G-FAST). These new algorithms will provide more information about the spatial extent of the earthquake rupture and thus improve the quality of the resulting shaking forecasts.Each of the contributing algorithms exploits different features of the observed seismic and geodetic data, and thus each algorithm may perform differently for different data availability and earthquake source characteristics. Thus the ShakeAlert system requires a central mediator, called the Central Decision Module (CDM). The CDM acts to combine disparate earthquake source information into one unified shaking forecast. Here we will present a new design for the CDM that uses a Bayesian framework to combine earthquake reports from multiple analysis algorithms and compares them to observed shaking information in order to both assess the relative plausibility of each earthquake report and to create an improved unified shaking forecast complete with appropriate uncertainties. We will describe how these probabilistic shaking forecasts can be used to provide each user with a personalized decision-making tool that can help decide whether or not to take a protective action (such as opening fire house doors or stopping trains) based on that user's distance to the earthquake, vulnerability to shaking, false alarm tolerance, and time required to act.

  4. Temporal stress changes caused by earthquakes: A review

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  5. Temporal Stress Changes Caused by Earthquakes: A Review

    NASA Astrophysics Data System (ADS)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-02-01

    Earthquakes can change the stress field in the Earth's lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth's crust at plate boundaries is "strong" or "weak." Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  6. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    NASA Astrophysics Data System (ADS)

    Yao, Y. B.; Chen, P.; Zhang, S.; Chen, J. J.; Yan, F.; Peng, W. F.

    2012-03-01

    The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC) from the global ionosphere map (GIM). We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0-2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time). Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  7. Application of geostatistical simulation to compile seismotectonic provinces based on earthquake databases (case study: Iran)

    NASA Astrophysics Data System (ADS)

    Jalali, Mohammad; Ramazi, Hamidreza

    2018-04-01

    This article is devoted to application of a simulation algorithm based on geostatistical methods to compile and update seismotectonic provinces in which Iran has been chosen as a case study. Traditionally, tectonic maps together with seismological data and information (e.g., earthquake catalogues, earthquake mechanism, and microseismic data) have been used to update seismotectonic provinces. In many cases, incomplete earthquake catalogues are one of the important challenges in this procedure. To overcome this problem, a geostatistical simulation algorithm, turning band simulation, TBSIM, was applied to make a synthetic data to improve incomplete earthquake catalogues. Then, the synthetic data was added to the traditional information to study the seismicity homogeneity and classify the areas according to tectonic and seismic properties to update seismotectonic provinces. In this paper, (i) different magnitude types in the studied catalogues have been homogenized to moment magnitude (Mw), and earthquake declustering was then carried out to remove aftershocks and foreshocks; (ii) time normalization method was introduced to decrease the uncertainty in a temporal domain prior to start the simulation procedure; (iii) variography has been carried out in each subregion to study spatial regressions (e.g., west-southwestern area showed a spatial regression from 0.4 to 1.4 decimal degrees; the maximum range identified in the azimuth of 135 ± 10); (iv) TBSIM algorithm was then applied to make simulated events which gave rise to make 68,800 synthetic events according to the spatial regression found in several directions; (v) simulated events (i.e., magnitudes) were classified based on their intensity in ArcGIS packages and homogenous seismic zones have been determined. Finally, according to the synthetic data, tectonic features, and actual earthquake catalogues, 17 seismotectonic provinces were introduced in four major classes introduced as very high, high, moderate, and low

  8. Rupture, waves and earthquakes.

    PubMed

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  9. Rupture, waves and earthquakes

    PubMed Central

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  10. Conversion of Local and Surface-Wave Magnitudes to Moment Magnitude for Earthquakes in the Chinese Mainland

    NASA Astrophysics Data System (ADS)

    Li, X.; Gao, M.

    2017-12-01

    The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18

  11. [Comment on Earthquake precursors: Banished forever?] Comment: Unpredictability of earthquakes-Truth or fiction?

    NASA Astrophysics Data System (ADS)

    Lomnitz, Cinna

    I was delighted to read Alexander Gusev's opinions on what he calls the “unpredictability paradigm” of earthquakes (Eos, February 10, 1998, p. 71). I always enjoy hearing from a good friend in the pages of Eos. I immediately looked up “paradigm” in my Oxford Dictionary and found this: paradigm n 1) set of all the different forms of a word: verb paradigms. 2) Type of something; pattern; model: a paradigm for others to copy.I wonder whether Sasha Gusev actually believes that branding earthquake prediction a “proven nonscience” [Geller, 1997] is a paradigm for others to copy. As for me, I choose to refrain from climbing on board this particular bandwagon for the following reasons.

  12. Do weak global stresses synchronize earthquakes?

    NASA Astrophysics Data System (ADS)

    Bendick, R.; Bilham, R.

    2017-08-01

    Insofar as slip in an earthquake is related to the strain accumulated near a fault since a previous earthquake, and this process repeats many times, the earthquake cycle approximates an autonomous oscillator. Its asymmetric slow accumulation of strain and rapid release is quite unlike the harmonic motion of a pendulum and need not be time predictable, but still resembles a class of repeating systems known as integrate-and-fire oscillators, whose behavior has been shown to demonstrate a remarkable ability to synchronize to either external or self-organized forcing. Given sufficient time and even very weak physical coupling, the phases of sets of such oscillators, with similar though not necessarily identical period, approach each other. Topological and time series analyses presented here demonstrate that earthquakes worldwide show evidence of such synchronization. Though numerous studies demonstrate that the composite temporal distribution of major earthquakes in the instrumental record is indistinguishable from random, the additional consideration of event renewal interval serves to identify earthquake groupings suggestive of synchronization that are absent in synthetic catalogs. We envisage the weak forces responsible for clustering originate from lithospheric strain induced by seismicity itself, by finite strains over teleseismic distances, or by other sources of lithospheric loading such as Earth's variable rotation. For example, quasi-periodic maxima in rotational deceleration are accompanied by increased global seismicity at multidecadal intervals.

  13. Reassessment of 50 years of seismicity in Simav-Gediz grabens (Western Turkey), based on earthquake relocations

    NASA Astrophysics Data System (ADS)

    Karasozen, E.; Nissen, E.; Bergman, E. A.; Walters, R. J.

    2013-12-01

    Western Turkey is a rapidly deforming region with a long history of high-magnitude normal faulting earthquakes. However, the locations and slip rates of the responsible faults are poorly constrained. Here, we reassess a series of large instrumental earthquakes in the Simav-Gediz region, an area exhibiting a strong E-W gradient in N-S extension rates, from low rates bordering the Anatolian Plateau to much higher rates in the west. We start with investigating a recent Mw 5.9 earthquake at Simav (19 May 2011) using InSAR, teleseismic body-wave modeling and field observations. Next, we exploit the small but clear InSAR signal to relocate a series of older, larger earthquakes, using a calibrated earthquake relocation method which is based on the hypocentroidial decomposition (HDC) method for multiple event relocation. These improved locations in turn provide an opportunity to reassess the regional style of deformation. One interesting aspect of these earthquakes is that the largest (the Mw 7.2 Gediz earthquake, March 1970) occurred in an area of slow extension and indistinct surface faulting, whilst the well-defined and more rapidly extending Simav graben has ruptured in several smaller, Mw 6 events. However, our relocations highlight the existence of a significant gap in instrumental earthquakes along the central Simav graben, which, if it ruptured in a single event, could equal ~Mw 7. We were unable to identify fault scarps along this section due to dense vegetation and human modification, and we suggest that acquiring LiDAR data in this area should be a high priority in order to properly investigate earthquake hazard in the Simav graben.

  14. International Collaboration for Strengthening Capacity to Assess Earthquake Hazard in Indonesia

    NASA Astrophysics Data System (ADS)

    Cummins, P. R.; Hidayati, S.; Suhardjono, S.; Meilano, I.; Natawidjaja, D.

    2012-12-01

    Indonesia has experienced a dramatic increase in earthquake risk due to rapid population growth in the 20th century, much of it occurring in areas near the subduction zone plate boundaries that are prone to earthquake occurrence. While recent seismic hazard assessments have resulted in better building codes that can inform safer building practices, many of the fundamental parameters controlling earthquake occurrence and ground shaking - e.g., fault slip rates, earthquake scaling relations, ground motion prediction equations, and site response - could still be better constrained. In recognition of the need to improve the level of information on which seismic hazard assessments are based, the Australian Agency for International Development (AusAID) and Indonesia's National Agency for Disaster Management (BNPB), through the Australia-Indonesia Facility for Disaster Reduction, have initiated a 4-year project designed to strengthen the Government of Indonesia's capacity to reliably assess earthquake hazard. This project is a collaboration of Australian institutions including Geoscience Australia and the Australian National University, with Indonesian government agencies and universities including the Agency for Meteorology, Climatology and Geophysics, the Geological Agency, the Indonesian Institute of Sciences, and Bandung Institute of Technology. Effective earthquake hazard assessment requires input from many different types of research, ranging from geological studies of active faults, seismological studies of crustal structure, earthquake sources and ground motion, PSHA methodology, and geodetic studies of crustal strain rates. The project is a large and diverse one that spans all these components, and these will be briefly reviewed in this presentation

  15. Estimating Casualties for Large Earthquakes Worldwide Using an Empirical Approach

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.; Hearne, Mike

    2009-01-01

    We developed an empirical country- and region-specific earthquake vulnerability model to be used as a candidate for post-earthquake fatality estimation by the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) system. The earthquake fatality rate is based on past fatal earthquakes (earthquakes causing one or more deaths) in individual countries where at least four fatal earthquakes occurred during the catalog period (since 1973). Because only a few dozen countries have experienced four or more fatal earthquakes since 1973, we propose a new global regionalization scheme based on idealization of countries that are expected to have similar susceptibility to future earthquake losses given the existing building stock, its vulnerability, and other socioeconomic characteristics. The fatality estimates obtained using an empirical country- or region-specific model will be used along with other selected engineering risk-based loss models for generation of automated earthquake alerts. These alerts could potentially benefit the rapid-earthquake-response agencies and governments for better response to reduce earthquake fatalities. Fatality estimates are also useful to stimulate earthquake preparedness planning and disaster mitigation. The proposed model has several advantages as compared with other candidate methods, and the country- or region-specific fatality rates can be readily updated when new data become available.

  16. A hypothesis for delayed dynamic earthquake triggering

    USGS Publications Warehouse

    Parsons, T.

    2005-01-01

    It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.

  17. Empirical relationships between instrumental ground motions and observed intensities for two great Chilean subduction zone earthquakes

    NASA Astrophysics Data System (ADS)

    Cilia, M. G.; Baker, L. M.

    2015-12-01

    We determine empirical relationships between instrumental peak ground motions and observed intensities for two great Chilean subduction earthquakes: the 2010 Mw8.8 Maule earthquake and the 2014 Mw8.2 Iquique earthquake. Both occurred immediately offshore on the primary plate boundary interface between the Nazca and South America plates. They are among the largest earthquakes to be instrumentally recorded; the 2010 Maule event is the second largest earthquake to produce strong motion recordings. Ground motion to intensity conversion equations (GMICEs) are used to reconstruct the distribution of shaking for historical earthquakes by using intensities estimated from contemporary accounts. Most great (M>8) earthquakes, like these, occur within subduction zones, yet few GMICEs exist for subduction earthquakes. It is unclear whether GMICEs developed for active crustal regions, such as California, can be scaled up to the large M of subduction zone events, or if new data sets must be analyzed to develop separate subduction GMICEs. To address this question, we pair instrumental peak ground motions, both acceleration (PGA) and velocity (PGV), with intensities derived from onsite surveys of earthquake damage made in the weeks after the events and internet-derived felt reports. We fit a linear predictive equation between the geometric mean of the maximum PGA or PGV of the two horizontal components and intensity, using linear least squares. We use a weighting scheme to express the uncertainty of the pairings based on a station's proximity to the nearest intensity observation. The intensity data derived from the onsite surveys is a complete, high-quality investigation of the earthquake damage. We perform the computations using both the survey data and community decimal intensities (CDI) calculated from felt reports volunteered by citizens (USGS "Did You Feel It", DYFI) and compare the results. We compare the GMICEs we developed to the most widely used GMICEs from California and

  18. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  19. Remote monitoring of the earthquake cycle using satellite radar interferometry.

    PubMed

    Wright, Tim J

    2002-12-15

    The earthquake cycle is poorly understood. Earthquakes continue to occur on previously unrecognized faults. Earthquake prediction seems impossible. These remain the facts despite nearly 100 years of intensive study since the earthquake cycle was first conceptualized. Using data acquired from satellites in orbit 800 km above the Earth, a new technique, radar interferometry (InSAR), has the potential to solve these problems. For the first time, detailed maps of the warping of the Earth's surface during the earthquake cycle can be obtained with a spatial resolution of a few tens of metres and a precision of a few millimetres. InSAR does not need equipment on the ground or expensive field campaigns, so it can gather crucial data on earthquakes and the seismic cycle from some of the remotest areas of the planet. In this article, I review some of the remarkable observations of the earthquake cycle already made using radar interferometry and speculate on breakthroughs that are tantalizingly close.

  20. ELER software - a new tool for urban earthquake loss assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.

    2010-12-01

    Rapid loss estimation after potentially damaging earthquakes is critical for effective emergency response and public information. A methodology and software package, ELER-Earthquake Loss Estimation Routine, for rapid estimation of earthquake shaking and losses throughout the Euro-Mediterranean region was developed under the Joint Research Activity-3 (JRA3) of the EC FP6 Project entitled "Network of Research Infrastructures for European Seismology-NERIES". Recently, a new version (v2.0) of ELER software has been released. The multi-level methodology developed is capable of incorporating regional variability and uncertainty originating from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. Although primarily intended for quasi real-time estimation of earthquake shaking and losses, the routine is also equally capable of incorporating scenario-based earthquake loss assessments. This paper introduces the urban earthquake loss assessment module (Level 2) of the ELER software which makes use of the most detailed inventory databases of physical and social elements at risk in combination with the analytical vulnerability relationships and building damage-related casualty vulnerability models for the estimation of building damage and casualty distributions, respectively. Spectral capacity-based loss assessment methodology and its vital components are presented. The analysis methods of the Level 2 module, i.e. Capacity Spectrum Method (ATC-40, 1996), Modified Acceleration-Displacement Response Spectrum Method (FEMA 440, 2005), Reduction Factor Method (Fajfar, 2000) and Coefficient Method (ASCE 41-06, 2006), are applied to the selected building types for validation and verification purposes. The damage estimates are compared to the results obtained from the other studies available in the literature, i.e. SELENA v4.0 (Molina et al., 2008) and

  1. Pre-earthquake signatures in atmosphere/ionosphere and their potential for short-term earthquake forecasting. Case studies for 2015

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Davidenko, Dmitry; Hernández-Pajares, Manuel; García-Rigo, Alberto; Petrrov, Leonid; Hatzopoulos, Nikolaos; Kafatos, Menas

    2016-04-01

    We are conducting validation studies on temporal-spatial pattern of pre-earthquake signatures in atmosphere and ionosphere associated with M>7 earthquakes in 2015. Our approach is based on the Lithosphere Atmosphere Ionosphere Coupling (LAIC) physical concept integrated with Multi-sensor-networking analysis (MSNA) of several non-correlated observations that can potentially yield predictive information. In this study we present two type of results: 1/ prospective testing of MSNA-LAIC for M7+ in 2015 and 2:/ retrospective analysis of temporal-spatial variations in atmosphere and ionosphere several days before the two M7.8 and M7.3 in Nepal and M8.3 Chile earthquakes. During the prospective test 18 earthquakes M>7 occurred worldwide, from which 15 were alerted in advance with the time lag between 2 up to 30 days and with different level of accuracy. The retrospective analysis included different physical parameters from space: Outgoing long-wavelength radiation (OLR obtained from NPOES, NASA/AQUA) on the top of the atmosphere, Atmospheric potential (ACP obtained from NASA assimilation models) and electron density variations in the ionosphere via GPS Total Electron Content (GPS/TEC). Concerning M7.8 in Nepal of April 24, rapid increase of OLR reached the maximum on April 21-22. GPS/TEC data indicate maximum value during April 22-24 periods. Strong negative TEC anomaly was detected in the crest of EIA (Equatorial Ionospheric Anomaly) on April 21st and strong positive on April 24th, 2015. For May 12 M7.3 aftershock similar pre- earthquake patterns in OLR and GPS/TEC were observed. Concerning the M8.3 Chile of Sept 16, the OLR strongest transient feature was observed of Sept 12. GPS/TEC analysis data confirm abnormal values on Sept 14. Also on the same day the degradation of EIA and disappearance of the crests of EIA as is characteristic for pre-dawn and early morning hours (11 LT) was observed. On Sept 16 co-seismic ionospheric signatures consistent with defined circular

  2. Performance-based seismic design of nonstructural building components: The next frontier of earthquake engineering

    NASA Astrophysics Data System (ADS)

    Filiatrault, Andre; Sullivan, Timothy

    2014-08-01

    With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major

  3. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  4. Probabilistic tsunami hazard assessment based on the long-term evaluation of subduction-zone earthquakes along the Sagami Trough, Japan

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Ohsumi, T.; Morikawa, N.; Kawai, S.; Maeda, T.; Matsuyama, H.; Toyama, N.; Kito, T.; Murata, Y.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.; Hakamata, T.

    2017-12-01

    For the forthcoming large earthquakes along the Sagami Trough where the Philippine Sea Plate is subducting beneath the northeast Japan arc, the Earthquake Research Committee(ERC) /Headquarters for Earthquake Research Promotion, Japanese government (2014a) assessed that M7 and M8 class earthquakes will occur there and defined the possible extent of the earthquake source areas. They assessed 70% and 0% 5% of the occurrence probability within the next 30 years (from Jan. 1, 2014), respectively, for the M7 and M8 class earthquakes. First, we set possible 10 earthquake source areas(ESAs) and 920 ESAs, respectively, for M8 and M7 class earthquakes. Next, we constructed 125 characterized earthquake fault models (CEFMs) and 938 CEFMs, respectively, for M8 and M7 class earthquakes, based on "tsunami receipt" of ERC (2017) (Kitoh et al., 2016, JpGU). All the CEFMs are allowed to have a large slip area for expression of fault slip heterogeneity. For all the CEFMs, we calculate tsunamis by solving a nonlinear long wave equation, using FDM, including runup calculation, over a nesting grid system with a minimum grid size of 50 meters. Finally, we re-distributed the occurrence probability to all CEFMs (Abe et al., 2014, JpGU) and gathered excess probabilities for variable tsunami heights, calculated from all the CEFMs, at every observation point along Pacific coast to get PTHA. We incorporated aleatory uncertainties inherent in tsunami calculation and earthquake fault slip heterogeneity. We considered two kinds of probabilistic hazard models; one is "Present-time hazard model" under an assumption that the earthquake occurrence basically follows a renewal process based on BPT distribution if the latest faulting time was known. The other is "Long-time averaged hazard model" under an assumption that earthquake occurrence follows a stationary Poisson process. We fixed our viewpoint, for example, on the probability that the tsunami height will exceed 3 meters at coastal points in next

  5. Spatial Evaluation and Verification of Earthquake Simulators

    NASA Astrophysics Data System (ADS)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  6. Nowcasting Earthquakes and Tsunamis

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  7. Earthquake Scaling Relations

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; Boettcher, M.; Richardson, E.

    2002-12-01

    Using scaling relations to understand nonlinear geosystems has been an enduring theme of Don Turcotte's research. In particular, his studies of scaling in active fault systems have led to a series of insights about the underlying physics of earthquakes. This presentation will review some recent progress in developing scaling relations for several key aspects of earthquake behavior, including the inner and outer scales of dynamic fault rupture and the energetics of the rupture process. The proximate observations of mining-induced, friction-controlled events obtained from in-mine seismic networks have revealed a lower seismicity cutoff at a seismic moment Mmin near 109 Nm and a corresponding upper frequency cutoff near 200 Hz, which we interpret in terms of a critical slip distance for frictional drop of about 10-4 m. Above this cutoff, the apparent stress scales as M1/6 up to magnitudes of 4-5, consistent with other near-source studies in this magnitude range (see special session S07, this meeting). Such a relationship suggests a damage model in which apparent fracture energy scales with the stress intensity factor at the crack tip. Under the assumption of constant stress drop, this model implies an increase in rupture velocity with seismic moment, which successfully predicts the observed variation in corner frequency and maximum particle velocity. Global observations of oceanic transform faults (OTFs) allow us to investigate a situation where the outer scale of earthquake size may be controlled by dynamics (as opposed to geologic heterogeneity). The seismicity data imply that the effective area for OTF moment release, AE, depends on the thermal state of the fault but is otherwise independent of fault's average slip rate; i.e., AE ~ AT, where AT is the area above a reference isotherm. The data are consistent with β = 1/2 below an upper cutoff moment Mmax that increases with AT and yield the interesting scaling relation Amax ~ AT1/2. Taken together, the OTF

  8. Earthquakes

    MedlinePlus

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  9. Earthquake Hazard Assessment: an Independent Review

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA), from term-less (probabilistic PSHA or deterministic DSHA) to time-dependent (t-DASH) including short-term earthquake forecast/prediction (StEF), is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Regretfully, in many cases of SHA, t-DASH, and StEF, the claims of a high potential and efficiency of the methodology are based on a flawed application of statistics and hardly suitable for communication to decision makers. The necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space, is evident, and such a testing must be done in advance claiming hazardous areas and/or times. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing may supply us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified with a few cases of misleading "seismic hazard maps", "precursors", and "forecast/prediction methods".

  10. MyShake: Smartphone-based detection and analysis of Oklahoma earthquakes

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2016-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing (myshake.berkeley.edu). It uses the accelerometer data from phones to detect earthquake-like motion, and then uploads triggers and waveform data to a server for aggregation of the results. Since the public release in Feb 2016, more than 200,000 android-phone owners have installed the app, and the global network has recorded more than 300 earthquakes. In Oklahoma, there are about 200 active users each day providing enough data for the network to detect earthquakes and for us to perform analysis of the events. MyShake has recorded waveform data for M2.6 to M5.8 earthquakes in the state. For the September 3, 2016, M5.8 earthquake 14 phones detected the event and we can use the waveforms to determine event characteristics. MyShake data provides a location 3.95 km from the ANSS location and a magnitude of 5.7. We can also use MyShake data to estimate a stress drop of 7.4 MPa. MyShake is still a rapidly expanding network that has the ability to grow by thousands of stations/phones in a matter of hours as public interest increases. These initial results suggest that the data will be useful for a variety of scientific studies of induced seismicity phenomena in Oklahoma as well as having the potential to provide earthquake early warning in the future.

  11. Satellite relay telemetry of seismic data in earthquake prediction and control

    USGS Publications Warehouse

    Jackson, Wayne H.; Eaton, Jerry P.

    1971-01-01

    The Satellite Telemetry Earthquake Monitoring Program was started in FY 1968 to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research (NCER) in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project.

  12. Designing an Earthquake-Resistant Building

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.

    2016-01-01

    How do cross-bracing, geometry, and base isolation help buildings withstand earthquakes? These important structural design features involve fundamental geometry that elementary school students can readily model and understand. The problem activity, Designing an Earthquake-Resistant Building, was undertaken by several classes of sixth- grade…

  13. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Bhat, Harsha S.

    2018-05-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  14. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, M. Y.; Bhat, H. S.

    2017-12-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  15. A Statistical Study of Total Electron Content Changes in the Ionosphere Prior to Earthquake Occurrences

    NASA Astrophysics Data System (ADS)

    Thomas, J. N.; Huard, J.; Masci, F.

    2015-12-01

    There are many published reports of anomalous changes in the ionosphere prior to large earthquakes. However, whether or not these ionospheric changes are reliable precursors that could be useful for earthquake prediction is controversial within the scientific community. To test a possible statistical relationship between the ionosphere and earthquakes, we compare changes in the total electron content (TEC) of the ionosphere with occurrences of M≥6.0 earthquakes globally for a multiyear period. We use TEC data from a global ionosphere map (GIM) and an earthquake list declustered for aftershocks. For each earthquake, we look for anomalous changes in TEC within ±30 days of the earthquake time and within 2.5° latitude and 5.0° longitude of the earthquake location (the spatial resolution of GIM). Our preliminary analysis, using global TEC and earthquake data for 2002-2010, has not found any statistically significant changes in TEC prior to earthquakes. Thus, we have found no evidence that would suggest that TEC changes are useful for earthquake prediction. Our results are discussed in the context of prior statistical and case studies. Namely, our results agree with Dautermann et al. (2007) who found no relationship between TEC changes and earthquakes in the San Andreas fault region. Whereas, our results disagree with Le et al. (2011) who found an increased rate in TEC anomalies within a few days before global earthquakes M≥6.0.

  16. An Earthquake Rupture Forecast model for central Italy submitted to CSEP project

    NASA Astrophysics Data System (ADS)

    Pace, B.; Peruzza, L.

    2009-04-01

    We defined a seismogenic source model for central Italy and computed the relative forecast scenario, in order to submit the results to the CSEP (Collaboratory for the study of Earthquake Predictability, www.cseptesting.org) project. The goal of CSEP project is developing a virtual, distributed laboratory that supports a wide range of scientific prediction experiments in multiple regional or global natural laboratories, and Italy is the first region in Europe for which fully prospective testing is planned. The model we propose is essentially the Layered Seismogenic Source for Central Italy (LaSS-CI) we published in 2006 (Pace et al., 2006). It is based on three different layers of sources: the first one collects the individual faults liable to generate major earthquakes (M >5.5); the second layer is given by the instrumental seismicity analysis of the past two decades, which allows us to evaluate the background seismicity (M ~<5.0). The third layer utilizes all the instrumental earthquakes and the historical events not correlated to known structures (4.5earthquakes by Brownian passage time distribution. Beside the original model, updated earthquake rupture forecasts only for individual sources are released too, in the light of recent analyses (Peruzza et al., 2008; Zoeller et al., 2008). We computed forecasts based on the LaSS-CI model for two time-windows: 5 and 10 years. Each model to be tested defines a forecasted earthquake rate in magnitude bins of 0.1 unit steps in the range M5-9, for the periods 1st April 2009 to 1st April 2014, and 1st April 2009 to 1st April 2019. B. Pace, L. Peruzza, G. Lavecchia, and P. Boncio (2006) Layered Seismogenic Source

  17. A Method for Estimation of Death Tolls in Disastrous Earthquake

    NASA Astrophysics Data System (ADS)

    Pai, C.; Tien, Y.; Teng, T.

    2004-12-01

    whether the districts are more urbanized or not. As the present researches are concerned, there were not a good and reliable relationship between the mortality and the characteristics of ground motions. We propose the concept of Equal Population Gaps to resolve the influence of mortality in a rural or urban district and decision of the weighting function to each district. The relationship between PGA Index and the mortality determined in this study can be expressed as:\\[M=28.9/[1+exp{(1.67-0.0029 \\times PGA)}] \\] Here M is mortality in %, and PGA is PGA Index in gals. The corresponding curve matches the data reasonably well, with R2=0.91. We process the estimation for districts in different scales to verify the feasibility of the method. The mortality-based on PGA Index is particularly useful in real-time application for death tolls prediction and assessment--a piece of information most critical for post earthquake emergency response operation.

  18. Detection limits of tidal-wetland sequences to identify variable rupture modes of megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Shennan, Ian; Garrett, Ed; Barlow, Natasha

    2016-10-01

    Recent paleoseismological studies question whether segment boundaries identified for 20th and 21st century great, >M8, earthquakes persist through multiple earthquake cycles or whether smaller segments with different boundaries rupture and cause significant hazards. The smaller segments may include some currently slipping rather than locked. In this review, we outline general principles regarding indicators of relative sea-level change in tidal wetlands and the conditions in which paleoseismic indicators must be distinct from those resulting from non-seismic processes. We present new evidence from sites across southcentral Alaska to illustrate different detection limits of paleoseismic indicators and consider alternative interpretations for marsh submergence and emergence. We compare predictions of coseismic uplift and subsidence derived from geophysical models of earthquakes with different rupture modes. The spatial patterns of agreement and misfits between model predictions and quantitative reconstructions of coseismic submergence and emergence suggest that no earthquake within the last 4000 years had a pattern of rupture the same as the Mw 9.2 Alaska earthquake in 1964. From the Alaska examples and research from other subduction zones we suggest that If we want to understand whether a megathrust ruptures in segments of variable length in different earthquakes, we need to be site-specific as to what sort of geological-based criteria eliminate the possibility of a particular rupture mode in different earthquakes. We conclude that coastal paleoseismological studies benefit from a methodological framework that employs rigorous evaluation of five essential criteria and a sixth which may be very robust but only occur at some sites: 1 - lateral extent of peat-mud or mud-peat couplets with sharp contacts; 2 - suddenness of submergence or emergence, and replicated within each site; 3 - amount of vertical motion, quantified with 95% error terms and replicated within each

  19. Tokyo Metropolitan Earthquake Preparedness Project - A Progress Report

    NASA Astrophysics Data System (ADS)

    Hayashi, H.

    2010-12-01

    Munich Re once ranked that Tokyo metropolitan region, the capital of Japan, is the most vulnerable area for earthquake disasters, followed by San Francisco Bay Area, US and Osaka, Japan. Seismologists also predict that Tokyo metropolitan region may have at least one near-field earthquake with a probability of 70% for the next 30 years. Given this prediction, Japanese Government took it seriously to conduct damage estimations and revealed that, as the worst case scenario, if a7.3 magnitude earthquake under heavy winds as shown in the fig. 1, it would kill a total of 11,000 people and a total of direct and indirect losses would amount to 112,000,000,000,000 yen(1,300,000,000,000, 1=85yen) . In addition to mortality and financial losses, a total of 25 million people would be severely impacted by this earthquake in four prefectures. If this earthquake occurs, 300,000 elevators will be stopped suddenly, and 12,500 persons would be confined in them for a long time. Seven million people will come to use over 20,000 public shelters spread over the impacted area. Over one millions temporary housing units should be built to accommodate 4.6 million people who lost their dwellings. 2.5 million people will relocate to outside of the damaged area. In short, an unprecedented scale of earthquake disaster is expected and we must prepare for it. Even though disaster mitigation is undoubtedly the best solution, it is more realistic that the expected earthquake would hit before we complete this business. In other words, we must take into account another solution to make the people and the assets in this region more resilient for the Tokyo metropolitan earthquake. This is the question we have been tackling with for the last four years. To increase societal resilience for Tokyo metropolitan earthquake, we adopted a holistic approach to integrate both emergency response and long-term recovery. There are three goals for long-term recovery, which consists of Physical recovery, Economic

  20. Retrospective stress-forecasting of earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  1. Regional and Local Glacial-Earthquake Patterns in Greenland

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Nettles, M.

    2016-12-01

    Icebergs calved from marine-terminating glaciers currently account for up to half of the 400 Gt of ice lost annually from the Greenland ice sheet (Enderlin et al., 2014). When large capsizing icebergs ( 1 Gt of ice) calve, they produce elastic waves that propagate through the solid earth and are observed as teleseismically detectable MSW 5 glacial earthquakes (e.g., Ekström et al., 2003; Nettles & Ekström, 2010 Tsai & Ekström, 2007; Veitch & Nettles, 2012). The annual number of these events has increased dramatically over the past two decades. We analyze glacial earthquakes from 2011-2013, which expands the glacial-earthquake catalog by 50%. The number of glacial-earthquake solutions now available allows us to investigate regional patterns across Greenland and link earthquake characteristics to changes in ice dynamics at individual glaciers. During the years of our study Greenland's west coast dominated glacial-earthquake production. Kong Oscar Glacier, Upernavik Isstrøm, and Jakobshavn Isbræ all produced more glacial earthquakes during this time than in preceding years. We link patterns in glacial-earthquake production and cessation to the presence or absence of floating ice tongues at glaciers on both coasts of Greenland. The calving model predicts glacial-earthquake force azimuths oriented perpendicular to the calving front, and comparisons between seismic data and satellite imagery confirm this in most instances. At two glaciers we document force azimuths that have recently changed orientation and confirm that similar changes have occurred in the calving-front geometry. We also document glacial earthquakes at one previously quiescent glacier. Consistent with previous work, we model the glacial-earthquake force-time function as a boxcar with horizontal and vertical force components that vary synchronously. We investigate limitations of this approach and explore improvements that could lead to a more accurate representation of the glacial earthquake source.

  2. Transient triggering of near and distant earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Blanpied, M.L.; Beeler, N.M.

    1997-01-01

    We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i

  3. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    NASA Astrophysics Data System (ADS)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the

  4. Characterising large scenario earthquakes and their influence on NDSHA maps

    NASA Astrophysics Data System (ADS)

    Magrin, Andrea; Peresan, Antonella; Panza, Giuliano F.

    2016-04-01

    The neo-deterministic approach to seismic zoning, NDSHA, relies on physically sound modelling of ground shaking from a large set of credible scenario earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g. morphostructural features and present day deformation processes identified by Earth observations). NDSHA is based on the calculation of complete synthetic seismograms; hence it does not make use of empirical attenuation models (i.e. ground motion prediction equations). From the set of synthetic seismograms, maps of seismic hazard that describe the maximum of different ground shaking parameters at the bedrock can be produced. As a rule, the NDSHA, defines the hazard as the envelope ground shaking at the site, computed from all of the defined seismic sources; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In this way, the standard NDSHA maps permit to account for the largest observed or credible earthquake sources identified in the region in a quite straightforward manner. This study aims to assess the influence of unavoidable uncertainties in the characterisation of large scenario earthquakes on the NDSHA estimates. The treatment of uncertainties is performed by sensitivity analyses for key modelling parameters and accounts for the uncertainty in the prediction of fault radiation and in the use of Green's function for a given medium. Results from sensitivity analyses with respect to the definition of possible seismic sources are discussed. A key parameter is the magnitude of seismic sources used in the simulation, which is based on information from earthquake catalogue, seismogenic zones and seismogenic nodes. The largest part of the existing Italian catalogues is based on macroseismic intensities, a rough estimate of the error in peak values of ground motion can

  5. Increasing critical sensitivity of the Load/Unload Response Ratio before large earthquakes with identified stress accumulation pattern

    NASA Astrophysics Data System (ADS)

    Yu, Huai-zhong; Shen, Zheng-kang; Wan, Yong-ge; Zhu, Qing-yong; Yin, Xiang-chu

    2006-12-01

    The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701-715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.

  6. USGS Tweet Earthquake Dispatch (@USGSted): Using Twitter for Earthquake Detection and Characterization

    NASA Astrophysics Data System (ADS)

    Liu, S. B.; Bouchard, B.; Bowden, D. C.; Guy, M.; Earle, P.

    2012-12-01

    The U.S. Geological Survey (USGS) is investigating how online social networking services like Twitter—a microblogging service for sending and reading public text-based messages of up to 140 characters—can augment USGS earthquake response products and the delivery of hazard information. The USGS Tweet Earthquake Dispatch (TED) system is using Twitter not only to broadcast seismically-verified earthquake alerts via the @USGSted and @USGSbigquakes Twitter accounts, but also to rapidly detect widely felt seismic events through a real-time detection system. The detector algorithm scans for significant increases in tweets containing the word "earthquake" or its equivalent in other languages and sends internal alerts with the detection time, tweet text, and the location of the city where most of the tweets originated. It has been running in real-time for 7 months and finds, on average, two or three felt events per day with a false detection rate of less than 10%. The detections have reasonable coverage of populated areas globally. The number of detections is small compared to the number of earthquakes detected seismically, and only a rough location and qualitative assessment of shaking can be determined based on Tweet data alone. However, the Twitter detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The main benefit of the tweet-based detections is speed, with most detections occurring between 19 seconds and 2 minutes from the origin time. This is considerably faster than seismic detections in poorly instrumented regions of the world. Going beyond the initial detection, the USGS is developing data mining techniques to continuously archive and analyze relevant tweets for additional details about the detected events. The information generated about an event is displayed on a web-based map designed using HTML5 for the mobile environment, which can be valuable when the user is not able to access a

  7. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    NASA Astrophysics Data System (ADS)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  8. Continuing Megathrust Earthquake Potential in northern Chile after the 2014 Iquique Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Herman, M. W.; Barnhart, W. D.; Furlong, K. P.; Riquelme, S.; Benz, H.; Bergman, E.; Barrientos, S. E.; Earle, P. S.; Samsonov, S. V.

    2014-12-01

    The seismic gap theory, which identifies regions of elevated hazard based on a lack of recent seismicity in comparison to other portions of a fault, has successfully explained past earthquakes and is useful for qualitatively describing where future large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which until recently had not ruptured in a megathrust earthquake since a M~8.8 event in 1877. On April 1 2014, a M 8.2 earthquake occurred within this northern Chile seismic gap, offshore of the city of Iquique; the size and spatial extent of the rupture indicate it was not the earthquake that had been anticipated. Here, we present a rapid assessment of the seismotectonics of the March-April 2014 seismic sequence offshore northern Chile, including analyses of earthquake (fore- and aftershock) relocations, moment tensors, finite fault models, moment deficit calculations, and cumulative Coulomb stress transfer calculations over the duration of the sequence. This ensemble of information allows us to place the current sequence within the context of historic seismicity in the region, and to assess areas of remaining and/or elevated hazard. Our results indicate that while accumulated strain has been released for a portion of the northern Chile seismic gap, significant sections have not ruptured in almost 150 years. These observations suggest that large-to-great sized megathrust earthquakes will occur north and south of the 2014 Iquique sequence sooner than might be expected had the 2014 events ruptured the entire seismic gap.

  9. Monitoring of ULF (ultra-low-frequency) Geomagnetic Variations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi; Hattori, Katsumi; Ohta, Kenji

    2007-01-01

    ULF (ultra-low-frequency) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before a few large earthquakes. Then, we present our network of ULF monitoring in the Tokyo area by describing our ULF magnetic sensors and we finally present a few, latest results on seismogenic electromagnetic emissions for recent large earthquakes with the use of sophisticated signal processings.

  10. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  11. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada

  12. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toprak, A. Emre; Guelay, F. Guelten; Ruge, Peter

    2008-07-08

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performedmore » on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 mx7.80 m = 127.90 m{sup 2} with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is

  13. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    NASA Astrophysics Data System (ADS)

    Toprak, A. Emre; Gülay, F. Gülten; Ruge, Peter

    2008-07-01

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 m×7.80 m = 127.90 m2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher

  14. The design and implementation of urban earthquake disaster loss evaluation and emergency response decision support systems based on GIS

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Xu, Quan-li; Peng, Shuang-yun; Cao, Yan-bo

    2008-10-01

    Based on the necessity analysis of GIS applications in earthquake disaster prevention, this paper has deeply discussed the spatial integration scheme of urban earthquake disaster loss evaluation models and visualization technologies by using the network development methods such as COM/DCOM, ActiveX and ASP, as well as the spatial database development methods such as OO4O and ArcSDE based on ArcGIS software packages. Meanwhile, according to Software Engineering principles, a solution of Urban Earthquake Emergency Response Decision Support Systems based on GIS technologies have also been proposed, which include the systems logical structures, the technical routes,the system realization methods and function structures etc. Finally, the testing systems user interfaces have also been offered in the paper.

  15. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    NASA Astrophysics Data System (ADS)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  16. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    NASA Astrophysics Data System (ADS)

    Muhammad, Ario; Goda, Katsuichiro; Alexander, Nicholas A.; Kongko, Widjo; Muhari, Abdul

    2017-12-01

    This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0) that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan - including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal-vertical evacuation time maps - has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  17. Nurse willingness to report for work in the event of an earthquake in Israel.

    PubMed

    Ben Natan, Merav; Nigel, Simon; Yevdayev, Innush; Qadan, Mohamad; Dudkiewicz, Mickey

    2014-10-01

    To examine variables affecting nurse willingness to report for work in the event of an earthquake in Israel and whether this can be predicted through the Theory of Self-Efficacy. The nursing profession has a major role in preparing for earthquakes. Nurse willingness to report to work in the event of an earthquake has never before been examined. Self-administered questionnaires were distributed among a convenience sample of 400 nurses and nursing students in Israel during January-April 2012. High willingness to report to work in the event of an earthquake was declared by 57% of respondents. High perceived self-efficacy, level of knowledge and experience predict willingness to report to work in the event of an earthquake. Multidisciplinary collaboration and support was also cited as a meaningful factor. Perceived self-efficacy, level of knowledge, experience and the support of a multidisciplinary staff affect nurse willingness to report to work in the event of an earthquake. Nurse managers can identify factors that increase nurse willingness to report to work in the event of an earthquake and consequently develop strategies for more efficient management of their nursing workforce. © 2013 John Wiley & Sons Ltd.

  18. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    NASA Astrophysics Data System (ADS)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  19. Ionospheric precursors to large earthquakes: A case study of the 2011 Japanese Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Kellerman, A. C.; Kane, T. A.; Dyson, P. L.; Norman, R.; Zhang, K.

    2013-09-01

    Researchers have reported ionospheric electron distribution abnormalities, such as electron density enhancements and/or depletions, that they claimed were related to forthcoming earthquakes. In this study, the Tohoku earthquake is examined using ionosonde data to establish whether any otherwise unexplained ionospheric anomalies were detected in the days and hours prior to the event. As the choices for the ionospheric baseline are generally different between previous works, three separate baselines for the peak plasma frequency of the F2 layer, foF2, are employed here; the running 30-day median (commonly used in other works), the International Reference Ionosphere (IRI) model and the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM). It is demonstrated that the classification of an ionospheric perturbation is heavily reliant on the baseline used, with the 30-day median, the IRI and the TIE-GCM generally underestimating, approximately describing and overestimating the measured foF2, respectively, in the 1-month period leading up to the earthquake. A detailed analysis of the ionospheric variability in the 3 days before the earthquake is then undertaken, where a simultaneous increase in foF2 and the Es layer peak plasma frequency, foEs, relative to the 30-day median was observed within 1 h before the earthquake. A statistical search for similar simultaneous foF2 and foEs increases in 6 years of data revealed that this feature has been observed on many other occasions without related seismic activity. Therefore, it is concluded that one cannot confidently use this type of ionospheric perturbation to predict an impending earthquake. It is suggested that in order to achieve significant progress in our understanding of seismo-ionospheric coupling, better account must be taken of other known sources of ionospheric variability in addition to solar and geomagnetic activity, such as the thermospheric coupling.

  20. GPS Technologies as a Tool to Detect the Pre-Earthquake Signals Associated with Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Krankowski, A.; Hernandez-Pajares, M.; Liu, J. Y. G.; Hattori, K.; Davidenko, D.; Ouzounov, D.

    2015-12-01

    The existence of ionospheric anomalies before earthquakes is now widely accepted. These phenomena started to be considered by GPS community to mitigate the GPS signal degradation over the territories of the earthquake preparation. The question is still open if they could be useful for seismology and for short-term earthquake forecast. More than decade of intensive studies proved that ionospheric anomalies registered before earthquakes are initiated by processes in the boundary layer of atmosphere over earthquake preparation zone and are induced in the ionosphere by electromagnetic coupling through the Global Electric Circuit. Multiparameter approach based on the Lithosphere-Atmosphere-Ionosphere Coupling model demonstrated that earthquake forecast is possible only if we consider the final stage of earthquake preparation in the multidimensional space where every dimension is one from many precursors in ensemble, and they are synergistically connected. We demonstrate approaches developed in different countries (Russia, Taiwan, Japan, Spain, and Poland) within the framework of the ISSI and ESA projects) to identify the ionospheric precursors. They are also useful to determine the all three parameters necessary for the earthquake forecast: impending earthquake epicenter position, expectation time and magnitude. These parameters are calculated using different technologies of GPS signal processing: time series, correlation, spectral analysis, ionospheric tomography, wave propagation, etc. Obtained results from different teams demonstrate the high level of statistical significance and physical justification what gives us reason to suggest these methodologies for practical validation.