Sample records for earthquake preliminary results

  1. Preliminary Results of Earthquake-Induced Building Damage Detection with Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Uca Avci, Z. D.; Sunar, F.

    2016-06-01

    Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.

  2. An Account of Preliminary Landslide Damage and Losses Resulting from the February 28, 2001, Nisqually, Washington, Earthquake

    USGS Publications Warehouse

    Highland, Lynn M.

    2003-01-01

    The February 28, 2001, Nisqually, Washington, earthquake (Mw = 6.8) damaged an area of the northwestern United States that previously experienced two major historical earthquakes, in 1949 and in 1965. Preliminary estimates of direct monetary losses from damage due to earthquake-induced landslides is approximately $34.3 million. However, this figure does not include costs from damages to the elevated portion of the Alaskan Way Viaduct, a major highway through downtown Seattle, Washington that will be repaired or rebuilt, depending on the future decision of local and state authorities. There is much debate as to the cause of the damage to this viaduct with evaluations of cause ranging from earthquake shaking and liquefaction to lateral spreading to a combination of these effects. If the viaduct is included in the costs, the losses increase to $500+ million (if it is repaired) or to more than $1+ billion (if it is replaced). Preliminary estimate of losses due to all causes of earthquake damage is approximately $2 billion, which includes temporary repairs to the Alaskan Way Viaduct. These preliminary dollar figures will no doubt increase when plans and decisions regarding the Viaduct are completed.

  3. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri Dian; Kusnandar, Ridwan; Puspito, Nanang T.; Sakti, Artadi Pria; Yudistira, Tedi

    2015-04-01

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.

  4. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Puspito, Nanang T; Yudistira, Tedi

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method.more » For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.« less

  5. Preliminary results on earthquake triggered landslides for the Haiti earthquake (January 2010)

    NASA Astrophysics Data System (ADS)

    van Westen, Cees; Gorum, Tolga

    2010-05-01

    This study presents the first results on an analysis of the landslides triggered by the Ms 7.0 Haiti earthquake that occurred on January 12, 2010 in the boundary region of the Pacific Plate and the North American plate. The fault is a left lateral strike slip fault with a clear surface expression. According to the USGS earthquake information the Enriquillo-Plantain Garden fault system has not produced any major earthquake in the last 100 years, and historical earthquakes are known from 1860, 1770, 1761, 1751, 1684, 1673, and 1618, though none of these has been confirmed in the field as associated with this fault. We used high resolution satellite imagery available for the pre and post earthquake situations, which were made freely available for the response and rescue operations. We made an interpretation of all co-seismic landslides in the epicentral area. We conclude that the earthquake mainly triggered landslide in the northern slope of the fault-related valley and in a number of isolated area. The earthquake apparently didn't trigger many visible landslides within the slum areas on the slopes in the southern part of Port-au-Prince and Carrefour. We also used ASTER DEM information to relate the landslide occurrences with DEM derivatives.

  6. First Results of the Regional Earthquake Likelihood Models Experiment

    USGS Publications Warehouse

    Schorlemmer, D.; Zechar, J.D.; Werner, M.J.; Field, E.H.; Jackson, D.D.; Jordan, T.H.

    2010-01-01

    The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment-a truly prospective earthquake prediction effort-is underway within the U. S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary-the forecasts were meant for an application of 5 years-we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one. ?? 2010 The Author(s).

  7. The Landers earthquake; preliminary instrumental results

    USGS Publications Warehouse

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  8. Preliminary results from the WLGap (seismic gap between the Wenchuan and Lushan earthquakes) Project

    NASA Astrophysics Data System (ADS)

    Liang, C.

    2015-12-01

    An array of 20 short-period and 15 broadband seismometers are deployed to monitor the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake. The Wenchuan earthquake ruptured from epicenter at (31.01°N, 103.42°E) largely northeastward while the Lushan earthquake ruptured from epicenter at (30.3°N, 103.0°E) largely southwestward. The region between the two earthquakes recorded very few aftershocks and cataloged seismicity before and after the two big earthquakes compared to neighboring segments. As one small segment of the 500KM long Longmen Shan fault system, its absence of seismicity draws hot debate on whether a big one is still in brewing or steady creeping is the mechanism to release strain energy. The dense array is deployed in a 70Km by 40km region primarily aimed to detect events that are much smaller than cataloged events and then further to determine if the segment is experiencing constantly creeping. The preliminary findings include: (1) source mechanisms show that the seismic gap appears to be a transition zone between north and south segment. The events to the south are primarily thrust-type while events to its north have more or less striking-slip components. This is also the case for both Lushan earthquake to south and Wenchuan earthquake to north; (2) the event depths show two tilted planes with one dipping to south and another dipping to north with the seismic gap in between. This may indicate a dome or an anticline structure being associated with the seismic gap; (3) tomography indicates the velocity down to 20KM of the gap is relatively smaller than its surrounding regions. More data should be collected and further examinations should be conducted before we can make a sounding conclusion on what mechanism is in control of the seismicity in this region. This project is primarily suppoerted by the State Key Laboratory of Geohazards Prevention and Geoenviroment Protection (run by Chengdu University of

  9. Revised seismic history of the El Pilar fault, Northeastern Venezuela, from the Cariaco 1997 earthquake and recent preliminary paleoseismic results

    NASA Astrophysics Data System (ADS)

    Audemard, Franck A.

    2007-07-01

    In light of the July 9, 1997, Cariaco earthquake, it is clearly understood now that damage in the city of Cumaná located in northeastern Venezuela and frequently destroyed by the largest earthquakes since the first recorded event in 1530 is strongly enhanced by poor soil conditions that, in turn, are responsible for site amplification and widespread earthquake-induced effects. Therefore, most previous macroseismic studies of historical earthquakes must be revaluated because those localized high-intensity values at Cumaná surely led to the misestimation of past epicenters. Preliminary paleoseismic results, gathered at three exploratory trenches dug across the surface break of the Cariaco 1997 earthquake in 1998, allow us to associate the 1684 earthquake with this recently ruptured fault segment that extends between the towns of San Antonio del Golfo and Río Casanay (roughly between the two gulfs of Cariaco and Paria, state of Sucre). Other major results from the reassessment of the seismic history of this fault are: (a) the 1766 event seems to have generated in a different source to the El Pilar fault because the size of the felt area suggests that it is an intermediate-depth earthquake; (b) damage to Cumaná produced by the 1797 event suggests that this was a local earthquake, perhaps equivalent to the 1929 earthquake, which ruptured for some 30 km just east of Cumaná into the Gulf of Cariaco; and (c) seismogenic association of the 1530 and 1853 earthquakes still remains unclear but it is very likely that these ruptures occurred offshore, as suggested by the rather large tsunami waves that both events have generated, placing their hypocenters west of Cumaná in the Cariaco Trough. This reassessment also sheds light into the El Pilar fault segmentation and the behavior of its seismogenic barriers through time.

  10. Historigraphical analysis of the 1857 Ft. Tejon earthquake, San Andreas Fault, California: Preliminary results

    NASA Astrophysics Data System (ADS)

    Martindale, D.; Evans, J. P.

    2002-12-01

    of such a search includes letters, approximately eight pictures useful in structure-damage analysis. Over 170 newspapers were published during 1857 throughout California, Nevada, and New Mexico Territory, encompassing the area of Arizona and New Mexico today. Historical information regarding the settlement of areas also proved useful. Although earlier scholars knew of LDS settlement missions in San Bernardino, California and Las Vegas, Nevada, only brief information was located. Preliminary results include increasing the felt area to include Las Vegas, Nevada; support for a Mercalli Index of IX or even X for San Bernardino; VIII or greater for sites NE of Sacramento, a northwest to southeast rupture pattern, and reports of electromagnetic disturbances. Based on these results, we suggest that the 1857 Ft. Tejon earthquake be felt over a wider area, and in places created greater ground shaking, than previously documented.

  11. Prospective Evaluation of the Global Earthquake Activity Rate Model (GEAR1) Earthquake Forecast: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas

    2017-04-01

    The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.

  12. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Multi-Instrument Space-Borne and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Romanov, Alexander; Tsbulya, Konstantin; Davidenko, Dmitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku Japan earthquake of March 11, 2011. Data include outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which returned to normal after the main earthquake The joined preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  13. A new algorithm to detect earthquakes outside the seismic network: preliminary results

    NASA Astrophysics Data System (ADS)

    Giudicepietro, Flora; Esposito, Antonietta Maria; Ricciolino, Patrizia

    2017-04-01

    In this text we are going to present a new technique for detecting earthquakes outside the seismic network, which are often the cause of fault of automatic analysis system. Our goal is to develop a robust method that provides the discrimination result as quickly as possible. We discriminate local earthquakes from regional earthquakes, both recorded at SGG station, equipped with short period sensors, operated by Osservatorio Vesuviano (INGV) in the Southern Apennines (Italy). The technique uses a Multi Layer Perceptron (MLP) neural network with an architecture composed by an input layer, a hidden layer and a single node output layer. We pre-processed the data using the Linear Predictive Coding (LPC) technique to extract the spectral features of the signals in a compact form. We performed several experiments by shortening the signal window length. In particular, we used windows of 4, 2 and 1 seconds containing the onset of the local and the regional earthquakes. We used a dataset of 103 local earthquakes and 79 regional earthquakes, most of which occurred in Greece, Albania and Crete. We split the dataset into a training set, for the network training, and a testing set to evaluate the network's capacity of discrimination. In order to assess the network stability, we repeated this procedure six times, randomly changing the data composition of the training and testing set and the initial weights of the net. We estimated the performance of this method by calculating the average of correct detection percentages obtained for each of the six permutations. The average performances are 99.02%, 98.04% and 98.53%, which concern respectively the experiments carried out on 4, 2 and 1 seconds signal windows. The results show that our method is able to recognize the earthquakes outside the seismic network using only the first second of the seismic records, with a suitable percentage of correct detection. Therefore, this algorithm can be profitably used to make earthquake automatic

  14. First Results of the Regional Earthquake Likelihood Models Experiment

    NASA Astrophysics Data System (ADS)

    Schorlemmer, Danijel; Zechar, J. Douglas; Werner, Maximilian J.; Field, Edward H.; Jackson, David D.; Jordan, Thomas H.

    2010-08-01

    The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment—a truly prospective earthquake prediction effort—is underway within the U.S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary—the forecasts were meant for an application of 5 years—we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one.

  15. Preliminary results from the investigation of the Pymatuning earthquake of September 25, 1998

    USGS Publications Warehouse

    Armbruster, John; Barton, Henry; Bodin, Paul; Buckwalter, Theodore; Cox, Jon; Cranswick, Edward; Dewey, James; Fleeger, Gary; Hopper, Margaret; Horton, Stephen; Hoskins, Donald; Kilb, Deborah; Meremonte, Mark; Metzger, Ann; Risser, Dennis; Seeber, Leonardo; Shedlock, Kaye; Stanley, Katherine; Withers, Mitchell; Zirbes, Madeleine

    1998-01-01

    The Pymatuning earthquake occurred on Friday, September 25, 1998, at 19:52:52 Universal Coordinated Time (UTC), or 3:52:52 p.m. EDT, near Jamestown, Pa., at the southern end of the Pymatuning Reservoir, which straddles the Ohio-Pennsylvania border. The National Earthquake Information Center (NEIC) determined that the event had a magnitude of 5.2 mbLg (a magnitude scale used to measure the size of earthquakes that are regional distances away [100 to 1,000 km, or 60 to 600 mi]), an epicenter of 41.5°N latitude, 80.4°W longitude, and an estimated depth of 5 km (3 mi). One person was reported injured as a result of being thrown to the ground by the earthquake, and it caused minor damage to buildings and seriously disrupted many water wells in the GreenvilleJamestown, Pa., area. The earthquake was generally felt over an area of approximately 200,000 km2 (77,230 mi2) throughout northern Ohio, western Pennsylvania and New York, and much of southern Ontario, Canada (see map on back cover). It was also felt as far west as Illinois and Wisconsin, as far east as New Jersey, Connecticut, and the District of Columbia, and as far south as Kentucky and Virginia. During the aftershock field investigation that commenced within 12 hours of the main shock, a World Wide Web site, http://groundmotion.cr.usgs.gov/pym/pym.htm>, was established from the field headquarters. The web site was used not only to transmit investigation results to the world in near real time but also to receive information from the local community as new earthquake effects were reported. As of March 1999, at least 11 aftershocks have occurred, the largest being a magnitude 2.3. The largest recent previous earthquake in the region was the northeastern Ohio (Leroy) earthquake of magnitude 5.0 that occurred on January 31, 1986, about 65 km (40 mi) west-northwest of the Pymatuning shock. This event was also felt by many of those who felt the Pymatuning earthquake. Similar to most of the seismicity east of the Rocky

  16. Preliminary results on landslides triggered by the Mw 7.8 Kaikoura earthquake of 14 November 2016 in northeast South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Gorum, Tolga; Yildirim, Cengiz

    2017-04-01

    This study presents the first results on analysis of the landslides triggered by the Mw 7.8 Kaikoura earthquake that occurred on November 14, 2016 in the region between the Hikurangi subduction system of the North Island and the oblique collisional regime of the South Island (Alpine Fault). The earthquake ruptured several faults that expand into two different tectonic domains which are compose of the strike-slip Marlborough fault system and the compressional North Canterbury Fault Zone. Here we present the preliminary mapping results of the distribution of landslides triggered by the earthquake. An extensive landslide interpretation was carried out using sets of optical high resolution satellite images (e.g. Sentinel-2 and Göktürk-2) for both the pre- and post-earthquake situation. The landslides were identified and mapped as polygons using multi-temporal visual image interpretation based on satellite imagery and morphological elements of landslide diagnostic indicators. Nearly 8,500 individual landslides with different sizes and types were mapped. The distribution pattern of the mapped coseismic landslides shows that the slope failures are highly concentrated along the ruptured faults and side slopes of the structurally controlled major rivers such as Hapuku and Clarence Rivers that drain the northeastern slopes of the region. Our spatial analysis of landslide occurrences with ground acceleration, lithology, slope, topographic relief and surface deformation indicated extensive control of steep slope and high topographic relief on landslides with ground acceleration as the trigger. We show that spatial distribution of slope failures shows decreasing frequency away from the earthquake faults up to 25 km towards east, and abundance of landslides spatially coincides with the coseismic fault geometries and aftershock distributions. We conclude that combined effect of complex rupture dynamics and topography primarily control the distribution pattern of the landslides

  17. A consistent and uniform research earthquake catalog for the AlpArray region: preliminary results.

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Bagagli, M.; Kissling, E. H.; Diehl, T.; Clinton, J. F.; Giardini, D.; Wiemer, S.

    2017-12-01

    The AlpArray initiative (www.alparray.ethz.ch) is a large-scale European collaboration ( 50 institutes involved) to study the entire Alpine orogen at high resolution with a variety of geoscientific methods. AlpArray provides unprecedentedly uniform station coverage for the region with more than 650 broadband seismic stations, 300 of which are temporary. The AlpArray Seismic Network (AASN) is a joint effort of 25 institutes from 10 nations, operates since January 2016 and is expected to continue until the end of 2018. In this study, we establish a uniform earthquake catalogue for the Greater Alpine region during the operation period of the AASN with a aimed completeness of M2.5. The catalog has two main goals: 1) calculation of consistent and precise hypocenter locations 2) provide preliminary but uniform magnitude calculations across the region. The procedure is based on automatic high-quality P- and S-wave pickers, providing consistent phase arrival times in combination with a picking quality assessment. First, we detect all events in the region in 2016/2017 using an STA/LTA based detector. Among the detected events, we select 50 geographically homogeneously distributed events with magnitudes ≥2.5 representative for the entire catalog. We manually pick the selected events to establish a consistent P- and S-phase reference data set, including arrival-time time uncertainties. The reference data, are used to adjust the automatic pickers and to assess their performance. In a first iteration, a simple P-picker algorithm is applied to the entire dataset, providing initial picks for the advanced MannekenPix (MPX) algorithm. In a second iteration, the MPX picker provides consistent and reliable automatic first arrival P picks together with a pick-quality estimate. The derived automatic P picks are then used as initial values for a multi-component S-phase picking algorithm. Subsequently, automatic picks of all well-locatable earthquakes will be considered to calculate

  18. Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China

    USGS Publications Warehouse

    Wang, F.; Cheng, Q.; Highland, L.; Miyajima, M.; Wang, Hongfang; Yan, C.

    2009-01-01

    The M s 8.0 Wenchuan earthquake or "Great Sichuan Earthquake" occurred at 14:28 p.m. local time on 12 May 2008 in Sichuan Province, China. Damage by earthquake-induced landslides was an important part of the total earthquake damage. This report presents preliminary observations on the Hongyan Resort slide located southwest of the main epicenter, shallow mountain surface failures in Xuankou village of Yingxiu Town, the Jiufengchun slide near Longmenshan Town, the Hongsong Hydro-power Station slide near Hongbai Town, the Xiaojiaqiao slide in Chaping Town, two landslides in Beichuan County-town which destroyed a large part of the town, and the Donghekou and Shibangou slides in Qingchuan County which formed the second biggest landslide lake formed in this earthquake. The influences of seismic, topographic, geologic, and hydro-geologic conditions are discussed. ?? 2009 Springer-Verlag.

  19. An Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Alcik, H. A.; Tanircan, G.; Kaya, Y.

    2015-12-01

    Vast amounts of high quality strong motion data are indispensable inputs of the analyses in the field of geotechnical and earthquake engineering however, high cost of installation of the strong motion systems constitutes the biggest obstacle for worldwide dissemination. In recent years, MEMS based (micro-electro-mechanical systems) accelerometers have been used in seismological research-oriented studies as well as earthquake engineering oriented projects basically due to precision obtained in downsized instruments. In this research our primary goal is to ensure the usage of these low-cost instruments in the creation of shake-maps immediately after a strong earthquake. Second goal is to develop software that will automatically process the real-time data coming from the rapid response network and create shake-map. For those purposes, four MEMS sensors have been set up to deliver real-time data. Data transmission is done through 3G modems. A subroutine was coded in assembler language and embedded into the operating system of each instrument to create MiniSEED files with packages of 1-second instead of 512-byte packages.The Matlab-based software calculates the strong motion (SM) parameters at every second, and they are compared with the user-defined thresholds. A voting system embedded in the software captures the event if the total vote exceeds the threshold. The user interface of the software enables users to monitor the calculated SM parameters either in a table or in a graph (Figure 1). A small scale and affordable rapid response network is created using four MEMS sensors, and the functionality of the software has been tested and validated using shake table tests. The entire system is tested together with a reference sensor under real strong ground motion recordings as well as series of sine waves with varying amplitude and frequency. The successful realization of this software allowed us to set up a test network at Tekirdağ Province, the closest coastal point to

  20. Preliminary analysis of the earthquake (MW 8.1) and tsunami of April 1, 2007, in the Solomon Islands, southwestern Pacific Ocean

    USGS Publications Warehouse

    Fisher, Michael A.; Geist, Eric L.; Sliter, Ray; Wong, Florence L.; Reiss, Carol; Mann, Dennis M.

    2007-01-01

    On April 1, 2007, a destructive earthquake (Mw 8.1) and tsunami struck the central Solomon Islands arc in the southwestern Pacific Ocean. The earthquake had a thrust-fault focal mechanism and occurred at shallow depth (between 15 km and 25 km) beneath the island arc. The combined effects of the earthquake and tsunami caused dozens of fatalities and thousands remain without shelter. We present a preliminary analysis of the Mw-8.1 earthquake and resulting tsunami. Multichannel seismic-reflection data collected during 1984 show the geologic structure of the arc's frontal prism within the earthquake's rupture zone. Modeling tsunami-wave propagation indicates that some of the islands are so close to the earthquake epicenter that they were hard hit by tsunami waves as soon as 5 min. after shaking began, allowing people scant time to react.

  1. Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China

    NASA Astrophysics Data System (ADS)

    Zhu, Gengshang; Zhang, Zhenguo; Wen, Jian; Zhang, Wei; Chen, Xiaofei

    2013-08-01

    The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.

  2. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    NASA Astrophysics Data System (ADS)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image

  3. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Tsybulya, Konstantin; Davidenko, Dimitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    The recent M9 Tohoku Japan earthquake of March 11, 2011 was the largest recorded earthquake ever to hit this nation. We retrospectively analyzed the temporal and spatial variations of four different physical parameters - outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit tomography and critical frequency foF2. These changes characterize the state of the atmosphere and ionosphere several days before the onset of this earthquake. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which return to normal after the main earthquake. We found a positive correlation between the atmospheric and ionospheric anomalies and the Tohoku earthquake. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  4. Preliminary report on the 29 July 2008 Mw 5.4 Chino Hills, Eastern Los Angeles Basin, California, Earthquake sequence

    USGS Publications Warehouse

    Hauksson, Egill; Felzer, Karen R.; Given, Doug; Giveon, Michal; Hough, Susan E.; Hutton, Kate; Kanamori, Hiroo; Sevilgen, Volkan; Wei, Shengji; Yong, Alan K.

    2008-01-01

    The 29 July 2008 Mw 5.4 Chino Hills earthquake was the largest event to occur within the greater Los Angeles metropolitan region since the Mw 6.7 1994 Northridge earthquake. The earthquake was widely felt in a metropolitan region with a population of more than 10 million people and was recorded by hundreds of broadband and strong-motion instruments. In this report we present preliminary analysis of the event and discuss its significance within the seismotectonic framework of the northern Los Angeles basin as revealed by previous moderate earthquakes.

  5. A new confined high pressure rotary shear apparatus: preliminary results

    NASA Astrophysics Data System (ADS)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  6. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    PubMed

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  7. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California

    PubMed Central

    Lee, Ya-Ting; Turcotte, Donald L.; Holliday, James R.; Sachs, Michael K.; Rundle, John B.; Chen, Chien-Chih; Tiampo, Kristy F.

    2011-01-01

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M≥4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M≥4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor–Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most “successful” in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts. PMID:21949355

  8. Preliminary results about the Quaternary activiy of the Ovacik Fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Zabcı, Cengiz; Sançar, Taylan; Aktaǧ, Alican

    2013-04-01

    The Erzincan Basin and the surrounding region have a complex structure, which is formed by the interaction of the North Anatolian Fault (NAF), the Northeast Anatolian Fault (NEAF), the Pülümür Fault (PF), and the Ovacık Fault (OF). The region has been shaked many times by devastating earthquakes throughout both the instrumental and the historical periods. The infamous 26 December 1939 Erzincan Earthquake (M~7.9) is the largest event, which was instrumentally recorded along the NAF. Moreover, the eastern continuation of the surface rupture of this earthquake, "the Yedisu Segment", is known as one of the two seismic gaps on this dextral shear zone. We started multi-disciplinary studies on the OF, which has relatively very limited data. Even though some researches think about this tectonic feature as a non-active fault, recent GPS measurements point strain accumulation along it. In addition to that 1992 Erzincan and 2003 Pülümür earthquakes loaded additional stress on the neighboring faults, including the OF. The OF elongate between the SE Erzincan Basin and Kemaliye (Erzincan) about 110 km with a general strike of N60E. The clear morphological expression of the fault is especially observed around Ovacık, Tunceli. The OF delimits the Jurassic aged Munzur limestone in the north and the Miocene volcanoclastics and Permo-Carboniferous schist in the south in this vicinity. We identified many offset features, such as wash plains, moraines, alluvial fans and inset terraces in our preliminary morphological maps. The measured displacements change from 20 to 350 m, which may play a critical role in the calculation of the geological slip-rate. Moreover, we used morphological indices, such as topographic profiling, hypsometric integral, basin asymmetry, and the mountain front sinuosity to quantify the activity of the OF. Our preliminary results clearly point out the necessity of future studies, which may help to understand the earthquake potential of this poorly known

  9. An integrated observational site for monitoring pre-earthquake processes in Peloponnese, Greece. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Tsinganos, Kanaris; Karastathis, Vassilios K.; Kafatos, Menas; Ouzounov, Dimitar; Tselentis, Gerassimos; Papadopoulos, Gerassimos A.; Voulgaris, Nikolaos; Eleftheriou, Georgios; Mouzakiotis, Evangellos; Liakopoulos, Spyridon; Aspiotis, Theodoros; Gika, Fevronia; E Psiloglou, Basil

    2017-04-01

    We are presenting the first results of developing a new integrated observational site in Greece to study pre-earthquake processes in Peloponnese, lead by the National Observatory of Athens. We have developed a prototype of multiparameter network approach using an integrated system aimed at monitoring and thorough studies of pre-earthquake processes at the high seismicity area of the Western Hellenic Arc (SW Peloponnese, Greece). The initial prototype of the new observational systems consists of: (1) continuous real-time monitoring of Radon accumulation in the ground through a network of radon sensors, consisting of three gamma radiation detectors [NaI(Tl) scintillators], (2) nine-station seismic array installed to detect and locate events of low magnitude (less than 1.0 R) in the offshore area of the Hellenic arc, (3) real-time weather monitoring systems (air temperature, relative humidity, precipitation, pressure) and (4) satellite thermal radiation from AVHRR/NOAA-18 polar orbit sensing. The first few moths of operations revealed a number of pre-seismic radon variation anomalies before several earthquakes (M>3.6). The radon increases systematically before the larger events. For example a radon anomaly was predominant before the event of Sep 28, M 5.0 (36.73°N, 21.87°E), 18 km ESE of Methoni. The seismic array assists in the evaluation of current seismicity and may yield identification of foreshock activity. Thermal anomalies in satellite images are also examined as an additional tool for evaluation and verification of the Radon increase. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept, atmospheric thermal anomalies observed before large seismic events are associated with the increase of Radon concentration on the ground. Details about the integrating ground and space observations, overall performance of the observational sites, future plans in advancing the cooperation in observations will be discussed.

  10. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Agency for Meteorology, Climatology and Geophysics of Indonesia; Nugraha, Andri Dian

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic networkmore » can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.« less

  11. Preliminary Results From the Chile-Illapel Aftershock Experiment (CHILLAX)

    NASA Astrophysics Data System (ADS)

    Roecker, S. W.; Russo, R. M.; Comte, D.; Carrizo, D.; Peyrat, S.; Opazo, T.; Peña, G.; Farrell, M. E.; Moore, J.; Glick, R.; Rodriguez, E. E.

    2016-12-01

    On September 16, 2015, the Mw 8.3 Illapel earthquake ruptured a segment of the Nazca-South America subduction zone directly to the north of the 2010 Maule Mw 8.8 earthquake. Soon afterwards, a team from the Departamento de Geofisica, University of Chile, installed 18 short period sensors on land above the rupture to record aftershocks. A month later, the network was upgraded and expanded with funding from NSF RAPID to 20 broad band stations, loaned by IRIS PASSCAL. The installation of the Chile-Illapel Aftershock Experiment (CHILLAX) was completed in mid-November, 2015, and will operate until November, 2016. Preliminary analysis of data collected to date indicates an average detection rate of about 1000 locatable aftershocks per month. The combined CHILLAX and Maule aftershock deployments will yield the first modern-instrumentation observations of the zone of along-strike rupture termination that separates these temporally related and spatially adjacent megathrust rupture zones. Additionally, seismic observations of this part of the Nazca subduction zone are relatively sparse, and an aftershock sequence provides an opportunity to fill this gap efficiently. Preliminary analysis of CHILLAX network data revealed unexpected patterns in seismicity down dip from the rupture zone, in the unusual "flat slab" region to the east. Compared to the Maule event, the Illapel rupture apparently generated a more significant increase in seismicity in the 60-200 km depth range, suggesting that it "lit up" the subducted Nazca plate. Although high strain rates due to rupture might extend brittle failure into normally ductile regions, such an effect at these depths by the relatively low magnitude Illapel event is unusual. A perhaps more intriguing result is the frequent occurrence of events at depths significantly below that of the "flat slab". Attribution of this apparent second, deeper slab segment to event mislocations would require unrealistic seismic heterogeneity, We hypothesize

  12. Determination of three-dimensional stress orientations in the Wenchuan earthquake Fault Scientific Drilling (WFSD) hole-1: A preliminary result by anelastic strain recovery measurements of core samples

    NASA Astrophysics Data System (ADS)

    Cui, J.; Lin, W.; Wang, L.; Tang, Z.; Sun, D.; Gao, L.; Wang, W.

    2010-12-01

    A great and destructive earthquake (Ms 8.0; Mw 7.9), Wunchuan earthquake struck on the Longmen Shan foreland trust zone in Sichuan province, China on 12 May 2008 (Xu et al., 2008; Episodes, Vol.31, pp.291-301). As a rapid response scientific drilling project, Wenchuan earthquake Fault Scientific Drilling (WFSD) started on 6 November 2008 shorter than a half of year from the date of earthquake main shock. The first pilot borehole (hole-1) has been drilled to the target depth (measured depth 1201 m MD, vertical depth 1179 m) at Hongkou, Dujianyan, Sichuan and passed through the main fault of the earthquake around 589 m MD. We are trying to determine three dimensional in-situ stress states in the WFSD boreholes by a core-based method, anelastic strain recovery (ASR) method (Lin et al., 2006; Tectonophysics, Vol4.26, pp.221-238). This method has been applied in several scientific drilling projects (TCDP: Lin et al., 2007; TAO, Vol.18, pp.379-393; NanTtoSEIZE: Byrne et al., 2009; GRL, Vol.36, L23310). These applications confirm the validity of using the ASR technique in determining in situ stresses by using drilled cores. We collected total 15 core samples in a depth range from 340 m MD to 1180 m MD, approximately for ASR measurements. Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The data of the ASR tests conducted at hole-1 is still undergoing analysis. As a tentative perspective, more than 10 core samples showed coherent strain recovery over one - two weeks. However, 2 or 3 core samples cannot be re-orientated to the global system. It means that we cannot rink the stress orientation determined by the core samples to geological structure. Unfortunately, a few core samples showed irregular strain recovery and were not analyzed further. The preliminary results of ASR tests at hole-1 show the stress orientations and stress regime changes a lot with the

  13. Earthquake prediction; new studies yield promising results

    USGS Publications Warehouse

    Robinson, R.

    1974-01-01

    On Agust 3, 1973, a small earthquake (magnitude 2.5) occurred near Blue Mountain Lake in the Adirondack region of northern New York State. This seemingly unimportant event was of great significance, however, because it was predicted. Seismologsits at the Lamont-Doherty geologcal Observatory of Columbia University accurately foretold the time, place, and magnitude of the event. Their prediction was based on certain pre-earthquake processes that are best explained by a hypothesis known as "dilatancy," a concept that has injected new life and direction into the science of earthquake prediction. Although much mroe reserach must be accomplished before we can expect to predict potentially damaging earthquakes with any degree of consistency, results such as this indicate that we are on a promising road. 

  14. Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.

    2018-04-01

    Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.

  15. Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake

    USGS Publications Warehouse

    Shakal, A.; Graizer, V.; Huang, M.; Borcherdt, R.; Haddadi, H.; Lin, K.-W.; Stephens, C.; Roffers, P.

    2005-01-01

    The Parkfield 2004 earthquake yielded the most extensive set of strong-motion data in the near-source region of a magnitude 6 earthquake yet obtained. The recordings of acceleration and volumetric strain provide an unprecedented document of the near-source seismic radiation for a moderate earthquake. The spatial density of the measurements alon g the fault zone and in the linear arrays perpendicular to the fault is expected to provide an exceptional opportunity to develop improved models of the rupture process. The closely spaced measurements should help infer the temporal and spatial distribution of the rupture process at much higher resolution than previously possible. Preliminary analyses of the peak a cceleration data presented herein shows that the motions vary significantly along the rupture zone, from 0.13 g to more than 2.5 g, with a map of the values showing that the larger values are concentrated in three areas. Particle motions at the near-fault stations are consistent with bilateral rupture. Fault-normal pulses similar to those observed in recent strike-slip earthquakes are apparent at several of the stations. The attenuation of peak ground acceleration with distance is more rapid than that indicated by some standard relationships but adequately fits others. Evidence for directivity in the peak acceleration data is not strong. Several stations very near, or over, the rupturing fault recorded relatively low accelerations. These recordings may provide a quantitative basis to understand observations of low near-fault shaking damage that has been reported in other large strike-slip earthquak.

  16. Precisely locating the Klamath Falls, Oregon, earthquakes

    USGS Publications Warehouse

    Qamar, A.; Meagher, K.L.

    1993-01-01

    In this article we present preliminary results of a close-in, instrumental study of the Klamath Falls earthquake sequence, carried as a cooperative effort by scientists from the U.S Geological Survey (USGS) and universities in Washington, Orgeon, and California. In addition to obtaining much mroe accurate earthquake locations, this study has improved our understanding of the relationship between seismicity and mapped faults in the region. 

  17. Attention in western Nevada: Preliminary results from earthquake and explosion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hough, S.E.; Anderson, J.G.; Patton, H.J.

    1989-02-01

    We present preliminary results from a study of the attenuation of regional seismic waves at frequencies between 1 and 15 Hz and distances up to 250 km in Western Nevada. Following the methods of Anderson and Hough (1984) and Hough et al. (1988), we parameterize the asymptote of the high frequency acceleration spectrum by the two-parameter model. We relate the model parameters to a two-layer model for Q/sub i/ and Q/sub d/, the freuqency-independent and the frequency dependent components of the quality factor. We compare our results to previously published Q studies in the Basin and Range and find thatmore » our estimate of total Q, Q/sub t/, in the shallow crust is consistent with shear wave Q at close distances with previous estimates of coda Q (Singh and Hermann, 1983) and LgQ (Chavez and Priestley, 1986), suggesting that both coda Q and LgQ are insensitive to near-surface contributions to attenuation.« less

  18. Next-Day Earthquake Forecasts for California

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Jackson, D. D.; Kagan, Y. Y.

    2008-12-01

    We implemented a daily forecast of m > 4 earthquakes for California in the format suitable for testing in community-based earthquake predictability experiments: Regional Earthquake Likelihood Models (RELM) and the Collaboratory for the Study of Earthquake Predictability (CSEP). The forecast is based on near-real time earthquake reports from the ANSS catalog above magnitude 2 and will be available online. The model used to generate the forecasts is based on the Epidemic-Type Earthquake Sequence (ETES) model, a stochastic model of clustered and triggered seismicity. Our particular implementation is based on the earlier work of Helmstetter et al. (2006, 2007), but we extended the forecast to all of Cali-fornia, use more data to calibrate the model and its parameters, and made some modifications. Our forecasts will compete against the Short-Term Earthquake Probabilities (STEP) forecasts of Gersten-berger et al. (2005) and other models in the next-day testing class of the CSEP experiment in California. We illustrate our forecasts with examples and discuss preliminary results.

  19. Soil radon as a possible earthquake precursor: Preliminary results from Ileia (Greece)

    NASA Astrophysics Data System (ADS)

    Petraki, Ermioni; Nikolopoulos, Dimitrios; Louizi, Anna; Zisos, Athanasios

    2010-05-01

    Radon (222Rn) is a naturally occurring radioactive gas which is directly produced by the decay of the 238U series. It is significant for the studies of Earth, in hydrogeology and atmosphere. Radon is used as a trace gas due to the long half-life (3.82-days) which allows migration at long distances. In addition, it is an alpha emitter, fact which enables detection of low levels of radon. Anomalies of radon impending earthquakes of a variety of magnitudes have been observed in soil gas, ground- and thermal-waters and in underground tunnels. Increasing is the scientific interest in this field during the last two years. However, the majority of the published papers refer to data of rather long time intervals between sequential measurements (~2-4 weeks).On the other hand, it is justified, both on laboratory and geophysical scale, that when a heterogeneous material is strained acoustic and electromagnetic (EM) emissions occur in a wide frequency spectrum, ranging from very low to very high frequencies. These emissions are considered as precursors of general fracture. In the search of soil radon as a possible earthquake precursor, a station for quick and continuous monitoring of soil radon has been installed in a very active tectonic site in Greece (Ileia, Peloponnese, SW Greece). The monitoring site is Kardamas Ileias, located 3 km south from Amaliada which is the second highly populated city. The instrumental and felt seismicity of Ileia is dominated by extensional active seismicity structures (e.g. Alfeios, Neda, Melpeia, Kiparissia-Aetos) and has shown more than 600 earthquakes of magnitude greater than 4.0 R in the last 100 years. Two earthquakes were very destructive (5.8 R on 26/3/93 and 6.8 R on 8/6/08 respectively). The station consists of a high precision active instrument (Alpha Guard-AG, Genitron Ltd.), equipped with an appropriate unit designed for pumping and measurement of radon in soil gas (Soil gas Unit, Genitron Ltd.). Soil radon is continuously pumped

  20. Earthquakes in the United States

    USGS Publications Warehouse

    Stover, C.

    1977-01-01

    To supplement data in the report Preliminary Determination of Epicenters (PDE), the National earthquake Information Service (NEIS) also publishes a quarterly circular, Earthquakes in the United States. This provides information on the felt area of U.S earthquakes and their intensity. The main purpose is to describe the larger effects of these earthquakes so that they can be used in seismic risk studies, site evaluations for nuclear power plants, and answering inquiries by the general public.

  1. Preliminary Earthquake Hazard Map of Afghanistan

    USGS Publications Warehouse

    Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.

    2007-01-01

    . Deformation here is expressed as a belt of major, north-northeast-trending, left-lateral strike-slip faults and abundant seismicity. The seismicity intensifies farther to the northeast and includes a prominent zone of deep earthquakes associated with northward subduction of the Indian plate beneath Eurasia that extends beneath the Hindu Kush and Pamirs Mountains. Production of the seismic hazard maps is challenging because the geological and seismological data required to produce a seismic hazard model are limited. The data that are available for this project include historical seismicity and poorly constrained slip rates on only a few of the many active faults in the country. Much of the hazard is derived from a new catalog of historical earthquakes: from 1964 to the present, with magnitude equal to or greater than about 4.5, and with depth between 0 and 250 kilometers. We also include four specific faults in the model: the Chaman fault with an assigned slip rate of 10 mm/yr, the Central Badakhshan fault with an assigned slip rate of 12 mm/yr, the Darvaz fault with an assigned slip rate of 7 mm/yr, and the Hari Rud fault with an assigned slip rate of 2 mm/yr. For these faults and for shallow seismicity less than 50 km deep, we incorporate published ground-motion estimates from tectonically active regions of western North America, Europe, and the Middle East. Ground-motion estimates for deeper seismicity are derived from data in subduction environments. We apply estimates derived for tectonic regions where subduction is the main tectonic process for intermediate-depth seismicity between 50- and 250-km depth. Within the framework of these limitations, we have developed a preliminary probabilistic seismic-hazard assessment of Afghanistan, the type of analysis that underpins the seismic components of modern building codes in the United States. The assessment includes maps of estimated peak ground-acceleration (PGA), 0.2-second spectral acceleration (SA), and 1.0-secon

  2. Preliminary body-wave analysis of the St. Elias, Alaska, earthquake of February 28, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatwright, J.

    1980-04-01

    Employing a new technique for the body-wave analysis of shallow-focus earthquakes, we have made a preliminary analysis of the St. Elias, Alaska, earthquake of February 28, 1979, using five long-period P and S waves recorded at three WWSSN stations and at Palisades, New York. Using a well determined focal mechanism and an average source depth of approx. = 11 km, the interference of the depth phases (i.e., pP and sP, or sS) has been deconvolved from the recorded pulse shapes to obtain velocity and displacement pulse shapes as they would appear if the earthquake had occurred within an infinite medium.more » These approximate whole space pulse shapes indicate that the rupture contained three distinct subevents as well as a small initial event which preceded this subevent sequence by about 7 sec. From the pulse rise times of the subevents, their rupture lengths are estimated as 12, 27, and 17 km, assuming that the subevent rupture velocity was 3 km/sec. Overall, the earthquake ruptured approx. = 60 km to the southeast with an average rupture velocity of 2.2 km/sec. The cumulative body-wave moment for the whole event, 1.2 x 10/sup 27/ dyne-cm, is substantially smaller than the surface-wave moments reported by Lahr et al. (1979) of 5 x 10/sup 27/ dyne-cm. The moments of the subevents are estimated to be 0.6, 3.2, and 7.5 x 10/sup 26/ dyne-cm, respectively.« less

  3. Dynamic Assessment of Seismic Risk (DASR) by Multi-parametric Observations: Preliminary Results of PRIME experiment within the PRE-EARTHQUAKES EU-FP7 Project

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Inan, S.; Jakowski, N.; Pulinets, S. A.; Romanov, A.; Filizzola, C.; Shagimuratov, I.; Pergola, N.; Ouzounov, D. P.; Papadopoulos, G. A.; Parrot, M.; Genzano, N.; Lisi, M.; Alparlsan, E.; Wilken, V.; Tsybukia, K.; Romanov, A.; Paciello, R.; Zakharenkova, I.; Romano, G.

    2012-12-01

    The integration of different observations together with the refinement of data analysis methods, is generally expected to improve our present knowledge of preparatory phases of earthquakes and of their possible precursors. This is also the main goal of PRE-EARTHQUAKES (Processing Russian and European EARTH observations for earthQUAKE precursors Studies) the FP7 Project which, to this aim, committed together, different international expertise and observational capabilities, in the last 2 years. In the learning phase of the project, different parameters (e.g. thermal anomalies, total electron content, radon concentration, etc.), measured from ground and satellite systems and analyzed by using different data analysis approaches, have been studied for selected geographic areas and specific seismic events in the past. Since July 2012 the PRIME (PRE-EARTHQUAKES Real-time Integration and Monitoring Experiment) started attempting to perform, on the base of independent observations collected and integrated in real-time through the PEG (PRE-EARTHQUAKES Geo-portal), a Dynamic Assessment of Seismic Risk (DASR) on selected geographic areas of Europe (Italy-Greece-Turkey) and Asia (Kamchatka, Sakhalin, Japan). In this paper, results so far achieved as well as the potential and opportunities they open for a worldwide Earthquake Observation System (EQuOS) - as a dedicated component of GEOSS (Global Earth Observation System of Systems) - will be presented.

  4. Geochemical challenge to earthquake prediction.

    PubMed Central

    Wakita, H

    1996-01-01

    The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented. PMID:11607665

  5. Learning from the experience: preliminary results of integration experiments within PRE-EARTHQUAKES EU-FP7 Project.

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Inan, S.; Jakowski, N.; Pulinets, S.; Romanov, A.; Filizzola, C.; Shagimuratov, I.; Pergola, N.; Genzano, N.; Lisi, M.; Alparslan, E.; Wilken, V.; Tsybulia, K.; Romanov, A.; Paciello, R.; Balasco, M.; Zakharenkova, I.; Ouzounov, D.; Papadopoulos, G. A.; Parrot, M.

    2012-04-01

    PRE-EARTHQUAKES (Processing Russian and European EARTH observations for earthQUAKE precursors Studies) EU-FP7 project is devoted to demonstrate - integrating different observational data, comparing and improving different data analysis methods - how it is possible to progressively increase reliability of short term seismic risk assessment. Three main testing area were selected (Italy, Turkey and Sakhalin ) in order to concentrate observations and integration efforts starting with a learning phase on selected event in the past devoted to identify the most suitable parameters, observations technologies, data analysis algorithms. To this aim events offering major possibilities (variety) of integration were particularly considered - Abruzzo EQ (April 6th 2009 Mw 6.3) for Italy, Elazig EQ (March 8th 2010 Mw 6.1) for Turkey and Nevelsk EQ (August 2nd 2007 Mw 6.2) for Sakhalin - without excluding other significant events occurred during 2011 like the ones of Tōhoku in Japan and Van in Turkey. For these events, different ground (80 radon and 29 spring water stations in Turkey region, 2 magneto-telluric in Italy) and satellite (18 different systems) based observations, 11 data analysis methods, for 7 measured parameters, have been compared and integrated. Results achieved by applying a validation/confutation approach devoted to evaluate the presence/absence of anomalous space-time transients in single and/or integrated observation time-series will be discussed also in comparison with results independently achieved by other authors.

  6. Improving the RST Approach for Earthquake Prone Areas Monitoring: Results of Correlation Analysis among Significant Sequences of TIR Anomalies and Earthquakes (M>4) occurred in Italy during 2004-2014

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Coviello, I.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.

    2015-12-01

    Looking toward the assessment of a multi-parametric system for dynamically updating seismic hazard estimates and earthquake short term (from days to weeks) forecast, a preliminary step is to identify those parameters (chemical, physical, biological, etc.) whose anomalous variations can be, to some extent, associated to the complex process of preparation of a big earthquake. Among the different parameters, the fluctuations of Earth's thermally emitted radiation, as measured by sensors on board of satellite system operating in the Thermal Infra-Red (TIR) spectral range, have been proposed since long time as potential earthquake precursors. Since 2001, a general approach called Robust Satellite Techniques (RST) has been used to discriminate anomalous thermal signals, possibly associated to seismic activity from normal fluctuations of Earth's thermal emission related to other causes (e.g. meteorological) independent on the earthquake occurrence. Thanks to its full exportability on different satellite packages, RST has been implemented on TIR images acquired by polar (e.g. NOAA-AVHRR, EOS-MODIS) and geostationary (e.g. MSG-SEVIRI, NOAA-GOES/W, GMS-5/VISSR) satellite sensors, in order to verify the presence (or absence) of TIR anomalies in presence (absence) of earthquakes (with M>4) in different seismogenic areas around the world (e.g. Italy, Turkey, Greece, California, Taiwan, etc.).In this paper, a refined RST (Robust Satellite Techniques) data analysis approach and RETIRA (Robust Estimator of TIR Anomalies) index were used to identify Significant Sequences of TIR Anomalies (SSTAs) during eleven years (from May 2004 to December 2014) of TIR satellite records, collected over Italy by the geostationary satellite sensor MSG-SEVIRI. On the basis of specific validation rules (mainly based on physical models and results obtained by applying RST approach to several earthquakes all around the world) the level of space-time correlation among SSTAs and earthquakes (with M≥4

  7. The 03 April 2017 Botswana M6.5 earthquake: Preliminary results

    NASA Astrophysics Data System (ADS)

    Midzi, Vunganai; Saunders, I.; Manzunzu, B.; Kwadiba, M. T.; Jele, V.; Mantsha, R.; Marimira, K. T.; Mulabisana, T. F.; Ntibinyane, O.; Pule, T.; Rathod, G. W.; Sitali, M.; Tabane, L.; van Aswegen, G.; Zulu, B. S.

    2018-07-01

    An earthquake of magnitude Mw 6.5 occurred on the evening of 3 April 2017 in Central Botswana, southern Africa. The event was well recorded by the regional seismic networks. The location by the Council for Geoscience (CGS) placed it near the Central Kgalagadi Game Reserve. Its effects were felt widely in southern Africa and were pronounced for residents of Gauteng and the North West Province in South Africa. In response to this event, the CGS, together with the Botswana Geoscience Institute (BGI), embarked on two scientific projects. The first project involved a macroseismic survey to study the extent and nature of the effects of the event in southern Africa. This involved CGS and BGI scientists soliciting information from members of the public through questionnaire surveys. More information was collected through questionnaires submitted online by the public. In total, 181 questionnaires were obtained through interviews and 151 online from South Africa, Zimbabwe and Namibia through collaboration between the CGS, the Meteorological Services Department of Zimbabwe and the Geological Survey of Namibia. All collected data were analysed to produce 79 intensity data points (IDPs) located all over the region, with maximum intensity values of VI (according to the Modified Mercalli Intensity scale) observed near the epicentre. This is quite a low value of maximum intensity for such a large event, but was expected given that the epicentral region is in a national park which is sparsely populated. The second scientific project involved the rapid installation of a temporary network of six seismograph stations in and around the location of the main event with the purpose of detecting and recording its aftershocks over a period of three months. Data recorded in the first month of April 2017 were collected and delivered to both the CGS and BGI for processing. More than 500 aftershock events of magnitude ML ≥ 0.8 were recorded and analysed for this period. All the events were

  8. Preliminary Analysis of Remote Triggered Seismicity in Northern Baja California Generated by the 2011, Tohoku-Oki, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Wong-Ortega, V.; Castro, R. R.; Gonzalez-Huizar, H.; Velasco, A. A.

    2013-05-01

    We analyze possible variations of seismicity in the northern Baja California due to the passage of seismic waves from the 2011, M9.0, Tohoku-Oki, Japan earthquake. The northwestern area of Baja California is characterized by a mountain range composed of crystalline rocks. These Peninsular Ranges of Baja California exhibits high microseismic activity and moderate size earthquakes. In the eastern region of Baja California shearing between the Pacific and the North American plates takes place and the Imperial and Cerro-Prieto faults generate most of the seismicity. The seismicity in these regions is monitored by the seismic network RESNOM operated by the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). This network consists of 13 three-component seismic stations. We use the seismic catalog of RESNOM to search for changes in local seismic rates occurred after the passing of surface waves generated by the Tohoku-Oki, Japan earthquake. When we compare one month of seismicity before and after the M9.0 earthquake, the preliminary analysis shows absence of triggered seismicity in the northern Peninsular Ranges and an increase of seismicity south of the Mexicali valley where the Imperial fault jumps southwest and the Cerro Prieto fault continues.

  9. Seismic Hazard Maps for the Maltese Archipelago: Preliminary Results

    NASA Astrophysics Data System (ADS)

    D'Amico, S.; Panzera, F.; Galea, P. M.

    2013-12-01

    The Maltese islands form an archipelago of three major islands lying in the Sicily channel at about 140 km south of Sicily and 300 km north of Libya. So far very few investigations have been carried out on seismicity around the Maltese islands and no maps of seismic hazard for the archipelago are available. Assessing the seismic hazard for the region is currently of prime interest for the near-future development of industrial and touristic facilities as well as for urban expansion. A culture of seismic risk awareness has never really been developed in the country, and the public perception is that the islands are relatively safe, and that any earthquake phenomena are mild and infrequent. However, the Archipelago has been struck by several moderate/large events. Although recent constructions of a certain structural and strategic importance have been built according to high engineering standards, the same probably cannot be said for all residential buildings, many higher than 3 storeys, which have mushroomed rapidly in recent years. Such buildings are mostly of unreinforced masonry, with heavy concrete floor slabs, which are known to be highly vulnerable to even moderate ground shaking. We can surely state that in this context planning and design should be based on available national hazard maps. Unfortunately, these kinds of maps are not available for the Maltese islands. In this paper we attempt to compute a first and preliminary probabilistic seismic hazard assessment of the Maltese islands in terms of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) at different periods. Seismic hazard has been computed using the Esteva-Cornell (1968) approach which is the most widely utilized probabilistic method. It is a zone-dependent approach: seismotectonic and geological data are used coupled with earthquake catalogues to identify seismogenic zones within which earthquakes occur at certain rates. Therefore the earthquake catalogues can be reduced to the

  10. Precise Hypocenter Determination around Palu Koro Fault: a Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fawzy Ismullah, M. Muhammad; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono

    2017-04-01

    Sulawesi area is located in complex tectonic pattern. High seismicity activity in the middle of Sulawesi is related to Palu Koro fault (PKF). In this study, we determined precise hypocenter around PKF by applying double-difference method. We attempt to investigate of the seismicity rate, geometry of the fault and distribution of focus depth around PKF. We first re-pick P-and S-wave arrival time of the PKF events to determine the initial hypocenter location using Hypoellipse method through updated 1-D seismic velocity. Later on, we relocated the earthquake event using double-difference method. Our preliminary results show the distribution of relocated events are located around PKF and have smaller residual time than the initial location. We will enhance the hypocenter location through updating of arrival time by applying waveform cross correlation method as input for double-difference relocation.

  11. The 1906 earthquake and a century of progress in understanding earthquakes and their hazards

    USGS Publications Warehouse

    Zoback, M.L.

    2006-01-01

    The 18 April 1906 San Francisco earthquake killed nearly 3000 people and left 225,000 residents homeless. Three days after the earthquake, an eight-person Earthquake Investigation Commission composed of 25 geologists, seismologists, geodesists, biologists and engineers, as well as some 300 others started work under the supervision of Andrew Lawson to collect and document physical phenomena related to the quake . On 31 May 1906, the commission published a preliminary 17-page report titled "The Report of the State Earthquake Investigation Commission". The report included the bulk of the geological and morphological descriptions of the faulting, detailed reports on shaking intensity, as well as an impressive atlas of 40 oversized maps and folios. Nearly 100 years after its publication, the Commission Report remains a model for post-earthquake investigations. Because the diverse data sets were so complete and carefully documented, researchers continue to apply modern analysis techniques to learn from the 1906 earthquake. While the earthquake marked a seminal event in the history of California, it served as impetus for the birth of modern earthquake science in the United States.

  12. Experimental results of temperature response to stress change: An indication of the physics of earthquake rupture propagation

    NASA Astrophysics Data System (ADS)

    Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.

    2016-12-01

    As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.

  13. Earthquake Predictability: Results From Aggregating Seismicity Data And Assessment Of Theoretical Individual Cases Via Synthetic Data

    NASA Astrophysics Data System (ADS)

    Adamaki, A.; Roberts, R.

    2016-12-01

    For many years an important aim in seismological studies has been forecasting the occurrence of large earthquakes. Despite some well-established statistical behavior of earthquake sequences, expressed by e.g. the Omori law for aftershock sequences and the Gutenburg-Richter distribution of event magnitudes, purely statistical approaches to short-term earthquake prediction have in general not been successful. It seems that better understanding of the processes leading to critical stress build-up prior to larger events is necessary to identify useful precursory activity, if this exists, and statistical analyses are an important tool in this context. There has been considerable debate on the usefulness or otherwise of foreshock studies for short-term earthquake prediction. We investigate generic patterns of foreshock activity using aggregated data and by studying not only strong but also moderate magnitude events. Aggregating empirical local seismicity time series prior to larger events observed in and around Greece reveals a statistically significant increasing rate of seismicity over 20 days prior to M>3.5 earthquakes. This increase cannot be explained by tempo-spatial clustering models such as ETAS, implying genuine changes in the mechanical situation just prior to larger events and thus the possible existence of useful precursory information. Because of tempo-spatial clustering, including aftershocks to foreshocks, even if such generic behavior exists it does not necessarily follow that foreshocks have the potential to provide useful precursory information for individual larger events. Using synthetic catalogs produced based on different clustering models and different presumed system sensitivities we are now investigating to what extent the apparently established generic foreshock rate acceleration may or may not imply that the foreshocks have potential in the context of routine forecasting of larger events. Preliminary results suggest that this is the case, but

  14. The August 2011 Virginia and Colorado Earthquake Sequences: Does Stress Drop Depend on Strain Rate?

    NASA Astrophysics Data System (ADS)

    Abercrombie, R. E.; Viegas, G.

    2011-12-01

    Our preliminary analysis of the August 2011 Virginia earthquake sequence finds the earthquakes to have high stress drops, similar to those of recent earthquakes in NE USA, while those of the August 2011 Trinidad, Colorado, earthquakes are moderate - in between those typical of interplate (California) and the east coast. These earthquakes provide an unprecedented opportunity to study such source differences in detail, and hence improve our estimates of seismic hazard. Previously, the lack of well-recorded earthquakes in the eastern USA severely limited our resolution of the source processes and hence the expected ground accelerations. Our preliminary findings are consistent with the idea that earthquake faults strengthen during longer recurrence times and intraplate faults fail at higher stress (and produce higher ground accelerations) than their interplate counterparts. We use the empirical Green's function (EGF) method to calculate source parameters for the Virginia mainshock and three larger aftershocks, and for the Trinidad mainshock and two larger foreshocks using IRIS-available stations. We select time windows around the direct P and S waves at the closest stations and calculate spectral ratios and source time functions using the multi-taper spectral approach (eg. Viegas et al., JGR 2010). Our preliminary results show that the Virginia sequence has high stress drops (~100-200 MPa, using Madariaga (1976) model), and the Colorado sequence has moderate stress drops (~20 MPa). These numbers are consistent with previous work in the regions, for example the Au Sable Forks (2002) earthquake, and the 2010 Germantown (MD) earthquake. We also calculate the radiated seismic energy and find the energy/moment ratio to be high for the Virginia earthquakes, and moderate for the Colorado sequence. We observe no evidence of a breakdown in constant stress drop scaling in this limited number of earthquakes. We extend our analysis to a larger number of earthquakes and stations

  15. Earthquake Source Inversion Blindtest: Initial Results and Further Developments

    NASA Astrophysics Data System (ADS)

    Mai, P.; Burjanek, J.; Delouis, B.; Festa, G.; Francois-Holden, C.; Monelli, D.; Uchide, T.; Zahradnik, J.

    2007-12-01

    Images of earthquake ruptures, obtained from modelling/inverting seismic and/or geodetic data exhibit a high degree in spatial complexity. This earthquake source heterogeneity controls seismic radiation, and is determined by the details of the dynamic rupture process. In turn, such rupture models are used for studying source dynamics and for ground-motion prediction. But how reliable and trustworthy are these earthquake source inversions? Rupture models for a given earthquake, obtained by different research teams, often display striking disparities (see http://www.seismo.ethz.ch/srcmod) However, well resolved, robust, and hence reliable source-rupture models are an integral part to better understand earthquake source physics and to improve seismic hazard assessment. Therefore it is timely to conduct a large-scale validation exercise for comparing the methods, parameterization and data-handling in earthquake source inversions.We recently started a blind test in which several research groups derive a kinematic rupture model from synthetic seismograms calculated for an input model unknown to the source modelers. The first results, for an input rupture model with heterogeneous slip but constant rise time and rupture velocity, reveal large differences between the input and inverted model in some cases, while a few studies achieve high correlation between the input and inferred model. Here we report on the statistical assessment of the set of inverted rupture models to quantitatively investigate their degree of (dis-)similarity. We briefly discuss the different inversion approaches, their possible strength and weaknesses, and the use of appropriate misfit criteria. Finally we present new blind-test models, with increasing source complexity and ambient noise on the synthetics. The goal is to attract a large group of source modelers to join this source-inversion blindtest in order to conduct a large-scale validation exercise to rigorously asses the performance and

  16. What Googling Trends Tell Us About Public Interest in Earthquakes

    NASA Astrophysics Data System (ADS)

    Tan, Y. J.; Maharjan, R.

    2017-12-01

    Previous studies have shown that immediately after large earthquakes, there is a period of increased public interest. This represents a window of opportunity for science communication and disaster relief fundraising efforts to reach more people. However, how public interest varies for different earthquakes has not been quantified systematically on a global scale. We analyze how global search interest for the term "earthquake" on Google varies following earthquakes of magnitude ≥ 5.5 from 2004 to 2016. We find that there is a spike in search interest after large earthquakes followed by an exponential temporal decay. Preliminary results suggest that the period of increased search interest scales with death toll and correlates with the period of increased media coverage. This suggests that the relationship between the period of increased public interest in earthquakes and death toll might be an effect of differences in media coverage. However, public interest never remains elevated for more than three weeks. Therefore, to take advantage of this short period of increased public interest, science communication and disaster relief fundraising efforts have to act promptly following devastating earthquakes.

  17. Preliminary Results from an Hydroacoustic Experiment in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Royer, J.; Dziak, R. P.; Delatre, M.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstiehl, D. R.; Guinet, C.; Samaran, F.

    2008-12-01

    We report initial results from a 14-month hydroacoustic experiment in the Indian Ocean conducted by CNRS/University of Brest and NOAA/Oregon State University. The objective was to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones, moored in the SOFAR channel, were deployed in October 2006 and recovered early 2008 by R/V Marion Dufresne, in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. Our temporary network detected more than 2000 events. Inside the array, we located 592 events (compared to 49 in the NEIC earthquake catalog) with location errors less than 5 km and time error less than 2s. The hydrophone array detected on average 5 to 40 times more events per month than land-based networks. First-order observations indicate that hydroacoustic seismicity along the Southeast Indian ridge (SEIR) occurs predominantly along the transform faults. The Southwest Indian Ridge exhibits some periodicity in earthquake activity between adjacent ridge segments. Two large tectonic/volcanic earthquake swarms are observed along the Central Indian Ridge (near the triple junction) in September and December 2007. Moreover, many off ridge-axis events are also observed both south and north of the SEIR axis. Improved localization using the CTBTO records will help refine these preliminary results and further investigate extended volcanic sequences along the SEIR east of 80°E and other events outside of the temporary array. The records also display numerous vocalizations of baleen whales in the 20-40Hz bandwidth. The calls are attributed to fin whales, Antarctic blue whales and pygmy blue whales of Madagascar and Australian type. Their vocal activity is found to be highly seasonal

  18. St. Louis Area Earthquake Hazards Mapping Project - A Progress Report-November 2008

    USGS Publications Warehouse

    Karadeniz, D.; Rogers, J.D.; Williams, R.A.; Cramer, C.H.; Bauer, R.A.; Hoffman, D.; Chung, J.; Hempen, G.L.; Steckel, P.H.; Boyd, O.L.; Watkins, C.M.; McCallister, N.S.; Schweig, E.

    2009-01-01

    St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project (SLAEHMP) is producing digital maps that show variability of earthquake hazards, including liquefaction and ground shaking, in the St. Louis area. The maps will be available free via the internet. Although not site specific enough to indicate the hazard at a house-by-house resolution, they can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as the result of an earthquake. Earthquake hazard maps provide one way of conveying such estimates. The U.S. Geological Survey (USGS), which produces earthquake hazard maps for the Nation, is working with local partners to develop detailed maps for urban areas vulnerable to strong ground shaking. These partners, which along with the USGS comprise the SLAEHMP, include the Missouri University of Science and Technology-Rolla (Missouri S&T), Missouri Department of Natural Resources (MDNR), Illinois State Geological Survey (ISGS), Saint Louis University, Missouri State Emergency Management Agency, and URS Corporation. Preliminary hazard maps covering a test portion of the 29-quadrangle St. Louis study area have been produced and are currently being evaluated by the SLAEHMP. A USGS Fact Sheet summarizing this project was produced and almost 1000 copies have been distributed at several public outreach meetings and field trips that have featured the SLAEHMP (Williams and others, 2007). In addition, a USGS website focusing on the SLAEHMP, which provides links to project results and relevant earthquake hazard information, can be found at: http://earthquake.usgs.gov/regional/ceus/urban_map/st_louis/index.php. This progress report summarizes the

  19. Search for Anisotropy Changes Associated with Two Large Earthquakes in Japan and New Zealand

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Graham, K.; Aoki, Y.; Arnold, R.

    2017-12-01

    Seismic anisotropy is often considered to be an indicator of stress in the crust, because the closure of cracks due to differential stress leads to waves polarized parallel to the cracks travelling faster than the orthogonal direction. Changes in shear wave splitting have been suggested to result from stress changes at volcanoes and earthquakes. However, the effects of mineral or structural alignment, and the difficulty of distinguishing between changes in anisotropy along an earthquake-station path from distinguishing changes in the path itself, have made such findings controversial. Two large earthquakes in 2016 provide unique datasets to test the use of shear wave splitting for measuring variations in stress because clusters of closely-spaced earthquakes occurred both before and after a mainshock. We use the automatic, objective splitting analysis code MFAST to speed process and minimize unwitting observer bias when determining time variations. The sequence of earthquakes related to the M=7.2 Japanese Kumamoto earthquake of 14 April 2016 includes both foreshocks, mainshocks and aftershocks. The sequence was recorded by the NIED permanent network, which already contributed background seismic anisotropy measurements in a previous study of anisotropy and stress in Kyushu. Preliminary measurements of shear wave splitting from earthquakes that occurred in 2016 show results at some stations that clearly differ from those of the earlier study. They also change between earthquakes recorded before and after the mainshock. Further work is under way to determine whether the changes are more likely due to changes in stress during the observation time, or due to spatial changes in anisotropy combined with changes in earthquake locations. Likewise, background seismicity and also foreshocks and aftershocks in the 2013 Cook Strait earthquake sequence including two M=6.5 earthquakes in 2013 in New Zealand were in the same general region as aftershocks of the M=7.8 Kaikoura

  20. Preliminary Report Summarizes Tsunami Impacts and Lessons Learned from the September 7, 2017, M8.1 Tehuantepec Earthquake

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Ramirez-Herrera, M. T.; Dengler, L. A.; Miller, K.; LaDuke, Y.

    2017-12-01

    The preliminary tsunami impacts from the September 7, 2017, M8.1 Tehuantepec Earthquake have been summarized in the following report: https://www.eeri.org/wp-content/uploads/EERI-Recon-Rpt-090717-Mexico-tsunami_fn.pdf. Although the tsunami impacts were not as significant as those from the earthquake itself (98 fatalities and 41,000 homes damaged), the following are highlights and lessons learned: The Tehuantepec earthquake was one of the largest down-slab normal faulting events ever recorded. This situation complicated the tsunami forecast since forecast methods and pre-event modeling are primarily associated with megathrust earthquakes where the most significant tsunamis are generated. Adding non-megathrust source modeling to the tsunami forecast databases of conventional warning systems should be considered. Offshore seismic and tsunami hazard analyses using past events should incorporate the potential for large earthquakes occurring along sources other than the megathrust boundary. From an engineering perspective, initial reports indicate there was only minor tsunami damage along the Mexico coast. There was damage to Marina Chiapas where floating docks overtopped their piles. Increasing pile heights could reduce the potential for damage to floating docks. Tsunami warning notifications did not get to the public in time to assist with evacuation. Streamlining the messaging in Mexico from the warning system directly to the public should be considered. And, for local events, preparedness efforts should place emphasis on responding to feeling the earthquake and not waiting to be notified. Although the U.S. tsunami warning centers were timely with their international and domestic messaging, there were some issues with how those messages were presented and interpreted. The use of a "Tsunami Threat" banner on the new main warning center website created confusion with emergency managers in the U.S. where no tsunami threat was expected to exist. Also, some U.S. states and

  1. Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings.

    ERIC Educational Resources Information Center

    Bresler, B.; And Others

    This report contains four papers written during an investigation of methods for evaluating the safety of existing school buildings under Research Applied to National Needs (RANN) grants. In "Evaluation of Earthquake Safety of Existing Buildings," by B. Bresler, preliminary ideas on the evaluation of the earthquake safety of existing…

  2. Examining and Comparing Earthquake Readiness in East San Francisco Bay Area Communities (Invited)

    NASA Astrophysics Data System (ADS)

    Ramirez, N.; Bul, V.; Chavez, A.; Chin, W.; Cuff, K. E.; Girton, C.; Haynes, D.; Kelly, G.; Leon, G.; Ramirez, J.; Ramirez, R.; Rodriquez, F.; Ruiz, D.; Torres, J.

    2009-12-01

    Based on past experiences, the potential for casualties and mass destruction that can result from a high magnitude earthquake are well known. Nevertheless, given the East San Francisco Bay Area’s proximity to the Hayward and San Andreas faults, learning about earthquakes and disaster preparedness is of particular importance. While basic educational programs and materials are available both through emergency relief agencies and schools, little research has been done on their effectiveness. Because of the wide socioeconomic spread between communities in the East Bay, we decided to investigate understandings of issues related to disaster and earthquake preparedness among local populations based upon average household income. To accomplish this, we created a survey that was later uploaded to and implemented using Palm Treo Smart Phones. Survey locations were selected in such a way that they reflected the understandings of residents in a diverse set of socio-economic settings. Thus, these locations included a grocery store and nearby plaza in the Fruitvale district of Oakland, CA (zip=94601; median household income= 33,152), as well as the nearby town of Alameda, CA (zip=94502, median household income= 87,855). Preliminary results suggest that in terms of the objective questions on the survey, people from Alameda who participated in our study performed significantly better (difference in percentage correct greater than 10%) than the people from Fruitvale on two of the advanced earthquake knowledge questions. Interestingly enough, people in Fruitvale significantly outperformed people in Alameda on two of the basic earthquake knowledge questions. The final important finding was that while houses in Alameda tended to be newer and more often retrofitted than houses in Fruitvale, the people of the latter location tended to have a higher percentage of respondents claim confidence in the ability of their house to withstand a major earthquake. Based on preliminary results we

  3. Defining "Acceptable Risk" for Earthquakes Worldwide

    NASA Astrophysics Data System (ADS)

    Tucker, B.

    2001-05-01

    The greatest and most rapidly growing earthquake risk for mortality is in developing countries. Further, earthquake risk management actions of the last 50 years have reduced the average lethality of earthquakes in earthquake-threatened industrialized countries. (This is separate from the trend of the increasing fiscal cost of earthquakes there.) Despite these clear trends, every new earthquake in developing countries is described in the media as a "wake up" call, announcing the risk these countries face. GeoHazards International (GHI) works at both the community and the policy levels to try to reduce earthquake risk. GHI reduces death and injury by helping vulnerable communities recognize their risk and the methods to manage it, by raising awareness of its risk, building local institutions to manage that risk, and strengthening schools to protect and train the community's future generations. At the policy level, GHI, in collaboration with research partners, is examining whether "acceptance" of these large risks by people in these countries and by international aid and development organizations explains the lack of activity in reducing these risks. The goal of this pilot project - The Global Earthquake Safety Initiative (GESI) - is to develop and evaluate a means of measuring the risk and the effectiveness of risk mitigation actions in the world's largest, most vulnerable cities: in short, to develop an earthquake risk index. One application of this index is to compare the risk and the risk mitigation effort of "comparable" cities. By this means, Lima, for example, can compare the risk of its citizens dying due to earthquakes with the risk of citizens in Santiago and Guayaquil. The authorities of Delhi and Islamabad can compare the relative risk from earthquakes of their school children. This index can be used to measure the effectiveness of alternate mitigation projects, to set goals for mitigation projects, and to plot progress meeting those goals. The preliminary

  4. Spatial Analysis of Earthquake Fatalities in the Middle East, 1970-2008: First Results

    NASA Astrophysics Data System (ADS)

    Khaleghy Rad, M.; Evans, S. G.; Brenning, A.

    2010-12-01

    Earthquakes claim the lives of thousands of people each year and the annual number of earthquake fatalities in the Middle East (21 countries) is 20 % of the total yearly fatalities of the World. There have been several attempts to estimate the number of fatalities in a given earthquake. We review the results of previous attempts and present an estimation of fatalities using a new conceptual model for life loss that includes hazard (earthquake magnitude and focal depth), vulnerability (GDP value of countries and elapsed time since 1970 as proxy variables) and exposed population in the affected area of a given earthquake. PAGER_CAT is a global catalog (http://earthquake.usgs.gov/research/data/pager/) that presents information on casualties of earthquakes since 1900. Although, the catalog itself is almost a complete record of fatal earthquakes, the data on number of deaths is not complete. We use PAGER_CAT to assemble a Middle East (the latitude and longitude of 10°-42° N and 24°-64° E respectively) catalog for the period 1970-2008 that includes 202 events with published number of fatalities, including events with zero casualties. We investigated the effect of components of each event, e.g. exposed population, instrumental earthquake magnitude, focal depth, date (year of event) and GDP on earthquake fatalities in Middle East in the 202 events with detailed fatality estimates. To estimate the number of people exposed to each event, we used a fatality threshold for peak ground acceleration of 0.1g to calculate the radius of affected area. The exposed population of each event is the enclosed population of each circle calculated from gridded population data available on SEDAC (http://sedac.ciesin.columbia.edu/gpw/global.jsp) using ArcGIS. Results of our statistical model, using Poisson regression in R statistical software, show that the number of fatalities due to earthquakes is in direct (positive) relation to the exposed population and the magnitude of the

  5. [Earthquakes in El Salvador].

    PubMed

    de Ville de Goyet, C

    2001-02-01

    The Pan American Health Organization (PAHO) has 25 years of experience dealing with major natural disasters. This piece provides a preliminary review of the events taking place in the weeks following the major earthquakes in El Salvador on 13 January and 13 February 2001. It also describes the lessons that have been learned over the last 25 years and the impact that the El Salvador earthquakes and other disasters have had on the health of the affected populations. Topics covered include mass-casualties management, communicable diseases, water supply, managing donations and international assistance, damages to the health-facilities infrastructure, mental health, and PAHO's role in disasters.

  6. The Mw 7.7 Bhuj earthquake: Global lessons for earthquake hazard in intra-plate regions

    USGS Publications Warehouse

    Schweig, E.; Gomberg, J.; Petersen, M.; Ellis, M.; Bodin, P.; Mayrose, L.; Rastogi, B.K.

    2003-01-01

    The Mw 7.7 Bhuj earthquake occurred in the Kachchh District of the State of Gujarat, India on 26 January 2001, and was one of the most damaging intraplate earthquakes ever recorded. This earthquake is in many ways similar to the three great New Madrid earthquakes that occurred in the central United States in 1811-1812, An Indo-US team is studying the similarities and differences of these sequences in order to learn lessons for earthquake hazard in intraplate regions. Herein we present some preliminary conclusions from that study. Both the Kutch and New Madrid regions have rift type geotectonic setting. In both regions the strain rates are of the order of 10-9/yr and attenuation of seismic waves as inferred from observations of intensity and liquefaction are low. These strain rates predict recurrence intervals for Bhuj or New Madrid sized earthquakes of several thousand years or more. In contrast, intervals estimated from paleoseismic studies and from other independent data are significantly shorter, probably hundreds of years. All these observations together may suggest that earthquakes relax high ambient stresses that are locally concentrated by rheologic heterogeneities, rather than loading by plate-tectonic forces. The latter model generally underlies basic assumptions made in earthquake hazard assessment, that the long-term average rate of energy released by earthquakes is determined by the tectonic loading rate, which thus implies an inherent average periodicity of earthquake occurrence. Interpreting the observations in terms of the former model therefore may require re-examining the basic assumptions of hazard assessment.

  7. Numerical Modeling and Forecasting of Strong Sumatra Earthquakes

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Yin, C.

    2007-12-01

    ESyS-Crustal, a finite element based computational model and software has been developed and applied to simulate the complex nonlinear interacting fault systems with the goal to accurately predict earthquakes and tsunami generation. With the available tectonic setting and GPS data around the Sumatra region, the simulation results using the developed software have clearly indicated that the shallow part of the subduction zone in the Sumatra region between latitude 6S and 2N has been locked for a long time, and remained locked even after the Northern part of the zone underwent a major slip event resulting into the infamous Boxing Day tsunami. Two strong earthquakes that occurred in the distant past in this region (between 6S and 1S) in 1797 (M8.2) and 1833 (M9.0) respectively are indicative of the high potential for very large destructive earthquakes to occur in this region with relatively long periods of quiescence in between. The results have been presented in the 5th ACES International Workshop in 2006 before the recent 2007 Sumatra earthquakes occurred which exactly fell into the predicted zone (see the following web site for ACES2006 and detailed presentation file through workshop agenda). The preliminary simulation results obtained so far have shown that there seem to be a few obvious events around the previously locked zone before it is totally ruptured, but apparently no indication of a giant earthquake similar to the 2004 M9 event in the near future which is believed to happen by several earthquake scientists. Further detailed simulations will be carried out and presented in the meeting.

  8. Are landslides in the New Madrid Seismic Zone the result of the 1811-1812 earthquake sequence or multiple prehistoric earthquakes?

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Williams, Robert; Jibson, Randall

    2014-05-01

    Previous research indicates that deep translational and rotational landslides along the bluffs east of the Mississippi River in western Tennessee were triggered by the M7-8 1811-1812 New Madrid earthquake sequence. Analysis of recently acquired airborne LiDAR data suggests the possibility of multiple generations of landslides, possibly triggered by older, similar magnitude earthquake sequences, which paleoliquifaction studies show occurred circa 1450 and about 900 A.D. Using these LiDAR data, we have remapped recent landslides along two sections of the bluffs: a northern section near Reelfoot Lake and a southern section near Meeman-Shelby State Park (20 km north of Memphis, Tennessee). The bare-earth, digital-elevation models derived from these LiDAR data have a resolution of 0.5 m and reveal valuable details of topography given the region's dense forest canopy. Our mapping confirms much of the previous landslide mapping, refutes a few previously mapped landslides, and reveals new, undetected landslides. Importantly, we observe that the landslide deposits in the Reelfoot region are characterized by rotated blocks with sharp uphill-facing scarps and steep headwall scarps, indicating youthful, relatively recent movement. In comparison, landslide deposits near Meeman-Shelby are muted in appearance, with headwall scarps and rotated blocks that are extensively dissected by gullies, indicating they might be an older generation of landslides. Because of these differences in morphology, we hypothesize that the landslides near Reelfoot Lake were triggered by the 1811-1812 earthquake sequence and that landslides near Meeman-Shelby resulted from shaking associated with earlier earthquake sequences. To test this hypothesis, we will evaluate differences in bluff height, local geology, vegetation, and proximity to known seismic sources. Furthermore, planned fieldwork will help evaluate whether the observed landslide displacements occurred in single earthquakes or if they might

  9. A Statistical Study of Total Electron Content Changes in the Ionosphere Prior to Earthquake Occurrences

    NASA Astrophysics Data System (ADS)

    Thomas, J. N.; Huard, J.; Masci, F.

    2015-12-01

    There are many published reports of anomalous changes in the ionosphere prior to large earthquakes. However, whether or not these ionospheric changes are reliable precursors that could be useful for earthquake prediction is controversial within the scientific community. To test a possible statistical relationship between the ionosphere and earthquakes, we compare changes in the total electron content (TEC) of the ionosphere with occurrences of M≥6.0 earthquakes globally for a multiyear period. We use TEC data from a global ionosphere map (GIM) and an earthquake list declustered for aftershocks. For each earthquake, we look for anomalous changes in TEC within ±30 days of the earthquake time and within 2.5° latitude and 5.0° longitude of the earthquake location (the spatial resolution of GIM). Our preliminary analysis, using global TEC and earthquake data for 2002-2010, has not found any statistically significant changes in TEC prior to earthquakes. Thus, we have found no evidence that would suggest that TEC changes are useful for earthquake prediction. Our results are discussed in the context of prior statistical and case studies. Namely, our results agree with Dautermann et al. (2007) who found no relationship between TEC changes and earthquakes in the San Andreas fault region. Whereas, our results disagree with Le et al. (2011) who found an increased rate in TEC anomalies within a few days before global earthquakes M≥6.0.

  10. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks.

    PubMed

    Chen, Xiaowei; Nakata, Nori; Pennington, Colin; Haffener, Jackson; Chang, Jefferson C; He, Xiaohui; Zhan, Zhongwen; Ni, Sidao; Walter, Jacob I

    2017-07-10

    The Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011. It ruptured a previously unmapped fault and triggered aftershocks along a complex conjugate fault system. With a high-resolution earthquake catalog, we observe propagating foreshocks leading to the mainshock within 0.5 km distance, suggesting existence of precursory aseismic slip. At approximately 100 days before the mainshock, two M ≥ 3.5 earthquakes occurred along a mapped fault that is conjugate to the mainshock fault. At about 40 days before, two earthquakes clusters started, with one M3 earthquake occurred two days before the mainshock. The three M ≥ 3 foreshocks all produced positive Coulomb stress at the mainshock hypocenter. These foreshock activities within the conjugate fault system are near-instantaneously responding to variations in injection rates at 95% confidence. The short time delay between injection and seismicity differs from both the hypothetical expected time scale of diffusion process and the long time delay observed in this region prior to 2016, suggesting a possible role of elastic stress transfer and critical stress state of the fault. Our results suggest that the Pawnee earthquake is a result of interplay among injection, tectonic faults, and foreshocks.

  11. Earthquakes and related catastrophic events, Island of Hawaii, November 29, 1975; a preliminary report

    USGS Publications Warehouse

    Tilling, Robert I.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Moore, J.G.; Swanson, D.A.

    1976-01-01

    The largest earthquake in over a century--magnitude 7.2 on the Richter Scale--struck Hawaii the morning of November 29, 1975, at 0448. It was centered about 5 km beneath the Kalapana area on the southeastern coast of the island at 19? 20.1 ' N., long 155? 01.4 ' W.). The earthquake was preceded by numerous foreshocks, the largest of which was a 5.7-magnitude jolt at 0336 the same morning, and was accompanied, or closely followed, by a tsunami seismic sea wave), massive ground movements, hundreds of aftershocks, and a volcanic eruption. The tsunami reached a height of 12.2-14.6 m above sea level on the southeastern coast about 25 km west of the earthquake center, elsewhere generally 8 m or less. The south flank of Kilauea Volcano, which forms the southeastern part of the island, was deformed by dislocations along old and new faults along a 25-km long zone. Downward and seaward fault displacements resulted in widespread subsidence, locally as much as 3.5 m, leaving coconut palms standing in the sea and nearly submerging a small, near-shore island. A brief, small-volume volcanic eruption, triggered by the earthquake and associated ground movements occurred at Kilauea's summit about three-quarters of an hour later. The earthquake, together with the tsunami it generated, locally caused severe property damage in the southeastern part of the island; the tsunami also caused two deaths. Damage from the earthquake and related catastrophic events is estimated by the Hawaii Civil Defense Agency at about $4.1 million. The 1975 Kalapana earthquake and accompanying events represent the latest events in a recurring pattern of behavior for Kilauea. A large earthquake of about the same magnitude, tsunami, subsidence, and eruption occurred at Kilauea in 1868, and a less powerful earthquake and similar related processes are believed to have occurred in 1823. Indeed, the geologic evidence suggests that such events have been repeated many times in Kilauea's past and will continue. The

  12. PEER - January 12, 2010 Haiti Earthquake - Related Events

    Science.gov Websites

    Related Events Related Events Preliminary Reconnaissance Presentation about Chile Earthquake Tuesday Topic: Chile EERI/PEER Reconnaissance Briefing Date: Tuesday, March 30, 2010 Time: 3:00 PM to 5PM

  13. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Kristianto, E-mail: kris@vsi.esdm.go.id

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Centermore » for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.« less

  14. Earthquakes in the Central United States, 1699-2010

    USGS Publications Warehouse

    Dart, Richard L.; Volpi, Christina M.

    2010-01-01

    This publication is an update of an earlier report, U.S. Geological Survey (USGS) Geologic Investigation I-2812 by Wheeler and others (2003), titled ?Earthquakes in the Central United States-1699-2002.? Like the original poster, the center of the updated poster is a map showing the pattern of earthquake locations in the most seismically active part of the central United States. Arrayed around the map are short explanatory texts and graphics, which describe the distribution of historical earthquakes and the effects of the most notable of them. The updated poster contains additional, post 2002, earthquake data. These are 38 earthquakes covering the time interval from January 2003 to June 2010, including the Mount Carmel, Illinois, earthquake of 2008. The USGS Preliminary Determination of Epicenters (PDE) was the source of these additional data. Like the I-2812 poster, this poster was prepared for a nontechnical audience and designed to inform the general public as to the widespread occurrence of felt and damaging earthquakes in the Central United States. Accordingly, the poster should not be used to assess earthquake hazard in small areas or at individual locations.

  15. Geological evaluation of Radarsat data: Plans and preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Z.; Irving, R.E.L.; Thompson, M.D.

    1996-01-01

    Radarsat, the Canadian synthetic aperture radar satellite to be launched in September 1995, is anticipated to become the prime active imaging system for geological mapping of tropical areas and other humid areas. Radarsat will provide adequate spatial resolution, stereo capabilities and relatively low incidence angles to reduce the geometric distortions of geological structures due to layover effects. As part of the Radarsat User Development Program of the Canadian Space Agency, it has been proposed to conduct an evaluation program of the terrain surface mapping capabilities of Radarsat and its application to hydrocarbon exploration, coal development, geological hazard mapping and environmentalmore » monitoring. The evaluation program will be carried out in three test sites: (1) Western Canadian Basin (a mature exploration area in Alberta with a range of geology/topography), (2) Andean Foothills (frontier tropical sedimentary basins in Columbia representing prototype active exploration areas), and (3) Philippine volcanic region (frontier tropical earthquake-prone geohazard area of Philippine wrench fault system on Luzon Island, in a typical structural setting of the sedimentary basins of southeast Asia). The paper will include the project plans, illustrate the structural setting and the relationships between surface and subsurface structures for each of the three test sites, and present a preliminary evaluation of simulated and actual Radarsat data as compared to data from ERS-1, airborne SAR, Landsat Thematic Mapper and SPOT. The preliminary application of Radarsat for exploration will be discussed.« less

  16. Geological evaluation of Radarsat data: Plans and preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Z.; Irving, R.E.L.; Thompson, M.D.

    1996-12-31

    Radarsat, the Canadian synthetic aperture radar satellite to be launched in September 1995, is anticipated to become the prime active imaging system for geological mapping of tropical areas and other humid areas. Radarsat will provide adequate spatial resolution, stereo capabilities and relatively low incidence angles to reduce the geometric distortions of geological structures due to layover effects. As part of the Radarsat User Development Program of the Canadian Space Agency, it has been proposed to conduct an evaluation program of the terrain surface mapping capabilities of Radarsat and its application to hydrocarbon exploration, coal development, geological hazard mapping and environmentalmore » monitoring. The evaluation program will be carried out in three test sites: (1) Western Canadian Basin (a mature exploration area in Alberta with a range of geology/topography), (2) Andean Foothills (frontier tropical sedimentary basins in Columbia representing prototype active exploration areas), and (3) Philippine volcanic region (frontier tropical earthquake-prone geohazard area of Philippine wrench fault system on Luzon Island, in a typical structural setting of the sedimentary basins of southeast Asia). The paper will include the project plans, illustrate the structural setting and the relationships between surface and subsurface structures for each of the three test sites, and present a preliminary evaluation of simulated and actual Radarsat data as compared to data from ERS-1, airborne SAR, Landsat Thematic Mapper and SPOT. The preliminary application of Radarsat for exploration will be discussed.« less

  17. Is earthquake rate in south Iceland modified by seasonal loading?

    NASA Astrophysics Data System (ADS)

    Jonsson, S.; Aoki, Y.; Drouin, V.

    2017-12-01

    Several temporarily varying processes have the potential of modifying the rate of earthquakes in the south Iceland seismic zone, one of the two most active seismic zones in Iceland. These include solid earth tides, seasonal meteorological effects and influence from passing weather systems, and variations in snow and glacier loads. In this study we investigate the influence these processes may have on crustal stresses and stressing rates in the seismic zone and assess whether they appear to be influencing the earthquake rate. While historical earthquakes in the south Iceland have preferentially occurred in early summer, this tendency is less clear for small earthquakes. The local earthquake catalogue (going back to 1991, magnitude of completeness < 1.0) has indeed more earthquakes in summer than in winter. However, this pattern is strongly influenced by aftershock sequences of the largest M6+ earthquakes, which occurred in June 2000 and May 2008. Standard Reasenberg earthquake declustering or more involved model independent stochastic declustering algorithms are not capable of fully eliminating the aftershocks from the catalogue. We therefore inspected the catalogue for the time period before 2000 and it shows limited seasonal tendency in earthquake occurrence. Our preliminary results show no clear correlation between earthquake rates and short-term stressing variations induced from solid earth tides or passing storms. Seasonal meteorological effects also appear to be too small to influence the earthquake activity. Snow and glacier load variations induce significant vertical motions in the area with peak loading occurring in Spring (April-May) and maximum unloading in Fall (Sept.-Oct.). Early summer occurrence of historical earthquakes therefore correlates with early unloading rather than with the peak unloading or unloading rate, which appears to indicate limited influence of this seasonal process on the earthquake activity.

  18. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  19. Source Analysis of Bucaramanga Nest Intermediate-Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Prieto, G. A.; Pedraza, P.; Dionicio, V.; Levander, A.

    2016-12-01

    Intermediate-depth earthquakes are those that occur at depths of 50 to 300 km in subducting lithosphere and can occasionally be destructive. Despite their ubiquity in earthquake catalogs, their physical mechanism remains unclear because ambient temperatures and pressures at such depths are expected to lead to ductile flow, rather than brittle failure, as a response to stress. Intermediate-depth seismicity rates vary substantially worldwide, even within a single subduction zone having highly clustered seismicity in some cases (Vrancea, Hindu-Kush, etc.). One such places in known as the Bucaramanga Nest (BN), one of the highest concentration of intermediate-depth earthquakes in the world. Previous work on these earthquakes has shown 1) Focal mechanisms vary substantially within a very small volume. 2) Radiation efficiency is small for M<5 events. 3) repeating and reverse polarity events are present. 4) Larger events show a complex behavior with two distinct rupture stages. Due to on-going efforts by the Colombian Geological Survey (SGC) to densify the national seismic network, it is now possible to better constrain the rupture behavior of these events. In our work we will present results from focal mechanisms based on waveform inversion as well as polarity and S/P amplitude ratios. These results will be contrasted to the detection and classification of repeating families. For the larger events we will determine source parameters and radiation efficiencies. Preliminary results show that reverse polarity events are present and that two main focal mechanisms, with their corresponding reverse polarity events are dominant. Our results have significant implications in our understanding of intermedaite-depth earthquakes and the stress conditions that are responsible for this unusual cluster of seismicity.

  20. The Lice, Turkey, earthquake of September 6, 1975; a preliminary engineering investigation

    USGS Publications Warehouse

    Yanev, P. I.

    1976-01-01

    The Fifth European Conference on Earthquake Engineering was held on September 22 through 25 in Istanbul, Turkey. The opening speech by the Honorable H. E. Nurettin Ok, Minister of Reconstruction and Resettlement of Turkey, introduced the several hundred delegates to the realities of earthquake hazards in Turkey:

  1. The 7.2 magnitude earthquake, November 1975, Island of Hawaii

    USGS Publications Warehouse

    1976-01-01

    It was centered about 5 km beneath the Kalapana area on the southeastern coast of Hawaii, the largest island of the Hawaiian chain (Fig. 1) and was preceded by numerous foreshocks. The event was accompanied, or followed shortly, by a tsunami, large-scale ground movemtns, hundreds of aftershocks, an eruption in the summit caldera of Kilauea Volcano. The earthquake and the tsunami it generated produced about 4.1 million dollars in property damage, and the tsumani caused two deaths. Although we have some preliminary findings about the cause and effects of the earthquake, detailed scientific investigations will take many more months to complete. This article is condensed from a recent preliminary report (Tillings an others 1976)

  2. Limiting the effects of earthquakes on gravitational-wave interferometers

    USGS Publications Warehouse

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  3. Limiting the effects of earthquakes on gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-02-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  4. New study on the 1941 Gloria Fault earthquake and tsunami

    NASA Astrophysics Data System (ADS)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Batlló, Josep; Lisboa, Filipe; Luis, Joaquim; Maciá, Ramon

    2016-08-01

    The M ˜ 8.3-8.4 25 November 1941 was one of the largest submarine strike-slip earthquakes ever recorded in the Northeast (NE) Atlantic basin. This event occurred along the Eurasia-Nubia plate boundary between the Azores and the Strait of Gibraltar. After the earthquake, the tide stations in the NE Atlantic recorded a small tsunami with maximum amplitudes of 40 cm peak to through in the Azores and Madeira islands. In this study, we present a re-evaluation of the earthquake epicentre location using seismological data not included in previous studies. We invert the tsunami travel times to obtain a preliminary tsunami source location using the backward ray tracing (BRT) technique. We invert the tsunami waveforms to infer the initial sea surface displacement using empirical Green's functions, without prior assumptions about the geometry of the source. The results of the BRT simulation locate the tsunami source quite close to the new epicentre. This fact suggests that the co-seismic deformation of the earthquake induced the tsunami. The waveform inversion of tsunami data favours the conclusion that the earthquake ruptured an approximately 160 km segment of the plate boundary, in the eastern section of the Gloria Fault between -20.249 and -18.630° E. The results presented here contribute to the evaluation of tsunami hazard in the Northeast Atlantic basin.

  5. Combination of High Rate, Real-time GNSS and Accelerometer Observations - Preliminary Results Using a Shake Table and Historic Earthquake Events.

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Passmore, Paul; Zimakov, Leonid; Raczka, Jared

    2014-05-01

    One of the fundamental requirements of an Earthquake Early Warning (EEW) system (and other mission critical applications) is to quickly detect and process the information from the strong motion event, i.e. event detection and location, magnitude estimation, and the peak ground motion estimation at the defined targeted site, thus allowing the civil protection authorities to provide pre-programmed emergency response actions: Slow down or stop rapid transit trains and high-speed trains; shutoff of gas pipelines and chemical facilities; stop elevators at the nearest floor; send alarms to hospitals, schools and other civil institutions. An important question associated with the EEW system is: can we measure displacements in real time with sufficient accuracy? Scientific GNSS networks are moving towards a model of real-time data acquisition, storage integrity, and real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies and other mission critical applications, such as volcano monitoring, building, bridge and dam monitoring systems. REF TEK a Division of Trimble has developed the integrated GNSS/Accelerograph system, model 160-09SG, which consists of REF TEK's fourth generation electronics, a 147-01 high-resolution ANSS Class A accelerometer, and Trimble GNSS receiver and antenna capable of real time, on board Precise Point Positioning (PPP) techniques with satellite clock and orbit corrections delivered to the receiver directly via L-band satellite communications. The test we

  6. Earthquake Source Parameters Inferred from T-Wave Observations

    NASA Astrophysics Data System (ADS)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.

    2004-12-01

    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T

  7. Cell emulation and preliminary results.

    DOT National Transportation Integrated Search

    2016-07-01

    This report details preliminary results of the testing plan implemented by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV battery cells ar...

  8. Preliminary observations from the 3 January 2017, MW 5.6 Manu, Tripura (India) earthquake

    NASA Astrophysics Data System (ADS)

    Debbarma, Jimmi; Martin, Stacey S.; Suresh, G.; Ahsan, Aktarul; Gahalaut, Vineet K.

    2017-10-01

    On 3 January 2017, a MW 5.6 earthquake occurred in Dhalai district in Tripura (India), at 14:39:03 IST (09:09:03 UTC) with an epicentre at 24.018°N ± 4.9 km and 91.964°E ± 4.4 km, and a focal depth of 31 ± 6.0 km. The focal mechanism solution determined after evaluating data from seismological observatories in India indicated a predominantly strike-slip motion on a steeply dipping plane. The estimated focal depth and focal mechanism solution places this earthquake in the Indian plate that lies beneath the overlying Indo-Burmese wedge. As in the 2016 Manipur earthquake, a strong motion record from Shillong, India, appears to suggest site amplification possibly due to topographic effects. In the epicentral region in Tripura, damage assessed from a field survey and from media reports indicated that the macroseismic intensity approached 6-7 EMS with damage also reported in adjacent parts of Bangladesh. A striking feature of this earthquake were the numerous reports of liquefaction that were forthcoming from fluvial locales in the epicentral region in Tripura, and at anomalous distances farther north in Bangladesh. The occurrence of the 2017 Manu earthquake emphasises the hazard posed by intraplate earthquakes in Tripura and in the neighbouring Bengal basin region where records of past earthquakes are scanty or vague, and where the presence of unconsolidated deltaic sediments and poor implementation of building codes pose a significant societal and economic threat during larger earthquakes in the future.

  9. Scenarios for local seismic effects of Tulcea (Romania) crustal earthquakes, preliminary approach for the seismic microzoning of Tulcea city

    NASA Astrophysics Data System (ADS)

    Florin Bǎlan, Å.žTefan; Apostol, Bogdan; Chitea, F.; Anghelache, Mirela Adriana; Cioflan, Carmen O.; Serban, A.

    2010-05-01

    nonlinear variations of shear modulus and damping function with state of strain during the earthquakes are expected in superficial soil deposits. Also, the epicenter distributions, the isobats map and 3D image of focal distribution surface will be presented together with the focal mechanisms of the most significant earthquakes which had affected the zone. All these give us a very complete image of the crustal seismic hazard of the Tulcea zone. This study proposes itself to take in consideration only the local effects of the crustal seismic hazard from Tulcea zone, like a preliminary step for the seismic microzoning of Tulcea city. The latter is a broader research which implies the interdisciplinary work between specialists from different fields of research. Finally, by comparing the seismic microzoning map with the vulnerability distribution mapping for each building type and damage distribution maps, the general aspect of the real earthquake effects over the city is figured out. Acknowledgements: The research was performed with financial support from the CNMP within 31036/ 2007 scientific project.

  10. Seasonal Water Storage, the Resulting Deformation and Stress, and Occurrence of Earthquakes in California

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Burgmann, R.; Fu, Y.; Dutilleul, P.

    2015-12-01

    In California the accumulated winter snow pack in the Sierra Nevada, reservoirs and groundwater water storage in the Central Valley follow an annual periodic cycle and each contribute to the resulting surface deformation, which can be observed using GPS time series. The ongoing drought conditions in the western U.S. amplify the observed uplift signal as the Earth's crust responds to the mass changes associated with the water loss. The near surface hydrological mass loss can result in annual stress changes of ~1kPa at seismogenic depths. Similarly, small static stress perturbations have previously been associated with changes in earthquake activity. Periodicity analysis of earthquake catalog time series suggest that periods of 4-, 6-, 12-, and 14.24-months are statistically significant in regions of California, and provide documentation for the modulation of earthquake populations at periods of natural loading cycles. Knowledge of what governs the timing of earthquakes is essential to understanding the nature of the earthquake cycle. If small static stress changes influence the timing of earthquakes, then one could expect that events will occur more rapidly during periods of greater external load increases. To test this hypothesis we develop a loading model using GPS derived surface water storage for California and calculate the stress change at seismogenic depths for different faulting geometries. We then evaluate the degree of correlation between the stress models and the seismicity taking into consideration the variable amplitude of stress cycles, the orientation of transient load stress with respect to the background stress field, and the geometry of active faults revealed by focal mechanisms.

  11. Deep conductivity characteristics and preliminary acquaintance of the Lushan earthquake, east edge of Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wang, X.; Wang, Y.; Min, G.

    2013-12-01

    1. Introduction The Longmenshan foreland basin developed as a flexural foredeep at western Yangtze Platfrom during the Late Triassic Indosinian orogeny with strong tectonic activity. 2008 Wenchuan earthquake (Mw7.9) happened along the middle segment of the Longmenshan overthrusting belt. 2013 Lushan earthquake (Mw6.6) occurred along the south segment of Longmenshan tectonic zone which belongs to seismic gap during the Wenchuan earthquake. The recent researches ( Yan Zhan etc., 2013; Zhuqi Zhang etc., 2013; Xiwei Xu etc., 2013) indicate that the Lushan earthquake may closely related to the activity of Longmenshan ';s piedmont fault zone while the seismogenic fault and other issues are still controversial. In order to provide an electromagnetic basis in deep earthquake area structure, we detect magnetotelluric(MT) sounding in Lushan earthquake zone to obtain the electrical structure characteristics of Longmenshan's south segment. 2. Data acquisition and processing To research the deep electrical structure of earthquake zone assigning a MT profile through the epicenter which transects the Sichuan platform concave, Longmenshan tectonic belt and Songpan-Ganzi fold system. To analysis the MT data, we carried out the impedance tensor decompositionincluding the swift rotation and bahr method which based on the phase deviation. Ultimately, NLCG method was adopted to inverse MT data. 3. Conclusion The result of MT data discloses deep electrical structure feature of the southern section of Longmenshan overthrusting belt: the burial depth of conductive layer in the upper crust of Songpan-Ganzi plot is larger than that of middle-northern part; there is no conductive zone in Longmenshan high resistance body which connect with the high conductivity layer in the crust of the western section of Songpan-Ganzi plot; there exists a relatively large range of conductive zone in the basin to Longmenshan tectonic belt, which is mostly related to the piedmont of concealed fault zone and

  12. The HayWired Earthquake Scenario—Earthquake Hazards

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  13. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain

  14. Disaster waste characteristics and radiation distribution as a result of the Great East Japan Earthquake.

    PubMed

    Shibata, Tomoyuki; Solo-Gabriele, Helena; Hata, Toshimitsu

    2012-04-03

    The compounded impacts of the catastrophes that resulted from the Great East Japan Earthquake have emphasized the need to develop strategies to respond to multiple types and sources of contamination. In Japan, earthquake and tsunami-generated waste were found to have elevated levels of metals/metalloids (e.g., mercury, arsenic, and lead) with separation and sorting more difficult for tsunami-generated waste as opposed to earthquake-generated waste. Radiation contamination superimposed on these disaster wastes has made it particularly difficult to manage the ultimate disposal resulting in delays in waste management. Work is needed to develop policies a priori for handling wastes from combined catastrophes such as those recently observed in Japan.

  15. Development of a global slope dataset for estimation of landslide occurrence resulting from earthquakes

    USGS Publications Warehouse

    Verdin, Kristine L.; Godt, Jonathan W.; Funk, Christopher C.; Pedreros, Diego; Worstell, Bruce; Verdin, James

    2007-01-01

    Landslides resulting from earthquakes can cause widespread loss of life and damage to critical infrastructure. The U.S. Geological Survey (USGS) has developed an alarm system, PAGER (Prompt Assessment of Global Earthquakes for Response), that aims to provide timely information to emergency relief organizations on the impact of earthquakes. Landslides are responsible for many of the damaging effects following large earthquakes in mountainous regions, and thus data defining the topographic relief and slope are critical to the PAGER system. A new global topographic dataset was developed to aid in rapidly estimating landslide potential following large earthquakes. We used the remotely-sensed elevation data collected as part of the Shuttle Radar Topography Mission (SRTM) to generate a slope dataset with nearly global coverage. Slopes from the SRTM data, computed at 3-arc-second resolution, were summarized at 30-arc-second resolution, along with statistics developed to describe the distribution of slope within each 30-arc-second pixel. Because there are many small areas lacking SRTM data and the northern limit of the SRTM mission was lat 60?N., statistical methods referencing other elevation data were used to fill the voids within the dataset and to extrapolate the data north of 60?. The dataset will be used in the PAGER system to rapidly assess the susceptibility of areas to landsliding following large earthquakes.

  16. 9.4T Human MRI: Preliminary Results

    PubMed Central

    Vaughan, Thomas; DelaBarre, Lance; Snyder, Carl; Tian, Jinfeng; Akgun, Can; Shrivastava, Devashish; Liu, Wanzahn; Olson, Chris; Adriany, Gregor; Strupp, John; Andersen, Peter; Gopinath, Anand; van de Moortele, Pierre-Francois; Garwood, Michael; Ugurbil, Kamil

    2014-01-01

    This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T. PMID:17075852

  17. Geophysical setting of the February 21, 2008 Mw 6 Wells earthquake, Nevada, and implications for earthquake hazards

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Bouligand, C.

    2011-01-01

    We utilize gravity and magnetic methods to investigate the regional geophysical setting of the Wells earthquake. In particular, we delineate major crustal structures that may have played a role in the location of the earthquake and discuss the geometry of a nearby sedimentary basin that may have contributed to observed ground shaking. The February 21, 2008 Mw 6.0 Wells earthquake, centered about 10 km northeast of Wells, Nevada, caused considerable damage to local buildings, especially in the historic old town area. The earthquake occurred on a previously unmapped normal fault and preliminary relocated events indicate a fault plane dipping about 55 degrees to the southeast. The epicenter lies near the intersection of major Basin and Range normal faults along the Ruby Mountains and Snake Mountains, and strike-slip faults in the southern Snake Mountains. Regionally, the Wells earthquake epicenter is aligned with a crustal-scale boundary along the edge of a basement gravity high that correlates to the Ruby Mountains fault zone. The Wells earthquake also occurred near a geophysically defined strike-slip fault that offsets buried plutonic rocks by about 30 km. In addition, a new depth-to-basement map, derived from the inversion of gravity data, indicates that the Wells earthquake and most of its associated aftershock sequence lie below a small oval- to rhomboid-shaped basin, that reaches a depth of about 2 km. Although the basin is of limited areal extent, it could have contributed to increased ground shaking in the vicinity of the city of Wells, Nevada, due to basin amplification of seismic waves.

  18. Electromagnetic (EM) earthquake precursor transmission and detection regarding experimental field and laboratory results.

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth B., II; Saxton, Patrick

    2016-04-01

    increased, variable geometry. The blocks were all successfully fractured with expansionary cement netting consecutive and identical EM emission results very similar to the Timpson pre-earthquake results. Cored granite made up the largest amount of rock test types, due to the large volume occurring as basement rock. EM transmission in the ELF range ascending from depth was theorized to follow paths of least resistance via faults and other fracture spaces than actual penetration through solid rock, which may attenuate both signal strength and frequency response. Fault geometry, fracture orientation/termination, and subsurface reflection may make epicenter determinations problematic; however, EM emissions will continually occur and be detectable with further signal analyses in refining epicentral locations.

  19. Earthquake Early Warning: User Education and Designing Effective Messages

    NASA Astrophysics Data System (ADS)

    Burkett, E. R.; Sellnow, D. D.; Jones, L.; Sellnow, T. L.

    2014-12-01

    The U.S. Geological Survey (USGS) and partners are transitioning from test-user trials of a demonstration earthquake early warning system (ShakeAlert) to deciding and preparing how to implement the release of earthquake early warning information, alert messages, and products to the public and other stakeholders. An earthquake early warning system uses seismic station networks to rapidly gather information about an occurring earthquake and send notifications to user devices ahead of the arrival of potentially damaging ground shaking at their locations. Earthquake early warning alerts can thereby allow time for actions to protect lives and property before arrival of damaging shaking, if users are properly educated on how to use and react to such notifications. A collaboration team of risk communications researchers and earth scientists is researching the effectiveness of a chosen subset of potential earthquake early warning interface designs and messages, which could be displayed on a device such as a smartphone. Preliminary results indicate, for instance, that users prefer alerts that include 1) a map to relate their location to the earthquake and 2) instructions for what to do in response to the expected level of shaking. A number of important factors must be considered to design a message that will promote appropriate self-protective behavior. While users prefer to see a map, how much information can be processed in limited time? Are graphical representations of wavefronts helpful or confusing? The most important factor to promote a helpful response is the predicted earthquake intensity, or how strong the expected shaking will be at the user's location. Unlike Japanese users of early warning, few Californians are familiar with the earthquake intensity scale, so we are exploring how differentiating instructions between intensity levels (e.g., "Be aware" for lower shaking levels and "Drop, cover, hold on" at high levels) can be paired with self-directed supplemental

  20. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    USGS Publications Warehouse

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  1. Journal of the Chinese Institute of Engineers. Special Issue: Commemoration of Chi-Chi Earthquake (II)

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Contents include the following: Deep Electromagnetic Images of Seismogenic Zone of the Chi-Chi (Taiwan) Earthquake; New Techniques for Stress-Forecasting Earthquakes; Aspects of Characteristics of Near-Fault Ground Motions of the 1999 Chi-Chi (Taiwan) Earthquake; Liquefaction Damage and Related Remediation in Wufeng after the Chi-Chi Earthquake; Fines Content Effects on Liquefaction Potential Evaluation for Sites Liquefied during Chi-Chi Earthquake 1999; Damage Investigation and Liquefaction Potential Analysis of Gravelly Soil; Dynamic Characteristics of Soils in Yuan-Lin Liquefaction Area; A Preliminary Study of Earthquake Building Damage and Life Loss Due to the Chi-Chi Earthquake; Statistical Analyses of Relation between Mortality and Building Type in the 1999 Chi-Chi Earthquake; Development of an After Earthquake Disaster Shelter Evaluation Model; Posttraumatic Stress Reactions in Children and Adolescents One Year after the 1999 Taiwan Chi-Chi Earthquake; Changes or Not is the Question: the Meaning of Posttraumatic Stress Reactions One Year after the Taiwan Chi-Chi Earthquake.

  2. Preliminary Result of Earthquake Source Parameters the Mw 3.4 at 23:22:47 IWST, August 21, 2004, Centre Java, Indonesia Based on MERAMEX Project

    NASA Astrophysics Data System (ADS)

    Laksono, Y. A.; Brotopuspito, K. S.; Suryanto, W.; Widodo; Wardah, R. A.; Rudianto, I.

    2018-03-01

    In order to study the structure subsurface at Merapi Lawu anomaly (MLA) using forward modelling or full waveform inversion, it needs a good earthquake source parameters. The best result source parameter comes from seismogram with high signal to noise ratio (SNR). Beside that the source must be near the MLA location and the stations that used as parameters must be outside from MLA in order to avoid anomaly. At first the seismograms are processed by software SEISAN v10 using a few stations from MERAMEX project. After we found the hypocentre that match the criterion we fine-tuned the source parameters using more stations. Based on seismogram from 21 stations, it is obtained the source parameters as follows: the event is at August, 21 2004, on 23:22:47 Indonesia western standard time (IWST), epicentre coordinate -7.80°S, 101.34°E, hypocentre 47.3 km, dominant frequency f0 = 3.0 Hz, the earthquake magnitude Mw = 3.4.

  3. On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Cecioni, Claudia; Bellotti, Giorgio

    2018-01-01

    Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.

  4. On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Cecioni, Claudia; Bellotti, Giorgio

    2018-04-01

    Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.

  5. Tsunami hazard assessment at Port Alberni, BC, Canada: preliminary model results

    NASA Astrophysics Data System (ADS)

    Grilli, S. T.; Insua, T. L.; Grilli, A. R.; Douglas, K. L.; Shelby, M. R.; Wang, K.; Gao, D.

    2016-12-01

    Located in the heart of Vancouver Island, BC, Port Alberni has a well-known history of tsunamis. Many of the Nuu-Chah-Nulth First Nations share oral stories about a strong fight between a thunderbird and a whale that caused big waves in a winter night, a story that is compatible with the recently recognized great Cascadia tsunami in January, 1700. Port Alberni, with a total population of approximately 20,000 people, lies beside the Somass River, at the very end of Barkley Sound Inlet. The narrow canal connecting this town to the Pacific Ocean runs for more than 64 km ( 40 miles) between steep mountains, providing an ideal setting for the amplification of tsunami waves through funnelling effects. The devastating effects of tsunamis are still fresh in residents' memories from the impact of the 1964 Alaska tsunami that caused serious damage to the city. In June 2016, Emergency Management BC ran a coastal exercise in Port Alberni, simulating the response to an earthquake and a tsunami. During three days, the emergency teams in the City of Port Alberni practiced and learned from the experience. Ocean Networks Canada contributed to this exercise with the development of preliminary simulations of tsunami impact on the city from a buried rupture of the Cascadia Subduction Zone, including the Explorer segment. Wave propagation was simulated with the long-wave model FUNWAVE-TVD. Preliminary results indicate a strong amplification of tsunami waves in the Port Alberni area. The inundation zone in Port Alberni had a footprint similar to that of the 1700 Cascadia and 1964 Alaska tsunamis, inundating the area surrounding the Somass river and preferentially following the Kitsuksis and Roger Creek river margins into the city. Several other tsunami source scenarios, including splay faulting and trench-breaching ruptures are currently being modeled for the city of Port Alberni following a similar approach. These results will be presented at the conference.

  6. Earthquake number forecasts testing

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  7. Increasing seismicity in the U. S. midcontinent: Implications for earthquake hazard

    USGS Publications Warehouse

    Ellsworth, William L.; Llenos, Andrea L.; McGarr, Arthur F.; Michael, Andrew J.; Rubinstein, Justin L.; Mueller, Charles S.; Petersen, Mark D.; Calais, Eric

    2015-01-01

    Earthquake activity in parts of the central United States has increased dramatically in recent years. The space-time distribution of the increased seismicity, as well as numerous published case studies, indicates that the increase is of anthropogenic origin, principally driven by injection of wastewater coproduced with oil and gas from tight formations. Enhanced oil recovery and long-term production also contribute to seismicity at a few locations. Preliminary hazard models indicate that areas experiencing the highest rate of earthquakes in 2014 have a short-term (one-year) hazard comparable to or higher than the hazard in the source region of tectonic earthquakes in the New Madrid and Charleston seismic zones.

  8. Site characterization of the Romanian Seismic Network stations: a national initiative and its first preliminary results

    NASA Astrophysics Data System (ADS)

    Grecu, Bogdan; Zahria, Bogdan; Manea, Elena; Neagoe, Cristian; Borleanu, Felix; Diaconescu, Mihai; Constantinescu, Eduard; Bala, Andrei

    2017-04-01

    The seismic activity in Romania is dominated by the intermediate-depth earthquakes occurring in Vrancea region, although weak to moderate crustal earthquakes are produced regularly in different areas of the country. The National Institute for Earth Physics (NIEP) built in the last years an impressive infrastructure for monitoring this activity, known as the Romanian Seismic Network (RSN). At present, RSN consists of 122 seismic stations, of which 70 have broadband velocity sensors and 42 short period sensors. One hundred and eleven stations out of 122 have accelerometer sensors collocated with velocity sensors and only 10 stations have only accelerometers. All the stations record continuously the ground motion and the data are transmitted in real-time to the Romanian National Data Center (RoNDC), in Magurele. Last year, NIEP has started a national project that addresses the characterization of all real-time seismic stations that constitute the RSN. We present here the steps that were undertaken and the preliminary results obtained since the beginning the project. The first two activities consisted of collecting all the existent technical and geological data, with emphasize on the latter. Then, we performed station noise investigations and analyses in order to characterize the noise level and estimate the resonances of the sites. The computed H/V ratios showed clear resonant peaks at different frequencies which correlate relatively well with the thickness of the sedimentary package beneath the stations. The polarization analysis of the H/V ratios indicates for some stations a strong directivity of the resonance peak which suggests possible topographic effects at the stations. At the same time, special attention was given to the estimation of the site amplification from earthquake data. The spectral ratios obtained from the analysis of more than 50 earthquakes with magnitudes (Mw) larger than 4.1 are characterized by similar resonance peaks as those obtained from

  9. Measuring the size of an earthquake

    USGS Publications Warehouse

    Spence, William; Sipkin, Stuart A.; Choy, George L.

    1989-01-01

    Today, state-of-the-art seismic systems transmit data from the seismograph via telephone line and satellite directly to a central digital computer. A preliminary location, depth-of-focus, and magnitude can now be obtained within minutes of onset of an earthquake.  The only limiting factor is how long the seismic waves take to travel from the epicenter to the stations--usually less than 10 minutes.

  10. Relationship between catchment events (earthquake and heavy rain) and sediment core analysis result in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Ying; Lin, Jiun-Chuan

    2015-04-01

    Lake sediments contains material from the catchment. In those sediments, there are some features which can indicate characteristic or status of the catchment. These features were formed by different mechanisms, including some events like earthquakes or heavy rain, which are very common in Taiwan. By analyzing and discussing features of sediments there is a chance to identify historical events and rebuild catchment history. In this study, we compare features of sediment core ( including density, mineral grain size, whole grain size, and biogenic silica content) and earthquake, precipitation records. Sediment cores are collected from Emerald peak lake (24.514980, 121.605844; 77.5, 77.2, 64cm depth), Liyutan lake (23.959878, 120.996585; 43.2, 78.1 cm depth), Sun Moon Lake (23.847043, 120.909869; 181 cm depth), and Dongyuan lake (22.205742, 120.854984; 45.1, 44.2cm depth) in 2014. We assume that there are regular material and organic output in catchments. And rain will provide impetus to move material into lakes. The greater the rain is the larger the material can move. So, if there is a heavy rainfall event, grain size of lake sediment may increase. However, when earthquakes happen, it will produce more material which have lower organic composition than ordinary. So we suggest that after earthquakes there will be more material stored in catchment than often. And rainfall event provides power to move material into lakes, cause more sediment and mineral content higher than usual. Comparing with earthquake record(from 1949, by USGS) and precipitation record(from1940, by Central Weather Bureau,Taiwan), there were few earthquakes which happened near lakes and scale were more than 7 ML. There were 28 rainfall events near Emerald peak lake; 32 near Liyutan lake and Sun Moon Lake; 58 near Dongyuan lake ( rainfall event: >250 mm/day ). In sediment analytical results, ratio of whole and mineral grain size indeed have similar trends with earthquake record. However, rainfall

  11. Seismogenic Fault Geometry of 2010 Mw 7.1 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Kuo, Y.; Ku, C.; Taylor, F. W.; Huang, B.; Chen, Y.; Chao, W.; Huang, H.; Kuo, Y.; Wu, Y.; Suppe, J.

    2010-12-01

    The Solomon Islands is located in southwestern Pacific, where the Indo-Australian Plate is subducting northeastward beneath the Pacific Plate. Due to subduction of rugged seafloor topography, including seamounts, the seismic activity and tectonic behavior may be complicated. Seismicity in this region was anomalously low until 2007 when a megathrust rupture (Mw 8.1) occurred. More recently, on 3 January 2010, a Mw7.1 earthquake occurred beneath the extreme outer forearc next to the trench. It came with one foreshock (Mw 6.6, 50 minutes ahead) and two large aftershocks (Mw 6.8 and 6.0) greater than magnitude 6 within a week. It is interesting to note that these four focal mechanisms are very much similar and appear to have occurred along the interplate thrust zone between the Indo-Australian plate and Solomon Islands forearc. This Earthquake nucleated approximately 50 km to the southeast of the M8.1 Earthquake occurring in April of 2007, which is located to the other side of Rendova Island. Because a tsunami followed the 2010 earthquake, it is likely that submarine surface deformation accompanied the event. By the results of D-InSAR on ALOS and ERS, plus limited points of ground displacement from GPS and strong motion seismometers, the continuous ground displacement field is constructed and normalized. Our preliminary result shows the ground movement in the Rendova Island can reach tens of centimeters, implying shallow earthquake source consistent with the suggestion by triggering tsunami. Besides, the earthquake sequence retrieved from our local seismometer observation network allows us to further define underground fault geometry. The spatial distribution of the epicenter also concludes the seamount located in the middle divides two seismogenic asperities which generate 2007 and 2010 earthquakes respectively.

  12. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    USGS Publications Warehouse

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  13. Detection and location of earthquakes along the west coast of Chile: Examining seismicity in the 2010 M 8.8 Maule and 2014 M 8.1 Iquique earthquake rupture zones.

    NASA Astrophysics Data System (ADS)

    Diniakos, R. S.; Bilek, S. L.; Rowe, C. A.; Draganov, D.

    2015-12-01

    The subduction of the Nazca Plate beneath the South American Plate along Chile has led to some of the largest earthquakes recorded on modern seismic instrumentation. These include the 1960 M 9.5 Valdivia, 2010 M 8.8 Maule, and 2014 M 8.1 Iquique earthquakes. Slip heterogeneity for both the 2010 and 2014 earthquakes has been noted in various studies. In order to explore both spatial variations in the continued aftershocks of the 2010 event, and also seismicity to the north along Iquique prior to the 2014 earthquake relative to the high slip regions, we are expanding the catalog of small earthquakes using template matching algorithms to find other small earthquakes in the region. We start with an earthquake catalog developed from regional and local array data; these events provide the templates used to search through waveform data from a temporary seismic array in Malargue, Argentina, located ~300 km west of the Maule region, which operated in 2012. Our template events are first identified on the array stations, and we use a 10-s window around the P-wave arrival as the template. We then use a waveform cross-correlation algorithm to compare the template with day-long seismograms from Malargue stations. The newly detected events are then located using the HYPOINVERSE2000 program. Initial results for 103 templates on 19 of the array stations show that we find 275 new events ,with an average of three new events for each template correlated. For these preliminary results, events from the Maule region appear to provide the most new detections, with an average of ten new events. We will present our locations for the detected events and we will compare them to patterns of high slip along the 2010 rupture zone of the M 8.8 Maule earthquake and the 2014 M 8.1 Iquique event.

  14. A teleseismic study of the 2002 Denali fault, Alaska, earthquake and implications for rapid strong-motion estimation

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Wald, D.J.

    2004-01-01

    Slip histories for the 2002 M7.9 Denali fault, Alaska, earthquake are derived rapidly from global teleseismic waveform data. In phases, three models improve matching waveform data and recovery of rupture details. In the first model (Phase I), analogous to an automated solution, a simple fault plane is fixed based on the preliminary Harvard Centroid Moment Tensor mechanism and the epicenter provided by the Preliminary Determination of Epicenters. This model is then updated (Phase II) by implementing a more realistic fault geometry inferred from Digital Elevation Model topography and further (Phase III) by using the calibrated P-wave and SH-wave arrival times derived from modeling of the nearby 2002 M6.7 Nenana Mountain earthquake. These models are used to predict the peak ground velocity and the shaking intensity field in the fault vicinity. The procedure to estimate local strong motion could be automated and used for global real-time earthquake shaking and damage assessment. ?? 2004, Earthquake Engineering Research Institute.

  15. Magnetotelluric investigation across the Agri Valley: preliminary results.

    NASA Astrophysics Data System (ADS)

    Balasco, Marianna; Romano, Gerardo; Siniscalchi, Agata; Alfredo Stabile, Tony

    2017-04-01

    The Agri Valley is an axial zone of the Southern Apennines thrust belt chain with a strong seismogenic potential where two important energy technologies responsible for inducing/triggering seismicity are active: (1) the disposal at the Costa Molina 2 injection well of the wastewater produced during the exploitation of the biggest onshore oil field in west Europe (27 wells producing more than 80,000 barrels of crude oil per day), managed by the Eni S.p.A., and (2) the water loading and unloading operations in the Pertusillo artificial reservoir. It is recognized the possibility that the fluctuation of the water level inside the reservoir, due to the hydrological cycle for example, produces pressure perturbations at the bottom of reservoir, causing induced seismicity. Furthermore it is even more known the role of fluids in the rupture processes which could cause an increase of pore pressure specially at high rate of injection fluids and/or for the presence of weakening of preexisting faults. With the aim to better characterize and understand the physical processes involved in the observed induced/triggered seismicity, in 2016 a broadband seismic network, covering an area of about 20 km x 20 km nearby the Pertusillo Dam and Costa Molina2 well has been installed in the framework of SIR-MIUR project INSIEME (INduced Seismicity in Italy: Estimation, Monitoring, and sEismic risk mitigation) and a MagnetoTelluric (MT) survey has been performed. The MT investigation consists of 25 soundings aligned along 30 km profile oriented at about N40 direction, orthogonal with the strike of the major and noticeable geological structures and crossing both of the source that may induce/trigger seismicity. In this work, we present the preliminary 2D resistivity model which provides useful deep geophysical information for understanding the geological and structural setting of the Agri Valley. Moreover, the comparison of the resistivity model with the earthquake location as inferred from

  16. On to what extent stresses resulting from the earth's surface trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2009-12-01

    The debate on static versus dynamic earthquake triggering mainly concentrates on endogenous crustal forces, including fault-fault interactions or seismic wave transients of remote earthquakes. Incomprehensibly, earthquake triggering due to surface processes, however, still receives little scientific attention. This presentation continues a discussion on the hypothesis of how “tiny” stresses stemming from the earth's surface can trigger major earthquakes, such as for example, China's M7.9 Wenchuan earthquake of May 2008. This seismic event is thought to be triggered by up to 1.1 billion metric tons of water (~130m) that accumulated in the Minjiang River Valley at the eastern margin of the Longmen Shan. Specifically, the water level rose by ~80m (static), with additional seasonal water level changes of ~50m (dynamic). Two and a half years prior to mainshock, static and dynamic Coulomb failure stresses were induced on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses were equivalent to levels of daily tides and perturbed a fault area measuring 416+/-96km^2. The mainshock ruptured after 2.5 years when only the static stressing regime was predominant and the transient stressing (seasonal water level) was infinitesimal small. The short triggering delay of about 2 years suggests that the Beichuan fault might have been near the end of its seismic cycle, which may also confirm what previous geological findings have indicated. This presentation shows on to what extend the static and 1-year periodic triggering stress perturbations a) accounted for equivalent tectonic loading, given a 4-10kyr earthquake cycle and b) altered the background seismicity beneath the valley, i.e., daily event rate and earthquake size distribution.

  17. Measuring the size of an earthquake

    USGS Publications Warehouse

    Spence, W.; Sipkin, S.A.; Choy, G.L.

    1989-01-01

    Today, state-of-the-art seismic systems transmit data from the seismograph via telephone line and satellite directly to a central digital computer. A preliminary location, depth-of-focus, and magntidue can now be obtained within minutes of the onset of an earthquake. The only limiting factor is how long the seismic wave stake to travel from the epicenter to the stations-usually less than 10 minutes. 

  18. Near Real-Time Earthquake Exposure and Damage Assessment: An Example from Turkey

    NASA Astrophysics Data System (ADS)

    Kamer, Yavor; Çomoǧlu, Mustafa; Erdik, Mustafa

    2014-05-01

    Confined by infamous strike-slip North Anatolian Fault from the north and by the Hellenic subduction trench from the south Turkey is one of the most seismically active countries in Europe. Due this increased exposure and the fragility of the building stock Turkey is among the top countries exposed to earthquake hazard in terms of mortality and economic losses. In this study we focus recent and ongoing efforts to mitigate the earthquake risk in near real-time. We present actual results of recent earthquakes, such as the M6 event off-shore Antalya which occurred on 28 December 2013. Starting at the moment of detection, we obtain a preliminary ground motion intensity distribution based on epicenter and magnitude. Our real-time application is further enhanced by the integration of the SeisComp3 ground motion parameter estimation tool with the Earthquake Loss Estimation Routine (ELER). SeisComp3 provides the online station parameters which are then automatically incorporated into the ShakeMaps produced by ELER. The resulting ground motion distributions are used together with the building inventory to calculate expected number of buildings in various damage states. All these analysis are conducted in an automated fashion and are communicated within a few minutes of a triggering event. In our efforts to disseminate earthquake information to the general public we make extensive use of social networks such as Tweeter and collaborate with mobile phone operators.

  19. Modeling the Interaction between Fluid Pressure and Faulting in an Earthquake Swarm at Long Valley Caldera

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2016-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS

  20. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    NASA Astrophysics Data System (ADS)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future

  1. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth

    USGS Publications Warehouse

    Sato, H.P.; Harp, E.L.

    2009-01-01

    The 12 May 2008 M7.9 Wenchuan earthquake in the People's Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool. ?? 2009 Springer-Verlag.

  2. Rare normal faulting earthquake induced by subduction megaquake: example from 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.

    2012-04-01

    A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m

  3. TEDESE project: preliminary results

    NASA Astrophysics Data System (ADS)

    Buforn, E.; Martín Dávila, J.; Bock, G.; Pazos, A.; Udías, A.; Hanka, H.; Gárate, J.; Perez Peña, A.

    2003-04-01

    The TEDESE (Terremotos y Deformación Cortical en el Sur de España) project is a joint project of the Universidad Complutense de Madrid (UCM) and Real Instituto y Observatorio de la Armada de San Fernando, Cádiz (ROA) supported by the Spanish Ministerio de Ciencia y Tecnología with the participation of the GeoforschungZentrum, Potsdam (GFZ). The project started on January 2001 and it will extend till December 2003. As part of this project a temporal network of 10 broad-band seismological stations, which will complete those already existing in the zone, have been installed for a period of 20 months (October 01-June 03) in southern Spain and northern Africa. This temporary net has recorded, till November 2002, more than 760 regional earthquakes, with magnitudes between 1.7 and 5.1. We have studied in detail two shallow events occurred in Gergal (Almería, SE Spain, 04-02- 02, M=5.0) and Bullas (Murcia, SE Span, 06-08-02, M=4.8), its aftershocks series and two intermediate depth (h=90km) earthquakes located in Málaga (Spain, M=4.5). GPS time series, from permanent GPS stations deployed at the region by ROA and other institutions, have been produced and velocity vectors have been derived. GPS data coming from previous periodic field campaigns carried out in the region by ROA since 1996 are being reprocessed, and a new GPS campaing is planned for June 2003.

  4. Prospective Tests of Southern California Earthquake Forecasts

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.; Kagan, Y. Y.; Helmstetter, A.; Wiemer, S.; Field, N.

    2004-12-01

    We are testing earthquake forecast models prospectively using likelihood ratios. Several investigators have developed such models as part of the Southern California Earthquake Center's project called Regional Earthquake Likelihood Models (RELM). Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. Here we describe the testing procedure and present preliminary results. Forecasts are expressed as the yearly rate of earthquakes within pre-specified bins of longitude, latitude, magnitude, and focal mechanism parameters. We test models against each other in pairs, which requires that both forecasts in a pair be defined over the same set of bins. For this reason we specify a standard "menu" of bins and ground rules to guide forecasters in using common descriptions. One menu category includes five-year forecasts of magnitude 5.0 and larger. Contributors will be requested to submit forecasts in the form of a vector of yearly earthquake rates on a 0.1 degree grid at the beginning of the test. Focal mechanism forecasts, when available, are also archived and used in the tests. Interim progress will be evaluated yearly, but final conclusions would be made on the basis of cumulative five-year performance. The second category includes forecasts of earthquakes above magnitude 4.0 on a 0.1 degree grid, evaluated and renewed daily. Final evaluation would be based on cumulative performance over five years. Other types of forecasts with different magnitude, space, and time sampling are welcome and will be tested against other models with shared characteristics. Tests are based on the log likelihood scores derived from the probability that future earthquakes would occur where they do if a given forecast were true [Kagan and Jackson, J. Geophys. Res.,100, 3,943-3,959, 1995]. For each pair of forecasts, we compute alpha, the probability that the first would be wrongly rejected in favor of the second, and beta, the probability

  5. Dynamic Simulation of the 2011 M9.0 Tohoku Earthquake with Geometric Complexity on a Rate- and State-dependent Subduction Plane

    NASA Astrophysics Data System (ADS)

    Luo, B.; Duan, B.

    2015-12-01

    The Mw 9.0 Tohoku megathrust earthquake on 11 March 2011 is a great surprise to the scientific community due to its unexpected occurrence on the subduction zone of Japan Trench where earthquakes of magnitude ~7 to 8 are expected based on historical records. Slip distribution and kinematic slip history inverted from seismic data, GPS and tsunami recordings reveal two major aspects of this big event: a strong asperity near the hypocenter and large slip near the trench. To investigate physical conditions of these two aspects, we perform dynamic rupture simulations on a shallow-dipping rate- and state-dependent subduction plane with topographic relief. Although existence of a subducted seamount just up-dip of the hypocenter is still an open question, high Vp anomalies [Zhao et al., 2011] and low Vp/Vs anomalies [Yamamoto et al., 2014] there strongly suggest some kind of topographic relief exists there. We explicitly incorporate a subducted seamount on the subduction surface into our models. Our preliminary results show that the subducted seamount play a significant role in dynamic rupture propagation due to the alteration of the stress state around it. We find that a subducted seamount can act as a strong barrier to many earthquakes, but its ultimate failure after some earthquake cycles results in giant earthquakes. Its failure gives rise to large stress drop, resulting in a strong asperity in slip distribution as revealed in kinematic inversions. Our preliminary results also suggest that the rate- and state- friction law plays an important role in rupture propagation of geometrically complex faults. Although rate-strengthening behavior near the trench impedes rupture propagation, an energetic rupture can break such a barrier and manage to reach the trench, resulting in significant uplift at seafloor and hence devastating tsunami to human society.

  6. Connecting slow earthquakes to huge earthquakes.

    PubMed

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  7. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  8. Earthquake Early Warning in Japan - Result of recent two years -

    NASA Astrophysics Data System (ADS)

    Shimoyama, T.; Doi, K.; Kiyomoto, M.; Hoshiba, M.

    2009-12-01

    Japan Meteorological Agency(JMA) started to provide Earthquake Early Warning(EEW) to the general public in October 2007. It was followed by provision of EEW to a limited number of users who understand the technical limit of EEW and can utilize it for automatic control from August 2006. Earthquake Early Warning in Japan definitely means information of estimated amplitude and arrival time of a strong ground motion after fault rupture occurred. In other words, the EEW provided by JMA is defined as a forecast of a strong ground motion before the strong motion arrival. EEW of JMA is to enable advance countermeasures to disasters caused by strong ground motions with providing a warning message of anticipating strong ground motion before the S wave arrival. However, due to its very short available time period, there should need some measures and ideas to provide rapidly EEW and utilize it properly. - EEW is issued to general public when the maximum seismic intensity 5 lower (JMA scale) or greater is expected. - EEW message contains origin time, epicentral region name, and names of areas (unit is about 1/3 to 1/4 of one prefecture) where seismic intensity 4 or greater is expected. Expected arrival time is not included because it differs substantially even in one unit area. - EEW is to be broadcast through the broadcasting media(TV, radio and City Administrative Disaster Management Radio), and is delivered to cellular phones through cell broadcast system. For those who would like to know the more precise estimation and smaller earthquake information at their point of their properties, JMA allows designated private companies to provide forecast of strong ground motion, in which the estimation of a seismic intensity as well as arrival time of S-wave are contained, at arbitrary places under the JMA’s technical assurance. From October, 2007 to August, 2009, JMA issued 11 warnings to general public expecting seismic intensity “5 lower” or greater, including M=7.2 inland

  9. Time-Varying Upper-Plate Deformation during the Megathrust Subduction Earthquake Cycle

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.; Govers, Rob; Herman, Matthew

    2015-04-01

    loading times and rates with a viscously relaxed regime at depths greater than 40 km. Analyses of our preliminary model results lead to the following: 1. Co-seismic stress transfer from the unloading elastic layer (shallow) into an elastically loading visco-elastic layer (deeper) - extends ~ 100 km inboard of locked zone. This stress transfer affects both coseismic and post-seismic surface displacements. 2. Post-seismic response of upper plate involves seaward motion for initial 10-20 years (~ 2 Maxwell times) after EQ. This occurs in spite of there being no slip on locked plate boundary - i.e. this is not plate boundary after-slip but rather is a consequence of stress relaxation in co-seismically loaded visco-elastic layer. However standard inversions of the surface displacement field would indicate significant after-slip along the locked plate interface. 3. By approximately 80 years (8 Maxwell times) system has returned to simple linear displacement pattern - the expected behavior for a shortening elastic beam. Prior to that time, the surface (observable) displacement pattern changes substantially over time and would result in an apparent temporal variation in coupling - from near-zero coupling to fully locked over ~ 80 years post-earthquake. These preliminary results indicate that care is needed in interpreting observed surface displacement fields from GPS, InSAR, etc. during the interseismic period. temporal variations in crustal deformation observed in regions such as the recent Tohoku, Maule, and Iquique megathrust events which are ascribed to fault plane after-slip may in fact reflect processes associated with re-equilibration of the visco-elastic subduction system.

  10. Typhoon-driven landsliding induces earthquakes: example of the 2009 Morakot typhoon

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Jeandet, Louise; Cubas, Nadaya; Marc, Odin; Meunier, Patrick; Hovius, Niels; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.; Liang, Wen-Tzong; Theunissen, Thomas; Chiang, Shou-Hao

    2017-04-01

    Extreme rainfall events can trigger numerous landslides in mountainous areas and a prolonged increase of river sediment load. The resulting mass transfer at the Earth surface in turn induces stress changes at depth, which could be sufficient to trigger shallow earthquakes. The 2009 Morakot typhoon represents a good case study as it delivered 3 m of precipitation in 3 days and caused some of the most intense erosion ever recorded. Analysis of seismicity time-series before and after the Morakot typhoon reveals a systematic increase of shallow (i.e. 0-15 km of depth) earthquake frequency in the vicinity of the areas displaying a high spatial density of landslides. This step-like increase in frequency lasts for at least 2-3 years and does not follow an Omori-type aftershock sequence. Rather, it is associated to a step change of the Gutenberg-Richter b-value of the earthquake catalog. Both changes occurred in mountainous areas of southwest Taiwan, where typhoon Morakot caused extensive landsliding. These spatial and temporal correlations strongly suggest a causal relationship between the Morakot-triggered landslides and the increase of earthquake frequency and their associated b-value. We propose that the progressive removal of landslide materials from the steep mountain landscape by river sediment transport acts as an approximately constant increase of the stress rate with respect to pre-typhoon conditions, and that this in turn causes a step-wise increase in earthquake frequency. To test this hypothesis, we investigate the response of a rate-and-state fault to stress changes using a 2-D continuum elasto-dynamic model. Consistent with the results of Ader et al. (2013), our preliminary results show a step-like increase of earthquake frequency in response to a step-like decrease of the fault normal stress. We also investigate the sensitivity of the amplitude and time-scale of the earthquake frequency increase to the amplitude of the normal stress change and to

  11. Tectonic tremor activity associated with teleseismic and nearby earthquakes

    NASA Astrophysics Data System (ADS)

    Chao, K.; Obara, K.; Peng, Z.; Pu, H. C.; Frank, W.; Prieto, G. A.; Wech, A.; Hsu, Y. J.; Yu, C.; Van der Lee, S.; Apley, D. W.

    2016-12-01

    Tectonic tremor is an extremely stress-sensitive seismic phenomenon located in the brittle-ductile transition section of a fault. To better understand the stress interaction between tremor and earthquake, we conduct the following studies: (1) search for triggered tremor globally, (2) examine ambient tremor activities associated with distant earthquakes, and (3) quantify the temporal variation of ambient tremor activity before and after nearby earthquakes. First, we developed a Matlab toolbox to enhance the searching of triggered tremor globally. We have discovered new tremor sources in the inland faults in Kyushu, Kanto, and Hokkaido in Japan, southern Chile, Ecuador, and central Colombia in South America, and in South Italy. Our findings suggest that tremor is more common than previously believed and indicate the potential existence of ambient tremor in the triggered tremor active regions. Second, we adapt the statistical analysis to examine whether the long-term ambient tremor rate may affect by the dynamic stress of teleseismic earthquakes. We analyzed the data in Nankai, Hokkaido, Cascadia, and Taiwan. Our preliminary results did not show an apparent increase of ambient tremor rate after the passing of surface waves. Third, we quantify temporal changes in ambient tremor activity before and after the occurrence of local earthquakes under the southern Central Range of Taiwan with magnitudes of >=5.5 from 2004 to 2016. For a particular case, we found a temporal variation of tremor rate before and after the 2010/03/04 Mw6.3 earthquake, located about 20 km away from the active tremor source. The long-term increase in the tremor rate after the earthquake could have been caused by an increase in static stress following the mainshock. For comparison, clear evidence from seismic and GPS observations indicate a short-term increase in the tremor rate a few weeks before the mainshock. The increase in the tremor rate before the mainshock could correlate with stress changes

  12. Source characterization of moderate induced earthquakes in Oklahoma, USA: A case study of 2013-2016 Cushing earthquake sequence

    NASA Astrophysics Data System (ADS)

    Ji, Chen; Archuleta, Ralph

    2017-04-01

    The significant increase of seismicity rate in the central and eastern United States since 2009 has drawn wide attention for the potential seismic hazard. Unfortunately, most of moderate earthquakes in this region lack near-fault strong motion records, limiting in-depth studies. The 2016/11/07 M 5.0 Cushing, Oklahoma earthquake and its fore/aftershock sequence, which was monitored by four strong motion stations within 10 km of the mainshock epicenter, is the only exception. According to Oklahoma Geological Survey, no M>1.5 earthquake occurred before 2013 within 5 km of the mainshock epicenter, but 110 foreshocks, including two M>4 events, had occurred before the mainshock initiation. The close-fault records also revealed that M>4 foreshocks and mainshock excited unusually high level of strong ground motion. For example, 2015/10/10 Mw 4.3 Cushing earthquake resulted in peak ground acceleration (PGA) and peak ground velocity (PGV) up to 0.6 g and 8.3 cm/s, respectively. Simply correcting the geometric spreading (1/R, R is hypocenter distance) leads to mean PGA and PGV of 0.2 g and 3.6 cm/s at R=10 km, which are 4-8 times of the average values inferred from NGA-West dataset (Archuleta and Ji, 2016). Here we constrain the slip history of Cushing mainshock and its M>4 foreshocks using strong motion waveforms and compare them with the results of other moderate Oklahoma earthquakes. Our preliminary analysis of the mainshock leads to a preferred model of heterogeneous dextral slip on a vertical fault plane orienting N60oE, with three major rupture stages. The rupture initiated at a depth of 4.1 km, within the "cloud" of foreshocks. The first subevent has a rupture duration of 0.7 s and accounts for 20% of total seismic moment (Mw 4.4). After a delay of 0.5 s, a slip patch just outside the foreshock "cloud" and 2-3 km away from the hypocenter broke. From 1.2 s to 1.7 s, 45% of total seismic moment (Mw 4.7) was quickly released. The rest of the seismic moment (35%, Mw 4

  13. The 2008 Mw 6.0 Wells, Nevada Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Smith, K.; Depolo, D.; Torrisi, J.; Edwards, N.; Biasi, G.; Slater, D.

    2008-12-01

    The Mw 6.0 February 21, 2008 (06:16 AM PDT) Wells, Nevada normal faulting earthquake occurred in Town Creek Flat about 8 km northeast of the small community of Wells. A preliminary set of about 1000 aftershock relocations clearly defines a 55-60 degree southeast dipping fault plane. The structure projects to the surface along the southern end of the Snake Range, although no surface offsets have been identified. The earthquake occurred east of the Ruby Mountains and Snake Range west dipping range front faults, possibly on a northern extension of an east dipping normal fault system on the eastern side of the East Humbolt Range. The depth of the mainshock is estimated to be 10.5 km with the aftershock sequence extending to about 15 km. Typical of moderate sized Basin and Range earthquakes, the early aftershock period included several earthquakes of M > 4 and these were felt strongly by the residents of Wells. From the preliminary relocations, the source radius of the mainshock is estimated to be about 4 km, resulting in an estimated displacement of 55 to 83 cm and static stress drop of 72 to 86 bars, depending on the seismic moment estimate used. Aftershock relocations suggest a radial rupture mechanism. Fortunately, the EarthScope USArray network was operating in Nevada at the time of the event and provided unique controls on the mainshock and early aftershock locations. The earthquake occurred in an area of relatively low seismic hazard and the only permanent seismograph in the region was the U.S. National Network broadband station east of the Ruby Mountains south of Wells. The University of Utah and University of Nevada deployed locally recorded strong motion instruments in the Wells area. Also, an 8 station IP telemetered strong motion network, jointly deployed by the U.S. Geological Survey and University of Nevada Reno, provided real-time data for quick high-quality aftershock relocations and ground motion estimates. In addition, the University of Utah

  14. Earthquake Relocation in the Middle East with Geodetically-Calibrated Events

    NASA Astrophysics Data System (ADS)

    Brengman, C.; Barnhart, W. D.

    2017-12-01

    Regional and global earthquake catalogs in tectonically active regions commonly contain mislocated earthquakes that impede efforts to address first order characteristics of seismogenic strain release and to monitor anthropogenic seismic events through the Comprehensive Nuclear-Test-Ban Treaty. Earthquake mislocations are particularly limiting in the plate boundary zone between the Arabia and Eurasia plates of Iran, Pakistan, and Turkey where earthquakes are commonly mislocated by 20+ kilometers and hypocentral depths are virtually unconstrained. Here, we present preliminary efforts to incorporate calibrated earthquake locations derived from Interferometric Synthetic Aperture Radar (InSAR) observations into a relocated catalog of seismicity in the Middle East. We use InSAR observations of co-seismic deformation to determine the locations, geometries, and slip distributions of small to moderate magnitude (M4.8+) crustal earthquakes. We incorporate this catalog of calibrated event locations, along with other seismologically-calibrated earthquake locations, as "priors" into a fully Bayesian multi-event relocation algorithm that relocates all teleseismically and regionally recorded earthquakes over the time span 1970-2017, including calibrated and uncalibrated events. Our relocations are conducted using cataloged phase picks and BayesLoc. We present a suite of sensitivity tests for the time span of 2003-2014 to explore the impacts of our input parameters (i.e., how a point source is defined from a finite fault inversion) on the behavior of the event relocations, potential improvements to depth estimates, the ability of the relocation to recover locations outside of the time span in which there are InSAR observations, and the degree to which our relocations can recover "known" calibrated earthquake locations that are not explicitly included as a-priori constraints. Additionally, we present a systematic comparison of earthquake relocations derived from phase picks of two

  15. Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey Part3

    NASA Astrophysics Data System (ADS)

    Kaneda, Yoshiyuki; Ozener, Haluk; Meral Ozel, Nurcan; Kalafat, Dogan; Ozgur Citak, Seckin; Takahashi, Narumi; Hori, Takane; Hori, Muneo; Sakamoto, Mayumi; Pinar, Ali; Oguz Ozel, Asim; Cevdet Yalciner, Ahmet; Tanircan, Gulum; Demirtas, Ahmet

    2017-04-01

    There have been many destructive earthquakes and tsunamis in the world.The recent events are, 2011 East Japan Earthquake/Tsunami in Japan, 2015 Nepal Earthquake and 2016 Kumamoto Earthquake in Japan, and so on. And very recently a destructive earthquake occurred in Central Italy. In Turkey, the 1999 Izmit Earthquake as the destructive earthquake occurred along the North Anatolian Fault (NAF). The NAF crosses the Sea of Marmara and the only "seismic gap" remains beneath the Sea of Marmara. Istanbul with high population similar to Tokyo in Japan, is located around the Sea of Marmara where fatal damages expected to be generated as compound damages including Tsunami and liquefaction, when the next destructive Marmara Earthquake occurs. The seismic risk of Istanbul seems to be under the similar risk condition as Tokyo in case of Nankai Trough earthquake and metropolitan earthquake. It was considered that Japanese and Turkish researchers can share their own experiences during past damaging earthquakes and can prepare for the future large earthquakes in cooperation with each other. Therefore, in 2013 the two countries, Japan and Turkey made an agreement to start a multidisciplinary research project, MarDiM SATREPS. The Project runs researches to aim to raise the preparedness for possible large-scale earthquake and Tsunami disasters in Marmara Region and it has four research groups with the following goals. 1) The first one is Marmara Earthquake Source region observational research group. This group has 4 sub-groups such as Seismicity, Geodesy, Electromagnetics and Trench analyses. Preliminary results such as seismicity and crustal deformation on the sea floor in Sea of Marmara have already achieved. 2) The second group focuses on scenario researches of earthquake occurrence along the North Anatolia Fault and precise tsunami simulation in the Marmara region. Research results from this group are to be the model of earthquake occurrence scenario in Sea of Marmara and the

  16. Automatic 3D Moment tensor inversions for southern California earthquakes

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Friberg, P.; Tromp, J.

    2008-12-01

    We present a new source mechanism (moment-tensor and depth) catalog for about 150 recent southern California earthquakes with Mw ≥ 3.5. We carefully select the initial solutions from a few available earthquake catalogs as well as our own preliminary 3D moment tensor inversion results. We pick useful data windows by assessing the quality of fits between the data and synthetics using an automatic windowing package FLEXWIN (Maggi et al 2008). We compute the source Fréchet derivatives of moment-tensor elements and depth for a recent 3D southern California velocity model inverted based upon finite-frequency event kernels calculated by the adjoint methods and a nonlinear conjugate gradient technique with subspace preconditioning (Tape et al 2008). We then invert for the source mechanisms and event depths based upon the techniques introduced by Liu et al 2005. We assess the quality of this new catalog, as well as the other existing ones, by computing the 3D synthetics for the updated 3D southern California model. We also plan to implement the moment-tensor inversion methods to automatically determine the source mechanisms for earthquakes with Mw ≥ 3.5 in southern California.

  17. Distribution of intensity for the Westmorland, California, earthquake of April 26, 1981

    USGS Publications Warehouse

    Barnhard, L.M.; Thenhaus, P.C.; Algermissen, Sylvester Theodore

    1982-01-01

    The maximum Modified Mercalli intensity of the April 26, 1981 earthquake located 5 km northwest of Westmorland, California is VII. Twelve buildings in Westmorland were severely damaged with an additional 30 sustaining minor damage. Two brick parapets fell in Calipatria, 14 km northeast of Westmorland and 10 km from the earthquake epicenter. Significant damage in rural areas was restricted to unreinforced, concrete-lined irrigation canals. Liquefaction effects and ground slumping were widespread in rural areas and were the primary causes of road cracking. Preliminary local government estimates of property loss range from one to three million dollars (Imperial Valley Press, 1981). The earthquake was felt over an area of approximately 160,000 km2; about the same felt area of the October 15, 1979 (Reagor and others, 1980), and May 18, 1940 (Ulrich, 1941) Imperial Valley earthquakes.

  18. Using Groundwater physiochemical properties for assessing potential earthquake precursor

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Reuveni, Yuval; Anker, Yaakov; Guttman, Joseph

    2017-04-01

    Worldwide studies reports pre-seismic, co-seismic and post-seismic reaction of groundwater to earthquakes. The unique hydrological and geological situation in Israel resulted in relatively deep water wells which are located close to seismically active tectonic plate boundary. Moreover, the Israeli experience show that anomalies may occurs 60-90 minutes prior to the seismic event (Guttman et al., 2005; Anker et al., 2016). Here, we try to assess the possible connection between changes in physiochemical parameters of groundwater and earthquakes along the Dead Sea Transform (DST) region. A designated network of monitoring stations was installed in MEKOROT abandoned deep water wells, continuously measuring water table, conductivity and temperature at a sampling rate of 1 minute. Preliminary analysis compares changes in the measured parameters with rain events, tidal effects and earthquake occurrences of all measured magnitudes (>2.5Md) at monitoring area surroundings. The acquired data set over one year recorded simultaneous abrupt changes in several wells which seems disconnected from standard hydrological occurrences such as precipitation, abstraction or tidal effects. At this stage, our research aims to determine and rationalize a baseline for "normal response" of the measured parameters to external occurrences while isolating those cases in which "deviations" from that base line is recorded. We apply several analysis techniques both in time and frequency domain with the measured signal as well as statistical analysis of several measured earthquake parameters, which indicate potential correlations between earthquakes occurrences and the measured signal. We show that at least in one seismic event (5.1 Md) a potential precursor may have been recorded. Reference: Anker, Y., N. Inbar, A. Y. Dror, Y. Reuveni, J. Guttman, A. Flexer, (2016). Groundwater response to ground movements, as a tool for earthquakes monitoring and a possible precursor. 8th International Conference

  19. Missing great earthquakes

    USGS Publications Warehouse

    Hough, Susan E.

    2013-01-01

    The occurrence of three earthquakes with moment magnitude (Mw) greater than 8.8 and six earthquakes larger than Mw 8.5, since 2004, has raised interest in the long-term global rate of great earthquakes. Past studies have focused on the analysis of earthquakes since 1900, which roughly marks the start of the instrumental era in seismology. Before this time, the catalog is less complete and magnitude estimates are more uncertain. Yet substantial information is available for earthquakes before 1900, and the catalog of historical events is being used increasingly to improve hazard assessment. Here I consider the catalog of historical earthquakes and show that approximately half of all Mw ≥ 8.5 earthquakes are likely missing or underestimated in the 19th century. I further present a reconsideration of the felt effects of the 8 February 1843, Lesser Antilles earthquake, including a first thorough assessment of felt reports from the United States, and show it is an example of a known historical earthquake that was significantly larger than initially estimated. The results suggest that incorporation of best available catalogs of historical earthquakes will likely lead to a significant underestimation of seismic hazard and/or the maximum possible magnitude in many regions, including parts of the Caribbean.

  20. Do Earthquakes Shake Stock Markets?

    PubMed

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  1. Studies related to the Charleston, South Carolina, earthquake of 1886; a preliminary report

    USGS Publications Warehouse

    Rankin, Douglas W.

    1977-01-01

    with the Late Cretaceous (Cenomanian) age of the overlying Cape Fear Formation, this must be a minimum age as a result of chemical alteration. The interpreted magmatic composition of the basalt most closely resembles the high-Ti quartz-normative tholeiites of Late Triassic and Early Jurassic age from eastern North America; age of the basalt is probably similar. Various geophysical surveys suggest that Coastal Plain sedimentary rocks do not simply dip homoclinally to the southeast on a gently dipping basement surface but are disturbed by structures not yet clearly deciphered. The present stress regime of the Charleston-Summerville area appears to be one of NE-SW. compression rather than of extension as it presumably was in the Mesozoic. The present stress regime seems similar to that of much of the eastern United States. Comparison of several seismic source areas in eastern North America shows that epicenters are typically near the periphery of positive gravity features interpreted to represent mafic or ultramafic bodies. Earthquakes may be caused by the concentration of regional stress around the peripheries of these inhomogeneities in an otherwise more homogeneous plate. Whether the inhomogeneities are more or less rigid than the. surrounding material is uncertain. PART B: In 1889, C. E. Dutton published all his basic intensity data for the 1886 Charleston, S.C., shock but did not list what intensity values he assigned to each report, nor did he show the distribution of the locations of these data reports on his isoseismal map. The writer and two other seismologists have each independently evaluated Dutton's 1,300 intensity reports (at least two of the. three interpreters agreed on intensity values for 90 percent of the reports), and the consensus values were plotted and contoured. One map was prepared on which contours emphasized the broad regional pattern of effects (with results similar to Dutton's) ; another map was contoured to depict the more

  2. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    NASA Astrophysics Data System (ADS)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    of biased uncertainty of the back projection. Preliminary results from the Venezuela data set shows an East to West rupture propagation along the fault with sub-Rayleigh rupture speed, consistent with a compact source with two significant asperities which are confirmed by source time function obtained from Green’s function deconvolution and other source inversion results. These efforts could lead the Venezuela National Seismic Network to play a prominent role in the timely characterization of the rupture process of large earthquakes in the Caribbean, including the future ruptures along the yet unbroken segments of the Enriquillo fault system.

  3. Preliminary test result of PRESTo application to the southern Korean peninsula

    NASA Astrophysics Data System (ADS)

    Chi, H.; Lim, I.; Park, J.; Zollo, A.; Elia, L.; Iannaccone, G.

    2012-12-01

    KMA(Korea Meteorological Agency) and KIGAM(Korea Institute of Geoscience and Mineral Resources) have started a project to construct EEWS(Earthquake Early Warning System) from 2007 in South Korea. KIGAM has been operating ElarmS(Earthquake Alarms Systems) developed by UC. Berkeley Seismological Lab. in the real time mode from the middle of 2010. PRESTo (PRobabilistic and Evolutionary early warning SysTem) is a software platform coded by RISSC-lab in Italy for regional earthquake early warning. In comparison to ElarmS, PRESTo has the different approach in estimating parameters of an earthquake by adapting probability function. We conducted online and offline tests to evaluate feasibility of PRESTo about seismic network of the southern part of the Korean Peninsula. The 3D velocity model grids of P- and S-wave were calculated from 1D velocity model used by KIGAM for routine work. Two kinds of magnitude equations, High Mag to events with magnitude over 4.0 and Low Mag to others, were used without any change of the parameters applied to Naples in Italy in order to investigate patterns of the difference between KIGAM's local magnitudes and PRESTo's. Off and online test of PRESTo was done at two PCs with Windows7, Intel Core i7-2 3.4 GHz CPU and 8 GB memory. Offline simulation was applied to the total 162 earthquakes occurred at inland or offshore area of the southern Korean peninsula with magnitude over 2.0 from January 2007 to May 2012. As a result of offline test, the number of events by PRESTo was 132 that were about 80.5 % of the total earthquakes. The 91 % of the detected events had reasonable resolution with origin time error within 15 seconds and location error within 10 km. The 106 events, 80 % of the processed ones, had good resolution with error less than 5 km. The events with magnitude less than 4.0 showed the smaller pattern as amount of 0.3 ~ 0.8 than the magnitude from KIGAM's bulletin. The large magnitude over 4.0, however, showed similar pattern to that of

  4. Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2016-12-01

    Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.

  5. The 3D Reference Earth Model: Status and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the

  6. Benchmarking the Integration of WAVEWATCH III Results into HAZUS-MH: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Holland, Donald; McKellip, Rodney; Sciaudone, Jeff; Vickery, Peter; Wang, Zhanxian; Ying, Ken

    2005-01-01

    The report summarizes the results from the preliminary benchmarking activities associated with the use of WAVEWATCH III (WW3) results in the HAZUS-MH MR1 flood module. Project partner Applied Research Associates (ARA) is integrating the WW3 model into HAZUS. The current version of HAZUS-MH predicts loss estimates from hurricane-related coastal flooding by using values of surge only. Using WW3, wave setup can be included with surge. Loss estimates resulting from the use of surge-only and surge-plus-wave-setup were compared. This benchmarking study is preliminary because the HAZUS-MH MR1 flood module was under development at the time of the study. In addition, WW3 is not scheduled to be fully integrated with HAZUS-MH and available for public release until 2008.

  7. The Earthquake Information Test: Validating an Instrument for Determining Student Misconceptions.

    ERIC Educational Resources Information Center

    Ross, Katharyn E. K.; Shuell, Thomas J.

    Some pre-instructional misconceptions held by children can persist through scientific instruction and resist changes. Identifying these misconceptions would be beneficial for science instruction. In this preliminary study, scores on a 60-item true-false test of knowledge and misconceptions about earthquakes were compared with previous interview…

  8. Detecting metastable olivine wedge beneath Japan Sea with deep earthquake coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Zhan, Z.

    2017-12-01

    It has been hypothesized for decades that the lower-pressure olivine phase would kinetically persist in the interior of slab into the transition zone, forming a low-velocity "Metastable Olivine Wedge" (MOW). MOW, if exists, would play a critical role in generating deep earthquakes and parachuting subducted slabs with its buoyancy. However, seismic evidences for MOW are still controversial, and it is suggested that MOW can only be detected using broadband waveforms given the wavefront healing effects for travel times. On the other hand, broadband waveforms are often complicated by shallow heterogeneities. Here we propose a new method using the source-side interferometry of deep earthquake coda to detect MOW. In this method, deep earthquakes are turned into virtual sensors with the reciprocity theorem, and the transient strain from one earthquake to the other is estimated by cross-correlating the coda from the deep earthquake pair at the same stations. This approach effectively isolates near-source structure from complicated shallow structures, hence provide finer resolution to deep slab structures. We apply this method to Japan subduction zone with Hi-Net data, and our preliminary result does not support a large MOW model (100km thick at 410km) as suggested by several previous studies. Metastable olivine at small scales or distributed in an incoherent manner in deep slabs may still be possible.

  9. Prospective earthquake forecasts at the Himalayan Front after the 25 April 2015 M 7.8 Gorkha Mainshock

    USGS Publications Warehouse

    Segou, Margaret; Parsons, Thomas E.

    2016-01-01

    When a major earthquake strikes, the resulting devastation can be compounded or even exceeded by the subsequent cascade of triggered seismicity. As the Nepalese recover from the 25 April 2015 shock, knowledge of what comes next is essential. We calculate the redistribution of crustal stresses and implied earthquake probabilities for different periods, from daily to 30 years into the future. An initial forecast was completed before an M 7.3 earthquake struck on 12 May 2015 that enables a preliminary assessment; postforecast seismicity has so far occurred within a zone of fivefold probability gain. Evaluation of the forecast performance, using two months of seismic data, reveals that stress‐based approaches present improved skill in higher‐magnitude triggered seismicity. Our results suggest that considering the total stress field, rather than only the coseismic one, improves the spatial performance of the model based on the estimation of a wide range of potential triggered faults following a mainshock.

  10. Do Earthquakes Shake Stock Markets?

    PubMed Central

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan. PMID:26197482

  11. InSAR Analysis of Post-Seismic Deformation Following the 2013 Mw 7.7 Balochistan, Pakistan Earthquake

    NASA Astrophysics Data System (ADS)

    Peterson, K.; Barnhart, W. D.

    2017-12-01

    On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest

  12. The Trembling Earth Before Wenchuan Earthquake: Recognition of Precursory Anomalies through High Frequency Sampling Data of Groundwater

    NASA Astrophysics Data System (ADS)

    Huang, F.

    2017-12-01

    With a magnitude of MS8.0, the 2008 Wenchuan earthquake is classified as one of the "great earthquakes", which are potentially the most destructive, since it occurred at shallow depth close to a highly populated area without prediction, due to no confirmative precursors which were detected from a large amount of newly carried out digital observation data. Scientists who specilize in prediction routine work had been condemned and self-condemned for a long time then. After the pain of defeat passed, scientists have been some thinking to analyze the old observation data in new perspectives from longer temporal process, multiple-disciplinaries, and in different frequency. This presentation will show the preliminary results from groundwater level and temperature observed in 3 wells which distribute along the boundaries of tectonic blocks nearby and far from Wenchuan earthquake rupture.

  13. Far-Field Effects of Large Earthquakes on South Florida's Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Voss, N. K.; Wdowinski, S.

    2012-12-01

    The similarity between a seismometer and a well hydraulic head record during the passage of a seismic wave has long been documented. This is true even at large distances from earthquake epicenters. South Florida lacks a dense seismic array but does contain a comparably dense network of monitoring wells. The large spatial distribution of deep monitoring wells in South Florida provides an opportunity to study the variance of aquifer response to the passage of seismic waves. We conducted a preliminary study of hydraulic head data, provided by the South Florida Water Management District, from 9 deep wells in South Florida's confined Floridian Aquifer in response to 27 main shock events (January 2010- April 2012) with magnitude 6.9 or greater. Coseismic hydraulic head response was observed in 7 of the 27 events. In order to determine what governs aquifer response to seismic events, earthquake parameters were compared for the 7 positive events. Seismic energy density (SED), an empirical relationship between distance and magnitude, was also used to compare the relative energy between the events at each well site. SED is commonly used as a parameter for establishing thresholds for hydrologic events in the near and intermediate fields. Our analysis yielded a threshold SED for well response in South Florida as 8 x 10-3 J m-3, which is consistent with other studies. Deep earthquakes, with SED above this threshold, did not appear to trigger hydraulic head oscillations. The amplitude of hydraulic head oscillations had no discernable relationship to SED levels. Preliminary results indicate a need for a modification of the SED equation to better accommodate depth in order to be of use in the study of hydrologic response in the far field. We plan to conduct a more comprehensive study incorporating a larger subset (~60) of wells in South Florida in order to further examine the spatial variance of aquifers to the passing of seismic waves as well as better confine the relationship

  14. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Building Structures

    USGS Publications Warehouse

    Çelebi, Mehmet

    1998-01-01

    Several approaches are used to assess the performance of the built environment following an earthquake -- preliminary damage surveys conducted by professionals, detailed studies of individual structures, and statistical analyses of groups of structures. Reports of damage that are issued by many organizations immediately following an earthquake play a key role in directing subsequent detailed investigations. Detailed studies of individual structures and statistical analyses of groups of structures may be motivated by particularly good or bad performance during an earthquake. Beyond this, practicing engineers typically perform stress analyses to assess the performance of a particular structure to vibrational levels experienced during an earthquake. The levels may be determined from recorded or estimated ground motions; actual levels usually differ from design levels. If a structure has seismic instrumentation to record response data, the estimated and recorded response and behavior of the structure can be compared.

  15. Earthquakes

    MedlinePlus

    ... Search Term(s): Main Content Home Be Informed Earthquakes Earthquakes An earthquake is the sudden, rapid shaking of the earth, ... by the breaking and shifting of underground rock. Earthquakes can cause buildings to collapse and cause heavy ...

  16. P and S automatic picks for 3D earthquake tomography in NE Italy

    NASA Astrophysics Data System (ADS)

    Lovisa, L.; Bragato, P.; Gentili, S.

    2006-12-01

    Earthquake tomography is useful to study structural and geological features of the crust. In particular, it uses P and S arrival times for reconstructing weaves velocity fields and locating earthquakes hypocenters. However, tomography needs a large effort to provide a high number of manual picks. On the other side, many automatic picking methods have been proposed, but they are usually applied to preliminary elaboration of the data (fast alert and automatic bulletin generation); they are generally considered not reliable for tomography. In this work, we present and discuss the results of Vp, Vs and Vp/Vs tomographies obtained using automatic picks generated by the system TAPNEI (Gentili and Bragato 2006), applied in the NE Italy. Preliminarily, in order to estimate the error in comparison with the unknown true arrival times, an analysis on the picking quality is done. The tests have been performed using two dataset: the first is made up by 240 earthquakes automatically picked by TAPNEI; the second counts in the same earthquakes but manually picked (OGS database). The grid and the software used to perform tomography (Sim28, Michelini and Mc Evilly, 1991) are the same in the two cases. Vp, Vs and Vp/Vs fields of the two tomographies and their differences are shown on vertical sections. In addiction, the differences in earthquakes locations are studied; in particular, the quality of the accuracy of the localizations has been analyzed by estimating the distance of the hypocenter distributions with respect to the manual locations. The analysis include also a qualitative comparison with an independent tomography (Gentile et al., 2000) performed using Simulps (Evans et al, 1994) on a set of 224 earthquakes accurately selected and manually relocated. The quality of the pickings and the comparison with the tomography obtained by manual data suggest that earthquake tomography with automatic data can provide reliable results. We suggest the use of such data when a large

  17. Tomographic imaging of Central Java, Indonesia: Preliminary result of joint inversion of the MERAMEX and MCGA earthquake data

    NASA Astrophysics Data System (ADS)

    Rohadi, Supriyanto; Widiyantoro, Sri; Nugraha, Andri Dian; Masturyono

    2013-09-01

    The realization of local earthquake tomography is usually conducted by removing distant events outside the study region, because these events may increase errors. In this study, tomographic inversion has been conducted using the travel time data of local and regional events in order to improve the structural resolution, especially for deep structures. We used the local MERapi Amphibious EXperiments (MERAMEX) data catalog that consists of 292 events from May to October 2004. The additional new data of regional events in the Java region were taken from the Meteorological, Climatological, and Geophysical Agency (MCGA) of Indonesia, which consist of 882 events, having at least 10 recording phases at each seismographic station from April 2009 to February 2011. We have conducted joint inversions of the combined data sets using double-difference tomography to invert for velocity structures and to conduct hypocenter relocation simultaneously. The checkerboard test results of Vp and Vs structures demonstrate a significantly improved spatial resolution from the shallow crust down to a depth of 165 km. Our tomographic inversions reveal a low velocity anomaly beneath the Lawu - Merapi zone, which is consistent with the results from previous studies. A strong velocity anomaly zone with low Vp, low Vs and low Vp/Vs is also identified between Cilacap and Banyumas. We interpret this anomaly as a fluid content material with large aspect ratio or sediment layer. This anomaly zone is in a good agreement with the existence of a large dome containing sediment in this area as proposed by previous geological studies. A low velocity anomaly zone is also detected in Kebumen, where it may be related to the extensional oceanic basin toward the land.

  18. Investigation of an earthquake swarm near Trinidad, Colorado, August-October 2001

    USGS Publications Warehouse

    Meremonte, Mark E.; Lahr, John C.; Frankel, Arthur D.; Dewey, James W.; Crone, Anthony J.; Overturf, Dee E.; Carver, David L.; Bice., W. Thomas

    2002-01-01

    A swarm of 12 widely felt earthquakes occurred between August 28 and September 21, 2001, in the area west of the town of Trinidad, Colorado. The earthquakes ranged in magnitude between 2.8 and 4.6, and the largest event occurred on September 5, eight days after the initial M 3.4 event. The nearest permanent seismograph station to the swarm is about 290 km away, resulting in large uncertainties in the location and depth of these events. To better locate and characterize the earthquakes in this swarm, we deployed a total of 12 portable seismographs in the area of the swarm starting on September 6. Here we report on data from this portable network that was recorded between September 7 and October 15. During this time period, we have high-quality data from 39 earthquakes. The hypocenters of these earthquakes cluster to define a 6 km long northeast-trending fault plane that dips steeply (70-80?) to the southeast. The upper bound of well-constrained hypocenters is near 3 km depth and lower bound is near 6 km depth. Preliminary fault mechanisms suggest normal faulting with movement down to the southeast. Significant historical earthquakes have occurred in the Trinidad region in 1966 and 1973. Reexamination of felt reports from these earthquakes suggest that the 1973 events may have occurred in the same area, and possibly on the same fault, as the 2001 swarm. In recent years, a large volume of excess water that is produced in conjunction with coal-bed methane gas production has been returned to the subsurface in fluid disposal wells in the area of the earthquake swarm. Because of the proximity of these disposal wells to the earthquakes, local residents and officials are concerned that the fluid disposal might have triggered the earthquakes. We have evaluated the characteristics of the seismicity using criteria proposed by Davis and Frohlich (1993) as diagnostic of seismicity induced by fluid injection. We conclude that the characteristics of the seismicity and the fluid

  19. Site Effect Analysis in the Izmit Basin of Turkey: Preliminary Results from the Wave Propagation Simulation using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, Karolin; Kocaoglu, Argun

    2014-05-01

    Sedimentary basins affect the propagation characteristics of the seismic waves and cause significant ground motion amplification during an earthquake. While the impedance contrast between the sedimentary layer and bedrock predominantly controls the resonance frequencies and their amplitudes (seismic amplification), surface waves generated within the basin, make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be a pull-apart basin controlled by the northern branch of the North Anatolian Fault Zone (Şengör et al. 2005). A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. Using a spectral element code, SPECFEM2D (Komatitsch et al. 1998), this work presents some of the preliminary results of the 2-D seismic wave propagation simulations for the Izmit basin. The spectral-element method allows accurate and efficient simulation of seismic wave propagation due to its advantages over the other numerical modeling techniques by means of representation of the wavefield and the computational mesh. The preliminary results of this study suggest that seismic wave propagation simulations give some insight into the site amplification phenomena in the Izmit basin. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with

  20. Timing of paleoearthquakes on the northern Hayward Fault: preliminary evidence in El Cerrito, California

    USGS Publications Warehouse

    Lienkaemper, J.J.; Schwartz, D.P.; Kelson, K.I.; Lettis, W.R.; Simpson, Gary D.; Southon, J.R.; Wanket, J.A.; Williams, P.L.

    1999-01-01

    The Working Group on California Earthquake Probabilities estimated that the northern Hayward fault had the highest probability (0.28) of producing a M7 Bay Area earthquake in 30 years (WGCEP, 1990). This probability was based, in part, on the assumption that the last large earthquake occurred on this segment in 1836. However, a recent study of historical documents concludes that the 1836 earthquake did not occur on the northern Hayward fault, thereby extending the elapsed time to at least 220 yr ago, the beginning of the written record. The average recurrence interval for a M7 on the northern Hayward is unknown. WGCEP (1990) assumed an interval of 167 years. The 1996 Working Group on Northern California Earthquake Potential estimated ~210 yr, based on extrapolations from southern Hayward paleoseismological studies and a revised estimate of 1868 slip on the southern Hayward fault. To help constrain the timing of paleoearthquakes on the northern Hayward fault for the 1999 Bay Area probability update, we excavated two trenches that cross the fault and a sag pond on the Mira Vista golf course. As the site is on the second fairway, we were limited to less than ten days to document these trenches. Analysis was aided by rapid C-14 dating of more than 90 samples which gave near real-time results with the trenches still open. A combination of upward fault terminations, disrupted strata, and discordant angular relations indicates at least four, and possibly seven or more, surface faulting earthquakes occurred during a 1630-2130 yr interval. Hence, average recurrence time could be <270 yr, but is no more than 710 yr. The most recent earthquake (MRE) occurred after AD 1640. Preliminary analysis of calibrated dates supports the assumption that no large historical (post-1776) earthquakes have ruptured the surface here, but the youngest dates need more corroboration. Analyses of pollen for presence of non-native species help to constrain the time of the MRE. The earthquake

  1. Constraints on recent earthquake source parameters, fault geometry and aftershock characteristics in Oklahoma

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H.; Herrmann, R. B.; Bergman, E. A.; McMahon, N. D.; Aster, R. C.

    2014-12-01

    In late 2009, the seismicity of Oklahoma increased dramatically. The largest of these earthquakes was a series of three damaging events (Mw 4.8, 5.6, 4.8) that occurred over a span of four days in November 2011 near the town of Prague in central Oklahoma. Studies suggest that these earthquakes were induced by reactivation of the Wilzetta fault due to the disposal of waste water from hydraulic fracturing ("fracking") and other oil and gas activities. The Wilzetta fault is a northeast trending vertical strike-slip fault that is a well known structural trap for oil and gas. Since the November 2011 Prague sequence, thousands of small to moderate (M2-M4) earthquakes have occurred throughout central Oklahoma. The most active regions are located near the towns of Stillwater and Medford in north-central Oklahoma, and Guthrie, Langston and Jones near Oklahoma City. The USGS, in collaboration with the Oklahoma Geological Survey and the University of Oklahoma, has responded by deploying numerous temporary seismic stations in the region in order to record the vigorous aftershock sequences. In this study we use data from the temporary seismic stations to re-locate all Oklahoma earthquakes in the USGS National Earthquake Information Center catalog using a multiple-event approach known as hypo-centroidal decomposition that locates earthquakes with decreased uncertainty relative to one another. Modeling from this study allows us to constrain the detailed geometry of the reactivated faults, as well as source parameters (focal mechanisms, stress drop, rupture length) for the larger earthquakes. Preliminary results from the November 2011 Prague sequence suggest that subsurface rupture lengths of the largest earthquakes are anomalously long with very low stress drop. We also observe very high Q (~1000 at 1 Hz) that explains the large felt areas and we find relatively low b-value and a rapid decay of aftershocks.

  2. Compressive Strength Estimation of Marble Specimens using Acoustic Emission Hits in Time and Natural Time Domains: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Vallianatos, Filippos; Triantis, Dimos

    2013-04-01

    The current study deals with preliminary results of characteristic patterns derived from acoustic emissions during compressional stress. Two loading cycles were applied to a specimen of 4cm x 4cm x 10 cm Dionysos marble while acoustic emissions (AE) were recorded using one acoustic sensor coupled at the expected direction of the main crack (at the center of the specimen). The produced time series comprised from the number of counts per AE hit under increasing and constant load. Processing took place in two domains: in conventional time domain (t), using multiresolution wavelet analysis for the study of temporal variation of the wavelet-coefficients' standard deviation (SDEV) [1] and in natural time domain (χ), using the variance (κ1) of natural-time transformed time-series [2,3]. Results in both cases, dictate that identification of the region where the increasing stress (σ), exceeds 40% of the ultimate compressional strength (σ*), is possible. More specific, in conventional time domain, the temporal evolution of SDEV presents a sharp change around σ* during first loading cycle and less than σ* during second loading cycle. In natural time domain, the κ1 value clearly oscillate around 0.07 at natural time indexes corresponding to σ* during first loading cycle. Merging both results leads to a preliminary observation that we have an identification of the time when the compressional stress exceeds σ*. References [1] Telesca, L., Hloupis, G., Nikolintaga, I., Vallianatos, F.,."Temporal patterns in southern Aegean seismicity revealed by the multiresolution wavelet analysis", Communications in Nonlinear Science and Numerical Simulation, vol. 12, issue 8, pp 1418-1426, 2007 [2] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, "Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series", Springer-Verlag, Berlin, Heidelberg, 2011. [3] N. V. Sarlis, P. A. Varotsos, and E. S. Skordas, "Flux Avalances in

  3. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D.

    USGS Publications Warehouse

    Obermeier, S.F.; Dickenson, S.E.

    2000-01-01

    During the past decade, paleoseismic studies done by many researchers in the coastal regions of the Pacific Northwest have shown that regional downdropping and subsequent tsunami inundation occurred in response to a major earthquake along the Cascadia subduction zone. This earthquake occurred almost certainly in 1700 A.D., and is believed by many to have been of M 8.5-9 or perhaps larger. In order to characterize the severity of ground motions from this earthquake, we report on a field search and analysis of seismically induced liquefaction features. The search was conducted chiefly along the banks of islands in the lowermost Columbia River of Oregon and Washington and in stream banks along smaller rivers throughout southwestern Washington. To a lesser extent, the investigation included rivers in central Oregon. Numerous small- to moderate-sized liquefaction features from the earthquake of 1700 A.D. were found in some regions, but there was a notable lack of liquefaction features in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors in different field settings near the coast. Our use of widely different field settings, each in which we independently assess the strength of shaking and arrive at the same conclusion, enhances the credibility of our interpretations. Our regional inventory of liquefaction features and preliminary geotechnical analysis of liquefaction potential provide substantial evidence for only moderate levels of ground shaking in coastal Washington and Oregon during the subduction earthquake of 1700 A.D. Additionally, it appears that a similar conclusion can be reached for an earlier subduction earthquake that occurred within the past 1100 years, which also has been characterized by others as being M 8 or greater. On the basis of more limited data for older events collected in our regional study, it appears that seismic shaking has been no stronger throughout Holocene time. Our

  4. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  5. Improvements of the offshore earthquake locations in the Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, Ta-Yi; Hsu, Hsin-Chih

    2017-04-01

    Since 2014 the Earthworm Based Earthquake Alarm Reporting (eBEAR) system has been operated and been used to issue warnings to schools. In 2015 the system started to provide warnings to the public in Taiwan via television and the cell phone. Online performance of the eBEAR system indicated that the average reporting times afforded by the system are approximately 15 and 28 s for inland and offshore earthquakes, respectively. The eBEAR system in average can provide more warning time than the current EEW system (3.2 s and 5.5 s for inland and offshore earthquakes, respectively). However, offshore earthquakes were usually located poorly because only P-wave arrivals were used in the eBEAR system. Additionally, in the early stage of the earthquake early warning system, only fewer stations are available. The poor station coverage may be a reason to answer why offshore earthquakes are difficult to locate accurately. In the Geiger's inversion procedure of earthquake location, we need to put an initial hypocenter and origin time into the location program. For the initial hypocenter, we defined some test locations on the offshore area instead of using the average of locations from triggered stations. We performed 20 programs concurrently running the Geiger's method with different pre-defined initial position to locate earthquakes. We assume that if the program with the pre-defined initial position is close to the true earthquake location, during the iteration procedure of the Geiger's method the processing time of this program should be less than others. The results show that using pre-defined locations for trial-hypocenter in the inversion procedure is able to improve the accurate of offshore earthquakes. Especially for EEW system, in the initial stage of the EEW system, only use 3 or 5 stations to locate earthquakes may lead to bad results because of poor station coverage. In this study, the pre-defined trial-locations provide a feasible way to improve the estimations of

  6. The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.

    1999-01-01

    We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.

  7. Simulation of the Tsunami Resulting from the M 9.2 2004 Sumatra-Andaman Earthquake - Dynamic Rupture vs. Seismic Inversion Source Model

    NASA Astrophysics Data System (ADS)

    Vater, Stefan; Behrens, Jörn

    2017-04-01

    Simulations of historic tsunami events such as the 2004 Sumatra or the 2011 Tohoku event are usually initialized using earthquake sources resulting from inversion of seismic data. Also, other data from ocean buoys etc. is sometimes included in the derivation of the source model. The associated tsunami event can often be well simulated in this way, and the results show high correlation with measured data. However, it is unclear how the derived source model compares to the particular earthquake event. In this study we use the results from dynamic rupture simulations obtained with SeisSol, a software package based on an ADER-DG discretization solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. The tsunami model is based on a second-order Runge-Kutta discontinuous Galerkin (RKDG) scheme on triangular grids and features a robust wetting and drying scheme for the simulation of inundation events at the coast. Adaptive mesh refinement enables the efficient computation of large domains, while at the same time it allows for high local resolution and geometric accuracy. The results are compared to measured data and results using earthquake sources based on inversion. With the approach of using the output of actual dynamic rupture simulations, we can estimate the influence of different earthquake parameters. Furthermore, the comparison to other source models enables a thorough comparison and validation of important tsunami parameters, such as the runup at the coast. This work is part of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, which aims at an improved understanding of the coupling between the earthquake and the generated tsunami event.

  8. Earthquakes.

    ERIC Educational Resources Information Center

    Walter, Edward J.

    1977-01-01

    Presents an analysis of the causes of earthquakes. Topics discussed include (1) geological and seismological factors that determine the effect of a particular earthquake on a given structure; (2) description of some large earthquakes such as the San Francisco quake; and (3) prediction of earthquakes. (HM)

  9. Investigation of Aceh Segment and Seulimeum Fault by using seismological data; A preliminary result

    NASA Astrophysics Data System (ADS)

    Muksin, U.; Irwandi; Rusydy, I.; Muzli; Erbas, K.; Marwan; Asrillah; Muzakir; Ismail, N.

    2018-04-01

    The Seulimeum Fault has not generated large earthquake after last large earthquake with magnitude of M 7.3 occured in 1936. The Seulimeum Fault is accompanied by the Seulawah volcano that reported to be active in 1839, 1975 and 2010. The activity of the Seulimeum Fault could be related with the existence of the Seulawah volcano and the Seulawah volcano activity could also triggered by the Seulumeum Fault activity. The objective of the longterm research is to investigate the relation between the Seulimeum Fault and the Seulawah Volcano. The aim of this paper is to present the first result of the investigation of the Seulimeum Fault based on the seismicity and geomorphology. A seismic network consisting of 17 seismometers (Trilium Compact) and data logger (DSS Cube) were deployed in Aceh Besar. The seismic network was installed for 3 months to record earthquakes along the Seulimeum and the Aceh Faults. The Seulimeum Fault is considered to be active as several local earthquakes were recorded. The Seulimeum Fault is much more active in the region of the bifurcation of the The Aceh Segment and the Seulimeum Fault. The mechanisms of earthquakes along the Seulimeum Fault were mostly strike slip following similar to the Sumatran Fault characteristics.

  10. Impact of earthquakes on sex ratio at birth: Eastern Marmara earthquakes

    PubMed Central

    Doğer, Emek; Çakıroğlu, Yiğit; Köpük, Şule Yıldırım; Ceylan, Yasin; Şimşek, Hayal Uzelli; Çalışkan, Eray

    2013-01-01

    Objective: Previous reports suggest that maternal exposure to acute stress related to earthquakes affects the sex ratio at birth. Our aim was to examine the change in sex ratio at birth after Eastern Marmara earthquake disasters. Material and Methods: This study was performed using the official birth statistics from January 1997 to December 2002 – before and after 17 August 1999, the date of the Golcuk Earthquake – supplied from the Turkey Statistics Institute. The secondary sex ratio was expressed as the male proportion at birth, and the ratio of both affected and unaffected areas were calculated and compared on a monthly basis using data from gender with using the Chi-square test. Results: We observed significant decreases in the secondary sex ratio in the 4th and 8th months following an earthquake in the affected region compared to the unaffected region (p= 0.001 and p= 0.024). In the earthquake region, the decrease observed in the secondary sex ratio during the 8th month after an earthquake was specific to the period after the earthquake. Conclusion: Our study indicated a significant reduction in the secondary sex ratio after an earthquake. With these findings, events that cause sudden intense stress such as earthquakes can have an effect on the sex ratio at birth. PMID:24592082

  11. Earthquakes.

    ERIC Educational Resources Information Center

    Pakiser, Louis C.

    One of a series of general interest publications on science topics, the booklet provides those interested in earthquakes with an introduction to the subject. Following a section presenting an historical look at the world's major earthquakes, the booklet discusses earthquake-prone geographic areas, the nature and workings of earthquakes, earthquake…

  12. Comparison of Observed Spatio-temporal Aftershock Patterns with Earthquake Simulator Results

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.

    2013-12-01

    Due to the complex nature of faulting in southern California, knowledge of rupture behavior near fault step-overs is of critical importance to properly quantify and mitigate seismic hazards. Estimates of earthquake probability are complicated by the uncertainty that a rupture will stop at or jump a fault step-over, which affects both the magnitude and frequency of occurrence of earthquakes. In recent years, earthquake simulators and dynamic rupture models have begun to address the effects of complex fault geometries on earthquake ground motions and rupture propagation. Early models incorporated vertical faults with highly simplified geometries. Many current studies examine the effects of varied fault geometry, fault step-overs, and fault bends on rupture patterns; however, these works are limited by the small numbers of integrated fault segments and simplified orientations. The previous work of Kroll et al., 2013 on the northern extent of the 2010 El Mayor-Cucapah rupture in the Yuha Desert region uses precise aftershock relocations to show an area of complex conjugate faulting within the step-over region between the Elsinore and Laguna Salada faults. Here, we employ an innovative approach of incorporating this fine-scale fault structure defined through seismological, geologic and geodetic means in the physics-based earthquake simulator, RSQSim, to explore the effects of fine-scale structures on stress transfer and rupture propagation and examine the mechanisms that control aftershock activity and local triggering of other large events. We run simulations with primary fault structures in state of California and northern Baja California and incorporate complex secondary faults in the Yuha Desert region. These models produce aftershock activity that enables comparison between the observed and predicted distribution and allow for examination of the mechanisms that control them. We investigate how the spatial and temporal distribution of aftershocks are affected by

  13. The 1987 Whittier Narrows, California, earthquake: A Metropolitan shock

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Stein, Ross S.

    1989-07-01

    Just 3 hours after the Whittier Narrows earthquake struck, it became clear that a heretofore unseen geological structure was seismically active beneath metropolitan Los Angeles. Contrary to initial expectations of strike-slip or oblique-slip motion on the Whittier fault, whose north end abuts the aftershock zone, the focal mechanism of the mainshock showed pure thrust faulting on a deep gently inclined surface [Hauksson et al., 1988]. This collection of nine research reports spans the spectrum of seismological, geodetic, and geological investigations carried out as a result of the Whittier Narrows earthquake. Although unseen, the structure was not unforeseen. Namson [1987] had published a retrodeformable geologic cross section (meaning that the sedimentary strata could be restored to their original depositional position) 100 km to the west of the future earthquake epicenter in which blind, or subsurface, thrust faults were interpreted to be active beneath the folded southern Transverse Ranges. Working 25 km to the west, Hauksson [1987] had also found a surprising number of microearthquakes with thrust focal mechanisms south of the Santa Monica mountains, another clue to a subsurface system of thrust faults. Finally, Davis [1987] had presented a preliminary cross section only 18 km to the west of Whittier Narrows that identified as "fault B" the thrust that would rupture later that year. Not only was the earthquake focus and its orientation compatible with the 10-15 km depth and north dipping orientation of Davis' proposed thrust, but fault B appears to continue beneath the northern flank of the Los Angeles basin, skirting within 5 km of downtown Los Angeles, an area of dense commercial high-rise building development. These results are refined and extended by Davis et al. [this issue].

  14. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Herman, Matthew W.; Barnhart, William D.; Furlong, Kevin P.; Riquelme, Sebástian; Benz, Harley M.; Bergman, Eric; Barrientos, Sergio; Earle, Paul S.; Samsonov, Sergey

    2014-01-01

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile which had not ruptured in a megathrust earthquake since a M ~8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March–April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  15. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake.

    PubMed

    Hayes, Gavin P; Herman, Matthew W; Barnhart, William D; Furlong, Kevin P; Riquelme, Sebástian; Benz, Harley M; Bergman, Eric; Barrientos, Sergio; Earle, Paul S; Samsonov, Sergey

    2014-08-21

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which had not ruptured in a megathrust earthquake since a M ∼8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March-April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  16. Hazard assessment of long-period ground motions for the Nankai Trough earthquakes

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.

    2013-12-01

    100 m in horizontal and vertical, respectively. The grid spacing for the deep region is three times coarser. The total number of grid points is about three billion. The 3-D underground structure model used in the FD simulation is the Japan integrated velocity structure model (ERC, 2012). Our simulation is valid for period more than two seconds due to the lowest S-wave velocity and grid spacing. However, because the characterized source model may not sufficiently support short period components, we should be interpreted the reliable period of this simulation with caution. Therefore, we consider the period more than five seconds instead of two seconds for further analysis. We evaluate the long-period ground motions using the velocity response spectra for the period range between five and 20 second. The preliminary simulation shows a large variation of response spectra at a site. This large variation implies that the ground motion is very sensitive to different scenarios. And it requires studying the large variation to understand the seismic hazard. Our further study will obtain the hazard curves for the Nankai Trough earthquake (M 8~9) by applying the probabilistic seismic hazard analysis to the simulation results.

  17. Tomographic imaging of Central Java, Indonesia: Preliminary result of joint inversion of the MERAMEX and MCGA earthquake data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohadi, Supriyanto; Widiyantoro, Sri; Nugraha, Andri Dian

    The realization of local earthquake tomography is usually conducted by removing distant events outside the study region, because these events may increase errors. In this study, tomographic inversion has been conducted using the travel time data of local and regional events in order to improve the structural resolution, especially for deep structures. We used the local MERapi Amphibious EXperiments (MERAMEX) data catalog that consists of 292 events from May to October 2004. The additional new data of regional events in the Java region were taken from the Meteorological, Climatological, and Geophysical Agency (MCGA) of Indonesia, which consist of 882 events,more » having at least 10 recording phases at each seismographic station from April 2009 to February 2011. We have conducted joint inversions of the combined data sets using double-difference tomography to invert for velocity structures and to conduct hypocenter relocation simultaneously. The checkerboard test results of Vp and Vs structures demonstrate a significantly improved spatial resolution from the shallow crust down to a depth of 165 km. Our tomographic inversions reveal a low velocity anomaly beneath the Lawu - Merapi zone, which is consistent with the results from previous studies. A strong velocity anomaly zone with low Vp, low Vs and low Vp/Vs is also identified between Cilacap and Banyumas. We interpret this anomaly as a fluid content material with large aspect ratio or sediment layer. This anomaly zone is in a good agreement with the existence of a large dome containing sediment in this area as proposed by previous geological studies. A low velocity anomaly zone is also detected in Kebumen, where it may be related to the extensional oceanic basin toward the land.« less

  18. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  19. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  20. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  1. Combining historical and geomorphological information to investigate earthquake induced landslides

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Ferrari, G.; Galli, M.; Guidoboni, E.; Guzzetti, F.

    2003-04-01

    information on landslides triggered by the great 1915 January 13 Marsica (Central Italy) earthquake (Io = XI) mostly along the Liri River valley. Problems encountered in matching the recent historical information with the local geomorphological setting are discussed. A critical analysis of the four studied examples allows general considerations on the advantages and limitations of a combined historical and geomorphological approach to investigate past earthquake induced landslides. Lastly, a preliminary analysis of the relationship between the earthquake intensity and the distance of the known slope failures to the triggering earthquake epicentres is presented, for the four investigated areas and for the entire catalogue of historical earthquakes.

  2. 78 FR 28192 - Polyethylene Retail Carrier Bags From Thailand: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Bags From Thailand: Preliminary Results of Antidumping Duty Administrative Review; 2011-2012 AGENCY... Import Administration, ``Decision Memorandum for Preliminary Results of the 2011/12 Antidumping Duty... (August 12, 2010) (Section 129 Determination). Preliminary Results of Review As a result of our review, we...

  3. 78 FR 34644 - Stainless Steel Plate in Coils From Belgium: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Coils From Belgium: Preliminary Results of Antidumping Duty Administrative Review; 2011-2012 AGENCY... of the scope of the order, see the ``Decision Memorandum for the Preliminary Results of Antidumping... Preliminary Decision Memorandum are identical in content. Preliminary Results of the Review As a result of...

  4. Subliminal trauma reminders impact neural processing of cognitive control in adults with developmental earthquake trauma: a preliminary report.

    PubMed

    Du, Xue; Li, Yu; Ran, Qian; Kim, Pilyoung; Ganzel, Barbara L; Liang, GuangSheng; Hao, Lei; Zhang, Qinglin; Meng, Huaqing; Qiu, Jiang

    2016-03-01

    Little is known about the effects of developmental trauma on the neural basis of cognitive control among adults who do not have posttraumatic stress disorder. To examine this question, we used functional magnetic resonance imaging to compare the effect of subliminal priming with earthquake-related images on attentional control during a Stroop task in survivors of the 2008 Wenchuan earthquake in China (survivor group, survivors were adolescents at the time of the earthquake) and in matched controls (control group). We found that the survivor group showed greater activation in the left ventral anterior cingulate cortex (vACC) and the bilateral parahippocampal gyrus during the congruent versus incongruent condition, as compared to the control group. Depressive symptoms were positively correlated with left vACC activation during the congruent condition. Moreover, psychophysiological interaction results showed that the survivor group had stronger functional connectivity between the left parahippocampal gyrus and the left vACC than the control group under the congruent-incongruent condition. These results suggested that trauma-related information was linked to abnormal activity in brain networks associated with cognitive control (e.g., vACC-parahippocampal gyrus). This may be a potential biomarker for depression following developmental trauma, and it may also provide a mechanism linking trauma reminders with depression.

  5. Comparative study of earthquake-related and non-earthquake-related head traumas using multidetector computed tomography

    PubMed Central

    Chu, Zhi-gang; Yang, Zhi-gang; Dong, Zhi-hui; Chen, Tian-wu; Zhu, Zhi-yu; Shao, Heng

    2011-01-01

    OBJECTIVE: The features of earthquake-related head injuries may be different from those of injuries obtained in daily life because of differences in circumstances. We aim to compare the features of head traumas caused by the Sichuan earthquake with those of other common head traumas using multidetector computed tomography. METHODS: In total, 221 patients with earthquake-related head traumas (the earthquake group) and 221 patients with other common head traumas (the non-earthquake group) were enrolled in our study, and their computed tomographic findings were compared. We focused the differences between fractures and intracranial injuries and the relationships between extracranial and intracranial injuries. RESULTS: More earthquake-related cases had only extracranial soft tissue injuries (50.7% vs. 26.2%, RR = 1.9), and fewer cases had intracranial injuries (17.2% vs. 50.7%, RR = 0.3) compared with the non-earthquake group. For patients with fractures and intracranial injuries, there were fewer cases with craniocerebral injuries in the earthquake group (60.6% vs. 77.9%, RR = 0.8), and the earthquake-injured patients had fewer fractures and intracranial injuries overall (1.5±0.9 vs. 2.5±1.8; 1.3±0.5 vs. 2.1±1.1). Compared with the non-earthquake group, the incidences of soft tissue injuries and cranial fractures combined with intracranial injuries in the earthquake group were significantly lower (9.8% vs. 43.7%, RR = 0.2; 35.1% vs. 82.2%, RR = 0.4). CONCLUSION: As depicted with computed tomography, the severity of earthquake-related head traumas in survivors was milder, and isolated extracranial injuries were more common in earthquake-related head traumas than in non-earthquake-related injuries, which may have been the result of different injury causes, mechanisms and settings. PMID:22012045

  6. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  7. Seismic Hazard Assessment of Middle East Region: Based on the Example to Georgia (Preliminary results)

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Akkar, S.; Askan, A.; Varazanashvili, O.; Adamia, S.; Chkhitunidze, M.

    2012-12-01

    The country of Georgia is located between Russia and Turkey. The main morphological units of Georgia are the mountain ranges of the Greater and Lesser Caucasus separated by the Black Sea-Rioni and Kura (Mtkvari)-South Caspian intermountain troughs. Recent geodynamics of Georgia and adjacent territories of the Black Sea-Caspian Sea region, as a whole, are determined by its position between the still-converging Eurasian and Africa-Arabian plates. That caused moderate seismicity in the region. However, the risk resulting from these earthquakes is considerably high, as recent events during the last two decades have shown. Seismic hazard and risk assessment is a major research topic in various recent international and national projects. Despite the current efforts, estimation of regional seismic hazard assessment remains as a major problem. Georgia is one of the partners of ongoing regional project EMME (Earthquake Model for Middle East region). The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment PSHA. In this study, we present the preliminary results of PSHA for Georgia in this project attempting to improve gaps especially in such steps as: determination of seismic sources; selection or derivation of ground motion prediction equations models; estimation of maximum magnitude Mmax. Seismic sources (SS) were obtained on the bases of structural geology, parameters of seismicity and seismotectonics. Finely new SS have been developed for Georgia and adjacent region. Each zone was defined with the following parameters: the magnitude-frequency parameters, maximum magnitude, and depth distribution as well as modern dynamical characteristics widely used for complex processes. As the ground motion dataset is absolutely insufficient by itself to derive a ground motion prediction model for Georgia, two approaches were taken in defining ground motions. First

  8. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009.

    PubMed

    Beavan, J; Wang, X; Holden, C; Wilson, K; Power, W; Prasetya, G; Bevis, M; Kautoke, R

    2010-08-19

    The Earth's largest earthquakes and tsunamis are usually caused by thrust-faulting earthquakes on the shallow part of the subduction interface between two tectonic plates, where stored elastic energy due to convergence between the plates is rapidly released. The tsunami that devastated the Samoan and northern Tongan islands on 29 September 2009 was preceded by a globally recorded magnitude-8 normal-faulting earthquake in the outer-rise region, where the Pacific plate bends before entering the subduction zone. Preliminary interpretation suggested that this earthquake was the source of the tsunami. Here we show that the outer-rise earthquake was accompanied by a nearly simultaneous rupture of the shallow subduction interface, equivalent to a magnitude-8 earthquake, that also contributed significantly to the tsunami. The subduction interface event was probably a slow earthquake with a rise time of several minutes that triggered the outer-rise event several minutes later. However, we cannot rule out the possibility that the normal fault ruptured first and dynamically triggered the subduction interface event. Our evidence comes from displacements of Global Positioning System stations and modelling of tsunami waves recorded by ocean-bottom pressure sensors, with support from seismic data and tsunami field observations. Evidence of the subduction earthquake in global seismic data is largely hidden because of the earthquake's slow rise time or because its ground motion is disguised by that of the normal-faulting event. Earthquake doublets where subduction interface events trigger large outer-rise earthquakes have been recorded previously, but this is the first well-documented example where the two events occur so closely in time and the triggering event might be a slow earthquake. As well as providing information on strain release mechanisms at subduction zones, earthquakes such as this provide a possible mechanism for the occasional large tsunamis generated at the Tonga

  9. Kinds of damage that could result from a great earthquake in the central United States

    USGS Publications Warehouse

    Hooper, M.G.; Algermissen, S.T.

    1985-01-01

    The first four photographs show damage caused by intensity VIII and above. None of the damage shown in the photographs in this report occurred in earthquakes larger than the 1811-12 New Madrid shocks, and most of the examples are from considerably smaller shocks. The first two photos show damage to masonry buildings, mostly old and unreinforced, none designed to be earthquake resistant. How many such buildings are in use in your community? The second pair of photos show damage to modern structures close to the epicenter of a magnitude 6.5 earthquake, a small shock compared to the magnitudes (8.4-8.7) of the New Madrid earthquakes

  10. W phase source inversion for moderate to large earthquakes (1990-2010)

    USGS Publications Warehouse

    Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo; Hayes, Gavin P.

    2012-01-01

    Rapid characterization of the earthquake source and of its effects is a growing field of interest. Until recently, it still took several hours to determine the first-order attributes of a great earthquake (e.g. Mw≥ 7.5), even in a well-instrumented region. The main limiting factors were data saturation, the interference of different phases and the time duration and spatial extent of the source rupture. To accelerate centroid moment tensor (CMT) determinations, we have developed a source inversion algorithm based on modelling of the W phase, a very long period phase (100–1000 s) arriving at the same time as the P wave. The purpose of this work is to finely tune and validate the algorithm for large-to-moderate-sized earthquakes using three components of W phase ground motion at teleseismic distances. To that end, the point source parameters of all Mw≥ 6.5 earthquakes that occurred between 1990 and 2010 (815 events) are determined using Federation of Digital Seismograph Networks, Global Seismographic Network broad-band stations and STS1 global virtual networks of the Incorporated Research Institutions for Seismology Data Management Center. For each event, a preliminary magnitude obtained from W phase amplitudes is used to estimate the initial moment rate function half duration and to define the corner frequencies of the passband filter that will be applied to the waveforms. Starting from these initial parameters, the seismic moment tensor is calculated using a preliminary location as a first approximation of the centroid. A full CMT inversion is then conducted for centroid timing and location determination. Comparisons with Harvard and Global CMT solutions highlight the robustness of W phase CMT solutions at teleseismic distances. The differences in Mw rarely exceed 0.2 and the source mechanisms are very similar to one another. Difficulties arise when a target earthquake is shortly (e.g. within 10 hr) preceded by another large earthquake, which disturbs the

  11. Comprehensive Understanding of the Zipingpu Reservoir to the Ms8.0 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Pang, Y. J.; Zhang, H.; Shi, Y.

    2014-12-01

    After the Wenchuan earthquake occurred, whether the big earthquake triggered by the storage of the Zipingpu Reservoir has attracted wide attention in international academic community. In addition to the qualitative discussion, many scholars also adopted the quantitative analysis methods to calculate the stress changes, but due to the different results, they draw very different conclusions. Here, we take the dispute of different teams in the quantitative calculation of Zipingpu reservoir as a starting point. In order to find out the key influence factors of quantitative calculation and know about the existing uncertainty elements during the numerical simulation, we analyze factors which may cause the differences. The preliminary results show that the calculation methods (analytical method or numerical method), dimension of models (2-D or 3-D), diffusion model, diffusion coefficient and focal mechanism are the main factors resulted in the differences, especially the diffusion coefficient of the fractured rock mass. The change of coulomb failure stress of the epicenter of Wenchuan earthquake attained from 2-D model is about 3 times of that of 3-D model. And it is not reasonable that only considering the fault permeability (assuming the permeability of rock mass as infinity) or only considering homogeneous isotropic rock mass permeability (ignoring the fault permeability). The different focal mechanisms also could dramatically affect the change of coulomb failure stress of the epicenter of Wenchuan earthquake, and the differences can research 2-7 times. And the differences the change of coulomb failure stress can reach several hundreds times, when selecting different diffusion coefficients. According to existing research that the magnitude of coulomb failure stress change is about several kPa, we could not rule out the possibility that the Zipingpu Reservoir may trigger the 2008 Wenchuan earthquake. However, for the background stress is not clear and coulomb failure

  12. A Report Of The December 6, 2016 Mw 6.5 Pidie Jaya, Aceh Earthquake

    NASA Astrophysics Data System (ADS)

    Muzli, M.; Daniarsyad, G.; Nugraha, A. D.; Muksin, U.; Widiyantoro, S.; Bradley, K.; Wang, T.; Jousset, P. G.; Erbas, K.; Nurdin, I.; Wei, S.

    2017-12-01

    The December 6, 2016 Mw 6.5 earthquake in Pidie Jaya, Aceh was one of the devastating inland earthquakes in Sumatra that took away more than 100 people's life. Here we present our seismological analysis of the earthquake sequence. The earthquake focal mechanism inversions using regional BMKG broadband data and teleseismic waveform data all indicate a strike-slip focal mechanism with a centroid depth of 15 km. Preliminary finite fault inversion using teleseismic body waves prefers the fault plane with strike of 45 degree and dip of 50 degree, in agreement with the surface geology and USGS aftershock distributions. Nine broadband seismic stations were installed in the source region along the coast one week after the earthquake and have collected the data for one month. The data have been used to locate aftershocks with grid search and double-difference algorithm, which results in the lineup of the seismicity in NE-SW direction, in agreement with the fault inversion and geology results. Using the M4.0 calibration earthquake that was recorded by the temporally network, we relocated the mainshock epicenter, which is also consistent with fault geometry defined by the well located aftershocks. In addition, a portion of the seismicity shows a lineation in E-W direction, indicating a secondary fault that has not been identified before. Aftershock focal mechanisms determined by the first motion reveal similar solutions as the mainshock. The observed macro intensity data shows most of the damaged buildings are distributed along the coast, approximately perpendicular to the preferred fault strike instead of parallel with it. It appears that the distribution of damage is strongly related to the site conditions, since these strong shaking/damage regions are mainly located on the costal sedimentary soils.

  13. Learning from the Mexico City Earthquake in 1985

    NASA Astrophysics Data System (ADS)

    Santos-Reyes, Jaime; Alvarado-Corona, Rafael

    2010-05-01

    Natural disasters are increasing alarmingly worldwide in recent years. They have killed millions of people, and adversely affected the life of at least one billion people. Given this, natural disasters present a great challenge to society today concerning how they are to be mitigated so as to produce an acceptable risk is a question which has come to the fore in dramatic ways recently. The paper addresses the following question: what could be learnt from natural disasters? The paper presents some preliminary results of the analysis of the Mexico City earthquake in 1985, by applying the Management Oversight Risk Tree (MORT) model. On September 19, 1985, at 7:19 hrs local time an intense earthquake with a magnitude of 8.1 on the Richter scale struck the country. The epicentre was located near the coast of the state of Guerrero, about 400 kilometres southeast of Mexico City. It is believed that thousands of people were affected and more than 10000 people were killed by the earthquake. On the other hand, the MORT model may be regarded as a structured checklist in the form of a complex ‘fault-tree' model that is intended to ensure that all aspects of an organization's management are looked into when assessing the possible causes of an incident. Moreover, the MORT has been applied extensively to the analysis of past failure of socio-technical systems; this is the first time that it has been applied to the case of natural disasters. A number of organizational failures have been highlighted by the model. It is hoped that by conducting such analysis lessons can be learnt and disseminated so that the impact of natural disasters such as Earthquakes can be mitigated in the future.

  14. The 2004 Parkfield, CA Earthquake: A Teachable Moment for Exploring Earthquake Processes, Probability, and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.

    2004-12-01

    The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better

  15. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    NASA Astrophysics Data System (ADS)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  16. Source and Aftershock Analysis of a Large Deep Earthquake in the Tonga Flat Slab

    NASA Astrophysics Data System (ADS)

    Cai, C.; Wiens, D. A.; Warren, L. M.

    2013-12-01

    The 9 November 2009 (Mw 7.3) deep focus earthquake (depth = 591 km) occurred in the Tonga flat slab region, which is characterized by limited seismicity but has been imaged as a flat slab in tomographic imaging studies. In addition, this earthquake occurred immediately beneath the largest of the Fiji Islands and was well recorded by a temporary array of 16 broadband seismographs installed in Fiji and Tonga, providing an excellent opportunity to study the source mechanism of a deep earthquake in a partially aseismic flat slab region. We determine the positions of main shock hypocenter, its aftershocks and moment release subevents relative to the background seismicity using a hypocentroidal decomposition relative relocation method. We also investigate the rupture directivity by measuring the variation of rupture durations at different azimuth [e.g., Warren and Silver, 2006]. Arrival times picked from the local seismic stations together with teleseismic arrival times from the International Seismological Centre (ISC) are used for the relocation. Teleseismic waveforms are used for directivity study. Preliminary results show this entire region is relatively aseismic, with diffuse background seismicity distributed between 550-670 km. The main shock happened in a previously aseismic region, with only 1 small earthquake within 50 km during 1980-2012. 11 aftershocks large enough for good locations all occurred within the first 24 hours following the earthquake. The aftershock zone extends about 80 km from NW to SE, covering a much larger area than the mainshock rupture. The aftershock distribution does not correspond to the main shock fault plane, unlike the 1994 March 9 (Mw 7.6) Fiji-Tonga earthquake in the steeply dipping, highly seismic part of the Tonga slab. Mainshock subevent locations suggest a sub-horizontal SE-NW rupture direction. However, the directivity study shows a complicated rupture process which could not be solved with simple rupture assumption. We will

  17. Preliminary Estimation of Kappa Parameter in Croatia

    NASA Astrophysics Data System (ADS)

    Stanko, Davor; Markušić, Snježana; Ivančić, Ines; Mario, Gazdek; Gülerce, Zeynep

    2017-12-01

    Spectral parameter kappa κ is used to describe spectral amplitude decay “crash syndrome” at high frequencies. The purpose of this research is to estimate spectral parameter kappa for the first time in Croatia based on small and moderate earthquakes. Recordings of local earthquakes with magnitudes higher than 3, epicentre distances less than 150 km, and focal depths less than 30 km from seismological stations in Croatia are used. The value of kappa was estimated from the acceleration amplitude spectrum of shear waves from the slope of the high-frequency part where the spectrum starts to decay rapidly to a noise floor. Kappa models as a function of a site and distance were derived from a standard linear regression of kappa-distance dependence. Site kappa was determined from the extrapolation of the regression line to a zero distance. The preliminary results of site kappa across Croatia are promising. In this research, these results are compared with local site condition parameters for each station, e.g. shear wave velocity in the upper 30 m from geophysical measurements and with existing global shear wave velocity - site kappa values. Spatial distribution of individual kappa’s is compared with the azimuthal distribution of earthquake epicentres. These results are significant for a couple of reasons: to extend the knowledge of the attenuation of near-surface crust layers of the Dinarides and to provide additional information on the local earthquake parameters for updating seismic hazard maps of studied area. Site kappa can be used in the re-creation, and re-calibration of attenuation of peak horizontal and/or vertical acceleration in the Dinarides area since information on the local site conditions were not included in the previous studies.

  18. Landslides Induced by 2015 Gorkha Earthquake and Their Continuous Evolution Post 2015 and 2016-Monsoon

    NASA Astrophysics Data System (ADS)

    Spear, B.; Haritashya, U. K.; Kargel, J. S.

    2017-12-01

    Gorkha Nepal has been a hot bed of landslide activity since the 7.8 magnitude earthquake that occurred on April 25th 2015. Even though previous studies have mapped and analyzed the landslides that were directly related to the earthquake, this research maps and analyzes the landslides that occurred during monsoon or after monsoon season in 2015 and 2016. Specifically, our objectives included monitoring post-earthquake landslide evolution and reactivation. We also observed landslides which occurred in the steep side slopes of various small rivers and threatened to block the flow of river. Consequently, we used Landsat, Sentinel, ASTER and images available at Google Earth Engine to locate, map, and analyze these landslides. Our preliminary result indicates 5,270 landslides, however 957 of these landslides occurred significantly after the earthquake. Of the 957 landslides, 508 of them occurred during the monsoon season of 2015 and 48 in the 2016 monsoon season. As well as locating and mapping these landslides, we were able to identify that there were 22 landslides blocking rivers and 24 were reactivated. Our result and landslide density maps clearly identifies zones that are prone to landslides. For example, the steepest areas, such as the Helambu or Langtang region, have a very high concentration of landslides since the earthquake. Furthermore, landslides with the largest area were often nearby each other in very steep regions. This research can be used to determine which areas in the Gorkha Nepal region are safe to use and which areas are high risk.

  19. Earthquakes on Your Dinner Table

    NASA Astrophysics Data System (ADS)

    Alexeev, N. A.; Tape, C.; Alexeev, V. A.

    2016-12-01

    Earthquakes have interesting physics applicable to other phenomena like propagation of waves, also, they affect human lives. This study focused on three questions, how: depth, distance from epicenter and ground hardness affect earthquake strength. Experimental setup consisted of a gelatin slab to simulate crust. The slab was hit with a weight and earthquake amplitude was measured. It was found that earthquake amplitude was larger when the epicenter was deeper, which contradicts observations and probably was an artifact of the design. Earthquake strength was inversely proportional to the distance from the epicenter, which generally follows reality. Soft and medium jello were implanted into hard jello. It was found that earthquakes are stronger in softer jello, which was a result of resonant amplification in soft ground. Similar results are found in Minto Flats, where earthquakes are stronger and last longer than in the nearby hills. Earthquakes waveforms from Minto Flats showed that that the oscillations there have longer periods compared to the nearby hills with harder soil. Two gelatin pieces with identical shapes and different hardness were vibrated on a platform at varying frequencies in order to demonstrate that their resonant frequencies are statistically different. This phenomenon also occurs in Yukon Flats.

  20. Earthquakes

    MedlinePlus

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  1. Extending earthquakes' reach through cascading.

    PubMed

    Marsan, David; Lengliné, Olivier

    2008-02-22

    Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly. Here we show that this causal structure can be found probabilistically, with no a priori model nor parameterization. Large regional earthquakes are found to have a short direct influence in comparison to the overall aftershock sequence duration. Relative to these large mainshocks, small earthquakes collectively have a greater effect on triggering. Hence, cascade triggering is a key component in earthquake interactions.

  2. Discrepancy between earthquake rates implied by historic earthquakes and a consensus geologic source model for California

    USGS Publications Warehouse

    Petersen, M.D.; Cramer, C.H.; Reichle, M.S.; Frankel, A.D.; Hanks, T.C.

    2000-01-01

    We examine the difference between expected earthquake rates inferred from the historical earthquake catalog and the geologic data that was used to develop the consensus seismic source characterization for the state of California [California Department of Conservation, Division of Mines and Geology (CDMG) and U.S. Geological Survey (USGS) Petersen et al., 1996; Frankel et al., 1996]. On average the historic earthquake catalog and the seismic source model both indicate about one M 6 or greater earthquake per year in the state of California. However, the overall earthquake rates of earthquakes with magnitudes (M) between 6 and 7 in this seismic source model are higher, by at least a factor of 2, than the mean historic earthquake rates for both southern and northern California. The earthquake rate discrepancy results from a seismic source model that includes earthquakes with characteristic (maximum) magnitudes that are primarily between M 6.4 and 7.1. Many of these faults are interpreted to accommodate high strain rates from geologic and geodetic data but have not ruptured in large earthquakes during historic time. Our sensitivity study indicates that the rate differences between magnitudes 6 and 7 can be reduced by adjusting the magnitude-frequency distribution of the source model to reflect more characteristic behavior, by decreasing the moment rate available for seismogenic slip along faults, by increasing the maximum magnitude of the earthquake on a fault, or by decreasing the maximum magnitude of the background seismicity. However, no single parameter can be adjusted, consistent with scientific consensus, to eliminate the earthquake rate discrepancy. Applying a combination of these parametric adjustments yields an alternative earthquake source model that is more compatible with the historic data. The 475-year return period hazard for peak ground and 1-sec spectral acceleration resulting from this alternative source model differs from the hazard resulting from the

  3. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  4. A comparison study of 2006 Java earthquake and other Tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.

    2006-12-01

    We revise the slip processes of July 17 2006 Java earthquakes by combined inverting teleseismic body wave, long period surface waves, as well as the broadband records at Christmas island (XMIS), which is 220 km away from the hypocenter and so far the closest observation for a Tsunami earthquake. Comparing with the previous studies, our approach considers the amplitude variations of surface waves with source depths as well as the contribution of ScS phase, which usually has amplitudes compatible with that of direct S phase for such low angle thrust earthquakes. The fault dip angles are also refined using the Love waves observed along fault strike direction. Our results indicate that the 2006 event initiated at a depth around 12 km and unilaterally rupture southeast for 150 sec with a speed of 1.0 km/sec. The revised fault dip is only about 6 degrees, smaller than the Harvard CMT (10.5 degrees) but consistent with that of 1994 Java earthquake. The smaller fault dip results in a larger moment magnitude (Mw=7.9) for a PREM earth, though it is dependent on the velocity structure used. After verified with 3D SEM forward simulation, we compare the inverted result with the revised slip models of 1994 Java and 1992 Nicaragua earthquakes derived using the same wavelet based finite fault inversion methodology.

  5. Preliminary map of peak horizontal ground acceleration for the Hanshin-Awaji earthquake of January 17, 1995, Japan - Description of Mapped Data Sets

    USGS Publications Warehouse

    Borcherdt, R.D.; Mark, R.K.

    1995-01-01

    The Hanshin-Awaji earthquake (also known as the Hyogo-ken Nanbu and the Great Hanshin earthquake) provided an unprecedented set of measurements of strong ground shaking. The measurements constitute the most comprehensive set of strong- motion recordings yet obtained for sites underlain by soft soil deposits of Holocene age within a few kilometers of the crustal rupture zone. The recordings, obtained on or near many important structures, provide an important new empirical data set for evaluating input ground motion levels and site amplification factors for codes and site-specific design procedures world wide. This report describes the data used to prepare a preliminary map summarizing the strong motion data in relation to seismicity and underlying geology (Wentworth, Borcherdt, and Mark., 1995; Figure 1, hereafter referred to as Figure 1/I). The map shows station locations, peak acceleration values, and generalized acceleration contours superimposed on pertinent seismicity and the geologic map of Japan. The map (Figure 1/I) indicates a zone of high acceleration with ground motions throughout the zone greater than 400 gal and locally greater than 800 gal. This zone encompasses the area of most intense damage mapped as JMA intensity level 7, which extends through Kobe City. The zone of most intense damage is parallel, but displaced slightly from the surface projection of the crustal rupture zone implied by aftershock locations. The zone is underlain by soft-soil deposits of Holocene age.

  6. Fear based Education or Curiosity based Education as an Example of Earthquake and Natural Disaster Education: Results of Statistical Study in Primary Schools in Istanbul-Turkey

    NASA Astrophysics Data System (ADS)

    Ozcep, T.; Ozcep, F.

    2012-04-01

    Natural disaster reduction focuses on the urgent need for prevention activities to reduce loss of life, damage to property, infrastructure and environment, and the social and economic disruption caused by natural hazards. One of the most important factors in reduction of the potential damage of earthquakes is trained manpower. To understanding the causes of earthquakes and other natural phenomena (landslides, avalanches, floods, volcanoes, etc.) is one of the pre-conditions to show a conscious behavior. The aim of the study is to analysis and to investigate, how earthquakes and other natural phenomena are perceived by the students and the possible consequences of this perception, and their effects of reducing earthquake damage. One of the crucial questions is that is our education system fear or curiosity based education system? Effects of the damages due to earthquakes have led to look like a fear subject. In fact, due to the results of the effects, the earthquakes are perceived scary phenomena. In the first stage of the project, the learning (or perception) levels of earthquakes and other natural disasters for the students of primary school are investigated with a survey. Aim of this survey study of earthquakes and other natural phenomena is that have the students fear based or curiosity based approaching to the earthquakes and other natural events. In the second stage of the project, the path obtained by the survey are evaluated with the statistical point of approach. A questionnaire associated with earthquakes and natural disasters are applied to primary school students (that total number of them is approximately 700 pupils) to measure the curiosity and/or fear levels. The questionnaire consists of 17 questions related to natural disasters. The questions are: "What is the Earthquake ?", "What is power behind earthquake?", "What is the mental response during the earthquake ?", "Did we take lesson from earthquake's results ?", "Are you afraid of earthquake

  7. Seismicity Increase in North China After the 2008 Mw7.9 Wenchuan Earthquake.

    NASA Astrophysics Data System (ADS)

    Goldhagen, G.; Li, C.; Peng, Z.; Wu, J.; Zhao, L.

    2016-12-01

    A large mainshock is capable of setting off an increase in seismicity in areas thousands of kilometers away. This phenomenon, known as remote triggering, is more likely to occur along active fault lines, aftershock zones, or regions with anthropogenic activities (e.g., mining, reservoirs, and fluid injections). By studying these susceptible areas, we can gain a better understanding of subsurface stress conditions, and long-range earthquake interactions. In this study we conduct a systematic search for remotely triggered seismicity in North China along two linear dense arrays (net code 1A and Z8) deployed by Chinese Academy of Sciences (CAS) following the 2008 Mw7.9 Wenchuan earthquake. A 5 Hz high pass filter is applied to the broadband seismogram recorded at the 1A array, which is more than 2,000 km away from the mainshock, in order to manually pick local events with double peaks. These local events have higher frequencies than earthquakes in the aftershock zone of the Wenchuan earthquake. An STA/LTA method is then employed as a way to automatically detect microseismicity in a section of the array that showed preliminary evidence of remote triggering. We find a clear increase of small earthquakes, right after the surface waves of the Wenchuan mainshock. These events, were recorded at stations close to the north section of the Tanlu fault and aftershock zones of the 1975, Ms7.3 Haicheng earthquake. This result suggests that remote triggering is more likely near active fault zones or other specific regions, as previous studies have proposed. Future work includes applying a waveform matching method to both arrays and automatically detecting micro-earthquakes missed on the catalog, and using them to better confirm the existence (or lack of) remote triggering following the Wenchuan mainshock. Our finding helps to better classify conditions that lead to the occurrence of remotely triggered earthquakes at intraplate regions.

  8. Cognitive Task Analysis of Business Jet Pilots' Weather Flying Behaviors: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Pliske, Rebecca; Hutton, Robert; Chrenka, Jason

    2001-01-01

    This report presents preliminary findings from a cognitive task analysis (CTA) of business aviation piloting. Results describe challenging weather-related aviation decisions and the information and cues used to support these decisions. Further, these results demonstrate the role of expertise in business aviation decision-making in weather flying, and how weather information is acquired and assessed for reliability. The challenging weather scenarios and novice errors identified in the results provide the basis for experimental scenarios and dependent measures to be used in future flight simulation evaluations of candidate aviation weather information systems. Finally, we analyzed these preliminary results to recommend design and training interventions to improve business aviation decision-making with weather information. The primary objective of this report is to present these preliminary findings and to document the extended CTA methodology used to elicit and represent expert business aviator decision-making with weather information. These preliminary findings will be augmented with results from additional subjects using this methodology. A summary of the complete results, absent the detailed treatment of methodology provided in this report, will be documented in a separate publication.

  9. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada

  10. The 2017 Mw = 8.2 Tehuantepec earthquake: a slab bending or slab pull rupture?

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Gombert, B.; Simons, M.; Fielding, E. J.; Rivera, L. A.; Bekaert, D. P.; Jiang, J.; Liang, C.; Moore, A. W.; Liu, Z.

    2017-12-01

    On September 8th 2017, a regionally destructive Mw 8.2 intra-slab earthquake struck Mexico in the Gulf of Tehuantepec. While large intermediate depth intra-slab earthquakes are a major hazard, we have only a limited knowledge of the strain budgets within subducting slabs. Several mechanisms have been proposed to explain intraplate earthquakes in subduction zones. Bending stresses might cause the occurrence of seismic events located at depths where the slab dip changes abruptly. However, an alternative explanation is needed if the ruptures are found to propagate through the entire lithosphere. Depending on the coupling of the subduction interface, intraplate earthquakes occurring updip or downdip of the locked zone could also be caused by the negative buoyancy of the sinking slab (i.e., slab pull). The increasing availability of near-fault data provides a unique opportunity to better constrain the seismogenic behavior of large intra-slab earthquakes. Teleseismic analyses of the 2017 Tehuantepec earthquake lead to contrasting statements about the depth extent of the rupture: while most of long period centroid moment tensor inversions yield fairly large centroid depths (>40 km), some finite-fault models suggest much shallower slip concentrated at depths less than 30 km. In this study, we analyze GPS, InSAR, tsunami and seismological data to constrain the earthquake location, fault geometry and slip distribution. We use a Bayesian approach devoid of significant spatial smoothing to characterize the range of allowable rupture depths. In addition, to cope with potential artifacts in centroid depth estimates due to unmodeled lateral heterogeneities, we also analyze long-period seismological data using a full 3D Earth model. Preliminary results suggest a fairly deep rupture consistent with a slab-pull process breaking a significant proportion of the lithosphere and potentially reflecting at least local detachment of the slab.

  11. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    NASA Astrophysics Data System (ADS)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of

  12. Modeling earthquake magnitudes from injection-induced seismicity on rough faults

    NASA Astrophysics Data System (ADS)

    Maurer, J.; Dunham, E. M.; Segall, P.

    2017-12-01

    It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.

  13. The Parkfield-Cholame, California, earthquakes of June-August, 1966; instrumental seismic studies

    USGS Publications Warehouse

    Eaton, Jerry P.

    1967-01-01

    U.S. Geological Survey instrumental seismic studies in the Parkfield-Cholame area consist of three related parts that were undertaken as pilot studies in a program designed to develop improved tools and concepts for investigating the properties and behavior of the San Andreas fault. These studies include: 1. The long=term monitoring of the seismic background on the San Andreas fault in Cholame Valley by means of a short-period Benioff seismograph station at Gold Hill. 2. The investigation of the geometry of the zone of aftershocks of the June 27 earthquakes by means of a small portable cluster of short-period, primarily vertical-component seismographs. 3. The seismic-refraction calibration of the region enclosing the aftershock source by means of three short reversed refraction profiles and a "calibration shot" near the epicenter of the main June 27 earthquake. This brief report outlines the work that has been completed and presents some preliminary results obtained from analysis of records from Gold Hill and the portable cluster.

  14. The Determination Method of Extreme Earthquake Disaster Area Based on the Dust Detection Result from GF-4 Data

    NASA Astrophysics Data System (ADS)

    Dou, A.; Ding, L.; Chen, M.; Wang, X.

    2018-04-01

    The remote sensing has played an important role in many earthquake emergencies by rapidly providing the building damage, road damage, landslide and other disaster information. The earthquake in the mountains often caused to the loosening of the mountains and the blowing of the dust in the epicentre area. The dust particles are more serious in the epicentre area than the other disaster area. Basis on the analysis of abnormal spectrum characteristics, the dust detection methods from medium and high resolutions satellite imagery are studied in order to determinate the extreme earthquake disaster area. The results indicate the distribution of extreme disaster can be acquired using the dust detection information from imagery, which can provide great help for disaster intensity assessment.

  15. Unrevealing the History of Earthquakes and Tsunamis of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M. T.; Castillo-Aja, M. D. R.; Cruz, S.; Corona, N.; Rangel Velarde, V.; Lagos, M.

    2014-12-01

    The great earthquakes and tsunamis of the last decades in Sumatra, Chile, and Japan remind us of the need for expanding the record of history of such catastrophic events. It can't be argued that even countries with extensive historical documents and tsunami sand deposits still have unsolved questions on the frequency of them, and the variables that control them along subduction zones. We present here preliminary results of a combined approach using historical archives and multiple proxies of the sedimentary record to unrevealing the history of possible great earthquakes and their tsunamis on the Mexican Subduction zone. The Mexican subduction zone extends over 1000 km long and little is known if the entire subduction zone along the Middle American Trench behaves as one enormous unit rather than in segments that rupture at different frequencies and with different strengths (as the short instrumental record shows). We searched on historical archives and earthquake databases to distinguish tsunamigenic events registered from the 16th century to now along the Jalisco-Colima and Guerrero-Oaxaca coastal stretches. The historical data referred are mostly from the 19th century on since the population on the coast was scarce before. We found 21 earthquakes with tsunamigenic potential, and of those 16 with doubtful to definitive accompanying tsunami on the Jalisco-Colima coast, and 31 tsunamigenic earthquakes on the Oaxaca-Guerrero coast. Evidence of great earthquakes and their tsunamis from the sedimentary record are scarce, perhaps due poor preservation of tsunami deposits in this tropical environment. Nevertheless, we have found evidence for a number of tsunamigenic events, both historical and prehistorical, 1932 and 1400 AD on Jalisco, and 3400 BP, 1789 AD, 1979 ad, and 1985 AD on Guerrero-Oaxaca. We continue working and a number of events are still to be dated. This work would aid in elucidating the history of earthquakes and tsunamis on the Mexican subduction zone.

  16. Emergency medical rescue efforts after a major earthquake: lessons from the 2008 Wenchuan earthquake.

    PubMed

    Zhang, Lulu; Liu, Xu; Li, Youping; Liu, Yuan; Liu, Zhipeng; Lin, Juncong; Shen, Ji; Tang, Xuefeng; Zhang, Yi; Liang, Wannian

    2012-03-03

    Major earthquakes often result in incalculable environmental damage, loss of life, and threats to health. Tremendous progress has been made in response to many medical challenges resulting from earthquakes. However, emergency medical rescue is complicated, and great emphasis should be placed on its organisation to achieve the best results. The 2008 Wenchuan earthquake was one of the most devastating disasters in the past 10 years and caused more than 370,000 casualties. The lessons learnt from the medical disaster relief effort and the subsequent knowledge gained about the regulation and capabilities of medical and military back-up teams should be widely disseminated. In this Review we summarise and analyse the emergency medical rescue efforts after the Wenchuan earthquake. Establishment of a national disaster medical response system, an active and effective commanding system, successful coordination between rescue forces and government agencies, effective treatment, a moderate, timely and correct public health response, and long-term psychological support are all crucial to reduce mortality and morbidity and promote overall effectiveness of rescue efforts after a major earthquake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    NASA Astrophysics Data System (ADS)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  18. Polarisation Measurement with a Dual Beam Interferometer (CATSI). Exploratory Results and Preliminary Phenomenological Analysis

    DTIC Science & Technology

    2006-06-01

    Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M... Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M. Thériault... Polarisation measurement with a dual beam interferometer (CATSI) - Exploratory results and preliminary phenomenological analysis. ECR 2004-372. DRDC Valcartier

  19. Aftershock Comparisons of the Tehuantepec and Puebla Earthquakes: Implications for the Transition between Aseismic and Seismic Behavior?

    NASA Astrophysics Data System (ADS)

    Richardson, E.

    2017-12-01

    Reduced aftershock productivity has been observed in subduction zones where slow slip events and aseismic transients have also been observed. A comparison of the aftershock productivity of the recent Tehuantepec and Puebla earthquakes corroborates such observations. The Tehuantepec earthquake of 8 September 2017 produced hundreds of aftershocks and arguably still continues to produce them as of late October 2017, whereas the Puebla earthquake of 19 September 2017 notably lacks aftershocks. This difference in productivity cannot simply be ascribed to differences in mainshock magnitude or detection thresholds. The Puebla earthquake occurred downdip from and just adjacent to the eastern edges of previously observed slow slip events in the Guerrero Gap, whereas the Tehuantepec event is quite removed along strike from the Guerrero Gap and ruptured a patch of fault adjacent to other previous ruptures that also produced standard aftershock sequences. In order to compare aftershock productivity of earthquakes near the Guerrero Gap slow slip region with adjacent regions I used the Advanced National Seismic System catalog and counted aftershocks within a 14-day 100-km window of 42 M>=6.0 slab earthquakes that occurred since 2001 in a box bounded by 13°N and 20°N, and between 91°W and 103°W. This box includes the Guerrero Gap and significant portions of the plate boundary on either side. Preliminary results indicate that ordinary fast-rupturing earthquake productivity in general is much reduced near the location of known SSEs and aftershock productivity of those events that do occur is low compared to earthquakes outside that zone. Earthquakes with low aftershock productivity may represent transitional behavior from aseismic to seismic and in terms of frictional rheology, may represent the transition from velocity weakening to velocity strengthening.

  20. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    NASA Technical Reports Server (NTRS)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  1. Near real-time finite fault source inversion for moderate-large earthquakes in Taiwan using teleseismic P waveform

    NASA Astrophysics Data System (ADS)

    Wong, T. P.; Lee, S. J.; Gung, Y.

    2017-12-01

    Taiwan is located at one of the most active tectonic regions in the world. Rapid estimation of the spatial slip distribution of moderate-large earthquake (Mw6.0) is important for emergency response. It is necessary to have a real-time system to provide the report immediately after earthquake happen. The earthquake activities in the vicinity of Taiwan can be monitored by Real-Time Moment Tensor Monitoring System (RMT) which provides the rapid focal mechanism and source parameters. In this study, we follow up the RMT system to develop a near real-time finite fault source inversion system for the moderate-large earthquakes occurred in Taiwan. The system will be triggered by the RMT System when an Mw6.0 is detected. According to RMT report, our system automatically determines the fault dimension, record length, and rise time. We adopted one segment fault plane with variable rake angle. The generalized ray theory was applied to calculate the Green's function for each subfault. The primary objective of the system is to provide the first order image of coseismic slip pattern and identify the centroid location on the fault plane. The performance of this system had been demonstrated by 23 big earthquakes occurred in Taiwan successfully. The results show excellent data fits and consistent with the solutions from other studies. The preliminary spatial slip distribution will be provided within 25 minutes after an earthquake occurred.

  2. Earthquake Fingerprints: Representing Earthquake Waveforms for Similarity-Based Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2016-12-01

    New earthquake detection methods, such as Fingerprint and Similarity Thresholding (FAST), use fast approximate similarity search to identify similar waveforms in long-duration data without templates (Yoon et al. 2015). These methods have two key components: fingerprint extraction and an efficient search algorithm. Fingerprint extraction converts waveforms into fingerprints, compact signatures that represent short-duration waveforms for identification and search. Earthquakes are detected using an efficient indexing and search scheme, such as locality-sensitive hashing, that identifies similar waveforms in a fingerprint database. The quality of the search results, and thus the earthquake detection results, is strongly dependent on the fingerprinting scheme. Fingerprint extraction should map similar earthquake waveforms to similar waveform fingerprints to ensure a high detection rate, even under additive noise and small distortions. Additionally, fingerprints corresponding to noise intervals should have mutually dissimilar fingerprints to minimize false detections. In this work, we compare the performance of multiple fingerprint extraction approaches for the earthquake waveform similarity search problem. We apply existing audio fingerprinting (used in content-based audio identification systems) and time series indexing techniques and present modified versions that are specifically adapted for seismic data. We also explore data-driven fingerprinting approaches that can take advantage of labeled or unlabeled waveform data. For each fingerprinting approach we measure its ability to identify similar waveforms in a low signal-to-noise setting, and quantify the trade-off between true and false detection rates in the presence of persistent noise sources. We compare the performance using known event waveforms from eight independent stations in the Northern California Seismic Network.

  3. 76 FR 2655 - Honey From Argentina: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ...: Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration, International... S.A. (CIPSA), or Patagonik S.A. (Patagonik) during the POR. If these preliminary results are adopted in our final results of administrative review, we will issue appropriate assessment instructions to U...

  4. The 1868 Hayward Earthquake Alliance: A Case Study - Using an Earthquake Anniversary to Promote Earthquake Preparedness

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Garcia, S.; Aagaard, B. T.; Boatwright, J. J.; Dawson, T.; Hellweg, M.; Knudsen, K. L.; Perkins, J.; Schwartz, D. P.; Stoffer, P. W.; Zoback, M.

    2008-12-01

    Last October 21st marked the 140th anniversary of the M6.8 1868 Hayward Earthquake, the last damaging earthquake on the southern Hayward Fault. This anniversary was used to help publicize the seismic hazards associated with the fault because: (1) the past five such earthquakes on the Hayward Fault occurred about 140 years apart on average, and (2) the Hayward-Rodgers Creek Fault system is the most likely (with a 31 percent probability) fault in the Bay Area to produce a M6.7 or greater earthquake in the next 30 years. To promote earthquake awareness and preparedness, over 140 public and private agencies and companies and many individual joined the public-private nonprofit 1868 Hayward Earthquake Alliance (1868alliance.org). The Alliance sponsored many activities including a public commemoration at Mission San Jose in Fremont, which survived the 1868 earthquake. This event was followed by an earthquake drill at Bay Area schools involving more than 70,000 students. The anniversary prompted the Silver Sentinel, an earthquake response exercise based on the scenario of an earthquake on the Hayward Fault conducted by Bay Area County Offices of Emergency Services. 60 other public and private agencies also participated in this exercise. The California Seismic Safety Commission and KPIX (CBS affiliate) produced professional videos designed forschool classrooms promoting Drop, Cover, and Hold On. Starting in October 2007, the Alliance and the U.S. Geological Survey held a sequence of press conferences to announce the release of new research on the Hayward Fault as well as new loss estimates for a Hayward Fault earthquake. These included: (1) a ShakeMap for the 1868 Hayward earthquake, (2) a report by the U. S. Bureau of Labor Statistics forecasting the number of employees, employers, and wages predicted to be within areas most strongly shaken by a Hayward Fault earthquake, (3) new estimates of the losses associated with a Hayward Fault earthquake, (4) new ground motion

  5. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    PubMed Central

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR = 1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR = 1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR = 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR = 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR = 1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  6. Preliminary report on crustal deformation surveys and tsunami measurements caused by the July 17, 2006 South off Java Island Earthquake and Tsunami, Indonesia

    NASA Astrophysics Data System (ADS)

    Kato, T.; Ito, T.; Abidin, H. Z.; Agustan

    2007-09-01

    A large earthquake (Mw=7.7) along a plate boundary occurred in the south of Java Island on July 17, 2006, and caused a significant tsunami. We made GPS observations and tsunami heights measurements during the period from July 24 to August 1, 2006. The earthquake seems to be due to an interplate low angle reverse faulting, though there might be a possibility of high angle faulting within the subducting lithosphere. Crustal deformation distribution due to the earthquake, aided by tsunami heights measurements, might clarify which would be the case. We occupied 29 sites by GPS in the area of southern Java encompassing the area from 107.8 E to 109.50 E. These sites were occupied once before the earthquake. However, we were not able to detect significant co-seismic displacements. The obtained displacements, most of which span several years, show ESE direction in ITRF2000 frame. This represents the direction of Sunda block motion. The tsunami heights measured at 11 sites were 6-7 m along the southern coast of Java and indicate that the observed heights are systematically higher than those estimated from numerical simulations that are based on seismic data analysis. This might suggest that fault offsets might have been larger - nearly double - than those estimated using seismic analysis. These results lead us to an idea that the rupture was very slow. If this is the case, the earthquake might have been a "tsunami earthquake" that is similar to the one that occurred on June 2, 1994 in the east of the present earthquake.

  7. Preliminary results from the Arecibo Heating Experiment (HEX): HF to GNSS

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Penney, R.; Bernhardt, P. A.; Martin, P. L.; Buckland, R.; Morton-Orr, T.; Nossa, E.; Buckland, R.

    2017-12-01

    The ionosphere is subject to many solar and terrestrial influences that can generate disturbances, causing degradation to modern communication and navigational systems. Whilst the disturbances are normally caused by natural phenomena such as hurricanes, earthquakes and solar storms; they can also be generated by artificially modifying the ionosphere. Artificial Ionospheric Modification (AIM) attempts to alter a small region of the ionosphere in order to perturb the RF propagation environment. This can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such modification can be detected through the deployment of sensors, including ground based high-frequency (HF) sounders and dual-band Global Navigation Satellite System (GNSS) receivers. HF sounders allow measurements of the bottom-side of the ionosphere. GNSS receivers offer a convenient means of obtaining information about the ionosphere, including ionospheric disturbances through changes in the derived total electron content information. The Heating EXperiment (HEX), which took place in March and May 2017, was designed to further our understanding of the phenomena caused by artificially heating a small region of the ionosphere, using the Arecibo facility in Puerto Rico. This was achieved by utilizing a HF measurement experiment spread between Texas and Trinidad and the deployment of a small scale travelling ionospheric disturbance (TID) network near the heater. The TID network comprised three GNSS receivers along baselines of approximately 4 km, located 20 km north of the heater. This paper presents preliminary results from the HEX campaign, including evidence of heating-induced disturbances enhancing propagation between Virginia and Trinidad. The implications of generated irregularities on GNSS will also be discussed.

  8. Permanent GPS network around the bend of the Jura Arc: preliminary results

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Walpersdorf, Andrea; Sakic, Pierre; Rabin, Mickael; Champagnac, Jean daniel

    2014-05-01

    The Jura Mountain, the westernmost belt of the alpine orogeny, is one of the best-studied orogenic arcs in the world. The Jura arc is a typical fold-and-thrust belt, with a main décollement thrust localized in the Triasic evaporites under the Jurassic-Cretaceous series. It is directly linked to the alpine orogenic wedge, especially in term of critical taper. It is supposed to be still active in collision mode, which would rise up the issue of its relation with the Alps to the East, currently undergoing post-orogenic gravitational potential adjustment. Nevertheless, its current activity and recent deformation remain a matter of debate, few neotectonic-related data being available in this area. The Jura is crosscut by left-lateral strike-slip faults in a radial scheme with respect to the arc, and recent seismicity along one of them, the Vuache fault (Annecy earthquake Ml 5.3 1996), and at the northern front of the belt (Beaume-les-Dames earthquake, Ml 5.1, 2004), argues for ongoing active deformation across the Jura Mountain. Here we present preliminary results of permanent GPS network surrounding the Jura belt (RENAG and RPG data), which tend to show very slow, yet self-consistent strain pattern of the order of some tenth of mm/yr over 100 km-long typical baselines, with shortening perpendicular to the arc, and extension parallel to its axial trend. We also characterize a slow uplift in the same order of magnitude, which appears to be correlated to the current uplift observed in the Alps. Indeed, the uplift velocities are continuously decreasing from the core of the Alps (+2 mm/yr) to the westernmost part of the Jura (+0,4 mm/yr) and to the stable foreland (-0.1 mm/yr). Actually, from the Po plain to the Jura foreland, the GPS-related uplift velocities are well correlated to the topography, and the Jura arc appears connected to the Alps from this point of view. In order to better determine the deformation pattern in the Jura arc, we present a new regional GNSS

  9. 78 FR 34648 - Citric Acid and Certain Citrate Salts: Preliminary Results of Countervailing Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Citrate Salts: Preliminary Results of Countervailing Duty Administrative Review; 2011 AGENCY: Import... December 31, 2011. These preliminary results cover RZBC Group Shareholding Co., Ltd., RZBC Co., Ltd., RZBC... Memorandum for the Preliminary Results of the Countervailing Duty Administrative Review: Citric Acid and...

  10. Preliminary results on heavy flavor physics at SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usher, T.

    1994-12-01

    The author reports on preliminary heavy flavor physics results from the SLD detector at the SLAC Linear Collider. Efficient tagging of b{bar b} events is achieved with an impact parameter technique that takes advantage of the small and stable interaction point of the SLC and all charged tracks in Z{sup 0} decays. This technique is applied to samples of Z{sup 0} events collected during the 1992 and 1993 physics runs. Preliminary measurements of the ratio R{sub b} = {Gamma}(Z{sup 0} {yields} b{bar b})/{Gamma}(Z{sup 0} {yields} hadrons) and the average B hadron lifetime <{tau}{sub B}> are reported. In a sample ofmore » 27K Z{sup 0} events, values of R{sub b} = 0.235 {+-} 0.006(stat.) {+-} 0.018(syst.) and <{tau}{sub B}> = 1.53 {+-} 0.006(stat.) {+-} 0.018(syst.) are obtained. In addition, the first measurement of the left-right asymmetry A{sub b} is reported. Using a sample of 38K Z{sup 0} events with a luminosity weighted electron polarization of 62%, the author obtains a preliminary value of A{sub b} = 0.94 {+-} 0.006(stat.) {+-} 0.018(syst.).« less

  11. A post-Tohoku earthquake review of earthquake probabilities in the Southern Kanto District, Japan

    NASA Astrophysics Data System (ADS)

    Somerville, Paul G.

    2014-12-01

    The 2011 Mw 9.0 Tohoku earthquake generated an aftershock sequence that affected a large part of northern Honshu, and has given rise to widely divergent forecasts of changes in earthquake occurrence probabilities in northern Honshu. The objective of this review is to assess these forecasts as they relate to potential changes in the occurrence probabilities of damaging earthquakes in the Kanto Region. It is generally agreed that the 2011 Mw 9.0 Tohoku earthquake increased the stress on faults in the southern Kanto district. Toda and Stein (Geophys Res Lett 686, 40: doi:10.1002, 2013) further conclude that the probability of earthquakes in the Kanto Corridor has increased by a factor of 2.5 for the time period 11 March 2013 to 10 March 2018 in the Kanto Corridor. Estimates of earthquake probabilities in a wider region of the Southern Kanto District by Nanjo et al. (Geophys J Int, doi:10.1093, 2013) indicate that any increase in the probability of earthquakes is insignificant in this larger region. Uchida et al. (Earth Planet Sci Lett 374: 81-91, 2013) conclude that the Philippine Sea plate the extends well north of the northern margin of Tokyo Bay, inconsistent with the Kanto Fragment hypothesis of Toda et al. (Nat Geosci, 1:1-6,2008), which attributes deep earthquakes in this region, which they term the Kanto Corridor, to a broken fragment of the Pacific plate. The results of Uchida and Matsuzawa (J Geophys Res 115:B07309, 2013)support the conclusion that fault creep in southern Kanto may be slowly relaxing the stress increase caused by the Tohoku earthquake without causing more large earthquakes. Stress transfer calculations indicate a large stress transfer to the Off Boso Segment as a result of the 2011 Tohoku earthquake. However, Ozawa et al. (J Geophys Res 117:B07404, 2012) used onshore GPS measurements to infer large post-Tohoku creep on the plate interface in the Off-Boso region, and Uchida and Matsuzawa (ibid.) measured similar large creep off the Boso

  12. WGCEP Historical California Earthquake Catalog

    USGS Publications Warehouse

    Felzer, Karen R.; Cao, Tianqing

    2008-01-01

    This appendix provides an earthquake catalog for California and the surrounding area. Our goal is to provide a listing for all known M > 5.5 earthquakes that occurred from 1850-1932 and all known M > 4.0 earthquakes that occurred from 1932-2006 within the region of 31.0 to 43.0 degrees North and -126.0 to -114.0 degrees West. Some pre-1932 earthquakes 4 5, before the Northern California network was online. Some earthquakes from 1900-1932, and particularly from 1910-1932 are also based on instrumental readings, but the quality of the instrumental record and the resulting analysis are much less precise than for later listings. A partial exception is for some of the largest earthquakes, such as the San Francisco earthquake of April 18, 1906, for which global teleseismic records (Wald et al. 1993) and geodetic measurements (Thatcher et al. 1906) have been used to help determine magnitudes.

  13. Earthquake triggering in southeast Africa following the 2012 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Neves, Miguel; Custódio, Susana; Peng, Zhigang; Ayorinde, Adebayo

    2018-02-01

    In this paper we present evidence of earthquake dynamic triggering in southeast Africa. We analysed seismic waveforms recorded at 53 broad-band and short-period stations in order to identify possible increases in the rate of microearthquakes and tremor due to the passage of teleseismic waves generated by the Mw8.6 2012 Indian Ocean earthquake. We found evidence of triggered local earthquakes and no evidence of triggered tremor in the region. We assessed the statistical significance of the increase in the number of local earthquakes using β-statistics. Statistically significant dynamic triggering of local earthquakes was observed at 7 out of the 53 analysed stations. Two of these stations are located in the northeast coast of Madagascar and the other five stations are located in the Kaapvaal Craton, southern Africa. We found no evidence of dynamically triggered seismic activity in stations located near the structures of the East African Rift System. Hydrothermal activity exists close to the stations that recorded dynamic triggering, however, it also exists near the East African Rift System structures where no triggering was observed. Our results suggest that factors other than solely tectonic regime and geothermalism are needed to explain the mechanisms that underlie earthquake triggering.

  14. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    NASA Astrophysics Data System (ADS)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances

  15. 76 FR 79655 - Honey From Argentina: Notice of Extension of Time Limit for Preliminary Results

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... of Extension of Time Limit for Preliminary Results AGENCY: Import Administration, International Trade... preliminary results of this administrative review to no later than January 3, 2012. DATES: Effective Date... Initiation Notice. On September 7, 2011, the Department extended the time limit for the preliminary results...

  16. 76 FR 76374 - Honey From Argentina: Notice of Extension of Time Limit for Preliminary Results

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... of Extension of Time Limit for Preliminary Results AGENCY: Import Administration, International Trade... preliminary results of this administrative review to no later than December 15, 2011. DATES: Effective Date... Initiation Notice. On September 7, 2011, the Department extended the time limit for the preliminary results...

  17. Investigating the rupture direction of induced earthquakes in the Central US using empirical Green's functions

    NASA Astrophysics Data System (ADS)

    Lui, S. K. Y.; Huang, Y.

    2017-12-01

    A clear understanding of the source physics of induced seismicity is the key to effective seismic hazard mitigation. In particular, resolving their rupture processes can shed lights on the stress state prior to the main shock, as well as ground motion response. Recent numerical models suggest that, compared to their tectonic counterpart, induced earthquake rupture is more prone to propagate unilaterally toward the injection well where fluid pressure is high. However, this is also dependent on the location of the injection relative to the fault and yet to be compared with field data. In this study, we utilize the rich pool of seismic data in the central US to constrain the rupture processes of major induced earthquakes. By implementing a forward-modeling method, we take smaller earthquake recordings as empirical Green's functions (eGf) to simulate the rupture direction of the beginning motion generated by large events. One advantage of the empirical approach is to bypass the fundamental difficulty in resolving path and site effects. We selected eGf events that are close to the target events both in space and time. For example, we use a Mw 3.6 aftershock approximately 3 km from the 2011 Mw 5.7 earthquake in Prague, OK as its eGf event. Preliminary results indicate a southwest rupture for the Prague main shock, which possibly implies a higher fluid pressure concentration on the northeast end of the fault prior to the rupture. We will present further results on other Mw > 4.5 earthquakes in the States of Oklahoma and Kansas. With additional seismic stations installed in the past few years, events such as the 2014 Mw 4.9 Milan earthquake and the 2016 Mw 5.8 Pawnee earthquake are potential candidates with useful eGfs, as they both have good data coverage and a substantial number of aftershocks nearby. We will discuss the implication of our findings for the causative relationships between the injection operations and the induced rupture process.

  18. 76 FR 36519 - Purified Carboxymethylcellulose from the Netherlands; Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Carboxymethylcellulose from the Netherlands; Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import... Chemicals B.V. were made at less than normal value during the period of review. If these preliminary results are adopted in our final results of administrative review, we will issue appropriate assessment...

  19. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  20. Surveyor 3 Preliminary Science Results

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Surveyor III soft-landed on the Moon at 00:04 GMT on April 20, 1967. Data obtained have significantly increased our knowledge of the Moon. The Surveyor III spacecraft was similar to Surveyor I; the only major change in scientific instrumentation was the addition of a soil mechanics surface sampler. Surveyor III results at this preliminary evaluation of data give valuable information about the relation between the surface skin of under-dense material responsible for the photometric properties and the deeper layers of material whose properties resemble those of ordinary terrestrial soils. In addition, they provide new insight into the relation between the general lunar surface as seen by Surveyor I and the interior of a large subdued crater. The new results have also contributed to our understanding of the mechanism of downhill transport. Many critical questions cannot, however, be answered until final reduction of experimental data.

  1. How does Subduction Interface Roughness influence Megathrust Earthquakes: Insights from Natural Data and Analogue Models

    NASA Astrophysics Data System (ADS)

    van Rijsingen, E.; Lallemand, S.; Peyret, M.; Corbi, F.; Funiciello, F.; Arcay, D.; Heuret, A.

    2017-12-01

    The role of subducting oceanic features on the seismogenic behavior of subduction zones has been increasingly addressed over the past years, although their exact relationship remains unclear. Do features like seamounts, fracture zones or submarine ridges act as barriers, prohibiting ruptures to propagate, or do they initiate megathrust earthquakes instead? With this question in mind, we aim to better understand the influence of subduction interface roughness on the location of an earthquake's hypocenter, rupture area and seismic asperity. Following the work on compiling a dual-wavelength subduction interface roughness (SubRough) database, we used this roughness proxy for a global comparison with large subduction earthquakes (MW > 7.5), which occurred since 1900 (SubQuake, new catalogue). We made a quantitative comparison between the earthquake data on the landward side of the trench and the roughness proxy on the seaward side, taking into account the most appropriate direction of roughness extrapolation. Main results show that areas with low roughness at long wavelengths (i.e. 80-100 km) are more prone to host large- to mega-earthquakes. In addition to this natural data study, we perform analogue experiments, which allow us to investigate the role subducting oceanic features play over the course of multiple seismic cycles. The experimental setup consists of a gelatin wedge and an underthrusting rigid aluminum plate (i.e. the analogues of the overriding and downgoing plates, respectively). By adding scaled 3D-printed topographic features (e.g. seamounts) on the downgoing plate, we are able to accurately monitor the initiation and propagation of ruptures with respect to the subducting features. Here we show the results of our natural data study, some preliminary results of the analogue models and our first conclusions on how the subduction interface roughness may influence the seismogenic potential of an area.

  2. Geomorphic changes induced by the April-May 2015 earthquake sequence in the Pharak-Khumbu area (Nepal): preliminary assessments.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Landsliding is a common process shaping mountain slopes. There are various potential landslide triggers (rainfall, bank erosion, earthquakes) and their effectiveness depends on their distribution, frequency and magnitude. In a Himalayan context, the effects of monsoon rainfall can be assessed every year whereas the unpredictability and low frequency of large earthquakes make their role in triggering slope instability more obscure. A 7.8 magnitude earthquake struck central Nepal (Gorkha District) on 25 April 2015 and was followed by many aftershocks exceeding magnitude 5, including another strong 7.3 magnitude earthquake on May 12, 2015 (Dolakha District). This seismic crisis provides an exceptional opportunity to assess the disruptions that earthquakes may cause in "regular" geomorphic systems controlled by rainfall. Here we present field observations carried out in the Pharak-Khumbu area (East Nepal, Dudh Kosi catchment) before and after the April-May 2015 earthquakes. The Pharak, a "middle mountains" (2000-4500 m) area, is affected by monsoon rains (3000 m/yr at 2500 m) and characterised by steep hillslopes, shaped by different geomorphic processes according to slope height and aspect, rock type and strength, inherited landforms, stream connectivity and current land use changes. This study focuses on the south of Lukla (Phakding District), and more specifically on the Khari Khola catchment and its surroundings. The area lies at the transition between the Higher Himalayan crystallines and the Lesser Himalayan meta-sediments. On the basis of our diachronic observations (March and November 2015), we surveyed and mapped new earthquake-induced slope instabilities such as rock falls, rockslides, landslides and debris flows and a combination of several of them. Interviews with local people also helped to assess the exact timing of some events. While the first M 7.8 earthquake produced significant impacts in the northern Khumbu area, the M 7.3 aftershock seems to have

  3. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography.

    PubMed

    Dong, Zhi-Hui; Yang, Zhi-Gang; Chen, Tian-Wu; Chu, Zhi-Gang; Deng, Wen; Shao, Heng

    2011-01-01

    Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  4. The Loma Prieta, California, Earthquake of October 17, 1989: Earthquake Occurrence

    USGS Publications Warehouse

    Coordinated by Bakun, William H.; Prescott, William H.

    1993-01-01

    Professional Paper 1550 seeks to understand the M6.9 Loma Prieta earthquake itself. It examines how the fault that generated the earthquake ruptured, searches for and evaluates precursors that may have indicated an earthquake was coming, reviews forecasts of the earthquake, and describes the geology of the earthquake area and the crustal forces that affect this geology. Some significant findings were: * Slip during the earthquake occurred on 35 km of fault at depths ranging from 7 to 20 km. Maximum slip was approximately 2.3 m. The earthquake may not have released all of the strain stored in rocks next to the fault and indicates a potential for another damaging earthquake in the Santa Cruz Mountains in the near future may still exist. * The earthquake involved a large amount of uplift on a dipping fault plane. Pre-earthquake conventional wisdom was that large earthquakes in the Bay area occurred as horizontal displacements on predominantly vertical faults. * The fault segment that ruptured approximately coincided with a fault segment identified in 1988 as having a 30% probability of generating a M7 earthquake in the next 30 years. This was one of more than 20 relevant earthquake forecasts made in the 83 years before the earthquake. * Calculations show that the Loma Prieta earthquake changed stresses on nearby faults in the Bay area. In particular, the earthquake reduced stresses on the Hayward Fault which decreased the frequency of small earthquakes on it. * Geological and geophysical mapping indicate that, although the San Andreas Fault can be mapped as a through going fault in the epicentral region, the southwest dipping Loma Prieta rupture surface is a separate fault strand and one of several along this part of the San Andreas that may be capable of generating earthquakes.

  5. Tsunami Numerical Simulation for Hypothetical Giant or Great Earthquakes along the Izu-Bonin Trench

    NASA Astrophysics Data System (ADS)

    Harada, T.; Ishibashi, K.; Satake, K.

    2013-12-01

    . Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with Corioli's force (Satake, 1995, PAGEOPH) in the area of 130 - 145°E and 25 - 37°N. The 15-seconds gridded bathymetry data are used. The tsunami propagations for eight hours since the faulting of the various fault models were computed. As a result, large tsunamis from assumed giant/great both interplate and outer-rise earthquakes reach the Ryukyu Islands' coasts and the Pacific coasts of Kyushu, Shikoku and western Honshu west of Kanto. Therefore, the tsunami simulations support the Ishibashi and Harada's hypothesis. At the time of writing, the best yet preliminary model to reproduce the 1605 tsunami heights is an outer-rise steep fault model which extends 26.5 - 29.0°N (300 km of length) and with 16.7 m of average slip (Mw 8.6). We will examine tsunami behavior in the Pacific Ocean from this fault model. To examine our results, field investigations of tsunami deposits in the Bonin Islands and discussions on plate dynamics and seismogenic characteristics along the Izu-Bonin trench are necessary.

  6. Hypocenter Determination Using a Non-Linear Method for Events in West Java, Indonesia: A Preliminary Result

    NASA Astrophysics Data System (ADS)

    Rosalia, Shindy; Widiyantoro, Sri; Nugraha, Andri Dian; Ash Shiddiqi, Hasbi; Supendi, Pepen; Wandono

    2017-04-01

    West Java, part of the Sunda Arc, has relatively high seismicity due to subduction activity and faulting. The first step of tomography study in order to infer the geometry of the structure beneath West Java is to conduct precise earthquake hypocenter determination. In this study, we used earthquake waveform data taken from the regional Meteorological, Climatological, Geophysical Agency (BMKG) network from South Sumatra to central Java. We have repicked P and S arrival times from about 800 events in the period from April 2009 to December 2015. We selected the events which have azimuthal gap < 210° and phase more than 8. The non-linear method employed in this study used the oct-tree sampling algorithm from NonLinLoc program to determine the earthquake hypocenters. The hypocenter location results give better clustering earthquakes which are correlated well with geological structure in the study region. We also compared our results with BMKG catalog data and found that the average hypocenter location difference is about 12 km in latitude direction, 9.5 km in longitude direction, and the average focal depth difference is about 19.5 km. For future studies, we will conduct tomographic imaging to invert 3-D seismic velocity structure beneath the western part of Java.

  7. Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010

    NASA Astrophysics Data System (ADS)

    Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.

    2010-12-01

    On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.

  8. PAGER--Rapid assessment of an earthquake?s impact

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M.

    2010-01-01

    PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts--which were formerly sent based only on event magnitude and location, or population exposure to shaking--now will also be generated based on the estimated range of fatalities and economic losses.

  9. 75 FR 39207 - Purified Carboxymethylcellulose From Finland: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Carboxymethylcellulose From Finland: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative...: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative Review, 75 FR 3444... than July 7, 2010. Extension of Time Limits for Preliminary Results Section 751(a)(3)(A) of the Tariff...

  10. Earthquake triggering by seismic waves following the landers and hector mine earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.A.; Bodin, P.; Harris, R.A.

    2001-01-01

    The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake1-6. Here we quantify the spatial and temporal patterns of the seismicity rate changes7. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.

  11. Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L.

    2018-01-01

    Nowcasting is a new method of statistically classifying seismicity and seismic risk (Rundle et al. 2016). In this paper, the method is applied to the induced seismicity at the Geysers geothermal region in California and the induced seismicity due to fluid injection in Oklahoma. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say M_{λ } ≥ 4, and one small say M_{σ } ≥ 2. The method utilizes the number of small earthquakes that occurs between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that has occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of M_{σ } ≥ 2.75 earthquakes in Oklahoma to nowcast the number of M_{λ } ≥ 4.0 earthquakes in Oklahoma. The applicability of the scaling is illustrated during the rapid build-up of injection-induced seismicity between 2012 and 2016, and the subsequent reduction in seismicity associated with a reduction in fluid injections. The same method is applied to the geothermal-induced seismicity at the Geysers, California, for comparison.

  12. Unraveling earthquake stresses: Insights from dynamically triggered and induced earthquakes

    NASA Astrophysics Data System (ADS)

    Velasco, A. A.; Alfaro-Diaz, R. A.

    2017-12-01

    Induced seismicity, earthquakes caused by anthropogenic activity, has more than doubled in the last several years resulting from practices related to oil and gas production. Furthermore, large earthquakes have been shown to promote the triggering of other events within two fault lengths (static triggering), due to static stresses caused by physical movement along the fault, and also remotely from the passage of seismic waves (dynamic triggering). Thus, in order to understand the mechanisms for earthquake failure, we investigate regions where natural, induced, and dynamically triggered events occur, and specifically target Oklahoma. We first analyze data from EarthScope's USArray Transportable Array (TA) and local seismic networks implementing an optimized (STA/LTA) detector in order to develop local detection and earthquake catalogs. After we identify triggered events through statistical analysis, and perform a stress analysis to gain insight on the stress-states leading to triggered earthquake failure. We use our observations to determine the role of different transient stresses in contributing to natural and induced seismicity by comparing these stresses to regional stress orientation. We also delineate critically stressed regions of triggered seismicity that may indicate areas susceptible to earthquake hazards associated with sustained fluid injection in provinces of induced seismicity. Anthropogenic injection and extraction activity can alter the stress state and fluid flow within production basins. By analyzing the stress release of these ancient faults caused by dynamic stresses, we may be able to determine if fluids are solely responsible for increased seismic activity in induced regions.

  13. The 29 July 2014 (Mw 6.4) Southern Veracruz, Mexico Earthquake: Scenary Previous to Its Occurrence.

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.

    2014-12-01

    On 29 July 2014 (10:46 UTC) a magnitude 6.4 (Mw) earthquake occurred at the southern Veracruz, Mexico region. The epicenter was preliminary located at 17.70° N and 95.63° W. It was a normal fault event with the slip on a fault that trend NNW and a focus approximately 117 km below the surface of the Gulf of Mexico costal plane. The earthquake was widely felt through centro and southern Mexico. In Oaxaca City 133 km to the south a person die of a hearth attack. No damages were reported. Most prominent moderate-sized earthquakes occurring in the southern Veracruz region since 1959 has been concentrated along two well defined seismic belts. One belt runs off the coast following nearly its contour. Here the earthquakes are shallow depth and mostly show a reverse fault mechanism. This belt of seismicity begins at the Los Tuxtlas volcanic field. Another seismic belt is located inland 70 km to the west. Here most earthquakes are of intermediate-depth (108-154 km) focus and normal faulting mechanism. The July 2014 earthquake is located near to this second seismic belt. In the present paper we discuss, within the regional geotectonic framework, the location and some aspects of the rupture process of the July 2014 earthquake.

  14. Rapid Source Characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.

    2011-01-01

    On March 11th, 2011, a moment magnitude 9.0 earthquake struck off the coast of northeast Honshu, Japan, generating what may well turn out to be the most costly natural disaster ever. In the hours following the event, the U.S. Geological Survey National Earthquake Information Center led a rapid response to characterize the earthquake in terms of its location, size, faulting source, shaking and slip distributions, and population exposure, in order to place the disaster in a framework necessary for timely humanitarian response. As part of this effort, fast finite-fault inversions using globally distributed body- and surface-wave data were used to estimate the slip distribution of the earthquake rupture. Models generated within 7 hours of the earthquake origin time indicated that the event ruptured a fault up to 300 km long, roughly centered on the earthquake hypocenter, and involved peak slips of 20 m or more. Updates since this preliminary solution improve the details of this inversion solution and thus our understanding of the rupture process. However, significant observations such as the up-dip nature of rupture propagation and the along-strike length of faulting did not significantly change, demonstrating the usefulness of rapid source characterization for understanding the first order characteristics of major earthquakes.

  15. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    NASA Astrophysics Data System (ADS)

    Yao, Y. B.; Chen, P.; Zhang, S.; Chen, J. J.; Yan, F.; Peng, W. F.

    2012-03-01

    The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC) from the global ionosphere map (GIM). We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0-2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time). Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  16. Earthquake-related versus non-earthquake-related injuries in spinal injury patients: differentiation with multidetector computed tomography

    PubMed Central

    2010-01-01

    Introduction In recent years, several massive earthquakes have occurred across the globe. Multidetector computed tomography (MDCT) is reliable in detecting spinal injuries. The purpose of this study was to compare the features of spinal injuries resulting from the Sichuan earthquake with those of non-earthquake-related spinal trauma using MDCT. Methods Features of spinal injuries of 223 Sichuan earthquake-exposed patients and 223 non-earthquake-related spinal injury patients were retrospectively compared using MDCT. The date of non-earthquake-related spinal injury patients was collected from 1 May 2009 to 22 July 2009 to avoid the confounding effects of seasonal activity and clothing. We focused on anatomic sites, injury types and neurologic deficits related to spinal injuries. Major injuries were classified according to the grid 3-3-3 scheme of the Magerl (AO) classification system. Results A total of 185 patients (82.96%) in the earthquake-exposed cohort experienced crush injuries. In the earthquake and control groups, 65 and 92 patients, respectively, had neurologic deficits. The anatomic distribution of these two cohorts was significantly different (P < 0.001). Cervical spinal injuries were more common in the control group (risk ratio (RR) = 2.12, P < 0.001), whereas lumbar spinal injuries were more common in the earthquake-related spinal injuries group (277 of 501 injured vertebrae; 55.29%). The major types of injuries were significantly different between these cohorts (P = 0.002). Magerl AO type A lesions composed most of the lesions seen in both of these cohorts. Type B lesions were more frequently seen in earthquake-related spinal injuries (RR = 1.27), while we observed type C lesions more frequently in subjects with non-earthquake-related spinal injuries (RR = 1.98, P = 0.0029). Conclusions Spinal injuries sustained in the Sichuan earthquake were located mainly in the lumbar spine, with a peak prevalence of type A lesions and a high occurrence of

  17. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk

    USGS Publications Warehouse

    Celsi, R.; Wolfinbarger, M.; Wald, D.

    2005-01-01

    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  18. Pre-earthquake magnetic pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J.; Freund, F.

    2015-08-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  19. The 2011 Mineral, VA M5.8 Earthquake Ground Motions and Stress Drop: An Important Contribution to the NGA East Ground Motion Database

    NASA Astrophysics Data System (ADS)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2011-12-01

    The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.

  20. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    PubMed Central

    Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-01-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam. PMID:29657755

  1. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  2. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China.

    PubMed

    Zhao, Bo; Wang, Yun-Sheng; Luo, Yong-Hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  3. First Results of 3 Year Monitoring of Red Wood Ants' Behavioural Changes and Their Possible Correlation with Earthquake Events

    NASA Astrophysics Data System (ADS)

    Berberich, Gabriele; Berberich, Martin; Grumpe, Arne; Wöhler, Christian; Schreiber, Ulrich

    2013-04-01

    Short-term earthquake predictions with an advance warning of several hours or days can currently not be performed reliably and remain limited to only a few minutes before the event. Abnormal animal behaviours prior to earthquakes have been reported previously but their detection creates problems in monitoring and reliability. A different situation is encountered for red wood ants (RWA; Formica rufa-group (Hymenoptera: Formicidae). They have stationary nest sites on tectonically active, gas-bearing fault systems. These faults may be potential earthquake areas and are simultaneously information channels deeply reaching into the crust. A particular advantage of monitoring RWA is their high sensitivity to environmental changes. Besides an evolutionarily developed extremely strong temperature sensitivity of 0.25 K, they have chemoreceptors for the detection of CO2 concentrations and a sensitivity for electromagnetic fields. Changes of the electromagnetic field are discussed or short-lived "thermal anomalies" are reported as trigger mechanisms for bioanomalies of impending earthquakes. For 3 years, we have monitored two Red Wood Ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), 24/7 by high-resolution cameras equipped with a colour and infrared sensor. In the Neuwied Basin, an average of about 100 earthquakes per year with magnitudes up to M 3.9 occur located on different tectonic fault regimes (strike-slip faults and/or normal or thrust faults). The RWA mounds are located on two different fault regimes approximately 30 km apart. First results show that the ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants' behaviour hours before the earthquake event: The nocturnal rest phase and daily activity are suppressed, and standard daily routine is continued not before the next day. Additional parameters that might have an effect on the ants' daily routine

  4. Are Earthquake Clusters/Supercycles Real or Random?

    NASA Astrophysics Data System (ADS)

    Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2016-12-01

    Long records of earthquakes at plate boundaries such as the San Andreas or Cascadia often show that large earthquakes occur in temporal clusters, also termed supercycles, separated by less active intervals. These are intriguing because the boundary is presumably being loaded by steady plate motion. If so, earthquakes resulting from seismic cycles - in which their probability is small shortly after the past one, and then increases with time - should occur quasi-periodically rather than be more frequent in some intervals than others. We are exploring this issue with two approaches. One is to assess whether the clusters result purely by chance from a time-independent process that has no "memory." Thus a future earthquake is equally likely immediately after the past one and much later, so earthquakes can cluster in time. We analyze the agreement between such a model and inter-event times for Parkfield, Pallet Creek, and other records. A useful tool is transformation by the inverse cumulative distribution function, so the inter-event times have a uniform distribution when the memorylessness property holds. The second is via a time-variable model in which earthquake probability increases with time between earthquakes and decreases after an earthquake. The probability of an event increases with time until one happens, after which it decreases, but not to zero. Hence after a long period of quiescence, the probability of an earthquake can remain higher than the long-term average for several cycles. Thus the probability of another earthquake is path dependent, i.e. depends on the prior earthquake history over multiple cycles. Time histories resulting from simulations give clusters with properties similar to those observed. The sequences of earthquakes result from both the model parameters and chance, so two runs with the same parameters look different. The model parameters control the average time between events and the variation of the actual times around this average, so

  5. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  6. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    NASA Astrophysics Data System (ADS)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  7. Earthquakes-Rattling the Earth's Plumbing System

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  8. Decision-Making in Flight with Different Convective Weather Information Sources: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.; Chamberlain, James P.

    2004-01-01

    This paper reports preliminary and partial results of a flight experiment to address how General Aviation (GA) pilots use weather cues to make flight decisions. This research presents pilots with weather cue conditions typically available to GA pilots in visual meteorological conditions (VMC) and instrument meteorological conditions (IMC) today, as well as in IMC with a Graphical Weather Information System (GWIS). These preliminary data indicate that both VMC and GWIS-augmented IMC conditions result in better confidence, information sufficiency and perceived performance than the current IMC condition. For all these measures, the VMC and GWIS-augmented conditions seemed to provide similar pilot support. These preliminary results are interpreted for their implications on GWIS display design, training, and operational use guidelines. Final experimental results will compare these subjective data with objective data of situation awareness and decision quality.

  9. 77 FR 6061 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Citrate Salts From Canada: Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import... below normal value (NV). If the preliminary results are adopted in the final results of the... all appropriate entries. Interested parties are invited to comment on the preliminary results. FOR...

  10. Operational earthquake forecasting can enhance earthquake preparedness

    USGS Publications Warehouse

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  11. If ionospheric and geomagnetic disturbances observed before strong earthquakes may result from simultaneous impact of space weather on all geospheres including solid earth

    NASA Astrophysics Data System (ADS)

    Khachikyan, Galina

    2016-07-01

    It is revealed in previous decades that ionospheric disturbances precede strong earthquakes, thus, the ionospheric precursors of strong earthquakes are now under developing [Pulinets and Boyarchuk, 2004]. Simultaneously, it is revealed that strong earthquakes may be preceded by geomagnetic disturbances as well, as a result, the geomagnetic variations, for example, in the ULF band, are considered now as precursory signals [Fraser-Smith, 1990, doi/10.1029/GL017i009p01465]. At the same time, there is currently no reliable theory nor for ionospheric or to magnetic precursors of earthquakes. Moreover, several researches have reexamined some of above results and concluded that observed magnetic disturbances before strong earthquakes could be generated by other sources, such as global magnetic activity [e.g. Campbell, 2009, doi/10.1029/2008JA013932], and that ionospheric anomalies can also be an effect of the increase of the global magnetic activity [e. g. Masci and Thomas, 2015, doi:10.1002/2015RS005734]. Taking into account such conclusions, one may suggest that the observed ionospheric and geomagnetic disturbances before strong earthquakes might be due to simultaneous influence of a space weather on the complicated surrounding system including the solid earth. This report presents some statistical results to prove such suggestion. In particular, it is shown [Khachikyan et al., 2012, doi:10.4236/ijg.2012.35109] that maximal possible earthquake magnitude (seismic potential) can be determined, in first approximation, on the base of geomagnetic Z-component measured in the Geocentric Solar Magnetosphere (GSM) coordinate system, in which the space weather impact on the earth's environment, due to reconnection of the solar wind magnetic field with the earth's magnetic field, is more ordered.

  12. Comprehensive Studies on the Seismic Gap between the Wenchuan and Lushan Earthquakes

    NASA Astrophysics Data System (ADS)

    Liang, C.

    2016-12-01

    An array of 20 short-period and 15 broadband seismometers were deployed to monitor the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake. The Wenchuan earthquake ruptured from epicenter at (31.01°N, 103.42°E) largely northeastward while the Lushan earthquake ruptured from epicenter at (30.3°N, 103.0°E) largely southwestward. The region between the two earthquakes has recorded very few aftershocks and cataloged seismicity before and after the two big earthquakes compared to neighboring segments. As one small segment of the 500KM long Longmen Shan fault system, its absence of seismicity draws hot debate on whether a big one is still in brewing or steady creeping is in control of the strain energy release. The dense array is deployed primarily aimed to detect events that are much smaller than cataloged events and to determine if the segment is experiencing constantly creeping. The preliminary findings include: (1) source mechanisms show that the seismic gap appears to be a transitional zone between north and south segment. The events to the south are primarily thrust while events to north have more or less striking-slip components. This is also the case for both Lushan and Wenchuan earthquake; (2) The receiver function analysis shows that the Moho beneath the seismic Gap is less defined than its adjacent region with relatively weaker Ps conversion phases; (3) Both receiver function and ambient noise tomography show that the velocities in the upper crust is relatively lower in the Gap region than surrounding regions; (4) significant number of small earthquakes are located near surface in the gap region. Further examinations should be conducted before we can make a sounding conclusion on what mechanism is in control of the seismicity in this region.

  13. Earthquake Related Variation of Total Electron Content in Ionosphere over Chinese Mainland Derived from Observations of a Nationwide GNSS Network

    NASA Astrophysics Data System (ADS)

    Gan, Weijun

    2016-07-01

    Crustal Movement Observation Network of China (CMONOC) is a key national scientific infrastructure project carried out during 1997-2012 with 2 phases. The network is composed of 260 continuously observed GNSS stations (CORS) and 2081 campaign mode GNSS stations, with the main purpose to monitor the crustal movement, perceptible water vapor (PWV), total electron content (TEC), and many other tectonic and environmental elements around mainland China, by mainly using the Global Navigation Satellite System (GNSS) technology. Here, based on the GNSS data of 260 CORS of COMNOC for about 5 years, we investigated the characteristics of TEC in ionosphere over Chinese Mainland and discussed if there was any abnormal change of TEC before and after a big earthquake. our preliminary results show that it is hard to see any convincing precursor of TEC before a big earthquake. However, the huge energy released by a big earthquake can obviously disturb the TEC over meizoseismal area.

  14. Earthquake Forecasting System in Italy

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  15. Preliminary numerical simulations of the 27 February 2010 Chile tsunami: first results and hints in a tsunami early warning perspective

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Tonini, R.; Armigliato, A.; Zaniboni, F.; Pagnoni, G.; Gallazzi, Sara; Bressan, Lidia

    2010-05-01

    The tsunamigenic earthquake (M 8.8) that occurred offshore central Chile on 27 February 2010 can be classified as a typical subduction-zone earthquake. The effects of the ensuing tsunami have been devastating along the Chile coasts, and especially between the cities of Valparaiso and Talcahuano, and in the Juan Fernandez islands. The tsunami propagated across the entire Pacific Ocean, hitting with variable intensity almost all the coasts facing the basin. While the far-field propagation was quite well tracked almost in real-time by the warning centres and reasonably well reproduced by the forecast models, the toll of lives and the severity of the damage caused by the tsunami in the near-field occurred with no local alert nor warning and sadly confirms that the protection of the communities placed close to the tsunami sources is still an unresolved problem in the tsunami early warning field. The purpose of this study is two-fold. On one side we perform numerical simulations of the tsunami starting from different earthquake models which we built on the basis of the preliminary seismic parameters (location, magnitude and focal mechanism) made available by the seismological agencies immediately after the event, or retrieved from more detailed and refined studies published online in the following days and weeks. The comparison with the available records of both offshore DART buoys and coastal tide-gauges is used to put some preliminary constraints on the best-fitting fault model. The numerical simulations are performed by means of the finite-difference code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna, Italy, which can solve both the linear and non-linear versions of the shallow-water equations on nested grids. The second purpose of this study is to use the conclusions drawn in the previous part in a tsunami early warning perspective. In the framework of the EU-funded project DEWS (Distant Early Warning System), we will

  16. High-Resolution Seismic Reflection Profiling Across the Black Hills Fault, Clark County, Nevada: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Jernsletten, J. A.; Saldana, S. C.; Hirsch, A.; McEwan, D.

    2005-12-01

    The Black Hills fault (BHF) is located in the central Basin and Range Province of western North America, a region that has undergone significant Cenozoic extension. The BHF is an east-dipping normal fault that forms the northwestern structural boundary of the Eldorado basin and lies ~20 km southeast of Las Vegas, Nevada. A recent trench study indicated that the fault offsets Holocene strata, and is capable of producing Mw 6.4-6.8 earthquakes. These estimates indicate a subsurface rupture length at least 10 km greater than the length of the scarp. This poses a significant hazard to structures such as the nearby Hoover Dam Bypass Bridge, which is being built to withstand a Mw 6.2-7.0 earthquake on local faults. If the BHF does continue in the subsurface, this structure, as well as nearby communities (Las Vegas, Boulder City, and Henderson), may not be as safe as previously expected. Previous attempts to image the fault with shallow seismics (hammer source) were inconclusive. However, gravity studies imply that the fault continues south of the scarp. Therefore, a new experiment utilizing high-resolution seismic reflection was performed to image subsurface geologic structures south of the scarp. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. This produced two 300 m reflection profiles, with a maximum depth of 500-600 m. A preliminary look at these data indicates the existence of two faults, potentially confirming that the BHF continues in the subsurface south of the scarp.

  17. Comparison of the Structurally Controlled Landslides Numerical Model Results to the M 7.2 2013 Bohol Earthquake Co-seismic Landslides

    NASA Astrophysics Data System (ADS)

    Macario Galang, Jan Albert; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2015-04-01

    The M 7.2 October 15, 2013 Bohol earthquake is the most destructive earthquake to hit the Philippines since 2012. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". Its name, taken after the barangay (village) where the fault is best exposed and was first seen. The earthquake resulted in 209 fatalities and over 57 billion USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparedness against this type of landslide therefore, relies heavily on the identification of fracture-related unstable slopes. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations or discontinuity sets were mapped in the field with the aid of a 2012 IFSAR Digital Terrain Model (DTM) with 5-meter pixel resolution and < 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. The results were compared to a post-earthquake landslide inventory of 456 landslides. Out the total number of landslides identified from post-earthquake high-resolution imagery, 366 or 80% intersect the structural-controlled hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow paths, located structurally-controlled unstable zones can be used to mark unsafe areas for settlement. The

  18. Transient Viscoelastic Relaxation and Afterslip Immediately After the 2011 Mw9.0 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Burgmann, R.; Blewitt, G.; Freymueller, J. T.; Wang, K.

    2017-12-01

    It is well known that viscoelastic relaxation of the upper mantle and aseismic afterslip of the fault play important roles in controlling postseismic crustal deformation of giant earthquakes. Thanks to modern geodetic observations, postseismic deformation at timescales of months to a few decades has been well studied. However, how the deformation hours to days following the earthquake evolves into longer-term processes remains poorly understood. To investigate this problem, we processed high-rate 5-minute GPS data of the GeoNET in Japan after the 2011 Mw9.0 Tohoku earthquake. Some GPS stations moved more than 20 cm during the first day after the earthquake. Such rapid deformation immediately after the earthquake has been lumped into the coseismic offsets of the earthquake in published studies. In this work, we have developed three-dimensional viscoelastic finite element models to study the transient viscoelastic relaxation and evolution of the afterslip at scales from hours to years. In our model, the viscoelastic relaxation is represented by the bi-viscous Burgers rheology. Steady-state Maxwell viscosities are based on previously published studies. Afterslip on the fault is modeled by a narrow weak shear zone. Our preliminary tests indicate that the transient Kelvin viscosity is about two orders of magnitude lower than that of the steady-state Maxwell viscosity. Afterslip of the fault decays exponentially with time. In the first day after the earthquake, the megathrust slipped aseismically for up to more than 50 cm.

  19. Hybrid microneedles devices for diagnostic and therapeutic applications: fabrication and preliminary results

    NASA Astrophysics Data System (ADS)

    Dardano, P.; Caliò, A.; Politi, J.; Di Palma, V.; Bevilacqua, M. F.; Rea, I.; Casalino, M.; Di Matteo, A.; Rendina, I.; De Stefano, L.

    2015-06-01

    Microneedles are newly developed biomedical devices, whose advantages are mainly in the non-invasiveness, discretion and versatility of use both as diagnostics and as therapeutics tool. In fact, they can be used both for drugs delivery in the interstitial fluids and for the analysis of the interstitial fluid. In this work we present the preliminary results for two devices based on micro needles in PolyEthylene (Glycol). The first for the drugs delivery includes a membrane whose optical reflected wavelength is related to the concentration of drug. Here, we present our preliminary result in diffusion of drugs between the membrane and the microneedles. The second device is gold coated and it works as electrode for the electrochemical detection of species in the interstitial fluid. A preliminary result in detection of glucose will be shown.

  20. Earthquake forecasting test for Kanto district to reduce vulnerability of urban mega earthquake disasters

    NASA Astrophysics Data System (ADS)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2012-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project on earthquake predictability research. The final goal of this project is to search for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined CSEP and started the Japanese testing center called as CSEP-Japan. This testing center provides an open access to researchers contributing earthquake forecast models applied to Japan. Now more than 100 earthquake forecast models were submitted on the prospective experiment. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by CSEP. The total number of experiments was implemented for approximately 300 rounds. These results provide new knowledge concerning statistical forecasting models. We started a study for constructing a 3-dimensional earthquake forecasting model for Kanto district in Japan based on CSEP experiments under the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters. Because seismicity of the area ranges from shallower part to a depth of 80 km due to subducting Philippine Sea plate and Pacific plate, we need to study effect of depth distribution. We will develop models for forecasting based on the results of 2-D modeling. We defined the 3D - forecasting area in the Kanto region with test classes of 1 day, 3 months, 1 year and 3 years, and magnitudes from 4.0 to 9.0 as in CSEP-Japan. In the first step of the study, we will install RI10K model (Nanjo, 2011) and the HISTETAS models (Ogata, 2011) to know if those models have good performance as in the 3 months 2-D CSEP-Japan experiments in the Kanto region before the 2011 Tohoku event (Yokoi et al., in preparation). We use CSEP

  1. Preliminary report on crustal deformation surveys and tsunami measurements due to the July 17, 2006 Java Earthquake and Tsunami, Indonesia

    NASA Astrophysics Data System (ADS)

    Kato, T.; Ito, T.; Abidin, H. Z.; Agustan, A.

    2006-12-01

    A large earthquake along a plate boundary occurred in the south of Java Island on July 17, 2006, whose magnitude was 7.7 (USGS) and caused significant tsunami. We made GPS observations and tsunami heights measurements during the period from July 24 to August 1, 2006. The earthquake seems to be due to an interplate low angle reverse faulting (e.g. Yagi, 2006). Yet, there would be a possibility of high angle faulting within the subducting lithosphere (e.g., Yamanaka, 2006). Crustal deformation distribution due to the earthquake, aided by tsunami heights measurements, might clarify which would be the case. We occupied 29 sites by GPS in the area of southern Java Island encompassing the area from 107.8E to 109.50E. These sites were occupied once before the earthquake so that co-seismic displacements might be seen. If we assume that the slip on the fault surface is as that estimated assuming magnitude to be 7.7, co- seismic displacements would be as small as a few centimeters or less. However, the tsunami heights measurements at 11 sites that were conducted along with the GPS observation were 6-7m along the southern coast of Java Islands and indicates that the observed heights are systematically higher than that estimated from numerical simulations (e.g., Koshimura, 2006). This might suggest that fault offsets have been larger nearly double - than that estimated using seismic analysis. If this is the case, the co-seismic crustal movements might be larger than above estimation. This might lead us to an idea that the rupture was very slow and did not radiate enough seismic energy to underestimate the earthquake magnitude. If this is the case, the earthquake might have been a "tsunami earthquake" that is similar to the one that occurred on June 2, 1994 in the east of the present earthquake.

  2. Earthquakes for Kids

    MedlinePlus

    ... across a fault to learn about past earthquakes. Science Fair Projects A GPS instrument measures slow movements of the ground. Become an Earthquake Scientist Cool Earthquake Facts Today in Earthquake History A scientist stands in ...

  3. Limiting the Effects of Earthquake Shaking on Gravitational-Wave Interferometers

    NASA Astrophysics Data System (ADS)

    Perry, M. R.; Earle, P. S.; Guy, M. R.; Harms, J.; Coughlin, M.; Biscans, S.; Buchanan, C.; Coughlin, E.; Fee, J.; Mukund, N.

    2016-12-01

    Second-generation ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-amplitude waves from teleseismic events, which can cause astronomical detectors to fall out of mechanical lock (lockloss). This causes the data to be useless for gravitational wave detection around the time of the seismic arrivals and for several hours thereafter while the detector stabilizes enough to return to the locked state. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining lock even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is typically available within 5 to 20 minutes of the origin time of significant earthquakes, generally before the arrival of high-amplitude waves from these teleseisms at LIGO. These alerts are used to estimate arrival times and ground velocities at the gravitational wave detectors. In general, 94% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal with about 90% of the events falling within a factor of 2 of the final predicted value. By using a Machine Learning Algorithm, we develop a lockloss prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could save lockloss from 40-100 earthquake events in a 6-month time-period.

  4. Tsunami Source Estimate for the 1960 Chilean Earthquake from Near- and Far-Field Observations

    NASA Astrophysics Data System (ADS)

    Ho, T.; Satake, K.; Watada, S.; Fujii, Y.

    2017-12-01

    The tsunami source of the 1960 Chilean earthquake was estimated from the near- and far-field tsunami data. The 1960 Chilean earthquake is known as the greatest earthquake instrumentally ever recorded. This earthquake caused a large tsunami which was recorded by 13 near-field tidal gauges in South America, and 84 far-field stations around the Pacific Ocean at the coasts of North America, Asia, and Oceania. The near-field stations had been used for estimating the tsunami source [Fujii and Satake, Pageoph, 2013]. However, far-field tsunami waveforms have not been utilized because of the discrepancy between observed and simulated waveforms. The observed waveforms at the far-field stations are found systematically arrived later than the simulated waveforms. This phenomenon has been also observed in the tsunami of the 2004 Sumatra earthquake, the 2010 Chilean earthquake, and the 2011 Tohoku earthquake. Recently, the factors for the travel time delay have been explained [Watada et al., JGR, 2014; Allgeyer and Cummins, GRL, 2014], so the far-field data are usable for tsunami source estimation. The phase correction method [Watada et al., JGR, 2014] converts the tsunami waveforms computed by the linear long wave into the dispersive waveform which accounts for the effects of elasticity of the Earth and ocean, ocean density stratification, and gravitational potential change associated with tsunami propagation. We apply the method to correct the computed waveforms. For the preliminary initial sea surface height inversion, we use 12 near-field stations and 63 far-field stations, located in the South and North America, islands in the Pacific Ocean, and the Oceania. The estimated tsunami source from near-field stations is compared with the result from both near- and far-field stations. Two estimated sources show a similar pattern: a large sea surface displacement concentrated at the south of the epicenter close to the coast and extended to south. However, the source estimated from

  5. Full-aperture x-ray tests of Kirkpatrick-Baez modules: preliminary results

    NASA Astrophysics Data System (ADS)

    Pina, L.; Marsikova, V.; Hudec, R.; Inneman, A.; Marsik, J.; Cash, W.; Shipley, A.; Zeiger, B.

    2011-05-01

    We report on preliminary results of full aperture X-ray optical tests at the X-ray test facility at the University of Colorado (USA) of four test modules of Kirkpatrick-Baez (KB) X-ray optical systems performed in August 2010. Direct experimental comparisons were made between gold-coated optics of two novel substrates: glass foils and silicon wafers. The preliminary results are promising, with full-width half-maxima of full stacks being of order of 30 arcsec in 2D full arrangement. These results justify further efforts to improve KB optics for use in low-cost, high-performance space-borne astronomical imaging instruments for X-ray wavelengths.

  6. Continuing Megathrust Earthquake Potential in northern Chile after the 2014 Iquique Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Herman, M. W.; Barnhart, W. D.; Furlong, K. P.; Riquelme, S.; Benz, H.; Bergman, E.; Barrientos, S. E.; Earle, P. S.; Samsonov, S. V.

    2014-12-01

    The seismic gap theory, which identifies regions of elevated hazard based on a lack of recent seismicity in comparison to other portions of a fault, has successfully explained past earthquakes and is useful for qualitatively describing where future large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which until recently had not ruptured in a megathrust earthquake since a M~8.8 event in 1877. On April 1 2014, a M 8.2 earthquake occurred within this northern Chile seismic gap, offshore of the city of Iquique; the size and spatial extent of the rupture indicate it was not the earthquake that had been anticipated. Here, we present a rapid assessment of the seismotectonics of the March-April 2014 seismic sequence offshore northern Chile, including analyses of earthquake (fore- and aftershock) relocations, moment tensors, finite fault models, moment deficit calculations, and cumulative Coulomb stress transfer calculations over the duration of the sequence. This ensemble of information allows us to place the current sequence within the context of historic seismicity in the region, and to assess areas of remaining and/or elevated hazard. Our results indicate that while accumulated strain has been released for a portion of the northern Chile seismic gap, significant sections have not ruptured in almost 150 years. These observations suggest that large-to-great sized megathrust earthquakes will occur north and south of the 2014 Iquique sequence sooner than might be expected had the 2014 events ruptured the entire seismic gap.

  7. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    USGS Publications Warehouse

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  8. Preliminary Seismic Probabilistic Tsunami Hazard Map for Italy

    NASA Astrophysics Data System (ADS)

    Lorito, Stefano; Selva, Jacopo; Basili, Roberto; Grezio, Anita; Molinari, Irene; Piatanesi, Alessio; Romano, Fabrizio; Tiberti, Mara Monica; Tonini, Roberto; Bonini, Lorenzo; Michelini, Alberto; Macias, Jorge; Castro, Manuel J.; González-Vida, José Manuel; de la Asunción, Marc

    2015-04-01

    We present a preliminary release of the first seismic probabilistic tsunami hazard map for Italy. The map aims to become an important tool for the Italian Department of Civil Protection (DPC), as well as a support tool for the NEAMTWS Tsunami Service Provider, the Centro Allerta Tsunami (CAT) at INGV, Rome. The map shows the offshore maximum tsunami elevation expected for several average return periods. Both crustal and subduction earthquakes are considered. The probability for each scenario (location, depth, mechanism, source size, magnitude and temporal rate) is defined on a uniform grid covering the entire Mediterranean for crustal earthquakes and on the plate interface for subduction earthquakes. Activity rates are assigned from seismic catalogues and basing on a tectonic regionalization of the Mediterranean area. The methodology explores the associated aleatory uncertainty through the innovative application of an Event Tree. Main sources of epistemic uncertainty are also addressed although in preliminary way. The whole procedure relies on a database of pre-calculated Gaussian-shaped Green's functions for the sea level elevation, to be used also as a real time hazard assessment tool by CAT. Tsunami simulations are performed using the non-linear shallow water multi-GPU code HySEA, over a 30 arcsec bathymetry (from the SRTM30+ dataset) and the maximum elevations are stored at the 50-meter isobath and then extrapolated through the Green's law at 1 meter depth. This work is partially funded by project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839, and by the Italian flagship project RITMARE.

  9. Database of potential sources for earthquakes larger than magnitude 6 in Northern California

    USGS Publications Warehouse

    ,

    1996-01-01

    The Northern California Earthquake Potential (NCEP) working group, composed of many contributors and reviewers in industry, academia and government, has pooled its collective expertise and knowledge of regional tectonics to identify potential sources of large earthquakes in northern California. We have created a map and database of active faults, both surficial and buried, that forms the basis for the northern California portion of the national map of probabilistic seismic hazard. The database contains 62 potential sources, including fault segments and areally distributed zones. The working group has integrated constraints from broadly based plate tectonic and VLBI models with local geologic slip rates, geodetic strain rate, and microseismicity. Our earthquake source database derives from a scientific consensus that accounts for conflict in the diverse data. Our preliminary product, as described in this report brings to light many gaps in the data, including a need for better information on the proportion of deformation in fault systems that is aseismic.

  10. 76 FR 26247 - Magnesium Metal From the Russian Federation: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... Russian Federation: Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import... AVISMA did not make sales to the United States at less than normal value. If these preliminary results are adopted in the final results of this administrative review, we will instruct U.S. Customs and...

  11. Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.

    2017-12-01

    There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.

  12. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, J.G.; Arens, J.; Vezie, D.

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 [times] 2.56 pixels 30 [mu]m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45[degrees]. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions aremore » presented. Preliminary calculations show spatial resolution of less than 5 [mu]m in two dimensions.« less

  13. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, J.G.; Arens, J.; Vezie, D.

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 {times} 2.56 pixels 30 {mu}m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45{degrees}. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions aremore » presented. Preliminary calculations show spatial resolution of less than 5 {mu}m in two dimensions.« less

  14. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    NASA Astrophysics Data System (ADS)

    Muhammad, Ario; Goda, Katsuichiro; Alexander, Nicholas A.; Kongko, Widjo; Muhari, Abdul

    2017-12-01

    This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0) that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan - including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal-vertical evacuation time maps - has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  15. Earthquake Catalogue of the Caucasus

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  16. GPS Technologies as a Tool to Detect the Pre-Earthquake Signals Associated with Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Krankowski, A.; Hernandez-Pajares, M.; Liu, J. Y. G.; Hattori, K.; Davidenko, D.; Ouzounov, D.

    2015-12-01

    The existence of ionospheric anomalies before earthquakes is now widely accepted. These phenomena started to be considered by GPS community to mitigate the GPS signal degradation over the territories of the earthquake preparation. The question is still open if they could be useful for seismology and for short-term earthquake forecast. More than decade of intensive studies proved that ionospheric anomalies registered before earthquakes are initiated by processes in the boundary layer of atmosphere over earthquake preparation zone and are induced in the ionosphere by electromagnetic coupling through the Global Electric Circuit. Multiparameter approach based on the Lithosphere-Atmosphere-Ionosphere Coupling model demonstrated that earthquake forecast is possible only if we consider the final stage of earthquake preparation in the multidimensional space where every dimension is one from many precursors in ensemble, and they are synergistically connected. We demonstrate approaches developed in different countries (Russia, Taiwan, Japan, Spain, and Poland) within the framework of the ISSI and ESA projects) to identify the ionospheric precursors. They are also useful to determine the all three parameters necessary for the earthquake forecast: impending earthquake epicenter position, expectation time and magnitude. These parameters are calculated using different technologies of GPS signal processing: time series, correlation, spectral analysis, ionospheric tomography, wave propagation, etc. Obtained results from different teams demonstrate the high level of statistical significance and physical justification what gives us reason to suggest these methodologies for practical validation.

  17. Discussion of New Approaches to Medium-Short-Term Earthquake Forecast in Practice of The Earthquake Prediction in Yunnan

    NASA Astrophysics Data System (ADS)

    Hong, F.

    2017-12-01

    After retrospection of years of practice of the earthquake prediction in Yunnan area, it is widely considered that the fixed-point earthquake precursory anomalies mainly reflect the field information. The increase of amplitude and number of precursory anomalies could help to determine the original time of earthquakes, however it is difficult to obtain the spatial relevance between earthquakes and precursory anomalies, thus we can hardly predict the spatial locations of earthquakes using precursory anomalies. The past practices have shown that the seismic activities are superior to the precursory anomalies in predicting earthquakes locations, resulting from the increased seismicity were observed before 80% M=6.0 earthquakes in Yunnan area. While the mobile geomagnetic anomalies are turned out to be helpful in predicting earthquakes locations in recent year, for instance, the forecasted earthquakes occurring time and area derived form the 1-year-scale geomagnetic anomalies before the M6.5 Ludian earthquake in 2014 are shorter and smaller than which derived from the seismicity enhancement region. According to the past works, the author believes that the medium-short-term earthquake forecast level, as well as objective understanding of the seismogenic mechanisms, could be substantially improved by the densely laying observation array and capturing the dynamic process of physical property changes in the enhancement region of medium to small earthquakes.

  18. In the shadow of 1857-the effect of the great Ft. Tejon earthquake on subsequent earthquakes in southern California

    USGS Publications Warehouse

    Harris, R.A.; Simpson, R.W.

    1996-01-01

    The great 1857 Fort Tejon earthquake is the largest earthquake to have hit southern California during the historic period. We investigated if seismicity patterns following 1857 could be due to static stress changes generated by the 1857 earthquake. When post-1857 earthquakes with unknown focal mechanisms were assigned strike-slip mechanisms with strike and rake determined by the nearest active fault, 13 of the 13 southern California M???5.5 earthquakes between 1857 and 1907 were encouraged by the 1857 rupture. When post-1857 earthquakes in the Transverse Ranges with unknown focal mechanisms were assigned reverse mechanisms and all other events were assumed strike-slip, 11 of the 13 earthquakes were encouraged by the 1857 earthquake. These results show significant correlations between static stress changes and seismicity patterns. The correlation disappears around 1907, suggesting that tectonic loading began to overwhelm the effect of the 1857 earthquake early in the 20th century.

  19. Earthquake triggering at alaskan volcanoes following the 3 November 2002 denali fault earthquake

    USGS Publications Warehouse

    Moran, S.C.; Power, J.A.; Stihler, S.D.; Sanchez, J.J.; Caplan-Auerbach, J.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake provided an excellent opportunity to investigate triggered earthquakes at Alaskan volcanoes. The Alaska Volcano Observatory operates short-period seismic networks on 24 historically active volcanoes in Alaska, 247-2159 km distant from the mainshock epicenter. We searched for evidence of triggered seismicity by examining the unfiltered waveforms for all stations in each volcano network for ???1 hr after the Mw 7.9 arrival time at each network and for significant increases in located earthquakes in the hours after the mainshock. We found compelling evidence for triggering only at the Katmai volcanic cluster (KVC, 720-755 km southwest of the epicenter), where small earthquakes with distinct P and 5 arrivals appeared within the mainshock coda at one station and a small increase in located earthquakes occurred for several hours after the mainshock. Peak dynamic stresses of ???0.1 MPa at Augustine Volcano (560 km southwest of the epicenter) are significantly lower than those recorded in Yellowstone and Utah (>3000 km southeast of the epicenter), suggesting that strong directivity effects were at least partly responsible for the lack of triggering at Alaskan volcanoes. We describe other incidents of earthquake-induced triggering in the KVC, and outline a qualitative magnitude/distance-dependent triggering threshold. We argue that triggering results from the perturbation of magmatic-hydrothermal systems in the KVC and suggest that the comparative lack of triggering at other Alaskan volcanoes could be a result of differences in the nature of magmatic-hydrothermal systems.

  20. Analog earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed.more » A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.« less

  1. 75 FR 19610 - Solid Urea From the Russian Federation: Preliminary Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Federation: Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration.... We invite interested parties to comment on these preliminary results. Parties who submit argument in...

  2. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  3. Triggered earthquakes and the 1811-1812 New Madrid, central United States, earthquake sequence

    USGS Publications Warehouse

    Hough, S.E.

    2001-01-01

    The 1811-1812 New Madrid, central United States, earthquake sequence included at least three events with magnitudes estimated at well above M 7.0. I discuss evidence that the sequence also produced at least three substantial triggered events well outside the New Madrid Seismic Zone, most likely in the vicinity of Cincinnati, Ohio. The largest of these events is estimated to have a magnitude in the low to mid M 5 range. Events of this size are large enough to cause damage, especially in regions with low levels of preparedness. Remotely triggered earthquakes have been observed in tectonically active regions in recent years, but not previously in stable continental regions. The results of this study suggest, however, that potentially damaging triggered earthquakes may be common following large mainshocks in stable continental regions. Thus, in areas of low seismic activity such as central/ eastern North America, the hazard associated with localized source zones might be more far reaching than previously recognized. The results also provide additional evidence that intraplate crust is critically stressed, such that small stress changes are especially effective at triggering earthquakes.

  4. Sensing the earthquake

    NASA Astrophysics Data System (ADS)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  5. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  6. Retrospective stress-forecasting of earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    retrospectively stress-forecasting ~17 earthquakes ranging in magnitude from a M1.7 swarm event in N Iceland, to the 1999 M7.7 Chi-Chi Earthquake in Taiwan, and the 2004 Mw9.2 Sumatra-Andaman Earthquake (SAE). Before SAE, the changes in SWS were observed at seismic stations in Iceland at a distance of ~10,500km the width of the Eurasian Plate, from Indonesia demonstrating the 'butterfly wings' sensitivity of the New Geophysics of a critically microcracked Earth. At that time, the sensitivity of the phenomena had not been recognised, and the SAE was not stress-forecast. These results have been published at various times in various formats in various journals. This presentation displays all the results in a normalised format that allows the similarities to be recognised, confirming that observations of SWS time-delays can stress-forecast the times, magnitudes, and in some circumstances fault-breaks, of impending earthquakes. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Crampin & Gao (SM1.1), Liu & Crampin (NH2.5), and Crampin & Gao (GD.1).

  7. Stereoplotting Hominid Brain Endocasts : Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Holloway, Ralph L.

    1980-07-01

    To objectively and quantitatively demonstrate regional differences in brain endocast morphology, traditional anthropometric caliper measurements must be replaced by a system providing not only localness, but homology and reasonable freedom from allometric distortion. Stereoplotting the radial distances from endocast surface (the closest point to the once underlying brain cortex) to a homologous center every ten degrees provides some 300+ data points for each dorsal endocast surface, thus giving the requisite localness. These measurements provide a large matrix of data suitable for a number of multivariate statistical techniques, and the translation of such data and analyses to readily visualized maps, which can then be compared in relation to both taxonomic and functional knowledge about the cerebral surface. This paper descri-bes some preliminary results from using such methods on a sample of 64 undistorted endocasts composed of both pongids and fossil hominids. While sample sizes within taxonomic groups need to be augmented, the preliminary and tentative pilot studies conducted so far suggest that the method has excellent potential, and that two major areas of the brain endocast surface show the greatest shape changes : 1) the posterior association areas (inferior parietal lobule); 2) the anterior prefrontal areas.

  8. Smoking prevalence increases following Canterbury earthquakes.

    PubMed

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  9. From Tornadoes to Earthquakes: Forecast Verification for Binary Events Applied to the 1999 Chi-Chi, Taiwan, Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, C.; Rundle, J. B.; Holliday, J. R.; Nanjo, K.; Turcotte, D. L.; Li, S.; Tiampo, K. F.

    2005-12-01

    Forecast verification procedures for statistical events with binary outcomes typically rely on the use of contingency tables and Relative Operating Characteristic (ROC) diagrams. Originally developed for the statistical evaluation of tornado forecasts on a county-by-county basis, these methods can be adapted to the evaluation of competing earthquake forecasts. Here we apply these methods retrospectively to two forecasts for the m = 7.3 1999 Chi-Chi, Taiwan, earthquake. These forecasts are based on a method, Pattern Informatics (PI), that locates likely sites for future large earthquakes based on large change in activity of the smallest earthquakes. A competing null hypothesis, Relative Intensity (RI), is based on the idea that future large earthquake locations are correlated with sites having the greatest frequency of small earthquakes. We show that for Taiwan, the PI forecast method is superior to the RI forecast null hypothesis. Inspection of the two maps indicates that their forecast locations are indeed quite different. Our results confirm an earlier result suggesting that the earthquake preparation process for events such as the Chi-Chi earthquake involves anomalous changes in activation or quiescence, and that signatures of these processes can be detected in precursory seismicity data. Furthermore, we find that our methods can accurately forecast the locations of aftershocks from precursory seismicity changes alone, implying that the main shock together with its aftershocks represent a single manifestation of the formation of a high-stress region nucleating prior to the main shock.

  10. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy)

    NASA Astrophysics Data System (ADS)

    di Giovambattista, R.; Tyupkin, Yu

    The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.

  11. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe

    2017-01-01

    A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic

  12. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  13. Critical behavior in earthquake energy dissipation

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  14. Testing earthquake source inversion methodologies

    USGS Publications Warehouse

    Page, M.; Mai, P.M.; Schorlemmer, D.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  15. Understanding earthquake from the granular physics point of view — Causes of earthquake, earthquake precursors and predictions

    NASA Astrophysics Data System (ADS)

    Lu, Kunquan; Hou, Meiying; Jiang, Zehui; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    We treat the earth crust and mantle as large scale discrete matters based on the principles of granular physics and existing experimental observations. Main outcomes are: A granular model of the structure and movement of the earth crust and mantle is established. The formation mechanism of the tectonic forces, which causes the earthquake, and a model of propagation for precursory information are proposed. Properties of the seismic precursory information and its relevance with the earthquake occurrence are illustrated, and principle of ways to detect the effective seismic precursor is elaborated. The mechanism of deep-focus earthquake is also explained by the jamming-unjamming transition of the granular flow. Some earthquake phenomena which were previously difficult to understand are explained, and the predictability of the earthquake is discussed. Due to the discrete nature of the earth crust and mantle, the continuum theory no longer applies during the quasi-static seismological process. In this paper, based on the principles of granular physics, we study the causes of earthquakes, earthquake precursors and predictions, and a new understanding, different from the traditional seismological viewpoint, is obtained.

  16. Towards coupled earthquake dynamic rupture and tsunami simulations: The 2011 Tohoku earthquake.

    NASA Astrophysics Data System (ADS)

    Galvez, Percy; van Dinther, Ylona

    2016-04-01

    The 2011 Mw9 Tohoku earthquake has been recorded with a vast GPS and seismic network given an unprecedented chance to seismologists to unveil complex rupture processes in a mega-thrust event. The seismic stations surrounding the Miyagi regions (MYGH013) show two clear distinct waveforms separated by 40 seconds suggesting two rupture fronts, possibly due to slip reactivation caused by frictional melting and thermal fluid pressurization effects. We created a 3D dynamic rupture model to reproduce this rupture reactivation pattern using SPECFEM3D (Galvez et al, 2014) based on a slip-weakening friction with sudden two sequential stress drops (Galvez et al, 2015) . Our model starts like a M7-8 earthquake breaking dimly the trench, then after 40 seconds a second rupture emerges close to the trench producing additional slip capable to fully break the trench and transforming the earthquake into a megathrust event. The seismograms agree roughly with seismic records along the coast of Japan. The resulting sea floor displacements are in agreement with 1Hz GPS displacements (GEONET). The simulated sea floor displacement reaches 8-10 meters of uplift close to the trench, which may be the cause of such a devastating tsunami followed by the Tohoku earthquake. To investigate the impact of such a huge uplift, we ran tsunami simulations with the slip reactivation model and plug the sea floor displacements into GeoClaw (Finite element code for tsunami simulations, George and LeVeque, 2006). Our recent results compare well with the water height at the tsunami DART buoys 21401, 21413, 21418 and 21419 and show the potential using fully dynamic rupture results for tsunami studies for earthquake-tsunami scenarios.

  17. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones

    NASA Astrophysics Data System (ADS)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana

    2018-04-01

    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  18. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones

    NASA Astrophysics Data System (ADS)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana

    2017-11-01

    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  19. Redefining Earthquakes and the Earthquake Machine

    ERIC Educational Resources Information Center

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  20. A decade of postseismic deformation after the 1999 Izmit and Duzce earthquakes

    NASA Astrophysics Data System (ADS)

    Hussain, Ekbal; Wright, Tim; Houseman, Gregory; Tadashi, Yamasaki; Richard, Walters

    2014-05-01

    The North Anatolian Fault is a major continental right lateral strike-slip system located in northern Turkey. The fault has accommodated 12 large earthquakes (M6.7 and above) since 1939 with a dominant westward progression in seismicity culminating in the M7.4 Izmit and M7.2 Duzce earthquakes in 1999. Coseismic displacements on faults impart an instantaneous stress change on the adjacent lithosphere. Postseismic deformation is a transient response to this redistribution of stresses, and is a measure of the stress relaxation in the upper part of the lithosphere. High resolution measurements of the spatial and temporal character of the surface deformation following an earthquake can provide constraints on the mechanical processes involved with the dissipation of this stress in time and space. We present a time history of postseismic deformation determined using Interferometric Synthetic Aperture Radar (InSAR) measurements using data from Envisat ascending and descending satellite geometries. Our results also show a roughly 30km by 40km section of the Sakarya basin, that lies on the northern side of fault, has been undergoing steady subsidence during the observation period. We also show that the Izmit and western section of the Duzce rupture is undergoing aseismic creep at a rate of ~10mm/yr during the period 2003-2010. This is a large fraction of the long-term slip rate on the fault (~25mm/yr). We present the preliminary results of numerical experiments investigating the impact of postseismic creep on the stress field of the crust in this region.

  1. King County Metro Battery Electric Bus Demonstration: Preliminary Project Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Federal Transit Administration (FTA) funds a variety of research projects that support the commercialization of zero-emission bus technology. To evaluate projects funded through these programs, FTA has enlisted the help of the National Renewable Energy Laboratory (NREL) to conduct third-party evaluations of the technologies deployed under the FTA programs. NREL works with the selected agencies to evaluate the performance of the zero-emission buses compared to baseline conventional buses in similar service. The evaluation effort will advance the knowledge base of zero-emission technologies in transit bus applications and provide 'lessons learned' to aid other fleets in incrementally introducing nextmore » generation zero-emission buses into their operations. This report provides preliminary performance evaluation results from a demonstration of three zero-emission battery electric buses at King County Metro in King County, Washington. NREL developed this preliminary results report to quickly disseminate evaluation results to stakeholders. Detailed evaluation results will be published in future reports.« less

  2. Universal Recurrence Time Statistics of Characteristic Earthquakes

    NASA Astrophysics Data System (ADS)

    Goltz, C.; Turcotte, D. L.; Abaimov, S.; Nadeau, R. M.

    2006-12-01

    Characteristic earthquakes are defined to occur quasi-periodically on major faults. Do recurrence time statistics of such earthquakes follow a particular statistical distribution? If so, which one? The answer is fundamental and has important implications for hazard assessment. The problem cannot be solved by comparing the goodness of statistical fits as the available sequences are too short. The Parkfield sequence of M ≍ 6 earthquakes, one of the most extensive reliable data sets available, has grown to merely seven events with the last earthquake in 2004, for example. Recently, however, advances in seismological monitoring and improved processing methods have unveiled so-called micro-repeaters, micro-earthquakes which recur exactly in the same location on a fault. It seems plausible to regard these earthquakes as a miniature version of the classic characteristic earthquakes. Micro-repeaters are much more frequent than major earthquakes, leading to longer sequences for analysis. Due to their recent discovery, however, available sequences contain less than 20 events at present. In this paper we present results for the analysis of recurrence times for several micro-repeater sequences from Parkfield and adjacent regions. To improve the statistical significance of our findings, we combine several sequences into one by rescaling the individual sets by their respective mean recurrence intervals and Weibull exponents. This novel approach of rescaled combination yields the most extensive data set possible. We find that the resulting statistics can be fitted well by an exponential distribution, confirming the universal applicability of the Weibull distribution to characteristic earthquakes. A similar result is obtained from rescaled combination, however, with regard to the lognormal distribution.

  3. 76 FR 44305 - Honey From Argentina: Extension of Time Limit for Preliminary Results of Antidumping Duty New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...: Extension of Time Limit for Preliminary Results of Antidumping Duty New Shipper Review AGENCY: Import... results of this review is July 24, 2011. Extension of Time Limits for Preliminary Results of Review... time to complete the preliminary results. Specifically, the Department requires additional time to...

  4. Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.

    PubMed

    McCaffrey, R; Goldfinger, C

    1995-02-10

    The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.

  5. Recognition of Earthquake-Induced Damage in the Abakainon Necropolis (NE Sicily): Results From Geomorphological, Geophysical and Numerical Analyses

    NASA Astrophysics Data System (ADS)

    Bottari, C.; Albano, M.; Capizzi, P.; D'Alessandro, A.; Doumaz, F.; Martorana, R.; Moro, M.; Saroli, M.

    2018-01-01

    Seismotectonic activity and slope instability are a permanent threat in the archaeological site of Abakainon and in the nearby village of Tripi in NE Sicily. In recent times, signs of an ancient earthquake have been identified in the necropolis of Abakainon which dating was ascertained to the first century AD earthquake. The site is located on a slope of Peloritani Mts. along the Tindari Fault Line and contains evidence for earthquake-induced landslide, including fallen columns and blocks, horizontal shift and counter slope tilting of the tomb basements. In this paper, we used an integrated geomorphological and geophysical analysis to constrain the landslide. The research was directed to the acquisition of deep geological data for the reconstruction of slope process and the thickness of mobilized materials. The applied geophysical techniques included seismic refraction tomography and electrical resistivity tomography. The surveys were performed to delineate the sliding surface and to assess approximately the thickness of mobilized materials. The geophysical and geomorphologic data confirmed the presence of different overlapped landslides in the studied area. Moreover, a numerical simulation of the slope under seismic loads supports the hypothesis of a mobilization of the landslide mass in case of strong earthquakes (PGA > 0.3 g). However, numerical results highlight that the main cause of destruction for the Abakainon necropolis is the amplification of the seismic waves, occasionally accompanied by surficial sliding.

  6. Japanese earthquake predictability experiment with multiple runs before and after the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Tsuruoka, H.; Yokoi, S.

    2011-12-01

    The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.

  7. Japanese earthquake predictability experiment with multiple runs before and after the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Tsuruoka, H.; Yokoi, S.

    2013-12-01

    The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.

  8. 75 FR 12514 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Brazil: Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration... results are adopted in our final results of administrative review, we will instruct U.S. Customs and... invited to comment on these preliminary results of review. We intend to issue the final results of review...

  9. Seismicity map tools for earthquake studies

    NASA Astrophysics Data System (ADS)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  10. Decision making biases in the communication of earthquake risk

    NASA Astrophysics Data System (ADS)

    Welsh, M. B.; Steacy, S.; Begg, S. H.; Navarro, D. J.

    2015-12-01

    L'Aquila, with 6 scientists convicted of manslaughter, shocked the scientific community, leading to urgent re-appraisal of communication methods for low-probability, high-impact events. Before the trial, a commission investigating the earthquake recommended risk assessment be formalised via operational earthquake forecasts and that social scientists be enlisted to assist in developing communication strategies. Psychological research has identified numerous decision biases relevant to this, including hindsight bias, where people (after the fact) overestimate an event's predictability. This affects experts as well as naïve participants as it relates to their ability to construct a plausible causal story rather than the likelihood of the event. Another problem is availability, which causes overestimation of the likelihood of observed rare events due to their greater noteworthiness. This, however, is complicated by the 'description-experience' gap, whereby people underestimate probabilities for events they have not experienced. That is, people who have experienced strong earthquakes judge them more likely while those who have not judge them less likely - relative to actual probabilities. Finally, format changes alter people's decisions. That is people treat '1 in 10,000' as different from 0.01% despite their mathematical equivalence. Such effects fall under the broad term framing, which describes how different framings of the same event alter decisions. In particular, people's attitude to risk depends significantly on how scenarios are described. We examine the effect of biases on the communication of change in risk. South Australian participants gave responses to scenarios describing familiar (bushfire) or unfamiliar (earthquake) risks. While bushfires are rare in specific locations, significant fire events occur each year and are extensively covered. By comparison, our study location (Adelaide) last had a M5 quake in 1954. Preliminary results suggest the description

  11. The costs and benefits of reconstruction options in Nepal using the CEDIM FDA modelled and empirical analysis following the 2015 earthquake

    NASA Astrophysics Data System (ADS)

    Daniell, James; Schaefer, Andreas; Wenzel, Friedemann; Khazai, Bijan; Girard, Trevor; Kunz-Plapp, Tina; Kunz, Michael; Muehr, Bernhard

    2016-04-01

    Over the days following the 2015 Nepal earthquake, rapid loss estimates of deaths and the economic loss and reconstruction cost were undertaken by our research group in conjunction with the World Bank. This modelling relied on historic losses from other Nepal earthquakes as well as detailed socioeconomic data and earthquake loss information via CATDAT. The modelled results were very close to the final death toll and reconstruction cost for the 2015 earthquake of around 9000 deaths and a direct building loss of ca. 3 billion (a). A description of the process undertaken to produce these loss estimates is described and the potential for use in analysing reconstruction costs from future Nepal earthquakes in rapid time post-event. The reconstruction cost and death toll model is then used as the base model for the examination of the effect of spending money on earthquake retrofitting of buildings versus complete reconstruction of buildings. This is undertaken future events using empirical statistics from past events along with further analytical modelling. The effects of investment vs. the time of a future event is also explored. Preliminary low-cost options (b) along the line of other country studies for retrofitting (ca. 100) are examined versus the option of different building typologies in Nepal as well as investment in various sectors of construction. The effect of public vs. private capital expenditure post-earthquake is also explored as part of this analysis, as well as spending on other components outside of earthquakes. a) http://www.scientificamerican.com/article/experts-calculate-new-loss-predictions-for-nepal-quake/ b) http://www.aees.org.au/wp-content/uploads/2015/06/23-Daniell.pdf

  12. Earthquake impact scale

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    With the advent of the USGS prompt assessment of global earthquakes for response (PAGER) system, which rapidly assesses earthquake impacts, U.S. and international earthquake responders are reconsidering their automatic alert and activation levels and response procedures. To help facilitate rapid and appropriate earthquake response, an Earthquake Impact Scale (EIS) is proposed on the basis of two complementary criteria. On the basis of the estimated cost of damage, one is most suitable for domestic events; the other, on the basis of estimated ranges of fatalities, is generally more appropriate for global events, particularly in developing countries. Simple thresholds, derived from the systematic analysis of past earthquake impact and associated response levels, are quite effective in communicating predicted impact and response needed after an event through alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1,000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses reaching $1M, $100M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness predominate in countries in which local building practices typically lend themselves to high collapse and casualty rates, and these impacts lend to prioritization for international response. In contrast, financial and overall societal impacts often trigger the level of response in regions or countries in which prevalent earthquake resistant construction practices greatly reduce building collapse and resulting fatalities. Any newly devised alert, whether economic- or casualty-based, should be intuitive and consistent with established lexicons and procedures. Useful alerts should

  13. Local Earthquake Tomography in the Eifel Region, Middle Europe

    NASA Astrophysics Data System (ADS)

    Gaensicke, H.

    2001-12-01

    present preliminary results obtained by simultaneous inversion of earthquake and velocity parameters constrained by known geological parameters and the controlled source information from calibrated quarry blasts.

  14. OMG Earthquake! Can Twitter improve earthquake response?

    NASA Astrophysics Data System (ADS)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  15. Surface Deformation Associated with the 1983 Borah Peak Earthquake Measured from Digital Surface Model Differencing

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Briggs, R.; Gold, R. D.; DuRoss, C. B.

    2015-12-01

    Post-earthquake, field-based assessments of surface displacement commonly underestimate offsets observed with remote sensing techniques (e.g., InSAR, image cross-correlation) because they fail to capture the total deformation field. Modern earthquakes are readily characterized by comparing pre- and post-event remote sensing data, but historical earthquakes often lack pre-event data. To overcome this challenge, we use historical aerial photographs to derive pre-event digital surface models (DSMs), which we compare to modern, post-event DSMs. Our case study focuses on resolving on- and off-fault deformation along the Lost River fault that accompanied the 1983 M6.9 Borah Peak, Idaho, normal-faulting earthquake. We use 343 aerial images from 1952-1966 and vertical control points selected from National Geodetic Survey benchmarks measured prior to 1983 to construct a pre-event point cloud (average ~ 0.25 pts/m2) and corresponding DSM. The post-event point cloud (average ~ 1 pt/m2) and corresponding DSM are derived from WorldView 1 and 2 scenes processed with NASA's Ames Stereo Pipeline. The point clouds and DSMs are coregistered using vertical control points, an iterative closest point algorithm, and a DSM coregistration algorithm. Preliminary results of differencing the coregistered DSMs reveal a signal spanning the surface rupture that is consistent with tectonic displacement. Ongoing work is focused on quantifying the significance of this signal and error analysis. We expect this technique to yield a more complete understanding of on- and off-fault deformation patterns associated with the Borah Peak earthquake along the Lost River fault and to help improve assessments of surface deformation for other historical ruptures.

  16. Modified Mercalli Intensity for scenario earthquakes in Evansville, Indiana

    USGS Publications Warehouse

    Cramer, Chris; Haase, Jennifer; Boyd, Oliver

    2012-01-01

    Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the fact that Evansville is close to the Wabash Valley and New Madrid seismic zones, there is concern about the hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake. Earthquake-hazard maps provide one way of conveying such estimates of strong ground shaking and will help the region prepare for future earthquakes and reduce earthquake-caused losses.

  17. Charles Darwin's earthquake reports

    NASA Astrophysics Data System (ADS)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  18. Twitter earthquake detection: Earthquake monitoring in a social world

    USGS Publications Warehouse

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  19. Refinements on the inferred causative faults of the great 2012 Indian Ocean earthquakes

    NASA Astrophysics Data System (ADS)

    Revathy, P. M.; Rajendran, K.

    2014-12-01

    As the largest known intra-plate strike-slip events, the pair of 2012 earthquakes in the Wharton Basin is a rarity. Separated in time by 2 hours these events rouse interest also because of their short inter-event duration, complex rupture mechanism, and spatial-temporal proximity to the great 2004 Sumatra plate boundary earthquake. Reactivation of fossil ridge-transform pairs is a favoured mechanism for large oceanic plate earthquakes and their inherent geometry triggers earthquakes on conjugate fault systems, as observed previously in the Wharton Basin. The current debate is whether the ruptures occurred on the WNW-ESE paleo ridges or the NNE-SSW paleo transforms. Back-projection models give a complex rupture pattern that favours the WNW-ESE fault [1]. However, the static stress changes due to the 2004 Sumatra earthquake and 2005 Nias earthquake favour the N15°E fault [2]. We use the Teleseismic Body-Wave Inversion Program [3] and waveform data from Global Seismic Network, to obtain the best fit solutions using P and S-wave synthetic modelling. The preliminary P-wave analysis of both earthquakes gives source parameters that are consistent with the Harvard CMT solutions. The obtained slip distribution complies with the NNE-SSW transforms. Both these earthquakes triggered small tsunamis which appear as two distinctive pulses on 13 Indian Ocean tide gauges and buoys. Frequency spectra of the tsunami recordings from various azimuths provide additional constraint for the choice of the causative faults. References: [1] Yue, H., T. Lay, and K. D. Koper (2012), En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes, Nature, 490, 245-249, doi:10.1038/nature11492 [2] Delescluse, M., N. Chamot-Rooke, R. Cattin, L. Fleitout, O. Trubienko and C. Vigny April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust, Nature, 490(2012), pp. 240-244, doi:10.1038/nature11520 [3] M. Kikuchi and H. Kanamori, Note on

  20. Octree-based Global Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Juarez, A.; Bielak, J.; Salazar Monroy, E. F.

    2017-12-01

    Seismological research has motivated recent efforts to construct more accurate three-dimensional (3D) velocity models of the Earth, perform global simulations of wave propagation to validate models, and also to study the interaction of seismic fields with 3D structures. However, traditional methods for seismogram computation at global scales are limited by computational resources, relying primarily on traditional methods such as normal mode summation or two-dimensional numerical methods. We present an octree-based mesh finite element implementation to perform global earthquake simulations with 3D models using topography and bathymetry with a staircase approximation, as modeled by the Carnegie Mellon Finite Element Toolchain Hercules (Tu et al., 2006). To verify the implementation, we compared the synthetic seismograms computed in a spherical earth against waveforms calculated using normal mode summation for the Preliminary Earth Model (PREM) for a point source representation of the 2014 Mw 7.3 Papanoa, Mexico earthquake. We considered a 3 km-thick ocean layer for stations with predominantly oceanic paths. Eigen frequencies and eigen functions were computed for toroidal, radial, and spherical oscillations in the first 20 branches. Simulations are valid at frequencies up to 0.05 Hz. Matching among the waveforms computed by both approaches, especially for long period surface waves, is excellent. Additionally, we modeled the Mw 9.0 Tohoku-Oki earthquake using the USGS finite fault inversion. Topography and bathymetry from ETOPO1 are included in a mesh with more than 3 billion elements; constrained by the computational resources available. We compared estimated velocity and GPS synthetics against observations at regional and teleseismic stations of the Global Seismological Network and discuss the differences among observations and synthetics, revealing that heterogeneity, particularly in the crust, needs to be considered.

  1. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  2. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    USGS Publications Warehouse

    McNamara, Daniel E.; Yeck, William; Barnhart, William D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, Amod; Hough, S.E.; Benz, Harley M.; Earle, Paul

    2017-01-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard.Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a ~ 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10–15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  3. The analysis results of EEWS(Earthquake Early Warning System) about Iksan(Ml4.3) and Ulsan(Ml5.0) earthquakes in Korea

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Chi, H. C.; Lim, I. S.; Seong, Y. J.; Pak, J.

    2016-12-01

    EEW(Earthquake Early Warning) service to the public has been officially operated by KMA (Korea Meteorological Administration) from 2015 in Korea. For the KMA's official EEW service, KIGAM has adopted ElarmS from UC Berkeley BSL and modified local magnitude relation, 1-D travel time curves and association procedures with real time waveforms from about 160 seismic stations of KMA and KIGAM. We have checked the performance of EEWS(Earthquake Early Warning System) reviewing two moderate size earthquakes: one is Iksan Eq.(Ml4.3) inside of networks and the other is Ulsan Eq.(Ml5.0) happened at the southern east sea of Korea outside of networks. The first trigger time at NPR station of the Iksan Eq. took 2.3 sec and BUY and JEO2 stations were associated to produce the first event version in 10.07 sec from the origin time respectively. Because the epicentral distance of JEO2 station is about 30 km and the estimated travel time is 6.2 sec, the delay time including transmission and processing is estimated as 3.87 sec with assumption that P wave velocity is 5 km/sec and the focal depth is 8 km. The first magnitude was M4.9 which was a little bigger than Ml4.3 by KIGAM. After adding 3 more triggers of stations (CHO, KMSA, PORA), the estimated magnitude became to M4.6 and the final was settled down to M4.3 with 10 stations. In the case of Ulsan the first trigger time took 11.04 sec and the first alert time with 3 stations in 14.8 sec from the origin time (OT) respectively. The first magnitude was M5.2, however, the difference between the first EEW epicenter and the manual final result was about 63 km due to the poor azimuth coverage outside of seismic network. After 16.2 sec from OT the fourth station YSB was used to update the location near to the manual results within 6 km with magnitude 5.0 and location and magnitude were stable with more stations. Ulsan Eq. was the first case announced to the public by EEWS and the process and result were successful, however, we have to

  4. Crustal earthquake triggering by pre-historic great earthquakes on subduction zone thrusts

    USGS Publications Warehouse

    Sherrod, Brian; Gomberg, Joan

    2014-01-01

    Triggering of earthquakes on upper plate faults during and shortly after recent great (M>8.0) subduction thrust earthquakes raises concerns about earthquake triggering following Cascadia subduction zone earthquakes. Of particular regard to Cascadia was the previously noted, but only qualitatively identified, clustering of M>~6.5 crustal earthquakes in the Puget Sound region between about 1200–900 cal yr B.P. and the possibility that this was triggered by a great Cascadia thrust subduction thrust earthquake, and therefore portends future such clusters. We confirm quantitatively the extraordinary nature of the Puget Sound region crustal earthquake clustering between 1200–900 cal yr B.P., at least over the last 16,000. We conclude that this cluster was not triggered by the penultimate, and possibly full-margin, great Cascadia subduction thrust earthquake. However, we also show that the paleoseismic record for Cascadia is consistent with conclusions of our companion study of the global modern record outside Cascadia, that M>8.6 subduction thrust events have a high probability of triggering at least one or more M>~6.5 crustal earthquakes.

  5. Earthquakes at North Atlantic passive margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, S.; Basham, P.W.

    1989-01-01

    The main focus of this volume is the earthquakes that occur at and near the continental margins on both sides of the North Atlantic. The book, which contains the proceedings of the NATO workshop on Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on Both Sides of the North Atlantic, draws together the fields of geophysics, geology and geodesy to address the stress and strain in the Earth's crust. The resulting earthquakes produced on ancient geological fault zones and the associated seismic hazards these pose to man are also addressed. Postglacial rebound in Northmore » America and Fennoscandia is a minor source of earthquakes today, during the interglacial period, but evidence is presented to suggest that the ice sheets suppressed earthquake strain while they were in place, and released this strain as a pulse of significant earthquakes after the ice melted about 9000 years ago.« less

  6. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    PubMed

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  7. 77 FR 39683 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... People's Republic of China: Preliminary Results of Changed Circumstances Review AGENCY: Import... invited to comment on these preliminary results. DATES: Effective Date: July 5, 2012. FOR FURTHER... its final determination for this investigation on April 4, 2011.\\1\\ As a result of that final...

  8. Landslides and mass wasting offshore Sumatra - results from the Sumatra Earthquake HMS Scott survey January-February 2005

    NASA Astrophysics Data System (ADS)

    Tappin, D. R.; Henstock, T.; McNeill, L.; Grilli, S.; Biscontin, G.; Watts, P.

    2005-12-01

    Earthquakes are a commonly cited mechanism for triggering submarine landslides that have the potential to generate damaging tsunamis (e.g. Papua New Guinea 1998). Notwithstanding, the Indian Ocean earthquake of December 26th 2005 has been cited as the cause of both far field and local tsunami runups that have been measured at over 35 metres on the west coast of Sumatra. On the basis of present modelling this seems to be the case. However, if earthquakes are such a common trigger for landslides then the magnitude 9.3 earthquake of December 26th might be expected to have caused numerous seabed failures within the area of rupture that may have contributed to local tsunami runup. This contribution discusses the seabed morphology offshore of Sumatra acquired during the survey carried out by HMS Scott in January and February 2005. Utilising a unique high resolution 12 kHz, 361-beam hull-mounted Sass IV sonar, over 40,000 square kilometres of seabed were mapped. The objective was to identify seabed movements that were the result of the earthquake and to identify submarine slope failures that may have contributed to the tsunami. This paper reports on the results of the survey using Fledermaus imaging software. The area mapped is an accretionary complex formed as the two plates have converged over the past 40 million years. From the data several seabed failure mechanisms of different ages have been identified. Along the plate margin in the west of the survey area the deformation front comprises a series of young thrust folds up to 1000m in elevation and tens of kilometres in length. In places the seaward faces of these folds have failed cohesively and slumped blocks 100's of metres high and up to several kilometres long have been displaced up to 13 kilometres onto the inner trench floor. At other locations older episodes of failure are identified by the presence of displaced slumped blocks located on the crests of the folds; the slumps thus predating uplift. Where young

  9. Induced environment contamination monitor: Preliminary results from the Spacelab 1 flight

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor)

    1984-01-01

    The STS-9/Induced Environment Contamination Monitor (IECM) mission is briefly described. Preliminary results and analyses are given for each of the 10 instruments comprising the IECM. The final section presents a summary of the major results.

  10. Stress and structure analysis of the Seismic Gap between the Wenchuan and Lushan Earthquakes

    NASA Astrophysics Data System (ADS)

    Liang, Chuntao

    2017-04-01

    An array of 20 short-period and 15 broadband seismometers were deployed to monitor the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake. The Wenchuan earthquake ruptured from epicenter at (31.01°N, 103.42°E) largely northeastward while the Lushan earthquake ruptured from epicenter at (30.3°N, 103.0°E) largely southwestward. The region between the two earthquakes has recorded very few aftershocks and cataloged seismicity before and after the two big earthquakes compared to neighboring segments. As one small segment of the 500KM long Longmen Shan fault system, its absence of seismicity draws hot debate on whether a big one is still in brewing or steady creeping is in control of the strain energy release. The dense array is deployed primarily aimed to detect events that are much smaller than cataloged events and to determine if the segment is experiencing constantly creeping. The preliminary findings include: (1) source mechanisms show that the seismic gap appears to be a transitional zone between north and south segment. The events to the south are primarily thrust while events to north have more or less striking-slip components. This is also the case for both Lushan and Wenchuan earthquake; (2) The receiver function analysis shows that the Moho beneath the seismic Gap is less defined than its adjacent region with relatively weaker Ps conversion phases; (3) Both receiver function and ambient noise tomography show that the velocities in the upper crust is relatively lower in the Gap region than surrounding regions; (4) significant number of small earthquakes are located near surface in the gap region. Further examinations should be conducted before we can make a sounding conclusion on what mechanism is in control of the seismicity in this region.

  11. Preliminary Results of the Analysis

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1995-01-01

    The preliminary results of the photometry of CaII K spectroheliograms taken at the NationalSolar Observatory at Sacramento peak are presented in this paper. We have digitizedspectroheliograms for 1980 (maximum of SC21), 1985 (minimum of SC21), 1987 (beginning of theascending phase of SC22), 1988 and 1989 (ascending phase and maximum of SC22), and 1992(declining phase of SC22). We have analyzed images for 1992 and separated the plages, the magneticnetwork, internetwork elements and the chromospheric background using histogram method. Wehave derived the intensity and area of these features as well as the full disk intensity (Spatial KIndex). The Spatial K Index has been compared to the spectral Ca K index derived from the lineprofiles and total solar and UV irradiance measured by the UARS and NOAA9 satellites. Thecontribution of plages, the magnetic network and internetwork element to the changes observed intotal solar and UV irradiances are also estimated.

  12. Preliminary results of the scientific experiments on the Kosmos-936 biosatellite

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The scientific equipment and experiments on the Kosmos-936 biosatellite are described, including various ground controls and the lab unit for studies at the descent vehicle landing site. Preliminary results are presented of the physiological experiment with rats, biological experiments with drosophila and higher and lower plants, and radiation physics and radiobiology studies for the planning of biological protection on future space flights. The most significant conclusion from the preliminary data is that rats tolerate space flight better with an artificial force of gravity.

  13. Breakthrough Propulsion Physics Workshop Preliminary Results

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1997-01-01

    In August, 1997, a NASA workshop was held to assess the prospects emerging from physics that might lead to creating the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, attaining the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Preliminary results of this workshop are presented, along with the status of the Breakthrough Propulsion Physics program that conducted this workshop.

  14. Large-Scale Earthquake Countermeasures Act and the Earthquake Prediction Council in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikitake, T.

    1979-08-07

    The Large-Scale Earthquake Countermeasures Act was enacted in Japan in December 1978. This act aims at mitigating earthquake hazards by designating an area to be an area under intensified measures against earthquake disaster, such designation being based on long-term earthquake prediction information, and by issuing an earthquake warnings statement based on imminent prediction information, when possible. In an emergency case as defined by the law, the prime minister will be empowered to take various actions which cannot be taken at ordinary times. For instance, he may ask the Self-Defense Force to come into the earthquake-threatened area before the earthquake occurrence.more » A Prediction Council has been formed in order to evaluate premonitory effects that might be observed over the Tokai area, which was designated an area under intensified measures against earthquake disaster some time in June 1979. An extremely dense observation network has been constructed over the area.« less

  15. Different styles of postseismic deformation after the 2013 M7.7 Balochistan earthquake in Pakistan and the 2010 M7.2 El Mayor-Cucapah earthquake in Mexico

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Yague-Martinez, N.; Motagh, M.; Gonzalez-Ortega, J. A.; Huang, M. H.; Burgmann, R.; Freed, A. M.; Samsonov, S. V.

    2014-12-01

    first year, based on preliminary modeling. These very different lithospheric configurations have strong implications for transfer of stress and future earthquake risk.

  16. 76 FR 33210 - Preliminary Results of Antidumping Duty Administrative Review: Circular Welded Carbon Steel Pipes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-008] Preliminary Results of... Enterprise Co., Ltd. (Yieh Phui) have been made below normal value (NV). If these preliminary results are adopted in our final results, we will instruct U.S. Customs and Border Protection (CBP) to assess...

  17. In-situ investigation of relations between slow slip events, repeaters and earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Marty, S. B.; Schubnel, A.; Gardonio, B.; Bhat, H. S.; Fukuyama, E.

    2017-12-01

    Recent observations have shown that, in subduction zones, imperceptible slip, known as "slow slip events", could trigger powerful earthquakes and could be link to the onset of swarms of repeaters. In the aim of investigating the relation between repeaters, slow slip events and earthquake nucleation, we have conducted stick-slip experiments on saw-cut Indian Gabbro under upper crustal stress conditions (up to 180 MPa confining pressure). During the past decades, the reproduction of micro-earthquakes in the laboratory enabled a better understanding and to better constrain physical parameters that are the origin of the seismic source. Using a new set of calibrated piezoelectric acoustic emission sensors and high frequency dynamic strain gages, we are now able to measure a large number of physical parameters during stick-slip motion, such as the rupture velocity, the slip velocity, the dynamic stress drop and the absolute magnitudes and sizes of foreshock acoustic emissions. Preliminary observations systemically show quasi-static slip accelerations, onset of repeaters as well as an increase in the acoustic emission rate before failure. In the next future, we will further investigate the links between slow slip events, repeaters, stress build-up and earthquakes, using our high-frequency acoustic and strain recordings and applying template matching analysis.

  18. Rapid estimate of earthquake source duration: application to tsunami warning.

    NASA Astrophysics Data System (ADS)

    Reymond, Dominique; Jamelot, Anthony; Hyvernaud, Olivier

    2016-04-01

    We present a method for estimating the source duration of the fault rupture, based on the high-frequency envelop of teleseismic P-Waves, inspired from the original work of (Ni et al., 2005). The main interest of the knowledge of this seismic parameter is to detect abnormal low velocity ruptures that are the characteristic of the so called 'tsunami-earthquake' (Kanamori, 1972). The validation of the results of source duration estimated by this method are compared with two other independent methods : the estimated duration obtained by the Wphase inversion (Kanamori and Rivera, 2008, Duputel et al., 2012) and the duration calculated by the SCARDEC process that determines the source time function (M. Vallée et al., 2011). The estimated source duration is also confronted to the slowness discriminant defined by Newman and Okal, 1998), that is calculated routinely for all earthquakes detected by our tsunami warning process (named PDFM2, Preliminary Determination of Focal Mechanism, (Clément and Reymond, 2014)). Concerning the point of view of operational tsunami warning, the numerical simulations of tsunami are deeply dependent on the source estimation: better is the source estimation, better will be the tsunami forecast. The source duration is not directly injected in the numerical simulations of tsunami, because the cinematic of the source is presently totally ignored (Jamelot and Reymond, 2015). But in the case of a tsunami-earthquake that occurs in the shallower part of the subduction zone, we have to consider a source in a medium of low rigidity modulus; consequently, for a given seismic moment, the source dimensions will be decreased while the slip distribution increased, like a 'compact' source (Okal, Hébert, 2007). Inversely, a rapid 'snappy' earthquake that has a poor tsunami excitation power, will be characterized by higher rigidity modulus, and will produce weaker displacement and lesser source dimensions than 'normal' earthquake. References: CLément, J

  19. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term magnitude distribution of the Dead Sea Fault zone

    USGS Publications Warehouse

    Hough, S.E.; Avni, R.

    2009-01-01

    In combination with the historical record, paleoseismic investigations have provided a record of large earthquakes in the Dead Sea Rift that extends back over 1500 years. Analysis of macroseismic effects can help refine magnitude estimates for large historical events. In this study we consider the detailed intensity distributions for two large events, in 1170 CE and 1202 CE, as determined from careful reinterpretation of available historical accounts, using the 1927 Jericho earthquake as a guide in their interpretation. In the absence of an intensity attenuation relationship for the Dead Sea region, we use the 1927 Jericho earthquake to develop a preliminary relationship based on a modification of the relationships developed in other regions. Using this relation, we estimate M7.6 for the 1202 earthquake and M6.6 for the 1170 earthquake. The uncertainties for both estimates are large and difficult to quantify with precision. The large uncertainties illustrate the critical need to develop a regional intensity attenuation relation. We further consider the distribution of magnitudes in the historic record and show that it is consistent with a b-value distribution with a b-value of 1. Considering the entire Dead Sea Rift zone, we show that the seismic moment release rate over the past 1500 years is sufficient, within the uncertainties of the data, to account for the plate tectonic strain rate along the plate boundary. The results reveal that an earthquake of M7.8 is expected within the zone on average every 1000 years. ?? 2011 Science From Israel/LPPLtd.

  20. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  1. Early Results of Three-Year Monitoring of Red Wood Ants’ Behavioral Changes and Their Possible Correlation with Earthquake Events

    PubMed Central

    Berberich, Gabriele; Berberich, Martin; Grumpe, Arne; Wöhler, Christian; Schreiber, Ulrich

    2013-01-01

    Simple Summary For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the video streams. Based on this automated approach, a statistical analysis of the ant behavior will be carried out. Abstract Short-term earthquake predictions with an advance warning of several hours or days are currently not possible due to both incomplete understanding of the complex tectonic processes and inadequate observations. Abnormal animal behaviors before earthquakes have been reported previously, but create problems in monitoring and reliability. The situation is different with red wood ants (RWA; Formica rufa-group (Hymenoptera: Formicidae)). They have stationary mounds on tectonically active, gas-bearing fault systems. These faults may be potential earthquake areas. For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras with both a color and an infrared sensor. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the more than 45,000 hours of video streams. Based on this automated approach, a statistical analysis of

  2. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    USGS Publications Warehouse

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  3. The network construction of CSELF for earthquake monitoring and its preliminary observation

    NASA Astrophysics Data System (ADS)

    Tang, J.; Zhao, G.; Chen, X.; Bing, H.; Wang, L.; Zhan, Y.; Xiao, Q.; Dong, Z.

    2017-12-01

    The Electromagnetic (EM) anomaly in short-term earthquake precursory is most sensitive physical phenomena. Scientists believe that EM monitoring for earthquake is one of the most promising means of forecasting. However, existing ground-base EM observation confronted with increasing impact cultural noises, and the lack of a frequency range of higher than 1Hz observations. Control source of extremely low frequency (CSELF) EM is a kind of good prospective new approach. It not only has many advantages with high S/N ratio, large coverage area, probing depth ect., thereby facilitating the identification and capture anomaly signal, and it also can be used to study the electromagnetic field variation and to study the crustal medium changes of the electric structure.The first CSELF EM network for earthquake precursory monitoring with 30 observatories in China has been constructed. The observatories distribute in Beijing surrounding area and in the southern part of North-South Seismic Zone. GMS-07 system made by Metronix is equipped at each station. The observation mixed CSELF and nature source, that is, if during the control source is off transmitted, the nature source EM signal will be recorded. In genernal, there are 3 5 frequencies signals in the 0.1-300Hz frequency band will be transmit in every morning and evening in a fixed time (length 2 hours). Besides time, natural field to extend the frequency band (0.001 1000 Hz) will be observed by using 3 sample frequencies, 4096Hz sampling rate for HF, 256Hz for MF and 16Hz for LF. The low frequency band records continuously all-day and the high and medium frequency band use a slices record, the data records by cycling acquisition in every 10 minutes with length of about 4 to 8 seconds and 64 to 128 seconds , respectively. All the data is automatically processed by server installed in the observatory. The EDI file including EM field spectrums and MT responses and time series files will be sent the data center by internet

  4. [High Resolution Remote Sensing Monitoring and Assessment of Secondary Geological Disasters Triggered by the Lushan Earthquake].

    PubMed

    Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li; Li, Wen-jun; Liu, Xiong-fei

    2016-01-01

    The secondary geological disasters triggered by the Lushan earthquake on April 20, 2013, such as landslides, collapses, debris flows, etc., had caused great casualties and losses. We monitored the number and spatial distribution of the secondary geological disasters in the earthquake-hit area from airborne remote sensing images, which covered areas about 3 100 km2. The results showed that Lushan County, Baoxing County and Tianquan County were most severely affected; there were 164, 126 and 71 secondary geological disasters in these regions. Moreover, we analyzed the relationship between the distribution of the secondary geological disasters, geological structure and intensity. The results indicate that there were 4 high-hazard zones in the monitored area, one focused within six kilometers from the epicenter, and others are distributed along the two main fault zones of the Longmen Mountain. More than 97% secondary geological disasters occurred in zones with a seismic intensity of VII to IX degrees, a slope between 25 A degrees and 50 A degrees, and an altitude of between 800 and 2 000 m. At last, preliminary suggestions were proposed for the rehabilitation and reconstruction planning of Lushan earthquake. According to the analysis result, airborne and space borne remote sensing can be used accurately and effectively in almost real-time to monitor and assess secondary geological disasters, providing a scientific basis and decision making support for government emergency command and post-disaster reconstruction.

  5. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  6. Simulating Earthquakes for Science and Society: New Earthquake Visualizations Ideal for Use in Science Communication

    NASA Astrophysics Data System (ADS)

    de Groot, R. M.; Benthien, M. L.

    2006-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin &Brick, 2002). Earthquakes are ideal candidates for visualization products: they cannot be predicted, are completed in a matter of seconds, occur deep in the earth, and the time between events can be on a geologic time scale. For example, the southern part of the San Andreas fault has not seen a major earthquake since about 1690, setting the stage for an earthquake as large as magnitude 7.7 -- the "big one." Since no one has experienced such an earthquake, visualizations can help people understand the scale of such an event. Accordingly, SCEC has developed a revolutionary simulation of this earthquake, with breathtaking visualizations that are now being distributed. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  7. Impact of Earthquake Preperation Process On Hydrodeformation Field Evolution In The Caucasus

    NASA Astrophysics Data System (ADS)

    Melikadze, G.; Aliev, A.; Bendukidze, G.; Biagi, P. F.; Garalov, B.; Mirianashvili, V.

    The paper studies relation between geodeformation regime variations of underground water observed in boreholes and deformation processes in the Earth crust, asso- ciated with formation of earthquakes with M=3 and higher. Monitoring of hydro- geodeformation field (HGDF) has been carried out thanks to the on-purpose gen- eral network of Armenia, Azerbaijan, Georgia and Russia. The wells are uniformly distributed throughout the Caucasus and cover all principal geological blocks of the region. The paper deals with results associated with several earthquakes occured in Georgia and one in Azerbaijan. As the network comprises boreholes of different depths, varying from 250 m down to 3,500 m, preliminary calibration of the boreholes involved was carried out, based on evaluation of the water level variation due to known Earth tide effect. This was necessary for sensitivity evaluation and normalization of hydro-dynamic signals. Obtained data have been processed by means of spectral anal- ysis to dissect background field of disturbances from the valid signal. The processed data covered the period of 1991-1993 comprising the following 4 strong earthquakes of the Caucasus, namely in: Racha (1991, M=6.9), Java (1991, M=6.2), Barisakho (1992, M=6.5) and Talish (1993, M=5.6). Formation of the compression zone in the east Caucasus and that of extension in the western Georgia and north Caucasus was observed 7 months prior to Racha quake. Boundary between the above 2 zones passed along the known submeridional fault. The area where maximal gradient was observed, coincided with the joint of deep faults and appeared to be the place for origination of the earthquake. After the quake occurred, the zone of maximal gradient started to mi- grate towards East and residual deformations in HGDF have outlined source first of Java quake (on 15.06.1991), than that of Barisakho (on 23.10.1992) and Talish (on 2.10.1993) ones. Thus, HGDF indicated migration of the deformation field along the slope of

  8. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part B, historical earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax: the moment magnitude of the largest earthquake that is thought to be possible within a specified geographic region. The region specified in this report is the Central and Eastern United States and adjacent Canada. Parts A and B of this report describe the construction of a global catalog of moderate to large earthquakes that occurred worldwide in tectonic analogs of the Central and Eastern United States. Examination of histograms of the magnitudes of these earthquakes allows estimation of Central and Eastern United States Mmax. The catalog and Mmax estimates derived from it are used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. Part A deals with prehistoric earthquakes, and this part deals with historical events.

  9. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

    PubMed Central

    Dixon, Timothy H.; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-01-01

    The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  10. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    PubMed

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-02

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

  11. A short note on ground-motion recordings from the M 7.9 Wenchuan, China, earthquake and ground-motion prediction equations in the Central and Eastern United States

    USGS Publications Warehouse

    Wang, Z.; Lu, M.

    2011-01-01

    The 12 May 2008 Wenchuan earthquake (M 7.9) occurred along the western edge of the eastern China SCR and was well recorded by modern strong-motion instruments: 93 strong-motion stations within 1.4 to 300 km rupture distance recorded the main event. Preliminary comparisons show some similarities between ground-motion attenuation in the Wenchuan region and the central and eastern United States, suggesting that ground motions from the Wenchuan earthquake could be used as a database providing constraints for developing GMPEs for large earthquakes in the central and eastern United States.

  12. Apollo 17 traverse gravimeter experiment /Preliminary results/

    NASA Technical Reports Server (NTRS)

    Talwani, M.; Kahle, H.-G.

    1976-01-01

    Preliminary results of the traverse gravimeter experiment successfully performed during the Apollo 17 mission are discussed. An earth-moon gravity tie was established. On the basis of several readings, a gravity value of 162,695 + or - 5 mgal was obtained at the lunar-module landing site in the Taurus-Littrow valley. Free-air and Bouguer corrections were applied to the gravity data. The resultant Bouguer anomaly, analyzed with a two-dimensional approximation, shows a relative gravity maximum of about 25 to 30 mgal over the Taurus-Littrow valley. This maximum is interpreted in terms of a 1-km-thick block of basalt flow with a positive density contrast of 0.8 g/cu cm relative to the highland material on either side.

  13. Analysis of post-earthquake reconstruction for Wenchuan earthquake based on night-time light data from DMSP/OLS

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhang, Jing; Yang, Mingxiang; Lei, Xiaohui

    2017-07-01

    At present, most of Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) night-time light data are applied to large-scale regional development assessment, while there are little for the study of earthquake and other disasters. This study has extracted night-time light information before and after earthquake within Wenchuan county with adoption of DMSP/OLS night-time light data. The analysis results show that the night-time light index and average intensity of Wenchuan county were decreased by about 76% and 50% respectively from the year of 2007 to 2008. From the year of 2008 to 2011, the two indicators were increased by about 200% and 556% respectively. These research results show that the night-time light data can be used to extract the information of earthquake and evaluate the occurrence of earthquakes and other disasters.

  14. Intraplate triggered earthquakes: Observations and interpretation

    USGS Publications Warehouse

    Hough, S.E.; Seeber, L.; Armbruster, J.G.

    2003-01-01

    We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of

  15. Interim report on the St. Elias, Alaska earthquake of 28 February 1979

    USGS Publications Warehouse

    Lahr, John C.; Plafker, George; Stephens, C.D.; Foglean, K.A.; Blackford, M.E.

    1979-01-01

    On 28 February 1979 an earthquake with surface wave magnitude (Ms) of 7.7 (W. Person, personal communication, 1979) occurred beneath the Chugach and St. Elias mountains of southern Alaska (fig. 1). This is a region of complex tectonics resulting from northwestward convergence between the Pacific and North American plates. To the east, the northwest-trending Fairweather fault accommodates the movement with dextral slip of about 5.5 cm/yr (Plafker, Hudson, and others, 1978); to the west, the Pacific plate underthrusts Alaska at the Aleutian trench, which trends southwestward (Plafker 1969). The USGS has operated a telemetered seismic network in southern Alaska since 1971 and it was greatly expanded along the eastern Gulf of Alaska in September 1974. The current configuration of stations is shown in Figure 9. Technical details of the network are available in published earthquake catalogs (Lahr, Page, and others, 1974; Fogleman, Stephens, and others, 1978). Preliminary analysis of the data from this network covering the time period September 1, 1978 through March 10, 1979, as well as worldwide data for the main shock will be discussed in this paper.

  16. Prospective Validation of Pre-earthquake Atmospheric Signals and Their Potential for Short–term Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Lee, Lou; Liu, Tiger; Kafatos, Menas

    2015-04-01

    We are presenting the latest development in multi-sensors observations of short-term pre-earthquake phenomena preceding major earthquakes. Our challenge question is: "Whether such pre-earthquake atmospheric/ionospheric signals are significant and could be useful for early warning of large earthquakes?" To check the predictive potential of atmospheric pre-earthquake signals we have started to validate anomalous ionospheric / atmospheric signals in retrospective and prospective modes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (Satellite thermal infrared radiation (STIR), electron concentration in the ionosphere (GPS/TEC), radon/ion activities, air temperature and seismicity patterns) that were found to be associated with earthquakes. The science rationale for multidisciplinary analysis is based on concept Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) [Pulinets and Ouzounov, 2011], which explains the synergy of different geospace processes and anomalous variations, usually named short-term pre-earthquake anomalies. Our validation processes consist in two steps: (1) A continuous retrospective analysis preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009 (2) Prospective testing of STIR anomalies with potential for M5.5+ events. The retrospective tests (100+ major earthquakes, M>5.9, Taiwan and Japan) show STIR anomalous behavior before all of these events with false negatives close to zero. False alarm ratio for false positives is less then 25%. The initial prospective testing for STIR shows systematic appearance of anomalies in advance (1-30 days) to the M5.5+ events for Taiwan, Kamchatka-Sakhalin (Russia) and Japan. Our initial prospective results suggest that our approach show a systematic appearance of atmospheric anomalies, one to several days prior to the largest earthquakes That feature could be

  17. 78 FR 7395 - Stainless Steel Bar From India: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... India: Preliminary Results of Antidumping Duty Administrative Review; 2011-2012 AGENCY: Import... steel bar (SSB) from India. The period of review (POR) is February 1, 2011, through January 31, 2012... Preliminary Results of Antidumping Duty Administrative Review: Stainless Steel Bar from India'' dated...

  18. An ultra-wideband microwave tomography system: preliminary results.

    PubMed

    Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe

    2009-01-01

    We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.

  19. Earthquakes: Predicting the unpredictable?

    USGS Publications Warehouse

    Hough, Susan E.

    2005-01-01

    The earthquake prediction pendulum has swung from optimism in the 1970s to rather extreme pessimism in the 1990s. Earlier work revealed evidence of possible earthquake precursors: physical changes in the planet that signal that a large earthquake is on the way. Some respected earthquake scientists argued that earthquakes are likewise fundamentally unpredictable. The fate of the Parkfield prediction experiment appeared to support their arguments: A moderate earthquake had been predicted along a specified segment of the central San Andreas fault within five years of 1988, but had failed to materialize on schedule. At some point, however, the pendulum began to swing back. Reputable scientists began using the "P-word" in not only polite company, but also at meetings and even in print. If the optimism regarding earthquake prediction can be attributed to any single cause, it might be scientists' burgeoning understanding of the earthquake cycle.

  20. Laboratory investigations of earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Xia, Kaiwen

    In this thesis this will be attempted through controlled laboratory experiments that are designed to mimic natural earthquake scenarios. The earthquake dynamic rupturing process itself is a complicated phenomenon, involving dynamic friction, wave propagation, and heat production. Because controlled experiments can produce results without assumptions needed in theoretical and numerical analysis, the experimental method is thus advantageous over theoretical and numerical methods. Our laboratory fault is composed of carefully cut photoelastic polymer plates (Homahte-100, Polycarbonate) held together by uniaxial compression. As a unique unit of the experimental design, a controlled exploding wire technique provides the triggering mechanism of laboratory earthquakes. Three important components of real earthquakes (i.e., pre-existing fault, tectonic loading, and triggering mechanism) correspond to and are simulated by frictional contact, uniaxial compression, and the exploding wire technique. Dynamic rupturing processes are visualized using the photoelastic method and are recorded via a high-speed camera. Our experimental methodology, which is full-field, in situ, and non-intrusive, has better control and diagnostic capacity compared to other existing experimental methods. Using this experimental approach, we have investigated several problems: dynamics of earthquake faulting occurring along homogeneous faults separating identical materials, earthquake faulting along inhomogeneous faults separating materials with different wave speeds, and earthquake faulting along faults with a finite low wave speed fault core. We have observed supershear ruptures, subRayleigh to supershear rupture transition, crack-like to pulse-like rupture transition, self-healing (Heaton) pulse, and rupture directionality.

  1. Thermal Infrared Anomalies of Several Strong Earthquakes

    PubMed Central

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  2. Thermal infrared anomalies of several strong earthquakes.

    PubMed

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  3. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    PubMed

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  4. The mechanism of earthquake

    NASA Astrophysics Data System (ADS)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The

  5. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation.

    PubMed

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-10

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  6. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    PubMed Central

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-01-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011. PMID:27161897

  7. Characterizing the Temporal and Spatial Distribution of Earthquake Swarms in the Puerto Rico - Virgin Island Block

    NASA Astrophysics Data System (ADS)

    Hernandez, F. J.; Lopez, A. M.; Vanacore, E. A.

    2017-12-01

    The presence of earthquake swarms and clusters in the north and northeast of the island of Puerto Rico in the northeastern Caribbean have been recorded by the Puerto Rico Seismic Network (PRSN) since it started operations in 1974. Although clusters in the Puerto Rico-Virgin Island (PRVI) block have been observed for over forty years, the nature of their enigmatic occurrence is still poorly understood. In this study, the entire seismic catalog of the PRSN, of approximately 31,000 seismic events, has been limited to a sub-set of 18,000 events located all along north of Puerto Rico in an effort to characterize and understand the underlying mechanism of these clusters. This research uses two de-clustering methods to identify cluster events in the PRVI block. The first method, known as Model Independent Stochastic Declustering (MISD), filters the catalog sub-set into cluster and background seismic events, while the second method uses a spatio-temporal algorithm applied to the catalog in order to link the separate seismic events into clusters. After using these two methods, identified clusters were classified into either earthquake swarms or seismic sequences. Once identified, each cluster was analyzed to identify correlations against other clusters in their geographic region. Results from this research seek to : (1) unravel their earthquake clustering behavior through the use of different statistical methods and (2) better understand the mechanism for these clustering of earthquakes. Preliminary results have allowed to identify and classify 128 clusters categorized in 11 distinctive regions based on their centers, and their spatio-temporal distribution have been used to determine intra- and interplate dynamics.

  8. Geologic Evidence of Earthquakes and Tsunamis in the Mexican Subduction zone - Guerrero

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M.; Lagos, M.; Hutchinson, I.; Ruiz-Fernández, A.; Machain, M.; Caballero, M.; Rangel, V.; Nava, H.; Corona, N.; Bautista, F.; Kostoglodov, V.; Goguitchaichrili, A.; Morales, J.; Quintana, P.

    2010-12-01

    A study of large historic and prehistoric earthquakes and their tsunamis using a multiproxy approach (geomorphic features, sediment deposits, microfossils, sediment geochemistry and more recently the use of magnetic properties) has provided valuable information in the assessment of earthquake and tsunami record. The Pacific coast of Mexico is located over the active subduction zone (~1000 km) that has experienced numerous large magnitude earthquakes in historical time (Mw>7.5), and more than 50 documented tsunamis since 1732. Geomorphic and stratigraphic studies through test pits at 13 sites on the Guerrero coast reveal distinct stratigraphic changes with depth, indicating clear rapid change in depositional environments over time. Microfossil ecology (diatoms and foraminifera), sediment geochemistry (concentration increment in elements such as Sr, Ba, Ca, P, Si, K), stratigraphy, sediment magnetic properties (magnetic susceptibility anisotropy for the first time applied in tsunami deposits identification) and other proxies are indicative of sudden changes in land level and tsunami deposits. Buried evidence of liquefaction confirms the occurrence of a large earthquake at Barra de Potosi and Ixtapa, Guerrero. Preliminary 210Pb analysis suggests a sedimentation rate of ca. 0.1±0.01 cm/year and an estimated minimum age of ~ 100 years (maximum age at ca. 450 years?) for the most recent earthquake. At least three large events can be recognized by sharp contacts and sand layers in the sedimentary record. Ongoing C14, OSL and 210Pb dating will constrain the timing of these events. Deposits from three marine inwash events (tsunamis) dating from the past 4600 years have been identified on the Guerrero coast. A near-surface sand bed with a sharp basal contact overlying soil at sites near Ixtapa and Barra de Potosi most probably marks the tsunami following the 1985 Mw 8.2 earthquake. Interviews with Barra de Potosi fishermen and locals corroborate that these sites were

  9. Centrality in earthquake multiplex networks

    NASA Astrophysics Data System (ADS)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  10. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    NASA Astrophysics Data System (ADS)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median

  11. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    NASA Astrophysics Data System (ADS)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  12. Investigating Along-Strike Variations of Source Parameters for Relocated Thrust Earthquakes Along the Sumatra-Java Subduction Zone

    NASA Astrophysics Data System (ADS)

    El Hariri, M.; Bilek, S. L.; Deshon, H. R.; Engdahl, E. R.

    2009-12-01

    Some earthquakes generate anomalously large tsunami waves relative to their surface wave magnitudes (Ms). This class of events, known as tsunami earthquakes, is characterized by having a long rupture duration and low radiated energy at long periods. These earthquakes are relatively rare. There have been only 9 documented cases, including 2 in the Java subduction zone (1994 Mw=7.8 and the 2006 Mw=7.7). Several models have been proposed to explain the unexpectedly large tsunami, such as displacement along high-angle splay faults, landslide-induced tsunami due to coseismic shaking, or large seismic slip within low rigidity sediments or weaker material along the shallowest part of the subduction zone. Slow slip has also been suggested along portions of the 2004 Mw=9.2 Sumatra-Andaman earthquake zone. In this study we compute the source parameters of 90 relocated shallow thrust events (Mw 5.1-7.8) along the Sumatra-Java subduction zone including the two Java tsunami earthquakes. Events are relocated using a modification to the Engdahl, van der Hilst and Buland (EHB) earthquake relocation method that incorporates an automated frequency-dependent phase detector. This allows for the use of increased numbers of phase arrival times, especially depth phases, and improves hypocentral locations. Source time functions, rupture duration and depth estimates are determined using multi-station deconvolution of broadband teleseismic P and SH waves. We seek to correlate any along-strike variation in rupture characteristics with tectonic features and rupture characteristics of the previous slow earthquakes along this margin to gain a better understanding of the conditions resulting in slow ruptures. Preliminary results from the analysis of these events show that in addition to depth-dependent variations there are also along-strike variations in rupture duration. We find that along the Java segment, the longer duration event locates in a highly coupled region corresponding to the

  13. Detection of Repeating Earthquakes within the Cascadia Subduction Zone Using 2013-2014 Cascadia Initiative Amphibious Network Data

    NASA Astrophysics Data System (ADS)

    Kenefic, L.; Morton, E.; Bilek, S.

    2017-12-01

    It is well known that subduction zones create the largest earthquakes in the world, like the magnitude 9.5 Chile earthquake in 1960, or the more recent 9.1 magnitude Japan earthquake in 2011, both of which are in the top five largest earthquakes ever recorded. However, off the coast of the Pacific Northwest region of the U.S., the Cascadia subduction zone (CSZ) remains relatively quiet and modern seismic instruments have not recorded earthquakes of this size in the CSZ. The last great earthquake, a magnitude 8.7-9.2, occurred in 1700 and is constrained by written reports of the resultant tsunami in Japan and dating a drowned forest in the U.S. Previous studies have suggested the margin is most likely segmented along-strike. However, variations in frictional conditions in the CSZ fault zone are not well known. Geodetic modeling indicates that the locked seismogenic zone is likely completely offshore, which may be too far from land seismometers to adequately detect related seismicity. Ocean bottom seismometers, as part of the Cascadia Initiative Amphibious Network, were installed directly above the inferred seismogenic zone, which we use to better detect small interplate seismicity. Using the subspace detection method, this study looks to find new seismogenic zone earthquakes. This subspace detection method uses multiple previously known event templates concurrently to scan through continuous seismic data. Template events that make up the subspace are chosen from events in existing catalogs that likely occurred along the plate interface. Corresponding waveforms are windowed on the nearby Cascadia Initiative ocean bottom seismometers and coastal land seismometers for scanning. Detections that are found by the scan are similar to the template waveforms based upon a predefined threshold. Detections are then visually examined to determine if an event is present. The presence of repeating event clusters can indicate persistent seismic patches, likely corresponding to

  14. 2010 Chile Earthquake Aftershock Response

    NASA Astrophysics Data System (ADS)

    Barientos, Sergio

    2010-05-01

    1906? Since the number of M>7.0 aftershocks has been low, does the distribution of large-magnitude aftershocks differ from previous events of this size? What is the origin of the extensional-type aftershocks at shallow depths within the upper plate? The international seismological community (France, Germany, U.K., U.S.A.) in collaboration with the Chilean seismological community responded with a total of 140 portable seismic stations to deploy in order to record aftershocks. This combined with the Chilean permanent seismic network, in the area results in 180 stations now in operation recording continuous at 100 cps. The seismic equipment is a mix of accelerometers, short -period and broadband seismic sensors deployed along the entire length of the aftershock zone that will record the aftershock sequence for three to six months. The collected seismic data will be merged and archived to produce an international data set open to the entire seismological community immediately after archiving. Each international group will submit their data as soon as possible in standard (mini seed) format with accompanying meta data to the IRIS DMC where the data will be merged into a combined data set and available to individuals and other data centers. This will be by far the best-recorded aftershock sequence of a large megathrust earthquake. This outstanding international collaboration will provide an open data set for this important earthquake as well as provide a model for future aftershock deployments around the world.

  15. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    directional techniques were employed, resulting in three mapped, potential epicenters. The remaining, weaker signals presented similar directionality results to more epicentral locations. In addition, the directional results of the Timpson field tests lead to the design and construction of a third prototype antenna. In a laboratory setting, experiments were created to fail igneous rock types within a custom-designed Faraday Cage. An antenna emplaced within the cage detected EM emissions, which were both reproducible and distinct, and the laboratory results paralleled field results. With a viable system and continuous monitoring, a fracture cycle could be established and observed in real-time. Sequentially, field data would be reviewed quickly for assessment; thus, leading to a much improved earthquake forecasting capability. The EM precursor determined by this method may surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.

  16. Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations

    NASA Astrophysics Data System (ADS)

    Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.

    2016-12-01

    We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should

  17. Simulating Earthquakes for Science and Society: Earthquake Visualizations Ideal for use in Science Communication and Education

    NASA Astrophysics Data System (ADS)

    de Groot, R.

    2008-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently gained visibility via television news coverage in Southern California. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin & Brick, 2002). For example, The Great Southern California ShakeOut was based on a potential magnitude 7.8 earthquake on the southern San Andreas fault. The visualization created for the ShakeOut was a key scientific and communication tool for the earthquake drill. This presentation will also feature SCEC Virtual Display of Objects visualization software developed by SCEC Undergraduate Studies in Earthquake Information Technology interns. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  18. Napa earthquake: An earthquake in a highly connected world

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.

    2014-12-01

    The Napa earthquake recently occurred close to Silicon Valley. This makes it a good candidate to study what social networks, wearable objects and website traffic analysis (flashsourcing) can tell us about the way eyewitnesses react to ground shaking. In the first part, we compare the ratio of people publishing tweets and with the ratio of people visiting EMSC (European Mediterranean Seismological Centre) real time information website in the first minutes following the earthquake occurrence to the results published by Jawbone, which show that the proportion of people waking up depends (naturally) on the epicentral distance. The key question to evaluate is whether the proportions of inhabitants tweeting or visiting the EMSC website are similar to the proportion of people waking up as shown by the Jawbone data. If so, this supports the premise that all methods provide a reliable image of the relative ratio of people waking up. The second part of the study focuses on the reaction time for both Twitter and EMSC website access. We show, similarly to what was demonstrated for the Mineral, Virginia, earthquake (Bossu et al., 2014), that hit times on the EMSC website follow the propagation of the P waves and that 2 minutes of website traffic is sufficient to determine the epicentral location of an earthquake on the other side of the Atlantic. We also compare with the publication time of messages on Twitter. Finally, we check whether the number of tweets and the number of visitors relative to the number of inhabitants is correlated to the local level of shaking. Together these results will tell us whether the reaction of eyewitnesses to ground shaking as observed through Twitter and the EMSC website analysis is tool specific (i.e. specific to Twitter or EMSC website) or whether they do reflect people's actual reactions.

  19. Pre-earthquake Magnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J. A.; Freund, F. T.

    2015-12-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earth quakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  20. Injection-induced earthquakes

    USGS Publications Warehouse

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  1. Parallelization of the Coupled Earthquake Model

    NASA Technical Reports Server (NTRS)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  2. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  3. Earthquakes; January-February 1982

    USGS Publications Warehouse

    Person, W.J.

    1982-01-01

    In the United States, a number of earthquakes occurred, but only minor damage was reported. Arkansas experienced a swarm of earthquakes beginning on January 12. Canada experienced one of its strongest earthquakes in a number of years on January 9; this earthquake caused slight damage in Maine. 

  4. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  5. Deviant Earthquakes: Data-driven Constraints on the Variability in Earthquake Source Properties and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel Taylor

    southern California seismicity. Chapter 6 builds upon these results and applies the same spectral decomposition technique to examine the source properties of several thousand recent earthquakes in southern Kansas that are likely human-induced by massive oil and gas operations in the region. Chapter 7 studies the connection between source spectral properties and earthquake hazard, focusing on spatial variations in dynamic stress drop and its influence on ground motion amplitudes. Finally, Chapter 8 provides a summary of the key findings of and relations between these studies, and outlines potential avenues of future research.

  6. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  7. Results of meteorological monitoring in Gorny Altai before and after the Chuya earthquake in 2003

    NASA Astrophysics Data System (ADS)

    Aptikaeva, O. I.; Shitov, A. V.

    2014-12-01

    We consider the dynamics of some meteorological parameters in Gorny Altai from 2000 to 2011. We analyzed the variations in the meteorological parameters related to the strong Chuya earthquake (September 27, 2003). A number of anomalies were revealed in the time series. Before this strong earthquake, the winter temperatures at the nearest meteorological station to the earthquake source increased by 8-10°C (by 2009 they returned to the mean values), while the air humidity in winter decreased. In the winter of 2002, we observed a long negative anomaly in the time series of the atmospheric pressure. At the same time, the decrease in the released seismic energy was replaced by the tendency to its increase. Using wavelet analysis we revealed the synchronism in the dynamics of the atmospheric parameters, variations in the solar and geomagnetic activities, and geodynamic processes. We also discuss the relationship of the atmospheric and geodynamic processes and the comfort conditions of the population in the climate analyzed here.

  8. Dynamic modeling of normal faults of the 2016 Central Italy earthquake sequence

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo

    2017-04-01

    The earthquake sequence of the Central Italy in 2016 are characterized mainly by the Mw6.0 24th August, Mw5.9 26th October and Mw6.4 30th October as well as two Mw5.4 earthquakes (24th August, 26th October) (catalogue INGV). They all show normal faulting mechanisms corresponding to the Apennines's tectonics. They are aligned briefly along NNW-SSE axis, and they may not be on a single continuous fault plane. Therefore, dynamic rupture modeling of sequences should be carried out supposing co-planar normal multiple segments. We apply a Boundary Domain Method (BDM, Goto and Bielak, GJI, 2008) coupling a boundary integral equation method and a domain-based method, namely a finite difference method in this study. The Mw6.0 24th August earthquake is modeled. We use the basic information of hypocenter position, focal mechanism and potential ruptured dimension from the INGV catalogue and Tinti et al., GRL, 2016), and begin with a simple condition (homogeneous boundary condition). From our preliminary simulations, it is shown that a uniformly extended rupture model does not fit the near-field ground motions and localized heterogeneity would be required.

  9. Scaling of seismic memory with earthquake size

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Yamasaki, Kazuko; Tenenbaum, Joel; Podobnik, Boris; Tamura, Yoshiyasu; Stanley, H. Eugene

    2012-07-01

    It has been observed that discrete earthquake events possess memory, i.e., that events occurring in a particular location are dependent on the history of that location. We conduct an analysis to see whether continuous real-time data also display a similar memory and, if so, whether such autocorrelations depend on the size of earthquakes within close spatiotemporal proximity. We analyze the seismic wave form database recorded by 64 stations in Japan, including the 2011 “Great East Japan Earthquake,” one of the five most powerful earthquakes ever recorded, which resulted in a tsunami and devastating nuclear accidents. We explore the question of seismic memory through use of mean conditional intervals and detrended fluctuation analysis (DFA). We find that the wave form sign series show power-law anticorrelations while the interval series show power-law correlations. We find size dependence in earthquake autocorrelations: as the earthquake size increases, both of these correlation behaviors strengthen. We also find that the DFA scaling exponent α has no dependence on the earthquake hypocenter depth or epicentral distance.

  10. Earthquakes in Ohio and Vicinity 1776-2007

    USGS Publications Warehouse

    Dart, Richard L.; Hansen, Michael C.

    2008-01-01

    This map summarizes two and a third centuries of earthquake activity. The seismic history consists of letters, journals, diaries, and newspaper and scholarly articles that supplement seismograph recordings (seismograms) dating from the early twentieth century to the present. All of the pre-instrumental (historical) earthquakes were large enough to be felt by people or to cause shaking damage to buildings and their contents. Later, widespread use of seismographs meant that tremors too small or distant to be felt could be detected and accurately located. Earthquakes are a legitimate concern in Ohio and parts of adjacent States. Ohio has experienced more than 160 felt earthquakes since 1776. Most of these events caused no damage or injuries. However, 15 Ohio earthquakes resulted in property damage and some minor injuries. The largest historic earthquake in the state occurred in 1937. This event had an estimated magnitude of 5.4 and caused considerable damage in the town of Anna and in several other western Ohio communities. The large map shows all historical and instrumentally located earthquakes from 1776 through 2007.

  11. Collaboratory for the Study of Earthquake Predictability

    NASA Astrophysics Data System (ADS)

    Schorlemmer, D.; Jordan, T. H.; Zechar, J. D.; Gerstenberger, M. C.; Wiemer, S.; Maechling, P. J.

    2006-12-01

    Earthquake prediction is one of the most difficult problems in physical science and, owing to its societal implications, one of the most controversial. The study of earthquake predictability has been impeded by the lack of an adequate experimental infrastructure---the capability to conduct scientific prediction experiments under rigorous, controlled conditions and evaluate them using accepted criteria specified in advance. To remedy this deficiency, the Southern California Earthquake Center (SCEC) is working with its international partners, which include the European Union (through the Swiss Seismological Service) and New Zealand (through GNS Science), to develop a virtual, distributed laboratory with a cyberinfrastructure adequate to support a global program of research on earthquake predictability. This Collaboratory for the Study of Earthquake Predictability (CSEP) will extend the testing activities of SCEC's Working Group on Regional Earthquake Likelihood Models, from which we will present first results. CSEP will support rigorous procedures for registering prediction experiments on regional and global scales, community-endorsed standards for assessing probability-based and alarm-based predictions, access to authorized data sets and monitoring products from designated natural laboratories, and software to allow researchers to participate in prediction experiments. CSEP will encourage research on earthquake predictability by supporting an environment for scientific prediction experiments that allows the predictive skill of proposed algorithms to be rigorously compared with standardized reference methods and data sets. It will thereby reduce the controversies surrounding earthquake prediction, and it will allow the results of prediction experiments to be communicated to the scientific community, governmental agencies, and the general public in an appropriate research context.

  12. Earthquakes, September-October 1986

    USGS Publications Warehouse

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  13. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  14. EUPORIAS: plans and preliminary results

    NASA Astrophysics Data System (ADS)

    Buontempo, C.

    2013-12-01

    Recent advances in our understanding and ability to forecast climate variability have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. In 2012 the European Commission funded EUPORIAS, a four year long project to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The poster describes the setup of the project, its main outcome and some of the very preliminary results.

  15. Post earthquake recovery in natural gas systems--1971 San Fernando Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.T. Jr.

    1983-01-01

    In this paper a concise summary of the post earthquake investigations for the 1971 San Fernando Earthquake is presented. The effects of the earthquake upon building and other above ground structures are briefly discussed. Then the damages and subsequent repairs in the natural gas systems are reported.

  16. 75 FR 14422 - Purified Carboxymethylcellulose from Mexico: Extension of Time Limits for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... Carboxymethylcellulose from Mexico: Extension of Time Limits for Preliminary Results of Antidumping Duty Administrative... this administrative review is now April 9, 2010. Extension of Time Limits for Preliminary Results... the review within this time period, section 751(a)(3)(A) of the Tariff Act allows the Department to...

  17. Earthquakes; July-August, 1978

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    Earthquake activity during this period was about normal. Deaths from earthquakes were reported from Greece and Guatemala. Three major earthquakes (magnitude 7.0-7.9) occurred in Taiwan, Chile, and Costa Rica. In the United States, the most significant earthquake was a magnitude 5.6 on August 13 in southern California. 

  18. Bayesian exploration of recent Chilean earthquakes

    NASA Astrophysics Data System (ADS)

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Liang, Cunren; Agram, Piyush; Owen, Susan; Ortega, Francisco; Minson, Sarah

    2016-04-01

    The South-American subduction zone is an exceptional natural laboratory for investigating the behavior of large faults over the earthquake cycle. It is also a playground to develop novel modeling techniques combining different datasets. Coastal Chile was impacted by two major earthquakes in the last two years: the 2015 M 8.3 Illapel earthquake in central Chile and the 2014 M 8.1 Iquique earthquake that ruptured the central portion of the 1877 seismic gap in northern Chile. To gain better understanding of the distribution of co-seismic slip for those two earthquakes, we derive joint kinematic finite fault models using a combination of static GPS offsets, radar interferograms, tsunami measurements, high-rate GPS waveforms and strong motion data. Our modeling approach follows a Bayesian formulation devoid of a priori smoothing thereby allowing us to maximize spatial resolution of the inferred family of models. The adopted approach also attempts to account for major sources of uncertainty in the Green's functions. The results reveal different rupture behaviors for the 2014 Iquique and 2015 Illapel earthquakes. The 2014 Iquique earthquake involved a sharp slip zone and did not rupture to the trench. The 2015 Illapel earthquake nucleated close to the coast and propagated toward the trench with significant slip apparently reaching the trench or at least very close to the trench. At the inherent resolution of our models, we also present the relationship of co-seismic models to the spatial distribution of foreshocks, aftershocks and fault coupling models.

  19. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    NASA Astrophysics Data System (ADS)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  20. Earthquake damage to transportation systems

    USGS Publications Warehouse

    McCullough, Heather

    1994-01-01

    Earthquakes represent one of the most destructive natural hazards known to man. A large magnitude earthquake near a populated area can affect residents over thousands of square kilometers and cause billions of dollars in property damage. Such an event can kill or injure thousands of residents and disrupt the socioeconomic environment for months, sometimes years. A serious result of a large-magnitude earthquake is the disruption of transportation systems, which limits post-disaster emergency response. Movement of emergency vehicles, such as police cars, fire trucks and ambulances, is often severely restricted. Damage to transportation systems is categorized below by cause including: ground failure, faulting, vibration damage, and tsunamis.

  1. Evaluation of Earthquake-Induced Effects on Neighbouring Faults and Volcanoes: Application to the 2016 Pedernales Earthquake

    NASA Astrophysics Data System (ADS)

    Bejar, M.; Alvarez Gomez, J. A.; Staller, A.; Luna, M. P.; Perez Lopez, R.; Monserrat, O.; Chunga, K.; Herrera, G.; Jordá, L.; Lima, A.; Martínez-Díaz, J. J.

    2017-12-01

    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the short-term behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with a useful tool to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Space geodesy is now routinely used following an earthquake to image the displacement of the ground and estimate the rupture geometry and the distribution of slip. Using the obtained source model, it is possible to evaluate the remaining moment deficit and to infer the stress changes on nearby faults and volcanoes produced by the earthquake, which can be used to identify which faults and volcanoes are brought closer to failure or activation. Although these procedures are commonly used today, the transference of these results to the authorities managing the post-disaster situation is not straightforward and thus its usefulness is reduced in practice. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after an earthquake. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 SAR and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip. Then we use this model to evaluate the moment deficit on the subduction interface and changes of stress on the surrounding faults and volcanoes. The results are compared with the seismic and volcanic events that have occurred after the earthquake. We discuss potential and limits of the methodology and the lessons learnt from discussion with local authorities.

  2. A Method for Estimation of Death Tolls in Disastrous Earthquake

    NASA Astrophysics Data System (ADS)

    Pai, C.; Tien, Y.; Teng, T.

    2004-12-01

    Fatality tolls caused by the disastrous earthquake are the one of the most important items among the earthquake damage and losses. If we can precisely estimate the potential tolls and distribution of fatality in individual districts as soon as the earthquake occurrences, it not only make emergency programs and disaster management more effective but also supply critical information to plan and manage the disaster and the allotments of disaster rescue manpower and medicine resources in a timely manner. In this study, we intend to reach the estimation of death tolls caused by the Chi-Chi earthquake in individual districts based on the Attributive Database of Victims, population data, digital maps and Geographic Information Systems. In general, there were involved many factors including the characteristics of ground motions, geological conditions, types and usage habits of buildings, distribution of population and social-economic situations etc., all are related to the damage and losses induced by the disastrous earthquake. The density of seismic stations in Taiwan is the greatest in the world at present. In the meantime, it is easy to get complete seismic data by earthquake rapid-reporting systems from the Central Weather Bureau: mostly within about a minute or less after the earthquake happened. Therefore, it becomes possible to estimate death tolls caused by the earthquake in Taiwan based on the preliminary information. Firstly, we form the arithmetic mean of the three components of the Peak Ground Acceleration (PGA) to give the PGA Index for each individual seismic station, according to the mainshock data of the Chi-Chi earthquake. To supply the distribution of Iso-seismic Intensity Contours in any districts and resolve the problems for which there are no seismic station within partial districts through the PGA Index and geographical coordinates in individual seismic station, the Kriging Interpolation Method and the GIS software, The population density depends on

  3. Revisiting the 1912 Murefet, Turkey earthquake and tsunami

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Aksoy, M. M.; Ferreira, H.; Ucarkus, G.; Meghraoui, M.; Çakir, Z.

    2012-12-01

    and Smylie (1971) homogenous elastic half space approach, as implemented in the Mirone suite (Luis, 2007). The parameters used in this computation are obtained by the earthquake fault geometry and slip distribution. The source is composed by 8 segments of variable length with dip angles varying between 70 to 850 and an average slip of 3 m. Preliminary results show maximum wave heights along the northern coast of the Marmara sea, Saros Gulf and Marmara Island according to the historical reports. This study was supported by Instituto Dom Luiz - LA, Universidade de Lisboa

  4. Children's emotional experience two years after an earthquake: An exploration of knowledge of earthquakes and associated emotions

    PubMed Central

    Burro, Roberto; Hall, Rob

    2017-01-01

    A major earthquake has a potentially highly traumatic impact on children’s psychological functioning. However, while many studies on children describe negative consequences in terms of mental health and psychiatric disorders, little is known regarding how the developmental processes of emotions can be affected following exposure to disasters. Objectives We explored whether and how the exposure to a natural disaster such as the 2012 Emilia Romagna earthquake affected the development of children’s emotional competence in terms of understanding, regulating, and expressing emotions, after two years, when compared with a control group not exposed to the earthquake. We also examined the role of class level and gender. Method The sample included two groups of children (n = 127) attending primary school: The experimental group (n = 65) experienced the 2012 Emilia Romagna earthquake, while the control group (n = 62) did not. The data collection took place two years after the earthquake, when children were seven or ten-year-olds. Beyond assessing the children’s understanding of emotions and regulating abilities with standardized instruments, we employed semi-structured interviews to explore their knowledge of earthquakes and associated emotions, and a structured task on the intensity of some target emotions. Results We applied Generalized Linear Mixed Models. Exposure to the earthquake did not influence the understanding and regulation of emotions. The understanding of emotions varied according to class level and gender. Knowledge of earthquakes, emotional language, and emotions associated with earthquakes were, respectively, more complex, frequent, and intense for children who had experienced the earthquake, and at increasing ages. Conclusions Our data extend the generalizability of theoretical models on children’s psychological functioning following disasters, such as the dose-response model and the organizational-developmental model for child resilience, and

  5. The 2008 Mw 7.2 North Pagai earthquake sequence: Partial rupture of a fully locked Mentawai patch

    NASA Astrophysics Data System (ADS)

    Salman, R.; Hill, E.; Feng, L.; Wei, S.; Barbot, S.; Lindsey, E.; WANG, X.; Chen, W.; Bannerjee, P.; Hermawan, I.; Natawidjaja, D. H.

    2016-12-01

    The Mentawai patch is a seismic gap along the Sumatra subduction zone that has not ruptured completely over the last decade. This is worrying because coral colonies of the Mentawai islands show that over the last 700 years the Mentawai patch ruptured in a sequence of great earthquake (Mw > 8.5) about every two centuries. In September 2007, the Mw 8.4 Bengkulu earthquake ruptured the southern section of the Mentawai patch. The event was then followed by two Mw >= 7 aftershocks. Five months later, the 2008 Mw 7.2 earthquake ruptured a small asperity a little further north. The event ruptured a small area in the middle portion of the Mentawai patch, where the megathrust had been estimated as highly coupled. The mainshock was preceded by a foreshock of Mw 6.5 one day before and two M 6 aftershocks that occurred on the same day as the mainshock event. However, the whole earthquake sequence ruptured only a confined area on the megathrust and failed to wake up the sleeping giant. We have yet to explain why the 2008 event did not break more asperities and develop into one gargantuan earthquake. In this study, we use geodetic and seismic data to investigate the 2008 earthquake, its following afterslip, and its fore- and after-shocks. First, we jointly invert static and high-rate cGPS, InSAR and teleseismic data in a joint inversion for a co-seismic slip distribution of the mainshock. Second, we invert teleseismic data alone to develop slip models for the foreshock, mainshock and aftershock events. Third, we use the Cut-And-Paste (CAP) technique to estimate a more accurate depths for the 2008 earthquake sequence. Finally, we use six years of cGPS data, from 2008 to 2013, to develop a model for afterslip. Our preliminary results show 2 meters of peak coseismic slip for the mainshock. In addition, 1 meter of peak afterslip overlap with the coseismic slip model. The total estimated slip is far smaller than expected from the accumulated strain that has been stored in the

  6. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    northwest, from the epicenter in Baja California through the US-Mexico border. The ALS observations were collected from an aircraft altitude of 600 m, flying at approximately 80 m/sec, using an Optech Inc. Gemini sensor, operating at 100 kHz, a scanning angle plus/minus 14 degrees and scan rate of 60 Hz. Some 24 lines, comprising a corridor 3 km wide and 106 km in length, were mapped, with a nominal point density of just over 10 points/m2. Total flight time for the project was just under 21 hours, but the laser on time was only 13 hours and 21 minutes. Preliminary versions of the observational data were delivered to the PIs (Michael Oskin, UC Davis, and Ramon Arrowsmith, ASU) within a few days of their collection. Geodetic imaging is still in its early stages of development, and ALS technology is progressing rapidly. The use of multiple channel (based on multiple lasers of the same or different colors and/or receivers operating in parallel) ALS units will result in contiguous sub-decimeter coverage, and deployment of ALS units in UAVs, with data transmitted to the operators in real time, will further reduce the turn-around time and enable more rapid assessment of earthquakes within the next decade.

  7. Earthquakes; March-April 1975

    USGS Publications Warehouse

    Person, W.J.

    1975-01-01

    There were no major earthquakes (magnitude 7.0-7.9) in March or April; however, there were earthquake fatalities in Chile, Iran, and Venezuela and approximately 35 earthquake-related injuries were reported around the world. In the United States a magnitude 6.0 earthquake struck the Idaho-Utah border region. Damage was estimated at about a million dollars. The shock was felt over a wide area and was the largest to hit the continental Untied States since the San Fernando earthquake of February 1971. 

  8. Earthquake Potential Models for China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Jackson, D. D.

    2002-12-01

    We present three earthquake potential estimates for magnitude 5.4 and larger earthquakes for China. The potential is expressed as the rate density (probability per unit area, magnitude and time). The three methods employ smoothed seismicity-, geologic slip rate-, and geodetic strain rate data. We tested all three estimates, and the published Global Seismic Hazard Assessment Project (GSHAP) model, against earthquake data. We constructed a special earthquake catalog which combines previous catalogs covering different times. We used the special catalog to construct our smoothed seismicity model and to evaluate all models retrospectively. All our models employ a modified Gutenberg-Richter magnitude distribution with three parameters: a multiplicative ``a-value," the slope or ``b-value," and a ``corner magnitude" marking a strong decrease of earthquake rate with magnitude. We assumed the b-value to be constant for the whole study area and estimated the other parameters from regional or local geophysical data. The smoothed seismicity method assumes that the rate density is proportional to the magnitude of past earthquakes and approximately as the reciprocal of the epicentral distance out to a few hundred kilometers. We derived the upper magnitude limit from the special catalog and estimated local a-values from smoothed seismicity. Earthquakes since January 1, 2000 are quite compatible with the model. For the geologic forecast we adopted the seismic source zones (based on geological, geodetic and seismicity data) of the GSHAP model. For each zone, we estimated a corner magnitude by applying the Wells and Coppersmith [1994] relationship to the longest fault in the zone, and we determined the a-value from fault slip rates and an assumed locking depth. The geological model fits the earthquake data better than the GSHAP model. We also applied the Wells and Coppersmith relationship to individual faults, but the results conflicted with the earthquake record. For our geodetic

  9. Landslides Triggered by the 12 May 2008, M 7.9 Wenchuan, China Earthquake

    NASA Astrophysics Data System (ADS)

    Harp, E.; Jibson, R.; Godt, J.

    2009-04-01

    The 12 May 2008, M 7.9 Wenchuan earthquake in eastern Sichuan Province of China triggered tens of thousands of rock falls, rock slides, rock avalanches, and deep, complex, landslides. Of the approximately 87,000 deaths caused by the earthquake, more than 20,000 have been attributed to landsides. Numerous villages were buried by large landslides. Air-blasts resulting from the rapid failure and movement of landslides were observed and documented from numerous eye-witness accounts. More than 100 landslide-dammed lakes were created by the earthquake, 33 of which were evaluated to determine if spillway construction was necessary to minimize flooding by future breaching of the landslide dams. Spillways were ultimately constructed on at least 16 landslide dams. Preliminary observations in the field and from satellite imagery indicate that the most common types of landslides were rock falls and rock slides that ranged in size from several hundred cubic meters to several hundred thousand cubic meters in volume. There were hundreds to perhaps as many as one thousand landslides exceeding 1 million cubic meters in volume. The largest landslide identified using Jaxa's Alos/Prism satellite imagery (2.5 m resolution) is nearly 1 billion cubic meters in volume and is located approximately 12 km north-northeast of the city of Hanwang. This landslide appears to have resulted from the failure of a 1.5-km section of ridge crest that now occupies most of the adjacent valley to the northeast; its toe spills over the next ridge crest to the northeast. The satellite imagery of 4 June 2008 shows two small lakes dammed by the slide debris. Within the mountainous areas in the near-field zone of shaking, rock slides dammed chains of lakes in many drainages. Sections of streams 2-3 km long have been completely covered by rock debris as of the 4 June imagery The debris from the triggered landslides is being redistributed rapidly by post-earthquake rainfall. A 100-year rainstorm in September

  10. Ground Motions Due to Earthquakes on Creeping Faults

    NASA Astrophysics Data System (ADS)

    Harris, R.; Abrahamson, N. A.

    2014-12-01

    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  11. Automatic Earthquake Detection by Active Learning

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  12. Protecting your family from earthquakes: The seven steps to earthquake safety

    USGS Publications Warehouse

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  13. High resolution strain sensor for earthquake precursor observation and earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang

    2016-05-01

    We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.

  14. Triggering of repeating earthquakes in central California

    USGS Publications Warehouse

    Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul

    2014-01-01

    Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.

  15. The 2008 Wells, Nevada earthquake sequence: Source constraints using calibrated multiple event relocation and InSAR

    USGS Publications Warehouse

    Nealy, Jennifer; Benz, Harley M.; Hayes, Gavin; Berman, Eric; Barnhart, William

    2017-01-01

    The 2008 Wells, NV earthquake represents the largest domestic event in the conterminous U.S. outside of California since the October 1983 Borah Peak earthquake in southern Idaho. We present an improved catalog, magnitude complete to 1.6, of the foreshock-aftershock sequence, supplementing the current U.S. Geological Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog with 1,928 well-located events. In order to create this catalog, both subspace and kurtosis detectors are used to obtain an initial set of earthquakes and associated locations. The latter are then calibrated through the implementation of the hypocentroidal decomposition method and relocated using the BayesLoc relocation technique. We additionally perform a finite fault slip analysis of the mainshock using InSAR observations. By combining the relocated sequence with the finite fault analysis, we show that the aftershocks occur primarily updip and along the southwestern edge of the zone of maximum slip. The aftershock locations illuminate areas of post-mainshock strain increase; aftershock depths, ranging from 5 to 16 km, are consistent with InSAR imaging, which shows that the Wells earthquake was a buried source with no observable near-surface offset.

  16. Global Instrumental Seismic Catalog: earthquake relocations for 1900-present

    NASA Astrophysics Data System (ADS)

    Villasenor, A.; Engdahl, E.; Storchak, D. A.; Bondar, I.

    2010-12-01

    We present the current status of our efforts to produce a set of homogeneous earthquake locations and improved focal depths towards the compilation of a Global Catalog of instrumentally recorded earthquakes that will be complete down to the lowest magnitude threshold possible on a global scale and for the time period considered. This project is currently being carried out under the auspices of GEM (Global Earthquake Model). The resulting earthquake catalog will be a fundamental dataset not only for earthquake risk modeling and assessment on a global scale, but also for a large number of studies such as global and regional seismotectonics; the rupture zones and return time of large, damaging earthquakes; the spatial-temporal pattern of moment release along seismic zones and faults etc. Our current goal is to re-locate all earthquakes with available station arrival data using the following magnitude thresholds: M5.5 for 1964-present, M6.25 for 1918-1963, M7.5 (complemented with significant events in continental regions) for 1900-1917. Phase arrival time data for earthquakes after 1963 are available in digital form from the International Seismological Centre (ISC). For earthquakes in the time period 1918-1963, phase data is obtained by scanning the printed International Seismological Summary (ISS) bulletins and applying optical character recognition routines. For earlier earthquakes we will collect phase data from individual station bulletins. We will illustrate some of the most significant results of this relocation effort, including aftershock distributions for large earthquakes, systematic differences in epicenter and depth with respect to previous location, examples of grossly mislocated events, etc.

  17. Triggered Seismicity in Utah from the November 3, 2002, Denali Fault Earthquake

    NASA Astrophysics Data System (ADS)

    Pankow, K. L.; Nava, S. J.; Pechmann, J. C.; Arabasz, W. J.

    2002-12-01

    Coincident with the arrival of the surface waves from the November 3, 2002, Mw 7.9 Denali Fault, Alaska earthquake (DFE), the University of Utah Seismograph Stations (UUSS) regional seismic network detected a marked increase in seismicity along the Intermountain Seismic Belt (ISB) in central and north-central Utah. The number of earthquakes per day in Utah located automatically by the UUSS's Earthworm system in the week following the DFE was approximately double the long-term average during the preceding nine months. From these preliminary data, the increased seismicity appears to be characterized by small magnitude events (M = 3.2) and concentrated in five distinct spatial clusters within the ISB between 38.75°and 42.0° N. The first of these earthquakes was an M 2.2 event located ~20 km east of Salt Lake City, Utah, which occurred during the arrival of the Love waves from the DFE. The increase in Utah earthquake activity at the time of the arrival of the surface waves from the DFE suggests that these surface waves triggered earthquakes in Utah at distances of more than 3,000 km from the source. We estimated the peak dynamic shear stress caused by these surface waves from measurements of their peak vector velocities at 43 recording sites: 37 strong-motion stations of the Advanced National Seismic System and six broadband stations. (The records from six other broadband instruments in the region of interest were clipped.) The estimated peak stresses ranged from 1.2 bars to 3.5 bars with a mean of 2.3 bars, and generally occurred during the arrival of Love waves of ~15 sec period. These peak dynamic shear stress estimates are comparable to those obtained from recordings of the 1992 Mw 7.3 Landers, California, earthquake in regions where the Landers earthquake triggered increased seismicity. We plan to present more complete analyses of UUSS seismic network data, further testing our hypothesis that the DFE remotely triggered seismicity in Utah. This hypothesis is

  18. Remotely triggered earthquakes following moderate main shocks

    USGS Publications Warehouse

    Hough, S.E.

    2007-01-01

    Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.

  19. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part A, Prehistoric earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax, the maximum earthquake magnitude thought to be possible within a specified geographic region. This report is Part A of an Open-File Report that describes the construction of a global catalog of moderate to large earthquakes, from which one can estimate Mmax for most of the Central and Eastern United States and adjacent Canada. The catalog and Mmax estimates derived from it were used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. This Part A discusses prehistoric earthquakes that occurred in eastern North America, northwestern Europe, and Australia, whereas a separate Part B deals with historical events.

  20. The Viking biological investigation - Preliminary results

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Oyama, V. I.; Berdahl, B. J.; Horowitz, N. H.; Hobby, G. L.; Levin, G. V.; Straat, P. A.; Lederberg, J.; Rich, A.; Hubbard, J. S.

    1976-01-01

    A preliminary progress report is presented for the Viking biological investigation through its first month. The carbon assimilation, gas exchange, and labeled release experiments are described in detail, and the chronology of the experiments is outlined. For the first experiment, it is found that a small amount of gas was converted into organic material in one sample and that heat treatment of a duplicate sample prevented such conversion. In the second experiment, a substantial amount of O2 was detected along with significant increases in CO2 and small changes in N2. In the third experiment, a significant amount of radioactive gas was evolved from one sample, but not from a duplicate heat-treated sample. Possible biological and nonbiological interpretations are considered for these results. It is concluded that while the experiments provide clear evidence for the occurrence of chemical reactions and while the results do not violate any prima facie criteria for biological processes, a definitive answer cannot yet be given to the question of whether life exists on Mars.

  1. 75 FR 3444 - Purified Carboxymethylcellulose From Finland: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... Carboxymethylcellulose From Finland: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative... of Time Limits for Preliminary Results Section 751(a)(3)(A) of the Tariff Act of 1930, as amended.... However, if it is not practicable to complete the review within this time period, section 751(a)(3)(A) of...

  2. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  3. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  4. Geologic Evidence of Tsunamigenic Earthquakes from the Southern Part of the Japan Trench

    NASA Astrophysics Data System (ADS)

    Pilarczyk, J.; Sawai, Y.; Namegaya, Y.; Tamura, T.; Tanigawa, K.; Matsumoto, D.; Shinozaki, T.; Fujiwara, O.; Shishikura, M.; Shimada, Y.; Dura, T.; Horton, B.

    2017-12-01

    The northern and southern parts of the Japan Trench have generated earthquakes with moment magnitudes up to 8.0. Similarly, the middle part of the Japan Trench has historically generated tsunamigenic-earthquakes up to M 7.0. However, in 2011, the Tohoku-oki (M 9.0) event ruptured 500 km along the middle part of the Japan Trench and generated the largest known tsunami to have originated from this part of the subduction zone. Seismic models indicate that the Tohoku-oki earthquake may have transferred stress southwards down the fault to the potentially locked southern part of the Japan Trench. It is unknown if this transfer of stress could produce an earthquake and tsunami that would impact the metropolitan areas of east-central Japan in the near future that may be comparable in magnitude to the Tohoku-oki event. Here, we reconstruct the history of individual great earthquakes and accompanying tsunamis using geological records from the coastal zone adjacent to the southern part of the Japan Trench, providing an assessment of the seismic hazard for metropolitan areas in east-central Japan. In the Kujukuri strand plain, we found three anomalous marine sand layers intercalated within muddy peat, which can be traced 3.8 km inland and 50 km along the present Kujukuri coastline. Each sand layer has features consistent with tsunami deposits, such as a distinct erosional base, rip-up clasts, normal grading, and a mud drape. Preliminary radiocarbon dating suggests three tsunamis inundated the Kujukuri coastline over the last millennium.

  5. Earthquake geology of the Bulnay Fault (Mongolia)

    USGS Publications Warehouse

    Rizza, Magali; Ritz, Jean-Franciois; Prentice, Carol S.; Vassallo, Ricardo; Braucher, Regis; Larroque, Christophe; Arzhannikova, A.; Arzhanikov, S.; Mahan, Shannon; Massault, M.; Michelot, J-L.; Todbileg, M.

    2015-01-01

    The Bulnay earthquake of July 23, 1905 (Mw 8.3-8.5), in north-central Mongolia, is one of the world's largest recorded intracontinental earthquakes and one of four great earthquakes that occurred in the region during the 20th century. The 375-km-long surface rupture of the left-lateral, strike-slip, N095°E trending Bulnay Fault associated with this earthquake is remarkable for its pronounced expression across the landscape and for the size of features produced by previous earthquakes. Our field observations suggest that in many areas the width and geometry of the rupture zone is the result of repeated earthquakes; however, in those areas where it is possible to determine that the geomorphic features are the result of the 1905 surface rupture alone, the size of the features produced by this single earthquake are singular in comparison to most other historical strike-slip surface ruptures worldwide. Along the 80 km stretch, between 97.18°E and 98.33°E, the fault zone is characterized by several meters width and the mean left-lateral 1905 offset is 8.9 ± 0.6 m with two measured cumulative offsets that are twice the 1905 slip. These observations suggest that the displacement produced during the penultimate event was similar to the 1905 slip. Morphotectonic analyses carried out at three sites along the eastern part of the Bulnay fault, allow us to estimate a mean horizontal slip rate of 3.1 ± 1.7 mm/yr over the Late Pleistocene-Holocene period. In parallel, paleoseismological investigations show evidence for two earthquakes prior to the 1905 event with recurrence intervals of ~2700-4000 years.

  6. Identification of Deep Earthquakes

    DTIC Science & Technology

    2010-09-01

    discriminants that will reliably separate small, crustal earthquakes (magnitudes less than about 4 and depths less than about 40 to 50 km) from small...characteristics on discrimination plots designed to separate nuclear explosions from crustal earthquakes. Thus, reliably flagging these small, deep events is...Further, reliably identifying subcrustal earthquakes will allow us to eliminate deep events (previously misidentified as crustal earthquakes) from

  7. Lithospheric Structure of the Incoming Nazca Plate Adjacent to the 2014 Iquique Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Myers, E. K.; Trehu, A. M.; Davenport, K. K.; Roland, E. C.

    2017-12-01

    The 2014 Iquique Mw 8.1 earthquake occurred within a 500-km long segment of the Peru-Chile subduction zone that had not experienced a significant earthquake since 1877. This event did not fill the entire seismic gap and details of the deformation, along with local gravity anomalies, point to a geologic control on slip behavior. To better constrain along-strike changes in geologic or morphologic features and the correlation with earthquake rupture, the 2016 PICTURES (Pisagua-Iquique Crustal Tomography to Understand the Region of the Earthquake Source) experiment collected multichannel seismic (MCS) and ocean bottom seismometer (OBS) data from across the deformation front and incoming Nazca plate within the area of the 2014 earthquake. Here, we provide a first look at MCS reflection data from this experiment that images the Nazca plate along an uninterrupted 170 km line perpendicular to the region of greatest slip, acquired using the R/V Langseth's 12.5 km streamer and 6600 cc gun array. We summarize structural features of the incoming oceanic lithosphere and present a preliminary 2D velocity model that spans the Nazca outer rise to the trench along the Iquique Ridge (IR). The IR represents a broad, high oceanic feature (HOF) that roughly spans the entire seismic gap. The source of buoyancy and reduced seismic velocities of the IR swell are thought to be produced by isostatically compensated, overthickened crust or anomalously low density mantle due to heating or serpentinization, and we explore these two hypotheses using our preliminary velocity model. Past outer rise deformation modeling suggests a significant bending moment and vertical force at the trench axis, a source for broad, homogenous coupling as the HOF converges the margin. However, decreased incoming sediment and rough topography associated with numerous large seamounts may also lead to a thin subduction channel, influencing heterogeneous rupture behavior. Seaward of the Iquique 2014 event, our initial

  8. Surface Rupture and Slip Distribution Resulting from the 2013 M7.7 Balochistan, Pakistan Earthquake

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Gold, R. D.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.

    2014-12-01

    The 24 September 2013 M7.7 earthquake in Balochistan, Pakistan, produced a ~200 km long left-lateral strike-slip surface rupture along a portion of the Hoshab fault, a moderately dipping (45-75º) structure in the Makran accretionary prism. The rupture is remarkably continuous and crosses only two (0.7 and 1.5 km wide) step-overs along its arcuate path through southern Pakistan. Displacements are dominantly strike-slip, with a minor component of reverse motion. We remotely mapped the surface rupture at 1:5,000 scale and measured displacements using high resolution (0.5 m) pre- and post-event satellite imagery. We mapped 295 laterally faulted stream channels, terrace margins, and roads to quantify near-field displacement proximal (±10 m) to the rupture trace. The maximum near-field left-lateral offset is 15±2 m (average of ~7 m). Additionally, we used pre-event imagery to digitize 254 unique landforms in the "medium-field" (~100-200 m from the rupture) and then measured their displacements compared to the post-event imagery. At this scale, maximum left-lateral offset approaches 17 m (average of ~8.5 m). The width (extent of observed surface faulting) of the rupture zone varies from ~1 m to 3.7 km. Near- and medium-field offsets show similar slip distributions that are inversely correlated with the width of the fault zone at the surface (larger offsets correspond to narrow fault zones). The medium-field offset is usually greater than the near-field offset. The along-strike surface slip distribution is highly variable, similar to the slip distributions documented for the 2002 Denali M7.9 earthquake and 2001 Kunlun M7.8 earthquake, although the Pakistan offsets are larger in magnitude. The 2013 Pakistan earthquake ranks among the largest documented continental strike-slip displacements, possibly second only to the 18+ m surface displacements attributed to the 1855 Wairarapa M~8.1 earthquake.

  9. Testing hypotheses of earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.

    2003-12-01

    the second, and beta, the probability that the second would be wrongly rejected in favor of the first. Computing alpha and beta requires knowing the theoretical distribution of likelihood scores under each hypothesis, which we will estimate by simulations. Each forecast is given equal status; there is no "null hypothesis" which would be accepted by default. Forecasts and test results would be archived and posted on the RELM web site. The same methods can be applied to any region with adequate monitoring and sufficient earthquakes. If fewer than ten events are forecasted, the likelihood tests may not give definitive results. The tests do force certain requirements on the forecast models. Because the tests are based on absolute rates, stress models must be explicit about how stress increments affect past seismicity rates. Aftershocks of triggered events must be accounted for. Furthermore, the tests are sensitive to magnitude, so forecast models must specify the magnitude distribution of triggered events. Models should account for probable errors in magnitude and location by appropriate smoothing of the probabilities, as the tests will be "cold hearted:" near misses won't count.

  10. Analysis of Site Effect in the Izmit Basin of Turkey by Wave Propagation Simulation Using the Spectral Element Method: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, K.; Kocaoglu, A. H.

    2013-12-01

    Sedimentary basins generally cause significant ground motion amplification during an earthquake. Along with the resonance controlled by the impedance contrast between the sedimentary cover and bedrock, surface waves generated within the basin make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D and/or 3-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be controlled by the northern branch of the North Anatolian Fault Zone. A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. This work presents some of the preliminary results obtained from 2-D and 3-D seismic wave propagation simulations using the spectral element method, which is based on high order polynomial approximation of the weak formulation of the wave equation. In this study, the numerical simulations were carried out with SPECFEM2D/3D program. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling clearly reveals that observed seismograms include surface waves whose excitation is clearly related with the basin geometry.

  11. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    PubMed

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  12. Revisiting the 1872 Owens Valley, California, Earthquake

    USGS Publications Warehouse

    Hough, S.E.; Hutton, K.

    2008-01-01

    The 26 March 1872 Owens Valley earthquake is among the largest historical earthquakes in California. The felt area and maximum fault displacements have long been regarded as comparable to, if not greater than, those of the great San Andreas fault earthquakes of 1857 and 1906, but mapped surface ruptures of the latter two events were 2-3 times longer than that inferred for the 1872 rupture. The preferred magnitude estimate of the Owens Valley earthquake has thus been 7.4, based largely on the geological evidence. Reinterpreting macroseismic accounts of the Owens Valley earthquake, we infer generally lower intensity values than those estimated in earlier studies. Nonetheless, as recognized in the early twentieth century, the effects of this earthquake were still generally more dramatic at regional distances than the macroseismic effects from the 1906 earthquake, with light damage to masonry buildings at (nearest-fault) distances as large as 400 km. Macroseismic observations thus suggest a magnitude greater than that of the 1906 San Francisco earthquake, which appears to be at odds with geological observations. However, while the mapped rupture length of the Owens Valley earthquake is relatively low, the average slip was high. The surface rupture was also complex and extended over multiple fault segments. It was first mapped in detail over a century after the earthquake occurred, and recent evidence suggests it might have been longer than earlier studies indicated. Our preferred magnitude estimate is Mw 7.8-7.9, values that we show are consistent with the geological observations. The results of our study suggest that either the Owens Valley earthquake was larger than the 1906 San Francisco earthquake or that, by virtue of source properties and/or propagation effects, it produced systematically higher ground motions at regional distances. The latter possibility implies that some large earthquakes in California will generate significantly larger ground motions than San

  13. Co- and post-seismic deformation for the 2014 Napa Valley Earthquake from Sentinel-1A interferometry

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Wright, T. J.; Elliott, A. J.; González, P. J.; Hooper, A. J.; Larsen, Y.; Marinkovic, P.; Plain, M.; Walters, R. J.

    2014-12-01

    Here we present analysis of co- and post-seismic deformation for the 24 August 2014 Napa Valley Earthquake derived from Sentinel-1A interferometry. We use these to derive the co-seismic slip distribution and map the evolution of post-seismic afterslip. The 24 August 2014 Napa Valley earthquake was the first earthquake for which surface deformation was measured by Sentinel-1A, a new radar satellite launched by the European Space Agency on 3 April 2014, and operated by the European Commission's Copernicus program. Sentinel-1A reached its final operational orbit on 7 August, and fortuitously acquired a pre-earthquake image of the San Francisco Bay area on that day in StripMap mode. By comparing it with an image acquired on 31 August, we formed a co-seismic interferogram, which reveals the surface deformation that occurred during the earthquake and the first 7 days of the post-seismic period. We use this to constrain a simple elastic model of the co-seismic slip distribution; preliminary inversion results show that the slip at depth reached a peak of >1.5 m at a depth of ~4 km. Following the earthquake, Sentinel-1A has acquired further acquisitions in both StripMap and Interferometric Wide Swath modes. The first 12-day post-seismic StripMap interferogram shows a sharp discontinuity along the entire fault rupture, consistent with field observations of rapid afterslip. We will use the full time series from August to December to measure the spatio-temporal behaviour of the afterslip, and discuss the implications for the frictional properties of the fault. The results from Napa point to an exciting and impactful future for the Sentinel-1 radar constellation. By mid-2014, Sentinel-1A will be acquiring data systematically over all the seismic belts, and the launch of Sentinel-1B in 2016 will increase the temporal frequency of acquisitions. The data will be available free of charge and will transform our ability to conduct tectonic geodesy, particularly in remote areas of the

  14. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    NASA Astrophysics Data System (ADS)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  15. The Christchurch earthquake stroke incidence study.

    PubMed

    Wu, Teddy Y; Cheung, Jeanette; Cole, David; Fink, John N

    2014-03-01

    We examined the impact of major earthquakes on acute stroke admissions by a retrospective review of stroke admissions in the 6 weeks following the 4 September 2010 and 22 February 2011 earthquakes. The control period was the corresponding 6 weeks in the previous year. In the 6 weeks following the September 2010 earthquake there were 97 acute stroke admissions, with 79 (81.4%) ischaemic infarctions. This was similar to the 2009 control period which had 104 acute stroke admissions, of whom 80 (76.9%) had ischaemic infarction. In the 6 weeks following the February 2011 earthquake, there were 71 stroke admissions, and 61 (79.2%) were ischaemic infarction. This was less than the 96 strokes (72 [75%] ischaemic infarction) in the corresponding control period. None of the comparisons were statistically significant. There was also no difference in the rate of cardioembolic infarction from atrial fibrillation between the study periods. Patients admitted during the February 2011 earthquake period were less likely to be discharged directly home when compared to the control period (31.2% versus 46.9%, p=0.036). There was no observable trend in the number of weekly stroke admissions between the 2 weeks leading to and 6 weeks following the earthquakes. Our results suggest that severe psychological stress from earthquakes did not influence the subsequent short term risk of acute stroke, but the severity of the earthquake in February 2011 and associated civil structural damages may have influenced the pattern of discharge for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Statistical tests of simple earthquake cycle models

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Evans, Eileen L.

    2016-12-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM < 4.0 × 1019 Pa s and ηM > 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  17. Evaluation of Tsunami Hazards in Kuwait from Possible Earthquake and Landslide Sources considering Effect of Natural Tide

    NASA Astrophysics Data System (ADS)

    Latcharote, P.

    2016-12-01

    Kuwait is one of the most important oil producers to the world and most of population and many vital facilities are located along the coasts. However, even with low or unknown tsunami risk, it is important to investigate tsunami hazards in this country to ensure safety of life and sustain the global economy. This study aimed to evaluate tsunami hazards along the coastal areas of Kuwait from both earthquake and landslide sources using numerical modeling. Tsunami generation and propagation was simulated using the two-layer model and the TUNAMI model. Four cases of earthquake scenarios are expected to generate tsunami along the Makran Subduction Zone (MSZ) based on historical events and worst cases possible to simulate tsunami propagation to the coastal areas of the Arabian Gulf. Case 1 (Mw 8.3) and Case 2 (Mw 8.3) are the replication of the 1945 Makran earthquake, whereas Case 3 (Mw 8.6) and Case 4 (Mw 9.0) are the worst-case scenarios. Tsunami numerical simulation was modelled with mesh size 30 arc-second using bathymetry and topography data from GEBCO. Preliminary results suggested that tsunamis generated by Case 1 and Case 2 will impose very small effects to Kuwait (< 0.1 m) while Case 3 and Case 4 can generate maximum tsunami amplitude up to 0.3 m to 1.0 m after 12 hours from the earthquake. In addition, this study considered tsunamis generated by landslide along the opposite Iranian coast of Kuwait bay. To preliminarily assess tsunami hazards, coastal landslides were assumed occurred at the volume of 1.0-2.0 km3 at three possible locations from their topographic features. The preliminary results revealed that tsunami generated by coastal landslides could impose a significant tsunami impact to Kuwait having maximum tsunami amplitude at the Falika Island in front of Kuwait bay and Azzour power and desalination plant about 0.5 m- 1.1 m depending on landslide volume and energy dissipation. Future works will include more accuracy of tsunami numerical simulation with

  18. Hellenic Amateur Astronomy Association's activities: Preliminary results on Perseids 2010

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2011-01-01

    Preliminary results on the Perseids 2010 are presented. Visual and video observations were obtained by the author and a first reduction of the visual data shows that a maximum of ZHR ~120 was reached during the night 12-13 of August 2010. Moreover, a video setup was tested (DMK camera and UFO Capture v2) and the results show that, under some limitations, valuable data can be obtained.

  19. Functional requirements regarding medical registries--preliminary results.

    PubMed

    Oberbichler, Stefan; Hörbst, Alexander

    2013-01-01

    The term medical registry is used to reference tools and processes to support clinical or epidemiologic research or provide a data basis for decisions regarding health care policies. In spite of this wide range of applications the term registry and the functional requirements which a registry should support are not clearly defined. This work presents preliminary results of a literature review to discover functional requirements which form a registry. To extract these requirements a set of peer reviewed articles was collected. These set of articles was screened by using methods from qualitative research. Up to now most discovered functional requirements focus on data quality (e. g. prevent transcription error by conducting automatic domain checks).

  20. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  1. Laboratory generated M -6 earthquakes

    USGS Publications Warehouse

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  2. Crowdsourced earthquake early warning.

    PubMed

    Minson, Sarah E; Brooks, Benjamin A; Glennie, Craig L; Murray, Jessica R; Langbein, John O; Owen, Susan E; Heaton, Thomas H; Iannucci, Robert A; Hauser, Darren L

    2015-04-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an M w (moment magnitude) 7 earthquake on California's Hayward fault, and real data from the M w 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  3. Crowdsourced earthquake early warning

    PubMed Central

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing. PMID:26601167

  4. Earthquakes, November-December 1992

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    There were two major earthquakes (7.0≤M<8.0) during the last two months of the year, a magntidue 7.5 earthquake on December 12 in the Flores region, Indonesia, and a magnitude 7.0 earthquake on December 20 in the Banda Sea. Earthquakes caused fatalities in China and Indonesia. The greatest number of deaths (2,500) for the year occurred in Indonesia. In Switzerland, six people were killed by an accidental explosion recoreded by seismographs. In teh United States, a magnitude 5.3 earthquake caused slight damage at Big Bear in southern California. 

  5. Crowdsourced earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  6. Testing prediction methods: Earthquake clustering versus the Poisson model

    USGS Publications Warehouse

    Michael, A.J.

    1997-01-01

    Testing earthquake prediction methods requires statistical techniques that compare observed success to random chance. One technique is to produce simulated earthquake catalogs and measure the relative success of predicting real and simulated earthquakes. The accuracy of these tests depends on the validity of the statistical model used to simulate the earthquakes. This study tests the effect of clustering in the statistical earthquake model on the results. Three simulation models were used to produce significance levels for a VLF earthquake prediction method. As the degree of simulated clustering increases, the statistical significance drops. Hence, the use of a seismicity model with insufficient clustering can lead to overly optimistic results. A successful method must pass the statistical tests with a model that fully replicates the observed clustering. However, a method can be rejected based on tests with a model that contains insufficient clustering. U.S. copyright. Published in 1997 by the American Geophysical Union.

  7. Preliminary result of P-wave speed tomography beneath North Sumatera region

    NASA Astrophysics Data System (ADS)

    Jatnika, Jajat; Nugraha, Andri Dian; Wandono

    2015-04-01

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  8. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  9. Preliminary results on passive eddy current damper technology for SSME turbomachinery

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1985-01-01

    Some preliminary results have been obtained for the dynamic response of a rotor operating over a speed range of 800 to 10,000 rpm. Amplitude frequency plots show the lateral vibratory response of an unbalanced rotor with and without external damping. The mode of damping is by means of eddy currents generated with 4 c shaped permanent magnets installed at the lower bearing of a vertically oriented rotor. The lower ball bearing and its damper assembly are totally immersed in liquid nitrogen at a temperature of -197 deg C (-320 deg F). These preliminary results for a referenced or base line passive eddy current damper assembly show that the amplitude of synchronous vibration is reduced at the resonant frequency. Measured damping coefficients were calculated to phi = .086; this compares with a theoretically calculated value of phi = .079.

  10. National Earthquake Hazards Reduction Program; time to expand

    USGS Publications Warehouse

    Steinbrugge, K.V.

    1990-01-01

    All of us in earthquake engineering, seismology, and many related disciplines have been directly or indirectly affected by the National Earthquake Hazards Reduction Program (NEHRP). This program was the result of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124). With well over a decade of experience, should this expression of public policy now take a different or expanded role? 

  11. Data Files for Ground-Motion Simulations of the 1906 San Francisco Earthquake and Scenario Earthquakes on the Northern San Andreas Fault

    USGS Publications Warehouse

    Aagaard, Brad T.; Barall, Michael; Brocher, Thomas M.; Dolenc, David; Dreger, Douglas; Graves, Robert W.; Harmsen, Stephen; Hartzell, Stephen; Larsen, Shawn; McCandless, Kathleen; Nilsson, Stefan; Petersson, N. Anders; Rodgers, Arthur; Sjogreen, Bjorn; Zoback, Mary Lou

    2009-01-01

    This data set contains results from ground-motion simulations of the 1906 San Francisco earthquake, seven hypothetical earthquakes on the northern San Andreas Fault, and the 1989 Loma Prieta earthquake. The bulk of the data consists of synthetic velocity time-histories. Peak ground velocity on a 1/60th degree grid and geodetic displacements from the simulations are also included. Details of the ground-motion simulations and analysis of the results are discussed in Aagaard and others (2008a,b).

  12. Metrics for comparing dynamic earthquake rupture simulations

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  13. Preliminary Results on Uncertainty Quantification for Pattern Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stracuzzi, David John; Brost, Randolph; Chen, Maximillian Gene

    2015-09-01

    This report summarizes preliminary research into uncertainty quantification for pattern ana- lytics within the context of the Pattern Analytics to Support High-Performance Exploitation and Reasoning (PANTHER) project. The primary focus of PANTHER was to make large quantities of remote sensing data searchable by analysts. The work described in this re- port adds nuance to both the initial data preparation steps and the search process. Search queries are transformed from does the specified pattern exist in the data? to how certain is the system that the returned results match the query? We show example results for both data processing and search,more » and discuss a number of possible improvements for each.« less

  14. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models: 2. Laboratory earthquakes

    NASA Astrophysics Data System (ADS)

    Rubinstein, Justin L.; Ellsworth, William L.; Beeler, Nicholas M.; Kilgore, Brian D.; Lockner, David A.; Savage, Heather M.

    2012-02-01

    The behavior of individual stick-slip events observed in three different laboratory experimental configurations is better explained by a "memoryless" earthquake model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. We make similar findings in the companion manuscript for the behavior of natural repeating earthquakes. Taken together, these results allow us to conclude that the predictions of a characteristic earthquake model that assumes either fixed slip or fixed recurrence interval should be preferred to the predictions of the time- and slip-predictable models for all earthquakes. Given that the fixed slip and recurrence models are the preferred models for all of the experiments we examine, we infer that in an event-to-event sense the elastic rebound model underlying the time- and slip-predictable models does not explain earthquake behavior. This does not indicate that the elastic rebound model should be rejected in a long-term-sense, but it should be rejected for short-term predictions. The time- and slip-predictable models likely offer worse predictions of earthquake behavior because they rely on assumptions that are too simple to explain the behavior of earthquakes. Specifically, the time-predictable model assumes a constant failure threshold and the slip-predictable model assumes that there is a constant minimum stress. There is experimental and field evidence that these assumptions are not valid for all earthquakes.

  15. Prototype operational earthquake prediction system

    USGS Publications Warehouse

    Spall, Henry

    1986-01-01

    An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.

  16. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    PubMed

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  17. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  18. The results of the Seismic Alert System of Mexico SASMEX, during the earthquakes of 7 and 19 of September 2017

    NASA Astrophysics Data System (ADS)

    Espinosa Aranda, J. M., Sr.; Cuellar Martinez, A.

    2017-12-01

    The Seismic Alert System of Mexico, SASMEX began in 1991, is integrated by the seismic alert system of Mexico City and the seismic alert system of Oaxaca. SASMEX has 97 seismic sensors which are distributed in the seismic regions of the Pacific coast and the South of the Trans-Mexican Volcanic Belt of states of Jalisco, Colima, Michoacán, Guerrero, Oaxaca and Puebla. The alert dissemination covers the cities of: Acapulco, Chilpancingo, Morelia, Puebla, Oaxaca, Toluca and Mexico City, reaching the earthquake warnings to more than 25 millions of people. SASMEX has detected correctly more than 5600 earthquakes and warned 156. Mexico City has different alert dissemination systems like several Radio and Tv commercial broadcasters, dedicated radio receivers, EAS-SAME-SARMEX radio receivers and more tha 6700 public loud speakers. The other cities have only some of those systems. The Mw 8.2 Chiapas earthquake on September 7, despite the epicentral distance far of the first seismic detections (more than 180 km) and the low amplitudes of the P waves, the earthquake warning time gave more than 90 seconds to Mexico City before the arrivals of S waves with minor damages to the city in contrast with high damages in towns in the coast. This earthquake offered an opportunity to show the developments and lacks to reduce the risk, such as the need to increase the seismic detection coverage and the earthquake warning dissemination in towns with high seismic vulnerability. The Mw 7.1 Morelos earthquake on September 19 caused thousands of damages and hundreds of deaths and injuries in Mexico City, this earthquake is the second with the most damages after the Mw 8.1 Michoacán earthquake of September 19 on 1985. The earthquake early warning gave 11 seconds after the arrivals of S waves, however the activation occurred few seconds after the P waves arrives to Mexico City, and due to the seismic focus was near to the city, the P waves were felt for the people. The Accelerographic Network

  19. Earthquake mechanism and seafloor deformation for tsunami generation

    USGS Publications Warehouse

    Geist, Eric L.; Oglesby, David D.; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Tsunamis are generated in the ocean by rapidly displacing the entire water column over a significant area. The potential energy resulting from this disturbance is balanced with the kinetic energy of the waves during propagation. Only a handful of submarine geologic phenomena can generate tsunamis: large-magnitude earthquakes, large landslides, and volcanic processes. Asteroid and subaerial landslide impacts can generate tsunami waves from above the water. Earthquakes are by far the most common generator of tsunamis. Generally, earthquakes greater than magnitude (M) 6.5–7 can generate tsunamis if they occur beneath an ocean and if they result in predominantly vertical displacement. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing seafloor deformation for earthquakes of a given magnitude.

  20. Bi-directional volcano-earthquake interaction at Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Amelung, F.

    2004-12-01

    At Mauna Loa volcano, Hawaii, large-magnitude earthquakes occur mostly at the west flank (Kona area), at the southeast flank (Hilea area), and at the east flank (Kaoiki area). Eruptions at Mauna Loa occur mostly at the summit region and along fissures at the southwest rift zone (SWRZ), or at the northeast rift zone (NERZ). Although historic earthquakes and eruptions at these zones appear to correlate in space and time, the mechanisms and implications of an eruption-earthquake interaction was not cleared. Our analysis of available factual data reveals the highly statistical significance of eruption-earthquake pairs, with a random probability of 5-to-15 percent. We clarify this correlation with the help of elastic stress-field models, where (i) we simulate earthquakes and calculate the resulting normal stress change at volcanic active zones of Mauna Loa, and (ii) we simulate intrusions in Mauna Loa and calculate the Coulomb stress change at the active fault zones. Our models suggest that Hilea earthquakes encourage dike intrusion in the SWRZ, Kona earthquakes encourage dike intrusion at the summit and in the SWRZ, and Kaoiki earthquakes encourage dike intrusion in the NERZ. Moreover, a dike in the SWRZ encourages earthquakes in the Hilea and Kona areas. A dike in the NERZ may encourage and discourage earthquakes in the Hilea and Kaoiki areas. The modeled stress change patterns coincide remarkably with the patterns of several historic eruption-earthquake pairs, clarifying the mechanisms of bi-directional volcano-earthquake interaction for Mauna Loa. The results imply that at Mauna Loa volcanic activity influences the timing and location of earthquakes, and that earthquakes influence the timing, location and the volume of eruptions. In combination with near real-time geodetic and seismic monitoring, these findings may improve volcano-tectonic risk assessment.

  1. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2°N to 50°N latitude, and from about -122°W to -129°W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  2. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    NASA Astrophysics Data System (ADS)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  3. Preliminary Results Of A 600 Joules Small Plasma Focus Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H.; Yap, S. L.; Wong, C. S.

    Preliminary results of a 600 J (3.7 muF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltagemore » across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0+-0.5 mubar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.« less

  4. Earthquakes, November-December 1973

    USGS Publications Warehouse

    Person, W.J.

    1974-01-01

    Other parts of the world suffered fatalities and significant damage from earthquakes. In Iran, an earthquake killed one person, injured many, and destroyed a number of homes. Earthquake fatalities also occurred in the Azores and in Algeria. 

  5. Tehuantepec and Morelos-Puebla earthquakes lived and reported by the Servicio Sismológico Nacional, Mexico

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.

    2017-12-01

    On September 2017, Mexico experienced two significant inslab earthquakes with only 11 days apart from each other. Both caused severe damage in the epicentral states: Chiapas, Oaxaca, Puebla, Morelos, and Mexico City. In all senses, they tested the capabilities of the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service), from the acquisition, processing, and reporting systems (both, automatic and manual), to social network and media response. In this work, we present the various aspects of the performance of the SSN and the results obtained real-time and the days after. The first earthquake occurred on 8 September within the Gulf of Tehuantepec. The SSN estimated its magnitude as Mww8.2, from W-phase inversion of local and regional data. Forty days later, it has had more than 7750 aftershocks with magnitudes larger than 2.5, making restless to inhabitants in the epicentral area. A preliminary hypo-DD relocation of the aftershocks shows two parallel SE-NW alignments. The mainshock seemed to have triggered seismicity in central Mexico, an effect previously observed by Singh et al. (1998) for coastal earthquakes. Barely 11 days had passed since this major quake. The SSN was in the middle of an intense aftershock sequence and conducting several outreach activities due to the anniversary of the 19 September 1985 (Mw8.0) earthquake, when the second quake hit. SSN located its epicenter at the border of the states of Morelos and Puebla and estimated its magnitude as Mww7.1. In this case, SSN identified only eight aftershocks, which was a similar behavior for previous inslab earthquakes in the region. Important aspects that these events have highlighted are the media and social network responses. Immediately after the first quake, SSN faced misinformation due to viral videos and social media messages predicting massive earthquakes and their relation to a solar storm that took place days before. Outreach to the public and the media became essential

  6. Induced earthquake magnitudes are as large as (statistically) expected

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran

    2016-01-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  7. Material contrast does not predict earthquake rupture propagation direction

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    2005-01-01

    Earthquakes often occur on faults that juxtapose different rocks. The result is rupture behavior that differs from that of an earthquake occurring on a fault in a homogeneous material. Previous 2D numerical simulations have studied simple cases of earthquake rupture propagation where there is a material contrast across a fault and have come to two different conclusions: 1) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake rupture propagation direction cannot be predicted from the material contrast. In this paper we provide observational evidence from 70 years of earthquakes at Parkfield, CA, and new 3D numerical simulations. Both the observations and the numerical simulations demonstrate that earthquake rupture propagation direction is unlikely to be predictable on the basis of a material contrast. Copyright 2005 by the American Geophysical Union.

  8. Pre-Earthquake Unipolar Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Freund, F.

    2013-12-01

    Transient ultralow frequency (ULF) electromagnetic (EM) emissions have been reported to occur before earthquakes [1,2]. They suggest powerful transient electric currents flowing deep in the crust [3,4]. Prior to the M=5.4 Alum Rock earthquake of Oct. 21, 2007 in California a QuakeFinder triaxial search-coil magnetometer located about 2 km from the epicenter recorded unusual unipolar pulses with the approximate shape of a half-cycle of a sine wave, reaching amplitudes up to 30 nT. The number of these unipolar pulses increased as the day of the earthquake approached. These pulses clearly originated around the hypocenter. The same pulses have since been recorded prior to several medium to moderate earthquakes in Peru, where they have been used to triangulate the location of the impending earthquakes [5]. To understand the mechanism of the unipolar pulses, we first have to address the question how single current pulses can be generated deep in the Earth's crust. Key to this question appears to be the break-up of peroxy defects in the rocks in the hypocenter as a result of the increase in tectonic stresses prior to an earthquake. We investigate the mechanism of the unipolar pulses by coupling the drift-diffusion model of semiconductor theory to Maxwell's equations, thereby producing a model describing the rock volume that generates the pulses in terms of electromagnetism and semiconductor physics. The system of equations is then solved numerically to explore the electromagnetic radiation associated with drift-diffusion currents of electron-hole pairs. [1] Sharma, A. K., P. A. V., and R. N. Haridas (2011), Investigation of ULF magnetic anomaly before moderate earthquakes, Exploration Geophysics 43, 36-46. [2] Hayakawa, M., Y. Hobara, K. Ohta, and K. Hattori (2011), The ultra-low-frequency magnetic disturbances associated with earthquakes, Earthquake Science, 24, 523-534. [3] Bortnik, J., T. E. Bleier, C. Dunson, and F. Freund (2010), Estimating the seismotelluric current

  9. Prospects for earthquake prediction and control

    USGS Publications Warehouse

    Healy, J.H.; Lee, W.H.K.; Pakiser, L.C.; Raleigh, C.B.; Wood, M.D.

    1972-01-01

    The San Andreas fault is viewed, according to the concepts of seafloor spreading and plate tectonics, as a transform fault that separates the Pacific and North American plates and along which relative movements of 2 to 6 cm/year have been taking place. The resulting strain can be released by creep, by earthquakes of moderate size, or (as near San Francisco and Los Angeles) by great earthquakes. Microearthquakes, as mapped by a dense seismograph network in central California, generally coincide with zones of the San Andreas fault system that are creeping. Microearthquakes are few and scattered in zones where elastic energy is being stored. Changes in the rate of strain, as recorded by tiltmeter arrays, have been observed before several earthquakes of about magnitude 4. Changes in fluid pressure may control timing of seismic activity and make it possible to control natural earthquakes by controlling variations in fluid pressure in fault zones. An experiment in earthquake control is underway at the Rangely oil field in Colorado, where the rates of fluid injection and withdrawal in experimental wells are being controlled. ?? 1972.

  10. SLS-1 flight experiments preliminary significant results

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.

  11. Preliminary results toward injection locking of an incoherent laser array

    NASA Technical Reports Server (NTRS)

    Daher, J.

    1986-01-01

    The preliminary results of phase locking an incoherent laser array to a master source in an attempt to achieve coherent operation are presented. The techniques necessary to demonstrate phase locking are described along with some topics for future consideration. As expected, the results obtained suggest that injection locking of an array, where the spacing between adjacent longitudinal modes of its elements is significantly larger than the locking bandwidth, may not be feasible.

  12. Seismic databases and earthquake catalogue of the Caucasus

    NASA Astrophysics Data System (ADS)

    Godoladze, Tea; Javakhishvili, Zurab; Tvaradze, Nino; Tumanova, Nino; Jorjiashvili, Nato; Gok, Rengen

    2016-04-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283, Ms~7.0, Io=9; Lechkhumi-Svaneti earthquake of 1350, Ms~7.0, Io=9; and the Alaverdi(earthquake of 1742, Ms~6.8, Io=9. Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088, Ms~6.5, Io=9 and the Akhalkalaki earthquake of 1899, Ms~6.3, Io =8-9. Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; 1991 Ms=7.0 Racha earthquake, the largest event ever recorded in the region; the 1992 M=6.5 Barisakho earthquake; Ms=6.9 Spitak, Armenia earthquake (100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of various national networks (Georgia (~25 stations), Azerbaijan (~35 stations), Armenia (~14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. A catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences, Ilia State University). The catalog consists of more then 80,000 events. Together with our colleagues from Armenia, Azerbaijan and Turkey the database for the Caucasus seismic events was compiled. We tried to improve locations of the events and calculate Moment magnitudes for the events more than magnitude 4 estimate in order to obtain unified magnitude catalogue of the region. The results will serve as the input for the Seismic hazard assessment for the region.

  13. Strong ground motion from the michoacan, Mexico, earthquake.

    PubMed

    Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M

    1986-09-05

    The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.

  14. Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities from possible foreshocks

    USGS Publications Warehouse

    Michael, Andrew J.

    2012-01-01

    Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.

  15. Earthquakes, May-June 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    In the United States, a magnitude 5.8 earthquake in southern California on June 28 killed two people and caused considerable damage. Strong earthquakes hit Alaska on May 1 and May 30; the May 1 earthquake caused some minor damage. 

  16. Statistical tests of simple earthquake cycle models

    USGS Publications Warehouse

    Devries, Phoebe M. R.; Evans, Eileen

    2016-01-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  17. Aftershock Analysis of the 2016 Mw7.8 Pedernales (Ecuador) Earthquake: Seismotectonics, Seismicity Distribution and Relationship with Coseismic Slip Distribution

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, H.; Font, Y.; Charvis, P.; Ambrois, D.; Cheze, J.; Courboulex, F.; De Barros, L.; Deschamps, A.; Galve, A.; Godano, M.; Laigle, M.; Maron, C.; Martin, X.; Monfret, T.; Oregioni, D.; Peix, F., Sr.; Regnier, M. M.; Yates, B.; Mercerat, D.; Leon Rios, S.; Rietbrock, A.; Acero, W.; Alvarado, A. P.; Gabriela, P.; Ramos, C.; Ruiz, M. C.; Singaucho, J. C.; Vasconez, F.; Viracucha, C.; Beck, S. L.; Lynner, C.; Hoskins, M.; Meltzer, A.; Soto-Cordero, L.; Stachnik, J.

    2017-12-01

    0n April 2016, a Mw 7.8 megathrust earthquake struck the coast of Ecuador causing vast human and material losses. The earthquake ruptured a 100 km-long segment of the subduction interface between Nazca and South America, spatially coinciding with the 1942 M 7.8 earthquake rupture area. Shortly after the mainshock, an international effort made by institutions from Ecuador, France, UK and USA, deployed a temporary network of +60 land and ocean-bottom seismometers to capture the aftershock sequence for the subsequent year. These stations came to join the local Ecuadorian national network already monitoring in place. Here we benefit from this dataset to produce a suite of automatic locations and a subset of regional moment tensors for high quality events. Over 2900 events were detected for the first month of postseismic activity alone, and a subset of 600 events were manually re-picked and located. Similarly, thousands of aftershocks were detected using the temporary deployment over the following months, with magnitudes ranging between 1 to 7. As expected, moment tensors show mostly thrust faulting at the interface, but we also observe sparse normal and strike-slip faulting at shallow depths in the forearc. The spatial distribution of seismicity delineates the coseismic rupture area, but extends well beyond it over a 300 km long segment. Main features include three seismicity alignments perpendicular to the trench, at the north, center and south of the mainshock rupture. Preliminary results comparing quantitatively the distribution of aftershocks to the distribution of the coseismic rupture show that the bulk of the aftershock seismicity occurs at intermediate levels of coseismic slip, while areas of maximum coseismic slip are mostly devoid of events M>3. Our results shed light on the interface processes occurring mainly during the early post-seismic period of large megathrust earthquakes, and implications on the earthquake cycle.

  18. Estimating secular velocities from GPS data contaminated by postseismic motion at sites with limited pre-earthquake data

    NASA Astrophysics Data System (ADS)

    Murray, J. R.; Svarc, J. L.

    2016-12-01

    Constant secular velocities estimated from Global Positioning System (GPS)-derived position time series are a central input for modeling interseismic deformation in seismically active regions. Both postseismic motion and temporally correlated noise produce long-period signals that are difficult to separate from secular motion and can bias velocity estimates. For GPS sites installed post-earthquake it is especially challenging to uniquely estimate velocities and postseismic signals and to determine when the postseismic transient has decayed sufficiently to enable use of subsequent data for estimating secular rates. Within 60 km of the 2003 M6.5 San Simeon and 2004 M6 Parkfield earthquakes in California, 16 continuous GPS sites (group 1) were established prior to mid-2001, and 52 stations (group 2) were installed following the events. We use group 1 data to investigate how early in the post-earthquake time period one may reliably begin using group 2 data to estimate velocities. For each group 1 time series, we obtain eight velocity estimates using observation time windows with successively later start dates (2006 - 2013) and a parameterization that includes constant velocity, annual, and semi-annual terms but no postseismic decay. We compare these to velocities estimated using only pre-San Simeon data to find when the pre- and post-earthquake velocities match within uncertainties. To obtain realistic velocity uncertainties, for each time series we optimize a temporally correlated noise model consisting of white, flicker, random walk, and, in some cases, band-pass filtered noise contributions. Preliminary results suggest velocities can be reliably estimated using data from 2011 to the present. Ongoing work will assess velocity bias as a function of epicentral distance and length of post-earthquake time series as well as explore spatio-temporal filtering of detrended group 1 time series to provide empirical corrections for postseismic motion in group 2 time series.

  19. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    NASA Astrophysics Data System (ADS)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  20. Time-dependent earthquake probability calculations for southern Kanto after the 2011 M9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.; Sakai, S.; Kato, A.; Tsuruoka, H.; Hirata, N.

    2013-05-01

    Seismicity in southern Kanto activated with the 2011 March 11 Tohoku earthquake of magnitude M9.0, but does this cause a significant difference in the probability of more earthquakes at the present or in the To? future answer this question, we examine the effect of a change in the seismicity rate on the probability of earthquakes. Our data set is from the Japan Meteorological Agency earthquake catalogue, downloaded on 2012 May 30. Our approach is based on time-dependent earthquake probabilistic calculations, often used for aftershock hazard assessment, and are based on two statistical laws: the Gutenberg-Richter (GR) frequency-magnitude law and the Omori-Utsu (OU) aftershock-decay law. We first confirm that the seismicity following a quake of M4 or larger is well modelled by the GR law with b ˜ 1. Then, there is good agreement with the OU law with p ˜ 0.5, which indicates that the slow decay was notably significant. Based on these results, we then calculate the most probable estimates of future M6-7-class events for various periods, all with a starting date of 2012 May 30. The estimates are higher than pre-quake levels if we consider a period of 3-yr duration or shorter. However, for statistics-based forecasting such as this, errors that arise from parameter estimation must be considered. Taking into account the contribution of these errors to the probability calculations, we conclude that any increase in the probability of earthquakes is insignificant. Although we try to avoid overstating the change in probability, our observations combined with results from previous studies support the likelihood that afterslip (fault creep) in southern Kanto will slowly relax a stress step caused by the Tohoku earthquake. This afterslip in turn reminds us of the potential for stress redistribution to the surrounding regions. We note the importance of varying hazards not only in time but also in space to improve the probabilistic seismic hazard assessment for southern Kanto.