Sample records for earthquake source parameter

  1. Local tsunamis and earthquake source parameters

    USGS Publications Warehouse

    Geist, Eric L.; Dmowska, Renata; Saltzman, Barry

    1999-01-01

    This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.

  2. Methodology to determine the parameters of historical earthquakes in China

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lin, Guoliang; Zhang, Zhe

    2017-12-01

    China is one of the countries with the longest cultural tradition. Meanwhile, China has been suffering very heavy earthquake disasters; so, there are abundant earthquake recordings. In this paper, we try to sketch out historical earthquake sources and research achievements in China. We will introduce some basic information about the collections of historical earthquake sources, establishing intensity scale and the editions of historical earthquake catalogues. Spatial-temporal and magnitude distributions of historical earthquake are analyzed briefly. Besides traditional methods, we also illustrate a new approach to amend the parameters of historical earthquakes or even identify candidate zones for large historical or palaeo-earthquakes. In the new method, a relationship between instrumentally recorded small earthquakes and strong historical earthquakes is built up. Abundant historical earthquake sources and the achievements of historical earthquake research in China are of valuable cultural heritage in the world.

  3. High-Resolution Source Parameter and Site Characteristics Using Near-Field Recordings - Decoding the Trade-off Problems Between Site and Source

    NASA Astrophysics Data System (ADS)

    Chen, X.; Abercrombie, R. E.; Pennington, C.

    2017-12-01

    Recorded seismic waveforms include contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. With near-field recordings, the path effect is relatively small, so the trade-off problem can be simplified to between source and site effects (commonly referred as "kappa value"). This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of kappa values, so direct spectrum fitting often leads to systematic biases due to corner frequency and magnitude. In response to the significantly increased seismicity rate in Oklahoma, several local networks have been deployed following major earthquakes: the Prague, Pawnee and Fairview earthquakes. Each network provides dense observations within 20 km surrounding the fault zone, recording tens of thousands of aftershocks between M1 to M3. Using near-field recordings in the Prague area, we apply a stacking approach to separate path/site and source effects. The resulting source parameters are consistent with parameters derived from ground motion and spectral ratio methods from other studies; they exhibit spatial coherence within the fault zone for different fault patches. We apply these source parameter constraints in an analysis of kappa values for stations within 20 km of the fault zone. The resulting kappa values show significantly reduced variability compared to those from direct spectral fitting without constraints on the source spectrum; they are not biased by earthquake magnitudes. With these improvements, we plan to apply the stacking analysis to other local arrays to analyze source properties and site characteristics. For selected individual earthquakes, we will also use individual-pair empirical Green's function (EGF) analysis to validate the source parameter estimations.

  4. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  5. Source parameter inversion of compound earthquakes on GPU/CPU hybrid platform

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ni, S.; Chen, W.

    2012-12-01

    Source parameter of earthquakes is essential problem in seismology. Accurate and timely determination of the earthquake parameters (such as moment, depth, strike, dip and rake of fault planes) is significant for both the rupture dynamics and ground motion prediction or simulation. And the rupture process study, especially for the moderate and large earthquakes, is essential as the more detailed kinematic study has became the routine work of seismologists. However, among these events, some events behave very specially and intrigue seismologists. These earthquakes usually consist of two similar size sub-events which occurred with very little time interval, such as mb4.5 Dec.9, 2003 in Virginia. The studying of these special events including the source parameter determination of each sub-events will be helpful to the understanding of earthquake dynamics. However, seismic signals of two distinctive sources are mixed up bringing in the difficulty of inversion. As to common events, the method(Cut and Paste) has been proven effective for resolving source parameters, which jointly use body wave and surface wave with independent time shift and weights. CAP could resolve fault orientation and focal depth using a grid search algorithm. Based on this method, we developed an algorithm(MUL_CAP) to simultaneously acquire parameters of two distinctive events. However, the simultaneous inversion of both sub-events make the computation very time consuming, so we develop a hybrid GPU and CPU version of CAP(HYBRID_CAP) to improve the computation efficiency. Thanks to advantages on multiple dimension storage and processing in GPU, we obtain excellent performance of the revised code on GPU-CPU combined architecture and the speedup factors can be as high as 40x-90x compared to classical cap on traditional CPU architecture.As the benchmark, we take the synthetics as observation and inverse the source parameters of two given sub-events and the inversion results are very consistent with the true parameters. For the events in Virginia, USA on 9 Dec, 2003, we re-invert source parameters and detailed analysis of regional waveform indicates that Virginia earthquake included two sub-events which are Mw4.05 and Mw4.25 at the same depth of 10km with focal mechanism of strike65/dip32/rake135, which are consistent with previous study. Moreover, compared to traditional two-source model method, MUL_CAP is more automatic with no need for human intervention.

  6. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe

    2017-01-01

    A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic ground motions obtained using the EGF method agree well with the observed motions in terms of acceleration, velocity, and displacement within the frequency range of 0.3-10 Hz. These findings indicate that the 2016 Kumamoto earthquake is a standard event that follows the scaling relationship of crustal earthquakes in Japan.

  7. Source Spectra and Site Response for Two Indonesian Earthquakes: the Tasikmalaya and Kerinci Events of 2009

    NASA Astrophysics Data System (ADS)

    Gunawan, I.; Cummins, P. R.; Ghasemi, H.; Suhardjono, S.

    2012-12-01

    Indonesia is very prone to natural disasters, especially earthquakes, due to its location in a tectonically active region. In September-October 2009 alone, intraslab and crustal earthquakes caused the deaths of thousands of people, severe infrastructure destruction and considerable economic loss. Thus, both intraslab and crustal earthquakes are important sources of earthquake hazard in Indonesia. Analysis of response spectra for these intraslab and crustal earthquakes are needed to yield more detail about earthquake properties. For both types of earthquakes, we have analysed available Indonesian seismic waveform data to constrain source and path parameters - i.e., low frequency spectral level, Q, and corner frequency - at reference stations that appear to be little influenced by site response.. We have considered these analyses for the main shocks as well as several aftershocks. We obtain corner frequencies that are reasonably consistent with the constant stress drop hypothesis. Using these results, we consider using them to extract information about site response form other stations form the Indonesian strong motion network that appear to be strongly affected by site response. Such site response data, as well as earthquake source parameters, are important for assessing earthquake hazard in Indonesia.

  8. Earthquake source parameters determined by the SAFOD Pilot Hole seismic array

    USGS Publications Warehouse

    Imanishi, K.; Ellsworth, W.L.; Prejean, S.G.

    2004-01-01

    We estimate the source parameters of #3 microearthquakes by jointly analyzing seismograms recorded by the 32-level, 3-component seismic array installed in the SAFOD Pilot Hole. We applied an inversion procedure to estimate spectral parameters for the omega-square model (spectral level and corner frequency) and Q to displacement amplitude spectra. Because we expect spectral parameters and Q to vary slowly with depth in the well, we impose a smoothness constraint on those parameters as a function of depth using a linear first-differenfee operator. This method correctly resolves corner frequency and Q, which leads to a more accurate estimation of source parameters than can be obtained from single sensors. The stress drop of one example of the SAFOD target repeating earthquake falls in the range of typical tectonic earthquakes. Copyright 2004 by the American Geophysical Union.

  9. Preliminary Result of Earthquake Source Parameters the Mw 3.4 at 23:22:47 IWST, August 21, 2004, Centre Java, Indonesia Based on MERAMEX Project

    NASA Astrophysics Data System (ADS)

    Laksono, Y. A.; Brotopuspito, K. S.; Suryanto, W.; Widodo; Wardah, R. A.; Rudianto, I.

    2018-03-01

    In order to study the structure subsurface at Merapi Lawu anomaly (MLA) using forward modelling or full waveform inversion, it needs a good earthquake source parameters. The best result source parameter comes from seismogram with high signal to noise ratio (SNR). Beside that the source must be near the MLA location and the stations that used as parameters must be outside from MLA in order to avoid anomaly. At first the seismograms are processed by software SEISAN v10 using a few stations from MERAMEX project. After we found the hypocentre that match the criterion we fine-tuned the source parameters using more stations. Based on seismogram from 21 stations, it is obtained the source parameters as follows: the event is at August, 21 2004, on 23:22:47 Indonesia western standard time (IWST), epicentre coordinate -7.80°S, 101.34°E, hypocentre 47.3 km, dominant frequency f0 = 3.0 Hz, the earthquake magnitude Mw = 3.4.

  10. Rapid tsunami models and earthquake source parameters: Far-field and local applications

    USGS Publications Warehouse

    Geist, E.L.

    2005-01-01

    Rapid tsunami models have recently been developed to forecast far-field tsunami amplitudes from initial earthquake information (magnitude and hypocenter). Earthquake source parameters that directly affect tsunami generation as used in rapid tsunami models are examined, with particular attention to local versus far-field application of those models. First, validity of the assumption that the focal mechanism and type of faulting for tsunamigenic earthquakes is similar in a given region can be evaluated by measuring the seismic consistency of past events. Second, the assumption that slip occurs uniformly over an area of rupture will most often underestimate the amplitude and leading-wave steepness of the local tsunami. Third, sometimes large magnitude earthquakes will exhibit a high degree of spatial heterogeneity such that tsunami sources will be composed of distinct sub-events that can cause constructive and destructive interference in the wavefield away from the source. Using a stochastic source model, it is demonstrated that local tsunami amplitudes vary by as much as a factor of two or more, depending on the local bathymetry. If other earthquake source parameters such as focal depth or shear modulus are varied in addition to the slip distribution patterns, even greater uncertainty in local tsunami amplitude is expected for earthquakes of similar magnitude. Because of the short amount of time available to issue local warnings and because of the high degree of uncertainty associated with local, model-based forecasts as suggested by this study, direct wave height observations and a strong public education and preparedness program are critical for those regions near suspected tsunami sources.

  11. A study of Guptkashi, Uttarakhand earthquake of 6 February 2017 ( M w 5.3) in the Himalayan arc and implications for ground motion estimation

    NASA Astrophysics Data System (ADS)

    Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati

    2018-05-01

    The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth ( H = 19 km), the seismic moment ( M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism ( φ = 280°, δ = 14°, λ = 84°), the source radius ( a = 1.3 km), and the static stress drop (Δ σ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q( f) = 500 f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δ σ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.

  12. A study of Guptkashi, Uttarakhand earthquake of 6 February 2017 (M w 5.3) in the Himalayan arc and implications for ground motion estimation

    NASA Astrophysics Data System (ADS)

    Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati

    2018-02-01

    The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth (H = 19 km), the seismic moment (M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism (φ = 280°, δ = 14°, λ = 84°), the source radius (a = 1.3 km), and the static stress drop (Δσ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q(f) = 500f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δσ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.

  13. Relating stick-slip friction experiments to earthquake source parameters

    USGS Publications Warehouse

    McGarr, Arthur F.

    2012-01-01

    Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.

  14. Radiation efficiency of earthquake sources at different hierarchical levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharyan, G. G., E-mail: gevorgkidg@mail.ru; Moscow Institute of Physics and Technology

    Such factors as earthquake size and its mechanism define common trends in alteration of radiation efficiency. The macroscopic parameter that controls the efficiency of a seismic source is stiffness of fault or fracture. The regularities of this parameter alteration with scale define several hierarchical levels, within which earthquake characteristics obey different laws. Small variations of physical and mechanical properties of the fault principal slip zone can lead to dramatic differences both in the amplitude of released stress and in the amount of radiated energy.

  15. Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; McGuire, Jeffrey J.

    2018-05-01

    An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. In particular, core questions in earthquake science can be addressed once these properties of small earthquakes are well resolved. However, these parameters of small earthquakes are poorly understood, often limited by available datasets and methodologies. The IRIS Community Wavefield Experiment in Oklahoma deployed ˜350 three component nodal stations within 40 km2 for a month, offering an unprecedented opportunity to test new methodologies for resolving small earthquake finite source properties in high resolution. In this study, we demonstrate the power of the nodal dataset to resolve the variations in the seismic wavefield over the focal sphere due to the finite source attributes of a M2 earthquake within the array. The dense coverage allows us to tightly constrain rupture area using the second moment method even for such a small earthquake. The M2 earthquake was a strike-slip event and unilaterally propagated towards the surface at 90 per cent local S- wave speed (2.93 km s-1). The earthquake lasted ˜0.019 s and ruptured Lc ˜70 m by Wc ˜45 m. With the resolved rupture area, the stress-drop of the earthquake is estimated as 7.3 MPa for Mw 2.3. We demonstrate that the maximum and minimum bounds on rupture area are within a factor of two, much lower than typical stress drop uncertainty, despite a suboptimal station distribution. The rupture properties suggest that there is little difference between the M2 Oklahoma earthquake and typical large earthquakes. The new three component nodal systems have great potential for improving the resolution of studies of earthquake source properties.

  16. Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Oth, A.; Parolai, S.; Bindi, D.; De Landro, G.; Amoroso, O.

    2017-05-01

    The accurate determination of stress drop, seismic efficiency, and how source parameters scale with earthquake size is an important issue for seismic hazard assessment of induced seismicity. We propose an improved nonparametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for attenuation and site contributions. Then, the retrieved source spectra are inverted by a nonlinear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (Mw 2-3.8) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations, more than 17.000 velocity records). We find a nonself-similar behavior, empirical source spectra that require an ωγ source model with γ > 2 to be well fit and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes and that the proportion of high-frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping faults in the fluid pressure diffusion.

  17. Seismicity and stress transfer studies in eastern California and Nevada: Implications for earthquake sources and tectonics

    NASA Astrophysics Data System (ADS)

    Ichinose, Gene Aaron

    The source parameters for eastern California and western Nevada earthquakes are estimated from regionally recorded seismograms using a moment tensor inversion. We use the point source approximation and fit the seismograms, at long periods. We generated a moment tensor catalog for Mw > 4.0 since 1997 and Mw > 5.0 since 1990. The catalog includes centroid depths, seismic moments, and focal mechanisms. The regions with the most moderate sized earthquakes in the last decade were in aftershock zones located in Eureka Valley, Double Spring Flat, Coso, Ridgecrest, Fish Lake Valley, and Scotty's Junction. The remaining moderate size earthquakes were distributed across the region. The 1993 (Mw 6.0) Eureka Valley earthquake occurred in the Eastern California Shear Zone. Careful aftershock relocations were used to resolve structure from aftershock clusters. The mainshock appears to rupture along the western side of the Last Change Range along a 30° to 60° west dipping fault plane, consistent with previous geodetic modeling. We estimate the source parameters for aftershocks at source-receiver distances less than 20 km using waveform modeling. The relocated aftershocks and waveform modeling results do not indicate any significant evidence of low angle faulting (dips > 30°. The results did reveal deformation along vertical faults within the hanging-wall block, consistent with observed surface rupture along the Saline Range above the dipping fault plane. The 1994 (Mw 5.8) Double Spring Flat earthquake occurred along the eastern Sierra Nevada between overlapping normal faults. Aftershock migration and cross fault triggering occurred in the following two years, producing seventeen Mw > 4 aftershocks The source parameters for the largest aftershocks were estimated from regionally recorded seismograms using moment tensor inversion. We estimate the source parameters for two moderate sized earthquakes which occurred near Reno, Nevada, the 1995 (Mw 4.4) Border Town, and the 1998 (Mw 4.7) Incline Village Earthquakes. We test to see how such stress interactions affected a cluster of six large earthquakes (Mw 6.6 to 7.5) between 1915 to 1954 within the Central Nevada Seismic Belt. We compute the static stress changes for these earthquake using dislocation models based on the location and amount of surface rupture. (Abstract shortened by UMI.)

  18. Dynamic Source Inversion of a M6.5 Intraslab Earthquake in Mexico: Application of a New Parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Díaz-Mojica, J. J.; Cruz-Atienza, V. M.; Madariaga, R.; Singh, S. K.; Iglesias, A.

    2013-05-01

    We introduce a novel approach for imaging the earthquakes dynamics from ground motion records based on a parallel genetic algorithm (GA). The method follows the elliptical dynamic-rupture-patch approach introduced by Di Carli et al. (2010) and has been carefully verified through different numerical tests (Díaz-Mojica et al., 2012). Apart from the five model parameters defining the patch geometry, our dynamic source description has four more parameters: the stress drop inside the nucleation and the elliptical patches; and two friction parameters, the slip weakening distance and the change of the friction coefficient. These parameters are constant within the rupture surface. The forward dynamic source problem, involved in the GA inverse method, uses a highly accurate computational solver for the problem, namely the staggered-grid split-node. The synthetic inversion presented here shows that the source model parameterization is suitable for the GA, and that short-scale source dynamic features are well resolved in spite of low-pass filtering of the data for periods comparable to the source duration. Since there is always uncertainty in the propagation medium as well as in the source location and the focal mechanisms, we have introduced a statistical approach to generate a set of solution models so that the envelope of the corresponding synthetic waveforms explains as much as possible the observed data. We applied the method to the 2012 Mw6.5 intraslab Zumpango, Mexico earthquake and determined several fundamental source parameters that are in accordance with different and completely independent estimates for Mexican and worldwide earthquakes. Our weighted-average final model satisfactorily explains eastward rupture directivity observed in the recorded data. Some parameters found for the Zumpango earthquake are: Δτ = 30.2+/-6.2 MPa, Er = 0.68+/-0.36x10^15 J, G = 1.74+/-0.44x10^15 J, η = 0.27+/-0.11, Vr/Vs = 0.52+/-0.09 and Mw = 6.64+/-0.07; for the stress drop, radiated energy, fracture energy, radiation efficiency, rupture velocity and moment magnitude, respectively. Mw6.5 intraslab Zumpango earthquake location, stations location and tectonic setting in central Mexico

  19. Deterministic Tectonic Origin Tsunami Hazard Analysis for the Eastern Mediterranean and its Connected Seas

    NASA Astrophysics Data System (ADS)

    Necmioglu, O.; Meral Ozel, N.

    2014-12-01

    Accurate earthquake source parameters are essential for any tsunami hazard assessment and mitigation, including early warning systems. Complex tectonic setting makes the a priori accurate assumptions of earthquake source parameters difficult and characterization of the faulting type is a challenge. Information on tsunamigenic sources is of crucial importance in the Eastern Mediterranean and its Connected Seas, especially considering the short arrival times and lack of offshore sea-level measurements. In addition, the scientific community have had to abandon the paradigm of a ''maximum earthquake'' predictable from simple tectonic parameters (Ruff and Kanamori, 1980) in the wake of the 2004 Sumatra event (Okal, 2010) and one of the lessons learnt from the 2011 Tohoku event was that tsunami hazard maps may need to be prepared for infrequent gigantic earthquakes as well as more frequent smaller-sized earthquakes (Satake, 2011). We have initiated an extensive modeling study to perform a deterministic Tsunami Hazard Analysis for the Eastern Mediterranean and its Connected Seas. Characteristic earthquake source parameters (strike, dip, rake, depth, Mwmax) at each 0.5° x 0.5° size bin for 0-40 km depth (total of 310 bins) and for 40-100 km depth (total of 92 bins) in the Eastern Mediterranean, Aegean and Black Sea region (30°N-48°N and 22°E-44°E) have been assigned from the harmonization of the available databases and previous studies. These parameters have been used as input parameters for the deterministic tsunami hazard modeling. Nested Tsunami simulations of 6h duration with a coarse (2 arc-min) and medium (1 arc-min) grid resolution have been simulated at EC-JRC premises for Black Sea and Eastern and Central Mediterranean (30°N-41.5°N and 8°E-37°E) for each source defined using shallow water finite-difference SWAN code (Mader, 2004) for the magnitude range of 6.5 - Mwmax defined for that bin with a Mw increment of 0.1. Results show that not only the earthquakes resembling the well-known historical earthquakes such as AD 365 or AD 1303 in the Hellenic Arc, but also earthquakes with lower magnitudes do constitute to the tsunami hazard in the study area.

  20. Seismic Sources for the Territory of Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.

    2011-12-01

    The southern Caucasus is an earthquake prone region where devastating earthquakes have repeatedly caused significant loss of lives, infrastructure and buildings. High geodynamic activity of the region expressed in both seismic and aseismic deformations, is conditioned by the still-ongoing convergence of lithospheric plates and northward propagation of the Afro-Arabian continental block at a rate of several cm/year. The geometry of tectonic deformations in the region is largely determined by the wedge-shaped rigid Arabian block intensively intended into the relatively mobile Middle East-Caucasian region. Georgia is partner of ongoing regional project EMME. The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment. In this approach the first parameter requirement is the definition of seismic source zones. Seismic sources can be either faults or area sources. Seismoactive structures of Georgia are identified mainly on the basis of the correlation between neotectonic structures of the region and earthquakes. Requirements of modern PSH software to geometry of faults is very high. As our knowledge of active faults geometry is not sufficient, area sources were used. Seismic sources are defined as zones that are characterized with more or less uniform seismicity. Poor knowledge of the processes occurring in deep of the Earth is connected with complexity of direct measurement. From this point of view the reliable data obtained from earthquake fault plane solution is unique for understanding the character of a current tectonic life of investigated area. There are two methods of identification if seismic sources. The first is the seimsotectonic approach, based on identification of extensive homogeneous seismic sources (SS) with the definition of probability of occurrence of maximum earthquake Mmax. In the second method the identification of seismic sources will be obtained on the bases of structural geology, parameters of seismicity and seismotectonics. This last approach was used by us. For achievement of this purpose it was necessary to solve following problems: to calculate the parameters of seismotectonic deformation; to reveal regularities in character of earthquake fault plane solution; use obtained regularities to develop principles of an establishment of borders between various hierarchical and scale levels of seismic deformations fields and to give their geological interpretation; Three dimensional matching of active faults with real geometrical dimension and earthquake sources have been investigated. Finally each zone have been defined with the parameters: the geometry, the magnitude-frequency parameters, maximum magnitude, and depth distribution as well as modern dynamical characteristics widely used for complex processes

  1. PAGER-CAT: A composite earthquake catalog for calibrating global fatality models

    USGS Publications Warehouse

    Allen, T.I.; Marano, K.D.; Earle, P.S.; Wald, D.J.

    2009-01-01

    We have described the compilation and contents of PAGER-CAT, an earthquake catalog developed principally for calibrating earthquake fatality models. It brings together information from a range of sources in a comprehensive, easy to use digital format. Earthquake source information (e.g., origin time, hypocenter, and magnitude) contained in PAGER-CAT has been used to develop an Atlas of Shake Maps of historical earthquakes (Allen et al. 2008) that can subsequently be used to estimate the population exposed to various levels of ground shaking (Wald et al. 2008). These measures will ultimately yield improved earthquake loss models employing the uniform hazard mapping methods of ShakeMap. Currently PAGER-CAT does not consistently contain indicators of landslide and liquefaction occurrence prior to 1973. In future PAGER-CAT releases we plan to better document the incidence of these secondary hazards. This information is contained in some existing global catalogs but is far from complete and often difficult to parse. Landslide and liquefaction hazards can be important factors contributing to earthquake losses (e.g., Marano et al. unpublished). Consequently, the absence of secondary hazard indicators in PAGER-CAT, particularly for events prior to 1973, could be misleading to sorne users concerned with ground-shaking-related losses. We have applied our best judgment in the selection of PAGER-CAT's preferred source parameters and earthquake effects. We acknowledge the creation of a composite catalog always requires subjective decisions, but we believe PAGER-CAT represents a significant step forward in bringing together the best available estimates of earthquake source parameters and reports of earthquake effects. All information considered in PAGER-CAT is stored as provided in its native catalog so that other users can modify PAGER preferred parameters based on their specific needs or opinions. As with all catalogs, the values of some parameters listed in PAGER-CAT are highly uncertain, particularly the casualty numbers, which must be regarded as estimates rather than firm numbers for many earthquakes. Consequently, we encourage contributions from the seismology and earthquake engineering communities to further improve this resource via the Wikipedia page and personal communications, for the benefit of the whole community.

  2. Seismological investigation of earthquakes in the New Madrid Seismic Zone. Final report, September 1986--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, R.B.; Nguyen, B.

    Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35{degrees}--39{degrees}N and longitudes 87{degrees}--92{degrees}W. Most of these earthquakes occur within a 1.5{degrees} x 2{degrees} zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful toolmore » in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions.« less

  3. Bayesian estimation of source parameters and associated Coulomb failure stress changes for the 2005 Fukuoka (Japan) Earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, Rishabh; Jónsson, Sigurjón; Wang, Teng; Vasyura-Bathke, Hannes

    2018-04-01

    Several researchers have studied the source parameters of the 2005 Fukuoka (northwestern Kyushu Island, Japan) earthquake (Mw 6.6) using teleseismic, strong motion and geodetic data. However, in all previous studies, errors of the estimated fault solutions have been neglected, making it impossible to assess the reliability of the reported solutions. We use Bayesian inference to estimate the location, geometry and slip parameters of the fault and their uncertainties using Interferometric Synthetic Aperture Radar and Global Positioning System data. The offshore location of the earthquake makes the fault parameter estimation challenging, with geodetic data coverage mostly to the southeast of the earthquake. To constrain the fault parameters, we use a priori constraints on the magnitude of the earthquake and the location of the fault with respect to the aftershock distribution and find that the estimated fault slip ranges from 1.5 to 2.5 m with decreasing probability. The marginal distributions of the source parameters show that the location of the western end of the fault is poorly constrained by the data whereas that of the eastern end, located closer to the shore, is better resolved. We propagate the uncertainties of the fault model and calculate the variability of Coulomb failure stress changes for the nearby Kego fault, located directly below Fukuoka city, showing that the main shock increased stress on the fault and brought it closer to failure.

  4. Seismic source parameters of the induced seismicity at The Geysers geothermal area, California, by a generalized inversion approach

    NASA Astrophysics Data System (ADS)

    Picozzi, Matteo; Oth, Adrien; Parolai, Stefano; Bindi, Dino; De Landro, Grazia; Amoroso, Ortensia

    2017-04-01

    The accurate determination of stress drop, seismic efficiency and how source parameters scale with earthquake size is an important for seismic hazard assessment of induced seismicity. We propose an improved non-parametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for the attenuation and site contributions. Then, the retrieved source spectra are inverted by a non-linear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (ML 2-4.5) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations of the Lawrence Berkeley National Laboratory Geysers/Calpine surface seismic network, more than 17.000 velocity records). We find for most of the events a non-selfsimilar behavior, empirical source spectra that requires ωγ source model with γ > 2 to be well fitted and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes, and that the proportion of high frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with the earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that, in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping fault in the fluid pressure diffusion.

  5. Source parameters and tectonic interpretation of recent earthquakes (1995 1997) in the Pannonian basin

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Horváth, Frank; Tóth, László

    2001-01-01

    From January 1995 to December 1997, about 74 earthquakes were located in the Pannonian basin and digitally recorded by a recently established network of seismological stations in Hungary. On reviewing the notable events, about 12 earthquakes were reported as felt with maximum intensity varying between 4 and 6 MSK. The dynamic source parameters of these earthquakes have been derived from P-wave displacement spectra. The displacement source spectra obtained are characterised by relatively small values of corner frequency ( f0) ranging between 2.5 and 10 Hz. The seismic moments change from 1.48×10 20 to 1.3×10 23 dyne cm, stress drops from 0.25 to 76.75 bar, fault length from 0.42 to 1.7 km and relative displacement from 0.05 to 15.35 cm. The estimated source parameters suggest a good agreement with the scaling law for small earthquakes. The small values of stress drops in the studied earthquakes can be attributed to the low strength of crustal materials in the Pannonian basin. However, the values of stress drops are not different for earthquake with thrust or normal faulting focal mechanism solutions. It can be speculated that an increase of the seismic activity in the Pannonian basin can be predicted in the long run because extensional development ceased and structural inversion is in progress. Seismic hazard assessment is a delicate job due to the inadequate knowledge of the seismo-active faults, particularly in the interior part of the Pannonian basin.

  6. Impact of earthquake source complexity and land elevation data resolution on tsunami hazard assessment and fatality estimation

    NASA Astrophysics Data System (ADS)

    Muhammad, Ario; Goda, Katsuichiro

    2018-03-01

    This study investigates the impact of model complexity in source characterization and digital elevation model (DEM) resolution on the accuracy of tsunami hazard assessment and fatality estimation through a case study in Padang, Indonesia. Two types of earthquake source models, i.e. complex and uniform slip models, are adopted by considering three resolutions of DEMs, i.e. 150 m, 50 m, and 10 m. For each of the three grid resolutions, 300 complex source models are generated using new statistical prediction models of earthquake source parameters developed from extensive finite-fault models of past subduction earthquakes, whilst 100 uniform slip models are constructed with variable fault geometry without slip heterogeneity. The results highlight that significant changes to tsunami hazard and fatality estimates are observed with regard to earthquake source complexity and grid resolution. Coarse resolution (i.e. 150 m) leads to inaccurate tsunami hazard prediction and fatality estimation, whilst 50-m and 10-m resolutions produce similar results. However, velocity and momentum flux are sensitive to the grid resolution and hence, at least 10-m grid resolution needs to be implemented when considering flow-based parameters for tsunami hazard and risk assessments. In addition, the results indicate that the tsunami hazard parameters and fatality number are more sensitive to the complexity of earthquake source characterization than the grid resolution. Thus, the uniform models are not recommended for probabilistic tsunami hazard and risk assessments. Finally, the findings confirm that uncertainties of tsunami hazard level and fatality in terms of depth, velocity and momentum flux can be captured and visualized through the complex source modeling approach. From tsunami risk management perspectives, this indeed creates big data, which are useful for making effective and robust decisions.

  7. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica (http://rmt.earth.sinica.edu.tw). The long-term goal of this system is to provide real-time source information for rapid seismic hazard assessment during large earthquakes.

  8. A new Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, Hannes; Dutta, Rishabh; Jónsson, Sigurjón; Mai, Martin

    2017-04-01

    Modern earthquake source estimation studies increasingly use non-linear optimization strategies to estimate kinematic rupture parameters, often considering geodetic and seismic data jointly. However, the optimization process is complex and consists of several steps that need to be followed in the earthquake parameter estimation procedure. These include pre-describing or modeling the fault geometry, calculating the Green's Functions (often assuming a layered elastic half-space), and estimating the distributed final slip and possibly other kinematic source parameters. Recently, Bayesian inference has become popular for estimating posterior distributions of earthquake source model parameters given measured/estimated/assumed data and model uncertainties. For instance, some research groups consider uncertainties of the layered medium and propagate these to the source parameter uncertainties. Other groups make use of informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed that efficiently explore the often high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational demands of these methods are high and estimation codes are rarely distributed along with the published results. Even if codes are made available, it is often difficult to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in earthquake source estimations, we undertook the effort of producing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package is build on top of the pyrocko seismological toolbox (www.pyrocko.org) and makes use of the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat) and we encourage and solicit contributions to the project. In this contribution, we present our strategy for developing BEAT, show application examples, and discuss future developments.

  9. Prediction of Strong Earthquake Ground Motion for the M=7.4 and M=7.2 1999, Turkey Earthquakes based upon Geological Structure Modeling and Local Earthquake Recordings

    NASA Astrophysics Data System (ADS)

    Gok, R.; Hutchings, L.

    2004-05-01

    We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  10. Analysis and selection of magnitude relations for the Working Group on Utah Earthquake Probabilities

    USGS Publications Warehouse

    Duross, Christopher; Olig, Susan; Schwartz, David

    2015-01-01

    Prior to calculating time-independent and -dependent earthquake probabilities for faults in the Wasatch Front region, the Working Group on Utah Earthquake Probabilities (WGUEP) updated a seismic-source model for the region (Wong and others, 2014) and evaluated 19 historical regressions on earthquake magnitude (M). These regressions relate M to fault parameters for historical surface-faulting earthquakes, including linear fault length (e.g., surface-rupture length [SRL] or segment length), average displacement, maximum displacement, rupture area, seismic moment (Mo ), and slip rate. These regressions show that significant epistemic uncertainties complicate the determination of characteristic magnitude for fault sources in the Basin and Range Province (BRP). For example, we found that M estimates (as a function of SRL) span about 0.3–0.4 units (figure 1) owing to differences in the fault parameter used; age, quality, and size of historical earthquake databases; and fault type and region considered.

  11. Source parameters of the 2013 Lushan, Sichuan, Ms7.0 earthquake and estimation of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhou, L.; Liu, J.

    2013-12-01

    Abstract: The April 20, 2013 Ms 7.0 earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The Lushan earthquake caused a great of loss of property and 196 deaths. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process and calculated source spectral parameters, estimated the strong ground motion in the near-fault field based on the Brune's circle model at first. A dynamical composite source model (DCSM) has been developed further to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Based on the simulated results of the near-fault strong ground motion, described the intensity distribution of the Lushan earthquake field. The simulated intensity indicated that, the maximum intensity value is IX, and region with and above VII almost 16,000km2, which is consistence with observation intensity published online by China Earthquake Administration (CEA) on April 25. Moreover, the numerical modeling developed in this study has great application in the strong ground motion prediction and intensity estimation for the earthquake rescue purpose. In fact, the estimation methods based on the empirical relationship and numerical modeling developed in this study has great application in the strong ground motion prediction for the earthquake source process understand purpose. Keywords: Lushan, Ms7.0 earthquake; near-fault strong ground motion; DCSM; simulated intensity

  12. W phase source inversion for moderate to large earthquakes (1990-2010)

    USGS Publications Warehouse

    Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo; Hayes, Gavin P.

    2012-01-01

    Rapid characterization of the earthquake source and of its effects is a growing field of interest. Until recently, it still took several hours to determine the first-order attributes of a great earthquake (e.g. Mw≥ 7.5), even in a well-instrumented region. The main limiting factors were data saturation, the interference of different phases and the time duration and spatial extent of the source rupture. To accelerate centroid moment tensor (CMT) determinations, we have developed a source inversion algorithm based on modelling of the W phase, a very long period phase (100–1000 s) arriving at the same time as the P wave. The purpose of this work is to finely tune and validate the algorithm for large-to-moderate-sized earthquakes using three components of W phase ground motion at teleseismic distances. To that end, the point source parameters of all Mw≥ 6.5 earthquakes that occurred between 1990 and 2010 (815 events) are determined using Federation of Digital Seismograph Networks, Global Seismographic Network broad-band stations and STS1 global virtual networks of the Incorporated Research Institutions for Seismology Data Management Center. For each event, a preliminary magnitude obtained from W phase amplitudes is used to estimate the initial moment rate function half duration and to define the corner frequencies of the passband filter that will be applied to the waveforms. Starting from these initial parameters, the seismic moment tensor is calculated using a preliminary location as a first approximation of the centroid. A full CMT inversion is then conducted for centroid timing and location determination. Comparisons with Harvard and Global CMT solutions highlight the robustness of W phase CMT solutions at teleseismic distances. The differences in Mw rarely exceed 0.2 and the source mechanisms are very similar to one another. Difficulties arise when a target earthquake is shortly (e.g. within 10 hr) preceded by another large earthquake, which disturbs the waveforms of the target event. To deal with such difficult situations, we remove the perturbation caused by earlier disturbing events by subtracting the corresponding synthetics from the data. The CMT parameters for the disturbed event can then be retrieved using the residual seismograms. We also explore the feasibility of obtaining source parameters of smaller earthquakes in the range 6.0 ≤Mw w= 6 or larger.

  13. Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw7.1, dip-slip Van earthquake, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Rolland, Lucie M.; Vergnolle, Mathilde; Nocquet, Jean-Mathieu; Sladen, Anthony; Dessa, Jean-Xavier; Tavakoli, Farokh; Nankali, Hamid Reza; Cappa, FréDéRic

    2013-06-01

    It has previously been suggested that ionospheric perturbations triggered by large dip-slip earthquakes might offer additional source parameter information compared to the information gathered from land observations. Based on 3D modeling of GPS- and GLONASS-derived total electron content signals recorded during the 2011 Van earthquake (thrust, intra-plate event, Mw = 7.1, Turkey), we confirm that coseismic ionospheric signals do contain important information about the earthquake source, namely its slip mode. Moreover, we show that part of the ionospheric signal (initial polarity and amplitude distribution) is not related to the earthquake source, but is instead controlled by the geomagnetic field and the geometry of the Global Navigation Satellite System satellites constellation. Ignoring these non-tectonic effects would lead to an incorrect description of the earthquake source. Thus, our work emphasizes the added caution that should be used when analyzing ionospheric signals for earthquake source studies.

  14. Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw 7.1, dip-slip Van earthquake, Eastern Turkey (Invited)

    NASA Astrophysics Data System (ADS)

    Rolland, L. M.; Vergnolle, M.; Nocquet, J.; Sladen, A.; Dessa, J.; Tavakoli, F.; Nankali, H.; Cappa, F.

    2013-12-01

    It has previously been suggested that ionospheric perturbations triggered by large dip-slip earthquakes might offer additional source parameter information compared to the information gathered from land observations. Based on 3D modeling of GPS- and GLONASS-derived total electron content signals recorded during the 2011 Van earthquake (thrust, intra-plate event, Mw = 7.1, Turkey), we confirm that coseismic ionospheric signals do contain important information about the earthquake source, namely its slip mode. Moreover, we show that part of the ionospheric signal (initial polarity and amplitude distribution) is not related to the earthquake source, but is instead controlled by the geomagnetic field and the geometry of the Global Navigation Satellite System satellites constellation. Ignoring these non-tectonic effects would lead to an incorrect description of the earthquake source. Thus, our work emphasizes the added caution that should be used when analyzing ionospheric signals for earthquake source studies.

  15. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  16. Source parameters of microearthquakes on an interplate asperity off Kamaishi, NE Japan over two earthquake cycles

    USGS Publications Warehouse

    Uchida, Naoki; Matsuzawa, Toru; Ellsworth, William L.; Imanishi, Kazutoshi; Shimamura, Kouhei; Hasegawa, Akira

    2012-01-01

    We have estimated the source parameters of interplate earthquakes in an earthquake cluster off Kamaishi, NE Japan over two cycles of M~ 4.9 repeating earthquakes. The M~ 4.9 earthquake sequence is composed of nine events that occurred since 1957 which have a strong periodicity (5.5 ± 0.7 yr) and constant size (M4.9 ± 0.2), probably due to stable sliding around the source area (asperity). Using P- and S-wave traveltime differentials estimated from waveform cross-spectra, three M~ 4.9 main shocks and 50 accompanying microearthquakes (M1.5–3.6) from 1995 to 2008 were precisely relocated. The source sizes, stress drops and slip amounts for earthquakes of M2.4 or larger were also estimated from corner frequencies and seismic moments using simultaneous inversion of stacked spectral ratios. Relocation using the double-difference method shows that the slip area of the 2008 M~ 4.9 main shock is co-located with those of the 1995 and 2001 M~ 4.9 main shocks. Four groups of microearthquake clusters are located in and around the mainshock slip areas. Of these, two clusters are located at the deeper and shallower edge of the slip areas and most of these microearthquakes occurred repeatedly in the interseismic period. Two other clusters located near the centre of the mainshock source areas are not as active as the clusters near the edge. The occurrence of these earthquakes is limited to the latter half of the earthquake cycles of the M~ 4.9 main shock. Similar spatial and temporal features of microearthquake occurrence were seen for two other cycles before the 1995 M5.0 and 1990 M5.0 main shocks based on group identification by waveform similarities. Stress drops of microearthquakes are 3–11 MPa and are relatively constant within each group during the two earthquake cycles. The 2001 and 2008 M~ 4.9 earthquakes have larger stress drops of 41 and 27 MPa, respectively. These results show that the stress drop is probably determined by the fault properties and does not change much for earthquakes rupturing in the same area. The occurrence of microearthquakes in the interseismic period suggests the intrusion of aseismic slip, causing a loading of these patches. We also found that some earthquakes near the centre of the mainshock source area occurred just after the earthquakes at the deeper edge of the mainshock source area. These seismic activities probably indicate episodic aseismic slip migrating from the deeper regions in the mainshock asperity to its centre during interseismic periods. Comparison of the source parameters for the 2001 and 2008 main shocks shows that the seismic moments (1.04 x 1016 Nm and 1.12 x 1016 Nm for the 2008 and 2001 earthquakes, respectively) and source sizes (radius = 570 m and 540 m for the 2008 and 2001 earthquakes, respectively) are comparable. Based on careful phase identification and hypocentre relocation by constraining the hypocentres of other small earthquakes to their precisely located centroids, we found that the hypocentres of the 2001 and 2008 M~ 4.9 events are located in the southeastern part of the mainshock source area. This location does not correspond to either episodic slip area or hypocentres of small earthquakes that occurred during the earthquake cycle.

  17. Engineering applications of strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Somerville, Paul

    1993-02-01

    The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the design response spectra for crustal earthquakes at a power plant site in California and for subduction earthquakes in the Seattle-Portland region. We also demonstrate the use of simulation methods for modeling the attenuation of strong ground motion, and show evidence of the effect of critical reflections from the lower crust in causing the observed flattening of the attenuation of strong ground motion from the 1988 Saguenay, Quebec, and 1989 Loma Prieta earthquakes.

  18. A probabilistic approach for the estimation of earthquake source parameters from spectral inversion

    NASA Astrophysics Data System (ADS)

    Supino, M.; Festa, G.; Zollo, A.

    2017-12-01

    The amplitude spectrum of a seismic signal related to an earthquake source carries information about the size of the rupture, moment, stress and energy release. Furthermore, it can be used to characterize the Green's function of the medium crossed by the seismic waves. We describe the earthquake amplitude spectrum assuming a generalized Brune's (1970) source model, and direct P- and S-waves propagating in a layered velocity model, characterized by a frequency-independent Q attenuation factor. The observed displacement spectrum depends indeed on three source parameters, the seismic moment (through the low-frequency spectral level), the corner frequency (that is a proxy of the fault length) and the high-frequency decay parameter. These parameters are strongly correlated each other and with the quality factor Q; a rigorous estimation of the associated uncertainties and parameter resolution is thus needed to obtain reliable estimations.In this work, the uncertainties are characterized adopting a probabilistic approach for the parameter estimation. Assuming an L2-norm based misfit function, we perform a global exploration of the parameter space to find the absolute minimum of the cost function and then we explore the cost-function associated joint a-posteriori probability density function around such a minimum, to extract the correlation matrix of the parameters. The global exploration relies on building a Markov chain in the parameter space and on combining a deterministic minimization with a random exploration of the space (basin-hopping technique). The joint pdf is built from the misfit function using the maximum likelihood principle and assuming a Gaussian-like distribution of the parameters. It is then computed on a grid centered at the global minimum of the cost-function. The numerical integration of the pdf finally provides mean, variance and correlation matrix associated with the set of best-fit parameters describing the model. Synthetic tests are performed to investigate the robustness of the method and uncertainty propagation from the data-space to the parameter space. Finally, the method is applied to characterize the source parameters of the earthquakes occurring during the 2016-2017 Central Italy sequence, with the goal of investigating the source parameter scaling with magnitude.

  19. New insights on active fault geometries in the Mentawai region of Sumatra, Indonesia, from broadband waveform modeling of earthquake source parameters

    NASA Astrophysics Data System (ADS)

    WANG, X.; Wei, S.; Bradley, K. E.

    2017-12-01

    Global earthquake catalogs provide important first-order constraints on the geometries of active faults. However, the accuracies of both locations and focal mechanisms in these catalogs are typically insufficient to resolve detailed fault geometries. This issue is particularly critical in subduction zones, where most great earthquakes occur. The Slab 1.0 model (Hayes et al. 2012), which was derived from global earthquake catalogs, has smooth fault geometries, and cannot adequately address local structural complexities that are critical for understanding earthquake rupture patterns, coseismic slip distributions, and geodetically monitored interseismic coupling. In this study, we conduct careful relocation and waveform modeling of earthquake source parameters to reveal fault geometries in greater detail. We take advantage of global data and conduct broadband waveform modeling for medium size earthquakes (M>4.5) to refine their source parameters, which include locations and fault plane solutions. The refined source parameters can greatly improve the imaging of fault geometry (e.g., Wang et al., 2017). We apply these approaches to earthquakes recorded since 1990 in the Mentawai region offshore of central Sumatra. Our results indicate that the uncertainty of the horizontal location, depth and dip angle estimation are as small as 5 km, 2 km and 5 degrees, respectively. The refined catalog shows that the 2005 and 2009 "back-thrust" sequences in Mentawai region actually occurred on a steeply landward-dipping fault, contradicting previous studies that inferred a seaward-dipping backthrust. We interpret these earthquakes as `unsticking' of the Sumatran accretionary wedge along a backstop fault that separates accreted material of the wedge from the strong Sunda lithosphere, or reactivation of an old normal fault buried beneath the forearc basin. We also find that the seismicity on the Sunda megathrust deviates in location from Slab 1.0 by up to 7 km, with along strike variation. The refined megathrust geometry will improve our understanding of the tectonic setting in this region, and place further constraints on rupture processes of the hazardous megathrust.

  20. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2012-04-01

    We studied source mechanism parameters and slip distributions of earthquakes with Mw ≥ 5.0 occurred during 2000-2008 along the Hellenic subduction zone by using teleseismic P- and SH-waveform inversion methods. In addition, the major and well-known earthquake-induced Eastern Mediterranean tsunamis (e.g., 365, 1222, 1303, 1481, 1494, 1822 and 1948) were numerically simulated and several hypothetical tsunami scenarios were proposed to demonstrate the characteristics of tsunami waves, propagations and effects of coastal topography. The analogy of current plate boundaries, earthquake source mechanisms, various earthquake moment tensor catalogues and several empirical self-similarity equations, valid for global or local scales, were used to assume conceivable source parameters which constitute the initial and boundary conditions in simulations. Teleseismic inversion results showed that earthquakes along the Hellenic subduction zone can be classified into three major categories: [1] focal mechanisms of the earthquakes exhibiting E-W extension within the overriding Aegean plate; [2] earthquakes related to the African-Aegean convergence; and [3] focal mechanisms of earthquakes lying within the subducting African plate. Normal faulting mechanisms with left-lateral strike slip components were observed at the eastern part of the Hellenic subduction zone, and we suggest that they were probably concerned with the overriding Aegean plate. However, earthquakes involved in the convergence between the Aegean and the Eastern Mediterranean lithospheres indicated thrust faulting mechanisms with strike slip components, and they had shallow focal depths (h < 45 km). Deeper earthquakes mainly occurred in the subducting African plate, and they presented dominantly strike slip faulting mechanisms. Slip distributions on fault planes showed both complex and simple rupture propagations with respect to the variation of source mechanism and faulting geometry. We calculated low stress drop values (Δσ < 30 bars) for all earthquakes implying typically interplate seismic activity in the region. Further, results of numerical simulations verified that damaging historical tsunamis along the Hellenic subduction zone are able to threaten especially the coastal plains of Crete and Rhodes islands, SW Turkey, Cyprus, Levantine, and Nile Delta-Egypt regions. Thus, we tentatively recommend that special care should be considered in the evaluation of the tsunami risk assessment of the Eastern Mediterranean region for future studies.

  1. Simulation of the Tsunami Resulting from the M 9.2 2004 Sumatra-Andaman Earthquake - Dynamic Rupture vs. Seismic Inversion Source Model

    NASA Astrophysics Data System (ADS)

    Vater, Stefan; Behrens, Jörn

    2017-04-01

    Simulations of historic tsunami events such as the 2004 Sumatra or the 2011 Tohoku event are usually initialized using earthquake sources resulting from inversion of seismic data. Also, other data from ocean buoys etc. is sometimes included in the derivation of the source model. The associated tsunami event can often be well simulated in this way, and the results show high correlation with measured data. However, it is unclear how the derived source model compares to the particular earthquake event. In this study we use the results from dynamic rupture simulations obtained with SeisSol, a software package based on an ADER-DG discretization solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. The tsunami model is based on a second-order Runge-Kutta discontinuous Galerkin (RKDG) scheme on triangular grids and features a robust wetting and drying scheme for the simulation of inundation events at the coast. Adaptive mesh refinement enables the efficient computation of large domains, while at the same time it allows for high local resolution and geometric accuracy. The results are compared to measured data and results using earthquake sources based on inversion. With the approach of using the output of actual dynamic rupture simulations, we can estimate the influence of different earthquake parameters. Furthermore, the comparison to other source models enables a thorough comparison and validation of important tsunami parameters, such as the runup at the coast. This work is part of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, which aims at an improved understanding of the coupling between the earthquake and the generated tsunami event.

  2. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  3. Source Parameters and Rupture Directivities of Earthquakes Within the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Allen, A. A.; Chen, X.

    2017-12-01

    The Mendocino Triple Junction (MTJ), a region in the Cascadia subduction zone, produces a sizable amount of earthquakes each year. Direct observations of the rupture properties are difficult to achieve due to the small magnitudes of most of these earthquakes and lack of offshore observations. The Cascadia Initiative (CI) project provides opportunities to look at the earthquakes in detail. Here we look at the transform plate boundary fault located in the MTJ, and measure source parameters of Mw≥4 earthquakes from both time-domain deconvolution and spectral analysis using empirical Green's function (EGF) method. The second-moment method is used to infer rupture length, width, and rupture velocity from apparent source duration measured at different stations. Brune's source model is used to infer corner frequency and spectral complexity for stacked spectral ratio. EGFs are selected based on their location relative to the mainshock, as well as the magnitude difference compared to the mainshock. For the transform fault, we first look at the largest earthquake recorded during the Year 4 CI array, a Mw5.72 event that occurred in January of 2015, and select two EGFs, a Mw1.75 and a Mw1.73 located within 5 km of the mainshock. This earthquake is characterized with at least two sub-events, with total duration of about 0.3 second and rupture length of about 2.78 km. The earthquake is rupturing towards west along the transform fault, and both source durations and corner frequencies show strong azimuthal variations, with anti-correlation between duration and corner frequency. The stacked spectral ratio from multiple stations with the Mw1.73 EGF event shows deviation from pure Brune's source model following the definition from Uchide and Imanishi [2016], likely due to near-field recordings with rupture complexity. We will further analyze this earthquake using more EGF events to test the reliability and stability of the results, and further analyze three other Mw≥4 earthquakes within the array.

  4. Intraplate earthquakes and the state of stress in oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.

    1986-01-01

    The dominant sources of stress relieved in oceanic intraplate earthquakes are investigated to examine the usefulness of earthquakes as indicators of stress orientation. The primary data for this investigation are the detailed source studies of 58 of the largest of these events, performed with a body-waveform inversion technique of Nabelek (1984). The relationship between the earthquakes and the intraplate stress fields was investigated by studying, the rate of seismic moment release as a function of age, the source mechanisms and tectonic associations of larger events, and the depth-dependence of various source parameters. The results indicate that the earthquake focal mechanisms are empirically reliable indicators of stress, probably reflecting the fact that an earthquake will occur most readily on a fault plane oriented in such a way that the resolved shear stress is maximized while the normal stress across the fault, is minimized.

  5. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  6. Empirical Scaling Relations of Source Parameters For The Earthquake Swarm 2000 At Novy Kostel (vogtland/nw-bohemia)

    NASA Astrophysics Data System (ADS)

    Heuer, B.; Plenefisch, T.; Seidl, D.; Klinge, K.

    Investigations on the interdependence of different source parameters are an impor- tant task to get more insight into the mechanics and dynamics of earthquake rup- ture, to model source processes and to make predictions for ground motion at the surface. The interdependencies, providing so-called scaling relations, have often been investigated for large earthquakes. However, they are not commonly determined for micro-earthquakes and swarm-earthquakes, especially for those of the Vogtland/NW- Bohemia region. For the most recent swarm in the Vogtland/NW-Bohemia, which took place between August and December 2000 near Novy Kostel (Czech Republic), we systematically determine the most important source parameters such as energy E0, seismic moment M0, local magnitude ML, fault length L, corner frequency fc and rise time r and build their interdependencies. The swarm of 2000 is well suited for such investigations since it covers a large magnitude interval (1.5 ML 3.7) and there are also observations in the near-field at several stations. In the present paper we mostly concentrate on two near-field stations with hypocentral distances between 11 and 13 km, namely WERN (Wernitzgrün) and SBG (Schönberg). Our data processing includes restitution to true ground displacement and rotation into the ray-based prin- cipal co-ordinate system, which we determine by the covariance matrix of the P- and S-displacement, respectively. Data preparation, determination of the distinct source parameters as well as statistical interpretation of the results will be exemplary pre- sented. The results will be discussed with respect to temporal variations in the swarm activity (the swarm consists of eight distinct sub-episodes) and already existing focal mechanisms.

  7. The effect of Earth's oblateness on the seismic moment estimation from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Dai, Chunli; Guo, Junyi; Shang, Kun; Shum, C. K.; Wang, Rongjiang

    2018-05-01

    Over the last decade, satellite gravimetry, as a new class of geodetic sensors, has been increasingly studied for its use in improving source model inversion for large undersea earthquakes. When these satellite-observed gravity change data are used to estimate source parameters such as seismic moment, the forward modelling of earthquake seismic deformation is crucial because imperfect modelling could lead to errors in the resolved source parameters. Here, we discuss several modelling issues and focus on one modelling deficiency resulting from the upward continuation of gravity change considering the Earth's oblateness, which is ignored in contemporary studies. For the low degree (degree 60) time-variable gravity solutions from Gravity Recovery and Climate Experiment mission data, the model-predicted gravity change would be overestimated by 9 per cent for the 2011 Tohoku earthquake, and about 6 per cent for the 2010 Maule earthquake. For high degree gravity solutions, the model-predicted gravity change at degree 240 would be overestimated by 30 per cent for the 2011 Tohoku earthquake, resulting in the seismic moment to be systematically underestimated by 30 per cent.

  8. A New Network-Based Approach for the Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Alessandro, C.; Zollo, A.; Colombelli, S.; Elia, L.

    2017-12-01

    Here we propose a new method which allows for issuing an early warning based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The system includes the techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. For stations providing high quality data, the characteristic P-wave period (τc) and the P-wave displacement, velocity and acceleration amplitudes (Pd, Pv and Pa) are jointly measured on a progressively expanded P-wave time window. The evolutionary estimate of these parameters at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (IMM) and by interpolating the measured and predicted P-wave amplitude at a dense spatial grid, including the nodes of the accelerometer/velocimeter array deployed in the earthquake source area. Depending of the network density and spatial source coverage, this method naturally accounts for effects related to the earthquake rupture extent (e.g. source directivity) and spatial variability of strong ground motion related to crustal wave propagation and site amplification. We have tested this system by a retrospective analysis of three earthquakes: 2016 Italy 6.5 Mw, 2008 Iwate-Miyagi 6.9 Mw and 2011 Tohoku 9.0 Mw. Source parameters characterization are stable and reliable, also the intensity map shows extended source effects consistent with kinematic fracture models of evets.

  9. Earthquake damage orientation to infer seismic parameters in archaeological sites and historical earthquakes

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel

    2018-01-01

    Studies to provide information concerning seismic parameters and seismic sources of historical and archaeological seismic events are used to better evaluate the seismic hazard of a region. This is of especial interest when no surface rupture is recorded or the seismogenic fault cannot be identified. The orientation pattern of the earthquake damage (ED) (e.g., fallen columns, dropped key stones) that affected architectonic elements of cities after earthquakes has been traditionally used in historical and archaeoseismological studies to infer seismic parameters. However, in the literature depending on the authors, the parameters that can be obtained are contradictory (it has been proposed: the epicenter location, the orientation of the P-waves, the orientation of the compressional strain and the fault kinematics) and authors even question these relations with the earthquake damage. The earthquakes of Lorca in 2011, Christchurch in 2011 and Emilia Romagna in 2012 present an opportunity to measure systematically a large number and wide variety of earthquake damage in historical buildings (the same structures that are used in historical and archaeological studies). The damage pattern orientation has been compared with modern instrumental data, which is not possible in historical and archaeoseismological studies. From measurements and quantification of the orientation patterns in the studied earthquakes, it is observed that there is a systematic pattern of the earthquake damage orientation (EDO) in the proximity of the seismic source (fault trace) (<10 km). The EDO in these earthquakes is normal to the fault trend (±15°). This orientation can be generated by a pulse of motion that in the near fault region has a distinguishable acceleration normal to the fault due to the polarization of the S-waves. Therefore, the earthquake damage orientation could be used to estimate the seismogenic fault trend of historical earthquakes studies where no instrumental data are available.

  10. Shallow seismic source parameter determination using intermediate-period surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.

    2012-09-01

    Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can be improved by the application of this methodology.

  11. The August 2011 Virginia and Colorado Earthquake Sequences: Does Stress Drop Depend on Strain Rate?

    NASA Astrophysics Data System (ADS)

    Abercrombie, R. E.; Viegas, G.

    2011-12-01

    Our preliminary analysis of the August 2011 Virginia earthquake sequence finds the earthquakes to have high stress drops, similar to those of recent earthquakes in NE USA, while those of the August 2011 Trinidad, Colorado, earthquakes are moderate - in between those typical of interplate (California) and the east coast. These earthquakes provide an unprecedented opportunity to study such source differences in detail, and hence improve our estimates of seismic hazard. Previously, the lack of well-recorded earthquakes in the eastern USA severely limited our resolution of the source processes and hence the expected ground accelerations. Our preliminary findings are consistent with the idea that earthquake faults strengthen during longer recurrence times and intraplate faults fail at higher stress (and produce higher ground accelerations) than their interplate counterparts. We use the empirical Green's function (EGF) method to calculate source parameters for the Virginia mainshock and three larger aftershocks, and for the Trinidad mainshock and two larger foreshocks using IRIS-available stations. We select time windows around the direct P and S waves at the closest stations and calculate spectral ratios and source time functions using the multi-taper spectral approach (eg. Viegas et al., JGR 2010). Our preliminary results show that the Virginia sequence has high stress drops (~100-200 MPa, using Madariaga (1976) model), and the Colorado sequence has moderate stress drops (~20 MPa). These numbers are consistent with previous work in the regions, for example the Au Sable Forks (2002) earthquake, and the 2010 Germantown (MD) earthquake. We also calculate the radiated seismic energy and find the energy/moment ratio to be high for the Virginia earthquakes, and moderate for the Colorado sequence. We observe no evidence of a breakdown in constant stress drop scaling in this limited number of earthquakes. We extend our analysis to a larger number of earthquakes and stations. We calculate uncertainties in all our measurements, and also consider carefully the effects of variation in available bandwidth in order to improve our constraints on the source parameters.

  12. Analysis of the similar epicenter earthquakes on 22 January 2013 and 01 June 2013, Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    Toni, Mostafa; Barth, Andreas; Ali, Sherif M.; Wenzel, Friedemann

    2016-09-01

    On 22 January 2013 an earthquake with local magnitude ML 4.1 occurred in the central part of the Gulf of Suez. Six months later on 1 June 2013 another earthquake with local magnitude ML 5.1 took place at the same epicenter and different depths. These two perceptible events were recorded and localized by the Egyptian National Seismological Network (ENSN) and additional networks in the region. The purpose of this study is to determine focal mechanisms and source parameters of both earthquakes to analyze their tectonic relation. We determine the focal mechanisms by applying moment tensor inversion and first motion analysis of P- and S-waves. Both sources reveal oblique focal mechanisms with normal faulting and strike-slip components on differently oriented faults. The source mechanism of the larger event on 1 June in combination with the location of aftershock sequence indicates a left-lateral slip on N-S striking fault structure in 21 km depth that is in conformity with the NE-SW extensional Shmin (orientation of minimum horizontal compressional stress) and the local fault pattern. On the other hand, the smaller earthquake on 22 January with a shallower hypocenter in 16 km depth seems to have happened on a NE-SW striking fault plane sub-parallel to Shmin. Thus, here an energy release on a transfer fault connecting dominant rift-parallel structures might have resulted in a stress transfer, triggering the later ML 5.1 earthquake. Following Brune's model and using displacement spectra, we calculate the dynamic source parameters for the two events. The estimated source parameters for the 22 January 2013 and 1 June 2013 earthquakes are fault length (470 and 830 m), stress drop (1.40 and 2.13 MPa), and seismic moment (5.47E+21 and 6.30E+22 dyn cm) corresponding to moment magnitudes of MW 3.8 and 4.6, respectively.

  13. On The Computation Of The Best-fit Okada-type Tsunami Source

    NASA Astrophysics Data System (ADS)

    Miranda, J. M. A.; Luis, J. M. F.; Baptista, M. A.

    2017-12-01

    The forward simulation of earthquake-induced tsunamis usually assumes that the initial sea surface elevation mimics the co-seismic deformation of the ocean bottom described by a simple "Okada-type" source (rectangular fault with constant slip in a homogeneous elastic half space). This approach is highly effective, in particular in far-field conditions. With this assumption, and a given set of tsunami waveforms recorded by deep sea pressure sensors and (or) coastal tide stations it is possible to deduce the set of parameters of the Okada-type solution that best fits a set of sea level observations. To do this, we build a "space of possible tsunami sources-solution space". Each solution consists of a combination of parameters: earthquake magnitude, length, width, slip, depth and angles - strike, rake, and dip. To constrain the number of possible solutions we use the earthquake parameters defined by seismology and establish a range of possible values for each parameter. We select the "best Okada source" by comparison of the results of direct tsunami modeling using the solution space of tsunami sources. However, direct tsunami modeling is a time-consuming process for the whole solution space. To overcome this problem, we use a precomputed database of Empirical Green Functions to compute the tsunami waveforms resulting from unit water sources and search which one best matches the observations. In this study, we use as a test case the Solomon Islands tsunami of 6 February 2013 caused by a magnitude 8.0 earthquake. The "best Okada" source is the solution that best matches the tsunami recorded at six DART stations in the area. We discuss the differences between the initial seismic solution and the final one obtained from tsunami data This publication received funding of FCT-project UID/GEO/50019/2013-Instituto Dom Luiz.

  14. Variable anelastic attenuation and site effect in estimating source parameters of various major earthquakes including M w 7.8 Nepal and M w 7.5 Hindu kush earthquake by using far-field strong-motion data

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kumar, Parveen; Chauhan, Vishal; Hazarika, Devajit

    2017-10-01

    Strong-motion records of recent Gorkha Nepal earthquake ( M w 7.8), its strong aftershocks and seismic events of Hindu kush region have been analysed for estimation of source parameters. The M w 7.8 Gorkha Nepal earthquake of 25 April 2015 and its six aftershocks of magnitude range 5.3-7.3 are recorded at Multi-Parametric Geophysical Observatory, Ghuttu, Garhwal Himalaya (India) >600 km west from the epicentre of main shock of Gorkha earthquake. The acceleration data of eight earthquakes occurred in the Hindu kush region also recorded at this observatory which is located >1000 km east from the epicentre of M w 7.5 Hindu kush earthquake on 26 October 2015. The shear wave spectra of acceleration record are corrected for the possible effects of anelastic attenuation at both source and recording site as well as for site amplification. The strong-motion data of six local earthquakes are used to estimate the site amplification and the shear wave quality factor ( Q β) at recording site. The frequency-dependent Q β( f) = 124 f 0.98 is computed at Ghuttu station by using inversion technique. The corrected spectrum is compared with theoretical spectrum obtained from Brune's circular model for the horizontal components using grid search algorithm. Computed seismic moment, stress drop and source radius of the earthquakes used in this work range 8.20 × 1016-5.72 × 1020 Nm, 7.1-50.6 bars and 3.55-36.70 km, respectively. The results match with the available values obtained by other agencies.

  15. On the scale dependence of earthquake stress drop

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Tinti, Elisa; Cirella, Antonella

    2016-10-01

    We discuss the debated issue of scale dependence in earthquake source mechanics with the goal of providing supporting evidence to foster the adoption of a coherent interpretative framework. We examine the heterogeneous distribution of source and constitutive parameters during individual ruptures and their scaling with earthquake size. We discuss evidence that slip, slip-weakening distance and breakdown work scale with seismic moment and are interpreted as scale dependent parameters. We integrate our estimates of earthquake stress drop, computed through a pseudo-dynamic approach, with many others available in the literature for both point sources and finite fault models. We obtain a picture of the earthquake stress drop scaling with seismic moment over an exceptional broad range of earthquake sizes (-8 < MW < 9). Our results confirm that stress drop values are scattered over three order of magnitude and emphasize the lack of corroborating evidence that stress drop scales with seismic moment. We discuss these results in terms of scale invariance of stress drop with source dimension to analyse the interpretation of this outcome in terms of self-similarity. Geophysicists are presently unable to provide physical explanations of dynamic self-similarity relying on deterministic descriptions of micro-scale processes. We conclude that the interpretation of the self-similar behaviour of stress drop scaling is strongly model dependent. We emphasize that it relies on a geometric description of source heterogeneity through the statistical properties of initial stress or fault-surface topography, in which only the latter is constrained by observations.

  16. Source parameters and moment tensor of the ML 4.6 earthquake of November 19, 2011, southwest Sharm El-Sheikh, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Gad-Elkareem Abdrabou; Omar, Khaled

    2014-06-01

    The southern part of the Gulf of Suez is one of the most seismically active areas in Egypt. On Saturday November 19, 2011 at 07:12:15 (GMT) an earthquake of ML 4.6 occurred in southwest Sharm El-Sheikh, Egypt. The quake has been felt at Sharm El-Sheikh city while no casualties were reported. The instrumental epicenter is located at 27.69°N and 34.06°E. Seismic moment is 1.47 E+22 dyne cm, corresponding to a moment magnitude Mw 4.1. Following a Brune model, the source radius is 101.36 m with an average dislocation of 0.015 cm and a 0.06 MPa stress drop. The source mechanism from a fault plane solution shows a normal fault, the actual fault plane is strike 358, dip 34 and rake -60, the computer code ISOLA is used. Twenty seven small and micro earthquakes (1.5 ⩽ ML ⩽ 4.2) were also recorded by the Egyptian National Seismological Network (ENSN) from the same region. We estimate the source parameters for these earthquakes using displacement spectra. The obtained source parameters include seismic moments of 2.77E+16-1.47E+22 dyne cm, stress drops of 0.0005-0.0617 MPa and relative displacement of 0.0001-0.0152 cm.

  17. Seismic Source Scaling and Discrimination in Diverse Tectonic Environments

    DTIC Science & Technology

    2009-09-30

    3349-3352. Imanishi, K., W. L. Ellsworth, and S. G. Prejean (2004). Earthquake source parameters determined by the SAFOD Pilot Hole seismic array ... seismic discrimination by performing a thorough investigation of* earthquake source scaling using diverse, high-quality datascts from varied tectonic...these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity

  18. Anomalies of rupture velocity in deep earthquakes

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Yagi, Y.

    2010-12-01

    Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth variation of deep seismicity: it peaks between about 530 and 600 km, where the fast rupture earthquakes (greater than 0.7Vs) are observed. Similarly, aftershock productivity is particularly low from 300 to 550 km depth and increases markedly at depth greater than 550 km [e.g., Persh and Houston, 2004]. We propose that large fracture surface energy (Gc) value for deep earthquakes generally prevent the acceleration of dynamic rupture propagation and generation of earthquakes between 300 and 700 km depth, whereas small Gc value in the exceptional depth range promote dynamic rupture propagation and explain the seismicity peak near 600 km.

  19. Hazard assessment of long-period ground motions for the Nankai Trough earthquakes

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.

    2013-12-01

    We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and 100 m in horizontal and vertical, respectively. The grid spacing for the deep region is three times coarser. The total number of grid points is about three billion. The 3-D underground structure model used in the FD simulation is the Japan integrated velocity structure model (ERC, 2012). Our simulation is valid for period more than two seconds due to the lowest S-wave velocity and grid spacing. However, because the characterized source model may not sufficiently support short period components, we should be interpreted the reliable period of this simulation with caution. Therefore, we consider the period more than five seconds instead of two seconds for further analysis. We evaluate the long-period ground motions using the velocity response spectra for the period range between five and 20 second. The preliminary simulation shows a large variation of response spectra at a site. This large variation implies that the ground motion is very sensitive to different scenarios. And it requires studying the large variation to understand the seismic hazard. Our further study will obtain the hazard curves for the Nankai Trough earthquake (M 8~9) by applying the probabilistic seismic hazard analysis to the simulation results.

  20. Spatial and Temporal Evolution of Earthquake Dynamics: Case Study of the Mw 8.3 Illapel Earthquake, Chile

    NASA Astrophysics Data System (ADS)

    Yin, Jiuxun; Denolle, Marine A.; Yao, Huajian

    2018-01-01

    We develop a methodology that combines compressive sensing backprojection (CS-BP) and source spectral analysis of teleseismic P waves to provide metrics relevant to earthquake dynamics of large events. We improve the CS-BP method by an autoadaptive source grid refinement as well as a reference source adjustment technique to gain better spatial and temporal resolution of the locations of the radiated bursts. We also use a two-step source spectral analysis based on (i) simple theoretical Green's functions that include depth phases and water reverberations and on (ii) empirical P wave Green's functions. Furthermore, we propose a source spectrogram methodology that provides the temporal evolution of dynamic parameters such as radiated energy and falloff rates. Bridging backprojection and spectrogram analysis provides a spatial and temporal evolution of these dynamic source parameters. We apply our technique to the recent 2015 Mw 8.3 megathrust Illapel earthquake (Chile). The results from both techniques are consistent and reveal a depth-varying seismic radiation that is also found in other megathrust earthquakes. The low-frequency content of the seismic radiation is located in the shallow part of the megathrust, propagating unilaterally from the hypocenter toward the trench while most of the high-frequency content comes from the downdip part of the fault. Interpretation of multiple rupture stages in the radiation is also supported by the temporal variations of radiated energy and falloff rates. Finally, we discuss the possible mechanisms, either from prestress, fault geometry, and/or frictional properties to explain our observables. Our methodology is an attempt to bridge kinematic observations with earthquake dynamics.

  1. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  2. Facilitating open global data use in earthquake source modelling to improve geodetic and seismological approaches

    NASA Astrophysics Data System (ADS)

    Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Isken, Marius; Vasyura-Bathke, Hannes

    2017-04-01

    In the last few years impressive achievements have been made in improving inferences about earthquake sources by using InSAR (Interferometric Synthetic Aperture Radar) data. Several factors aided these developments. The open data basis of earthquake observations has expanded vastly with the two powerful Sentinel-1 SAR sensors up in space. Increasing computer power allows processing of large data sets for more detailed source models. Moreover, data inversion approaches for earthquake source inferences are becoming more advanced. By now data error propagation is widely implemented and the estimation of model uncertainties is a regular feature of reported optimum earthquake source models. Also, more regularly InSAR-derived surface displacements and seismological waveforms are combined, which requires finite rupture models instead of point-source approximations and layered medium models instead of homogeneous half-spaces. In other words the disciplinary differences in geodetic and seismological earthquake source modelling shrink towards common source-medium descriptions and a source near-field/far-field data point of view. We explore and facilitate the combination of InSAR-derived near-field static surface displacement maps and dynamic far-field seismological waveform data for global earthquake source inferences. We join in the community efforts with the particular goal to improve crustal earthquake source inferences in generally not well instrumented areas, where often only the global backbone observations of earthquakes are available provided by seismological broadband sensor networks and, since recently, by Sentinel-1 SAR acquisitions. We present our work on modelling standards for the combination of static and dynamic surface displacements in the source's near-field and far-field, e.g. on data and prediction error estimations as well as model uncertainty estimation. Rectangular dislocations and moment-tensor point sources are exchanged by simple planar finite rupture models. 1d-layered medium models are implemented for both near- and far-field data predictions. A highlight of our approach is a weak dependence on earthquake bulletin information: hypocenter locations and source origin times are relatively free source model parameters. We present this harmonized source modelling environment based on example earthquake studies, e.g. the 2010 Haiti earthquake, the 2009 L'Aquila earthquake and others. We discuss the benefit of combined-data non-linear modelling on the resolution of first-order rupture parameters, e.g. location, size, orientation, mechanism, moment/slip and rupture propagation. The presented studies apply our newly developed software tools which build up on the open-source seismological software toolbox pyrocko (www.pyrocko.org) in the form of modules. We aim to facilitate a better exploitation of open global data sets for a wide community studying tectonics, but the tools are applicable also for a large range of regional to local earthquake studies. Our developments therefore ensure a large flexibility in the parametrization of medium models (e.g. 1d to 3d medium models), source models (e.g. explosion sources, full moment tensor sources, heterogeneous slip models, etc) and of the predicted data (e.g. (high-rate) GPS, strong motion, tilt). This work is conducted within the project "Bridging Geodesy and Seismology" (www.bridges.uni-kiel.de) funded by the German Research Foundation DFG through an Emmy-Noether grant.

  3. SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, R E; Mayeda, K; Walter, W R

    2008-07-08

    The objectives of this study are to improve low-magnitude (concentrating on M2.5-5) regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge at small magnitudes (i.e., m{sub b}more » < {approx} 4.0) is poorly resolved, and source scaling remains a subject of on-going debate in the earthquake seismology community. Recently there have been a number of empirical studies suggesting scaling of micro-earthquakes is non-self-similar, yet there are an equal number of compelling studies that would suggest otherwise. It is not clear whether different studies obtain different results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods that both make use of empirical Green's function (EGF) earthquakes to remove path effects. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But finding well recorded earthquakes with 'perfect' EGF events for direct wave analysis is difficult, limits the number of earthquakes that can be studied. We begin with closely-located, well-correlated earthquakes. We use a multi-taper method to obtain time-domain source-time-functions by frequency division. We only accept an earthquake and EGF pair if they are able to produce a clear, time-domain source pulse. We fit the spectral ratios and perform a grid-search about the preferred parameters to ensure the fits are well constrained. We then model the spectral (amplitude) ratio to determine source parameters from both direct P and S waves. We analyze three clusters of aftershocks from the well-recorded sequence following the M5 Au Sable Forks, NY, earthquake to obtain some of the first accurate source parameters for small earthquakes in eastern North America. Each cluster contains a M{approx}2, and two contain M{approx}3, as well as smaller aftershocks. We find that the corner frequencies and stress drops are high (averaging 100 MPa) confirming previous work suggesting that intraplate continental earthquakes have higher stress drops than events at plate boundaries. We also demonstrate that a scaling breakdown suggested by earlier work is simply an artifact of their more band-limited data. We calculate radiated energy, and find that the ratio of Energy to seismic Moment is also high, around 10{sup -4}. We estimate source parameters for the M5 mainshock using similar methods, but our results are more doubtful because we do not have a EGF event that meets our preferred criteria. The stress drop and energy/moment ratio for the mainshock are slightly higher than for the aftershocks. Our improved, and simplified coda wave analysis method uses spectral ratios (as for the direct waves) but relies on the averaging nature of the coda waves to use EGF events that do not meet the strict criteria of similarity required for the direct wave analysis. We have applied the coda wave spectral ratio method to the 1999 Hector Mine mainshock (M{sub w} 7.0, Mojave Desert) and its larger aftershocks, and also to several sequences in Italy with M{approx}6 mainshocks. The Italian earthquakes have higher stress drops than the Hector Mine sequence, but lower than Au Sable Forks. These results show a departure from self-similarity, consistent with previous studies using similar regional datasets. The larger earthquakes have higher stress drops and energy/moment ratios. We perform a preliminary comparison of the two methods using the M5 Au Sable Forks earthquake. Both methods give very consistent results, and we are applying the comparison to further events.« less

  4. Source parameters controlling the generation and propagation of potential local tsunamis along the cascadia margin

    USGS Publications Warehouse

    Geist, E.; Yoshioka, S.

    1996-01-01

    The largest uncertainty in assessing hazards from local tsunamis along the Cascadia margin is estimating the possible earthquake source parameters. We investigate which source parameters exert the largest influence on tsunami generation and determine how each parameter affects the amplitude of the local tsunami. The following source parameters were analyzed: (1) type of faulting characteristic of the Cascadia subduction zone, (2) amount of slip during rupture, (3) slip orientation, (4) duration of rupture, (5) physical properties of the accretionary wedge, and (6) influence of secondary faulting. The effect of each of these source parameters on the quasi-static displacement of the ocean floor is determined by using elastic three-dimensional, finite-element models. The propagation of the resulting tsunami is modeled both near the coastline using the two-dimensional (x-t) Peregrine equations that includes the effects of dispersion and near the source using the three-dimensional (x-y-t) linear long-wave equations. The source parameters that have the largest influence on local tsunami excitation are the shallowness of rupture and the amount of slip. In addition, the orientation of slip has a large effect on the directivity of the tsunami, especially for shallow dipping faults, which consequently has a direct influence on the length of coastline inundated by the tsunami. Duration of rupture, physical properties of the accretionary wedge, and secondary faulting all affect the excitation of tsunamis but to a lesser extent than the shallowness of rupture and the amount and orientation of slip. Assessment of the severity of the local tsunami hazard should take into account that relatively large tsunamis can be generated from anomalous 'tsunami earthquakes' that rupture within the accretionary wedge in comparison to interplate thrust earthquakes of similar magnitude. ?? 1996 Kluwer Academic Publishers.

  5. Rapid earthquake hazard and loss assessment for Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Erdik, Mustafa; Sesetyan, Karin; Demircioglu, Mine; Hancilar, Ufuk; Zulfikar, Can; Cakti, Eser; Kamer, Yaver; Yenidogan, Cem; Tuzun, Cuneyt; Cagnan, Zehra; Harmandar, Ebru

    2010-10-01

    The almost-real time estimation of ground shaking and losses after a major earthquake in the Euro-Mediterranean region was performed in the framework of the Joint Research Activity 3 (JRA-3) component of the EU FP6 Project entitled "Network of Research Infra-structures for European Seismology, NERIES". This project consists of finding the most likely location of the earthquake source by estimating the fault rupture parameters on the basis of rapid inversion of data from on-line regional broadband stations. It also includes an estimation of the spatial distribution of selected site-specific ground motion parameters at engineering bedrock through region-specific ground motion prediction equations (GMPEs) or physical simulation of ground motion. By using the Earthquake Loss Estimation Routine (ELER) software, the multi-level methodology developed for real time estimation of losses is capable of incorporating regional variability and sources of uncertainty stemming from GMPEs, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships.

  6. A Poisson method application to the assessment of the earthquake hazard in the North Anatolian Fault Zone, Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Türker, Tuğba, E-mail: tturker@ktu.edu.tr; Bayrak, Yusuf, E-mail: ybayrak@agri.edu.tr

    North Anatolian Fault (NAF) is one from the most important strike-slip fault zones in the world and located among regions in the highest seismic activity. The NAFZ observed very large earthquakes from the past to present. The aim of this study; the important parameters of Gutenberg-Richter relationship (a and b values) estimated and this parameters taking into account, earthquakes were examined in the between years 1900-2015 for 10 different seismic source regions in the NAFZ. After that estimated occurrence probabilities and return periods of occurring earthquakes in fault zone in the next years, and is being assessed with Poisson methodmore » the earthquake hazard of the NAFZ. The Region 2 were observed the largest earthquakes for the only historical period and hasn’t been observed large earthquake for the instrumental period in this region. Two historical earthquakes (1766, M{sub S}=7.3 and 1897, M{sub S}=7.0) are included for Region 2 (Marmara Region) where a large earthquake is expected in the next years. The 10 different seismic source regions are determined the relationships between the cumulative number-magnitude which estimated a and b parameters with the equation of LogN=a-bM in the Gutenberg-Richter. A homogenous earthquake catalog for M{sub S} magnitude which is equal or larger than 4.0 is used for the time period between 1900 and 2015. The database of catalog used in the study has been created from International Seismological Center (ISC) and Boğazici University Kandilli observation and earthquake research institute (KOERI). The earthquake data were obtained until from 1900 to 1974 from KOERI and ISC until from 1974 to 2015 from KOERI. The probabilities of the earthquake occurring are estimated for the next 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 years in the 10 different seismic source regions. The highest earthquake occur probabilities in 10 different seismic source regions in the next years estimated that the region Tokat-Erzincan (Region 9) %99 with an earthquake occur probability for magnitude 6.5 which the return period 24.7 year, %92 with an earthquake occur probability for magnitude 7 which the return period 39.1 year, %80 with an earthquake occur probability for magnitude 7.5 which the return period 62.1 year, %64 with an earthquake occur probability for magnitude 8 which the return period 98.5 year. For the Marmara Region (Region 2) in the next 100 year estimated that %89 with an earthquake occur probability for magnitude 6 which the return period 44.9 year, %45 with an earthquake occur probability for magnitude 6.5 which the return period 87 year, %45 with an earthquake occur probability for magnitude 7 which the return period 168.6 year.« less

  7. Earthquake source properties from pseudotachylite

    USGS Publications Warehouse

    Beeler, Nicholas M.; Di Toro, Giulio; Nielsen, Stefan

    2016-01-01

    The motions radiated from an earthquake contain information that can be interpreted as displacements within the source and therefore related to stress drop. Except in a few notable cases, the source displacements can neither be easily related to the absolute stress level or fault strength, nor attributed to a particular physical mechanism. In contrast paleo-earthquakes recorded by exhumed pseudotachylite have a known dynamic mechanism whose properties constrain the co-seismic fault strength. Pseudotachylite can also be used to directly address a longstanding discrepancy between seismologically measured static stress drops, which are typically a few MPa, and much larger dynamic stress drops expected from thermal weakening during localized slip at seismic speeds in crystalline rock [Sibson, 1973; McKenzie and Brune, 1969; Lachenbruch, 1980; Mase and Smith, 1986; Rice, 2006] as have been observed recently in laboratory experiments at high slip rates [Di Toro et al., 2006a]. This note places pseudotachylite-derived estimates of fault strength and inferred stress levels within the context and broader bounds of naturally observed earthquake source parameters: apparent stress, stress drop, and overshoot, including consideration of roughness of the fault surface, off-fault damage, fracture energy, and the 'strength excess'. The analysis, which assumes stress drop is related to corner frequency by the Madariaga [1976] source model, is restricted to the intermediate sized earthquakes of the Gole Larghe fault zone in the Italian Alps where the dynamic shear strength is well-constrained by field and laboratory measurements. We find that radiated energy exceeds the shear-generated heat and that the maximum strength excess is ~16 MPa. More generally these events have inferred earthquake source parameters that are rate, for instance a few percent of the global earthquake population has stress drops as large, unless: fracture energy is routinely greater than existing models allow, pseudotachylite is not representative of the shear strength during the earthquake that generated it, or unless the strength excess is larger than we have allowed.

  8. Repeated Earthquakes in the Vrancea Subcrustal Source and Source Scaling

    NASA Astrophysics Data System (ADS)

    Popescu, Emilia; Otilia Placinta, Anica; Borleasnu, Felix; Radulian, Mircea

    2017-12-01

    The Vrancea seismic nest, located at the South-Eastern Carpathians Arc bend, in Romania, is a well-confined cluster of seismicity at intermediate depth (60 - 180 km). During the last 100 years four major shocks were recorded in the lithosphere body descending almost vertically beneath the Vrancea region: 10 November 1940 (Mw 7.7, depth 150 km), 4 March 1977 (Mw 7.4, depth 94 km), 30 August 1986 (Mw 7.1, depth 131 km) and a double shock on 30 and 31 May 1990 (Mw 6.9, depth 91 km and Mw 6.4, depth 87 km, respectively). The probability of repeated earthquakes in the Vrancea seismogenic volume is relatively large taking into account the high density of foci. The purpose of the present paper is to investigate source parameters and clustering properties for the repetitive earthquakes (located close each other) recorded in the Vrancea seismogenic subcrustal region. To this aim, we selected a set of earthquakes as templates for different co-located groups of events covering the entire depth range of active seismicity. For the identified clusters of repetitive earthquakes, we applied spectral ratios technique and empirical Green’s function deconvolution, in order to constrain as much as possible source parameters. Seismicity patterns of repeated earthquakes in space, time and size are investigated in order to detect potential interconnections with larger events. Specific scaling properties are analyzed as well. The present analysis represents a first attempt to provide a strategy for detecting and monitoring possible interconnections between different nodes of seismic activity and their role in modelling tectonic processes responsible for generating the major earthquakes in the Vrancea subcrustal seismogenic source.

  9. Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves

    NASA Astrophysics Data System (ADS)

    Monsalve-Jaramillo, Hugo; Valencia-Mina, William; Cano-Saldaña, Leonardo; Vargas, Carlos A.

    2018-05-01

    Source parameters of four earthquakes located within the Wadati-Benioff zone of the Nazca plate subducting beneath the South American plate in Colombia were determined. The seismic moments for these events were recalculated and their approximate equivalent rupture area, slip distribution and stress drop were estimated. The source parameters for these earthquakes were obtained by deconvolving multiple events through teleseismic analysis of body waves recorded in long period stations and with simultaneous inversion of P and SH waves. The calculated source time functions for these events showed different stages that suggest that these earthquakes can reasonably be thought of being composed of two subevents. Even though two of the overall focal mechanisms obtained yielded similar results to those reported by the CMT catalogue, the two other mechanisms showed a clear difference compared to those officially reported. Despite this, it appropriate to mention that the mechanisms inverted in this work agree well with the expected orientation of faulting at that depth as well as with the wave forms they are expected to produce. In some of the solutions achieved, one of the two subevents exhibited a focal mechanism considerably different from the total earthquake mechanism; this could be interpreted as the result of a slight deviation from the overall motion due the complex stress field as well as the possibility of a combination of different sources of energy release analogous to the ones that may occur in deeper earthquakes. In those cases, the subevents with very different focal mechanism compared to the total earthquake mechanism had little contribution to the final solution and thus little contribution to the total amount of energy released.

  10. Optimization of the Number and Location of Tsunami Stations in a Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    An, C.; Liu, P. L. F.; Pritchard, M. E.

    2014-12-01

    Optimizing the number and location of tsunami stations in designing a tsunami warning system is an important and practical problem. It is always desirable to maximize the capability of the data obtained from the stations for constraining the earthquake source parameters, and to minimize the number of stations at the same time. During the 2011 Tohoku tsunami event, 28 coastal gauges and DART buoys in the near-field recorded tsunami waves, providing an opportunity for assessing the effectiveness of those stations in identifying the earthquake source parameters. Assuming a single-plane fault geometry, inversions of tsunami data from combinations of various number (1~28) of stations and locations are conducted and evaluated their effectiveness according to the residues of the inverse method. Results show that the optimized locations of stations depend on the number of stations used. If the stations are optimally located, 2~4 stations are sufficient to constrain the source parameters. Regarding the optimized location, stations must be uniformly spread in all directions, which is not surprising. It is also found that stations within the source region generally give worse constraint of earthquake source than stations farther from source, which is due to the exaggeration of model error in matching large amplitude waves at near-source stations. Quantitative discussions on these findings will be given in the presentation. Applying similar analysis to the Manila Trench based on artificial scenarios of earthquakes and tsunamis, the optimal location of tsunami stations are obtained, which provides guidance of deploying a tsunami warning system in this region.

  11. Source parameters and rupture velocities of microearthquakes in western Nagano, Japan, determined using stopping phases

    USGS Publications Warehouse

    Imanishi, K.; Takeo, M.; Ellsworth, W.L.; Ito, H.; Matsuzawa, T.; Kuwahara, Y.; Iio, Y.; Horiuchi, S.; Ohmi, S.

    2004-01-01

    We use an inversion method based on stopping phases (Imanishi and Takeo, 2002) to estimate the source dimension, ellipticity, and rupture velocity of microearthquakes and investigate the scaling relationships between source parameters. We studied 25 earthquakes, ranging in size from M 1.3 to M 2.7, that occurred between May and August 1999 at the western Nagano prefecture, Japan, which is characterized by a high rate of shallow earthquakes. The data consist of seismograms recorded in an 800-m borehole and at 46 surface and 2 shallow borehole seismic stations whose spacing is a few kilometers. These data were recorded with a sampling frequency of 10 kHz. In particular, the 800-m-borehole data provide a wide frequency bandwidth with greatly reduced ground noise and coda wave amplitudes compared with surface recordings. High-frequency stopping phases appear in the body waves in Hilbert transform pairs and are readily detected on seismograms recorded in the 800-m borehole. After correcting both borehole and surface data for attenuation, we also measure the rise time, which is defined as the interval from the arrival time of the direct wave to the timing of the maximum amplitude in the displacement pulse. The differential time of the stopping phases and the rise times were used to obtain source parameters. We found that several microearthquakes propagated unilaterally, suggesting that all microearthquakes cannot be modeled as a simple circular crack model. Static stress drops range from approximately 0.1 to 2 MPa and do not vary with seismic moment. It seems that the breakdown in stress drop scaling seen in previous studies using surface data is simply an artifact of attenuation in the crust. The average value of rupture velocity does not depend on earthquake size and is similar to those reported for moderate and large earthquakes. It is likely that earthquakes are self-similar over a wide range of earthquake size and that the dynamics of small and large earthquakes are similar.

  12. Broadband Ground Motion Synthesis of the 1999 Turkey Earthquakes Based On: 3-D Velocity Inversion, Finite Difference Calculations and Emprical Greens Functions

    NASA Astrophysics Data System (ADS)

    Gok, R.; Kalafat, D.; Hutchings, L.

    2003-12-01

    We analyze over 3,500 aftershocks recorded by several seismic networks during the 1999 Marmara, Turkey earthquakes. The analysis provides source parameters of the aftershocks, a three-dimensional velocity structure from tomographic inversion, an input three-dimensional velocity model for a finite difference wave propagation code (E3D, Larsen 1998), and records available for use as empirical Green's functions. Ultimately our goal is to model the 1999 earthquakes from DC to 25 Hz and study fault rupture mechanics and kinematic rupture models. We performed the simultaneous inversion for hypocenter locations and three-dimensional P- and S- wave velocity structure of Marmara Region using SIMULPS14 along with 2,500 events with more than eight P- readings and an azimuthal gap of less than 180\\deg. The resolution of calculated velocity structure is better in the eastern Marmara than the western Marmara region due to the dense ray coverage. We used the obtained velocity structure as input into the finite difference algorithm and validated the model by using M < 4 earthquakes as point sources and matching long period waveforms (f < 0.5 Hz). We also obtained Mo, fc and individual station kappa values for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquakes (M < 4.0) to obtain empirical Green's function (EGF) for the higher frequency range of ground motion synthesis (0.5 < f > 25 Hz). We additionally obtained the source scaling relation (energy-moment) of these aftershocks. We have generated several scenarios constrained by a priori knowledge of the Izmit and Duzce rupture parameters to validate our prediction capability.

  13. Earthquake source properties of a shallow induced seismic sequence in SE Brazil

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, Hans; Bianchi, Marcelo; Prieto, Germán. A.; Assumpção, Marcelo

    2017-04-01

    We study source parameters of a cluster of 21 very shallow (<1 km depth) small-magnitude (Mw < 2) earthquakes induced by percolation of water by gravity in SE Brazil. Using a multiple empirical Green's functions (meGf) approach, we estimate seismic moments, corner frequencies, and static stress drops of these events by inversion of their spectral ratios. For the studied magnitude range (-0.3 < Mw < 1.9), we found an increase of stress drop with seismic moment. We assess associated uncertainties by considering different signal time windows and by performing a jackknife resampling of the spectral ratios. We also calculate seismic moments by full waveform inversion to independently validate our moments from spectral analysis. We propose repeated rupture on a fault patch at shallow depth, following continuous inflow of water, as the cause for the observed low absolute stress drop values (<1 MPa) and earthquake size dependency. To our knowledge, no other study on earthquake source properties of shallow events induced by water injection with no added pressure is available in the literature. Our study suggests that source parameter characterization may provide additional information of induced seismicity by hydraulic stimulation.

  14. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    NASA Astrophysics Data System (ADS)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  15. Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Paul, Ajay; Kumar, Arjun; Kumar, Parveen; Sundriyal, Y. P.

    2018-06-01

    Source parameters of the small to moderate earthquakes are significant for understanding the dynamic rupture process, the scaling relations of the earthquakes and for assessment of seismic hazard potential of a region. In this study, the source parameters were determined for 58 small to moderate size earthquakes (3.0 ≤ Mw ≤ 5.0) occurred during 2007-2015 in the Garhwal-Kumaun region. The estimated shear wave quality factor (Qβ(f)) values for each station at different frequencies have been applied to eliminate any bias in the determination of source parameters. The Qβ(f) values have been estimated by using coda wave normalization method in the frequency range 1.5-16 Hz. A frequency-dependent S wave quality factor relation is obtained as Qβ(f) = (152.9 ± 7) f(0.82±0.005) by fitting a power-law frequency dependence model for the estimated values over the whole study region. The spectral (low-frequency spectral level and corner frequency) and source (static stress drop, seismic moment, apparent stress and radiated energy) parameters are obtained assuming ω-2 source model. The displacement spectra are corrected for estimated frequency-dependent attenuation, site effect using spectral decay parameter "Kappa". The frequency resolution limit was resolved by quantifying the bias in corner frequencies, stress drop and radiated energy estimates due to finite-bandwidth effect. The data of the region shows shallow focused earthquakes with low stress drop. The estimation of Zúñiga parameter (ε) suggests the partial stress drop mechanism in the region. The observed low stress drop and apparent stress can be explained by partial stress drop and low effective stress model. Presence of subsurface fluid at seismogenic depth certainly manipulates the dynamics of the region. However, the limited event selection may strongly bias the scaling relation even after taking as much as possible precaution in considering effects of finite bandwidth, attenuation and site corrections. Although, the scaling can be improved further with the integration of large dataset of microearthquakes and use of a stable and robust approach.

  16. Discrepancy between earthquake rates implied by historic earthquakes and a consensus geologic source model for California

    USGS Publications Warehouse

    Petersen, M.D.; Cramer, C.H.; Reichle, M.S.; Frankel, A.D.; Hanks, T.C.

    2000-01-01

    We examine the difference between expected earthquake rates inferred from the historical earthquake catalog and the geologic data that was used to develop the consensus seismic source characterization for the state of California [California Department of Conservation, Division of Mines and Geology (CDMG) and U.S. Geological Survey (USGS) Petersen et al., 1996; Frankel et al., 1996]. On average the historic earthquake catalog and the seismic source model both indicate about one M 6 or greater earthquake per year in the state of California. However, the overall earthquake rates of earthquakes with magnitudes (M) between 6 and 7 in this seismic source model are higher, by at least a factor of 2, than the mean historic earthquake rates for both southern and northern California. The earthquake rate discrepancy results from a seismic source model that includes earthquakes with characteristic (maximum) magnitudes that are primarily between M 6.4 and 7.1. Many of these faults are interpreted to accommodate high strain rates from geologic and geodetic data but have not ruptured in large earthquakes during historic time. Our sensitivity study indicates that the rate differences between magnitudes 6 and 7 can be reduced by adjusting the magnitude-frequency distribution of the source model to reflect more characteristic behavior, by decreasing the moment rate available for seismogenic slip along faults, by increasing the maximum magnitude of the earthquake on a fault, or by decreasing the maximum magnitude of the background seismicity. However, no single parameter can be adjusted, consistent with scientific consensus, to eliminate the earthquake rate discrepancy. Applying a combination of these parametric adjustments yields an alternative earthquake source model that is more compatible with the historic data. The 475-year return period hazard for peak ground and 1-sec spectral acceleration resulting from this alternative source model differs from the hazard resulting from the standard CDMG-USGS model by less than 10% across most of California but is higher (generally about 10% to 30%) within 20 km from some faults.

  17. Determination of source parameters of the 2017 Mount Agung volcanic earthquake from moment-tensor inversion method using local broadband seismic waveforms

    NASA Astrophysics Data System (ADS)

    Madlazim; Prastowo, T.; Supardiyono; Hardy, T.

    2018-03-01

    Monitoring of volcanoes has been an important issue for many purposes, particularly hazard mitigation. With regard to this, the aims of the present work are to estimate and analyse source parameters of a volcanic earthquake driven by recent magmatic events of Mount Agung in Bali island that occurred on September 28, 2017. The broadband seismogram data consisting of 3 local component waveforms were recorded by the IA network of 5 seismic stations: SRBI, DNP, BYJI, JAGI, and TWSI (managed by BMKG). These land-based observatories covered a full 4-quadrant region surrounding the epicenter. The methods used in the present study were seismic moment-tensor inversions, where the data were all analyzed to extract the parameters, namely moment magnitude, type of a volcanic earthquake indicated by percentages of seismic components: compensated linear vector dipole (CLVD), isotropic (ISO), double-couple (DC), and source depth. The results are given in the forms of variance reduction of 65%, a magnitude of M W 3.6, a CLVD of 40%, an ISO of 33%, a DC of 27% and a centroid-depth of 9.7 km. These suggest that the unusual earthquake was dominated by a vertical CLVD component, implying the dominance of uplift motion of magmatic fluid flow inside the volcano.

  18. Probabilistic seismic hazard assessment for northern Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Wang, Y.; Kosuwan, S.; Nguyen, M. L.; Shi, X.; Sieh, K.

    2016-12-01

    We assess seismic hazard for northern Southeast Asia through constructing an earthquake and fault database, conducting a series of ground-shaking scenarios and proposing regional seismic hazard maps. Our earthquake database contains earthquake parameters from global and local seismic catalogues, including the ISC, ISC-GEM, the global ANSS Comprehensive Catalogues, Seismological Bureau, Thai Meteorological Department, Thailand, and Institute of Geophysics Vietnam Academy of Science and Technology, Vietnam. To harmonize the earthquake parameters from various catalogue sources, we remove duplicate events and unify magnitudes into the same scale. Our active fault database include active fault data from previous studies, e.g. the active fault parameters determined by Wang et al. (2014), Department of Mineral Resources, Thailand, and Institute of Geophysics, Vietnam Academy of Science and Technology, Vietnam. Based on the parameters from analysis of the databases (i.e., the Gutenberg-Richter relationship, slip rate, maximum magnitude and time elapsed of last events), we determined the earthquake recurrence models of seismogenic sources. To evaluate the ground shaking behaviours in different tectonic regimes, we conducted a series of tests by matching the felt intensities of historical earthquakes to the modelled ground motions using ground motion prediction equations (GMPEs). By incorporating the best-fitting GMPEs and site conditions, we utilized site effect and assessed probabilistic seismic hazard. The highest seismic hazard is in the region close to the Sagaing Fault, which cuts through some major cities in central Myanmar. The northern segment of Sunda megathrust, which could potentially cause M8-class earthquake, brings significant hazard along the Western Coast of Myanmar and eastern Bangladesh. Besides, we conclude a notable hazard level in northern Vietnam and the boundary between Myanmar, Thailand and Laos, due to a series of strike-slip faults, which could potentially cause moderate-large earthquakes. Note that although much of the region has a low probability of damaging shaking, low-probability events have resulted in much destruction recently in SE Asia (e.g. 2008 Wenchuan, 2015 Sabah earthquakes).

  19. A statistical kinematic source inversion approach based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo

    2014-05-01

    Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.

  20. Real-time earthquake monitoring using a search engine method.

    PubMed

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-04

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake's parameters in <1 s after receiving the long-period surface wave data.

  1. Earthquake Source Parameters Inferred from T-Wave Observations

    NASA Astrophysics Data System (ADS)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.

    2004-12-01

    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T-wave propagation.

  2. Source characterization and dynamic fault modeling of induced seismicity

    NASA Astrophysics Data System (ADS)

    Lui, S. K. Y.; Young, R. P.

    2017-12-01

    In recent years there are increasing concerns worldwide that industrial activities in the sub-surface can cause or trigger damaging earthquakes. In order to effectively mitigate the damaging effects of induced seismicity, the key is to better understand the source physics of induced earthquakes, which still remain elusive at present. Furthermore, an improved understanding of induced earthquake physics is pivotal to assess large-magnitude earthquake triggering. A better quantification of the possible causes of induced earthquakes can be achieved through numerical simulations. The fault model used in this study is governed by the empirically-derived rate-and-state friction laws, featuring a velocity-weakening (VW) patch embedded into a large velocity-strengthening (VS) region. Outside of that, the fault is slipping at the background loading rate. The model is fully dynamic, with all wave effects resolved, and is able to resolve spontaneous long-term slip history on a fault segment at all stages of seismic cycles. An earlier study using this model has established that aseismic slip plays a major role in the triggering of small repeating earthquakes. This study presents a series of cases with earthquakes occurring on faults with different fault frictional properties and fluid-induced stress perturbations. The effects to both the overall seismicity rate and fault slip behavior are investigated, and the causal relationship between the pre-slip pattern prior to the event and the induced source characteristics is discussed. Based on simulation results, the subsequent step is to select specific cases for laboratory experiments which allow well controlled variables and fault parameters. Ultimately, the aim is to provide better constraints on important parameters for induced earthquakes based on numerical modeling and laboratory data, and hence to contribute to a physics-based induced earthquake hazard assessment.

  3. Contrasts between source parameters of M [>=] 5. 5 earthquakes in northern Baja California and southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doser, D.I.

    1993-04-01

    Source parameters determined from the body waveform modeling of large (M [>=] 5.5) historic earthquakes occurring between 1915 and 1956 along the San Jacinto and Imperial fault zones of southern California and the Cerro Prieto, Tres Hermanas and San Miguel fault zones of Baja California have been combined with information from post-1960's events to study regional variations in source parameters. The results suggest that large earthquakes along the relatively young San Miguel and Tres Hermanas fault zones have complex rupture histories, small source dimensions (< 25 km), high stress drops (60 bar average), and a high incidence of foreshock activity.more » This may be a reflection of the rough, highly segmented nature of the young faults. In contrast, Imperial-Cerro Prieto events of similar magnitude have low stress drops (16 bar average) and longer rupture lengths (42 km average), reflecting rupture along older, smoother fault planes. Events along the San Jacinto fault zone appear to lie in between these two groups. These results suggest a relationship between the structural and seismological properties of strike-slip faults that should be considered during seismic risk studies.« less

  4. Coseismic deformation observed with radar interferometry: Great earthquakes and atmospheric noise

    NASA Astrophysics Data System (ADS)

    Scott, Chelsea Phipps

    Spatially dense maps of coseismic deformation derived from Interferometric Synthetic Aperture Radar (InSAR) datasets result in valuable constraints on earthquake processes. The recent increase in the quantity of observations of coseismic deformation facilitates the examination of signals in many tectonic environments associated with earthquakes of varying magnitude. Efforts to place robust constraints on the evolution of the crustal stress field following great earthquakes often rely on knowledge of the earthquake location, the fault geometry, and the distribution of slip along the fault plane. Well-characterized uncertainties and biases strengthen the quality of inferred earthquake source parameters, particularly when the associated ground displacement signals are near the detection limit. Well-preserved geomorphic records of earthquakes offer additional insight into the mechanical behavior of the shallow crust and the kinematics of plate boundary systems. Together, geodetic and geologic observations of crustal deformation offer insight into the processes that drive seismic cycle deformation over a range of timescales. In this thesis, I examine several challenges associated with the inversion of earthquake source parameters from SAR data. Variations in atmospheric humidity, temperature, and pressure at the timing of SAR acquisitions result in spatially correlated phase delays that are challenging to distinguish from signals of real ground deformation. I characterize the impact of atmospheric noise on inferred earthquake source parameters following elevation-dependent atmospheric corrections. I analyze the spatial and temporal variations in the statistics of atmospheric noise from both reanalysis weather models and InSAR data itself. Using statistics that reflect the spatial heterogeneity of atmospheric characteristics, I examine parameter errors for several synthetic cases of fault slip on a basin-bounding normal fault. I show a decrease in uncertainty in fault geometry and kinematics following the application of atmospheric corrections to an event spanned by real InSAR data, the 1992 M5.6 Little Skull Mountain, Nevada, earthquake. Finally, I discuss how the derived workflow could be applied to other tectonic problems, such as solving for interseismic strain accumulation rates in a subduction zone environment. I also study the evolution of the crustal stress field in the South American plate following two recent great earthquakes along the Nazca- South America subduction zone. I show that the 2010 Mw 8.8 Maule, Chile, earthquake very likely triggered several moderate magnitude earthquakes in the Andean volcanic arc and backarc. This suggests that great earthquakes modulate the crustal stress field outside of the immediate aftershock zone and that far-field faults may pose a heightened hazard following large subduction earthquakes. The 2014 Mw 8.1 Pisagua, Chile, earthquake reopened ancient surface cracks that have been preserved in the hyperarid forearc setting of northern Chile for thousands of earthquake cycles. The orientation of cracks reopened in this event reflects the static and likely dynamic stresses generated by the recent earthquake. Coseismic cracks serve as a reliable marker of permanent earthquake deformation and plate boundary behavior persistent over the million-year timescale. This work on great earthquakes suggests that InSAR observations can play a crucial role in furthering our understanding of the crustal mechanics that drive seismic cycle processes in subduction zones.

  5. Identification of seismic activity sources on the subsatellite track by ionospheric plasma disturbances detected with the Sich-2 onboard probes

    NASA Astrophysics Data System (ADS)

    Shuvalov, Valentin A.; Lazuchenkov, Dmitry N.; Gorev, Nikolai B.; Kochubei, Galina S.

    2018-01-01

    Using a cylindrical Langmuir probe and the authors' proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011-2012) were measured. This paper is concerned with identifying the space-time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track. It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation.

  6. Source depth dependence of micro-tsunamis recorded with ocean-bottom pressure gauges: The January 28, 2000 Mw 6.8 earthquake off Nemuro Peninsula, Japan

    USGS Publications Warehouse

    Hirata, K.; Takahashi, H.; Geist, E.; Satake, K.; Tanioka, Y.; Sugioka, H.; Mikada, H.

    2003-01-01

    Micro-tsunami waves with a maximum amplitude of 4-6 mm were detected with the ocean-bottom pressure gauges on a cabled deep seafloor observatory south of Hokkaido, Japan, following the January 28, 2000 earthquake (Mw 6.8) in the southern Kuril subduction zone. We model the observed micro-tsunami and estimate the focal depth and other source parameters such as fault length and amount of slip using grid searching with the least-squares method. The source depth and stress drop for the January 2000 earthquake are estimated to be 50 km and 7 MPa, respectively, with possible ranges of 45-55 km and 4-13 MPa. Focal depth of typical inter-plate earthquakes in this region ranges from 10 to 20 km and stress drop of inter-plate earthquakes generally is around 3 MPa. The source depth and stress drop estimates suggest that the earthquake was an intra-slab event in the subducting Pacific plate, rather than an inter-plate event. In addition, for a prescribed fault width of 30 km, the fault length is estimated to be 15 km, with possible ranges of 10-20 km, which is the same as the previously determined aftershock distribution. The corresponding estimate for seismic moment is 2.7x1019 Nm with possible ranges of 2.3x1019-3.2x1019Nm. Standard tide gauges along the nearby coast did not record any tsunami signal. High-precision ocean-bottom pressure measurements offshore thus make it possible to determine fault parameters of moderate-sized earthquakes in subduction zones using open-ocean tsunami waveforms. Published by Elsevier Science B. V.

  7. TEM PSHA2015 Reliability Assessment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Wang, Y. J.; Chan, C. H.; Ma, K. F.

    2016-12-01

    The Taiwan Earthquake Model (TEM) developed a new probabilistic seismic hazard analysis (PSHA) for determining the probability of exceedance (PoE) of ground motion over a specified period in Taiwan. To investigate the adequacy of the seismic source parameters adopted in the 2015 PSHA of the TEM (TEM PSHA2015), we conducted several tests of the seismic source models. The observed maximal peak ground acceleration (PGA) of the ML > 4.0 mainshocks in the 23-year data period of 1993-2015 were used to test the predicted PGA of PSHA from the areal and subduction zone sources with the time-independent Poisson assumption. This comparison excluded the observations from 1999 Chi-Chi earthquake, as this was the only earthquake associated with the identified active fault in this past 23 years. We used tornado diagrams to analyze the sensitivities of these source parameters to the ground motion values of the PSHA. This study showed that the predicted PGA for a 63% PoE in the 23-year period corresponded to the empirical PGA and the predicted numbers of PGA exceedances to a threshold value 0.1g close to the observed numbers, confirming the parameter applicability for the areal and subduction zone sources. We adopted the disaggregation analysis from a hazard map to determine the contribution of the individual seismic sources to hazard for six metropolitan cities in Taiwan. The sensitivity tests of the seismogenic structure parameters indicated that the slip rate and maximum magnitude are dominant factors for the TEM PSHA2015. For densely populated faults in SW Taiwan, maximum magnitude is more sensitive than the slip rate, giving the concern on the possible multiple fault segments rupture with larger magnitude in this area, which was not yet considered in TEM PSHA2015. The source category disaggregation also suggested that special attention is necessary for subduction zone earthquakes for long-period shaking seismic hazards in Northern Taiwan.

  8. The use of waveform shapes to automatically determine earthquake focal depth

    USGS Publications Warehouse

    Sipkin, S.A.

    2000-01-01

    Earthquake focal depth is an important parameter for rapidly determining probable damage caused by a large earthquake. In addition, it is significant both for discriminating between natural events and explosions and for discriminating between tsunamigenic and nontsunamigenic earthquakes. For the purpose of notifying emergency management and disaster relief organizations as well as issuing tsunami warnings, potential time delays in determining source parameters are particularly detrimental. We present a method for determining earthquake focal depth that is well suited for implementation in an automated system that utilizes the wealth of broadband teleseismic data that is now available in real time from the global seismograph networks. This method uses waveform shapes to determine focal depth and is demonstrated to be valid for events with magnitudes as low as approximately 5.5.

  9. Accounting for uncertain fault geometry in earthquake source inversions - I: theory and simplified application

    NASA Astrophysics Data System (ADS)

    Ragon, Théa; Sladen, Anthony; Simons, Mark

    2018-05-01

    The ill-posed nature of earthquake source estimation derives from several factors including the quality and quantity of available observations and the fidelity of our forward theory. Observational errors are usually accounted for in the inversion process. Epistemic errors, which stem from our simplified description of the forward problem, are rarely dealt with despite their potential to bias the estimate of a source model. In this study, we explore the impact of uncertainties related to the choice of a fault geometry in source inversion problems. The geometry of a fault structure is generally reduced to a set of parameters, such as position, strike and dip, for one or a few planar fault segments. While some of these parameters can be solved for, more often they are fixed to an uncertain value. We propose a practical framework to address this limitation by following a previously implemented method exploring the impact of uncertainties on the elastic properties of our models. We develop a sensitivity analysis to small perturbations of fault dip and position. The uncertainties in fault geometry are included in the inverse problem under the formulation of the misfit covariance matrix that combines both prediction and observation uncertainties. We validate this approach with the simplified case of a fault that extends infinitely along strike, using both Bayesian and optimization formulations of a static inversion. If epistemic errors are ignored, predictions are overconfident in the data and source parameters are not reliably estimated. In contrast, inclusion of uncertainties in fault geometry allows us to infer a robust posterior source model. Epistemic uncertainties can be many orders of magnitude larger than observational errors for great earthquakes (Mw > 8). Not accounting for uncertainties in fault geometry may partly explain observed shallow slip deficits for continental earthquakes. Similarly, ignoring the impact of epistemic errors can also bias estimates of near surface slip and predictions of tsunamis induced by megathrust earthquakes. (Mw > 8)

  10. Tsunami Generation Modelling for Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Annunziato, A.; Matias, L.; Ulutas, E.; Baptista, M. A.; Carrilho, F.

    2009-04-01

    In the frame of a collaboration between the European Commission Joint Research Centre and the Institute of Meteorology in Portugal, a complete analytical tool to support Early Warning Systems is being developed. The tool will be part of the Portuguese National Early Warning System and will be used also in the frame of the UNESCO North Atlantic Section of the Tsunami Early Warning System. The system called Tsunami Analysis Tool (TAT) includes a worldwide scenario database that has been pre-calculated using the SWAN-JRC code (Annunziato, 2007). This code uses a simplified fault generation mechanism and the hydraulic model is based on the SWAN code (Mader, 1988). In addition to the pre-defined scenario, a system of computers is always ready to start a new calculation whenever a new earthquake is detected by the seismic networks (such as USGS or EMSC) and is judged capable to generate a Tsunami. The calculation is performed using minimal parameters (epicentre and the magnitude of the earthquake): the programme calculates the rupture length and rupture width by using empirical relationship proposed by Ward (2002). The database calculations, as well the newly generated calculations with the current conditions are therefore available to TAT where the real online analysis is performed. The system allows to analyze also sea level measurements available worldwide in order to compare them and decide if a tsunami is really occurring or not. Although TAT, connected with the scenario database and the online calculation system, is at the moment the only software that can support the tsunami analysis on a global scale, we are convinced that the fault generation mechanism is too simplified to give a correct tsunami prediction. Furthermore short tsunami arrival times especially require a possible earthquake source parameters data on tectonic features of the faults like strike, dip, rake and slip in order to minimize real time uncertainty of rupture parameters. Indeed the earthquake parameters available right after an earthquake are preliminary and could be inaccurate. Determining which earthquake source parameters would affect the initial height and time series of tsunamis will show the sensitivity of the tsunami time series to seismic source details. Therefore a new fault generation model will be adopted, according to the seismotectonics properties of the different regions, and finally included in the calculation scheme. In order to do this, within the collaboration framework of Portuguese authorities, a new model is being defined, starting from the seismic sources in the North Atlantic, Caribbean and Gulf of Cadiz. As earthquakes occurring in North Atlantic and Caribbean sources may affect Portugal mainland, the Azores and Madeira archipelagos also these sources will be included in the analysis. Firstly we have started to examine the geometries of those sources that spawn tsunamis to understand the effect of fault geometry and depths of earthquakes. References: Annunziato, A., 2007. The Tsunami Assesment Modelling System by the Joint Research Center, Science of Tsunami Hazards, Vol. 26, pp. 70-92. Mader, C.L., 1988. Numerical modelling of water waves, University of California Press, Berkeley, California. Ward, S.N., 2002. Tsunamis, Encyclopedia of Physical Science and Technology, Vol. 17, pp. 175-191, ed. Meyers, R.A., Academic Press.

  11. Added-value joint source modelling of seismic and geodetic data

    NASA Astrophysics Data System (ADS)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source model parameters. The source model product then features parameter uncertainty estimates and reveals parameter trade-offs that arise from imperfect data coverage and data errors. We applied our new source modelling approach to the 2010 Haiti earthquake for which a number of apparently different seismic, geodetic and joint source models has been reported already - mostly without any model parameter estimations. We here show that the variability of all these source models seems to arise from inherent model parameter trade-offs and mostly has little statistical significance, e.g. even using a large dataset comprising seismic and geodetic data the confidence interval of the fault dip remains as wide as about 20 degrees.

  12. Trading Time with Space - Development of subduction zone parameter database for a maximum magnitude correlation assessment

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas; Wenzel, Friedemann

    2017-04-01

    Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept technically trades time with space, considering subduction zones where we have likely not observed the maximum possible event yet. However, by identifying sources of the same class, the not-yet observed temporal behavior can be replaced by spatial similarity among different subduction zones. This database aims to enhance the research and understanding of subduction zones and to quantify their potential in producing mega earthquakes considering potential strong motion impact on nearby cities and their tsunami potential.

  13. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    NASA Astrophysics Data System (ADS)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  14. Recent updates in developing a statistical pseudo-dynamic source-modeling framework to capture the variability of earthquake rupture scenarios

    NASA Astrophysics Data System (ADS)

    Song, Seok Goo; Kwak, Sangmin; Lee, Kyungbook; Park, Donghee

    2017-04-01

    It is a critical element to predict the intensity and variability of strong ground motions in seismic hazard assessment. The characteristics and variability of earthquake rupture process may be a dominant factor in determining the intensity and variability of near-source strong ground motions. Song et al. (2014) demonstrated that the variability of earthquake rupture scenarios could be effectively quantified in the framework of 1-point and 2-point statistics of earthquake source parameters, constrained by rupture dynamics and past events. The developed pseudo-dynamic source modeling schemes were also validated against the recorded ground motion data of past events and empirical ground motion prediction equations (GMPEs) at the broadband platform (BBP) developed by the Southern California Earthquake Center (SCEC). Recently we improved the computational efficiency of the developed pseudo-dynamic source-modeling scheme by adopting the nonparametric co-regionalization algorithm, introduced and applied in geostatistics initially. We also investigated the effect of earthquake rupture process on near-source ground motion characteristics in the framework of 1-point and 2-point statistics, particularly focusing on the forward directivity region. Finally we will discuss whether the pseudo-dynamic source modeling can reproduce the variability (standard deviation) of empirical GMPEs and the efficiency of 1-point and 2-point statistics to address the variability of ground motions.

  15. Non-Poissonian Distribution of Tsunami Waiting Times

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2007-12-01

    Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone, however. For example, subduction-thrust and outer-rise earthquake pairs are evident, such as the November 2006 and January 2007 Kuril Islands tsunamigenic pair. Because of variations in tsunami source parameters, such as water depth above the source, triggered tsunami events with short waiting times are not systematically smaller than the primary tsunami.

  16. Real-time earthquake monitoring using a search engine method

    PubMed Central

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-01-01

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in <1 s after receiving the long-period surface wave data. PMID:25472861

  17. Software Toolbox Development for Rapid Earthquake Source Optimisation Combining InSAR Data and Seismic Waveforms

    NASA Astrophysics Data System (ADS)

    Isken, Marius P.; Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Bathke, Hannes M.

    2017-04-01

    We present a modular open-source software framework (pyrocko, kite, grond; http://pyrocko.org) for rapid InSAR data post-processing and modelling of tectonic and volcanic displacement fields derived from satellite data. Our aim is to ease and streamline the joint optimisation of earthquake observations from InSAR and GPS data together with seismological waveforms for an improved estimation of the ruptures' parameters. Through this approach we can provide finite models of earthquake ruptures and therefore contribute to a timely and better understanding of earthquake kinematics. The new kite module enables a fast processing of unwrapped InSAR scenes for source modelling: the spatial sub-sampling and data error/noise estimation for the interferogram is evaluated automatically and interactively. The rupture's near-field surface displacement data are then combined with seismic far-field waveforms and jointly modelled using the pyrocko.gf framwork, which allows for fast forward modelling based on pre-calculated elastodynamic and elastostatic Green's functions. Lastly the grond module supplies a bootstrap-based probabilistic (Monte Carlo) joint optimisation to estimate the parameters and uncertainties of a finite-source earthquake rupture model. We describe the developed and applied methods as an effort to establish a semi-automatic processing and modelling chain. The framework is applied to Sentinel-1 data from the 2016 Central Italy earthquake sequence, where we present the earthquake mechanism and rupture model from which we derive regions of increased coulomb stress. The open source software framework is developed at GFZ Potsdam and at the University of Kiel, Germany, it is written in Python and C programming languages. The toolbox architecture is modular and independent, and can be utilized flexibly for a variety of geophysical problems. This work is conducted within the BridGeS project (http://www.bridges.uni-kiel.de) funded by the German Research Foundation DFG through an Emmy-Noether grant.

  18. Seismic hazard along a crude oil pipeline in the event of an 1811-1812 type New Madrid earthquake. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H.H.M.; Chen, C.H.S.

    1990-04-16

    An assessment of the seismic hazard that exists along the major crude oil pipeline running through the New Madrid seismic zone from southeastern Louisiana to Patoka, Illinois is examined in the report. An 1811-1812 type New Madrid earthquake with moment magnitude 8.2 is assumed to occur at three locations where large historical earthquakes have occurred. Six pipeline crossings of the major rivers in West Tennessee are chosen as the sites for hazard evaluation because of the liquefaction potential at these sites. A seismologically-based model is used to predict the bedrock accelerations. Uncertainties in three model parameters, i.e., stress parameter, cutoffmore » frequency, and strong-motion duration are included in the analysis. Each parameter is represented by three typical values. From the combination of these typical values, a total of 27 earthquake time histories can be generated for each selected site due to an 1811-1812 type New Madrid earthquake occurring at a postulated seismic source.« less

  19. SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, R E; Mayeda, K; Walter, W R

    2007-07-10

    The objectives of this study are to improve low-magnitude regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge of source scaling at small magnitudes (i.e., m{sub b}more » < {approx}4.0) is poorly resolved. It is not clear whether different studies obtain contradictory results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods. We begin by developing and improving the two different methods, and then in future years we will apply them both to each set of earthquakes. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But there are only a limited number of earthquakes that are recorded locally, by sufficient stations to give good azimuthal coverage, and have very closely located smaller earthquakes that can be used as an empirical Green's function (EGF) to remove path effects. In contrast, coda waves average radiation from all directions so single-station records should be adequate, and previous work suggests that the requirements for the EGF event are much less stringent. We can study more earthquakes using the coda-wave methods, while using direct wave methods for the best recorded subset of events so as to investigate any differences between the results of the two approaches. Finding 'perfect' EGF events for direct wave analysis is difficult, as is ascertaining the quality of a particular EGF event. We develop a multi-taper method to obtain time-domain source-time-functions by frequency division. If an earthquake and EGF event pair are able to produce a clear, time-domain source pulse then we accept the EGF event. We then model the spectral (amplitude) ratio to determine source parameters from both direct P and S waves. We use the well-recorded sequence of aftershocks of the M5 Au Sable Forks, NY, earthquake to test the method and also to obtain some of the first accurate source parameters for small earthquakes in eastern North America. We find that the stress drops are high, confirming previous work suggesting that intraplate continental earthquakes have higher stress drops than events at plate boundaries. We simplify and improve the coda wave analysis method by calculating spectral ratios between different sized earthquakes. We first compare spectral ratio performance between local and near-regional S and coda waves in the San Francisco Bay region for moderate-sized events. The average spectral ratio standard deviations using coda are {approx}0.05 to 0.12, roughly a factor of 3 smaller than direct S-waves for 0.2 < f < 15.0 Hz. Also, direct wave analysis requires collocated pairs of earthquakes whereas the event-pairs (Green's function and target events) can be separated by {approx}25 km for coda amplitudes without any appreciable degradation. We then apply coda spectral ratio method to the 1999 Hector Mine mainshock (M{sub w} 7.0, Mojave Desert) and its larger aftershocks. We observe a clear departure from self-similarity, consistent with previous studies using similar regional datasets.« less

  20. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribadi, Sugeng, E-mail: sugengpribadimsc@gmail.com; Afnimar,; Puspito, Nanang T.

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994more » Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake.« less

  1. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    NASA Astrophysics Data System (ADS)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  2. Estimation of splitting functions from Earth's normal mode spectra using the neighbourhood algorithm

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Tkalčić, Hrvoje; Masters, Guy

    2016-01-01

    The inverse problem for Earth structure from normal mode data is strongly non-linear and can be inherently non-unique. Traditionally, the inversion is linearized by taking partial derivatives of the complex spectra with respect to the model parameters (i.e. structure coefficients), and solved in an iterative fashion. This method requires that the earthquake source model is known. However, the release of energy in large earthquakes used for the analysis of Earth's normal modes is not simple. A point source approximation is often inadequate, and a more complete account of energy release at the source is required. In addition, many earthquakes are required for the solution to be insensitive to the initial constraints and regularization. In contrast to an iterative approach, the autoregressive linear inversion technique conveniently avoids the need for earthquake source parameters, but it also requires a number of events to achieve full convergence when a single event does not excite all singlets well. To build on previous improvements, we develop a technique to estimate structure coefficients (and consequently, the splitting functions) using a derivative-free parameter search, known as neighbourhood algorithm (NA). We implement an efficient forward method derived using the autoregresssion of receiver strips, and this allows us to search over a multiplicity of structure coefficients in a relatively short time. After demonstrating feasibility of the use of NA in synthetic cases, we apply it to observations of the inner core sensitive mode 13S2. The splitting function of this mode is dominated by spherical harmonic degree 2 axisymmetric structure and is consistent with the results obtained from the autoregressive linear inversion. The sensitivity analysis of multiple events confirms the importance of the Bolivia, 1994 earthquake. When this event is used in the analysis, as little as two events are sufficient to constrain the splitting functions of 13S2 mode. Apart from not requiring the knowledge of earthquake source, the newly developed technique provides an approximate uncertainty measure of the structure coefficients and allows us to control the type of structure solved for, for example to establish if elastic structure is sufficient.

  3. Characterize kinematic rupture history of large earthquakes with Multiple Haskell sources

    NASA Astrophysics Data System (ADS)

    Jia, Z.; Zhan, Z.

    2017-12-01

    Earthquakes are often regarded as continuous rupture along a single fault, but the occurrence of complex large events involving multiple faults and dynamic triggering challenges this view. Such rupture complexities cause difficulties in existing finite fault inversion algorithms, because they rely on specific parameterizations and regularizations to obtain physically meaningful solutions. Furthermore, it is difficult to assess reliability and uncertainty of obtained rupture models. Here we develop a Multi-Haskell Source (MHS) method to estimate rupture process of large earthquakes as a series of sub-events of varying location, timing and directivity. Each sub-event is characterized by a Haskell rupture model with uniform dislocation and constant unilateral rupture velocity. This flexible yet simple source parameterization allows us to constrain first-order rupture complexity of large earthquakes robustly. Additionally, relatively few parameters in the inverse problem yields improved uncertainty analysis based on Markov chain Monte Carlo sampling in a Bayesian framework. Synthetic tests and application of MHS method on real earthquakes show that our method can capture major features of large earthquake rupture process, and provide information for more detailed rupture history analysis.

  4. Source parameters of the 2014 Ms6.5 Ludian earthquake sequence and their implications on the seismogenic structure

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2015-12-01

    On August 3, 2014, an Ms6.5 earthquake struck Ludian county, Zhaotong city in Yunnan province, China. Although this earthquake is not very big, it caused abnormal severe damages. Thus, study on the causes of the serious damages of this moderate strong earthquake may help us to evaluate seismic hazards for similar earthquakes. Besides the factors which directly relate to the damages, such as site effects, quality of buildings, seismogenic structures and the characteristics of the mainshock and the aftershocks may also responsible for the seismic hazards. Since focal mechanism solution and centroid depth provide key information of earthquake source properties and tectonic stress field, and the focal depth is one of the most important parameters which control the damages of earthquakes, obtaining precise FMSs and focal depths of the Ludian earthquake sequence may help us to determine the detailed geometric features of the rupture fault and the seismogenic environment. In this work we obtained the FMSs and centroid depths of the Ludian earthquake and its Ms>3.0 aftershocks by the revised CAP method, and further verified some focal depths using the depth phase method. Combining the FMSs of the mainshock and the strong aftershocks, as well as their spatial distributions, and the seismogenic environment of the source region, we can make the following characteristics of the Ludian earthquake sequence and its seismogenic structure: (1) The Ludian earthquake is a left-lateral strike slip earthquake, with magnitude of about Mw6.1. The FMS of nodal plane I is 75o/56o/180o for strike, dip and rake angles, and 165o/90o/34ofor the other nodal plane. (2) The Ludian earthquake is very shallow with the optimum centroid depth of ~3 km, which is consistent with the strong ground shaking and the surface rupture observed by field survey and strengthens the damages of the Ludian earthquake. (3) The Ludian Earthquake should occur on the NNW trend BXF. Because two later aftershocks occurred close to the fault zone of the ZLF, and their FMSs are similar with the characteristics of the ZLF, the shallower part of the ZLF may also rupture during the aftershock duration of the Ludian earthquake. Since the ZLF is much longer than the BXF, the seismic risk of the ZLF may be high and should be required more attention.

  5. Comparison of the Cut-and-Paste and Full Moment Tensor Methods for Estimating Earthquake Source Parameters

    NASA Astrophysics Data System (ADS)

    Templeton, D.; Rodgers, A.; Helmberger, D.; Dreger, D.

    2008-12-01

    Earthquake source parameters (seismic moment, focal mechanism and depth) are now routinely reported by various institutions and network operators. These parameters are important for seismotectonic and earthquake ground motion studies as well as calibration of moment magnitude scales and model-based earthquake-explosion discrimination. Source parameters are often estimated from long-period three- component waveforms at regional distances using waveform modeling techniques with Green's functions computed for an average plane-layered models. One widely used method is waveform inversion for the full moment tensor (Dreger and Helmberger, 1993). This method (TDMT) solves for the moment tensor elements by performing a linearized inversion in the time-domain that minimizes the difference between the observed and synthetic waveforms. Errors in the seismic velocity structure inevitably arise due to either differences in the true average plane-layered structure or laterally varying structure. The TDMT method can account for errors in the velocity model by applying a single time shift at each station to the observed waveforms to best match the synthetics. Another method for estimating source parameters is the Cut-and-Paste (CAP) method. This method breaks the three-component regional waveforms into five windows: vertical and radial component Pnl; vertical and radial component Rayleigh wave; and transverse component Love waves. The CAP method performs a grid search over double-couple mechanisms and allows the synthetic waveforms for each phase (Pnl, Rayleigh and Love) to shift in time to account for errors in the Green's functions. Different filtering and weighting of the Pnl segment relative to surface wave segments enhances sensitivity to source parameters, however, some bias may be introduced. This study will compare the TDMT and CAP methods in two different regions in order to better understand the advantages and limitations of each method. Firstly, we will consider the northeastern China/Korean Peninsula region where average plane-layered structure is well known and relatively laterally homogenous. Secondly, we will consider the Middle East where crustal and upper mantle structure is laterally heterogeneous due to recent and ongoing tectonism. If time allows we will investigate the efficacy of each method for retrieving source parameters from synthetic data generated using a three-dimensional model of seismic structure of the Middle East, where phase delays are known to arise from path-dependent structure.

  6. Physically-Based Probabilistic Seismic Hazard Analysis Using Broad-Band Ground Motion Simulation: a Case Study for Prince Islands Fault, Marmara Sea

    NASA Astrophysics Data System (ADS)

    Mert, A.

    2016-12-01

    The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.

  7. The Characteristics of Seismogenic Zones in SW Taiwan: Implications from Studying Mechanisms of Microearthquakes

    NASA Astrophysics Data System (ADS)

    Wen, Strong; Chang, Yi-Zen; Yeh, Yu-Lien; Wen, Yi-Ying

    2017-04-01

    Due to the complicated geomorphology and geological conditions, the southwest (SW) Taiwan suffers the invasion of various natural disasters, such as landslide, mud flow and especially the threat of strong earthquakes as result of convergence between the Eurasian and the Philippine Sea plate. Several disastrous earthquakes had occurred in this area and often caused serious hazards. Therefore, it is fundamentally important to understand the correlation between seismic activity and seismogenic structures in SW Taiwan. Previous studies have indicated that before the failure of rock strength, the behaviors of micro-earthquakes can provide essential clues to help investigating the process of rock deformation. Thus, monitoring the activity of micro-earthquakes plays an important role in studying fault rupture or crustal deformation before the occurrence of a large earthquake. Because the time duration of micro-earthquakes activity can last for years, this phenomenon can be used to indicate the change of physical properties in the crust, such as crustal stress changes or fluid migration. The main purpose of this research is to perform a nonlinear waveform inversion to investigate source parameters of micro-earthquakes which include the non-double couple components owing to the shear rupture usually associated with complex morphology as well as tectonic fault systems. We applied a nonlinear waveform procedure to investigate local stress status and source parameters of micro-earthquakes that occurred in SW Taiwan. Previous studies has shown that microseismic fracture behaviors were controlled by the non-double components, which could lead to cracks generating and fluid migration, which can result in changing rock volume and produce partial compensation. Our results not only giving better understanding the seismogenic structures in the SW Taiwan, but also allowing us to detect variations of physical parameters caused by crack propagating in stratum. Thus, the derived source parameters can serve as a detail physical status (such as fluid migration, fault geometry and the pressure of the leading edge of the rupturing) to investigate the characteristics of seismongenic structures more precisely. In addition, the obtained regional stress field in this study also used to assure and to exam the tectonic models proposed for SW Taiwan previously, which will help to properly assess seismic hazard analysis for major engineering construction projects in the urban area.

  8. Regional W-Phase Source Inversion for Moderate to Large Earthquakes in China and Neighboring Areas

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Duputel, Zacharie; Yao, Zhenxing

    2017-12-01

    Earthquake source characterization has been significantly speeded up in the last decade with the development of rapid inversion techniques in seismology. Among these techniques, the W-phase source inversion method quickly provides point source parameters of large earthquakes using very long period seismic waves recorded at teleseismic distances. Although the W-phase method was initially developed to work at global scale (within 20 to 30 min after the origin time), faster results can be obtained when seismological data are available at regional distances (i.e., Δ ≤ 12°). In this study, we assess the use and reliability of regional W-phase source estimates in China and neighboring areas. Our implementation uses broadband records from the Chinese network supplemented by global seismological stations installed in the region. Using this data set and minor modifications to the W-phase algorithm, we show that reliable solutions can be retrieved automatically within 4 to 7 min after the earthquake origin time. Moreover, the method yields stable results down to Mw = 5.0 events, which is well below the size of earthquakes that are rapidly characterized using W-phase inversions at teleseismic distances.

  9. Source parameters of a M4.8 and its accompanying repeating earthquakes off Kamaishi, NE Japan: Implications for the hierarchical structure of asperities and earthquake cycle

    USGS Publications Warehouse

    Uchida, N.; Matsuzawa, T.; Ellsworth, W.L.; Imanishi, K.; Okada, T.; Hasegawa, A.

    2007-01-01

    We determine the source parameters of a M4.9 ?? 0.1 'characteristic earthquake' sequence and its accompanying microearthquakes at ???50 km depth on the subduction plate boundary offshore of Kamaishi, NE Japan. The microearthquakes tend to occur more frequently in the latter half of the recurrence intervals of the M4.9 ?? 0.1 events. Our results show that the microearthquakes are repeating events and they are located not only around but also within the slip area for the 2001 M4.8 event. From the hierarchical structure of slip areas and smaller stress drops for the microearthquakes compared to the M4.8 event, we infer the small repeating earthquakes rupture relatively weak patches in and around the slip area for the M4.8 event and their activity reflects a stress concentration process and/or change in frictional property (healing) at the area. We also infer the patches for the M4.9 ?? 0.1 and other repeating earthquakes undergo aseismic slip during their interseismic period. Copyright 2007 by the American Geophysical Union.

  10. Fault parameters and macroseismic observations of the May 10, 1997 Ardekul-Ghaen earthquake

    NASA Astrophysics Data System (ADS)

    Amini, H.; Zare, M.; Ansari, A.

    2018-01-01

    The Ardekul (Zirkuh) earthquake (May 10, 1997) is the largest recent earthquake that occurred in the Ardekul-Ghaen region of Eastern Iran. The greatest destruction was concentrated around Ardekul, Haji-Abad, Esfargh, Pishbar, Bashiran, Abiz-Qadim, and Fakhr-Abad (completely destroyed). The total surface fault rupture was about 125 km with the longest un-interrupted segment in the south of the region. The maximum horizontal and vertical displacements were reported in Korizan and Bohn-Abad with about 210 and 70 cm, respectively; moreover, other building damages and environmental effects were also reported for this earthquake. In this study, the intensity value XI on the European Macroseismic Scale (EMS) and Environmental Seismic Intensity (ESI) scale was selected for this earthquake according to the maximum effects on macroseismic data points affected by this earthquake. Then, according to its macroseismic data points of this earthquake and Boxer code, some macroseismic parameters including magnitude, location, source dimension, and orientation of this earthquake were also estimated at 7.3, 33.52° N-59.99° E, 75 km long and 21 km wide, and 152°, respectively. As the estimated macroseismic parameters are consistent with the instrumental ones (Global Centroid Moment Tensor (GCMT) location and magnitude equal 33.58° N-60.02° E, and 7.2, respectively), this method and dataset are suggested not only for other instrumental earthquakes, but also for historical events.

  11. A New Simplified Source Model to Explain Strong Ground Motions from a Mega-Thrust Earthquake - Application to the 2011 Tohoku Earthquake (Mw9.0) -

    NASA Astrophysics Data System (ADS)

    Nozu, A.

    2013-12-01

    A new simplified source model is proposed to explain strong ground motions from a mega-thrust earthquake. The proposed model is simpler, and involves less model parameters, than the conventional characterized source model, which itself is a simplified expression of actual earthquake source. In the proposed model, the spacio-temporal distribution of slip within a subevent is not modeled. Instead, the source spectrum associated with the rupture of a subevent is modeled and it is assumed to follow the omega-square model. By multiplying the source spectrum with the path effect and the site amplification factor, the Fourier amplitude at a target site can be obtained. Then, combining it with Fourier phase characteristics of a smaller event, the time history of strong ground motions from the subevent can be calculated. Finally, by summing up contributions from the subevents, strong ground motions from the entire rupture can be obtained. The source model consists of six parameters for each subevent, namely, longitude, latitude, depth, rupture time, seismic moment and corner frequency of the subevent. Finite size of the subevent can be taken into account in the model, because the corner frequency of the subevent is included in the model, which is inversely proportional to the length of the subevent. Thus, the proposed model is referred to as the 'pseudo point-source model'. To examine the applicability of the model, a pseudo point-source model was developed for the 2011 Tohoku earthquake. The model comprises nine subevents, located off Miyagi Prefecture through Ibaraki Prefecture. The velocity waveforms (0.2-1 Hz), the velocity envelopes (0.2-10 Hz) and the Fourier spectra (0.2-10 Hz) at 15 sites calculated with the pseudo point-source model agree well with the observed ones, indicating the applicability of the model. Then the results were compared with the results of a super-asperity (SPGA) model of the same earthquake (Nozu, 2012, AGU), which can be considered as an example of characterized source models. Although the pseudo point-source model involves much less model parameters than the super-asperity model, the errors associated with the former model were comparable to those for the latter model for velocity waveforms and envelopes. Furthermore, the errors associated with the former model were much smaller than those for the latter model for Fourier spectra. These evidences indicate the usefulness of the pseudo point-source model. Comparison of the observed (black) and synthetic (red) Fourier spectra. The spectra are the composition of two horizontal components and smoothed with a Parzen window with a band width of 0.05 Hz.

  12. Temporal and spatial heterogeneity of rupture process application in shakemaps of Yushu Ms7.1 earthquake, China

    NASA Astrophysics Data System (ADS)

    Kun, C.

    2015-12-01

    Studies have shown that estimates of ground motion parameter from ground motion attenuation relationship often greater than the observed value, mainly because multiple ruptures of the big earthquake reduce the source pulse height of source time function. In the absence of real-time data of the station after the earthquake, this paper attempts to make some constraints from the source, to improve the accuracy of shakemaps. Causative fault of Yushu Ms 7.1 earthquake is vertical approximately (dip 83 °), and source process in time and space was dispersive distinctly. Main shock of Yushu Ms7.1 earthquake can be divided into several sub-events based on source process of this earthquake. Magnitude of each sub-events depended on each area under the curve of source pulse of source time function, and location derived from source process of each sub-event. We use ShakeMap method with considering the site effect to generate shakeMap for each sub-event, respectively. Finally, ShakeMaps of mainshock can be aquired from superposition of shakemaps for all the sub-events in space. Shakemaps based on surface rupture of causative Fault from field survey can also be derived for mainshock with only one magnitude. We compare ShakeMaps of both the above methods with Intensity of investigation. Comparisons show that decomposition method of main shock more accurately reflect the shake of earthquake in near-field, but for far field the shake is controlled by the weakening influence of the source, the estimated Ⅵ area was smaller than the intensity of the actual investigation. Perhaps seismic intensity in far-field may be related to the increasing seismic duration for the two events. In general, decomposition method of main shock based on source process, considering shakemap of each sub-event, is feasible for disaster emergency response, decision-making and rapid Disaster Assessment after the earthquake.

  13. Teleseismic Body Wave Analysis for the 27 September 2003 Altai, Earthquake (Mw7.4) and Large Aftershocks

    NASA Astrophysics Data System (ADS)

    Gomez-Gonzalez, J. M.; Mellors, R.

    2007-05-01

    We investigate the kinematics of the rupture process for the September 27, 2003, Mw7.3, Altai earthquake and its associated large aftershocks. This is the largest earthquake striking the Altai mountains within the last 50 years, which provides important constraints on the ongoing tectonics. The fault plane solution obtained by teleseismic body waveform modeling indicated a predominantly strike-slip event (strike=130, dip=75, rake 170), Scalar moment for the main shock ranges from 0.688 to 1.196E+20 N m, a source duration of about 20 to 42 s, and an average centroid depth of 10 km. Source duration would indicate a fault length of about 130 - 270 km. The main shock was followed closely by two aftershocks (Mw5.7, Mw6.4) occurred the same day, another aftershock (Mw6.7) occurred on 1 October , 2003. We also modeled the second aftershock (Mw6.4) to asses geometric similarities during their respective rupture process. This aftershock occurred spatially very close to the mainshock and possesses a similar fault plane solution (strike=128, dip=71, rake=154), and centroid depth (13 km). Several local conditions, such as the crustal model and fault geometry, affect the correct estimation of some source parameters. We perfume a sensitivity evaluation of several parameters, including centroid depth, scalar moment and source duration, based on a point and finite source modeling. The point source approximation results are the departure parameters for the finite source exploration. We evaluate the different reported parameters to discard poor constrained models. In addition, deformation data acquired by InSAR are also included in the analysis.

  14. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  15. The Exponent of High-frequency Source Spectral Falloff and Contribution to Source Parameter Estimates

    NASA Astrophysics Data System (ADS)

    Kiuchi, R.; Mori, J. J.

    2015-12-01

    As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.

  16. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method

  17. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    USGS Publications Warehouse

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  18. Comparison of earthquake source characteristics in the Kachchh Rift Basin and Saurashtra horst, Deccan Volcanic Province, western India

    NASA Astrophysics Data System (ADS)

    Sairam, B.; Singh, A. P.; Ravi Kumar, M.

    2018-06-01

    Seismic source parameters of small to moderate sized intraplate earthquakes that occurred during 2002-2009 in the tectonic blocks of Kachchh Rift Basin (KRB) and the Saurashtra Horst (SH), in the stable continental region of western peninsular India, are studied through spectral analysis of shear waves. The data of aftershock sequence of the 2001 Bhuj earthquake (Mw 7.7) in the KRB and the 2007 Talala earthquake (Mw 5.0) in the SH are used for this study. In the SH, the seismic moment (Mo), corner frequency (fc), stress drop (Δ σ ) and source radius ( r) vary from 7.8× 10^{11} to 4.0× 10^{16} N-m, 1.0-8.9 Hz, 4.8-10.2 MPa and 195-1480 m, respectively. While in the KRB, these parameters vary from Mo ˜ 1.24 × 10^{11} to 4.1 × 10^{16} N-m, f_{c }˜ 1.6 to 13.1 Hz, Δ σ ˜ 0.06 to 16.62 MPa and r ˜ 100 to 840 m. The kappa ( K) value in the KRB (0.025-0.03) is slightly larger than that in the SH region (0.02), probably due to thick sedimentary layers. The estimated stress drops of earthquakes in the KRB are relatively higher than those in SH, due to large crustal stress concentration associated with mafic/ultramafic rocks at the hypocentral depths. The results also suggest that the stress drop value of intraplate earthquakes is larger than the interplate earthquakes. In addition, it is observed that the strike-slip events in the SH have lower stress drops, compared to the thrust and strike-slip events.

  19. The character of scaling earthquake source spectra for Kamchatka in the 3.5-6.5 magnitude range

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Guseva, E. M.

    2017-02-01

    The properties of the source spectra of local shallow-focus earthquakes on Kamchatka in the range of magnitudes M w = 3.5-6.5 are studied using 460 records of S-waves obtained at the PET station. The family of average source spectra is constructed; the spectra are used to study the relationship between M w and the key quasi-dimensionless source parameters: stress drop Δσ and apparent stress σa. It is found that the parameter Δσ is almost stable, while σa grows steadily as the magnitude M w increases, indicating that the similarity is violated. It is known that at sufficiently large M w the similarity hypothesis is approximately valid: both parameters Δσ and σa do not show any noticeable magnitude dependence. It has been established that M w ≈ 5.7 is the threshold value of the magnitude when the change in regimes described occurs for the conditions on Kamchatka.

  20. Earthquake hazard analysis for the different regions in and around Aǧrı

    NASA Astrophysics Data System (ADS)

    Bayrak, Erdem; Yilmaz, Şeyda; Bayrak, Yusuf

    2016-04-01

    We investigated earthquake hazard parameters for Eastern part of Turkey by determining the a and b parameters in a Gutenberg-Richter magnitude-frequency relationship. For this purpose, study area is divided into seven different source zones based on their tectonic and seismotectonic regimes. The database used in this work was taken from different sources and catalogues such as TURKNET, International Seismological Centre (ISC), Incorporated Research Institutions for Seismology (IRIS) and The Scientific and Technological Research Council of Turkey (TUBITAK) for instrumental period. We calculated the a value, b value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship, from the maximum likelihood method (ML). Also, we estimated the mean return periods, the most probable maximum magnitude in the time period of t-years and the probability for an earthquake occurrence for an earthquake magnitude ≥ M during a time span of t-years. We used Zmap software to calculate these parameters. The lowest b value was calculated in Region 1 covered Cobandede Fault Zone. We obtain the highest a value in Region 2 covered Kagizman Fault Zone. This conclusion is strongly supported from the probability value, which shows the largest value (87%) for an earthquake with magnitude greater than or equal to 6.0. The mean return period for such a magnitude is the lowest in this region (49-years). The most probable magnitude in the next 100 years was calculated and we determined the highest value around Cobandede Fault Zone. According to these parameters, Region 1 covered the Cobandede Fault Zone and is the most dangerous area around the Eastern part of Turkey.

  1. Failure time analysis with unobserved heterogeneity: Earthquake duration time of Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata, Nihal, E-mail: nihalata@hacettepe.edu.tr; Kadilar, Gamze Özel, E-mail: gamzeozl@hacettepe.edu.tr

    Failure time models assume that all units are subject to same risks embodied in the hazard functions. In this paper, unobserved sources of heterogeneity that are not captured by covariates are included into the failure time models. Destructive earthquakes in Turkey since 1900 are used to illustrate the models and inter-event time between two consecutive earthquakes are defined as the failure time. The paper demonstrates how seismicity and tectonics/physics parameters that can potentially influence the spatio-temporal variability of earthquakes and presents several advantages compared to more traditional approaches.

  2. Coda Q Attenuation and Source Parameters Analysis in North East India Using Local Earthquakes

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Mohanty, W. K.; Earthquake Seismology

    2010-12-01

    Alok Kumar Mohapatra1* and William Kumar Mohanty1 *Corresponding author: alokgpiitkgp@gmail.com 1Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, West Bengal, India. Pin-721302 ABSTRACT In the present study, the quality factor of coda waves (Qc) and the source parameters has been estimated for the Northeastern India, using the digital data of ten local earthquakes from April 2001 to November 2002. Earthquakes with magnitude range from 3.8 to 4.9 have been taken into account. The time domain coda decay method of a single back scattering model is used to calculate frequency dependent values of Coda Q (Qc) where as, the source parameters like seismic moment(Mo), stress drop, source radius(r), radiant energy(Wo),and strain drop are estimated using displacement amplitude spectrum of body wave using Brune's model. The earthquakes with magnitude range 3.8 to 4.9 have been used for estimation Qc at six central frequencies 1.5 Hz, 3.0 Hz, 6.0 Hz, 9.0 Hz, 12.0 Hz, and 18.0 Hz. In the present work, the Qc value of local earthquakes are estimated to understand the attenuation characteristic, source parameters and tectonic activity of the region. Based on a criteria of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events the study region has been classified into three zones such as the Tibetan Plateau Zone (TPZ), Bengal Alluvium and Arakan-Yuma Zone (BAZ), Shillong Plateau Zone (SPZ). It follows the power law Qc= Qo (f/fo)n where, Qo is the quality factor at the reference frequency (1Hz) fo and n is the frequency parameter which varies from region to region. The mean values of Qc reveals a dependence on frequency, varying from 292.9 at 1.5 Hz to 4880.1 at 18 Hz. Average frequency dependent relationship Qc values obtained of the Northeastern India is 198 f 1.035, while this relationship varies from the region to region such as, Tibetan Plateau Zone (TPZ): Qc= 226 f 1.11, Bengal Alluvium and Arakan-Yuma Zone (BAZ) : Qc= 301 f 0.87, Shillong Plateau Zone (SPZ): Qc=126 fo 0.85. It indicates Northeastern India is seismically active but comparing of all zones in the study region the Shillong Plateau Zone (SPZ): Qc= 126 f 0.85 is seismically most active. Where as the Bengal Alluvium and Arakan-Yuma Zone (BAZ) are less active and out of three the Tibetan Plateau Zone (TPZ)is intermediate active. This study may be useful for the seismic hazard assessment. The estimated seismic moments (Mo), range from 5.98×1020 to 3.88×1023 dyne-cm. The source radii(r) are confined between 152 to 1750 meter, the stress drop ranges between 0.0003×103 bar to 1.04×103 bar, the average radiant energy is 82.57×1018 ergs and the strain drop for the earthquake ranges from 0.00602×10-9 to 2.48×10-9 respectively. The estimated stress drop values for NE India depicts scattered nature of the larger seismic moment value whereas, they show a more systematic nature for smaller seismic moment values. The estimated source parameters are in agreement to previous works in this type of tectonic set up. Key words: Coda wave, Seismic source parameters, Lapse time, single back scattering model, Brune's model, Stress drop and North East India.

  3. New perspectives on self-similarity for shallow thrust earthquakes

    NASA Astrophysics Data System (ADS)

    Denolle, Marine A.; Shearer, Peter M.

    2016-09-01

    Scaling of dynamic rupture processes from small to large earthquakes is critical to seismic hazard assessment. Large subduction earthquakes are typically remote, and we mostly rely on teleseismic body waves to extract information on their slip rate functions. We estimate the P wave source spectra of 942 thrust earthquakes of magnitude Mw 5.5 and above by carefully removing wave propagation effects (geometrical spreading, attenuation, and free surface effects). The conventional spectral model of a single-corner frequency and high-frequency falloff rate does not explain our data, and we instead introduce a double-corner-frequency model, modified from the Haskell propagating source model, with an intermediate falloff of f-1. The first corner frequency f1 relates closely to the source duration T1, its scaling follows M0∝T13 for Mw<7.5, and changes to M0∝T12 for larger earthquakes. An elliptical rupture geometry better explains the observed scaling than circular crack models. The second time scale T2 varies more weakly with moment, M0∝T25, varies weakly with depth, and can be interpreted either as expressions of starting and stopping phases, as a pulse-like rupture, or a dynamic weakening process. Estimated stress drops and scaled energy (ratio of radiated energy over seismic moment) are both invariant with seismic moment. However, the observed earthquakes are not self-similar because their source geometry and spectral shapes vary with earthquake size. We find and map global variations of these source parameters.

  4. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    PubMed

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  5. Source Parameter Inversion for Recent Great Earthquakes from a Decade-long Observation of Global Gravity Fields

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile

    2013-01-01

    We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.

  6. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.

  7. Regional Wave Propagation in Southeastern United States

    NASA Astrophysics Data System (ADS)

    Jemberie, A. L.; Langston, C. A.

    2003-12-01

    Broad band seismograms from the April 29, 2003, M4.6 Fort Payne, Alabama earthquake are analyzed to infer mechanisms of crustal wave propagation, crust and upper mantle velocity structure in southeastern United States, and source parameters of the event. In particular, we are interested in producing deterministic models of the distance attenuation of earthquake ground motions through computation of synthetic seismograms. The method first requires constraining the source parameters of an earthquake and then modeling the amplitude and times of broadband arrivals within the waveforms to infer appropriate layered earth models. A first look at seismograms recorded by stations outside the Mississippi Embayment (ME) show clear body phases such P, sP, Pnl, Sn and Lg. The ME signals are qualitatively different from others because they have longer durations and large surface waves. A straightforward interpretation of P wave arrival times shows a typical upper mantle velocity of 8.18 km/s. However, there is evidence of significantly higher P phase velocities at epicentral distances between 400 and 600km, that may be caused by a high velocity upper mantle anomaly; triplication of P-waves is seen in these seismograms. The arrival time differences between regional P and the depth phase sP at different stations are used to constrain the depth of the earthquake. The source depth lies between 9.5 km and 13km which is somewhat more shallow than the network location that was constrained to 15km depth. The Fort Payne earthquake is the largest earthquake to have occurred within the Eastern Tennessee Seismic Zone.

  8. Large Historical Earthquakes and Tsunami Hazards in the Western Mediterranean: Source Characteristics and Modelling

    NASA Astrophysics Data System (ADS)

    Harbi, Assia; Meghraoui, Mustapha; Belabbes, Samir; Maouche, Said

    2010-05-01

    The western Mediterranean region was the site of numerous large earthquakes in the past. Most of these earthquakes are located at the East-West trending Africa-Eurasia plate boundary and along the coastline of North Africa. The most recent recorded tsunamigenic earthquake occurred in 2003 at Zemmouri-Boumerdes (Mw 6.8) and generated ~ 2-m-high tsunami wave. The destructive wave affected the Balearic Islands and Almeria in southern Spain and Carloforte in southern Sardinia (Italy). The earthquake provided a unique opportunity to gather instrumental records of seismic waves and tide gauges in the western Mediterranean. A database that includes a historical catalogue of main events, seismic sources and related fault parameters was prepared in order to assess the tsunami hazard of this region. In addition to the analysis of the 2003 records, we study the 1790 Oran and 1856 Jijel historical tsunamigenic earthquakes (Io = IX and X, respectively) that provide detailed observations on the heights and extension of past tsunamis and damage in coastal zones. We performed the modelling of wave propagation using NAMI-DANCE code and tested different fault sources from synthetic tide gauges. We observe that the characteristics of seismic sources control the size and directivity of tsunami wave propagation on both northern and southern coasts of the western Mediterranean.

  9. The source parameters of 2013 Mw6.6 Lushan earthquake constrained with the restored local clipped seismic waveforms

    NASA Astrophysics Data System (ADS)

    Hao, J.; Zhang, J. H.; Yao, Z. X.

    2017-12-01

    We developed a method to restore the clipped seismic waveforms near epicenter using projection onto convex sets method (Zhang et al, 2016). This method was applied to rescue the local clipped waveforms of 2013 Mw 6.6 Lushan earthquake. We restored 88 out of 93 clipped waveforms of 38 broadband seismic stations of China Earthquake Networks (CEN). The epicenter distance of the nearest station to the epicenter that we can faithfully restore is only about 32 km. In order to investigate if the source parameters of earthquake could be determined exactly with the restored data, restored waveforms are utilized to get the mechanism of Lushan earthquake. We apply the generalized reflection-transmission coefficient matrix method to calculate the synthetic seismic records and simulated annealing method in inversion (Yao and Harkrider, 1983; Hao et al., 2012). We select 5 stations of CEN with the epicenter distance about 200km whose records aren't clipped and three-component velocity records are used. The result shows the strike, dip and rake angles of Lushan earthquake are 200o, 51o and 87o respectively, hereinafter "standard result". Then the clipped and restored seismic waveforms are applied respectively. The strike, dip and rake angles of clipped seismic waveforms are 184o, 53o and 72o respectively. The largest misfit of angle is 16o. In contrast, the strike, dip and rake angles of restored seismic waveforms are 198o, 51o and 87o respectively. It is very close to the "standard result". We also study the rupture history of Lushan earthquake constrained with the restored local broadband and teleseismic waves based on finite fault method (Hao et al., 2013). The result consists with that constrained with the strong motion and teleseismic waves (Hao et al., 2013), especially the location of the patch with larger slip. In real-time seismology, determining the source parameters as soon as possible is important. This method will help us to determine the mechanism of earthquake using the local clipped waveforms. Strong motion stations in China don't have good coverage at present. This method will help us to investigate the rupture history of large earthquake in China using the local clipped data of broadband stations.

  10. New Tsunami Forecast Tools for the French Polynesia Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Clément, Joël; Reymond, Dominique

    2015-03-01

    This paper presents the tsunami warning tools, which are used for the estimation of the seismic source parameters. These tools are grouped under a method called Preliminary Determination of Focal Mechanism_2 ( PDFM2), that has been developed at the French Polynesia Warning Center, in the framework of the system, as a plug-in concept. The first tool determines the seismic moment and the focal geometry (strike, dip, and slip), and the second tool identifies the "tsunami earthquakes" (earthquakes that cause much bigger tsunamis than their magnitude would imply). In a tsunami warning operation, initial assessment of the tsunami potential is based on location and magnitude. The usual quick magnitude methods which use waves, work fine for smaller earthquakes. For major earthquakes these methods drastically underestimate the magnitude and its tsunami potential because the radiated energy shifts to the longer period waves. Since French Polynesia is located far away from the subduction zones of the Pacific rim, the tsunami threat is not imminent, and this luxury of time allows to use the long period surface wave data to determine the true size of a major earthquake. The source inversion method presented in this paper uses a combination of surface waves amplitude spectra and P wave first motions. The advantage of using long period surface data is that there is a much more accurate determination of earthquake size, and the advantage of using P wave first motion is to have a better constrain of the focal geometry than using the surface waves alone. The method routinely gives stable results at minutes, with being the origin time of an earthquake. Our results are then compared to the Global Centroid Moment Tensor catalog for validating both the seismic moment and the source geometry. The second tool discussed in this paper is the slowness parameter and is the energy-to-moment ratio. It has been used to identify tsunami earthquakes, which are characterized by having unusual slow rupture velocity and release seismic energy that has been shifted to longer periods and, therefore, have low values. The slow rupture velocity would indicate weaker material and bigger uplift and, thus, bigger tsunami potential. The use of the slowness parameter is an efficient tool for monitoring the near real-time identification of tsunami earthquakes.

  11. Contribution of Satellite Gravimetry to Understanding Seismic Source Processes of the 2011 Tohoku-Oki Earthquake

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Sauber, Jeanne; Riva, Riccardo

    2011-01-01

    The 2011 great Tohoku-Oki earthquake, apart from shaking the ground, perturbed the motions of satellites orbiting some hundreds km away above the ground, such as GRACE, due to coseismic change in the gravity field. Significant changes in inter-satellite distance were observed after the earthquake. These unconventional satellite measurements were inverted to examine the earthquake source processes from a radically different perspective that complements the analyses of seismic and geodetic ground recordings. We found the average slip located up-dip of the hypocenter but within the lower crust, as characterized by a limited range of bulk and shear moduli. The GRACE data constrained a group of earthquake source parameters that yield increasing dip (7-16 degrees plus or minus 2 degrees) and, simultaneously, decreasing moment magnitude (9.17-9.02 plus or minus 0.04) with increasing source depth (15-24 kilometers). The GRACE solution includes the cumulative moment released over a month and demonstrates a unique view of the long-wavelength gravimetric response to all mass redistribution processes associated with the dynamic rupture and short-term postseismic mechanisms to improve our understanding of the physics of megathrusts.

  12. Regional Earthquake Shaking and Loss Estimation

    NASA Astrophysics Data System (ADS)

    Sesetyan, K.; Demircioglu, M. B.; Zulfikar, C.; Durukal, E.; Erdik, M.

    2009-04-01

    This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses in the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Both Level 0 (similar to PAGER system of USGS) and Level 1 analyses of the ELER routine are based on obtaining intensity distributions analytically and estimating total number of casualties and their geographic distribution either using regionally adjusted intensity-casualty or magnitude-casualty correlations (Level 0) of using regional building inventory data bases (Level 1). Level 0 analysis is similar to the PAGER system being developed by USGS. For given basis source parameters the intensity distributions can be computed using: a)Regional intensity attenuation relationships, b)Intensity correlations with attenuation relationship based PGV, PGA, and Spectral Amplitudes and, c)Intensity correlations with synthetic Fourier Amplitude Spectrum. In Level 1 analysis EMS98 based building vulnerability relationships are used for regional estimates of building damage and the casualty distributions. Results obtained from pilot applications of the Level 0 and Level 1 analysis modes of the ELER software to the 1999 M 7.4 Kocaeli, 1995 M 6.1 Dinar, and 2007 M 5.4 Bingol earthquakes in terms of ground shaking and losses are presented and comparisons with the observed losses are made. The regional earthquake shaking and loss information is intented for dissemination in a timely manner to related agencies for the planning and coordination of the post-earthquake emergency response. However the same software can also be used for scenario earthquake loss estimation and related Monte-Carlo type simulations.

  13. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    USGS Publications Warehouse

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  14. Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro; Miranda, Greyving Jose Arguello; Gusman, Aditya Riadi; Fujii, Yushiro

    2017-08-01

    Large earthquakes, such as the Mw 7.7 1992 Nicaragua earthquake, have occurred off the Pacific coasts of El Salvador and Nicaragua in Central America and have generated distractive tsunamis along these coasts. It is necessary to determine appropriate fault models before large tsunamis hit the coast. In this study, first, fault parameters were estimated from the W-phase inversion, and then an appropriate fault model was determined from the fault parameters and scaling relationships with a depth dependent rigidity. The method was tested for four large earthquakes, the 1992 Nicaragua tsunami earthquake (Mw7.7), the 2001 El Salvador earthquake (Mw7.7), the 2004 El Astillero earthquake (Mw7.0), and the 2012 El Salvador-Nicaragua earthquake (Mw7.3), which occurred off El Salvador and Nicaragua in Central America. The tsunami numerical simulations were carried out from the determined fault models. We found that the observed tsunami heights, run-up heights, and inundation areas were reasonably well explained by the computed ones. Therefore, our method for tsunami early warning purpose should work to estimate a fault model which reproduces tsunami heights near the coast of El Salvador and Nicaragua due to large earthquakes in the subduction zone.

  15. Analysis of the enhanced negative correlation between electron density and electron temperature related to earthquakes

    NASA Astrophysics Data System (ADS)

    Shen, X. H.; Zhang, X.; Liu, J.; Zhao, S. F.; Yuan, G. P.

    2015-04-01

    Ionospheric perturbations in plasma parameters have been observed before large earthquakes, but the correlation between different parameters has been less studied in previous research. The present study is focused on the relationship between electron density (Ne) and temperature (Te) observed by the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite during local nighttime, in which a positive correlation has been revealed near the equator and a weak correlation at mid- and low latitudes over both hemispheres. Based on this normal background analysis, the negative correlation with the lowest percent in all Ne and Te points is studied before and after large earthquakes at mid- and low latitudes. The multiparameter observations exhibited typical synchronous disturbances before the Chile M8.8 earthquake in 2010 and the Pu'er M6.4 in 2007, and Te varied inversely with Ne over the epicentral areas. Moreover, statistical analysis has been done by selecting the orbits at a distance of 1000 km and ±7 days before and after the global earthquakes. Enhanced negative correlation coefficients lower than -0.5 between Ne and Te are found in 42% of points to be connected with earthquakes. The correlation median values at different seismic levels show a clear decrease with earthquakes larger than 7. Finally, the electric-field-coupling model is discussed; furthermore, a digital simulation has been carried out by SAMI2 (Sami2 is Another Model of the Ionosphere), which illustrates that the external electric field in the ionosphere can strengthen the negative correlation in Ne and Te at a lower latitude relative to the disturbed source due to the effects of the geomagnetic field. Although seismic activity is not the only source to cause the inverse Ne-Te variations, the present results demonstrate one possibly useful tool in seismo-electromagnetic anomaly differentiation, and a comprehensive analysis with multiple parameters helps to further understand the seismo-ionospheric coupling mechanism.

  16. Earthquake-induced ground failures in Italy from a reviewed database

    NASA Astrophysics Data System (ADS)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2013-05-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground-level changes triggered by earthquakes of Mercalli intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (URL: http://www.ceri.uniroma1.it/cn/index.do?id=230&page=55) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the "Sapienza" University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground-level changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  17. Application of an extension of the MAI method to the Acapulco City, Mexico

    NASA Astrophysics Data System (ADS)

    Contreras, M.; Aguirre, J.

    2001-12-01

    The site effects and the source parameters, are inverted from a Fourier displacement spectra of seismograms that are corrected by geometrical spreading and regional attenuation valid for south center of Mexico(Ordaz and Singh, 1992). We used Genetic Algorithms (GA) to perform the non-linear inversion, like in the MAI method (Moya et al., 2000) . The GA have proved to produce better results than other traditional methods which are frequently trapped in a local minimum. GA is a method that mimics the evolution laws in living creatures. The best individuals reproduce and develop themselves with every generation. In our case each individual correspond to one source and the genes correspond to the source parameters. As in nature, the best source remain and are improved with each iteration. We assume that the site effect at each station are the same independently of the earthquake, because of that we can search for the combination of sources that can produce the smaller standard deviation of the estimated site effects from the different Fourier displacement earthquake spectra. Then we use the obtained site effects to generate a Fourier displacement spectra of an earthquake scenario. With this, we are able to compute the response spectra by means of random vibration theory (Reinoso et al., 1990). We apply this method to four stations located in the Acapulco City, Mexico, that recorded four earthquakes with epicenter located in the Guerrero Subduction Zone. The site effect estimated for one of the stations, called ACAZ, shows a good agreement with the estimated by Chávez-García et al. (1994) using spectral ratios between the ACAZ station and a rock reference site. Also we compare the response spectra from other earthquake, obtained by the former method and the response spectra computed using the acceleration record. We find an acceptable correlation between them. Chávez-García, J. Cuenca y M. Cárdenas (1994), "Estudio complementario de efectos de sitio en Acapulco, Guerrero", Informe técnico del Instituto de Ingeniería, UNAM ,proyecto 4503. Moya, A., J. Aguirre y K. Irikura (2000), "Inversion of Source Parameters and Site Effects from Strong Ground Motion Records using Genetic Algoritms", Bull. Seism. Soc. Am., 90, pp. 977-992. Ordaz, M. y S. K. Singh (1992), "Source spectra and spectral attenuation of seismic waves from Mexican earthquakes, and evidence of amplification in the hill zone of Mexico city", Bull. Seism. Soc. Am., 82, pp. 24-43. F. Reinoso, E. Ordaz, M. y Sanchez-Sesma, F. (1990), "A note on the fast computation of response spectra estimates", Earthquake Engineering and Structural Dynamics, 19, p. 971-976.

  18. Moment Tensor Inversion of the 1998 Aiquile Earthquake Using Long-period surface waves

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2016-12-01

    On 22nd May 1998 at 04:49(GMT), an earthquake of magnitude Mw = 6.6 struck the Aiquile region of Bolivia, causing 105 deaths and significant damage to the nearby towns of Hoyadas and Pampa Grande. This was the largest shallow earthquake (15 km depth) in Bolivia in over 50 years, and was felt as far Sucre, approximately 100 km away. In this report, a centroid moment tensor (CMT) inversion is carried using body waves and surface waves from 1998 Aiquile earthquake with 1-D and 3-D earth models to obtain the source model parameters and moment tensor, which are the values will be subsequently compared against the Global Centroid Moment Tensor Catalog(GCMT). Also, the excitation kernels could be gained and synthetic data can be created with different earth models. The two method for calculating synthetic seismograms are SPECFEM3D Globe which is based on shear wave mantle model S40RTS and crustal model CRUST 2.0, and AxiSEM which is based on PREM 1-D earth Model. Within the report, the theory behind the CMT inversion was explained and the source parameters gained from the inversion can be used to reveal the tectonics of the source of this earthquake, these information could be helpful in assessing seismic hazard and overall tectonic regime of this region. Furthermore, results of synthetic seismograms and the solution of inversion are going to be used to assess two models.

  19. Analysis of ground-motion simulation big data

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Fujiwara, H.

    2016-12-01

    We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine particular scenario parameters which characterize the cluster. In other word, by utilizing this system, we can obtain critical scenario parameters of the ground-motion simulation for each evaluation point objectively. This research was supported by CREST, JST.

  20. Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, A; Brazier, R; Nyblade, A

    2009-02-23

    Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have been studied to determine their source parameters. These events were selected for study because they were reported in open catalogs to have lower crustal or upper mantle source depths and because they occurred within an area of the Zagros Mountains where crustal velocity structure has been constrained by previous studies. Moment tensor inversion of regional broadband waveforms have been combined with forward modeling of depth phases on short period teleseismic waveforms to constrain source depths and moment tensors. Our results show that all six events nucleated withinmore » the upper crust (<11 km depth) and have thrust mechanisms. This finding supports other studies that call into question the existence of lower crustal or mantle events beneath the Zagros Mountains.« less

  1. Results of meteorological monitoring in Gorny Altai before and after the Chuya earthquake in 2003

    NASA Astrophysics Data System (ADS)

    Aptikaeva, O. I.; Shitov, A. V.

    2014-12-01

    We consider the dynamics of some meteorological parameters in Gorny Altai from 2000 to 2011. We analyzed the variations in the meteorological parameters related to the strong Chuya earthquake (September 27, 2003). A number of anomalies were revealed in the time series. Before this strong earthquake, the winter temperatures at the nearest meteorological station to the earthquake source increased by 8-10°C (by 2009 they returned to the mean values), while the air humidity in winter decreased. In the winter of 2002, we observed a long negative anomaly in the time series of the atmospheric pressure. At the same time, the decrease in the released seismic energy was replaced by the tendency to its increase. Using wavelet analysis we revealed the synchronism in the dynamics of the atmospheric parameters, variations in the solar and geomagnetic activities, and geodynamic processes. We also discuss the relationship of the atmospheric and geodynamic processes and the comfort conditions of the population in the climate analyzed here.

  2. Source parameters derived from seismic spectrum in the Jalisco block

    NASA Astrophysics Data System (ADS)

    Gutierrez, Q. J.; Escudero, C. R.; Nunez-Cornu, F. J.

    2012-12-01

    The direct measure of the earthquake fault dimension represent a complicated task nevertheless a better approach is using the seismic waves spectrum. With this method we can estimate the dimensions of the fault, the stress drop and the seismic moment. The study area comprises the complex tectonic configuration of Jalisco block and the subduction of the Rivera plate beneath the North American plate; this causes that occur in Jalisco some of the most harmful earthquakes and other related natural disasters. Accordingly it is important to monitor and perform studies that helps to understand the physics of earthquake rupture mechanism in the area. The main proposue of this study is estimate earthquake seismic source parameters. The data was recorded by the MARS network (Mapping the Riviera Subduction Zone) and the RESAJ network. MARS had 51 stations and settled in the Jalisco block; that is delimited by the mesoamerican trench at the west, the Colima grabben to the south, and the Tepic-Zacoalco to the north; for a period of time, of January 1, 2006 until December 31, 2007 Of this network was taken 104 events, the magnitude range of these was between 3 to 6.5 MB. RESJAL has 10 stations and is within the state of Jalisco, began to record since October 2011 and continues to record. We firs remove the trend, the mean and the instrument response, then manually chosen the S wave, then the multitaper method was used to obtain the spectrum of this wave and so estimate the corner frequency and the spectra level. We substitude the obtained in the equations of the Brune model to calculate the source parameters. Doing this we obtained the following results; the source radius was between .1 to 2 km, the stress drop was between .1 to 2 MPa.

  3. Stochastic ground-motion simulation of two Himalayan earthquakes: seismic hazard assessment perspective

    NASA Astrophysics Data System (ADS)

    Harbindu, Ashish; Sharma, Mukat Lal; Kamal

    2012-04-01

    The earthquakes in Uttarkashi (October 20, 1991, M w 6.8) and Chamoli (March 8, 1999, M w 6.4) are among the recent well-documented earthquakes that occurred in the Garhwal region of India and that caused extensive damage as well as loss of life. Using strong-motion data of these two earthquakes, we estimate their source, path, and site parameters. The quality factor ( Q β ) as a function of frequency is derived as Q β ( f) = 140 f 1.018. The site amplification functions are evaluated using the horizontal-to-vertical spectral ratio technique. The ground motions of the Uttarkashi and Chamoli earthquakes are simulated using the stochastic method of Boore (Bull Seismol Soc Am 73:1865-1894, 1983). The estimated source, path, and site parameters are used as input for the simulation. The simulated time histories are generated for a few stations and compared with the observed data. The simulated response spectra at 5% damping are in fair agreement with the observed response spectra for most of the stations over a wide range of frequencies. Residual trends closely match the observed and simulated response spectra. The synthetic data are in rough agreement with the ground-motion attenuation equation available for the Himalayas (Sharma, Bull Seismol Soc Am 98:1063-1069, 1998).

  4. Source processes of strong earthquakes in the North Tien-Shan region

    NASA Astrophysics Data System (ADS)

    Kulikova, G.; Krueger, F.

    2013-12-01

    Tien-Shan region attracts attention of scientists worldwide due to its complexity and tectonic uniqueness. A series of very strong destructive earthquakes occurred in Tien-Shan at the turn of XIX and XX centuries. Such large intraplate earthquakes are rare in seismology, which increases the interest in the Tien-Shan region. The presented study focuses on the source processes of large earthquakes in Tien-Shan. The amount of seismic data is limited for those early times. In 1889, when a major earthquake has occurred in Tien-Shan, seismic instruments were installed in very few locations in the world and these analog records did not survive till nowadays. Although around a hundred seismic stations were operating at the beginning of XIX century worldwide, it is not always possible to get high quality analog seismograms. Digitizing seismograms is a very important step in the work with analog seismic records. While working with historical seismic records one has to take into account all the aspects and uncertainties of manual digitizing and the lack of accurate timing and instrument characteristics. In this study, we develop an easy-to-handle and fast digitization program on the basis of already existing software which allows to speed up digitizing process and to account for all the recoding system uncertainties. Owing to the lack of absolute timing for the historical earthquakes (due to the absence of a universal clock at that time), we used time differences between P and S phases to relocate the earthquakes in North Tien-Shan and the body-wave amplitudes to estimate their magnitudes. Combining our results with geological data, five earthquakes in North Tien-Shan were precisely relocated. The digitizing of records can introduce steps into the seismograms which makes restitution (removal of instrument response) undesirable. To avoid the restitution, we simulated historic seismograph recordings with given values for damping and free period of the respective instrument and compared the amplitude ratios (between P, PP, S and SS) of the real data and the simulated seismograms. At first, the depth and the focal mechanism of the earthquakes were determined based on the amplitude ratios for the point source. Further, on the base of ISOLA software, we developed an application which calculates kinematic source parameters for historical earthquakes without restitution. Based on sub-events approach kinematic source parameters could be determined for a subset of the events. We present the results for five major instrumentally recorded earthquake in North Tien-Shan. The strongest one was the Chon-Kemin earthquake on 3rd January 1911. Its relocated epicenter is 42.98N and 77.33E - 80 kilometer southward from the catalog location. The depth is determined to be 28 km. The obtained focal mechanism shows strike, dip, and slip angles of 44°, 82°,and 56°, respectively. The moment magnitude is calculated to be Mw 8.1. The source time duration is 45 s which gives about 120 km rupture length.

  5. Constraining Earthquake Source Parameters in Rupture Patches and Rupture Barriers on Gofar Transform Fault, East Pacific Rise from Ocean Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.

    2015-12-01

    On Gofar transform fault on the East Pacific Rise (EPR), Mw ~6.0 earthquakes occur every ~5 years and repeatedly rupture the same asperity (rupture patch), while the intervening fault segments (rupture barriers to the largest events) only produce small earthquakes. In 2008, an ocean bottom seismometer (OBS) deployment successfully captured the end of a seismic cycle, including an extensive foreshock sequence localized within a 10 km rupture barrier, the Mw 6.0 mainshock and its aftershocks that occurred in a ~10 km rupture patch, and an earthquake swarm located in a second rupture barrier. Here we investigate whether the inferred variations in frictional behavior along strike affect the rupture processes of 3.0 < M < 4.5 earthquakes by determining source parameters for 100 earthquakes recorded during the OBS deployment.Using waveforms with a 50 Hz sample rate from OBS accelerometers, we calculate stress drop using an omega-squared source model, where the weighted average corner frequency is derived from an empirical Green's function (EGF) method. We obtain seismic moment by fitting the omega-squared source model to the low frequency amplitude of individual spectra and account for attenuation using Q obtained from a velocity model through the foreshock zone. To ensure well-constrained corner frequencies, we require that the Brune [1970] model provides a statistically better fit to each spectral ratio than a linear model and that the variance is low between the data and model. To further ensure that the fit to the corner frequency is not influenced by resonance of the OBSs, we require a low variance close to the modeled corner frequency. Error bars on corner frequency were obtained through a grid search method where variance is within 10% of the best-fit value. Without imposing restrictive selection criteria, slight variations in corner frequencies from rupture patches and rupture barriers are not discernable. Using well-constrained source parameters, we find an average stress drop of 5.7 MPa in the aftershock zone compared to values of 2.4 and 2.9 MPa in the foreshock and swarm zones respectively. The higher stress drops in the rupture patch compared to the rupture barriers reflect systematic differences in along strike fault zone properties on Gofar transform fault.

  6. Earthquake hazard analysis for the different regions in and around Ağrı

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr

    We investigated earthquake hazard parameters for Eastern part of Turkey by determining the a and b parameters in a Gutenberg–Richter magnitude–frequency relationship. For this purpose, study area is divided into seven different source zones based on their tectonic and seismotectonic regimes. The database used in this work was taken from different sources and catalogues such as TURKNET, International Seismological Centre (ISC), Incorporated Research Institutions for Seismology (IRIS) and The Scientific and Technological Research Council of Turkey (TUBITAK) for instrumental period. We calculated the a value, b value, which is the slope of the frequency–magnitude Gutenberg–Richter relationship, from the maximum likelihoodmore » method (ML). Also, we estimated the mean return periods, the most probable maximum magnitude in the time period of t-years and the probability for an earthquake occurrence for an earthquake magnitude ≥ M during a time span of t-years. We used Zmap software to calculate these parameters. The lowest b value was calculated in Region 1 covered Cobandede Fault Zone. We obtain the highest a value in Region 2 covered Kagizman Fault Zone. This conclusion is strongly supported from the probability value, which shows the largest value (87%) for an earthquake with magnitude greater than or equal to 6.0. The mean return period for such a magnitude is the lowest in this region (49-years). The most probable magnitude in the next 100 years was calculated and we determined the highest value around Cobandede Fault Zone. According to these parameters, Region 1 covered the Cobandede Fault Zone and is the most dangerous area around the Eastern part of Turkey.« less

  7. Physically based probabilistic seismic hazard analysis using broadband ground motion simulation: a case study for the Prince Islands Fault, Marmara Sea

    NASA Astrophysics Data System (ADS)

    Mert, Aydin; Fahjan, Yasin M.; Hutchings, Lawrence J.; Pınar, Ali

    2016-08-01

    The main motivation for this study was the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in the Marmara Sea and the disaster risk around the Marmara region, especially in Istanbul. This study provides the results of a physically based probabilistic seismic hazard analysis (PSHA) methodology, using broadband strong ground motion simulations, for sites within the Marmara region, Turkey, that may be vulnerable to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We included the effects of all considerable-magnitude earthquakes. To generate the high-frequency (0.5-20 Hz) part of the broadband earthquake simulation, real, small-magnitude earthquakes recorded by a local seismic array were used as empirical Green's functions. For the frequencies below 0.5 Hz, the simulations were obtained by using synthetic Green's functions, which are synthetic seismograms calculated by an explicit 2D /3D elastic finite difference wave propagation routine. By using a range of rupture scenarios for all considerable-magnitude earthquakes throughout the PIF segments, we produced a hazard calculation for frequencies of 0.1-20 Hz. The physically based PSHA used here followed the same procedure as conventional PSHA, except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes, and this approach utilizes the full rupture of earthquakes along faults. Furthermore, conventional PSHA predicts ground motion parameters by using empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitudes of earthquakes to obtain ground motion parameters. PSHA results were produced for 2, 10, and 50 % hazards for all sites studied in the Marmara region.

  8. Source Model of the MJMA 6.5 Plate-Boundary Earthquake at the Nankai Trough, Southwest Japan, on April 1, 2016, Based on Strong Motion Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Asano, K.

    2017-12-01

    An MJMA 6.5 earthquake occurred offshore the Kii peninsula, southwest Japan on April 1, 2016. This event was interpreted as a thrust-event on the plate-boundary along the Nankai trough where (Wallace et al., 2016). This event is the largest plate-boundary earthquake in the source region of the 1944 Tonankai earthquake (MW 8.0) after that event. The significant point of this event regarding to seismic observation is that this event occurred beneath an ocean-bottom seismic network called DONET1, which is jointly operated by NIED and JAMSTEC. Since moderate-to-large earthquake of this focal type is very rare in this region in the last half century, it is a good opportunity to investigate the source characteristics relating to strong motion generation of subduction-zone plate-boundary earthquakes along the Nankai trough. Knowledge obtained from the study of this earthquake would contribute to ground motion prediction and seismic hazard assessment for future megathrust earthquakes expected in the Nankai trough. In this study, the source model of the 2016 offshore the Kii peninsula earthquake was estimated by broadband strong motion waveform modeling using the empirical Green's function method (Irikura, 1986). The source model is characterized by strong motion generation area (SMGA) (Miyake et al., 2003), which is defined as a rectangular area with high-stress drop or high slip-velocity. SMGA source model based on the empirical Green's function method has great potential to reproduce ground motion time history in broadband frequency range. We used strong motion data from offshore stations (DONET1 and LTBMS) and onshore stations (NIED F-net and DPRI). The records of an MJMA 3.2 aftershock at 13:04 on April 1, 2016 were selected for the empirical Green's functions. The source parameters of SMGA are optimized by the waveform modeling in the frequency range 0.4-10 Hz. The best estimate of SMGA size is 19.4 km2, and SMGA of this event does not follow the source scaling relationship for past plate-boundary earthquakes along the Japan trench, northeast Japan. This finding implies that the source characteristics of plate-boundary events in the Nankai trough are different from those in the Japan Trench, and it could be important information to consider regional variation in ground motion prediction.

  9. HYPOELLIPSE; a computer program for determining local earthquake hypocentral parameters, magnitude, and first-motion pattern

    USGS Publications Warehouse

    Lahr, John C.

    1999-01-01

    This report provides Fortran source code and program manuals for HYPOELLIPSE, a computer program for determining hypocenters and magnitudes of near regional earthquakes and the ellipsoids that enclose the 68-percent confidence volumes of the computed hypocenters. HYPOELLIPSE was developed to meet the needs of U.S. Geological Survey (USGS) scientists studying crustal and sub-crustal earthquakes recorded by a sparse regional seismograph network. The program was extended to locate hypocenters of volcanic earthquakes recorded by seismographs distributed on and around the volcanic edifice, at elevations above and below the hypocenter. HYPOELLIPSE was used to locate events recorded by the USGS southern Alaska seismograph network from October 1971 to the early 1990s. Both UNIX and PC/DOS versions of the source code of the program are provided along with sample runs.

  10. Studies of earthquakes and microearthquakes using near-field seismic and geodetic observations

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas Bartholomew

    The Centroid-Moment Tensor (CMT) method allows an optimal point-source description of an earthquake to be recovered from a set of seismic observations, and, for over 30 years, has been routinely applied to determine the location and source mechanism of teleseismically recorded earthquakes. The CMT approach is, however, entirely general: any measurements of seismic displacement fields could, in theory, be used within the CMT inversion formulation, so long as the treatment of the earthquake as a point source is valid for that data. We modify the CMT algorithm to enable a variety of near-field seismic observables to be inverted for the source parameters of an earthquake. The first two data types that we implement are provided by Global Positioning System receivers operating at sampling frequencies of 1,Hz and above. When deployed in the seismic near field, these instruments may be used as long-period-strong-motion seismometers, recording displacement time series that include the static offset. We show that both the displacement waveforms, and static displacements alone, can be used to obtain CMT solutions for moderate-magnitude earthquakes, and that performing analyses using these data may be useful for earthquake early warning. We also investigate using waveform recordings - made by conventional seismometers deployed at the surface, or by geophone arrays placed in boreholes - to determine CMT solutions, and their uncertainties, for microearthquakes induced by hydraulic fracturing. A similar waveform inversion approach could be applied in many other settings where induced seismicity and microseismicity occurs..

  11. Earthquake source parameters from GPS-measured static displacements with potential for real-time application

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas B.; Valentine, Andrew P.; Woodhouse, John H.

    2013-01-01

    We describe a method for determining an optimal centroid-moment tensor solution of an earthquake from a set of static displacements measured using a network of Global Positioning System receivers. Using static displacements observed after the 4 April 2010, MW 7.2 El Mayor-Cucapah, Mexico, earthquake, we perform an iterative inversion to obtain the source mechanism and location, which minimize the least-squares difference between data and synthetics. The efficiency of our algorithm for forward modeling static displacements in a layered elastic medium allows the inversion to be performed in real-time on a single processor without the need for precomputed libraries of excitation kernels; we present simulated real-time results for the El Mayor-Cucapah earthquake. The only a priori information that our inversion scheme needs is a crustal model and approximate source location, so the method proposed here may represent an improvement on existing early warning approaches that rely on foreknowledge of fault locations and geometries.

  12. Seismogeodesy and Rapid Earthquake and Tsunami Source Assessment

    NASA Astrophysics Data System (ADS)

    Melgar Moctezuma, Diego

    This dissertation presents an optimal combination algorithm for strong motion seismograms and regional high rate GPS recordings. This seismogeodetic solution produces estimates of ground motion that recover the whole seismic spectrum, from the permanent deformation to the Nyquist frequency of the accelerometer. This algorithm will be demonstrated and evaluated through outdoor shake table tests and recordings of large earthquakes, notably the 2010 Mw 7.2 El Mayor-Cucapah earthquake and the 2011 Mw 9.0 Tohoku-oki events. This dissertations will also show that strong motion velocity and displacement data obtained from the seismogeodetic solution can be instrumental to quickly determine basic parameters of the earthquake source. We will show how GPS and seismogeodetic data can produce rapid estimates of centroid moment tensors, static slip inversions, and most importantly, kinematic slip inversions. Throughout the dissertation special emphasis will be placed on how to compute these source models with minimal interaction from a network operator. Finally we will show that the incorporation of off-shore data such as ocean-bottom pressure and RTK-GPS buoys can better-constrain the shallow slip of large subduction events. We will demonstrate through numerical simulations of tsunami propagation that the earthquake sources derived from the seismogeodetic and ocean-based sensors is detailed enough to provide a timely and accurate assessment of expected tsunami intensity immediately following a large earthquake.

  13. A Sensitivity Analysis of Tsunami Inversions on the Number of Stations

    NASA Astrophysics Data System (ADS)

    An, Chao; Liu, Philip L.-F.; Meng, Lingsen

    2018-05-01

    Current finite-fault inversions of tsunami recordings generally adopt as many tsunami stations as possible to better constrain earthquake source parameters. In this study, inversions are evaluated by the waveform residual that measures the difference between model predictions and recordings, and the dependence of the quality of inversions on the number tsunami stations is derived. Results for the 2011 Tohoku event show that, if the tsunami stations are optimally located, the waveform residual decreases significantly with the number of stations when the number is 1 ˜ 4 and remains almost constant when the number is larger than 4, indicating that 2 ˜ 4 stations are able to recover the main characteristics of the earthquake source. The optimal location of tsunami stations is explained in the text. Similar analysis is applied to the Manila Trench in the South China Sea using artificially generated earthquakes and virtual tsunami stations. Results confirm that 2 ˜ 4 stations are necessary and sufficient to constrain the earthquake source parameters, and the optimal sites of stations are recommended in the text. The conclusion is useful for the design of new tsunami warning systems. Current strategies of tsunameter network design mainly focus on the early detection of tsunami waves from potential sources to coastal regions. We therefore recommend that, in addition to the current strategies, the waveform residual could also be taken into consideration so as to minimize the error of tsunami wave prediction for warning purposes.

  14. Development of a GNSS-Enhanced Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Melbourne, T. I.; Bock, Y.; Song, Y. T.; Komjathy, A.

    2015-12-01

    The past decade has witnessed a terrible loss of life and economic disruption caused by large earthquakes and resultant tsunamis impacting coastal communities and infrastructure across the Indo-Pacific region. NASA has funded the early development of a prototype real-time Global Navigation Satellite System (RT-GNSS) based rapid earthquake and tsunami early warning (GNSS-TEW) system that may be used to enhance seismic tsunami early warning systems for large earthquakes. This prototype GNSS-TEW system geodetically estimates fault parameters (earthquake magnitude, location, strike, dip, and slip magnitude/direction on a gridded fault plane both along strike and at depth) and tsunami source parameters (seafloor displacement, tsunami energy scale, and 3D tsunami initials) within minutes after the mainshock based on dynamic numerical inversions/regressions of the real-time measured displacements within a spatially distributed real-time GNSS network(s) spanning the epicentral region. It is also possible to measure fluctuations in the ionosphere's total electron content (TEC) in the RT-GNSS data caused by the pressure wave from the tsunami. This TEC approach can detect if a tsunami has been triggered by an earthquake, track its waves as they propagate through the oceanic basins, and provide upwards of 45 minutes early warning. These combined real-time geodetic approaches will very quickly address a number of important questions in the immediate minutes following a major earthquake: How big was the earthquake and what are its fault parameters? Could the earthquake have produced a tsunami and was a tsunami generated?

  15. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    Earthquake source parameters underpin several aspects of nuclear explosion monitoring. Such aspects are: calibration of moment magnitudes (including coda magnitudes) and magnitude and distance amplitude corrections (MDAC); source depths; discrimination by isotropic moment tensor components; and waveform modeling for structure (including waveform tomography). This project seeks to improve methods for and broaden the applicability of estimating source parameters from broadband waveforms using the Cut-and-Paste (CAP) methodology. The CAP method uses a library of Green’s functions for a one-dimensional (1D, depth-varying) seismic velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radialmore » components), Rayleigh (vertical and radial components) and Love (transverse component). Source parameters are estimated by grid search over strike, dip, rake and depth and seismic moment or equivalently moment magnitude, MW, are adjusted to fit the amplitudes. Key to the CAP method is allowing the synthetic seismograms to shift in time relative to the data in order to account for path-propagation errors (delays) in the 1D seismic velocity model used to compute the Green’s functions. The CAP method has been shown to improve estimates of source parameters, especially when delay and amplitude biases are calibrated using high signal-to-noise data from moderate earthquakes, CAP+.« less

  16. Pre-seismic anomalies from optical satellite observations: a review

    NASA Astrophysics Data System (ADS)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  17. Broadband Analysis of the Energetics of Earthquakes and Tsunamis in the Sunda Forearc from 1987-2012

    NASA Astrophysics Data System (ADS)

    Choy, G. L.; Kirby, S. H.; Hayes, G. P.

    2013-12-01

    In the eighteen years before the 2004 Sumatra Mw 9.1 earthquake, the forearc off Sumatra experienced only one large (Mw > 7.0) thrust event and experienced no earthquakes that generated measurable tsunami wave heights. In the subsequent eight years, twelve large thrust earthquakes occurred of which half generated measurable tsunamis. The number of broadband earthquakes (those events with Mw > 5.5 for which broadband teleseismic waveforms have sufficient signal to compute depths, focal mechanisms, moments and radiated energies) jumped six fold after 2004. The progression of tsunami earthquakes, as well as the profuse increase in broadband activity, strongly suggests regional stress adjustments following the Sumatra 2004 megathrust earthquake. Broadband source parameters, published routinely in the Source Parameters (SOPAR) database of the USGS's NEIC (National Earthquake Information Center), have provided the most accurate depths and locations of big earthquakes since the implementation of modern digital seismographic networks. Moreover, radiated energy and seismic moment (also found in SOPAR) are related to apparent stress which is a measure of fault maturity. In mapping apparent stress as a function of depth and focal mechanism, we find that about 12% of broadband thrust earthquakes in the subduction zone are unequivocally above or below the slab interface. Apparent stresses of upper-plate events are associated with failure on mature splay faults, some of which generated measurable tsunamis. One unconventional source for local wave heights was a large intraslab earthquake. High-energy upper-plate events, which are dominant in the Aceh Basin, are associated with immature faults, which may explain why the region was bypassed by significant rupture during the 2004 Sumatra earthquake. The majority of broadband earthquakes are non-randomly concentrated under the outer-arc high. They appear to delineate the periphery of the contiguous rupture zones of large earthquakes. A not uncommon occurrence at the outer-arc high is that of a large (Mw >7.0) earthquake followed by another event, also of large magnitude, in very close spatial (<50 km) proximity within a short time (days to months). The physical separation between these events provides constraints on the nature of barriers to rupture propagation. Some of the glaring disparities in seismic damage and tsunami excitation for earthquakes with the same magnitude can be attributed to differences between rupture properties landward and seaward of the outer-arc high. Although most of the studied broadband earthquakes occurred in the wake of the Sumatra 2004 megathrust event, they illuminate tectonic features that exert a strong influence on rupture growth and extent. The application of broadband analysis to other island arcs will complement current criteria for evaluating seismic and tsunami potential

  18. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    USGS Publications Warehouse

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  19. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    NASA Astrophysics Data System (ADS)

    Muhammad, Ario; Goda, Katsuichiro; Alexander, Nicholas A.; Kongko, Widjo; Muhari, Abdul

    2017-12-01

    This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0) that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan - including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal-vertical evacuation time maps - has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  20. Ground Motion Characteristics of Induced Earthquakes in Central North America

    NASA Astrophysics Data System (ADS)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in close proximity (<10 km) to oil and gas operations.

  1. Earthquake-induced ground failures in Italy from a reviewed database

    NASA Astrophysics Data System (ADS)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  2. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    USGS Publications Warehouse

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  3. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada. Preliminary analysis indicates that the induced ground motions appear similar to those from the NGA-West2 database. However, upon consideration of their shallower depths, ground motion behavior from induced events seems to fall in between the West data and that of NGA-East, so we explore the control of stress drop and depth on ground motion in more detail.

  4. Historical earthquakes studies in Eastern Siberia: State-of-the-art and plans for future

    NASA Astrophysics Data System (ADS)

    Radziminovich, Ya. B.; Shchetnikov, A. A.

    2013-01-01

    Many problems in investigating historical seismicity of East Siberia remain unsolved. A list of these problems may refer particularly to the quality and reliability of data sources, completeness of parametric earthquake catalogues, and precision and transparency of estimates for the main parameters of historical earthquakes. The main purpose of this paper is to highlight the current status of the studies of historical seismicity in Eastern Siberia, as well as analysis of existing macroseismic and parametric earthquake catalogues. We also made an attempt to identify the main shortcomings of existing catalogues and to clarify the reasons for their appearance in the light of the history of seismic observations in Eastern Siberia. Contentious issues in the catalogues of earthquakes are considered by the example of three strong historical earthquakes, important for assessing seismic hazard in the region. In particular, it was found that due to technical error the parameters of large M = 7.7 earthquakes of 1742 were transferred from the regional catalogue to the worldwide database with incorrect epicenter coordinates. The way some stereotypes concerning active tectonics influences on the localization of the epicenter is shown by the example of a strong М = 6.4 earthquake of 1814. Effect of insufficient use of the primary data source on completeness of earthquake catalogues is illustrated by the example of a strong M = 7.0 event of 1859. Analysis of the state-of-the-art of historical earthquakes studies in Eastern Siberia allows us to propose the following activities in the near future: (1) database compilation including initial descriptions of macroseismic effects with reference to their place and time of occurrence; (2) parameterization of the maximum possible (magnitude-unlimited) number of historical earthquakes on the basis of all the data available; (3) compilation of an improved version of the parametric historical earthquake catalogue for East Siberia with detailed consideration of each event and distinct logic schemes for data interpretation. Thus, we can make the conclusion regarding the necessity of a large-scale revision in historical earthquakes catalogues for the area of study.

  5. Finite Moment Tensors of Southern California Earthquakes

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; Chen, P.; Zhao, L.

    2003-12-01

    We have developed procedures for inverting broadband waveforms for the finite moment tensors (FMTs) of regional earthquakes. The FMT is defined in terms of second-order polynomial moments of the source space-time function and provides the lowest order representation of a finite fault rupture; it removes the fault-plane ambiguity of the centroid moment tensor (CMT) and yields several additional parameters of seismological interest: the characteristic length L{c}, width W{c}, and duration T{c} of the faulting, as well as the directivity vector {v}{d} of the fault slip. To formulate the inverse problem, we follow and extend the methods of McGuire et al. [2001, 2002], who have successfully recovered the second-order moments of large earthquakes using low-frequency teleseismic data. We express the Fourier spectra of a synthetic point-source waveform in its exponential (Rytov) form and represent the observed waveform relative to the synthetic in terms two frequency-dependent differential times, a phase delay δ τ {p}(ω ) and an amplitude-reduction time δ τ {q}(ω ), which we measure using Gee and Jordan's [1992] isolation-filter technique. We numerically calculate the FMT partial derivatives in terms of second-order spatiotemporal gradients, which allows us to use 3D finite-difference seismograms as our isolation filters. We have applied our methodology to a set of small to medium-sized earthquakes in Southern California. The errors in anelastic structure introduced perturbations larger than the signal level caused by finite source effect. We have therefore employed a joint inversion technique that recovers the CMT parameters of the aftershocks, as well as the CMT and FMT parameters of the mainshock, under the assumption that the source finiteness of the aftershocks can be ignored. The joint system of equations relating the δ τ {p} and δ τ {q} data to the source parameters of the mainshock-aftershock cluster is denuisanced for path anomalies in both observables; this projection operation effectively corrects the mainshock data for path-related amplitude anomalies in a way similar to, but more flexible than, empirical Green function (EGF) techniques.

  6. Probabilistic Seismic Hazard Assessment for Himalayan-Tibetan Region from Historical and Instrumental Earthquake Catalogs

    NASA Astrophysics Data System (ADS)

    Rahman, M. Moklesur; Bai, Ling; Khan, Nangyal Ghani; Li, Guohui

    2018-02-01

    The Himalayan-Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan-Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg-Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan-Tibetan region.

  7. Scaling differences between large interplate and intraplate earthquakes

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Aviles, C. A.; Wesnousky, S. G.

    1985-01-01

    A study of large intraplate earthquakes with well determined source parameters shows that these earthquakes obey a scaling law similar to large interplate earthquakes, in which M sub o varies as L sup 2 or u = alpha L where L is rupture length and u is slip. In contrast to interplate earthquakes, for which alpha approximately equals 1 x .00001, for the intraplate events alpha approximately equals 6 x .0001, which implies that these earthquakes have stress-drops about 6 times higher than interplate events. This result is independent of focal mechanism type. This implies that intraplate faults have a higher frictional strength than plate boundaries, and hence, that faults are velocity or slip weakening in their behavior. This factor may be important in producing the concentrated deformation that creates and maintains plate boundaries.

  8. Source Mechanisms of Destructive Tsunamigenic Earthquakes occurred along the Major Subduction Zones

    NASA Astrophysics Data System (ADS)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay; Ulutaş, Ergin

    2016-04-01

    Subduction zones, where an oceanic plate is subducted down into the mantle by tectonic forces, are potential tsunami locations. Many big, destructive and tsunamigenic earthquakes (Mw > 7.5) and high amplitude tsunami waves are observed along the major subduction zones particularly near Indonesia, Japan, Kuril and Aleutan Islands, Gulf of Alaska, Southern America. Not all earthquakes are tsunamigenic; in order to generate a tsunami, the earthquake must occur under or near the ocean, be large, and create significant vertical movements of the seafloor. It is also known that tsunamigenic earthquakes release their energy over a couple of minutes, have long source time functions and slow-smooth ruptures. In this study, we performed point-source inversions by using teleseismic long-period P- and SH- and broad-band P-waveforms recorded by the Federation of Digital Seismograph Networks (FDSN) and the Global Digital Seismograph Network (GDSN) stations. We obtained source mechanism parameters and finite-fault slip distributions of recent destructive ten earthquakes (Mw ≥ 7.5) by comparing the shapes and amplitudes of long period P- and SH-waveforms, recorded in the distance range of 30° - 90°, with synthetic waveforms. We further obtained finite-fault rupture histories of those earthquakes to determine the faulting area (fault length and width), maximum displacement, rupture duration and stress drop. We applied a new back-projection method that uses teleseismic P-waveforms to integrate the direct P-phase with reflected phases from structural discontinuities near the source, and customized it to estimate the spatio-temporal distribution of the seismic energy release of earthquakes. Inversion results exhibit that recent tsunamigenic earthquakes show dominantly thrust faulting mechanisms with small amount of strike-slip components. Their focal depths are also relatively shallow (h < 40 km). As an example, the September 16, 2015 Illapel (Chile) earthquake (Mw: 8.3; h: 26 km) reflects the major characteristics of the Peru-Chile subduction zone between the Nazca and South America Plates. The size, location, depth and focal mechanism of this earthquake are consistent with its occurrence on the megathrust interface in this region. This study is supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No: CAYDAG - 114Y066).

  9. Observed ground-motion variabilities and implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, F.; Bora, S. S.; Bindi, D.; Specht, S.; Drouet, S.; Derras, B.; Pina-Valdes, J.

    2016-12-01

    One of the key challenges of seismology is to be able to calibrate and analyse the physical factors that control earthquake and ground-motion variabilities. Within the framework of empirical ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-field records and modern regression algorithms allow to decompose these residuals into between-event and a within-event residual components. The between-event term quantify all the residual effects of the source (e.g. stress-drops) which are not accounted by magnitude term as the only source parameter of the model. Between-event residuals provide a new and rather robust way to analyse the physical factors that control earthquake source properties and associated variabilities. We first will show the correlation between classical stress-drops and between-event residuals. We will also explain why between-event residuals may be a more robust way (compared to classical stress-drop analysis) to analyse earthquake source-properties. We will finally calibrate between-events variabilities using recent high-quality global accelerometric datasets (NGA-West 2, RESORCE) and datasets from recent earthquakes sequences (Aquila, Iquique, Kunamoto). The obtained between-events variabilities will be used to evaluate the variability of earthquake stress-drops but also the variability of source properties which cannot be explained by a classical Brune stress-drop variations. We will finally use the between-event residual analysis to discuss regional variations of source properties, differences between aftershocks and mainshocks and potential magnitude dependencies of source characteristics.

  10. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Saul, J.; Grosser, H.; Wang, R.; Zschau, J.

    2009-04-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake's damage potential. However, many magnitude scales developed over the past years have different meanings. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy ES (e.g. Bormann et al., 2002): Me = 2/3(log10 ES - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. The calculation of ES requires the integration over frequency of the squared P-waves velocity spectrum corrected for the energy loss experienced by the seismic waves along the path from the source to the receivers. To accout for the frequency-dependent energy loss, we computed spectral amplitude decay functions for different frequenciesby using synthetic Green's functions (Wang, 1999) based on the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We analyse teleseismic broadband P-waves signals in the distance range 20°-98°. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake's origin time. Indeed, we use time variable cumulative energy windows starting 4 s after the first P-wave arrival in order to include the earthquake rupture duration, which is calculated according to Bormann and Saul (2008). We tested our procedure for a large dataset composed by about 750 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of the seismic source, and a combined use of these two magnitude scales would allow a better assessment of the tsunami and shaking potential of an earthquake.. References Bormann, P., Baumbach, M., Bock, G., Grosser, H., Choy, G. L., and Boatwright, J. (2002). Seismic sources and source parameters, in IASPEI New Manual of Seismological Observatory Practice, P. Bormann (Editor), Vol. 1, GeoForschungsZentrum, Potsdam, Chapter 3, 1-94. Bormann, P., and Saul, J. (2008). The new IASPEI standard broadband magnitude mB. Seism. Res. Lett., 79(5), 699-705. Choy, G. L., and Kirby, S. (2004). Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int., 159, 991-1012. Kennett, B. L. N., Engdahl, E. R., and Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122, 108-124. Montagner, J.-P., and Kennett, B. L. N. (1996). How to reconcile body-wave and normal-mode reference Earth models?. Geophys. J. Int., 125, 229-248. Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Green's functions. Bull. Seism. Soc. Am., 89(3), 733-741.

  11. An integrated investigation of the induced seismicity near Crooked Lake, Alberta, Canada in 2016

    NASA Astrophysics Data System (ADS)

    Wang, R.; Gu, Y. J.; Shen, J.; Schultz, R.

    2016-12-01

    In the past three years, the Crooked Lake (or Fox Creek) region has become one of the most seismically active areas in the Western Canada Sedimentary Basin (WCSB), mostly attributable to hydraulic-fracturing operations on shale gas. Among the human-related earthquakes, the January 12, 2016 event (M = 4.1) not only triggered the "red light" provincial protocol, leading to the temporary suspension of a near-by injection well, but also set a new magnitude record for earthquakes in Alberta in the last decade. In this study, we determine the source parameters (e.g., magnitude, hypocenter location) of this earthquake and its aftershocks using full moment tensor inversions. Our findings are consistent with the anthropogenic origin of this earthquake and the source solution of the main shock shows a strike-slip mechanism with limited non-double-couple components ( 22%). The candidate fault orientations, which are predominantly N-S and E-W trending, are consistent with those of earlier events in this region but different from induced events in other parts in the WCSB. The inferred compressional axis is supported by crustal stress orientations extracted from bore-hole breakouts and the right-lateral fault is preferred by both seismic and aeromagnetic data. A further analysis of the waveforms from the near-source stations (<10 km) detected nearly 100 pre-/aftershocks within a week of this earthquake. Systematic differences in the waveforms between earthquake multiples before and after the master event suggest moderate changes of seismic velocity structures at the injection depth around the source area, possibly a reflection of fluid migration and/or changes in stress field. In short, our integrated study on the January 2016 earthquake cluster offers critical insights on the nature of induced earthquakes in the Crooked Lake region and other parts of the WCSB.

  12. Characterising large scenario earthquakes and their influence on NDSHA maps

    NASA Astrophysics Data System (ADS)

    Magrin, Andrea; Peresan, Antonella; Panza, Giuliano F.

    2016-04-01

    The neo-deterministic approach to seismic zoning, NDSHA, relies on physically sound modelling of ground shaking from a large set of credible scenario earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g. morphostructural features and present day deformation processes identified by Earth observations). NDSHA is based on the calculation of complete synthetic seismograms; hence it does not make use of empirical attenuation models (i.e. ground motion prediction equations). From the set of synthetic seismograms, maps of seismic hazard that describe the maximum of different ground shaking parameters at the bedrock can be produced. As a rule, the NDSHA, defines the hazard as the envelope ground shaking at the site, computed from all of the defined seismic sources; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In this way, the standard NDSHA maps permit to account for the largest observed or credible earthquake sources identified in the region in a quite straightforward manner. This study aims to assess the influence of unavoidable uncertainties in the characterisation of large scenario earthquakes on the NDSHA estimates. The treatment of uncertainties is performed by sensitivity analyses for key modelling parameters and accounts for the uncertainty in the prediction of fault radiation and in the use of Green's function for a given medium. Results from sensitivity analyses with respect to the definition of possible seismic sources are discussed. A key parameter is the magnitude of seismic sources used in the simulation, which is based on information from earthquake catalogue, seismogenic zones and seismogenic nodes. The largest part of the existing Italian catalogues is based on macroseismic intensities, a rough estimate of the error in peak values of ground motion can therefore be the factor of two, intrinsic in MCS and other discrete scales. A simple test supports this hypothesis: an increase of 0.5 in the magnitude, i.e. one degrees in epicentral MCS, of all sources used in the national scale seismic zoning produces a doubling of the maximum ground motion. The analysis of uncertainty in ground motion maps, due to the catalogue random errors in magnitude and localization, shows a not uniform distribution of ground shaking uncertainty. The available information from catalogues of past events, that is not complete and may well not be representative of future earthquakes, can be substantially completed using independent indicators of the seismogenic potential of a given area, such as active faulting data and the seismogenic nodes.

  13. How sensitive is earthquake ground motion to source parameters? Insights from a numerical study in the Mygdonian basin

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; deMartin, Florent; Hollender, Fabrice; Guyonnet-Benaize, Cédric; Manakou, Maria; Savvaidis, Alexandros; Kiratzi, Anastasia; Roumelioti, Zaferia; Theodoulidis, Nikos

    2014-05-01

    Understanding the origin of the variability of earthquake ground motion is critical for seismic hazard assessment. Here we present the results of a numerical analysis of the sensitivity of earthquake ground motion to seismic source parameters, focusing on the Mygdonian basin near Thessaloniki (Greece). We use an extended model of the basin (65 km [EW] x 50 km [NS]) which has been elaborated during the Euroseistest Verification and Validation Project. The numerical simulations are performed with two independent codes, both implementing the Spectral Element Method. They rely on a robust, semi-automated, mesh design strategy together with a simple homogenization procedure to define a smooth velocity model of the basin. Our simulations are accurate up to 4 Hz, and include the effects of surface topography and of intrinsic attenuation. Two kinds of simulations are performed: (1) direct simulations of the surface ground motion for real regional events having various back azimuth with respect to the center of the basin; (2) reciprocity-based calculations where the ground motion due to 980 different seismic sources is computed at a few stations in the basin. In the reciprocity-based calculations, we consider epicentral distances varying from 2.5 km to 40 km, source depths from 1 km to 15 km and we span the range of possible back-azimuths with a 10 degree bin. We will present some results showing (1) the sensitivity of ground motion parameters to the location and focal mechanism of the seismic sources; and (2) the variability of the amplification caused by site effects, as measured by standard spectral ratios, to the source characteristics

  14. Features of Radiation and Propagation of Seismic Waves in the Northern Caucasus: Manifestations in Regional Coda

    NASA Astrophysics Data System (ADS)

    Kromskii, S. D.; Pavlenko, O. V.; Gabsatarova, I. P.

    2018-03-01

    Based on the Anapa (ANN) seismic station records of 40 earthquakes ( M W > 3.9) that occurred within 300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth's crust ( Q( f)) and upper mantle are estimated for the S-waves in the 1-8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q( f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q( f) = 90 × f1.0 for r > 120 km. The established Q( f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9-5.6; however, the radiation of the high-frequency components ( f > 4-5 Hz) is enhanced with the depth of the source (down to h 60 km). The estimates Q( f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q( f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth's crust in the other regions of the Northern Caucasus.

  15. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  16. Source mechanisms and source parameters of March 10 and September 13, 2007, United Arab Emirates Earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzooqi, Y A; Abou Elenean, K M; Megahed, A S

    2008-02-29

    On March 10 and September 13, 2007 two felt earthquakes with moment magnitudes 3.66 and 3.94 occurred in the eastern part of United Arab Emirates (UAE). The two events were accompanied by few smaller events. Being well recorded by the digital UAE and Oman digital broadband stations, they provide us an excellent opportunity to study the tectonic process and present day stress field acting on this area. In this study, we determined the focal mechanisms of the two main shocks by two methods (polarities of P and regional waveform inversion). Our results indicate a normal faulting mechanism with slight strikemore » slip component for the two studied events along a fault plane trending NNE-SSW in consistent a suggested fault along the extension of the faults bounded Bani Hamid area. The Seismicity distribution between two earthquake sequences reveals a noticeable gap that may be a site of a future event. The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated based on the far field displacement spectra and interpreted in the context of the tectonic setting.« less

  17. Estimation of Source Parameters of Historical Major Earthquakes from 1900 to 1970 around Asia and Analysis of Their Uncertainties

    NASA Astrophysics Data System (ADS)

    Han, J.; Zhou, S.

    2017-12-01

    Asia, located in the conjoined areas of Eurasian, Pacific, and Indo-Australian plates, is the continent with highest seismicity. Earthquake catalogue on the bases of modern seismic network recordings has been established since around 1970 in Asia and the earthquake catalogue before 1970 was much more inaccurate because of few stations. With a history of less than 50 years of modern earthquake catalogue, researches in seismology are quite limited. After the appearance of improved Earth velocity structure model, modified locating method and high-accuracy Optical Character Recognition technique, travel time data of earthquakes from 1900 to 1970 can be included in research and more accurate locations can be determined for historical earthquakes. Hence, parameters of these historical earthquakes can be obtained more precisely and some research method such as ETAS model can be used in a much longer time scale. This work focuses on the following three aspects: (1) Relocating more than 300 historical major earthquakes (M≥7.0) in Asia based on the Shide Circulars, International Seismological Summary and EHB Bulletin instrumental records between 1900 and 1970. (2) Calculating the focal mechanisms of more than 50 events by first motion records of P wave of ISS. (3) Based on the geological data, tectonic stress field and the result of relocation, inferring focal mechanisms of historical major earthquakes.

  18. Envelope of coda waves for a double couple source due to non-linear elasticity

    NASA Astrophysics Data System (ADS)

    Calisto, Ignacia; Bataille, Klaus

    2014-10-01

    Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.

  19. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity

    NASA Astrophysics Data System (ADS)

    Dziewonski, A. M.; Chou, T.-A.; Woodhouse, J. H.

    1981-04-01

    It is possible to use the waveform data not only to derive the source mechanism of an earthquake but also to establish the hypocentral coordinates of the `best point source' (the centroid of the stress glut density) at a given frequency. Thus two classical problems of seismology are combined into a single procedure. Given an estimate of the origin time, epicentral coordinates and depth, an initial moment tensor is derived using one of the variations of the method described in detail by Gilbert and Dziewonski (1975). This set of parameters represents the starting values for an iterative procedure in which perturbations to the elements of the moment tensor are found simultaneously with changes in the hypocentral parameters. In general, the method is stable, and convergence rapid. Although the approach is a general one, we present it here in the context of the analysis of long-period body wave data recorded by the instruments of the SRO and ASRO digital network. It appears that the upper magnitude limit of earthquakes that can be processed using this particular approach is between 7.5 and 8.0; the lower limit is, at this time, approximately 5.5, but it could be extended by broadening the passband of the analysis to include energy with periods shorter that 45 s. As there are hundreds of earthquakes each year with magnitudes exceeding 5.5, the seismic source mechanism can now be studied in detail not only for major events but also, for example, for aftershock series. We have investigated the foreshock and several aftershocks of the Sumba earthquake of August 19, 1977; the results show temporal variation of the stress regime in the fault area of the main shock. An area some 150 km to the northwest of the epicenter of the main event became seismically active 49 days later. The sense of the strike-slip mechanism of these events is consistent with the relaxation of the compressive stress in the plate north of the Java trench. Another geophysically interesting result of our analysis is that for 5 out of 11 earthquakes of intermediate and great depth the intermediate principal value of the moment tensor is significant, while for the remaining 6 it is essentially zero, which means that their mechanisms are consistent with a simple double-couple representation. There is clear distinction between these two groups of earthquakes.

  20. Fault- and Area-Based PSHA in Nepal using OpenQuake: New Insights from the 2015 M7.8 Gorkha-Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Stevens, Victoria

    2017-04-01

    The 2015 Gorkha-Nepal M7.8 earthquake (hereafter known simply as the Gorkha earthquake) highlights the seismic risk in Nepal, allows better characterization of the geometry of the Main Himalayan Thrust (MHT), and enables comparison of recorded ground-motions with predicted ground-motions. These new data, together with recent paleoseismic studies and geodetic-based coupling models, allow for good parameterization of the fault characteristics. Other faults in Nepal remain less well studied. Unlike previous PSHA studies in Nepal that are exclusively area-based, we use a mix of faults and areas to describe six seismic sources in Nepal. For each source, the Gutenberg-Richter a and b values are found, and the maximum magnitude earthquake estimated, using a combination of earthquake catalogs, moment conservation principals and similarities to other tectonic regions. The MHT and Karakoram fault are described as fault sources, whereas four other sources - normal faulting in N-S trending grabens of northern Nepal, strike-slip faulting in both eastern and western Nepal, and background seismicity - are described as area sources. We use OpenQuake (http://openquake.org/) to carry out the analysis, and peak ground acceleration (PGA) at 2 and 10% chance in 50 years is found for Nepal, along with hazard curves at various locations. We compare this PSHA model with previous area-based models of Nepal. The Main Himalayan Thrust is the principal seismic hazard in Nepal so we study the effects of changing several parameters associated with this fault. We compare ground shaking predicted from various fault geometries suggested from the Gorkha earthquake with each other, and with a simple model of a flat fault. We also show the results from incorporating a coupling model based on geodetic data and microseismicity, which limits the down-dip extent of rupture. There have been no ground-motion prediction equations (GMPEs) developed specifically for Nepal, so we compare the results of standard GMPEs used together with an earthquake-scenario representing that of the Gorkha earthquake, with actual data from the Gorkha earthquake itself. The Gorkha earthquake also highlighted the importance of basin-, topographic- and directivity-effects, and the location of high-frequency sources, on influencing ground motion. Future study aims at incorporating the above, together with consideration of the fault-rupture history and its influence on the location and timing of future earthquakes.

  1. Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters

    NASA Astrophysics Data System (ADS)

    Dahm, Torsten; Cesca, Simone; Hainzl, Sebastian; Braun, Thomas; Krüger, Frank

    2015-04-01

    Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the Mw 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the Mw 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Söhlingen gas field; and (3) the Mw 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly "human induced," "not even human triggered," and a third case in between both extremes.

  2. 2014 Update of the Pacific Northwest portion of the U.S. National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, Arthur; Chen, Rui; Petersen, Mark; Moschetti, Morgan P.; Sherrod, Brian

    2015-01-01

    Several aspects of the earthquake characterization were changed for the Pacific Northwest portion of the 2014 update of the national seismic hazard maps, reflecting recent scientific findings. New logic trees were developed for the recurrence parameters of M8-9 earthquakes on the Cascadia subduction zone (CSZ) and for the eastern edge of their rupture zones. These logic trees reflect recent findings of additional M8 CSZ earthquakes using offshore deposits of turbidity flows and onshore tsunami deposits and subsidence. These M8 earthquakes each rupture a portion of the CSZ and occur in the time periods between M9 earthquakes that have an average recurrence interval of about 500 years. The maximum magnitude was increased for deep intraslab earthquakes. An areal source zone to account for the possibility of deep earthquakes under western Oregon was expanded. The western portion of the Tacoma fault was added to the hazard maps.

  3. Teleseismically recorded seismicity before and after the May 7, 1986, Andreanof Islands, Alaska, earthquake

    USGS Publications Warehouse

    Engdahl, E.R.; Billington, S.; Kisslinger, C.

    1989-01-01

    The Andreanof Islands earthquake (Mw 8.0) is the largest event to have occurred in that section of the Aleutian arc since the March 9, 1957, Aleutian Islands earthquake (Mw 8.6). Teleseismically well-recorded earthquakes in the region of the 1986 earthquake are relocated with a plate model and with careful attention to the focal depths. The data set is nearly complete for mb???4.7 between longitudes 172??W and 179??W for the period 1964 through April 1987 and provides a detailed description of the space-time history of moderate-size earthquakes in the region for that period. Additional insight is provided by source parameters which have been systematically determined for Mw???5 earthquakes that occurred in the region since 1977 and by a modeling study of the spatial distribution of moment release on the mainshock fault plane. -from Authors

  4. Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India.

    PubMed

    Sahoo, Sushanta Ku; Katlamudi, Madhusudhanarao; Shaji, Jerin P; Murali Krishna, K S; Udaya Lakshmi, G

    2018-02-02

    The soil radon (Rn 222 ) and thoron (Rn 220 ) concentrations recorded at Badargadh and Desalpar observatories in the Kutch region of Gujarat, India, have been analyzed to study the sources of the radon emissions, earthquake precursors, and the influence of meteorological parameters on radon emission. Radon and meteorological parameters were recorded using Radon Monitor RMT 1688-2 at these two stations. We used the radon data during February 21, 2011 to June 8, 2011, for Badargadh and March 2, 2011 to May 19, 2011, for the Desalpar station with a sampling interval of 10 min. It is observed that the radon concentrations at Desalpar varies between 781 and 4320 Bq m -3 with an average value of 2499 Bq m -3 , whereas thoron varies between 191 and 2017 Bq m -3 with an average value of 1433.69 Bq m -3 . The radon concentration at Badargadh varies between 264 and 2221 Bq m -3 with an average value of 1135.4 Bq m -3 , whereas thoron varies between 97 and 556 Bq m -3 . To understand how the meteorological parameters influence radon emanation, the radon and other meteorological parameters were correlated with linear regression analysis. Here, it was observed that radon and temperature are negatively correlated whereas radon and other two parameters, i.e., humidity and pressure are positively correlated. The cross correlogram also ascertains similar relationships between radon and other parameters. Further, the ratio between radon and thoron has been analyzed to determine the deep or shallow source of the radon emanation in the study area. These results revealed that the ratio radon/thoron enhanced during this period which indicates the deeper source contribution is prominent. Incidentally, all the local earthquakes occurred with a focal depth of 18-25 km at the lower crust in this region. We observed the rise in the concentrations of radon and the ratio radon/thoron at Badargadh station before the occurrence of the local earthquakes on 29th March 2011 (M 3.7) and 17th May 2011 (M 4.2). We clearly observed the radon level crossing the mean + 2*sigma level before the occurrence of these events. We conclude that these enhanced radon emissions are linked with alteration of the crustal stress/strain in this region as this observing station is near the epicenters of the earthquakes. We did not observe considerable variations in radon at the Desalpar station which is far from the earthquake location.

  5. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the 2007 Noto-hanto earthquake, 2008 Iwate-Miyagi earthquake, and 2008 Wenchuan earthquake. The on-going rupture extent can be estimated for all datasets as the rupture propagates. For earthquakes with magnitude about 7.0, the determination of the fault parameters converges to the final geometry within 10 seconds.

  6. Poroelastic properties of the Arbuckle Group in Oklahoma derived from well fluid level response to the 3 September 2016 Mw 5.8 Pawnee and 7 November 2016 Mw 5.0 Cushing earthquakes

    USGS Publications Warehouse

    Kroll, Kayla A.; Cochran, Elizabeth S.; Murray, Kyle E.

    2017-01-01

    The Arbuckle Group (Arbuckle) is a basal sedimentary unit that is the primary target for saltwater disposal in Oklahoma. Thus, the reservoir characteristics of the Arbuckle, including how the poroelastic properties change laterally and over time are of significant interest. We report observations of fluid level changes in two monitoring wells in response to the 3 September 2016 Mw 5.8 Pawnee and the 7 November 2016 Mw 5.0 Cushing earthquakes. We investigate the relationship between static strain resulting from these events and the fluid level changes observed in the wells. We model the fluid level response by estimating static strains from a set of earthquake source parameters and spatiotemporal poroelastic properties of the Arbuckle in the neighborhood of the monitoring wells. Results suggest that both the direction of the observed fluid level step and the amplitude can be predicted from the computed volumetric strain change and a reasonable set of poroelastic parameters. Modeling results indicate that poroelastic parameters differ at the time of the Pawnee and Cushing earthquakes, with a moderately higher Skempton’s coefficient required to fit the response to the Cushing earthquake. This may indicate that dynamic shaking resulted in physical alteration of the Arbuckle at distances up to ∼50  km from the Pawnee earthquake.

  7. Constraints on recent earthquake source parameters, fault geometry and aftershock characteristics in Oklahoma

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H.; Herrmann, R. B.; Bergman, E. A.; McMahon, N. D.; Aster, R. C.

    2014-12-01

    In late 2009, the seismicity of Oklahoma increased dramatically. The largest of these earthquakes was a series of three damaging events (Mw 4.8, 5.6, 4.8) that occurred over a span of four days in November 2011 near the town of Prague in central Oklahoma. Studies suggest that these earthquakes were induced by reactivation of the Wilzetta fault due to the disposal of waste water from hydraulic fracturing ("fracking") and other oil and gas activities. The Wilzetta fault is a northeast trending vertical strike-slip fault that is a well known structural trap for oil and gas. Since the November 2011 Prague sequence, thousands of small to moderate (M2-M4) earthquakes have occurred throughout central Oklahoma. The most active regions are located near the towns of Stillwater and Medford in north-central Oklahoma, and Guthrie, Langston and Jones near Oklahoma City. The USGS, in collaboration with the Oklahoma Geological Survey and the University of Oklahoma, has responded by deploying numerous temporary seismic stations in the region in order to record the vigorous aftershock sequences. In this study we use data from the temporary seismic stations to re-locate all Oklahoma earthquakes in the USGS National Earthquake Information Center catalog using a multiple-event approach known as hypo-centroidal decomposition that locates earthquakes with decreased uncertainty relative to one another. Modeling from this study allows us to constrain the detailed geometry of the reactivated faults, as well as source parameters (focal mechanisms, stress drop, rupture length) for the larger earthquakes. Preliminary results from the November 2011 Prague sequence suggest that subsurface rupture lengths of the largest earthquakes are anomalously long with very low stress drop. We also observe very high Q (~1000 at 1 Hz) that explains the large felt areas and we find relatively low b-value and a rapid decay of aftershocks.

  8. Source parameters for small events associated with the 1986 North Palm Springs, California, earthquake determined using empirical Green functions

    USGS Publications Warehouse

    Mori, J.; Frankel, A.

    1990-01-01

    Using small events as empirical Green functions, source parameters were estimated for 25 ML 3.4 to 4.4 events associated with the 1986 North Palm Springs earthquake. The static stress drops ranged from 3 to 80 bars, for moments of 0.7 to 11 ?? 1021 dyne-cm. There was a spatial pattern to the stress drops of the aftershocks which showed increasing values along the fault plane toward the northwest compared to relatively low values near the hypocenter of the mainshock. The highest values were outside the main area of slip, and are believed to reflect a loaded area of the fault that still has an higher level of stress which was not released during the main shock. -from Authors

  9. Normal Fault Type Earthquakes Off Fukushima Region - Comparison of the 1938 Events and Recent Earthquakes -

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Satake, K.

    2017-12-01

    Off Fukushima region, Mjma 7.4 (event A) and 6.9 (event B) events occurred on November 6, 1938, following the thrust fault type earthquakes of Mjma 7.5 and 7.3 on the previous day. These earthquakes were estimated as normal fault earthquakes by Abe (1977, Tectonophysics). An Mjma 7.0 earthquake occurred on July 12, 2014 near event B and an Mjma 7.4 earthquake occurred on November 22, 2016 near event A. These recent events are the only M 7 class earthquakes occurred off Fukushima since 1938. Except for the two 1938 events, normal fault earthquakes have not occurred until many aftershocks of the 2011 Tohoku earthquake. We compared the observed tsunami and seismic waveforms of the 1938, 2014, and 2016 earthquakes to examine the normal fault earthquakes occurred off Fukushima region. It is difficult to compare the tsunami waveforms of the 1938, 2014 and 2016 events because there were only a few observations at the same station. The teleseismic body wave inversion of the 2016 earthquake yielded with the focal mechanism of strike 42°, dip 35°, and rake -94°. Other source parameters were as follows: source area 70 km x 40 km, average slip 0.2 m, maximum slip 1.2 m, seismic moment 2.2 x 1019 Nm, and Mw 6.8. A large slip area is located near the hypocenter, and it is compatible with the tsunami source area estimated from tsunami travel times. The 2016 tsunami source area is smaller than that of the 1938 event, consistent with the difference in Mw: 7.7 for event A estimated by Abe (1977) and 6.8 for the 2016 event. Although the 2014 epicenter is very close to that of event B, the teleseismic waveforms of the 2014 event are similar to those of event A and the 2016 event. While Abe (1977) assumed that the mechanism of event B was the same as event A, the initial motions at some stations are opposite, indicating that the focal mechanisms of events A and B are different and more detailed examination is needed. The normal fault type earthquake seems to occur following the occurrence of M7 9 class thrust type earthquake at the plate boundary off Fukushima region.

  10. Rapid estimate of earthquake source duration: application to tsunami warning.

    NASA Astrophysics Data System (ADS)

    Reymond, Dominique; Jamelot, Anthony; Hyvernaud, Olivier

    2016-04-01

    We present a method for estimating the source duration of the fault rupture, based on the high-frequency envelop of teleseismic P-Waves, inspired from the original work of (Ni et al., 2005). The main interest of the knowledge of this seismic parameter is to detect abnormal low velocity ruptures that are the characteristic of the so called 'tsunami-earthquake' (Kanamori, 1972). The validation of the results of source duration estimated by this method are compared with two other independent methods : the estimated duration obtained by the Wphase inversion (Kanamori and Rivera, 2008, Duputel et al., 2012) and the duration calculated by the SCARDEC process that determines the source time function (M. Vallée et al., 2011). The estimated source duration is also confronted to the slowness discriminant defined by Newman and Okal, 1998), that is calculated routinely for all earthquakes detected by our tsunami warning process (named PDFM2, Preliminary Determination of Focal Mechanism, (Clément and Reymond, 2014)). Concerning the point of view of operational tsunami warning, the numerical simulations of tsunami are deeply dependent on the source estimation: better is the source estimation, better will be the tsunami forecast. The source duration is not directly injected in the numerical simulations of tsunami, because the cinematic of the source is presently totally ignored (Jamelot and Reymond, 2015). But in the case of a tsunami-earthquake that occurs in the shallower part of the subduction zone, we have to consider a source in a medium of low rigidity modulus; consequently, for a given seismic moment, the source dimensions will be decreased while the slip distribution increased, like a 'compact' source (Okal, Hébert, 2007). Inversely, a rapid 'snappy' earthquake that has a poor tsunami excitation power, will be characterized by higher rigidity modulus, and will produce weaker displacement and lesser source dimensions than 'normal' earthquake. References: CLément, J. and Reymond, D. (2014). New Tsunami Forecast Tools for the French Polynesia Tsunami Warning System. Pure Appl. Geophys, 171. DUPUTEL, Z., RIVERA, L., KANAMORI, H. and HAYES, G. (2012). Wphase source inversion for moderate to large earthquakes. Geophys. J. Intl.189, 1125-1147. Kanamori, H. (1972). Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter. 6, 246-259. Kanamori, H. and Rivera, L. (2008). Source inversion of W phase : speeding up seismic tsunami warning. Geophys. J. Intl. 175, 222-238. Newman, A. and Okal, E. (1998). Teleseismic estimates of radiated seismic energy : The E=M0 discriminant for tsunami earthquakes. J. Geophys. Res. 103, 26885-26898. Ni, S., H. Kanamori, and D. Helmberger (2005), Energy radiation from the Sumatra earthquake, Nature, 434, 582. Okal, E.A., and H. Hébert (2007), Far-field modeling of the 1946 Aleutian tsunami, Geophys. J. Intl., 169, 1229-1238. Vallée, M., J. Charléty, A.M.G. Ferreira, B. Delouis, and J. Vergoz, SCARDEC : a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body wave deconvolution, Geophys. J. Int., 184, 338-358, 2011.

  11. Near real-time finite fault source inversion for moderate-large earthquakes in Taiwan using teleseismic P waveform

    NASA Astrophysics Data System (ADS)

    Wong, T. P.; Lee, S. J.; Gung, Y.

    2017-12-01

    Taiwan is located at one of the most active tectonic regions in the world. Rapid estimation of the spatial slip distribution of moderate-large earthquake (Mw6.0) is important for emergency response. It is necessary to have a real-time system to provide the report immediately after earthquake happen. The earthquake activities in the vicinity of Taiwan can be monitored by Real-Time Moment Tensor Monitoring System (RMT) which provides the rapid focal mechanism and source parameters. In this study, we follow up the RMT system to develop a near real-time finite fault source inversion system for the moderate-large earthquakes occurred in Taiwan. The system will be triggered by the RMT System when an Mw6.0 is detected. According to RMT report, our system automatically determines the fault dimension, record length, and rise time. We adopted one segment fault plane with variable rake angle. The generalized ray theory was applied to calculate the Green's function for each subfault. The primary objective of the system is to provide the first order image of coseismic slip pattern and identify the centroid location on the fault plane. The performance of this system had been demonstrated by 23 big earthquakes occurred in Taiwan successfully. The results show excellent data fits and consistent with the solutions from other studies. The preliminary spatial slip distribution will be provided within 25 minutes after an earthquake occurred.

  12. Open Source Tools for Seismicity Analysis

    NASA Astrophysics Data System (ADS)

    Powers, P.

    2010-12-01

    The spatio-temporal analysis of seismicity plays an important role in earthquake forecasting and is integral to research on earthquake interactions and triggering. For instance, the third version of the Uniform California Earthquake Rupture Forecast (UCERF), currently under development, will use Epidemic Type Aftershock Sequences (ETAS) as a model for earthquake triggering. UCERF will be a "living" model and therefore requires robust, tested, and well-documented ETAS algorithms to ensure transparency and reproducibility. Likewise, as earthquake aftershock sequences unfold, real-time access to high quality hypocenter data makes it possible to monitor the temporal variability of statistical properties such as the parameters of the Omori Law and the Gutenberg Richter b-value. Such statistical properties are valuable as they provide a measure of how much a particular sequence deviates from expected behavior and can be used when assigning probabilities of aftershock occurrence. To address these demands and provide public access to standard methods employed in statistical seismology, we present well-documented, open-source JavaScript and Java software libraries for the on- and off-line analysis of seismicity. The Javascript classes facilitate web-based asynchronous access to earthquake catalog data and provide a framework for in-browser display, analysis, and manipulation of catalog statistics; implementations of this framework will be made available on the USGS Earthquake Hazards website. The Java classes, in addition to providing tools for seismicity analysis, provide tools for modeling seismicity and generating synthetic catalogs. These tools are extensible and will be released as part of the open-source OpenSHA Commons library.

  13. Hovsgol earthquake 5 December 2014, M W = 4.9: seismic and acoustic effects

    NASA Astrophysics Data System (ADS)

    Dobrynina, Anna A.; Sankov, Vladimir A.; Tcydypova, Larisa R.; German, Victor I.; Chechelnitsky, Vladimir V.; Ulzibat, Munkhuu

    2018-03-01

    A moderate shallow earthquake occurred on 5 December 2014 ( M W = 4.9) in the north of Lake Hovsgol (northern Mongolia). The infrasonic signal with duration 140 s was recorded for this earthquake by the "Tory" infrasound array (Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Science, Russia). Source parameters of the earthquake (seismic moment, geometrical sizes, displacement amplitudes in the focus) were determined using spectral analysis of direct body P and S waves. The spectral analysis of seismograms and amplitude variations of the surface waves allows to determine the effect of the propagation of the rupture in the earthquake focus, the azimuth of the rupture propagation direction and the velocity of displacement in the earthquake focus. The results of modelling of the surface displacements caused by the Hovsgol earthquake and high effective velocity of propagation of infrasound signal ( 625 m/s) indicate that its occurrence is not caused by the downward movement of the Earth's surface in the epicentral region but by the effect of the secondary source. The position of the secondary source of infrasound signal is defined on the northern slopes of the Khamar-Daban ridge according to the data on the azimuth and time of arrival of acoustic wave at the Tory station. The interaction of surface waves with the regional topography is proposed as the most probable mechanism of formation of the infrasound signal.

  14. Microearthquake sequences along the Irpinia normal fault system in Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Orefice, Antonella; Festa, Gaetano; Alfredo Stabile, Tony; Vassallo, Maurizio; Zollo, Aldo

    2013-04-01

    Microearthquakes reflect a continuous readjustment of tectonic structures, such as faults, under the action of local and regional stress fields. Low magnitude seismicity in the vicinity of active fault zones may reveal insights into the mechanics of the fault systems during the inter-seismic period and shine a light on the role of fluids and other physical parameters in promoting or disfavoring the nucleation of larger size events in the same area. Here we analyzed several earthquake sequences concentrated in very limited regions along the 1980 Irpinia earthquake fault zone (Southern Italy), a complex system characterized by normal stress regime, monitored by the dense, multi-component, high dynamic range seismic network ISNet (Irpinia Seismic Network). On a specific single sequence, the May 2008 Laviano swarm, we performed accurate absolute and relative locations and estimated source parameters and scaling laws that were compared with standard stress-drops computed for the area. Additionally, from EGF deconvolution, we computed a slip model for the mainshock and investigated the space-time evolution of the events in the sequence to reveal possible interactions among earthquakes. Through the massive analysis of cross-correlation based on the master event scanning of the continuous recording, we also reconstructed the catalog of repeated earthquakes and recognized several co-located sequences. For these events, we analyzed the statistical properties, location and source parameters and their space-time evolution with the aim of inferring the processes that control the occurrence and the size of microearthquakes in a swarm.

  15. STSHV a teleinformatic system for historic seismology in Venezuela

    NASA Astrophysics Data System (ADS)

    Choy, J. E.; Palme, C.; Altez, R.; Aranguren, R.; Guada, C.; Silva, J.

    2013-05-01

    From 1997 on, when the first "Jornadas Venezolanas de Sismicidad Historica" took place, a big interest awoke in Venezuela to organize the available information related to historic earthquakes. At that moment only existed one published historic earthquake catalogue, that from Centeno Grau published the first time in 1949. That catalogue had no references about the sources of information. Other catalogues existed but they were internal reports for the petroleum companies and therefore difficult to access. In 2000 Grases et al reedited the Centeno-Grau catalogue, it ended up in a new, very complete catalogue with all the sources well referenced and updated. The next step to organize historic seismicity data was, from 2004 to 2008, the creation of the STSHV (Sistema de teleinformacion de Sismologia Historica Venezolana, http://sismicidad.hacer.ula.ve ). The idea was to bring together all information about destructive historic earthquakes in Venezuela in one place in the internet so it could be accessed easily by a widespread public. There are two ways to access the system. The first one, selecting an earthquake or a list of earthquakes, and the second one, selecting an information source or a list of sources. For each earthquake there is a summary of general information and additional materials: a list with the source parameters published by different authors, a list with intensities assessed by different authors, a list of information sources, a short text summarizing the historic situation at the time of the earthquake and a list of pictures if available. There are searching facilities for the seismic events and dynamic maps can be created. The information sources are classified in: books, handwritten documents, transcription of handwritten documents, documents published in books, journals and congress memories, newspapers, seismologic catalogues and electronic sources. There are facilities to find specific documents or lists of documents with common characteristics. For each document general information is displayed together with an extract of the information relating to the earthquake. If the complete document was available and no problem with the publishers rights a pdf copy of the document was included. We found this system extremely useful for studying historic earthquakes, as one can access immediately previous research works about an earthquake and it allows to check easily the historic information and so to validate the intensity data. So far, the intensity data have not been completed for earthquakes after 2000. This information would be important for improving calibration of intensity - magnitude calibrations of historic events, and is a work in progress. On the other hand, it is important to mention that "El Catálogo Sismológico Venezolano del siglo XX" (The Seismological Venezuelan Catalog), published in 2012, updates seismic information up to 2007, and that the STSHV was one of its primary sources of information.

  16. Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.

    2001-06-01

    We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.

  17. On the relation of earthquake stress drop and ground motion variability

    NASA Astrophysics Data System (ADS)

    Oth, Adrien; Miyake, Hiroe; Bindi, Dino

    2017-07-01

    One of the key parameters for earthquake source physics is stress drop since it can be directly linked to the spectral level of ground motion. Stress drop estimates from moment corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than expected from the between-event ground motion variability. This discrepancy raises the question whether classically determined stress drop variability is too large, which would have significant consequences for seismic hazard analysis. We use a large high-quality data set from Japan with well-studied stress drop data to address this issue. Nonparametric and parametric reference ground motion models are derived, and the relation of between-event residuals for Japan Meteorological Agency equivalent seismic intensity and peak ground acceleration with stress drop is analyzed for crustal earthquakes. We find a clear correlation of the between-event residuals with stress drops estimates; however, while the island of Kyushu is characterized by substantially larger stress drops than Honshu, the between-event residuals do not reflect this observation, leading to the appearance of two event families with different stress drop levels yet similar range of between-event residuals. Both the within-family and between-family stress drop variations are larger than expected from the ground motion between-event variability. A systematic common analysis of these parameters holds the potential to provide important constraints on the relative robustness of different groups of data in the different parameter spaces and to improve our understanding on how much of the observed source parameter variability is likely to be true source physics variability.

  18. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  19. Source Parameters Inversion of the 2012 LA VEGA Colombia mw 7.2 Earthquake Using Near-Regional Waveform Data

    NASA Astrophysics Data System (ADS)

    Pedraza, P.; Poveda, E.; Blanco Chia, J. F.; Zahradnik, J.

    2013-05-01

    On September 30th, 2012, an earthquake of magnitude Mw 7.2 occurred at the depth of ~170km in the southeast of Colombia. This seismic event is associated to the Nazca plate drifting eastward relative the South America plate. The distribution of seismicity obtained by the National Seismological Network of Colombia (RSNC) since 1993 shows a segmented subduction zone with varying dip angles. The earthquake occurred in a seismic gap zone of intermediate depth. The recent deployment of broadband seismic stations on the Colombian, as a part of the Colombian Seismological Network, operated by the Colombian Survey, has provided high-quality data to study rupture process. We estimated the moment tensor, the centroid position, and the source time function. The parameters were obtained by inverting waveforms recorded by RSNC at distances 100 km to 800 km, and modeled at 0.01-0.09Hz, using different 1D crustal models, taking advantage of the ISOLA code. The DC-percentage of the earthquake is very high (~90%). The focal mechanism is mostly normal, hence the determination of the fault plane is challenging. An attempt to determine the fault plane was made based on mutual relative position of the centroid and hypocenter (H-C method). Studies in progress are devoted to searching possible complexity of the fault rupture process (total duration of about 15 seconds), quantified by multiple-point source models.

  20. The 2006 Java Earthquake revealed by the broadband seismograph network in Indonesia

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Miyakawa, K.; Yamashina, T.; Inoue, H.; Ishida, M.; Aoi, S.; Morikawa, N.; Harjadi, P.

    2006-12-01

    On May 27, 2006, local time, a moderate-size earthquake (Mw=6.4) occurred in central Java. This earthquake caused severe damages near Yogyakarta City, and killed more than 5700 people. To estimate the source mechanism and location of this earthquake, we performed a waveform inversion of the broadband seismograms recorded by a nationwide seismic network in Indonesia (Realtime-JISNET). Realtime-JISNET is a part of the broadband seismograph network developed by an international cooperation among Indonesia, Germany, China, and Japan, aiming at improving the capabilities to monitor seismic activity and tsunami generation in Indonesia. 12 stations in Realitme-JISNET were in operation when the earthquake occurred. We used the three-component seismograms from the two closest stations, which were located about 100 and 300 km from the source. In our analysis, we assumed pure double couple as the source mechanism, thus reducing the number of free parameters in the waveform inversion. Therefore we could stably estimate the source mechanism using the signals observed by a small number of seismic stations. We carried out a grid search with respect to strike, dip, and rake angles to investigate fault orientation and slip direction. We determined source-time functions of the moment-tensor components in the frequency domain for each set of strike, dip, and rake angles. We also conducted a spatial grid search to find the best-fit source location. The best-fit source was approximately 12 km SSE of Yogyakarta at a depth of 10 km below sea level, immediately below the area of extensive damage. The focal mechanism indicates that this earthquake was caused by compressive stress in the NS direction and strike-slip motion was dominant. The moment magnitude (Mw) was 6.4. We estimated the seismic intensity in the areas of severe damage using the source paramters and an empirical attenuation relation for averaged peak ground velocity (PGV) of horizontal seismic motion. We then calculated the instrumental modified Mercalli intensity (Imm) from the estimated PGV values. Our result indicates that strong ground motion with Imm of 7 or more occurred within 10 km of the earthquake fault, although the actual seismic intensity can be affected by shallow structural heterogeneity. We therefore conclude that the severe damages of the Java earthquake are attributed to the strong ground motion, which was primarily caused by the source located immediately below the populated areas.

  1. Demonstration of the Cascadia G‐FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake

    USGS Publications Warehouse

    Crowell, Brendan; Schmidt, David; Bodin, Paul; Vidale, John; Gomberg, Joan S.; Hartog, Renate; Kress, Victor; Melbourne, Tim; Santillian, Marcelo; Minson, Sarah E.; Jamison, Dylan

    2016-01-01

    A prototype earthquake early warning (EEW) system is currently in development in the Pacific Northwest. We have taken a two‐stage approach to EEW: (1) detection and initial characterization using strong‐motion data with the Earthquake Alarm Systems (ElarmS) seismic early warning package and (2) the triggering of geodetic modeling modules using Global Navigation Satellite Systems data that help provide robust estimates of large‐magnitude earthquakes. In this article we demonstrate the performance of the latter, the Geodetic First Approximation of Size and Time (G‐FAST) geodetic early warning system, using simulated displacements for the 2001Mw 6.8 Nisqually earthquake. We test the timing and performance of the two G‐FAST source characterization modules, peak ground displacement scaling, and Centroid Moment Tensor‐driven finite‐fault‐slip modeling under ideal, latent, noisy, and incomplete data conditions. We show good agreement between source parameters computed by G‐FAST with previously published and postprocessed seismic and geodetic results for all test cases and modeling modules, and we discuss the challenges with integration into the U.S. Geological Survey’s ShakeAlert EEW system.

  2. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast

    NASA Astrophysics Data System (ADS)

    Toda, Shinji; Enescu, Bogdan

    2011-03-01

    Numerous studies retrospectively found that seismicity rate jumps (drops) by coseismic Coulomb stress increase (decrease). The Collaboratory for the Study of Earthquake Prediction (CSEP) instead provides us an opportunity for prospective testing of the Coulomb hypothesis. Here we adapt our stress transfer model incorporating rate and state dependent friction law to the CSEP Japan seismicity forecast. We demonstrate how to compute the forecast rates of large shocks in 2009 using the large earthquakes during the past 120 years. The time dependent impact of the coseismic stress perturbations explains qualitatively well the occurrence of the recent moderate size shocks. Such ability is partly similar to that of statistical earthquake clustering models. However, our model differs from them as follows: the off-fault aftershock zones can be simulated using finite fault sources; the regional areal patterns of triggered seismicity are modified by the dominant mechanisms of the potential sources; the imparted stresses due to large earthquakes produce stress shadows that lead to a reduction of the forecasted number of earthquakes. Although the model relies on several unknown parameters, it is the first physics based model submitted to the CSEP Japan test center and has the potential to be tuned for short-term earthquake forecasts.

  3. A new software for deformation source optimization, the Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, H.; Dutta, R.; Jonsson, S.; Mai, P. M.

    2017-12-01

    Modern studies of crustal deformation and the related source estimation, including magmatic and tectonic sources, increasingly use non-linear optimization strategies to estimate geometric and/or kinematic source parameters and often consider both jointly, geodetic and seismic data. Bayesian inference is increasingly being used for estimating posterior distributions of deformation source model parameters, given measured/estimated/assumed data and model uncertainties. For instance, some studies consider uncertainties of a layered medium and propagate these into source parameter uncertainties, while others use informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed to efficiently explore the high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational burden of these methods is high and estimation codes are rarely made available along with the published results. Even if the codes are accessible, it is usually challenging to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in deformation source estimations, we undertook the effort of developing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package builds on the pyrocko seismological toolbox (www.pyrocko.org), and uses the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat), and we encourage and solicit contributions to the project. Here, we present our strategy for developing BEAT and show application examples; especially the effect of including the model prediction uncertainty of the velocity model in following source optimizations: full moment tensor, Mogi source, moderate strike-slip earth-quake.

  4. Modeling of the strong ground motion of 25th April 2015 Nepal earthquake using modified semi-empirical technique

    NASA Astrophysics Data System (ADS)

    Lal, Sohan; Joshi, A.; Sandeep; Tomer, Monu; Kumar, Parveen; Kuo, Chun-Hsiang; Lin, Che-Min; Wen, Kuo-Liang; Sharma, M. L.

    2018-05-01

    On 25th April, 2015 a hazardous earthquake of moment magnitude 7.9 occurred in Nepal. Accelerographs were used to record the Nepal earthquake which is installed in the Kumaon region in the Himalayan state of Uttrakhand. The distance of the recorded stations in the Kumaon region from the epicenter of the earthquake is about 420-515 km. Modified semi-empirical technique of modeling finite faults has been used in this paper to simulate strong earthquake at these stations. Source parameters of the Nepal aftershock have been also calculated using the Brune model in the present study which are used in the modeling of the Nepal main shock. The obtained value of the seismic moment and stress drop is 8.26 × 1025 dyn cm and 10.48 bar, respectively, for the aftershock from the Brune model .The simulated earthquake time series were compared with the observed records of the earthquake. The comparison of full waveform and its response spectra has been made to finalize the rupture parameters and its location. The rupture of the earthquake was propagated in the NE-SW direction from the hypocenter with the rupture velocity 3.0 km/s from a distance of 80 km from Kathmandu in NW direction at a depth of 12 km as per compared results.

  5. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  6. High-frequency seismic energy radiation from the 2003 Miyagi-Oki, JAPAN, earthquake (M7.0) as revealed from an envelope inversion analysis

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2003-12-01

    The 2003 Miyagi-Oki earthquake (M 7.0) took place on May 26, 2003 in the subducting Pacific plate beneath northeastern Japan. The focal depth is around 70km. The focal mechanism is reverse type on a fault plane dipping to the west with a high angle. There was no fatality, fortunately. However, this earthquake caused more than 100 injures, 2000 collapsed houses, and so on. To the south of this focal area by about 50km, an interplate earthquake of M7.5, the Miyagi-Ken-Oki earthquake, is expected to occur in the near future. So the relation between this earthquake and the expected Miyagi-Ken-Oki earthquake attracts public attention. Seismic-energy distribution on earthquake fault planes estimated by envelope inversion analyses can contribute to better understanding of the earthquake source process. For moderate to large earthquakes, seismic energy in frequencies higher than 1 Hz is sometimes much larger than a level expected from the omega-squared model with source parameters estimated by lower-frequency analyses. Therefore, an accurate estimation of seismic energy in such high frequencies has significant importance on estimation of dynamic source parameters such as the seismic energy or the apparent stress. In this study, we execute an envelope inversion analysis based on the method by Nakahara et al. (1998) and clarify the spatial distribution of high-frequency seismic energy radiation on the fault plane of this earthquake. We use three-component sum of mean squared velocity seismograms multiplied by a density of earth medium, which is called envelopes here, for the envelope inversion analysis. Four frequency bands of 1-2, 2-4, 4-8, and 8-16 Hz are adopted. We use envelopes in the time window from the onset of S waves to the lapse time of 51.2 sec. Green functions of envelopes representing the energy propagation process through a scattering medium are calculated based on the radiative transfer theory, which are characterized by parameters of scattering attenuation and intrinsic absorption. We use the values obtained for the northeastern Japan (Sakurai, 1995). We assume the fault plane as follows: strike=193,a, dip=69,a, rake=87,a, length=30km, width=25km with referrence to a waveform inversion analysis in low-frequencies (e.g. Yagi, 2003). We divide this fault plane into 25 subfaults, each of which is a 5km x 5km square. Rupture velocity is assumed to be constant. Seismic energy is radiated from a point source as soon as the rupture front passes the center of each subfault. Time function of energy radiation is assumed as a box-car function. The amount of seismic energy from all the subfaults and site amplification factors for all the stations are estimated by the envelope inversion method. Rupture velocity and the duration time of a box-car function should be estimated by a grid search. Theoretical envelopes calculated with best-fit parameters generally fit to observed ones. The rupture velocity and duration time were estimated as 3.8 km/s and 1.6 sec, respectively. The high-frequency seismic energy was found to be radiated mainly from two spots on the fault plane: The first one is around the initial rupture point and the second is the northern part of the fault plane. These two spots correspond to observed two peaks on envelopes. Amount of seismic energy increases with increasing frequency in the 1-16Hz band, which contradicts an expectation from the omega-squared model. Therefore, stronger radiation of higher-frequency seismic energy is a prominent character of this earthquake. Acknowledgements: We used strong-motion seismograms recorded by the K-NET and KiK-net of NIED, JAPAN.

  7. Likelihood testing of seismicity-based rate forecasts of induced earthquakes in Oklahoma and Kansas

    USGS Publications Warehouse

    Moschetti, Morgan P.; Hoover, Susan M.; Mueller, Charles

    2016-01-01

    Likelihood testing of induced earthquakes in Oklahoma and Kansas has identified the parameters that optimize the forecasting ability of smoothed seismicity models and quantified the recent temporal stability of the spatial seismicity patterns. Use of the most recent 1-year period of earthquake data and use of 10–20-km smoothing distances produced the greatest likelihood. The likelihood that the locations of January–June 2015 earthquakes were consistent with optimized forecasts decayed with increasing elapsed time between the catalogs used for model development and testing. Likelihood tests with two additional sets of earthquakes from 2014 exhibit a strong sensitivity of the rate of decay to the smoothing distance. Marked reductions in likelihood are caused by the nonstationarity of the induced earthquake locations. Our results indicate a multiple-fold benefit from smoothed seismicity models in developing short-term earthquake rate forecasts for induced earthquakes in Oklahoma and Kansas, relative to the use of seismic source zones.

  8. Probabilistic Appraisal of Earthquake Hazard Parameters Deduced from a Bayesian Approach in the Northwest Frontier of the Himalayas

    NASA Astrophysics Data System (ADS)

    Yadav, R. B. S.; Tsapanos, T. M.; Bayrak, Yusuf; Koravos, G. Ch.

    2013-03-01

    A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G-R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush-Pamir Himalaya zone has been further divided into two seismic zones of shallow ( h ≤ 70 km) and intermediate depth ( h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman-Kirthar ranges, Hindukush-Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.

  9. Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma

    USGS Publications Warehouse

    McNamara, Daniel E.; Rubinstein, Justin L.; Myers, Emma; Smoczyk, Gregory M.; Benz, Harley M.; Williams, Robert; Hayes, Gavin; Wilson, David; Herrmann, Robert B.; McMahon, Nicole D; Aster, R.C.; Bergman, E.; Holland, Austin; Earle, Paul

    2015-01-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concerns regarding the source of the activity and its potential hazard to local communities and energy-industry infrastructure. Efforts to monitor and characterize the earthquake sequences in central Oklahoma are reviewed. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma to record the evolving seismicity. A multiple-event relocation method is applied to produce a catalog of central Oklahoma earthquakes from late 2009 into early 2015. Regional moment tensor (RMT) source parameters were determined for the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled determination of the length, depth, and style of faulting occurring on reactivated subsurface fault systems. It was found that the majority of earthquakes occur on near-vertical, optimally oriented (northeast-southwest and northwest-southeast) strike-slip faults in the shallow crystalline basement. In 2014, 17 earthquakes occurred with magnitudes of 4 or larger. It is suggested that these recently reactivated fault systems pose the greatest potential hazard to the region.

  10. Source parameters of the 2013, Ms 7.0, Lushan earthquake and the characteristics of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Zhao, Fengfan; Meng, Lingyuan

    2016-04-01

    The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).

  11. Strong Ground Motion Simulation and Source Modeling of the April 1, 2006 Tai-Tung Earthquake Using Empirical Green's Function Method

    NASA Astrophysics Data System (ADS)

    Huang, H.; Lin, C.

    2010-12-01

    The Tai-Tung earthquake (ML=6.2) occurred at the southeastern part of Taiwan on April 1, 2006. We examine the source model of this event using the observed seismograms by CWBSN at five stations surrounding the source area. An objective estimation method was used to obtain the parameters N and C which are needed for the empirical Green’s function method by Irikura (1986). This method is called “source spectral ratio fitting method” which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tai-Tung mainshock in 2006 was estimated by comparing the observed waveforms with synthetics using empirical Green’s function method. The size of the asperity is about 3.5 km length along the strike direction by 7.0 km width along the dip direction. The rupture started at the left-bottom of the asperity and extended radially to the right-upper direction.

  12. Strong Ground Motion Simulation and Source Modeling of the December 16, 1993 Tapu Earthquake, Taiwan, Using Empirical Green's Function Method

    NASA Astrophysics Data System (ADS)

    Huang, H.-C.; Lin, C.-Y.

    2012-04-01

    The Tapu earthquake (ML 5.7) occurred at the southwestern part of Taiwan on December 16, 1993. We examine the source model of this event using the observed seismograms by CWBSN at eight stations surrounding the source area. An objective estimation method is used to obtain the parameters N and C which are needed for the empirical Green's function method by Irikura (1986). This method is called "source spectral ratio fitting method" which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tapu mainshock in 1993 is estimated by comparing the observed waveforms with the synthetic ones using empirical Green's function method. The size of the asperity is about 2.1 km length along the strike direction by 1.5 km width along the dip direction. The rupture started at the right-bottom of the asperity and extended radially to the left-upper direction.

  13. Strong Ground Motion Simulation and Source Modeling of the December 16, 1993 Tapu Earthquake, Taiwan, Using Empirical Green's Function Method

    NASA Astrophysics Data System (ADS)

    Huang, H.; Lin, C.

    2012-12-01

    The Tapu earthquake (ML 5.7) occurred at the southwestern part of Taiwan on December 16, 1993. We examine the source model of this event using the observed seismograms by CWBSN at eight stations surrounding the source area. An objective estimation method is used to obtain the parameters N and C which are needed for the empirical Green's function method by Irikura (1986). This method is called "source spectral ratio fitting method" which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tapu mainshock in 1993 is estimated by comparing the observed waveforms with the synthetic ones using empirical Green's function method. The size of the asperity is about 2.1 km length along the strike direction by 1.5 km width along the dip direction. The rupture started at the right-bottom of the asperity and extended radially to the left-upper direction.

  14. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    USGS Publications Warehouse

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill gaps in catalogs from regional broadband networks and teleseismic networks.

  15. The large earthquake on 29 June 1170 (Syria, Lebanon, and central southern Turkey)

    NASA Astrophysics Data System (ADS)

    Guidoboni, Emanuela; Bernardini, Filippo; Comastri, Alberto; Boschi, Enzo

    2004-07-01

    On 29 June 1170 a large earthquake hit a vast area in the Near Eastern Mediterranean, comprising the present-day territories of western Syria, central southern Turkey, and Lebanon. Although this was one of the strongest seismic events ever to hit Syria, so far no in-depth or specific studies have been available. Furthermore, the seismological literature (from 1979 until 2000) only elaborated a partial summary of it, mainly based solely on Arabic sources. The major effects area was very partial, making the derived seismic parameters unreliable. This earthquake is in actual fact one of the most highly documented events of the medieval Mediterranean. This is due to both the particular historical period in which it had occurred (between the second and the third Crusades) and the presence of the Latin states in the territory of Syria. Some 50 historical sources, written in eight different languages, have been analyzed: Latin (major contributions), Arabic, Syriac, Armenian, Greek, Hebrew, Vulgar French, and Italian. A critical analysis of this extraordinary body of historical information has allowed us to obtain data on the effects of the earthquake at 29 locations, 16 of which were unknown in the previous scientific literature. As regards the seismic dynamics, this study has set itself the question of whether there was just one or more than one strong earthquake. In the former case, the parameters (Me 7.7 ± 0.22, epicenter, and fault length 126.2 km) were calculated. Some hypotheses are outlined concerning the seismogenic zones involved.

  16. Study of the Seismic Source in the Jalisco Block

    NASA Astrophysics Data System (ADS)

    Gutierrez, Q. J.; Escudero, C. R.; Nunez-Cornu, F. J.; Ochoa, J.; Cruz, L. H.

    2013-05-01

    The direct measure of the earthquake fault dimension and the orientation, as well as the direction of slip represent a complicated task nevertheless a better approach is using the seismic waves spectrum and the direction of P-first motions observed at each station. With these methods we can estimate the seismic source parameters like the stress drop, the corner frequency which is linked to the rupture duration time, the fault radius (For the particular case of a circular fault), the rupture area, the seismic moment , the moment magnitude and the focal mechanisms. The study area where were estimated the source parameters comprises the complex tectonic configuration of Jalisco block, that is delimited by the mesoamerican trench at the west, the Colima grabben to the south, and the Tepic-Zacoalco to the north The data was recorded by the MARS network (Mapping the Riviera Subduction Zone) and the RESAJ network. MARS had 50 stations and settled in the Jalisco block; for a period of time, of January 1, 2006 until June, 2007, the magnitude range of these was between 3 to 6.5 MB. RESJAL has 10 stations and is within the state of Jalisco, began to record since October 2011 and continues to record. Before of apply the method we firs remove the trend, the mean and the instrument response and we corrected for attenuation; then manually chosen the S wave, the multitaper method was used to obtain the spectrum of this wave and so estimate the corner frequency and the spectra level. We substitute the obtained in the equations of the Brune model to calculate the source parameters. To calculate focal mechanisms HASH software was used which determines the most likely mechanism. The main propose of this study is estimate earthquake seismic source parameters with the objective of that helps to understand the physics of earthquake rupture mechanism in the area.

  17. Reducing process delays for real-time earthquake parameter estimation - An application of KD tree to large databases for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Yin, Lucy; Andrews, Jennifer; Heaton, Thomas

    2018-05-01

    Earthquake parameter estimations using nearest neighbor searching among a large database of observations can lead to reliable prediction results. However, in the real-time application of Earthquake Early Warning (EEW) systems, the accurate prediction using a large database is penalized by a significant delay in the processing time. We propose to use a multidimensional binary search tree (KD tree) data structure to organize large seismic databases to reduce the processing time in nearest neighbor search for predictions. We evaluated the performance of KD tree on the Gutenberg Algorithm, a database-searching algorithm for EEW. We constructed an offline test to predict peak ground motions using a database with feature sets of waveform filter-bank characteristics, and compare the results with the observed seismic parameters. We concluded that large database provides more accurate predictions of the ground motion information, such as peak ground acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such as hypocenter distance. Application of the KD tree search to organize the database reduced the average searching process by 85% time cost of the exhaustive method, allowing the method to be feasible for real-time implementation. The algorithm is straightforward and the results will reduce the overall time of warning delivery for EEW.

  18. Numerical simulation analysis on Wenchuan seismic strong motion in Hanyuan region

    NASA Astrophysics Data System (ADS)

    Chen, X.; Gao, M.; Guo, J.; Li, Z.; Li, T.

    2015-12-01

    69227 deaths, 374643 injured, 17923 people missing, direct economic losses 845.1 billion, and a large number houses collapse were caused by Wenchuan Ms8 earthquake in Sichuan Province on May 12, 2008, how to reproduce characteristics of its strong ground motion and predict its intensity distribution, which have important role to mitigate disaster of similar giant earthquake in the future. Taking Yunnan-Sichuan Province, Wenchuan town, Chengdu city, Chengdu basin and its vicinity as the research area, on the basis of the available three-dimensional velocity structure model and newly topography data results from ChinaArray of Institute of Geophysics, China Earthquake Administration, 2 type complex source rupture process models with the global and local source parameters are established, we simulated the seismic wave propagation of Wenchuan Ms8 earthquake throughout the whole three-dimensional region by the GMS discrete grid finite-difference techniques with Cerjan absorbing boundary conditions, and obtained the seismic intensity distribution in this region through analyzing 50×50 stations data (simulated ground motion output station). The simulated results indicated that: (1)Simulated Wenchuan earthquake ground motion (PGA) response and the main characteristics of the response spectrum are very similar to those of the real Wenchuan earthquake records. (2)Wenchuan earthquake ground motion (PGA) and the response spectra of the Plain are much greater than that of the left Mountain area because of the low velocity of the shallow surface media and the basin effect of the Chengdu basin structure. Simultaneously, (3) the source rupture process (inversion) with far-field P-wave, GPS data and InSAR information and the Longmenshan Front Fault (source rupture process) are taken into consideration in GMS numerical simulation, significantly different waveform and frequency component of the ground motion are obtained, though the strong motion waveform is distinct asymmetric, which should be much more real. It indicated that the Longmenshan Front Fault may be also involved in seismic activity during the long time(several minutes) Wenchuan earthquake process. (4) Simulated earthquake records in Hanyuan region are indeed very strong, which reveals source mechanism is one reason of Hanyuan intensity abnormaly.

  19. Source of 1629 Banda Mega-Thrust Earthquake and Tsunami: Implications for Tsunami Hazard Evaluation in Eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Liu, Z.; Harris, R. A.; Fisher, T. L.

    2011-12-01

    Using Dutch records of geophysical events in Indonesia over the past 400 years, and tsunami modeling, we identify tsunami sources that have caused severe devastation in the past and are likely to reoccur in the near future. The earthquake history of Western Indonesia has received much attention since the 2004 Sumatra earthquakes and subsequent events. However, strain rates along a variety of plate boundary segments are just as high in eastern Indonesia where the earthquake history has not been investigated. Due to the rapid population growth in this region it is essential and urgent to evaluate its earthquake and tsunami hazards. Arthur Wichmann's 'Earthquakes of the Indian Archipelago' shows that there were 30 significant earthquakes and 29 tsunami between 1629 to 1877. One of the largest and best documented is the great earthquake and tsunami effecting the Banda islands on 1 August, 1629. It caused severe damage from a 15 m tsunami that arrived at the Banda Islands about a half hour after the earthquake. The earthquake was also recorded 230 km away in Ambon, but no tsunami is mentioned. This event was followed by at least 9 years of aftershocks. The combination of these observations indicates that the earthquake was most likely a mega-thrust event. We use a numerical simulation of the tsunami to locate the potential sources of the 1629 mega-thrust event and evaluate the tsunami hazard in Eastern Indonesia. The numerical simulation was tested to establish the tsunami run-up amplification factor for this region by tsunami simulations of the 1992 Flores Island (Hidayat et al., 1995) and 2006 Java (Katoet al., 2007) earthquake events. The results yield a tsunami run-up amplification factor of 1.5 and 3, respectively. However, the Java earthquake is a unique case of slow rupture that was hardly felt. The fault parameters of recent earthquakes in the Banda region are used for the models. The modeling narrows the possibilities of mega-thrust events the size of the one in 1629 to the Seram and Timor Troughs. For the Seram Trough source a Mw 8.8 produces run-up heights in the Banda Islands of 15.5 m with an arrival time of 17 minuets. For a Timor Trough earthquake near the Tanimbar Islands a Mw 9.2 is needed to produce a 15 m run-up height with an arrival time of 25 minuets. The main problem with the Timor Trough source is that it predicts run-up heights in Ambon of 10 m, which would likely have been recorded. Therefore, we conclude that the most likely source of the 1629 mega-thrust earthquake is the Seram Trough. No large earthquakes are reported along the Seram Trough for over 200 years although high rates of strain are measured across it. This study suggests that the earthquake triggers from this fault zone could be extremely devastating to Eastern Indonesia. We strive to raise the awareness to the local government to not underestimate the natural hazard of this region based on lessons learned from the 2004 Sumatra and 2011 Tohoku tsunamigenic mega-thrust earthquakes.

  20. Dynamic Parameters of the 2015 Nepal Gorkha Mw7.8 Earthquake Constrained by Multi-observations

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yang, H.

    2017-12-01

    Dynamic rupture model can provide much detailed insights into rupture physics that is capable of assessing future seismic risk. Many studies have attempted to constrain the slip-weakening distance, an important parameter controlling friction behavior of rock, for several earthquakes based on dynamic models, kinematic models, and direct estimations from near-field ground motion. However, large uncertainties of the values of the slip-weakening distance still remain, mostly because of the intrinsic trade-offs between the slip-weakening distance and fault strength. Here we use a spontaneously dynamic rupture model to constrain the frictional parameters of the 25 April 2015 Mw7.8 Nepal earthquake, by combining with multiple seismic observations such as high-rate cGPS data, strong motion data, and kinematic source models. With numerous tests we find the trade-off patterns of final slip, rupture speed, static GPS ground displacements, and dynamic ground waveforms are quite different. Combining all the seismic constraints we can conclude a robust solution without a substantial trade-off of average slip-weakening distance, 0.6 m, in contrast to previous kinematical estimation of 5 m. To our best knowledge, this is the first time to robustly determine the slip-weakening distance on seismogenic fault from seismic observations. The well-constrained frictional parameters may be used for future dynamic models to assess seismic hazard, such as estimating the peak ground acceleration (PGA) etc. Similar approach could also be conducted for other great earthquakes, enabling broad estimations of the dynamic parameters in global perspectives that can better reveal the intrinsic physics of earthquakes.

  1. Bayesian historical earthquake relocation: an example from the 1909 Taipei earthquake

    USGS Publications Warehouse

    Minson, Sarah E.; Lee, William H.K.

    2014-01-01

    Locating earthquakes from the beginning of the modern instrumental period is complicated by the fact that there are few good-quality seismograms and what traveltimes do exist may be corrupted by both large phase-pick errors and clock errors. Here, we outline a Bayesian approach to simultaneous inference of not only the hypocentre location but also the clock errors at each station and the origin time of the earthquake. This methodology improves the solution for the source location and also provides an uncertainty analysis on all of the parameters included in the inversion. As an example, we applied this Bayesian approach to the well-studied 1909 Mw 7 Taipei earthquake. While our epicentre location and origin time for the 1909 Taipei earthquake are consistent with earlier studies, our focal depth is significantly shallower suggesting a higher seismic hazard to the populous Taipei metropolitan area than previously supposed.

  2. Application of Second-Moment Source Analysis to Three Problems in Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2011-12-01

    Though earthquake forecasting models have often represented seismic sources as space-time points (usually hypocenters), a more complete hazard analysis requires the consideration of finite-source effects, such as rupture extent, orientation, directivity, and stress drop. The most compact source representation that includes these effects is the finite moment tensor (FMT), which approximates the degree-two polynomial moments of the stress glut by its projection onto the seismic (degree-zero) moment tensor. This projection yields a scalar space-time source function whose degree-one moments define the centroid moment tensor (CMT) and whose degree-two moments define the FMT. We apply this finite-source parameterization to three forecasting problems. The first is the question of hypocenter bias: can we reject the null hypothesis that the conditional probability of hypocenter location is uniformly distributed over the rupture area? This hypothesis is currently used to specify rupture sets in the "extended" earthquake forecasts that drive simulation-based hazard models, such as CyberShake. Following McGuire et al. (2002), we test the hypothesis using the distribution of FMT directivity ratios calculated from a global data set of source slip inversions. The second is the question of source identification: given an observed FMT (and its errors), can we identify it with an FMT in the complete rupture set that represents an extended fault-based rupture forecast? Solving this problem will facilitate operational earthquake forecasting, which requires the rapid updating of earthquake triggering and clustering models. Our proposed method uses the second-order uncertainties as a norm on the FMT parameter space to identify the closest member of the hypothetical rupture set and to test whether this closest member is an adequate representation of the observed event. Finally, we address the aftershock excitation problem: given a mainshock, what is the spatial distribution of aftershock probabilities? The FMT representation allows us to generalize the models typically used for this purpose (e.g., marked point process models, such as ETAS), which will again be necessary in operational earthquake forecasting. To quantify aftershock probabilities, we compare mainshock FMTs with the first and second spatial moments of weighted aftershock hypocenters. We will describe applications of these results to the Uniform California Earthquake Rupture Forecast, version 3, which is now under development by the Working Group on California Earthquake Probabilities.

  3. Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, Harley M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul S.; Holland, Austin F.; Baldwin, Randy W.; Gassner, A.

    2015-01-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3,639 central Oklahoma earthquakes from late 2009 through 2014. RMT source parameters were determined for 195 of the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth and style-of-faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first order observations required to assess the potential hazards of individual faults in Oklahoma.

  4. The Ms = 8 tensional earthquake of 9 December 1950 of northern Chile and its relation to the seismic potential of the region

    NASA Astrophysics Data System (ADS)

    Kausel, Edgar; Campos, Jaime

    1992-08-01

    The only known great ( Ms = 8) intermediate depth earthquake localized downdip of the main thrust zone of the Chilean subduction zone occurred landward of Antofagasta on 9 December 1950. In this paper we determine the source parameters and rupture process of this shock by modeling long-period body waves. The source mechanism corresponds to a downdip tensional intraplate event rupturing along a nearly vertical plane with a seismic moment of M0 = 1 × 10 28 dyn cm, of strike 350°, dip 88°, slip 270°, Mw = 7.9 and a stress drop of about 100 bar. The source time function consists of two subevents, the second being responsible for 70% of the total moment release. The unusually large magnitude ( Ms = 8) of this intermediate depth event suggests a rupture through the entire lithosphere. The spatial and temporal stress regime in this region is discussed. The simplest interpretation suggests that a large thrust earthquake should follow the 1950 tensional shock. Considering that the historical record of the region does not show large earthquakes, a 'slow' earthquake can be postulated as an alternative mechanism to unload the thrust zone. A weakly coupled subduction zone—within an otherwise strongly coupled region as evidenced by great earthquakes to the north and south—or the existence of creep are not consistent with the occurrence of a large tensional earthquake in the subducting lithosphere downdip of the thrust zone. The study of focal mechanisms of the outer rise earthquakes would add more information which would help us to infer the present state of stress in the thrust region.

  5. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta

    NASA Astrophysics Data System (ADS)

    Wang, Ruijia; Gu, Yu Jeffrey; Schultz, Ryan; Zhang, Miao; Kim, Ahyi

    2017-08-01

    On 2016 January 12, an intraplate earthquake with an initial reported local magnitude (ML) of 4.8 shook the town of Fox Creek, Alberta. While there were no reported damages, this earthquake was widely felt by the local residents and suspected to be induced by the nearby hydraulic-fracturing (HF) operations. In this study, we determine the earthquake source parameters using moment tensor inversions, and then detect and locate the associated swarm using a waveform cross-correlation based method. The broad-band seismic recordings from regional arrays suggest a moment magnitude (M) 4.1 for this event, which is the largest in Alberta in the past decade. Similar to other recent M ∼ 3 earthquakes near Fox Creek, the 2016 January 12 earthquake exhibits a dominant strike-slip (strike = 184°) mechanism with limited non-double-couple components (∼22 per cent). This resolved focal mechanism, which is also supported by forward modelling and P-wave first motion analysis, indicates an NE-SW oriented compressional axis consistent with the maximum compressive horizontal stress orientations delineated from borehole breakouts. Further detection analysis on industry-contributed recordings unveils 1108 smaller events within 3 km radius of the epicentre of the main event, showing a close spatial-temporal relation to a nearby HF well. The majority of the detected events are located above the basement, comparable to the injection depth (3.5 km) on the Duvernay shale Formation. The spatial distribution of this earthquake cluster further suggests that (1) the source of the sequence is an N-S-striking fault system and (2) these earthquakes were induced by an HF well close to but different from the well that triggered a previous (January 2015) earthquake swarm. Reactivation of pre-existing, N-S oriented faults analogous to the Pine Creek fault zone, which was reported by earlier studies of active source seismic and aeromagnetic data, are likely responsible for the occurrence of the January 2016 earthquake swarm and other recent events in the Crooked Lake area.

  6. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Bayrak, Erdem; Yılmaz, Şeyda; Bayrak, Yusuf

    2017-05-01

    The temporal and spatial variations of Gutenberg-Richter parameter (b-value) and fractal dimension (DC) during the period 1900-2010 in Western Anatolia was investigated. The study area is divided into 15 different source zones based on their tectonic and seismotectonic regimes. We calculated the temporal variation of b and DC values in each region using Zmap. The temporal variation of these parameters for the prediction of major earthquakes was calculated. The spatial distribution of these parameters is related to the stress levels of the faults. We observed that b and DC values change before the major earthquakes in the 15 seismic regions. To evaluate the spatial distribution of b and DC values, 0.50° × 0.50° grid interval were used. The b-values smaller than 0.70 are related to the Aegean Arc and Eskisehir Fault. The highest values are related to Sultandağı and Sandıklı Faults. Fractal correlation dimension varies from 1.65 to 2.60, which shows that the study area has a higher DC value. The lowest DC values are related to the joining area between Aegean and Cyprus arcs, Burdur-Fethiye fault zone. Some have concluded that b-values drop instantly before large shocks. Others suggested that temporally stable low b value zones identify future large earthquake locations. The results reveal that large earthquakes occur when b decreases and DC increases, suggesting that variation of b and DC can be used as an earthquake precursor. Mapping of b and DC values provide information about the state of stress in the region, i.e. lower b and higher DC values associated with epicentral areas of large earthquakes.

  7. Appraising the Early-est earthquake monitoring system for tsunami alerting at the Italian Candidate Tsunami Service Provider

    NASA Astrophysics Data System (ADS)

    Bernardi, F.; Lomax, A.; Michelini, A.; Lauciani, V.; Piatanesi, A.; Lorito, S.

    2015-09-01

    In this paper we present and discuss the performance of the procedure for earthquake location and characterization implemented in the Italian Candidate Tsunami Service Provider at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome. Following the ICG/NEAMTWS guidelines, the first tsunami warning messages are based only on seismic information, i.e., epicenter location, hypocenter depth, and magnitude, which are automatically computed by the software Early-est. Early-est is a package for rapid location and seismic/tsunamigenic characterization of earthquakes. The Early-est software package operates using offline-event or continuous-real-time seismic waveform data to perform trace processing and picking, and, at a regular report interval, phase association, event detection, hypocenter location, and event characterization. Early-est also provides mb, Mwp, and Mwpd magnitude estimations. mb magnitudes are preferred for events with Mwp ≲ 5.8, while Mwpd estimations are valid for events with Mwp ≳ 7.2. In this paper we present the earthquake parameters computed by Early-est between the beginning of March 2012 and the end of December 2014 on a global scale for events with magnitude M ≥ 5.5, and we also present the detection timeline. We compare the earthquake parameters automatically computed by Early-est with the same parameters listed in reference catalogs. Such reference catalogs are manually revised/verified by scientists. The goal of this work is to test the accuracy and reliability of the fully automatic locations provided by Early-est. In our analysis, the epicenter location, hypocenter depth and magnitude parameters do not differ significantly from the values in the reference catalogs. Both mb and Mwp magnitudes show differences to the reference catalogs. We thus derived correction functions in order to minimize the differences and correct biases between our values and the ones from the reference catalogs. Correction of the Mwp distance dependency is particularly relevant, since this magnitude refers to the larger and probably tsunamigenic earthquakes. Mwp values at stations with epicentral distance Δ ≲ 30° are significantly overestimated with respect to the CMT-global solutions, whereas Mwp values at stations with epicentral distance Δ ≳ 90° are slightly underestimated. After applying such distance correction the Mwp provided by Early-est differs from CMT-global catalog values of about δ Mwp ≈ 0.0 ∓ 0.2. Early-est continuously acquires time-series data and updates the earthquake source parameters. Our analysis shows that the epicenter coordinates and the magnitude values converge within less than 10 min (5 min in the Mediterranean region) toward the stable values. Our analysis shows that we can compute Mwp magnitudes that do not display short epicentral distance dependency overestimation, and we can provide robust and reliable earthquake source parameters to compile tsunami warning messages within less than 15 min after the event origin time.

  8. A//r//m//s AND SEISMIC SOURCE STUDIES.

    USGS Publications Warehouse

    Hanks, T.C.; ,

    1984-01-01

    This paper briefly summarizes some recent developments in studies of seismic source parameter estimation, emphasizing the essential similarities between mining-induced seismogenic-failure and naturally occurring, tectonically driven earthquakes. The root-mean-square acceleration, a//r//m//s, shows much promise as an observational measure of high-frequency ground motion; it is very stable observationally, is insensitive to radiation pattern, and can be related linearly to the dynamic stress differences arising in the faulting process. To interpret a//r//m//s correctly, however, requires knowledge of f//m//a//x, the high-frequency band-limitation of the radiated field of earthquakes. As a practical matter, f//m//a//x can be due to any number of causes, but an essential ambiguity is whether or not f//m//a//x can arise from source properties alone. The interaction of the aftershocks of the Oroville, California, earthquake illustrates how a//r//m//s stress drops may be connected to detailed seismicity patterns.

  9. Seismic hazard assessment over time: Modelling earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Chung-Han; Wang, Yu; Wang, Yu-Ju; Lee, Ya-Ting

    2017-04-01

    To assess the seismic hazard with temporal change in Taiwan, we develop a new approach, combining both the Brownian Passage Time (BPT) model and the Coulomb stress change, and implement the seismogenic source parameters by the Taiwan Earthquake Model (TEM). The BPT model was adopted to describe the rupture recurrence intervals of the specific fault sources, together with the time elapsed since the last fault-rupture to derive their long-term rupture probability. We also evaluate the short-term seismicity rate change based on the static Coulomb stress interaction between seismogenic sources. By considering above time-dependent factors, our new combined model suggests an increased long-term seismic hazard in the vicinity of active faults along the western Coastal Plain and the Longitudinal Valley, where active faults have short recurrence intervals and long elapsed time since their last ruptures, and/or short-term elevated hazard levels right after the occurrence of large earthquakes due to the stress triggering effect. The stress enhanced by the February 6th, 2016, Meinong ML 6.6 earthquake also significantly increased rupture probabilities of several neighbouring seismogenic sources in Southwestern Taiwan and raised hazard level in the near future. Our approach draws on the advantage of incorporating long- and short-term models, to provide time-dependent earthquake probability constraints. Our time-dependent model considers more detailed information than any other published models. It thus offers decision-makers and public officials an adequate basis for rapid evaluations of and response to future emergency scenarios such as victim relocation and sheltering.

  10. Global Examination of Triggered Tectonic Tremor following the 2017 Mw8.1 Tehuantepec Earthquake in Mexico

    NASA Astrophysics Data System (ADS)

    Chao, K.; Gonzalez-Huizar, H.; Tang, V.; Klaeser, R. D.; Mattia, M.; Van der Lee, S.

    2017-12-01

    Triggered tremor is one type of slow earthquake that activated by teleseismic surfaces waves of large magnitude earthquake. Observations of triggered tremor can help to evaluate the background ambient tremor rate and slow slip events in the surrounding region. The Mw 8.1 Tehuantepec earthquake in Mexico is an ideal tremor-triggering candidate for a global search for triggered tremor. Here, we examine triggered tremor globally following the M8.1 event and model the tremor-triggering potential. We examine 7,000 seismic traces and found a widely spread triggered tremor along the western coast of the North America occur during the surface waves of the Mw 8.1 event. Triggered tremor appeared in the San Jacinto Fault, San Andreas Fault around Parkfield, and Calaveras Fault in California, in Vancouver Island in Cascadia subduction zone, in Queen Charlotte Margin and Eastern Denali Fault in Canada, and in Alaska and Aleutian Arc. In addition, we observe a newly found triggered tremor source in Mt. Etna in Sicily Island, Italy. However, we do not find clear triggered tremor evidences in the tremor active regions in Japan, Taiwan, and in New Zealand. We model tremor-triggering potential at the triggering earthquake source and triggered tremor sources. Our modeling results suggest the source parameters of the M8.1 triggering events and the stress at the triggered fault zone are two critical factors to control tremor-triggering threshold.

  11. Pseudo-dynamic source characterization accounting for rough-fault effects

    NASA Astrophysics Data System (ADS)

    Galis, Martin; Thingbaijam, Kiran K. S.; Mai, P. Martin

    2016-04-01

    Broadband ground-motion simulations, ideally for frequencies up to ~10Hz or higher, are important for earthquake engineering; for example, seismic hazard analysis for critical facilities. An issue with such simulations is realistic generation of radiated wave-field in the desired frequency range. Numerical simulations of dynamic ruptures propagating on rough faults suggest that fault roughness is necessary for realistic high-frequency radiation. However, simulations of dynamic ruptures are too expensive for routine applications. Therefore, simplified synthetic kinematic models are often used. They are usually based on rigorous statistical analysis of rupture models inferred by inversions of seismic and/or geodetic data. However, due to limited resolution of the inversions, these models are valid only for low-frequency range. In addition to the slip, parameters such as rupture-onset time, rise time and source time functions are needed for complete spatiotemporal characterization of the earthquake rupture. But these parameters are poorly resolved in the source inversions. To obtain a physically consistent quantification of these parameters, we simulate and analyze spontaneous dynamic ruptures on rough faults. First, by analyzing the impact of fault roughness on the rupture and seismic radiation, we develop equivalent planar-fault kinematic analogues of the dynamic ruptures. Next, we investigate the spatial interdependencies between the source parameters to allow consistent modeling that emulates the observed behavior of dynamic ruptures capturing the rough-fault effects. Based on these analyses, we formulate a framework for pseudo-dynamic source model, physically consistent with the dynamic ruptures on rough faults.

  12. Strong Ground Motion Prediction By Composite Source Model

    NASA Astrophysics Data System (ADS)

    Burjanek, J.; Irikura, K.; Zahradnik, J.

    2003-12-01

    A composite source model, incorporating different sized subevents, provides a possible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock). The subevents are distributed randomly over the fault. Each subevent is modeled either as a finite or point source, differences between these choices are shown. The final slip and duration of each subevent is related to its characteristic dimension, using constant stress-drop scaling. Absolute value of subevents' stress drop is free parameter. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally layered crustal model. An estimation of subevents' stress drop is based on fitting empirical attenuation relations for PGA and PGV, as they represent robust information on strong ground motion caused by earthquakes, including both path and source effect. We use the 2000 M6.6 Western Tottori, Japan, earthquake as validation event, providing comparison between predicted and observed waveforms.

  13. Joint probabilistic determination of earthquake location and velocity structure: application to local and regional events

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Haugmard, M.; Mocquet, A.

    2016-12-01

    The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.

  14. Investigating Along-Strike Variations of Source Parameters for Relocated Thrust Earthquakes Along the Sumatra-Java Subduction Zone

    NASA Astrophysics Data System (ADS)

    El Hariri, M.; Bilek, S. L.; Deshon, H. R.; Engdahl, E. R.

    2009-12-01

    Some earthquakes generate anomalously large tsunami waves relative to their surface wave magnitudes (Ms). This class of events, known as tsunami earthquakes, is characterized by having a long rupture duration and low radiated energy at long periods. These earthquakes are relatively rare. There have been only 9 documented cases, including 2 in the Java subduction zone (1994 Mw=7.8 and the 2006 Mw=7.7). Several models have been proposed to explain the unexpectedly large tsunami, such as displacement along high-angle splay faults, landslide-induced tsunami due to coseismic shaking, or large seismic slip within low rigidity sediments or weaker material along the shallowest part of the subduction zone. Slow slip has also been suggested along portions of the 2004 Mw=9.2 Sumatra-Andaman earthquake zone. In this study we compute the source parameters of 90 relocated shallow thrust events (Mw 5.1-7.8) along the Sumatra-Java subduction zone including the two Java tsunami earthquakes. Events are relocated using a modification to the Engdahl, van der Hilst and Buland (EHB) earthquake relocation method that incorporates an automated frequency-dependent phase detector. This allows for the use of increased numbers of phase arrival times, especially depth phases, and improves hypocentral locations. Source time functions, rupture duration and depth estimates are determined using multi-station deconvolution of broadband teleseismic P and SH waves. We seek to correlate any along-strike variation in rupture characteristics with tectonic features and rupture characteristics of the previous slow earthquakes along this margin to gain a better understanding of the conditions resulting in slow ruptures. Preliminary results from the analysis of these events show that in addition to depth-dependent variations there are also along-strike variations in rupture duration. We find that along the Java segment, the longer duration event locates in a highly coupled region corresponding to the location of a proposed subducting seamount. This correlation is less clear along the southern Sumatran segment. One longer duration event is located within the high slip area of the Mw=8.4 2007 rupture, while another is located in the weakly coupled region of the 1935 Mw=7.7 rupture area.

  15. QuakeUp: An advanced tool for a network-based Earthquake Early Warning system

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo; Colombelli, Simona; Caruso, Alessandro; Elia, Luca; Brondi, Piero; Emolo, Antonio; Festa, Gaetano; Martino, Claudio; Picozzi, Matteo

    2017-04-01

    The currently developed and operational Earthquake Early warning, regional systems ground on the assumption of a point-like earthquake source model and 1-D ground motion prediction equations to estimate the earthquake impact. Here we propose a new network-based method which allows for issuing an alert based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The platform includes the most advanced techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The new software platform (QuakeUp) is under development at the Seismological Laboratory (RISSC-Lab) of the Department of Physics at the University of Naples Federico II, in collaboration with the academic spin-off company RISS s.r.l., recently gemmated by the research group. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. The signal quality is preliminary assessed by checking the signal-to-noise ratio both in acceleration, velocity and displacement and through dedicated filtering algorithms. For stations providing high quality data, the characteristic P-wave period (τ_c) and the P-wave displacement, velocity and acceleration amplitudes (P_d, Pv and P_a) are jointly measured on a progressively expanded P-wave time window. The evolutionary measurements of the early P-wave amplitude and characteristic period at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (I_MM) and by mapping the measured and predicted P-wave amplitude at a dense spatial grid, including the nodes of the accelerometer/velocimeter array deployed in the earthquake source area. Within times of the order of ten seconds from the earthquake origin, the information about the area where moderate to strong ground shaking is expected to occur, can be sent to inner and outer sites, allowing the activation of emergency measurements to protect people , secure industrial facilities and optimize the site resilience after the disaster. Depending of the network density and spatial source coverage, this method naturally accounts for effects related to the earthquake rupture extent (e.g. source directivity) and spatial variability of strong ground motion related to crustal wave propagation and site amplification. In QuakeUp, the P-wave parameters are continuously measured, using progressively expanded P-wave time windows, and providing evolutionary and reliable estimates of the ground shaking distribution, especially in the case of very large events. Furthermore, to minimize the S-wave contamination on the P-wave signal portion, an efficient algorithm, based on the real-time polarization analysis of the three-component seismogram, for the automatic detection of the S-wave arrival time has been included. The final output of QuakeUp will be an automatic alert message that is transmitted to sites to be secured during the earthquake emergency. The message contains all relevant information about the expected potential damage at the site and the time available for security actions (lead-time) after the warning. A global view of the system performance during and after the event (in play-back mode) is obtained through an end-user visual display, where the most relevant pieces of information will be displayed and updated as soon as new data are available. The software platform Quake-Up is essentially aimed at improving the reliability and the accuracy in terms of parameter estimation, minimizing the uncertainties in the real-time estimations without losing the essential requirements of speediness and robustness, which are needed to activate rapid emergency actions.

  16. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Grosser, H.; Saul, J.; Wang, R.; Zschau, J.

    2009-12-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake’s damage potential. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy Es (e.g. Bormann et al., 2002): Me = 2/3(log10 Es - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. We analyse teleseismic broadband P-waves signals in the distance range 20°-98° to calculate Es. To correct the frequency-dependent energy loss experienced by the P-waves during the propagation path, we use pre-calculated spectral amplitude decay functions for different frequencies obtained from numerical simulations of Green’s functions (Wang, 1999) given the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake’s origin time, even in case of great earthquakes. We tested our procedure for a large dataset composed by about 770 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of the seismic source, and a combined use of these two magnitude scales would allow a better assessment of the tsunami and shaking potential of an earthquake. Representative case studies will be also shown and discussed. References Bormann, P., Baumbach, M., Bock, G., Grosser, H., Choy, G. L., and Boatwright, J. (2002). Seismic sources and source parameters, in IASPEI New Manual of Seismological Observatory Practice, P. Bormann (Editor), Vol. 1, GeoForschungsZentrum, Potsdam, Chapter 3, 1-94. Choy, G. L., and Kirby, S. (2004). Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int., 159, 991-1012. Kennett, B. L. N., Engdahl, E. R., and Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122, 108-124. Montagner, J.-P., and Kennett, B. L. N. (1996). How to reconcile body-wave and normal-mode reference Earth models?. Geophys. J. Int., 125, 229-248. Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull. Seism. Soc. Am., 89(3), 733-741.

  17. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  18. Seismological evidence for monsoon induced micro to moderate earthquake sequence beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Mishra, O. P.

    2015-10-01

    In order to understand the processes involved in the genesis of monsoon induced micro to moderate earthquakes after heavy rainfall during the Indian summer monsoon period beneath the 2011 Talala, Saurashtra earthquake (Mw 5.1) source zone, we assimilated 3-D microstructures of the sub-surface rock materials using a data set recorded by the Seismic Network of Gujarat (SeisNetG), India. Crack attributes in terms of crack density (ε), the saturation rate (ξ) and porosity parameter (ψ) were determined from the estimated 3-D sub-surface velocities (Vp, Vs) and Poisson's ratio (σ) structures of the area at varying depths. We distinctly imaged high-ε, high-ξ and low-ψ anomalies at shallow depths, extending up to 9-15 km. We infer that the existence of sub-surface fractured rock matrix connected to the surface from the source zone may have contributed to the changes in differential strain deep down to the crust due to the infiltration of rainwater, which in turn induced micro to moderate earthquake sequence beneath Talala source zone. Infiltration of rainwater during the Indian summer monsoon might have hastened the failure of the rock by perturbing the crustal volume strain of the causative source rock matrix associated with the changes in the seismic moment release beneath the surface. Analyses of crack attributes suggest that the fractured volume of the rock matrix with high porosity and lowered seismic strength beneath the source zone might have considerable influence on the style of fault displacements due to seismo-hydraulic fluid flows. Localized zone of micro-cracks diagnosed within the causative rock matrix connected to the water table and their association with shallow crustal faults might have acted as a conduit for infiltrating the precipitation down to the shallow crustal layers following the fault suction mechanism of pore pressure diffusion, triggering the monsoon induced earthquake sequence beneath the source zone.

  19. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.

  20. Effects of 3D Earth structure on W-phase CMT parameters

    NASA Astrophysics Data System (ADS)

    Morales, Catalina; Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo

    2017-04-01

    The source inversion of the W-phase has demonstrated a great potential to provide fast and reliable estimates of the centroid moment tensor (CMT) for moderate to large earthquakes. It has since been implemented in different operational environments (NEIC-USGS, PTWC, etc.) with the aim of providing rapid CMT solutions. These solutions are in particular useful for tsunami warning purposes. Computationally, W-phase waveforms are usually synthetized by summation of normal modes at long period (100 - 1000 s) for a spherical Earth model (e.g., PREM). Although the energy of these modes mainly stays in the mantle where lateral structural variations are relatively small, the impact of 3D heterogeneities on W-phase solutions have not yet been quantified. In this study, we investigate possible bias in W-phase source parameters due to unmodeled lateral structural heterogeneities. We generate a simulated dataset consisting of synthetic seismograms of large past earthquakes that accounts for the Earth's 3D structure. The W-phase algorithm is then used to invert the synthetic dataset for earthquake CMT parameters with and without added noise. Results show that the impact of 3D heterogeneities is generally larger for surface-waves than for W-phase waveforms. However, some discrepancies are noted between inverted W-phase parameters and target values. Particular attention is paid to the possible bias induced by the unmodeled 3D structure into the location of the W-phase centroid. Preliminary results indicate that the parameter that is most susceptible to 3D Earth structure seems to be the centroid depth.

  1. Earthquake forecasting studies using radon time series data in Taiwan

    NASA Astrophysics Data System (ADS)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  2. 3-D Simulation of Earthquakes on the Cascadia Megathrust: Key Parameters and Constraints from Offshore Structure and Seismicity

    NASA Astrophysics Data System (ADS)

    Wirth, E. A.; Frankel, A. D.; Vidale, J. E.; Stone, I.; Nasser, M.; Stephenson, W. J.

    2017-12-01

    The Cascadia subduction zone has a long history of M8 to M9 earthquakes, inferred from coastal subsidence, tsunami records, and submarine landslides. These megathrust earthquakes occur mostly offshore, and an improved characterization of the megathrust is critical for accurate seismic hazard assessment in the Pacific Northwest. We run numerical simulations of 50 magnitude 9 earthquake rupture scenarios on the Cascadia megathrust, using a 3-D velocity model based on geologic constraints and regional seismicity, as well as active and passive source seismic studies. We identify key parameters that control the intensity of ground shaking and resulting seismic hazard. Variations in the down-dip limit of rupture (e.g., extending rupture to the top of the non-volcanic tremor zone, compared to a completely offshore rupture) result in a 2-3x difference in peak ground acceleration (PGA) for the inland city of Seattle, Washington. Comparisons of our simulations to paleoseismic data suggest that rupture extending to the 1 cm/yr locking contour (i.e., mostly offshore) provides the best fit to estimates of coastal subsidence during previous Cascadia earthquakes, but further constraints on the down-dip limit from microseismicity, offshore geodetics, and paleoseismic evidence are needed. Similarly, our simulations demonstrate that coastal communities experience a four-fold increase in PGA depending upon their proximity to strong-motion-generating areas (i.e., high strength asperities) on the deeper portions of the megathrust. An improved understanding of the structure and rheology of the plate interface and accretionary wedge, and better detection of offshore seismicity, may allow us to forecast locations of these asperities during a future Cascadia earthquake. In addition to these parameters, the seismic velocity and attenuation structure offshore also strongly affects the resulting ground shaking. This work outlines the range of plausible ground motions from an M9 Cascadia earthquake, and highlights the importance of offshore studies for constraining critical parameters and seismic hazard in the Pacific Northwest.

  3. Finite-fault source inversion using teleseismic P waves: Simple parameterization and rapid analysis

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.

    2013-01-01

    We examine the ability of teleseismic P waves to provide a timely image of the rupture history for large earthquakes using a simple, 2D finite‐fault source parameterization. We analyze the broadband displacement waveforms recorded for the 2010 Mw∼7 Darfield (New Zealand) and El Mayor‐Cucapah (Baja California) earthquakes using a single planar fault with a fixed rake. Both of these earthquakes were observed to have complicated fault geometries following detailed source studies conducted by other investigators using various data types. Our kinematic, finite‐fault analysis of the events yields rupture models that similarly identify the principal areas of large coseismic slip along the fault. The results also indicate that the amount of stabilization required to spatially smooth the slip across the fault and minimize the seismic moment is related to the amplitudes of the observed P waveforms and can be estimated from the absolute values of the elements of the coefficient matrix. This empirical relationship persists for earthquakes of different magnitudes and is consistent with the stabilization constraint obtained from the L‐curve in Tikhonov regularization. We use the relation to estimate the smoothing parameters for the 2011 Mw 7.1 East Turkey, 2012 Mw 8.6 Northern Sumatra, and 2011 Mw 9.0 Tohoku, Japan, earthquakes and invert the teleseismic P waves in a single step to recover timely, preliminary slip models that identify the principal source features observed in finite‐fault solutions obtained by the U.S. Geological Survey National Earthquake Information Center (USGS/NEIC) from the analysis of body‐ and surface‐wave data. These results indicate that smoothing constraints can be estimated a priori to derive a preliminary, first‐order image of the coseismic slip using teleseismic records.

  4. Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill-Grensdalur volcanic complex, Iceland

    USGS Publications Warehouse

    Miller, A.D.; Julian, B.R.; Foulger, G.R.

    1998-01-01

    The volcanic and geothermal areas of Iceland are rich sources of non-double-couple (non-DC) earthquakes. A state-of-the-art digital seismometer network deployed at the Hengill-Grensdalur volcanic complex in 1991 recorded 4000 small earthquakes. We used the best recorded of these to determine 3-D VP and VP/VS structure tomographically and accurate earthquake moment tensors. The VP field is dominated by high seismic wave speed bodies interpreted as solidified intrusions. A widespread negative (-4 per cent) VP/VS anomaly in the upper 4 km correlates with the geothermal field, but is too strong to be caused solely by the effect of temperature upon liquid water or the presence of vapour, and requires in addition mineralogical or lithological differences between the geothermal reservoir and its surroundings. These may be caused by geothermal alteration. Well-constrained moment tensors were obtained for 70 of the best-recorded events by applying linear programming methods to P- and S-wave polarities and amplitude ratios. About 25 per cent of the mechanisms are, within observational error, consistent with DC mechanisms consistent with shear faulting. The other 75 per cent have significantly non-DC mechanisms. Many have substantial explosive components, one has a substantial implosive component, and the deviatoric component of many is strongly non-DC. Many of the non-DC mechanisms are consistent, within observational error, with simultaneous tensile and shear faulting. However, the mechanisms occupy a continuum in source-type parameter space and probably at least one additional source process is occurring. This may be fluid flow into newly formed cracks, causing partial compensation of the volumetric component. Studying non-shear earthquakes such as these has great potential for improving our understanding of geothermal processes and earthquake source processes in general.

  5. Transformation to equivalent dimensions—a new methodology to study earthquake clustering

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw

    2014-05-01

    A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.

  6. Quantification of Uncertainty in Full-Waveform Moment Tensor Inversion for Regional Seismicity

    NASA Astrophysics Data System (ADS)

    Jian, P.; Hung, S.; Tseng, T.

    2013-12-01

    Routinely and instantaneously determined moment tensor solutions deliver basic information for investigating faulting nature of earthquakes and regional tectonic structure. The accuracy of full-waveform moment tensor inversion mostly relies on azimuthal coverage of stations, data quality and previously known earth's structure (i.e., impulse responses or Green's functions). However, intrinsically imperfect station distribution, noise-contaminated waveform records and uncertain earth structure can often result in large deviations of the retrieved source parameters from the true ones, which prohibits the use of routinely reported earthquake catalogs for further structural and tectonic interferences. Duputel et al. (2012) first systematically addressed the significance of statistical uncertainty estimation in earthquake source inversion and exemplified that the data covariance matrix, if prescribed properly to account for data dependence and uncertainty due to incomplete and erroneous data and hypocenter mislocation, cannot only be mapped onto the uncertainty estimate of resulting source parameters, but it also aids obtaining more stable and reliable results. Over the past decade, BATS (Broadband Array in Taiwan for Seismology) has steadily devoted to building up a database of good-quality centroid moment tensor (CMT) solutions for moderate to large magnitude earthquakes that occurred in Taiwan area. Because of the lack of the uncertainty quantification and reliability analysis, it remains controversial to use the reported CMT catalog directly for further investigation of regional tectonics, near-source strong ground motions, and seismic hazard assessment. In this study, we develop a statistical procedure to make quantitative and reliable estimates of uncertainty in regional full-waveform CMT inversion. The linearized inversion scheme adapting efficient estimation of the covariance matrices associated with oversampled noisy waveform data and errors of biased centroid positions is implemented and inspected for improving source parameter determination of regional seismicity in Taiwan. Synthetic inversion tests demonstrate the resolved moment tensors would better match the hypothetical CMT solutions, and tend to suppress unreal non-double-couple components and reduce the trade-off between focal mechanism and centroid depth if individual signal-to-noise ratios and correlation lengths for 3-component seismograms at each station and mislocation uncertainties are properly taken into account. We further testify the capability of our scheme in retrieving the robust CMT information for mid-sized (Mw~3.5) and offshore earthquakes in Taiwan, which offers immediate and broad applications in detailed modelling of regional stress field and deformation pattern and mapping of subsurface velocity structures.

  7. Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault

    USGS Publications Warehouse

    Thomas, Amanda M.; Beroza, Gregory C.; Shelly, David R.

    2016-01-01

    Low-frequency earthquakes (LFEs) are small repeating earthquakes that occur in conjunction with deep slow slip. Like typical earthquakes, LFEs are thought to represent shear slip on crustal faults, but when compared to earthquakes of the same magnitude, LFEs are depleted in high-frequency content and have lower corner frequencies, implying longer duration. Here we exploit this difference to estimate the duration of LFEs on the deep San Andreas Fault (SAF). We find that the M ~ 1 LFEs have typical durations of ~0.2 s. Using the annual slip rate of the deep SAF and the average number of LFEs per year, we estimate average LFE slip rates of ~0.24 mm/s. When combined with the LFE magnitude, this number implies a stress drop of ~104 Pa, 2 to 3 orders of magnitude lower than ordinary earthquakes, and a rupture velocity of 0.7 km/s, 20% of the shear wave speed. Typical earthquakes are thought to have rupture velocities of ~80–90% of the shear wave speed. Together, the slow rupture velocity, low stress drops, and slow slip velocity explain why LFEs are depleted in high-frequency content relative to ordinary earthquakes and suggest that LFE sources represent areas capable of relatively higher slip speed in deep fault zones. Additionally, changes in rheology may not be required to explain both LFEs and slow slip; the same process that governs the slip speed during slow earthquakes may also limit the rupture velocity of LFEs.

  8. Lithospheric Models of the Middle East to Improve Seismic Source Parameter Determination/Event Location Accuracy

    DTIC Science & Technology

    2012-09-01

    State Award Nos. DE-AC52-07NA27344/24.2.3.2 and DOS_SIAA-11-AVC/NMA-1 ABSTRACT The Middle East is a tectonically complex and seismically...active region. The ability to accurately locate earthquakes and other seismic events in this region is complicated by tectonics , the uneven...and seismic source parameters show that this activity comes from tectonic events. This work is informed by continuous or event-based regional

  9. USGS GNSS Applications to Earthquake Disaster Response and Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Murray, J. R.; Minson, S. E.

    2015-12-01

    Rapid characterization of earthquake rupture is important during a disaster because it establishes which fault ruptured and the extent and amount of fault slip. These key parameters, in turn, can augment in situ seismic sensors for identifying disruption to lifelines as well as localized damage along the fault break. Differential GNSS station positioning, along with imagery differencing, are important methods for augmenting seismic sensors. During response to recent earthquakes (1989 Loma Prieta, 1992 Landers, 1994 Northridge, 1999 Hector Mine, 2010 El Mayor - Cucapah, 2012 Brawley Swarm and 2014 South Napa earthquakes), GNSS co-seismic and post-seismic observations proved to be essential for rapid earthquake source characterization. Often, we find that GNSS results indicate key aspects of the earthquake source that would not have been known in the absence of GNSS data. Seismic, geologic, and imagery data alone, without GNSS, would miss important details of the earthquake source. That is, GNSS results provide important additional insight into the earthquake source properties, which in turn help understand the relationship between shaking and damage patterns. GNSS also adds to understanding of the distribution of slip along strike and with depth on a fault, which can help determine possible lifeline damage due to fault offset, as well as the vertical deformation and tilt that are vitally important for gravitationally driven water systems. The GNSS processing work flow that took more than one week 25 years ago now takes less than one second. Formerly, portable receivers needed to be set up at a site, operated for many hours, then data retrieved, processed and modeled by a series of manual steps. The establishment of continuously telemetered, continuously operating high-rate GNSS stations and the robust automation of all aspects of data retrieval and processing, has led to sub-second overall system latency. Within the past few years, the final challenges of standardization and adaptation to the existing framework of the ShakeAlert earthquake early warning system have been met, such that real-time GNSS processing and input to ShakeAlert is now routine and in use. Ongoing adaptation and testing of algorithms remain the last step towards fully operational incorporation of GNSS into ShakeAlert by USGS and its partners.

  10. A framework for fast probabilistic centroid-moment-tensor determination—inversion of regional static displacement measurements

    NASA Astrophysics Data System (ADS)

    Käufl, Paul; Valentine, Andrew P.; O'Toole, Thomas B.; Trampert, Jeannot

    2014-03-01

    The determination of earthquake source parameters is an important task in seismology. For many applications, it is also valuable to understand the uncertainties associated with these determinations, and this is particularly true in the context of earthquake early warning (EEW) and hazard mitigation. In this paper, we develop a framework for probabilistic moment tensor point source inversions in near real time. Our methodology allows us to find an approximation to p(m|d), the conditional probability of source models (m) given observations (d). This is obtained by smoothly interpolating a set of random prior samples, using Mixture Density Networks (MDNs)-a class of neural networks which output the parameters of a Gaussian mixture model. By combining multiple networks as `committees', we are able to obtain a significant improvement in performance over that of a single MDN. Once a committee has been constructed, new observations can be inverted within milliseconds on a standard desktop computer. The method is therefore well suited for use in situations such as EEW, where inversions must be performed routinely and rapidly for a fixed station geometry. To demonstrate the method, we invert regional static GPS displacement data for the 2010 MW 7.2 El Mayor Cucapah earthquake in Baja California to obtain estimates of magnitude, centroid location and depth and focal mechanism. We investigate the extent to which we can constrain moment tensor point sources with static displacement observations under realistic conditions. Our inversion results agree well with published point source solutions for this event, once the uncertainty bounds of each are taken into account.

  11. Fully probabilistic earthquake source inversion on teleseismic scales

    NASA Astrophysics Data System (ADS)

    Stähler, Simon; Sigloch, Karin

    2017-04-01

    Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters but also estimates of their uncertainties are of great practical importance. We have developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. These unknowns are parameterised efficiently by harnessing as prior knowledge solutions from a large number of non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 source time functions (STFs) by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. References: Stähler, S. C. and Sigloch, K.: Fully probabilistic seismic source inversion - Part 1: Efficient parameterisation, Solid Earth, 5, 1055-1069, doi:10.5194/se-5-1055-2014, 2014. Stähler, S. C. and Sigloch, K.: Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances, Solid Earth, 7, 1521-1536, doi:10.5194/se-7-1521-2016, 2016.

  12. Sensitivity of the coastal tsunami simulation to the complexity of the 2011 Tohoku earthquake source model

    NASA Astrophysics Data System (ADS)

    Monnier, Angélique; Loevenbruck, Anne; Gailler, Audrey; Hébert, Hélène

    2016-04-01

    The 11 March 2011 Tohoku-Oki event, whether earthquake or tsunami, is exceptionally well documented. A wide range of onshore and offshore data has been recorded from seismic, geodetic, ocean-bottom pressure and sea level sensors. Along with these numerous observations, advance in inversion technique and computing facilities have led to many source studies. Rupture parameters inversion such as slip distribution and rupture history permit to estimate the complex coseismic seafloor deformation. From the numerous published seismic source studies, the most relevant coseismic source models are tested. The comparison of the predicted signals generated using both static and cinematic ruptures to the offshore and coastal measurements help determine which source model should be used to obtain the more consistent coastal tsunami simulations. This work is funded by the TANDEM project, reference ANR-11-RSNR-0023-01 of the French Programme Investissements d'Avenir (PIA 2014-2018).

  13. A study of regional waveform calibration in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Di Luccio, F.; Pino, N. A.; Thio, H. K.

    2003-06-01

    We modeled P nl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.

  14. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    USGS Publications Warehouse

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  15. Adjoint-tomography for a Local Surface Structure: Methodology and a Blind Test

    NASA Astrophysics Data System (ADS)

    Kubina, Filip; Michlik, Filip; Moczo, Peter; Kristek, Jozef; Stripajova, Svetlana

    2017-04-01

    We have developed a multiscale full-waveform adjoint-tomography method for local surface sedimentary structures with complicated interference wavefields. The local surface sedimentary basins and valleys are often responsible for anomalous earthquake ground motions and corresponding damage in earthquakes. In many cases only relatively small number of records of a few local earthquakes is available for a site of interest. Consequently, prediction of earthquake ground motion at the site has to include numerical modeling for a realistic model of the local structure. Though limited, the information about the local structure encoded in the records is important and irreplaceable. It is therefore reasonable to have a method capable of using the limited information in records for improving a model of the local structure. A local surface structure and its interference wavefield require a specific multiscale approach. In order to verify our inversion method, we performed a blind test. We obtained synthetic seismograms at 8 receivers for 2 local sources, complete description of the sources, positions of the receivers and material parameters of the bedrock. We considered the simplest possible starting model - a homogeneous halfspace made of the bedrock. Using our inversion method we obtained an inverted model. Given the starting model, synthetic seismograms simulated for the inverted model are surprisingly close to the synthetic seismograms simulated for the true structure in the target frequency range up to 4.5 Hz. We quantify the level of agreement between the true and inverted seismograms using the L2 and time-frequency misfits, and, more importantly for earthquake-engineering applications, also using the goodness-of-fit criteria based on the earthquake-engineering characteristics of earthquake ground motion. We also verified the inverted model for other source-receiver configurations not used in the inversion.

  16. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes

    USGS Publications Warehouse

    Geist, E.L.; Bilek, S.L.; Arcas, D.; Titov, V.V.

    2006-01-01

    Source parameters affecting tsunami generation and propagation for the Mw > 9.0 December 26, 2004 and the Mw = 8.6 March 28, 2005 earthquakes are examined to explain the dramatic difference in tsunami observations. We evaluate both scalar measures (seismic moment, maximum slip, potential energy) and finite-source repre-sentations (distributed slip and far-field beaming from finite source dimensions) of tsunami generation potential. There exists significant variability in local tsunami runup with respect to the most readily available measure, seismic moment. The local tsunami intensity for the December 2004 earthquake is similar to other tsunamigenic earthquakes of comparable magnitude. In contrast, the March 2005 local tsunami was deficient relative to its earthquake magnitude. Tsunami potential energy calculations more accurately reflect the difference in tsunami severity, although these calculations are dependent on knowledge of the slip distribution and therefore difficult to implement in a real-time system. A significant factor affecting tsunami generation unaccounted for in these scalar measures is the location of regions of seafloor displacement relative to the overlying water depth. The deficiency of the March 2005 tsunami seems to be related to concentration of slip in the down-dip part of the rupture zone and the fact that a substantial portion of the vertical displacement field occurred in shallow water or on land. The comparison of the December 2004 and March 2005 Sumatra earthquakes presented in this study is analogous to previous studies comparing the 1952 and 2003 Tokachi-Oki earthquakes and tsunamis, in terms of the effect slip distribution has on local tsunamis. Results from these studies indicate the difficulty in rapidly assessing local tsunami runup from magnitude and epicentral location information alone.

  17. Insights in Low Frequency Earthquake Source Processes from Observations of Their Size-Duration Scaling

    NASA Astrophysics Data System (ADS)

    Farge, G.; Shapiro, N.; Frank, W.; Mercury, N.; Vilotte, J. P.

    2017-12-01

    Low frequency earthquakes (LFE) are detected in association with volcanic and tectonic tremor signals as impulsive, repeated, low frequency (1-5 Hz) events originating from localized sources. While the mechanism causing this depletion of the high frequency content of their signal is still unknown, this feature may indicate that the source processes at the origin of LFE are different from those for regular earthquakes. Tectonic LFE are often associated with slip instabilities in the brittle-ductile transition zones of active faults and volcanic LFE with fluid transport in magmatic and hydrothermal systems. Key constraints on the LFE-generating physical mechanisms can be obtained by establishing scaling laws between their sizes and durations. We apply a simple spectral analysis method to the S-waveforms of each LFE to retrieve its seismic moment and corner frequency. The former characterizes the earthquake's size while the latter is inversely proportional to its duration. First, we analyze a selection of tectonic LFE from the Mexican "Sweet Spot" (Guerrero, Mexico). We find characteristic values of M ˜ 1013 N.m (Mw ˜ 2.6) and fc ˜ 2 Hz. The moment-corner frequency distribution compared to values reported in previous studies in tectonic contexts is consistent with the scaling law suggested by Bostock et al. (2015): fc ˜ M-1/10 . We then apply the same source- parameters determination method to deep volcanic LFE detected in the Klyuchevskoy volcanic group in Kamtchatka, Russia. While the seismic moments for these earthquakes are slightly smaller, they still approximately follow the fc ˜ M-1/10 scaling. This size-duration scaling observed for LFE is very different from the one established for regular earthquakes (fc ˜ M-1/3) and from the scaling more recently suggested by Ide et al. (2007) for the broad class of "slow earthquakes". The scaling observed for LFE suggests that they are generated by sources of nearly constant size with strongly varying intensities. LFE then do not exhibit the self-similarity characteristic of regular earthquakes, strongly suggesting that the physical mechanisms at their origin are different. Moreover, the agreement with the size-duration scaling for both tectonic and volcanic LFE might indicate a similarity in their source behavior.

  18. Run-up Variability due to Source Effects

    NASA Astrophysics Data System (ADS)

    Del Giudice, Tania; Zolezzi, Francesca; Traverso, Chiara; Valfrè, Giulio; Poggi, Pamela; Parker, Eric J.

    2010-05-01

    This paper investigates the variability of tsunami run-up at a specific location due to uncertainty in earthquake source parameters. It is important to quantify this 'inter-event' variability for probabilistic assessments of tsunami hazard. In principal, this aspect of variability could be studied by comparing field observations at a single location from a number of tsunamigenic events caused by the same source. As such an extensive dataset does not exist, we decided to study the inter-event variability through numerical modelling. We attempt to answer the question 'What is the potential variability of tsunami wave run-up at a specific site, for a given magnitude earthquake occurring at a known location'. The uncertainty is expected to arise from the lack of knowledge regarding the specific details of the fault rupture 'source' parameters. The following steps were followed: the statistical distributions of the main earthquake source parameters affecting the tsunami height were established by studying fault plane solutions of known earthquakes; a case study based on a possible tsunami impact on Egypt coast has been set up and simulated, varying the geometrical parameters of the source; simulation results have been analyzed deriving relationships between run-up height and source parameters; using the derived relationships a Monte Carlo simulation has been performed in order to create the necessary dataset to investigate the inter-event variability of the run-up height along the coast; the inter-event variability of the run-up height along the coast has been investigated. Given the distribution of source parameters and their variability, we studied how this variability propagates to the run-up height, using the Cornell 'Multi-grid coupled Tsunami Model' (COMCOT). The case study was based on the large thrust faulting offshore the south-western Greek coast, thought to have been responsible for the infamous 1303 tsunami. Numerical modelling of the event was used to assess the impact on the North African coast. The effects of uncertainty in fault parameters were assessed by perturbing the base model, and observing variation on wave height along the coast. The tsunami wave run-up was computed at 4020 locations along the Egyptian coast between longitudes 28.7 E and 33.8 E. To assess the effects of fault parameters uncertainty, input model parameters have been varied and effects on run-up have been analyzed. The simulations show that for a given point there are linear relationships between run-up and both fault dislocation and rupture length. A superposition analysis shows that a linear combination of the effects of the different source parameters (evaluated results) leads to a good approximation of the simulated results. This relationship is then used as the basis for a Monte Carlo simulation. The Monte Carlo simulation was performed for 1600 scenarios at each of the 4020 points along the coast. The coefficient of variation (the ratio between standard deviation of the results and the average of the run-up heights along the coast) is comprised between 0.14 and 3.11 with an average value along the coast equal to 0.67. The coefficient of variation of normalized run-up has been compared with the standard deviation of spectral acceleration attenuation laws used for probabilistic seismic hazard assessment studies. These values have a similar meaning, and the uncertainty in the two cases is similar. The 'rule of thumb' relationship between mean and sigma can be expressed as follows: ?+ σ ≈ 2?. The implication is that the uncertainty in run-up estimation should give a range of values within approximately two times the average. This uncertainty should be considered in tsunami hazard analysis, such as inundation and risk maps, evacuation plans and the other related steps.

  19. A Stepwise Iterative Procedure to Constrain Stress Drop, Regional Attenuation Models, and Site Effects

    DTIC Science & Technology

    2010-09-01

    Source parameter estimates for 8 crustal pairs near I.NTS using all regional data (left) and restricting the data by magnitude/distance (right). A... tectonic implications of aftershocks of the Mw 7.6 Bhuj earthquake of 26 January 2001, Bull. Seismol. Soc.Am., 94: 818-827. Bodin, P., L...Seismol. Soc. Am.,94:1658-1669. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75

  20. Macroscopic Source Properties from Dynamic Rupture Styles in Plastic Media

    NASA Astrophysics Data System (ADS)

    Gabriel, A.; Ampuero, J. P.; Dalguer, L. A.; Mai, P. M.

    2011-12-01

    High stress concentrations at earthquake rupture fronts may generate an inelastic off-fault response at the rupture tip, leading to increased energy absorption in the damage zone. Furthermore, the induced asymmetric plastic strain field in in-plane rupture modes may produce bimaterial interfaces that can increase radiation efficiency and reduce frictional dissipation. Off-fault inelasticity thus plays an important role for realistic predictions of near-fault ground motion. Guided by our previous studies in the 2D elastic case, we perform rupture dynamics simulations including rate-and-state friction and off-fault plasticity to investigate the effects on the rupture properties. We quantitatively analyze macroscopic source properties for different rupture styles, ranging from cracks to pulses and subshear to supershear ruptures, and their transitional mechanisms. The energy dissipation due to off-fault inelasticity modifies the conditions to obtain each rupture style and alters macroscopic source properties. We examine apparent fracture energy, rupture and healing front speed, peak slip and peak slip velocity, dynamic stress drop and size of the process and plastic zones, slip and plastic seismic moment, and their connection to ground motion. This presentation focuses on the effects of rupture style and off-fault plasticity on the resulting ground motion patterns, especially on characteristic slip velocity function signatures and resulting seismic moments. We aim at developing scaling rules for equivalent elastic models, as function of background stress and frictional parameters, that may lead to improved "pseudo-dynamic" source parameterizations for ground-motion calculation. Moreover, our simulations provide quantitative relations between off-fault energy dissipation and macroscopic source properties. These relations might provide a self-consistent theoretical framework for the study of the earthquake energy balance based on observable earthquake source parameters.

  1. Improved centroid moment tensor analyses in the NIED AQUA (Accurate and QUick Analysis system for source parameters)

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Asano, Y.; Matsumoto, T.

    2012-12-01

    The rapid determination of hypocentral parameters and their transmission to the public are valuable components of disaster mitigation. We have operated an automatic system for this purpose—termed the Accurate and QUick Analysis system for source parameters (AQUA)—since 2005 (Matsumura et al., 2006). In this system, the initial hypocenter, the moment tensor (MT), and the centroid moment tensor (CMT) solutions are automatically determined and posted on the NIED Hi-net Web site (www.hinet.bosai.go.jp). This paper describes improvements made to the AQUA to overcome limitations that became apparent after the 2011 Tohoku Earthquake (05:46:17, March 11, 2011 in UTC). The improvements included the processing of NIED F-net velocity-type strong motion records, because NIED F-net broadband seismographs are saturated for great earthquakes such as the 2011 Tohoku Earthquake. These velocity-type strong motion seismographs provide unsaturated records not only for the 2011 Tohoku Earthquake, but also for recording stations located close to the epicenters of M>7 earthquakes. We used 0.005-0.020 Hz records for M>7.5 earthquakes, in contrast to the 0.01-0.05 Hz records employed in the original system. The initial hypocenters determined based on arrival times picked by using seismograms recorded by NIED Hi-net stations can have large errors in terms of magnitude and hypocenter location, especially for great earthquakes or earthquakes located far from the onland Hi-net network. The size of the 2011 Tohoku Earthquake was initially underestimated in the AQUA to be around M5 at the initial stage of rupture. Numerous aftershocks occurred at the outer rise east of the Japan trench, where a great earthquake is anticipated to occur. Hence, we modified the system to repeat the MT analyses assuming a larger size, for all earthquakes for which the magnitude was initially underestimated. We also broadened the search range of centroid depth for earthquakes located far from the onland Hi-net network. After implementing the above improvements, the CMT solution for the 2011 Tohoku Earthquake was successfully determined with a moment magnitude (Mw) of 8.6 (9.04 × 10^21 Nm). The focal mechanisms and centroid depths of the 2011 Tohoku Earthquake and M>7 aftershocks, as obtained using the improved system, are in agreement with those from the GlobalCMT. The sizes of these earthquakes are also consistent with those of GlobalCMT, with differences of less than Mw 0.1 except for the mainshock (Mw9.1, 5.31 × 10^22 Nm, GlobalCMT). This discrepancy may indicate that the bandwidth used in the analysis is insufficient for an earthquake of this size. To address this shortcoming, we used 0.0025-0.0100 Hz records and obtained a magnitude of Mw8.9 (3.35 × 10^22 Nm). This result is consistent with the GlobalCMT and other results (e.g., Mw 9.0, 3.43 × 10^22 Nm reported by Ozawa et al., 2011; Mw9.0, 4.42 × 10^22 Nm reported by Suzuki et al., 2011). Using the improved system, the CMT analysis for the 2011 Tohoku Earthquake is estimated to be completed within 12 minutes of the origin time.

  2. Two-dimensional joint inversion of Magnetotelluric and local earthquake data: Discussion on the contribution to the solution of deep subsurface structures

    NASA Astrophysics Data System (ADS)

    Demirci, İsmail; Dikmen, Ünal; Candansayar, M. Emin

    2018-02-01

    Joint inversion of data sets collected by using several geophysical exploration methods has gained importance and associated algorithms have been developed. To explore the deep subsurface structures, Magnetotelluric and local earthquake tomography algorithms are generally used individually. Due to the usage of natural resources in both methods, it is not possible to increase data quality and resolution of model parameters. For this reason, the solution of the deep structures with the individual usage of the methods cannot be fully attained. In this paper, we firstly focused on the effects of both Magnetotelluric and local earthquake data sets on the solution of deep structures and discussed the results on the basis of the resolving power of the methods. The presence of deep-focus seismic sources increase the resolution of deep structures. Moreover, conductivity distribution of relatively shallow structures can be solved with high resolution by using MT algorithm. Therefore, we developed a new joint inversion algorithm based on the cross gradient function in order to jointly invert Magnetotelluric and local earthquake data sets. In the study, we added a new regularization parameter into the second term of the parameter correction vector of Gallardo and Meju (2003). The new regularization parameter is enhancing the stability of the algorithm and controls the contribution of the cross gradient term in the solution. The results show that even in cases where resistivity and velocity boundaries are different, both methods influence each other positively. In addition, the region of common structural boundaries of the models are clearly mapped compared with original models. Furthermore, deep structures are identified satisfactorily even with using the minimum number of seismic sources. In this paper, in order to understand the future studies, we discussed joint inversion of Magnetotelluric and local earthquake data sets only in two-dimensional space. In the light of these results and by means of the acceleration on the three-dimensional modelling and inversion algorithms, it is thought that it may be easier to identify underground structures with high resolution.

  3. W-phase estimation of first-order rupture distribution for megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2014-05-01

    Estimating the rupture pattern for large earthquakes during the first hour after the origin time can be crucial for rapid impact assessment and tsunami warning. However, the estimation of coseismic slip distribution models generally involves complex methodologies that are difficult to implement rapidly. Further, while model parameter uncertainty can be crucial for meaningful estimation, they are often ignored. In this work we develop a finite fault inversion for megathrust earthquakes which rapidly generates good first order estimates and uncertainties of spatial slip distributions. The algorithm uses W-phase waveforms and a linear automated regularization approach to invert for rupture models of some recent megathrust earthquakes. The W phase is a long period (100-1000 s) wave which arrives together with the P wave. Because it is fast, has small amplitude and a long-period character, the W phase is regularly used to estimate point source moment tensors by the NEIC and PTWC, among others, within an hour of earthquake occurrence. We use W-phase waveforms processed in a manner similar to that used for such point-source solutions. The inversion makes use of 3 component W-phase records retrieved from the Global Seismic Network. The inverse problem is formulated by a multiple time window method, resulting in a linear over-parametrized problem. The over-parametrization is addressed by Tikhonov regularization and regularization parameters are chosen according to the discrepancy principle by grid search. Noise on the data is addressed by estimating the data covariance matrix from data residuals. The matrix is obtained by starting with an a priori covariance matrix and then iteratively updating the matrix based on the residual errors of consecutive inversions. Then, a covariance matrix for the parameters is computed using a Bayesian approach. The application of this approach to recent megathrust earthquakes produces models which capture the most significant features of their slip distributions. Also, reliable solutions are generally obtained with data in a 30-minute window following the origin time, suggesting that a real-time system could obtain solutions in less than one hour following the origin time.

  4. Comparing methods for Earthquake Location

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Bodin, Thomas; Sylvander, Matthieu; Parroucau, Pierre; Manchuel, Kevin

    2017-04-01

    There are plenty of methods available for locating small magnitude point source earthquakes. However, it is known that these different approaches produce different results. For each approach, results also depend on a number of parameters which can be separated into two main branches: (1) parameters related to observations (number and distribution of for example) and (2) parameters related to the inversion process (velocity model, weighting parameters, initial location etc.). Currently, the results obtained from most of the location methods do not systematically include quantitative uncertainties. The effect of the selected parameters on location uncertainties is also poorly known. Understanding the importance of these different parameters and their effect on uncertainties is clearly required to better constrained knowledge on fault geometry, seismotectonic processes and at the end to improve seismic hazard assessment. In this work, realized in the frame of the SINAPS@ research program (http://www.institut-seism.fr/projets/sinaps/), we analyse the effect of different parameters on earthquakes location (e.g. type of phase, max. hypocentral separation etc.). We compare several codes available (Hypo71, HypoDD, NonLinLoc etc.) and determine their strengths and weaknesses in different cases by means of synthetic tests. The work, performed for the moment on synthetic data, is planned to be applied, in a second step, on data collected by the Midi-Pyrénées Observatory (OMP).

  5. Energy-to-Moment ratios for Deep Earthquakes: No evidence for scofflaws

    NASA Astrophysics Data System (ADS)

    Saloor, N.; Okal, E. A.

    2015-12-01

    Energy-to-moment ratios can provide information on the distribution of seismic source spectrum between high and low frequencies, and thus identify anomalous events (either "slow" or "snappy") whose source violates seismic scaling laws, the former characteristic of the so-called tsunami earthquakes (e.g., Mentawai, 2010), the latter featuring enhanced acceleration and destruction (e.g., Christchurch, 2011). We extend to deep earthquakes the concept of the slowness paramete, Θ=log10EE/M0, introduced by Newman and Okal [1998], where the estimated energy EE is computed for an average focal mechanism and depth (in the range 300-690 km). We find that only minor modifications of the algorithm are necessary to adapt it to deep earthquakes. The analysis of a dataset of 160 deep earthquakes from the past 30 years show that these events scale with an average Θ=-4.34±0.31, corresponding to slightly greater strain release than for their shallow counterparts. However, the most important result to date is that we have not found any "outliers", i.e., violating this trend by one or more logarithmic units, as was the case for the slow events at shallow depths. This indicates that the processes responsible for such variations in energy distribution in the source spectrum of shallow earthquakes, are absent from their deep counterparts, suggesting, perhaps not unexpectedly, that the deep seismogenic zones feature more homogeneous properties than shallow ones. This includes the large event of 30 May 2015 below the Bonin Islands (Θ=-4.13), which took place both deeper than, and oceanwards of, the otherwise documented Wadati-Benioff Zone.

  6. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    The 1995 Hyogo-ken Nambu Earthquake (1995) near Kobe, Japan, spurred research on strong motion prediction. To mitigate damage caused by large earthquakes, a highly precise method of predicting future strong motion waveforms is required. In this study, we applied empirical Green's function method to forward modeling in order to simulate strong ground motion in the Noubi Fault zone and examine issues related to strong motion prediction for large faults. Source models for the scenario earthquakes were constructed using the recipe of strong motion prediction (Irikura and Miyake, 2001; Irikura et al., 2003). To calculate the asperity area ratio of a large fault zone, the results of a scaling model, a scaling model with 22% asperity by area, and a cascade model were compared, and several rupture points and segmentation parameters were examined for certain cases. A small earthquake (Mw: 4.6) that occurred in northern Fukui Prefecture in 2004 were examined as empirical Green's function, and the source spectrum of this small event was found to agree with the omega-square scaling law. The Nukumi, Neodani, and Umehara segments of the 1891 Noubi Earthquake were targeted in the present study. The positions of the asperity area and rupture starting points were based on the horizontal displacement distributions reported by Matsuda (1974) and the fault branching pattern and rupture direction model proposed by Nakata and Goto (1998). Asymmetry in the damage maps for the Noubi Earthquake was then examined. We compared the maximum horizontal velocities for each case that had a different rupture starting point. In the case, rupture started at the center of the Nukumi Fault, while in another case, rupture started on the southeastern edge of the Umehara Fault; the scaling model showed an approximately 2.1-fold difference between these cases at observation point FKI005 of K-Net. This difference is considered to relate to the directivity effect associated with the direction of rupture propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  7. Earthquake Directivity, Orientation, and Stress Drop Within the Subducting Plate at the Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Abercrombie, Rachel E.; Poli, Piero; Bannister, Stephen

    2017-12-01

    We develop an approach to calculate earthquake source directivity and rupture velocity for small earthquakes, using the whole source time function rather than just an estimate of the duration. We apply the method to an aftershock sequence within the subducting plate beneath North Island, New Zealand, and investigate its resolution. We use closely located, highly correlated empirical Green's function (EGF) events to obtain source time functions (STFs) for this well-recorded sequence. We stack the STFs from multiple EGFs at each station, to improve the stability of the STFs. Eleven earthquakes (M 3.3-4.5) have sufficient azimuthal coverage, and both P and S STFs, to investigate directivity. The time axis of each STF in turn is stretched to find the maximum correlation between all pairs of stations. We then invert for the orientation and rupture velocity of both unilateral and bilateral line sources that best match the observations. We determine whether they are distinguishable and investigate the effects of limited frequency bandwidth. Rupture orientations are resolvable for eight earthquakes, seven of which are predominantly unilateral, and all are consistent with rupture on planes similar to the main shock fault plane. Purely unilateral rupture is rarely distinguishable from asymmetric bilateral rupture, despite a good station distribution. Synthetic testing shows that rupture velocity is the least well-resolved parameter; estimates decrease with loss of high-frequency energy, and measurements are best considered minimum values. We see no correlation between rupture velocity and stress drop, and spatial stress drop variation cannot be explained as an artifact of varying rupture velocity.

  8. Earthquake hazard and risk assessment based on Unified Scaling Law for Earthquakes: Greater Caucasus and Crimea

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir G.; Nekrasova, Anastasia K.

    2018-05-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10 N(M, L) = A + B·(5 - M) + C·log10 L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.

  9. Updated earthquake catalogue for seismic hazard analysis in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Sarfraz; Waseem, Muhammad; Khan, Muhammad Asif; Ahmed, Waqas

    2018-03-01

    A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40-83° N and 20-40° E) includes 36,563 earthquake events, which are reported as 4.0-8.3 moment magnitude (M W) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude M W. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.

  10. Mechanical and statistical evidence of the causality of human-made mass shifts on the Earth's upper crust and the occurrence of earthquakes

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.

    2013-01-01

    A global catalog of small- to large-sized earthquakes was systematically analyzed to identify causality and correlatives between human-made mass shifts in the upper Earth's crust and the occurrence of earthquakes. The mass shifts, ranging between 1 kt and 1 Tt, result from large-scale geoengineering operations, including mining, water reservoirs, hydrocarbon production, fluid injection/extractions, deep geothermal energy production and coastal management. This article shows evidence that geomechanical relationships exist with statistical significance between (a) seismic moment magnitudes M of observed earthquakes, (b) lateral distances of the earthquake hypocenters to the geoengineering "operation points" and (c) mass removals or accumulations on the Earth's crust. Statistical findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. Statistical observations, however, indicate that every second, seismic event tends to occur after a decade. The chance of an earthquake to nucleate after 2 or 20 years near an area with a significant mass shift is 25 or 75 %, respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in which the operations take place (i.e., extensive, transverse or compressive). Results are summarized as follows: First, seismic moment magnitudes increase the more mass is locally shifted on the Earth's crust. Second, seismic moment magnitudes increase the larger the area in the crust is geomechanically polluted. Third, reverse faults tend to be more trigger-sensitive than normal faults due to a stronger alteration of the minimum vertical principal stress component. Pure strike-slip faults seem to rupture randomly and independently from the magnitude of the mass changes. Finally, mainly due to high estimation uncertainties of source parameters and, in particular, of shallow seismic events (<10 km), it remains still very difficult to discriminate between induced and triggered earthquakes with respect to the data catalog of this study. However, first analyses indicate that small- to medium-sized earthquakes (M6) seem to be triggered. The rupture propagation of triggered events might be dominated by pre-existing tectonic stress conditions.

  11. Toward tsunami early warning system in Indonesia by using rapid rupture durations estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madlazim

    2012-06-20

    Indonesia has Indonesian Tsunami Early Warning System (Ina-TEWS) since 2008. The Ina-TEWS has used automatic processing on hypocenter; Mwp, Mw (mB) and Mj. If earthquake occurred in Ocean, depth < 70 km and magnitude > 7, then Ina-TEWS announce early warning that the earthquake can generate tsunami. However, the announcement of the Ina-TEWS is still not accuracy. Purposes of this research are to estimate earthquake rupture duration of large Indonesia earthquakes that occurred in Indian Ocean, Java, Timor sea, Banda sea, Arafura sea and Pasific ocean. We analyzed at least 330 vertical seismogram recorded by IRIS-DMC network using a directmore » procedure for rapid assessment of earthquake tsunami potential using simple measures on P-wave vertical seismograms on the velocity records, and the likelihood that the high-frequency, apparent rupture duration, T{sub dur}. T{sub dur} can be related to the critical parameters rupture length (L), depth (z), and shear modulus ({mu}) while T{sub dur} may be related to wide (W), slip (D), z or {mu}. Our analysis shows that the rupture duration has a stronger influence to generate tsunami than Mw and depth. The rupture duration gives more information on tsunami impact, Mo/{mu}, depth and size than Mw and other currently used discriminants. We show more information which known from the rupture durations. The longer rupture duration, the shallower source of the earthquake. For rupture duration greater than 50 s, the depth less than 50 km, Mw greater than 7, the longer rupture length, because T{sub dur} is proportional L and greater Mo/{mu}. Because Mo/{mu} is proportional L. So, with rupture duration information can be known information of the four parameters. We also suggest that tsunami potential is not directly related to the faulting type of source and for events that have rupture duration greater than 50 s, the earthquakes generated tsunami. With available real-time seismogram data, rapid calculation, rupture duration discriminant can be completed within 4-5 min after an earthquake occurs and thus can aid in effective, accuracy and reliable tsunami early warning for Indonesia region.« less

  12. Landscape scale prediction of earthquake-induced landsliding based on seismological and geomorphological parameters.

    NASA Astrophysics Data System (ADS)

    Marc, O.; Hovius, N.; Meunier, P.; Rault, C.

    2017-12-01

    In tectonically active areas, earthquakes are an important trigger of landslides with significant impact on hillslopes and river evolutions. However, detailed prediction of landslides locations and properties for a given earthquakes remain difficult.In contrast we propose, landscape scale, analytical prediction of bulk coseismic landsliding, that is total landslide area and volume (Marc et al., 2016a) as well as the regional area within which most landslide must distribute (Marc et al., 2017). The prediction is based on a limited number of seismological (seismic moment, source depth) and geomorphological (landscape steepness, threshold acceleration) parameters, and therefore could be implemented in landscape evolution model aiming at engaging with erosion dynamics at the scale of the seismic cycle. To assess the model we have compiled and normalized estimates of total landslide volume, total landslide area and regional area affected by landslides for 40, 17 and 83 earthquakes, respectively. We have found that low landscape steepness systematically leads to overprediction of the total area and volume of landslides. When this effect is accounted for, the model is able to predict within a factor of 2 the landslide areas and associated volumes for about 70% of the cases in our databases. The prediction of regional area affected do not require a calibration for the landscape steepness and gives a prediction within a factor of 2 for 60% of the database. For 7 out of 10 comprehensive inventories we show that our prediction compares well with the smallest region around the fault containing 95% of the total landslide area. This is a significant improvement on a previously published empirical expression based only on earthquake moment.Some of the outliers seems related to exceptional rock mass strength in the epicentral area or shaking duration and other seismic source complexities ignored by the model. Applications include prediction on the mass balance of earthquakes and this model predicts that only earthquakes generated on a narrow range of fault sizes may cause more erosion than uplift (Marc et al., 2016b), while very large earthquakes are expected to always build topography. The model could also be used to physically calibrate hillslope erosion or perturbations to river network within landscape evolution model.

  13. Toward seismic source imaging using seismo-ionospheric data

    NASA Astrophysics Data System (ADS)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach with, among other possible examples, the 2011 Mw 9.0 Tohoku-Oki earthquake, Japan, the 2012 Mw 7.8 Haida Gwaii earthquake, Canada and the 2011 Mw 7.1 Van earthquake, Eastern Turkey.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Douglas S.; Ford, Sean R.; Walter, William R.

    Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.

  15. Recent Mega-Thrust Tsunamigenic Earthquakes and PTHA

    NASA Astrophysics Data System (ADS)

    Lorito, S.

    2013-05-01

    The occurrence of several mega-thrust tsunamigenic earthquakes in the last decade, including but not limited to the 2004 Sumatra-Andaman, the 2010 Maule, and 2011 Tohoku earthquakes, has been a dramatic reminder of the limitations in our capability of assessing earthquake and tsunami hazard and risk. However, the increasingly high-quality geophysical observational networks allowed the retrieval of most accurate than ever models of the rupture process of mega-thrust earthquakes, thus paving the way for future improved hazard assessments. Probabilistic Tsunami Hazard Analysis (PTHA) methodology, in particular, is less mature than its seismic counterpart, PSHA. Worldwide recent research efforts of the tsunami science community allowed to start filling this gap, and to define some best practices that are being progressively employed in PTHA for different regions and coasts at threat. In the first part of my talk, I will briefly review some rupture models of recent mega-thrust earthquakes, and highlight some of their surprising features that likely result in bigger error bars associated to PTHA results. More specifically, recent events of unexpected size at a given location, and with unexpected rupture process features, posed first-order open questions which prevent the definition of an heterogeneous rupture probability along a subduction zone, despite of several recent promising results on the subduction zone seismic cycle. In the second part of the talk, I will dig a bit more into a specific ongoing effort for improving PTHA methods, in particular as regards epistemic and aleatory uncertainties determination, and the computational PTHA feasibility when considering the full assumed source variability. Only logic trees are usually explicated in PTHA studies, accounting for different possible assumptions on the source zone properties and behavior. The selection of the earthquakes to be actually modelled is then in general made on a qualitative basis or remains implicit, despite different methods like event trees have been used for different applications. I will define a quite general PTHA framework, based on the mixed use of logic and event trees. I will first discuss a particular class of epistemic uncertainties, i.e. those related to the parametric fault characterization in terms of geometry, kinematics, and assessment of activity rates. A systematic classification in six justification levels of epistemic uncertainty related with the existence and behaviour of fault sources will be presented. Then, a particular branch of the logic tree is chosen in order to discuss just the aleatory variability of earthquake parameters, represented with an event tree. Even so, PTHA based on numerical scenarios is a too demanding computational task, particularly when probabilistic inundation maps are needed. For trying to reduce the computational burden without under-representing the source variability, the event tree is first constructed by taking care of densely (over-)sampling the earthquake parameter space, and then the earthquakes are filtered basing on their associated tsunami impact offshore, before calculating inundation maps. I'll describe this approach by means of a case study in the Mediterranean Sea, namely the PTHA for some locations of Eastern Sicily coasts and Southern Crete coast due to potential subduction earthquakes occurring on the Hellenic Arc.

  16. 75 FR 37742 - Addition of New Export Control Classification Number 6A981 Passive Infrasound Sensors to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... or man-made infrasound sources including earthquakes, volcanic eruptions, rocket launch, and/or... rocket launch and/or nuclear explosions, or whether the parameters are overly broad. If the controls are...

  17. Early Warning for Large Magnitude Earthquakes: Is it feasible?

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Colombelli, S.; Kanamori, H.

    2011-12-01

    The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude, respectively, as a function of the length of the P-wave window. The entire rupture process of the Tohoku earthquake lasted more than 120 seconds, as shown by the source time functions obtained by several authors. When a 3 second window is used to measure Pd and τc the result is an obvious underestimation of the event size and final PGV. However, as the time window increases up to 27-30 seconds, the measured values of Pd and τc become comparable with those expected for a magnitude M≥8.5 earthquake, according to the τc vs. M and the PGV vs. Pd relationships obtained in a previous work. Since we did not observe any saturation effect for the predominant period and peak displacement measured within a P-wave, 30-seconds window, we infer that, at least from a theoretical point of view, the estimation of earthquake damage potential through the early warning parameters is still feasible for large events, provided that a longer time window is used for parameter measurement. The off-line analysis of the Tohoku event records shows that reliable estimations of the damage potential could have been obtained 40-50 seconds after the origin time, by updating the measurements of the early warning parameters in progressively enlarged P-wave time windows from 3 to 30 seconds.

  18. Source characteristics of 2000 small earthquakes nucleating on the Alto Tiberina fault system (central Italy).

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Tinti, E.; Chiaraluce, L.; Di Stefano, R.; Valoroso, L.

    2014-12-01

    The Alto Tiberina Fault (ATF) is a 60 km long east-dipping low-angle normal fault, located in a sector of the Northern Apennines (Italy) undergoing active extension since the Quaternary. The ATF has been imaged by analyzing the active source seismic reflection profiles, and the instrumentally recorded persistent background seismicity. The present study is an attempt to separate the contributions of source, site, and crustal attenuation, in order to focus on the mechanics of the seismic sources on the ATF, as well on the synthetic and the antithetic structures within the ATF hanging-wall (i.e. Colfiorito fault, Gubbio fault and Umbria Valley fault). In order to compute source spectra, we perform a set of regressions over the seismograms of 2000 small earthquakes (-0.8 < ML< 4) recorded between 2010 and 2014 at 50 permanent seismic stations deployed in the framework of the Alto Tiberina Near Fault Observatory project (TABOO) and equipped with three-components seismometers, three of which located in shallow boreholes. Because we deal with some very small earthquakes, we maximize the signal to noise ratio (SNR) with a technique based on the analysis of peak values of bandpass-filtered time histories, in addition to the same processing performed on Fourier amplitudes. We rely on a tool called Random Vibration Theory (RVT) to completely switch from peak values in the time domain to Fourier spectral amplitudes. Low-frequency spectral plateau of the source terms are used to compute moment magnitudes (Mw) of all the events, whereas a source spectral ratio technique is used to estimate the corner frequencies (Brune spectral model) of a subset of events chosen over the analysis of the noise affecting the spectral ratios. So far, the described approach provides high accuracy over the spectral parameters of earthquakes of localized seismicity, and may be used to gain insights into the underlying mechanics of faulting and the earthquake processes.

  19. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami simulation. By assuming that this computed tsunami is a real tsunami and observed at ocean bottom sensors, new tsunami simulation is carried out using the above method. The station distribution (each station is separated by 15 min., about 30 km) observed tsunami waveforms which were actually computed from the source model. Tsunami height distributions are estimated from the above method at 40, 80, and 120 seconds after the origin time of the earthquake. The Near-field Tsunami Inundation forecast method (Gusman et al. 2014) was used to estimate the tsunami inundation along the Sanriku coast. The result shows that the observed tsunami inundation was well explained by those estimated inundation. This also shows that it takes about 10 minutes to estimate the tsunami inundation from the origin time of the earthquake. This new method developed in this paper is very effective for a real-time tsunami forecast.

  20. Composite Earthquake Catalog of the Yellow Sea for Seismic Hazard Studies

    NASA Astrophysics Data System (ADS)

    Kang, S. Y.; Kim, K. H.; LI, Z.; Hao, T.

    2017-12-01

    The Yellow Sea (a.k.a West Sea in Korea) is an epicontinental and semi-closed sea located between Korea and China. Recent earthquakes in the Yellow Sea including, but not limited to, the Seogyuckryulbi-do (1 April 2014, magnitude 5.1), Heuksan-do (21 April 2013, magnitude 4.9), Baekryung-do (18 May 2013, magnitude 4.9) earthquakes, and the earthquake swarm in the Boryung offshore region in 2013, remind us of the seismic hazards affecting east Asia. This series of earthquakes in the Yellow Sea raised numerous questions. Unfortunately, both governments have trouble in monitoring seismicity in the Yellow Sea because earthquakes occur beyond their seismic networks. For example, the epicenters of the magnitude 5.1 earthquake in the Seogyuckryulbi-do region in 2014 reported by the Korea Meteorological Administration and China Earthquake Administration differed by approximately 20 km. This illustrates the difficulty with seismic monitoring and locating earthquakes in the region, despite the huge effort made by both governments. Joint effort is required not only to overcome the limits posed by political boundaries and geographical location but also to study seismicity and the underground structures responsible. Although the well-established and developing seismic networks in Korea and China have provided unprecedented amount and quality of seismic data, high quality catalog is limited to the recent 10s of years, which is far from major earthquake cycle. It is also noticed the earthquake catalog from either country is biased to its own and cannot provide complete picture of seismicity in the Yellow Sea. In order to understand seismic hazard and tectonics in the Yellow Sea, a composite earthquake catalog has been developed. We gathered earthquake information during last 5,000 years from various sources. There are good reasons to believe that some listings account for same earthquake, but in different source parameters. We established criteria in order to provide consistent information in the Yellow Sea composite earthquake catalog (YComCat). Since earthquake catalog plays critical role in the seismic hazard assessment, YComCat provides improved input to reduce uncertainties in the seismic hazard estimations.

  1. Offline Performance of the Filter Bank EEW Algorithm in the 2014 M6.0 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Meier, M. A.; Heaton, T. H.; Clinton, J. F.

    2014-12-01

    Medium size events like the M6.0 South Napa earthquake are very challenging for EEW: the damage such events produce can be severe, but it is generally confined to relatively small zones around the epicenter and the shaking duration is short. This leaves a very short window for timely EEW alerts. Algorithms that wait for several stations to trigger before sending out EEW alerts are typically not fast enough for these kind of events because their blind zone (the zone where strong ground motions start before the warnings arrive) typically covers all or most of the area that experiences strong ground motions. At the same time, single station algorithms are often too unreliable to provide useful alerts. The filter bank EEW algorithm is a new algorithm that is designed to provide maximally accurate and precise earthquake parameter estimates with minimum data input, with the goal of producing reliable EEW alerts when only a very small number of stations have been reached by the p-wave. It combines the strengths of single station and network based algorithms in that it starts parameter estimates as soon as 0.5 seconds of data are available from the first station, but then perpetually incorporates additional data from the same or from any number of other stations. The algorithm analyzes the time dependent frequency content of real time waveforms with a filter bank. It then uses an extensive training data set to find earthquake records from the past that have had similar frequency content at a given time since the p-wave onset. The source parameters of the most similar events are used to parameterize a likelihood function for the source parameters of the ongoing event, which can then be maximized to find the most likely parameter estimates. Our preliminary results show that the filter bank EEW algorithm correctly estimated the magnitude of the South Napa earthquake to be ~M6 with only 1 second worth of data at the nearest station to the epicenter. This estimate is then confirmed when updates based on more data from stations at farther distances become available. Because these early estimates saturate at ~M6.5, however, the magnitude estimate might have had to be considered a minimum bound.

  2. Evaluation of accuracy of synthetic waveforms for subduction-zone earthquakes by using a land-ocean unified 3D structure model

    NASA Astrophysics Data System (ADS)

    Okamoto, Taro; Takenaka, Hiroshi; Nakamura, Takeshi

    2018-06-01

    Seismic wave propagation from shallow subduction-zone earthquakes can be strongly affected by 3D heterogeneous structures, such as oceanic water and sedimentary layers with irregular thicknesses. Synthetic waveforms must incorporate these effects so that they reproduce the characteristics of the observed waveforms properly. In this paper, we evaluate the accuracy of synthetic waveforms for small earthquakes in the source area of the 2011 Tohoku-Oki earthquake ( M JMA 9.0) at the Japan Trench. We compute the synthetic waveforms on the basis of a land-ocean unified 3D structure model using our heterogeneity, oceanic layer, and topography finite-difference method. In estimating the source parameters, we apply the first-motion augmented moment tensor (FAMT) method that we have recently proposed to minimize biases due to inappropriate source parameters. We find that, among several estimates, only the FAMT solutions are located very near the plate interface, which demonstrates the importance of using a 3D model for ensuring the self-consistency of the structure model, source position, and source mechanisms. Using several different filter passbands, we find that the full waveforms with periods longer than about 10 s can be reproduced well, while the degree of waveform fitting becomes worse for periods shorter than about 10 s. At periods around 4 s, the initial body waveforms can be modeled, but the later large-amplitude surface waves are difficult to reproduce correctly. The degree of waveform fitting depends on the source location, with better fittings for deep sources near land. We further examine the 3D sensitivity kernels: for the period of 12.8 s, the kernel shows a symmetric pattern with respect to the straight path between the source and the station, while for the period of 6.1 s, a curved pattern is obtained. Also, the range of the sensitive area becomes shallower for the latter case. Such a 3D spatial pattern cannot be predicted by 1D Earth models and indicates the strong effects of 3D heterogeneity on short-period ( ≲ 10s) waveforms. Thus, it would be necessary to consider such 3D effects when improving the structure and source models.

  3. A Bayesian approach to earthquake source studies

    NASA Astrophysics Data System (ADS)

    Minson, Sarah

    Bayesian sampling has several advantages over conventional optimization approaches to solving inverse problems. It produces the distribution of all possible models sampled proportionally to how much each model is consistent with the data and the specified prior information, and thus images the entire solution space, revealing the uncertainties and trade-offs in the model. Bayesian sampling is applicable to both linear and non-linear modeling, and the values of the model parameters being sampled can be constrained based on the physics of the process being studied and do not have to be regularized. However, these methods are computationally challenging for high-dimensional problems. Until now the computational expense of Bayesian sampling has been too great for it to be practicable for most geophysical problems. I present a new parallel sampling algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. This technique, based on Transitional Markov chain Monte Carlo, makes it possible to sample distributions in many hundreds of dimensions, if the forward model is fast, or to sample computationally expensive forward models in smaller numbers of dimensions. The design of the algorithm is independent of the model being sampled, so CATMIP can be applied to many areas of research. I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. Surface displacements from the earthquake were recorded by six interferograms and twelve local high-rate GPS stations. Because of the wealth of near-fault data, the source process is well-constrained. I find that the near-field high-rate GPS data have significant resolving power above and beyond the slip distribution determined from static displacements. The location and magnitude of the maximum displacement are resolved. The rupture almost certainly propagated at sub-shear velocities. The full posterior distribution can be used not only to calculate source parameters but also to determine their uncertainties. So while kinematic source modeling and the estimation of source parameters is not new, with CATMIP I am able to use Bayesian sampling to determine which parts of the source process are well-constrained and which are not.

  4. In-situ investigation of relations between slow slip events, repeaters and earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Marty, S. B.; Schubnel, A.; Gardonio, B.; Bhat, H. S.; Fukuyama, E.

    2017-12-01

    Recent observations have shown that, in subduction zones, imperceptible slip, known as "slow slip events", could trigger powerful earthquakes and could be link to the onset of swarms of repeaters. In the aim of investigating the relation between repeaters, slow slip events and earthquake nucleation, we have conducted stick-slip experiments on saw-cut Indian Gabbro under upper crustal stress conditions (up to 180 MPa confining pressure). During the past decades, the reproduction of micro-earthquakes in the laboratory enabled a better understanding and to better constrain physical parameters that are the origin of the seismic source. Using a new set of calibrated piezoelectric acoustic emission sensors and high frequency dynamic strain gages, we are now able to measure a large number of physical parameters during stick-slip motion, such as the rupture velocity, the slip velocity, the dynamic stress drop and the absolute magnitudes and sizes of foreshock acoustic emissions. Preliminary observations systemically show quasi-static slip accelerations, onset of repeaters as well as an increase in the acoustic emission rate before failure. In the next future, we will further investigate the links between slow slip events, repeaters, stress build-up and earthquakes, using our high-frequency acoustic and strain recordings and applying template matching analysis.

  5. Urban Earthquake Shaking and Loss Assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Zulfikar, C.; Durukal, E.; Erdik, M.

    2009-04-01

    This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Level 2 analysis of the ELER Software (similar to HAZUS and SELENA) is essentially intended for earthquake risk assessment (building damage, consequential human casualties and macro economic loss quantifiers) in urban areas. The basic Shake Mapping is similar to the Level 0 and Level 1 analysis however, options are available for more sophisticated treatment of site response through externally entered data and improvement of the shake map through incorporation of accelerometric and other macroseismic data (similar to the USGS ShakeMap System). The building inventory data for the Level 2 analysis will consist of grid (geo-cell) based urban building and demographic inventories. For building grouping the European building typology developed within the EU-FP5 RISK-EU project is used. The building vulnerability/fragility relationships to be used can be user selected from a list of applicable relationships developed on the basis of a comprehensive study, Both empirical and analytical relationships (based on the Coefficient Method, Equivalent Linearization Method and the Reduction Factor Method of analysis) can be employed. Casualties in Level 2 analysis are estimated based on the number of buildings in different damaged states and the casualty rates for each building type and damage level. Modifications to the casualty rates can be used if necessary. ELER Level 2 analysis will include calculation of direct monetary losses as a result building damage that will allow for repair-cost estimations and specific investigations associated with earthquake insurance applications (PML and AAL estimations). ELER Level 2 analysis loss results obtained for Istanbul for a scenario earthquake using different techniques will be presented with comparisons using different earthquake damage assessment software. The urban earthquake shaking and loss information is intented for dissemination in a timely manner to related agencies for the planning and coordination of the post-earthquake emergency response. However the same software can also be used for scenario earthquake loss estimation, related Monte-Carlo type simulations and eathquake insurance applications.

  6. Source process and tectonic implication of the January 20, 2007 Odaesan earthquake, South Korea

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Ali K.; Kim, K. Y.; Fnais, M. S.; Al-Amri, A. M.

    2014-04-01

    The source process for the 20th of January 2007, Mw 4.5 Odaesan earthquake in South Korea is investigated in the low- and high-frequency bands, using velocity and acceleration waveform data recorded by the Korea Meteorological Administration Seismographic Network at distances less than 70 km from the epicenter. Synthetic Green functions are adopted for the low-frequency band of 0.1-0.3 Hz by using the wave-number integration technique and the one dimensional velocity model beneath the epicentral area. An iterative technique was performed by a grid search across the strike, dip, rake, and focal depth of rupture nucleation parameters to find the best-fit double-couple mechanism. To resolve the nodal plane ambiguity, the spatiotemporal slip distribution on the fault surface was recovered using a non-negative least-square algorithm for each set of the grid-searched parameters. The focal depth of 10 km was determined through the grid search for depths in the range of 6-14 km. The best-fit double-couple mechanism obtained from the finite-source model indicates a vertical strike-slip faulting mechanism. The NW faulting plane gives comparatively smaller root-mean-squares (RMS) error than its auxiliary plane. Slip pattern event provides simple source process due to the effect of Low-frequency that acted as a point source model. Three empirical Green functions are adopted to investigate the source process in the high-frequency band. A set of slip models was recovered on both nodal planes of the focal mechanism with various rupture velocities in the range of 2.0-4.0 km/s. Although there is a small difference between the RMS errors produced by the two orthogonal nodal planes, the SW dipping plane gives a smaller RMS error than its auxiliary plane. The slip distribution is relatively assessable by the oblique pattern recovered around the hypocenter in the high-frequency analysis; indicating a complex rupture scenario for such moderate-sized earthquake, similar to those reported for large earthquakes.

  7. The ``exceptional'' earthquake of 3 January 1117 in the Verona area (northern Italy): A critical time review and detection of two lost earthquakes (lower Germany and Tuscany)

    NASA Astrophysics Data System (ADS)

    Guidoboni, Emanuela; Comastri, Alberto; Boschi, Enzo

    2005-12-01

    In the seismological literature the 3 January 1117 earthquake represents an interesting case study, both for the sheer size of the area in which that event is recorded by the monastic sources of the 12th century, and for the amount of damage mentioned. The 1117 event has been added to the earthquake catalogues of up to five European countries (Italy, France, Belgium, Switzerland, the Iberian peninsula), and it is the largest historical earthquake for northern Italy. We have analyzed the monastic time system in the 12th century and, by means of a comparative analysis of the sources, have correlated the two shocks mentioned (in the night and in the afternoon of 3 January) to territorial effects, seeking to make the overall picture reported for Europe more consistent. The connection between the linguistic indications and the localization of the effects has allowed us to shed light, with a reasonable degree of approximation, upon two previously little known earthquakes, probably generated by a sequence of events. A first earthquake in lower Germany (I0 (epicentral intensity) VII-VIII MCS (Mercalli, Cancani, Sieberg), M 6.4) preceded the far more violent one in northern Italy (Verona area) by about 12-13 hours. The second event is the one reported in the literature. We have put forward new parameters for this Veronese earthquake (I0 IX MCS, M 7.0). A third earthquake is independently recorded in the northwestern area of Tuscany (Imax VII-VIII MCS), but for the latter event the epicenter and magnitude cannot be evaluated.

  8. Prediction of the area affected by earthquake-induced landsliding based on seismological parameters

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Meunier, Patrick; Hovius, Niels

    2017-07-01

    We present an analytical, seismologically consistent expression for the surface area of the region within which most landslides triggered by an earthquake are located (landslide distribution area). This expression is based on scaling laws relating seismic moment, source depth, and focal mechanism with ground shaking and fault rupture length and assumes a globally constant threshold of acceleration for onset of systematic mass wasting. The seismological assumptions are identical to those recently used to propose a seismologically consistent expression for the total volume and area of landslides triggered by an earthquake. To test the accuracy of the model we gathered geophysical information and estimates of the landslide distribution area for 83 earthquakes. To reduce uncertainties and inconsistencies in the estimation of the landslide distribution area, we propose an objective definition based on the shortest distance from the seismic wave emission line containing 95 % of the total landslide area. Without any empirical calibration the model explains 56 % of the variance in our dataset, and predicts 35 to 49 out of 83 cases within a factor of 2, depending on how we account for uncertainties on the seismic source depth. For most cases with comprehensive landslide inventories we show that our prediction compares well with the smallest region around the fault containing 95 % of the total landslide area. Aspects ignored by the model that could explain the residuals include local variations of the threshold of acceleration and processes modulating the surface ground shaking, such as the distribution of seismic energy release on the fault plane, the dynamic stress drop, and rupture directivity. Nevertheless, its simplicity and first-order accuracy suggest that the model can yield plausible and useful estimates of the landslide distribution area in near-real time, with earthquake parameters issued by standard detection routines.

  9. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    NASA Astrophysics Data System (ADS)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of intermediate-sized earthquakes present a new window into the nature of potentially induced earthquakes in the WCSB.

  10. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    NASA Astrophysics Data System (ADS)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median models. We envisage that the ensemble of contributed models will be useful both as a research resource and in the classroom. Locations of earthquakes derived from InSAR data have already been demonstrated to differ significantly from those obtained from global seismic networks (Weston et al., 2011), and the locations obtained by our users will enable us to identify systematic mislocations that are likely due to errors in Earth velocity models used to locate earthquakes. If the tool is incorporated into geophysics, tectonics and/or structural geology classes, in addition to familiarizing students with InSAR and elastic deformation modeling, the spread of different results for each individual earthquake will allow the teaching of concepts such as model uncertainty and non-uniqueness when modeling real scientific data. Additionally, the process students go through to optimize their estimates of fault parameters can easily be tied into teaching about the concepts of forward and inverse problems, which are common in geophysics.

  11. Preliminary vulnerability evaluation by local tsunami and flood by Puerto Vallarta

    NASA Astrophysics Data System (ADS)

    Trejo-Gómez, E.; Nunez-Cornu, F. J.; Ortiz, M.; Escudero, C. R.; CA-UdG-276 Sisvoc

    2013-05-01

    Jalisco coast is susceptible to local tsunami due to the occurrence of large earthquakes. In 1932 occurred three by largest earthquakes. Evidence suggests that one of them caused by offshore subsidence of sediments deposited by Armeria River. For the tsunamis 1932 have not been studied the seismic source. On October 9, 1995, occurred a large earthquake (Mw= 8.0) producing a tsunami with run up height up ≤ 5 m. This event affected Tenacatita Bay and many small villages along the coast of Jalisco and Colima. Using seismic source parameters, we simulated 1995 tsunami and estimated the maximum wave height. We compared the our results with 20 field measures 20 taked during 1995 along the south cost of Jalisco State, from Chalacatepec to Barra de Navidad. Similar seismic source parameters used for tsunami 1995 simulation was used as reference for simulating a hypothetical seismic source front Puerto Vallarta. We assumed that the fracture occurs in the gap for the north cost of Jalisco. Ten sites were distributed to cover the Banderas Bay, as theoretical pressure sensors, were estimated the maximum wave height and time to arrived at cost. After we delimited zones hazard zones by floods on digital model terrain, a graphic scale 1:20,000. At the moment, we have already included information by hazard caused by hypothetical tsunami in Puerto Vallarta. The hazard zones by flood were the north of Puerto Vallarta, as Ameca, El Salado, El Pitillal and Camarones. The initial wave height could be ≤ 1 m, 15 minutes after earthquake, in Pitillal zone. We estimated for Puerto Vallarta the maximum flood area was in El Salado zone, ≤ 2 km, with the maximum wave height > 3 m to ≤ 4.8 m at 25 and 75 minutes. We estimated a previous vulnerability evaluation by local tsunami and flood; it was based on the spatial distribution of socio-economic data from INEGI. We estimated a low vulnerability in El Salado and height vulnerability for El Pitillal and Ameca.

  12. Determination of Source Parameters for Earthquakes in the Northeastern United States and Quebec, Canada by Using Regional Broadband Seismograms

    NASA Astrophysics Data System (ADS)

    Du, W.; Kim, W.; Sykes, L. R.

    2001-05-01

    We studied approximately 20 earthquakes which have occurred in the Northeastern United States and Quebec, southern Canada since 1990. These earthquakes have local magnitude (ML) ranging from 3.5 to 5.2 and are well recorded by broadband seismographic stations in the region. Focal depth and moment tensor of these earthquakes are determined by using waveform inversion technique in which the best fit double-couple mechanism is obtained through a grid search over strike, dip and rake angles. Complete synthetics for three-component displacement signals in the period range 1 to 30 seconds are calculated. In most cases, long period Pnl and surface waves are used to constrain the source parameters. Our results indicate that most of the events show the horizontal compression with near horizontal P axis striking NE-SW. However, three events along the lower St. Lawrence River shows the P axes striking ESE-SE (100-130 degrees) with plunge angles of about 20 degrees. Focal depths of these events range from 2 to 28 km. Four events along the Appalachian Mts. have occurred with 2 to 5 km depths -- Jan. 16, 1994 Reading, Pa sequence, Sep. 25, 1998 Pymatuning, Pa event, Jan. 26, 2001 Ashutabula, Oh earthquake and an event in the Charlevoix seismic zone, Canada (Oct. 28, 1997). Two events have occurred at depth greater than 20 km. These are Quebec City earthquake on Nov. 6, 1997 and Christieville, Quebec event on May 4, 1997. We also observed the apparent discrepancy between the moment magnitude (Mw) and local magnitude (ML). Preliminary results show that for the events studied, Mw tends to be about 0.3 magnitude units smaller than the corresponding ML. However, some events show comparable Mw and ML values, for instance, the 1994 Reading, Pa sequence and Oct. 28, 1997 Charlevoix earthquake. These events have occurred at shallow depths and show low stress drops (less than 100 bars). We believe that this magnitude discrepancy reflects the source characteristics of intraplate events in the region. A striking feature of the waveform inversion method in the Northeastern United States is that we can determine fairly reliable focal depth and mechanisms for earthquakes with magnitude down to 3.5 and in some cases, down to 2.5. It is mainly due to availability of high quality three-component, broadband waveform data at short epicentral distances due to increasing coverage of the broadband seismographs of the Lamont-Doherty Cooperative seismographic Network (LCSN), the National Seismographic Network (USNSN) and the Canadian National Seismographic Network (CNSN) in the region. ~

  13. The Mw 5.8 Mineral, Virginia, earthquake of August 2011 and aftershock sequence: constraints on earthquake source parameters and fault geometry

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, H.M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul; Meltzer, Anne; Withers, Mitch; Chapman, Martin

    2014-01-01

    The Mw 5.8 earthquake of 23 August 2011 (17:51:04 UTC) (moment, M0 5.7×1017  N·m) occurred near Mineral, Virginia, within the central Virginia seismic zone and was felt by more people than any other earthquake in United States history. The U.S. Geological Survey (USGS) received 148,638 felt reports from 31 states and 4 Canadian provinces. The USGS PAGER system estimates as many as 120,000 people were exposed to shaking intensity levels of IV and greater, with approximately 10,000 exposed to shaking as high as intensity VIII. Both regional and teleseismic moment tensor solutions characterize the earthquake as a northeast‐striking reverse fault that nucleated at a depth of approximately 7±2  km. The distribution of reported macroseismic intensities is roughly ten times the area of a similarly sized earthquake in the western United States (Horton and Williams, 2012). Near‐source and far‐field damage reports, which extend as far away as Washington, D.C., (135 km away) and Baltimore, Maryland, (200 km away) are consistent with an earthquake of this size and depth in the eastern United States (EUS). Within the first few days following the earthquake, several government and academic institutions installed 36 portable seismograph stations in the epicentral region, making this among the best‐recorded aftershock sequences in the EUS. Based on modeling of these data, we provide a detailed description of the source parameters of the mainshock and analysis of the subsequent aftershock sequence for defining the fault geometry, area of rupture, and observations of the aftershock sequence magnitude–frequency and temporal distribution. The observed slope of the magnitude–frequency curve or b‐value for the aftershock sequence is consistent with previous EUS studies (b=0.75), suggesting that most of the accumulated strain was released by the mainshock. The aftershocks define a rupture that extends between approximately 2–8 km in depth and 8–10 km along the strike of the fault plane. Best‐fit modeling of the geometry of the aftershock sequence defines a rupture plane that strikes N36°E and dips to the east‐southeast at 49.5°. Moment tensor solutions of the mainshock and larger aftershocks are consistent with the distribution of aftershock locations, both indicating reverse slip along a northeast–southwest striking southeast‐dipping fault plane.

  14. Deterministic seismic hazard macrozonation of India

    NASA Astrophysics Data System (ADS)

    Kolathayar, Sreevalsa; Sitharam, T. G.; Vipin, K. S.

    2012-10-01

    Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6°-38°N and 68°-98°E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1° (approximately 10 × 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.

  15. California Fault Parameters for the National Seismic Hazard Maps and Working Group on California Earthquake Probabilities 2007

    USGS Publications Warehouse

    Wills, Chris J.; Weldon, Ray J.; Bryant, W.A.

    2008-01-01

    This report describes development of fault parameters for the 2007 update of the National Seismic Hazard Maps and the Working Group on California Earthquake Probabilities (WGCEP, 2007). These reference parameters are contained within a database intended to be a source of values for use by scientists interested in producing either seismic hazard or deformation models to better understand the current seismic hazards in California. These parameters include descriptions of the geometry and rates of movements of faults throughout the state. These values are intended to provide a starting point for development of more sophisticated deformation models which include known rates of movement on faults as well as geodetic measurements of crustal movement and the rates of movements of the tectonic plates. The values will be used in developing the next generation of the time-independent National Seismic Hazard Maps, and the time-dependant seismic hazard calculations being developed for the WGCEP. Due to the multiple uses of this information, development of these parameters has been coordinated between USGS, CGS and SCEC. SCEC provided the database development and editing tools, in consultation with USGS, Golden. This database has been implemented in Oracle and supports electronic access (e.g., for on-the-fly access). A GUI-based application has also been developed to aid in populating the database. Both the continually updated 'living' version of this database, as well as any locked-down official releases (e.g., used in a published model for calculating earthquake probabilities or seismic shaking hazards) are part of the USGS Quaternary Fault and Fold Database http://earthquake.usgs.gov/regional/qfaults/ . CGS has been primarily responsible for updating and editing of the fault parameters, with extensive input from USGS and SCEC scientists.

  16. Influence of lithostatic stress on earthquake stress drops in North America

    USGS Publications Warehouse

    Boyd, Oliver; McNamara, Daniel E.; Hartzell, Stephen; Choy, George

    2017-01-01

    We estimate stress drops for earthquakes in and near the continental United States using the method of spectral ratios. The ratio of acceleration spectra between collocated earthquakes recorded at a given station removes the effects of path and recording site and yields source parameters including corner frequency for, and the ratio of seismic moment between, the two earthquakes. We determine stress drop from these parameters for 1121 earthquakes greater than M∼3 in 60 earthquake clusters. We find that the average Brune stress drop for the few eastern United States (EUS) tectonic mainshocks studied (2.6–36 MPa) is about three times greater than that of tectonic mainshocks in the western United States (WUS, 1.0–7.9 MPa) and five times greater than mainshocks potentially induced by wastewater injection in the central United States (CUS, 0.6–5.6 MPa). EUS events tend to be deeper thrusting events, whereas WUS events tend to be shallower but have a wide range of focal mechanisms. CUS events tend to be shallow with strike‐slip to normal‐faulting mechanisms. With the possible exception of CUS aftershocks, we find that differences in stress drop among all events can be taken into account, within one standard deviation of significance, by differences in the shear failure stress as outlined by Mohr–Coulomb theory. The shear failure stress is a function of vertical stress (or depth), the fault style (normal, strike slip, or reverse), and coefficient of friction (estimated here to be, on average, 0.64). After accounting for faulting style and depth dependence, we find that the average Brune stress drop is about 3% of the failure stress. These results suggest that high‐frequency shaking hazard (>∼1  Hz) from shallow induced events and aftershocks is reduced to some extent by lower stress drop. However, the shallow hypocenters will increase hazard within several kilometers of the source.

  17. On the Potential Uses of Static Offsets Derived From Low-Cost Community Instruments and Crowd-Sourcing for Earthquake Monitoring and Rapid Response

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Brooks, B. A.; Murray, J. R.; Iannucci, R. A.

    2013-12-01

    We explore the efficacy of low-cost community instruments (LCCIs) and crowd-sourcing to produce rapid estimates of earthquake magnitude and rupture characteristics which can be used for earthquake loss reduction such as issuing tsunami warnings and guiding rapid response efforts. Real-time high-rate GPS data are just beginning to be incorporated into earthquake early warning (EEW) systems. These data are showing promising utility including producing moment magnitude estimates which do not saturate for the largest earthquakes and determining the geometry and slip distribution of the earthquake rupture in real-time. However, building a network of scientific-quality real-time high-rate GPS stations requires substantial infrastructure investment which is not practicable in many parts of the world. To expand the benefits of real-time geodetic monitoring globally, we consider the potential of pseudorange-based GPS locations such as the real-time positioning done onboard cell phones or on LCCIs that could be distributed in the same way accelerometers are distributed as part of the Quake Catcher Network (QCN). While location information from LCCIs often have large uncertainties, their low cost means that large numbers of instruments can be deployed. A monitoring network that includes smartphones could collect data from potentially millions of instruments. These observations could be averaged together to substantially decrease errors associated with estimated earthquake source parameters. While these data will be inferior to data recorded by scientific-grade seismometers and GPS instruments, there are features of community-based data collection (and possibly analysis) that are very attractive. This approach creates a system where every user can host an instrument or download an application to their smartphone that both provides them with earthquake and tsunami warnings while also providing the data on which the warning system operates. This symbiosis helps to encourage people to both become users of the warning system and to contribute data to the system. Further, there is some potential to take advantage of the LCCI hosts' computing and communications resources to do some of the analysis required for the warning system. We will present examples of the type of data which might be observed by pseudorange-based positioning for both actual earthquakes and laboratory tests as well as performance tests of potential earthquake source modeling derived from pseudorange data. A highlight of these performance tests is a case study of the 2011 Mw 9 Tohoku-oki earthquake.

  18. Study on Seismicity of Sino-Mongolia Arc Areas

    NASA Astrophysics Data System (ADS)

    Xu, Guangyin; Wang, Suyun

    2016-04-01

    Using the earthquake catalogue from China, Mongolia and the global catalogue, the uniform catalogue of North China, Mongolia and adjacent areas, which is within the region 80-130°E, 40-55°N, has been established by Institute of Geophysics, China Earthquake Administration and Research Center of Astronomy and Geophysics, Mongolian Academy of Science for the seismic hazard analysis and seismic zoning map of Mongolia according to the following principles. 1) Earthquakes, which just exist in one catalogue, need to be verified further. If the earthquakes occurred in the country where the catalog comes from, then they will be adopted. If not, it should be checked with other more data. 2) The events that come from the three data sources have be checked and verified as followings. (1) The parameters of earthquakes that occurred in China will be taken from China catalog. (2)The parameters of earthquakes that occurred in Mongolia will be taken from Mongolia catalog. (3) The parameters of earthquakes that occurred in the adjacent areas will be taken from the global catalog by Song et al. According to the uniform catalogue, the seismicity of the North China, Mongolia and adjacent areas is analyzed, and the conclusions as followings are made. 1) The epicenter map can be roughly divided into two parts, bounded by the longitude line 105°E , in accordance with the "North-South Seismic Belt" of China. The seismicity is in a high level with many strong earthquakes in the west and is in a low level with little strong events in the east. 2) Most earthquakes are shallow-focus events, but there are also several middle or deep-focus events in the study area. 3) Earthquakes with magnitude greater than 5 are basically complete since 1450 A.D., and the seismicity of the study areas is in a high level since 1700 A. 4) Two seismic belts, Altay seismic belt and Bolnay-Baikal seismic belt, are determined according to the epicenters and tectonics. 5) The b-values of magnitude - frequency relationship for the whole areas are between 0.6 and 0.7 based on the uniform catalogue, 0.677 for the Altay seismic belt and 0.699 for the Bolnay-Baikal seismic belt. KEY WORDS:Earthquake Catalogue, Seismicity, North China, Mongolia

  19. Seismogenic structures of the 2006 ML4.0 Dangan Island earthquake offshore Hong Kong

    NASA Astrophysics Data System (ADS)

    Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Lv, Jinshui; Xu, Huilong; Zhang, Xiang; Wan, Kuiyuan; Fan, Chaoyan; Zhou, Pengxiang

    2018-02-01

    The northern margin of the South China Sea, as a typical extensional continental margin, has relatively strong intraplate seismicity. Compared with the active zones of Nanao Island, Yangjiang, and Heyuan, seismicity in the Pearl River Estuary is relatively low. However, a ML4.0 earthquake in 2006 occurred near Dangan Island (DI) offshore Hong Kong, and this site was adjacent to the source of the historical M5.8 earthquake in 1874. To reveal the seismogenic mechanism of intraplate earthquakes in DI, we systematically analyzed the structural characteristics in the source area of the 2006 DI earthquake using integrated 24-channel seismic profiles, onshore-offshore wide-angle seismic tomography, and natural earthquake parameters. We ascertained the locations of NW- and NE-trending faults in the DI sea and found that the NE-trending DI fault mainly dipped southeast at a high angle and cut through the crust with an obvious low-velocity anomaly. The NW-trending fault dipped southwest with a similar high angle. The 2006 DI earthquake was adjacent to the intersection of the NE- and NW-trending faults, which suggested that the intersection of the two faults with different strikes could provide a favorable condition for the generation and triggering of intraplate earthquakes. Crustal velocity model showed that the high-velocity anomaly was imaged in the west of DI, but a distinct entity with low-velocity anomaly in the upper crust and high-velocity anomaly in the lower crust was found in the south of DI. Both the 1874 and 2006 DI earthquakes occurred along the edge of the distinct entity. Two vertical cross-sections nearly perpendicular to the strikes of the intersecting faults revealed good spatial correlations between the 2006 DI earthquake and the low to high speed transition in the distinct entity. This result indicated that the transitional zone might be a weakly structural body that can store strain energy and release it as a brittle failure, resulting in an earthquake-prone area.

  20. jSynthesizer: A Java based first-motion synthetic seismogram tool

    NASA Astrophysics Data System (ADS)

    Sullivan, Mark

    2009-10-01

    Both researchers and educators need software tools to create synthetic seismograms to model earthquake sources. We have developed a program that generates first-motion synthetic seismograms that is highly interactive and suited to the needs of both research and education audiences. Implemented in the Java programming language, our program is available for use on Windows, Mac OS X and Linux operating systems. Our program allows the user to input the fault parameters strike, dip and slip angle, numerically or graphically using a lower hemisphere equal-area stereographic projection of the focal sphere of the earthquake. This representation is familiar to geologists and seismologists as the standard way of displaying the orientation of a fault in space. The user is also able to enter the relative location of the seismograph and the depth and crustal velocity structure in the vicinity of the earthquake. The direct P wave along with reflections off of layer boundaries near the source are generated using a constant ray-parameter approximation. The instrument response functions used by the Worldwide Standardized Seismogram Network and the attenuation response of the Earth's mantle are generated in the frequency domain and applied to generate the synthetic seismogram. Planned enhancements to this program will allow the simultaneous generation of seismograms at many stations as well as more complicated crustal structures.

  1. Numerical and laboratory simulation of fault motion and earthquake occurrence

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1978-01-01

    Simple linear rheologies were used with elastic forces driving the main events and viscoelastic forces being important for aftershock and creep occurrence. Friction and its dependence on velocity, stress, and displacement also plays a key role in determining how, when, and where fault motion occurs. The discussion of the qualitative behavior of the simulators focuses on the manner in which energy was stored in the system and released by the unstable and stable sliding processes. The numerical results emphasize the statistics of earthquake occurrence and the correlations among source parameters.

  2. A catalog of coseismic uniform-slip models of geodetically unstudied earthquakes along the Sumatran plate boundary

    NASA Astrophysics Data System (ADS)

    Wong, N. Z.; Feng, L.; Hill, E.

    2017-12-01

    The Sumatran plate boundary has experienced five Mw > 8 great earthquakes, a handful of Mw 7-8 earthquakes and numerous small to moderate events since the 2004 Mw 9.2 Sumatra-Andaman earthquake. The geodetic studies of these moderate earthquakes have mostly been passed over in favour of larger events. We therefore in this study present a catalog of coseismic uniform-slip models of one Mw 7.2 earthquake and 17 Mw 5.9-6.9 events that have mostly gone geodetically unstudied. These events occurred close to various continuous stations within the Sumatran GPS Array (SuGAr), allowing the network to record their surface deformation. However, due to their relatively small magnitudes, most of these moderate earthquakes were recorded by only 1-4 GPS stations. With the limited observations per event, we first constrain most of the model parameters (e.g. location, slip, patch size, strike, dip, rake) using various external sources (e.g., the ANSS catalog, gCMT, Slab1.0, and empirical relationships). We then use grid-search forward models to explore a range of some of these parameters (geographic position for all events and additionally depth for some events). Our results indicate the gCMT centroid locations in the Sumatran subduction zone might be biased towards the west for smaller events, while ANSS epicentres might be biased towards the east. The more accurate locations of these events are potentially useful in understanding the nature of various structures along the megathrust, particularly the persistent rupture barriers.

  3. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  4. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    NASA Astrophysics Data System (ADS)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original parameter in the historical earthquake catalogues. A particular advantage of using intensities is that the very irregular pattern of the attenuation field of the Vrancea intermediate depth earthquakes can be estimated from detailed macroseismic observations that are available (in both countries) for the study region. Additionally, de-aggregation of the seismic hazard for a recurrence period of 475 years (probability of exceedance of 10% in 50 years) for intensity was performed for 9 cities (administrative centers) situated in northern Bulgaria. Finally, applying SELENA software earthquake risk for Bulgarian part of the cross-boarder region is analyzed. The results presented for the Romania-Bulgaria cross border region are part of the work carried out in the DACEA Project (2010-2013) that was implemented in the framework of the Romania - Bulgaria Cross Border Cooperation Programme (2007-2013).

  5. Application of the region-time-length algorithm to study of earthquake precursors in the Thailand-Laos-Myanmar borders

    NASA Astrophysics Data System (ADS)

    Puangjaktha, P.; Pailoplee, S.

    2018-04-01

    In order to examine the precursory seismic quiescence of upcoming hazardous earthquakes, the seismicity data available in the vicinity of the Thailand-Laos-Myanmar borders was analyzed using the Region-Time-Length (RTL) algorithm based statistical technique. The utilized earthquake data were obtained from the International Seismological Centre. Thereafter, the homogeneity and completeness of the catalogue were improved. After performing iterative tests with different values of the r0 and t0 parameters, those of r0 = 120 km and t0 = 2 yr yielded reasonable estimates of the anomalous RTL scores, in both temporal variation and spatial distribution, of a few years prior to five out of eight strong-to-major recognized earthquakes. Statistical evaluation of both the correlation coefficient and stochastic process for the RTL were checked and revealed that the RTL score obtained here excluded artificial or random phenomena. Therefore, the prospective earthquake sources mentioned here should be recognized and effective mitigation plans should be provided.

  6. Present Kinematic Regime and Recent Seismicity of Gulf Suez, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, G.-E. A.; Abd El-Aal, A. K.

    2018-01-01

    In this study we computed recent seismicity and present kinematic regime in the northern and middle zones of Gulf of Suez as inferred from moment tensor settlings and focal mechanism of local earthquakes that happened in this region. On 18 and 22 of July, 2014 two moderate size earthquakes of local magnitudes 4.2 and 4.1 struck the northern zone of Gulf of Suez near Suez City. These events are instrumentally recorded by Egyptian National Seismic Network (ENSN). The earthquakes have been felt at Suez City and greater Cairo metropolitan zone while no losses were reported. The source mechanism and source parameters of the calculated events were considered by the near-source waveform data listed at very broadband stations of ENSN and supported by the P-wave polarity data of short period stations. The new settling method and software used deem the action of the source time function, which has been ignored in most of the program series of the moment tensor settling analysis with near source seismograms. The obtained results from settling technique indicate that the estimated seismic moments of both earthquakes are 0.6621E + 15 and 0.4447E + 15 Nm conforming to a moment magnitude Mw 3.8 and 3.7 respectively. The fault plan settlings obtained from both settling technique and polarity of first-arrival indicate the dominance of normal faulting. We also evaluated the stress field in north and middle zones of Gulf of Suez using a multiple inverse method. The prime strain axis shows that the deformation is taken up mainly as stretching in the E-W and NE-SW direction.

  7. A study on the seismic source parameters for earthquakes occurring in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Rhee, H. M.; Sheen, D. H.

    2015-12-01

    We investigated the characteristics of the seismic source parameters of the southern part of the Korean Peninsula for the 599 events with ML≥1.7 from 2001 to 2014. A large number of data are carefully selected by visual inspection in the time and frequency domains. The data set consist of 5,093 S-wave trains on three-component seismograms recorded at broadband seismograph stations which have been operating by the Korea Meteorological Administration and the Korea Institute of Geoscience and Mineral Resources. The corner frequency, stress drop, and moment magnitude of each event were measured by using the modified method of Jo and Baag (2001), based on the methods of Snoke (1987) and Andrews (1986). We found that this method could improve the stability of the estimation of source parameters from S-wave displacement spectrum by an iterative process. Then, we compared the source parameters with those obtained from previous studies and investigated the source scaling relationship and the regional variations of source parameters in the southern Korean Peninsula.

  8. Sensitivity analysis of the FEMA HAZUS-MH MR4 Earthquake Model using seismic events affecting King County Washington

    NASA Astrophysics Data System (ADS)

    Neighbors, C.; Noriega, G. R.; Caras, Y.; Cochran, E. S.

    2010-12-01

    HAZUS-MH MR4 (HAZards U. S. Multi-Hazard Maintenance Release 4) is a risk-estimation software developed by FEMA to calculate potential losses due to natural disasters. Federal, state, regional, and local government use the HAZUS-MH Earthquake Model for earthquake risk mitigation, preparedness, response, and recovery planning (FEMA, 2003). In this study, we examine several parameters used by the HAZUS-MH Earthquake Model methodology to understand how modifying the user-defined settings affect ground motion analysis, seismic risk assessment and earthquake loss estimates. This analysis focuses on both shallow crustal and deep intraslab events in the American Pacific Northwest. Specifically, the historic 1949 Mw 6.8 Olympia, 1965 Mw 6.6 Seattle-Tacoma and 2001 Mw 6.8 Nisqually normal fault intraslab events and scenario large-magnitude Seattle reverse fault crustal events are modeled. Inputs analyzed include variations of deterministic event scenarios combined with hazard maps and USGS ShakeMaps. This approach utilizes the capacity of the HAZUS-MH Earthquake Model to define landslide- and liquefaction- susceptibility hazards with local groundwater level and slope stability information. Where Shakemap inputs are not used, events are run in combination with NEHRP soil classifications to determine site amplification effects. The earthquake component of HAZUS-MH applies a series of empirical ground motion attenuation relationships developed from source parameters of both regional and global historical earthquakes to estimate strong ground motion. Ground motion and resulting ground failure due to earthquakes are then used to calculate, direct physical damage for general building stock, essential facilities, and lifelines, including transportation systems and utility systems. Earthquake losses are expressed in structural, economic and social terms. Where available, comparisons between recorded earthquake losses and HAZUS-MH earthquake losses are used to determine how region coordinators can most effectively utilize their resources for earthquake risk mitigation. This study is being conducted in collaboration with King County, WA officials to determine the best model inputs necessary to generate robust HAZUS-MH models for the Pacific Northwest.

  9. Earthquake Hazard and Risk Assessment based on Unified Scaling Law for Earthquakes: Altai-Sayan Region

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.; Nekrasova, A.

    2017-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 - M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum credible magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g. peak ground acceleration, PGA, or macro-seismic intensity etc.). After a rigorous testing against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory, etc.). This, USLE based, methodology of seismic hazard and risks assessment is applied to the territory of Altai-Sayan Region, of Russia. The study supported by the Russian Science Foundation Grant No. 15-17-30020.

  10. A Bootstrap-Based Probabilistic Optimization Method to Explore and Efficiently Converge in Solution Spaces of Earthquake Source Parameter Estimation Problems: Application to Volcanic and Tectonic Earthquakes

    NASA Astrophysics Data System (ADS)

    Dahm, T.; Heimann, S.; Isken, M.; Vasyura-Bathke, H.; Kühn, D.; Sudhaus, H.; Kriegerowski, M.; Daout, S.; Steinberg, A.; Cesca, S.

    2017-12-01

    Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Therefore, the interpretation of moment tensors can become difficult, if not the full model space is explored, including all its trade-offs and uncertainties. This is especially true for non-double couple components of weak or shallow earthquakes, as for instance found in volcanic, geothermal or mining environments.We developed a bootstrap-based probabilistic optimization scheme (Grond), which is based on pre-calculated Greens function full waveform databases (e.g. fomosto tool, doi.org/10.5880/GFZ.2.1.2017.001). Grond is able to efficiently explore the full model space, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific problems, the design of objective functions, and the diversity of empirical datasets.It uses an integrated, robust waveform data processing based on a newly developed Python toolbox for seismology (Pyrocko, see Heimann et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.001), and allows for visual inspection of many aspects of the optimization problem. Grond has been applied to the CMT moment tensor inversion using W-phases, to nuclear explosions in Korea, to meteorite atmospheric explosions, to volcano-tectonic events during caldera collapse and to intra-plate volcanic and tectonic crustal events.Grond can be used to optimize simultaneously seismological waveforms, amplitude spectra and static displacements of geodetic data as InSAR and GPS (e.g. KITE, Isken et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.002). We present examples of Grond optimizations to demonstrate the advantage of a full exploration of source parameter uncertainties for interpretation.

  11. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    NASA Astrophysics Data System (ADS)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground motion uncertainties. The approach is designed to integrate loss distribution functions with different degrees of correlation for portfolio analysis. The analysis is based on USGS 2002 regional seismicity model.

  12. Broadband Ground Motion Simulation Recipe for Scenario Hazard Assessment in Japan

    NASA Astrophysics Data System (ADS)

    Koketsu, K.; Fujiwara, H.; Irikura, K.

    2014-12-01

    The National Seismic Hazard Maps for Japan, which consist of probabilistic seismic hazard maps (PSHMs) and scenario earthquake shaking maps (SESMs), have been published every year since 2005 by the Earthquake Research Committee (ERC) in the Headquarter for Earthquake Research Promotion, which was established in the Japanese government after the 1995 Kobe earthquake. The publication was interrupted due to problems in the PSHMs revealed by the 2011 Tohoku earthquake, and the Subcommittee for Evaluations of Strong Ground Motions ('Subcommittee') has been examining the problems for two and a half years (ERC, 2013; Fujiwara, 2014). However, the SESMs and the broadband ground motion simulation recipe used in them are still valid at least for crustal earthquakes. Here, we outline this recipe and show the results of validation tests for it.Irikura and Miyake (2001) and Irikura (2004) developed a recipe for simulating strong ground motions from future crustal earthquakes based on a characterization of their source models (Irikura recipe). The result of the characterization is called a characterized source model, where a rectangular fault includes a few rectangular asperities. Each asperity and the background area surrounding the asperities have their own uniform stress drops. The Irikura recipe defines the parameters of the fault and asperities, and how to simulate broadband ground motions from the characterized source model. The recipe for the SESMs was constructed following the Irikura recipe (ERC, 2005). The National Research Institute for Earth Science and Disaster Prevention (NIED) then made simulation codes along this recipe to generate SESMs (Fujiwara et al., 2006; Morikawa et al., 2011). The Subcommittee in 2002 validated a preliminary version of the SESM recipe by comparing simulated and observed ground motions for the 2000 Tottori earthquake. In 2007 and 2008, the Subcommittee carried out detailed validations of the current version of the SESM recipe and the NIED codes using ground motions from the 2005 Fukuoka earthquake. Irikura and Miyake (2011) summarized the latter validations, concluding that the ground motions were successfully simulated as shown in the figure. This indicates that the recipe has enough potential to generate broadband ground motions for scenario hazard assessment in Japan.

  13. Explanation of temporal clustering of tsunami sources using the epidemic-type aftershock sequence model

    USGS Publications Warehouse

    Geist, Eric L.

    2014-01-01

    Temporal clustering of tsunami sources is examined in terms of a branching process model. It previously was observed that there are more short interevent times between consecutive tsunami sources than expected from a stationary Poisson process. The epidemic‐type aftershock sequence (ETAS) branching process model is fitted to tsunami catalog events, using the earthquake magnitude of the causative event from the Centennial and Global Centroid Moment Tensor (CMT) catalogs and tsunami sizes above a completeness level as a mark to indicate that a tsunami was generated. The ETAS parameters are estimated using the maximum‐likelihood method. The interevent distribution associated with the ETAS model provides a better fit to the data than the Poisson model or other temporal clustering models. When tsunamigenic conditions (magnitude threshold, submarine location, dip‐slip mechanism) are applied to the Global CMT catalog, ETAS parameters are obtained that are consistent with those estimated from the tsunami catalog. In particular, the dip‐slip condition appears to result in a near zero magnitude effect for triggered tsunami sources. The overall consistency between results from the tsunami catalog and that from the earthquake catalog under tsunamigenic conditions indicates that ETAS models based on seismicity can provide the structure for understanding patterns of tsunami source occurrence. The fractional rate of triggered tsunami sources on a global basis is approximately 14%.

  14. Associating an ionospheric parameter with major earthquake occurrence throughout the world

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Midya, S. K.

    2014-02-01

    With time, ionospheric variation analysis is gaining over lithospheric monitoring in serving precursors for earthquake forecast. The current paper highlights the association of major (Ms ≥ 6.0) and medium (4.0 ≤ Ms < 6.0) earthquake occurrences throughout the world in different ranges of the Ionospheric Earthquake Parameter (IEP) where `Ms' is earthquake magnitude on the Richter scale. From statistical and graphical analyses, it is concluded that the probability of earthquake occurrence is maximum when the defined parameter lies within the range of 0-75 (lower range). In the higher ranges, earthquake occurrence probability gradually decreases. A probable explanation is also suggested.

  15. Impact of Topography on Seismic Amplification During the 2005 Kashmir Earthquake

    NASA Astrophysics Data System (ADS)

    Khan, S.; van der Meijde, M.; van der Werff, H.; Shafique, M.

    2016-12-01

    This study assesses topographic amplification of seismic response during the 2005 Kashmir Earthquake in northern Pakistan. Topography scatters seismic waves, which causes variation in seismic response on the surface of the earth. During the Kashmir earthquake, topography induced amplification was suspected to have had major influence on the damage of infrastructure. We did a 3-dimensional simulation of the event using SPECFEM3D software. We first analyzed the impact of data resolution (mesh and Digital Elevation Model) on the derived seismic response. ASTER GDEM elevation data was used to build a 3D finite element mesh, and the parameters (latitude, longitude, depth, moment tensor) of the Kashmir earthquake were used in simulating the event. Our results show amplification of seismic response on ridges and de-amplification in valleys. It was also found that slopes facing away from the source receive an amplified seismic response when compared to slopes facing towards the source. The PGD would regularly fall within the range 0.23-5.8 meters. The topographic amplification causes local changes in the range of -2.50 to +3.50 meters; causing the PGD to fall in the range of 0.36-7.85 meters.

  16. Development of optimization-based probabilistic earthquake scenarios for the city of Tehran

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Peyghaleh, E.

    2016-01-01

    This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less computation power. The authors have used this approach for risk assessment towards identification of effectiveness-profitability of risk mitigation measures, using optimization model for resource allocation. Based on the error-computation trade-off, 62-earthquake scenarios are chosen to be used for this purpose.

  17. Suitability of rapid energy magnitude determinations for emergency response purposes

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Parolai, Stefano; Bormann, Peter; Grosser, Helmut; Saul, Joachim; Wang, Rongjiang; Zschau, Jochen

    2010-01-01

    It is common practice in the seismological community to use, especially for large earthquakes, the moment magnitude Mw as a unique magnitude parameter to evaluate the earthquake's damage potential. However, as a static measure of earthquake size, Mw does not provide direct information about the released seismic wave energy and its high frequency content, which is the more interesting information both for engineering purposes and for a rapid assessment of the earthquake's shaking potential. Therefore, we recommend to provide to disaster management organizations besides Mw also sufficiently accurate energy magnitude determinations as soon as possible after large earthquakes. We developed and extensively tested a rapid method for calculating the energy magnitude Me within about 10-15 min after an earthquake's occurrence. The method is based on pre-calculated spectral amplitude decay functions obtained from numerical simulations of Green's functions. After empirical validation, the procedure has been applied offline to a large data set of 767 shallow earthquakes that have been grouped according to their type of mechanism (strike-slip, normal faulting, thrust faulting, etc.). The suitability of the proposed approach is discussed by comparing our rapid Me estimates with Mw published by GCMT as well as with Mw and Me reported by the USGS. Mw is on average slightly larger than our Me for all types of mechanisms. No clear dependence on source mechanism is observed for our Me estimates. In contrast, Me from the USGS is generally larger than Mw for strike-slip earthquakes and generally smaller for the other source types. For ~67 per cent of the event data set our Me differs <= +/-0.3 magnitude units (m.u.) from the respective Me values published by the USGS. However, larger discrepancies (up to 0.8 m.u.) may occur for strike-slip events. A reason of that may be the overcorrection of the energy flux applied by the USGS for this type of earthquakes. We follow the original definition of magnitude scales, which does not apply a priori mechanism corrections to measured amplitudes, also since reliable fault-plane solutions are hardly available within 10-15 min after the earthquake origin time. Notable is that our uncorrected Me data show a better linear correlation and less scatter with respect to Mw than Me of the USGS. Finally, by analysing the recordings of representative recent pairs of strong and great earthquakes, we emphasize the importance of combining Mw and Me in the rapid characterization of the seismic source. They are related to different aspects of the source and may differ occasionally even more than 1 m.u. This highlights the usefulness and importance of providing these two magnitude estimates together for a better assessment of an earthquake's shaking potential and/or tsunamigenic potential.

  18. Strong motion simulation by the composite source modeling: A case study of 1679 M8.0 Sanhe-Pinggu earthquake

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Yan; Shi, Bao-Ping; Zhang, Jian

    2007-05-01

    In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 M S8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41.1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.

  19. Tsunami simulations of the 1867 Virgin Island earthquake: Constraints on epicenter location and fault parameters

    USGS Publications Warehouse

    Barkan, Roy; ten Brink, Uri S.

    2010-01-01

    The 18 November 1867 Virgin Island earthquake and the tsunami that closely followed caused considerable loss of life and damage in several places in the northeast Caribbean region. The earthquake was likely a manifestation of the complex tectonic deformation of the Anegada Passage, which cuts across the Antilles island arc between the Virgin Islands and the Lesser Antilles. In this article, we attempt to characterize the 1867 earthquake with respect to fault orientation, rake, dip, fault dimensions, and first tsunami wave propagating phase, using tsunami simulations that employ high-resolution multibeam bathymetry. In addition, we present new geophysical and geological observations from the region of the suggested earthquake source. Results of our tsunami simulations based on relative amplitude comparison limit the earthquake source to be along the northern wall of the Virgin Islands basin, as suggested by Reid and Taber (1920), or on the carbonate platform north of the basin, and not in the Virgin Islands basin, as commonly assumed. The numerical simulations suggest the 1867 fault was striking 120°–135° and had a mixed normal and left-lateral motion. First propagating wave phase analysis suggests a fault striking 300°–315° is also possible. The best-fitting rupture length was found to be relatively small (50 km), probably indicating the earthquake had a moment magnitude of ∼7.2. Detailed multibeam echo sounder surveys of the Anegada Passage bathymetry between St. Croix and St. Thomas reveal a scarp, which cuts the northern wall of the Virgin Islands basin. High-resolution seismic profiles further indicate it to be a reasonable fault candidate. However, the fault orientation and the orientation of other subparallel faults in the area are more compatible with right-lateral motion. For the other possible source region, no clear disruption in the bathymetry or seismic profiles was found on the carbonate platform north of the basin.

  20. The Temblor mobile seismic risk app, v2: Rapid and seamless earthquake information to inspire individuals to recognize and reduce their risk

    NASA Astrophysics Data System (ADS)

    Stein, R. S.; Sevilgen, V.; Sevilgen, S.; Kim, A.; Jacobson, D. S.; Lotto, G. C.; Ely, G.; Bhattacharjee, G.; O'Sullivan, J.

    2017-12-01

    Temblor quantifies and personalizes earthquake risk and offers solutions by connecting users with qualified retrofit and insurance providers. Temblor's daily blog on current earthquakes, seismic swarms, eruptions, floods, and landslides makes the science accessible to the public. Temblor is available on iPhone, Android, and mobile web app platforms (http://temblor.net). The app presents both scenario (worst case) and probabilistic (most likely) financial losses for homes and commercial buildings, and estimates the impact of seismic retrofit and insurance on the losses and safety. Temblor's map interface has clickable earthquakes (with source parameters and links) and active faults (name, type, and slip rate) around the world, and layers for liquefaction, landslides, tsunami inundation, and flood zones in the U.S. The app draws from the 2014 USGS National Seismic Hazard Model and the 2014 USGS Building Seismic Safety Council ShakeMap scenari0 database. The Global Earthquake Activity Rate (GEAR) model is used worldwide, with active faults displayed in 75 countries. The Temblor real-time global catalog is merged from global and national catalogs, with aftershocks discriminated from mainshocks. Earthquake notifications are issued to Temblor users within 30 seconds of their occurrence, with approximate locations and magnitudes that are rapidly refined in the ensuing minutes. Launched in 2015, Temblor has 650,000 unique users, including 250,000 in the U.S. and 110,000 in Chile, as well as 52,000 Facebook followers. All data shown in Temblor is gathered from authoritative or published sources and is synthesized to be intuitive and actionable to the public. Principal data sources include USGS, FEMA, EMSC, GEM Foundation, NOAA, GNS Science (New Zealand), INGV (Italy), PHIVOLCS (Philippines), GSJ (Japan), Taiwan Earthquake Model, EOS Singapore (Southeast Asia), MTA (Turkey), PB2003 (plate boundaries), CICESE (Baja California), California Geological Survey, and 20 other state geological surveys and county agencies.

  1. High Frequency Cut-off Characteristics of Strong Ground Motion Records at Hard Sites, Subduction and Intra-Slab Earthquakes

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Tsurugi, M.; Irikura, K.

    2006-12-01

    A study on high frequency cut-off characteristics of strong ground motion is presented for subduction and intra- slab earthquakes in Japan. In the latest decade, observed records at hard sites are published by NIED, National Research Institute for Earth Science and Disaster Prevention, and JCOLD, Japan Commission on Large Dams. Especially, KiK-net and K-NET maintained by NIED have been providing high quality data to study high-frequency characteristics. Kagawa et al.(2003) studied the characteristics for crustal earthquakes. We apply the same methodology to the recently observed Japanese records due to subduction and intra-slab earthquakes. We assume a Butterworth type high-cut filter with limit frequency (fmax) and its power factor. These two parameters were derived from Fourier spectrum of observed records fitting the theoretical filter shape. After analyzing the result from view points of site, path, or source effects, an averaged filter model is proposed with its standard deviation. Kagawa et al.(2003) derived average as 8.3 Hz with power factor of 1.92. It is used for strong ground motion simulation. We will propose parameters for the high-cut filters of subduction and intra-slab earthquakes and compare them with the results by Kagawa et al.(2003). REFERENCES: Kagawa et al. (2003), 27JEES (in Japanese with English Abstract).

  2. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  3. Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts

    USGS Publications Warehouse

    Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.

    2009-01-01

    We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.

  4. Moment magnitude, local magnitude and corner frequency of small earthquakes nucleating along a low angle normal fault in the Upper Tiber valley (Italy)

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.

    2015-12-01

    The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a region characterized by small to moderate seismicity. Finally, we present for a subset of data, corner frequency values computed by spectral analysis of S-waves, using data from three nearby shallow borehole stations sampled at 500 sps.

  5. Seismic hazard analysis with PSHA method in four cities in Java.

    NASA Astrophysics Data System (ADS)

    Elistyawati, Y.; Palupi, I. R.; Suharsono

    2016-11-01

    In this study the tectonic earthquakes was observed through the peak ground acceleration through the PSHA method by dividing the area of the earthquake source. This study applied the earthquake data from 1965 - 2015 that has been analyzed the completeness of the data, location research was the entire Java with stressed in four large cities prone to earthquakes. The results were found to be a hazard map with a return period of 500 years, 2500 years return period, and the hazard curve were four major cities (Jakarta, Bandung, Yogyakarta, and the city of Banyuwangi). Results Java PGA hazard map 500 years had a peak ground acceleration within 0 g ≥ 0.5 g, while the return period of 2500 years had a value of 0 to ≥ 0.8 g. While, the PGA hazard curves on the city's most influential source of the earthquake was from sources such as fault Cimandiri backgroud, for the city of Bandung earthquake sources that influence the seismic source fault dent background form. In other side, the city of Yogyakarta earthquake hazard curve of the most influential was the source of the earthquake background of the Opak fault, and the most influential hazard curve of Banyuwangi earthquake was the source of Java and Sumba megatruts earthquake.

  6. SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.

    USGS Publications Warehouse

    Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.

    1985-01-01

    Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.

  7. Linking giant earthquakes with the subduction of oceanic fracture zones

    NASA Astrophysics Data System (ADS)

    Landgrebe, T. C.; Müller, R. D.; EathByte Group

    2011-12-01

    Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 years and more) recurrence times of giant earthquakes. Global digital data sets represent a promising source of information for a multi-dimensional earthquake hazard analysis. We combine the NGDC global Significant Earthquakes database with a global strain rate map, gridded ages of the ocean floor, and a recently produced digital data set for oceanic fracture zones, major aseismic ridges and volcanic chains to investigate the association of earthquakes as a function of magnitude with age of the downgoing slab and convergence rates. We use a so-called Top-N recommendation method, a technology originally developed to search, sort, classify, and filter very large and often statistically skewed data sets on the internet, to analyse the association of subduction earthquakes sorted by magnitude with key parameters. The Top-N analysis is used to progressively assess how strongly particular "tectonic niche" locations (e.g. locations along subduction zones intersected with aseismic ridges or volcanic chains) are associated with sets of earthquakes in sorted order in a given magnitude range. As the total number N of sorted earthquakes is increased, by progressively including smaller-magnitude events, the so-called recall is computed, defined as the number of Top-N earthquakes associated with particular target areas divided by N. The resultant statistical measure represents an intuitive description of the effectiveness of a given set of parameters to account for the location of significant earthquakes on record. We use this method to show that the occurrence of great (magnitude ≥ 8) earthquakes on overriding plate segments is strongly biased towards intersections of oceanic fracture zones with subduction zones. These intersection regions are linked with 8 of the largest 10, 18 of the largest 25, about half of the largest 100 subduction earthquakes, as well as with the 2011 Tohoku-Oki earthquake. Subduction zone intersections with volcanic chains are not found to be associated with a significantly elevated risk for great earthquakes globally. This difference likely arises from subducting fracture zone ridges leading to stronger seismic coupling than subducting volcanic chains.

  8. Source process of the Sikkim earthquake 18th September, 2011, inferred from teleseismic body-wave inversion.

    NASA Astrophysics Data System (ADS)

    Earnest, A.; Sunil, T. C.

    2014-12-01

    The recent earthquake of Mw 6.9 occurred on September 18, 2011 in Sikkim-Nepal border region. The hypocenter parameters determined by the Indian Meteorological Department shows that the epicentre is at 27.7°N, 88.2°E and focal depth of 58Km, located closed to the north-western terminus of Tista lineament. The reported aftershocks are linearly distributed in between Tista and Golapara lineament. The microscopic and geomorphologic studies infer a dextral strike-slip faulting, possibly along a NW-SE oriented fault. Landslides caused by this earthquake are distributed along Tista lineament . On the basis of the aftershock distribution, Kumar et al. (2012), have suggested possible NW orientation of the causative fault plane. The epicentral region of Sikkim bordered by Nepal, Bhutan and Tibet, comprises a segment of relatively lower level seismicity in the 2500km stretch of the active Himalayan Belt. The north Sikkim earthquake was felt in most parts of Sikkim and eastern Nepal; it killed more than 100 people and caused damage to buildings, roads and communication infrastructure. Through this study we focus on the earthquake source parameters and the kinematic rupture process of this particular event. We used tele-seismic body waveformsto determine the rupture pattern of earthquake. The seismic-rupture pattern are generally complex, and the result could be interpreted in terms of a distribution of asperities and barriers on the particular fault plane (Kikuchi and Kanamori, 1991).The methodology we adopted is based on the teleseismic body wave inversion methodology by Kikuchi and Kanamori (1982, 1986 and 1991). We used tele-seismic P-wave records observed at teleseismic distances between 50° and 90° with a good signal to noise ratio. Teleseismic distances in the range between 50° and 90° were used, in order to avoid upper mantle and core triplications and to limit the path length within the crust. Synthetic waveforms were generated gives a better fit with triangular source time function duration, in order to determine the components of the moment tensor and the focal depth of the main shock. we will discussing the average stress drop and the possible mechanisms on the depth of the event at a region well known for events beyond moho transsion zone.

  9. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.

  10. An approach to detect afterslips in giant earthquakes in the normal-mode frequency band

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Ji, Chen; Igarashi, Mitsutsugu

    2012-08-01

    An approach to detect afterslips in the source process of giant earthquakes is presented in the normal-mode frequency band (0.3-2.0 mHz). The method is designed to avoid a potential systematic bias problem in the determination of earthquake moment by a typical normal-mode approach. The source of bias is the uncertainties in Q (modal attenuation parameter) which varies by up to about ±10 per cent among published studies. A choice of Q values within this range affects amplitudes in synthetic seismograms significantly if a long time-series of about 5-7 d is used for analysis. We present an alternative time-domain approach that can reduce this problem by focusing on a shorter time span with a length of about 1 d. Application of this technique to four recent giant earthquakes is presented: (1) the Tohoku, Japan, earthquake of 2011 March 11, (2) the 2010 Maule, Chile earthquake, (3) the 2004 Sumatra-Andaman earthquake and (4) the Solomon earthquake of 2007 April 1. The Global Centroid Moment Tensor (GCMT) solution for the Tohoku earthquake explains the normal-mode frequency band quite well. The analysis for the 2010 Chile earthquake indicates that the moment is about 7-10 per cent higher than the moment determined by its GCMT solution but further analysis shows that there is little evidence of afterslip; the deviation in moment can be explained by an increase of the dip angle from 18° in the GCMT solution to 19°. This may be a simple trade-off problem between the moment and dip angle but it may also be due to a deeper centroid in the normal-mode frequency band data, as a deeper source could have steeper dip angle due to changes in geometry of the Benioff zone. For the 2004 Sumatra-Andaman earthquake, the five point-source solution by Tsai et al. explains most of the signals but a sixth point-source with long duration improves the fit to the normal-mode frequency band data. The 2007 Solomon earthquake shows that the high-frequency part of our analysis (above 1 mHz) is compatible with the GCMT solution but the low-frequency part requires afterslip to explain the increasing amplitude ratios towards lower frequency. The required slip has the moment about 19 per cent of the GCMT solution and the rise time of 260 s. The total moment of these earthquakes are 5.31 × 1022 N m (Tohoku), (1.86-1.96) × 1022 N m (Chile), 1.33 × 1023 N m (Sumatra) and 1.86 × 1021 N m (Solomon). The moment magnitudes are 9.08, 8.78-8.79, 9.35 and 8.11, respectively, using Kanamori's original formula between the moment and the moment magnitude. However, the trade-off problem between the moment and dip angle can modify these estimates for moment up to about 40-50 per cent and the corresponding magnitude ±0.1.

  11. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude greater than 3.5 beneath the Aburra Valley, and the neotectonic evidence are limited, so it is expected that this network helps to characterize the seismic hazards.

  12. InSAR constraints on the kinematics and magnitude of the 2001 Bhuj earthquake

    NASA Astrophysics Data System (ADS)

    Schmidt, D.; Bürgmann, R.

    2005-12-01

    The Mw 7.6 Bhuj intraplate event occurred along a blind thrust within the Kutch Rift basin of western India in January of 2001. The lack of any surface rupture and limited geodetic data have made it difficult to place the event on a known fault and constrain its source parameters. Moment tensor solutions and aftershock relocations indicate that the earthquake was a reverse event along an east-west striking, south dipping fault. In an effort to image the surface deformation, we have processed a total of 9 interferograms that span the coseismic event. Interferometry has proven difficult for the region because of technical difficulties experienced by the ERS Satellite around the time of the earthquake and because of low coherence. The stabilization of the orbital control by the European Space Agency beginning in 2002 has allowed us to interfere more recent SAR data with pre-earthquake data. Therefore, all available interferograms of the event include the first year of any postseismic deformation. The source region is characterized by broad floodplains interrupted by isolated highlands. Coherence is limited to the surrounding highlands and no data is available directly over the epicenter. Using the InSAR data along two descending and one ascending tracks, we perform a gridded search for the optimal source parameters of the earthquake. The deformation pattern is modeled assuming uniform slip on an elastic dislocation. Since the highland regions are discontinuous, the coherent InSAR phase is isolated to several individual patches. For each iteration of the gridded search algorithm, we optimize the fit to the data by solving for number of 2π phase cycles between coherent patches and the orbital gradient across each interferogram. Since the look angle varies across a SAR scene, a variable unit vector is calculated for each track. Inversion results place the center of the fault plane at 70.33° E/23.42° N at a depth of 21 km, and are consistent with the strike and dip suggested by the relocated aftershocks. The data also constrain the magnitude, rake, and finiteness of the event.

  13. Benefits of Applying Hierarchical Models to the Empirical Green's Function Approach

    NASA Astrophysics Data System (ADS)

    Denolle, M.; Van Houtte, C.

    2017-12-01

    Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study improves upon these existing methods, and shows that the fitting method may explain some of the discrepancy. In particular, Bayesian hierarchical modelling is shown to be a method that can reduce bias, better quantify uncertainties and allow additional effects to be resolved. The method is applied to the Mw7.1 Kumamoto, Japan earthquake, and other global, moderate-magnitude, strike-slip earthquakes between Mw5 and Mw7.5. It is shown that the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be reliably retrieved without overfitting the data. Additionally, it is shown that methods commonly used to calculate corner frequencies can give substantial biases. In particular, if fc were calculated for the Kumamoto earthquake using a model with a falloff rate fixed at 2 instead of the best fit 1.6, the obtained fc would be as large as twice its realistic value. The reliable retrieval of the falloff rate allows deeper examination of this parameter for a suite of global, strike-slip earthquakes, and its scaling with magnitude. The earthquake sequences considered in this study are from Japan, New Zealand, Haiti and California.

  14. Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Carluccio, Roberto; Papadimitriou, Eleftheria; Karakostas, Vassilis

    2015-01-01

    The characteristic earthquake hypothesis is the basis of time-dependent modeling of earthquake recurrence on major faults. However, the characteristic earthquake hypothesis is not strongly supported by observational data. Few fault segments have long historical or paleoseismic records of individually dated ruptures, and when data and parameter uncertainties are allowed for, the form of the recurrence distribution is difficult to establish. This is the case, for instance, of the Corinth Gulf Fault System (CGFS), for which documents about strong earthquakes exist for at least 2000 years, although they can be considered complete for M ≥ 6.0 only for the latest 300 years, during which only few characteristic earthquakes are reported for individual fault segments. The use of a physics-based earthquake simulator has allowed the production of catalogs lasting 100,000 years and containing more than 500,000 events of magnitudes ≥ 4.0. The main features of our simulation algorithm are (1) an average slip rate released by earthquakes for every single segment in the investigated fault system, (2) heuristic procedures for rupture growth and stop, leading to a self-organized earthquake magnitude distribution, (3) the interaction between earthquake sources, and (4) the effect of minor earthquakes in redistributing stress. The application of our simulation algorithm to the CGFS has shown realistic features in time, space, and magnitude behavior of the seismicity. These features include long-term periodicity of strong earthquakes, short-term clustering of both strong and smaller events, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the higher-magnitude range.

  15. Statistical distributions of earthquake numbers: consequence of branching process

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2010-03-01

    We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.

  16. Rapid Determination of Appropriate Source Models for Tsunami Early Warning using a Depth Dependent Rigidity Curve: Method and Numerical Tests

    NASA Astrophysics Data System (ADS)

    Tanioka, Y.; Miranda, G. J. A.; Gusman, A. R.

    2017-12-01

    Recently, tsunami early warning technique has been improved using tsunami waveforms observed at the ocean bottom pressure gauges such as NOAA DART system or DONET and S-NET systems in Japan. However, for tsunami early warning of near field tsunamis, it is essential to determine appropriate source models using seismological analysis before large tsunamis hit the coast, especially for tsunami earthquakes which generated significantly large tsunamis. In this paper, we develop a technique to determine appropriate source models from which appropriate tsunami inundation along the coast can be numerically computed The technique is tested for four large earthquakes, the 1992 Nicaragua tsunami earthquake (Mw7.7), the 2001 El Salvador earthquake (Mw7.7), the 2004 El Astillero earthquake (Mw7.0), and the 2012 El Salvador-Nicaragua earthquake (Mw7.3), which occurred off Central America. In this study, fault parameters were estimated from the W-phase inversion, then the fault length and width were determined from scaling relationships. At first, the slip amount was calculated from the seismic moment with a constant rigidity of 3.5 x 10**10N/m2. The tsunami numerical simulation was carried out and compared with the observed tsunami. For the 1992 Nicaragua tsunami earthquake, the computed tsunami was much smaller than the observed one. For the 2004 El Astillero earthquake, the computed tsunami was overestimated. In order to solve this problem, we constructed a depth dependent rigidity curve, similar to suggested by Bilek and Lay (1999). The curve with a central depth estimated by the W-phase inversion was used to calculate the slip amount of the fault model. Using those new slip amounts, tsunami numerical simulation was carried out again. Then, the observed tsunami heights, run-up heights, and inundation areas for the 1992 Nicaragua tsunami earthquake were well explained by the computed one. The other tsunamis from the other three earthquakes were also reasonably well explained by the computed ones. Therefore, our technique using a depth dependent rigidity curve is worked to estimate an appropriate fault model which reproduces tsunami heights near the coast in Central America. The technique may be worked in the other subduction zones by finding a depth dependent rigidity curve in that particular subduction zone.

  17. Construction of Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2013-12-01

    It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Iwata and Asano (2012, AGU) summarized the scaling relationships of large slip area of heterogeneous slip model and total SMGA sizes on seismic moment for subduction earthquakes and found the systematic change between the ratio of SMGA to the large slip area and the seismic moment. They concluded this tendency would be caused by the difference of period range of source modeling analysis. In this paper, we try to construct the methodology of construction of the source model for strong ground motion prediction for huge subduction earthquakes. Following to the concept of the characterized source model for inland crustal earthquakes (Irikura and Miyake, 2001; 2011) and intra-slab earthquakes (Iwata and Asano, 2011), we introduce the proto-type of the source model for huge subduction earthquakes and validate the source model by strong ground motion modeling.

  18. Coulomb stress change of crustal faults in Japan for 21 years, estimated from GNSS displacement

    NASA Astrophysics Data System (ADS)

    Nishimura, T.

    2017-12-01

    Coulomb stress is one of the simplest index to show how the fault is close to a brittle failure (e.g., earthquake). Many previous studies used the Coulomb stress change (ΔCFS) to evaluate whether the fault approaches failure and successfully explained an earthquake triggered by previous earthquakes and volcanic sources. Most studies use a model of a half-space medium with given rheological properties, boundary conditions, dislocation, etc. to calculate ΔCFS. However, Ueda and Takahashi (2005) proposed to calculate DCFS directly from surface displacement observed by GNSS. There are 6 independent components of stress tensor in an isotropic elastic medium. On the surface of the half-space medium, 3 components should be zero because of no traction on the surface. This means the stress change on the surface is calculated from the surface strain change using Hooke's law. Although an earthquake does not occur on surface, the stress change on the surface may approximate that at a depth of a shallow crustal earthquake (e.g., 10 km) if the source is far from the point at which we calculate the stress change. We tested it by comparing ΔCFS from the surface displacement and that from elastic fault models for past earthquakes. We first estimate a strain change with a method of Shen et al.(1996 JGR) from surface displacement and then calculate ΔCFS for a targeted focal mechanism. Although ΔCFS in the vicinity of the source fault cannot be reproduced from the surface displacement, surface displacement gives a good approximation of ΔCFS in a region 50 km away from the source if the target mechanism is a vertical strike-slip fault. It suggests that GNSS observation can give useful information on a recent change of earthquake potential. We, therefore, calculate the temporal evolution of ΔCFS on active faults in southwest Japan from April 1996 using surface displacement at GNSS stations. We used parameters for the active faults used for evaluation of strong motion by the Earthquake Research Committee. When we use 0.4 for an effective frictional coefficient, ΔCFS increased at most active faults in the Kyushu region by up to 50 KPa for 21 years. On the other hand, ΔCFS did not always increase at active faults in the Kinki region.

  19. Electromagnetic Energy Released in the Subduction (Benioff) Zone in Weeks Previous to Earthquake Occurrence in Central Peru and the Estimation of Earthquake Magnitudes.

    NASA Astrophysics Data System (ADS)

    Heraud, J. A.; Centa, V. A.; Bleier, T.

    2017-12-01

    During the past four years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone and are connected with the occurrence of earthquakes within a few kilometers of the source of such pulses. This evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. Additional work has been done and the method has now been expanded to provide the instantaneous energy released at the stress areas on the Benioff zone during the precursory stage, before an earthquake occurs. Collected data from several events and in other parts of the country will be shown in a sequential animated form that illustrates the way energy is released in the ULF part of the electromagnetic spectrum. The process has been extended in time and geographical places. Only pulses associated with the occurrence of earthquakes are taken into account in an area which is highly associated with subduction-zone seismic events and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including the animated data video, constitute additional work towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. The method is providing clearer evidence that electromagnetic precursors in effect conveys physical and useful information prior to the advent of a seismic event

  20. Nanoseismicity and picoseismicity rate changes from static stress triggering caused by a Mw 2.2 earthquake in Mponeng gold mine, South Africa

    NASA Astrophysics Data System (ADS)

    Kozłowska, Maria; Orlecka-Sikora, Beata; Kwiatek, Grzegorz; Boettcher, Margaret S.; Dresen, Georg

    2015-01-01

    Static stress changes following large earthquakes are known to affect the rate and distribution of aftershocks, yet this process has not been thoroughly investigated for nanoseismicity and picoseismicity at centimeter length scales. Here we utilize a unique data set of M ≥ -3.4 earthquakes following a Mw 2.2 earthquake in Mponeng gold mine, South Africa, that was recorded during a quiet interval in the mine to investigate if rate- and state-based modeling is valid for shallow, mining-induced seismicity. We use Dieterich's (1994) rate- and state-dependent formulation for earthquake productivity, which requires estimation of four parameters: (1) Coulomb stress changes due to the main shock, (2) the reference seismicity rate, (3) frictional resistance parameter, and (4) the duration of aftershock relaxation time. Comparisons of the modeled spatiotemporal patterns of seismicity based on two different source models with the observed distribution show that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used three metrics of the goodness-of-fit evaluation. The null hypothesis, of no significant difference between modeled and observed seismicity rates, was only rejected in the depth interval containing the main shock. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distributions of very small, mining-induced earthquakes can be successfully determined using rate- and state-based stress modeling.

  1. Rupture geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China earthquake inferred from Sentinel-1A InSAR measurements

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2016-12-01

    On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.

  2. Rupture geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China earthquake

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2017-12-01

    On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.

  3. Regional propagation characteristics and source parameters of earthquakes in northeastern North America

    USGS Publications Warehouse

    Boatwright, John

    1994-01-01

    The vertical components of the S wave trains recorded on the Eastern Canadian Telemetered Network (ECTN) from 1980 through 1990 have been spectrally analyzed for source, site, and propagation characteristics. The data set comprises some 1033 recordings of 97 earthquakes whose magnitudes range from M ≈ 3 to 6. The epicentral distances range from 15 to 1000 km, with most of the data set recorded at distances from 200 to 800 km. The recorded S wave trains contain the phases S, SmS, Sn, and Lg and are sampled using windows that increase with distance; the acceleration spectra were analyzed from 1.0 to 10 Hz. To separate the source, site, and propagation characteristics, an inversion for the earthquake corner frequencies, low-frequency levels, and average attenuation parameters is alternated with a regression of residuals onto the set of stations and a grid of 14 distances ranging from 25 to 1000 km. The iteration between these two parts of the inversion converges in about 60 steps. The average attenuation parameters obtained from the inversion were Q = 1997 ± 10 and γ = 0.998 ± 0.003. The most pronounced variation from this average attenuation is a marked deamplification of more than a factor of 2 at 63 km and 2 Hz, which shallows with increasing frequency and increasing distance out to 200 km. The site-response spectra obtained for the ECTN stations are generally flat. The source spectral shape assumed in this inversion provides an adequate spectral model for the smaller events (Mo < 3 × 1021 dyne-cm) in the data set, whose Brune stress drops range from 5 to 150 bars. For the five events in the data set with Mo ≧ 1023 dyne-cm, however, the source spectra obtained by regressing the residuals suggest that an ω2 spectrum is an inadequate model for the spectral shape. In particular, the corner frequencies for most of these large events appear to be split, so that the spectra exhibit an intermediate behavior (where |ü(ω)| is roughly proportional to ω).

  4. Influence of Earthquake Parameters on Tsunami Wave Height and Inundation

    NASA Astrophysics Data System (ADS)

    Kulangara Madham Subrahmanian, D.; Sri Ganesh, J.; Venkata Ramana Murthy, M.; V, R. M.

    2014-12-01

    After Indian Ocean Tsunami (IOT) on 26th December, 2004, attempts are being made to assess the threat of tsunami originating from different sources for different parts of India. The Andaman - Sumatra trench is segmented by transcurrent faults and differences in the rate of subduction which is low in the north and increases southward. Therefore key board model with initial deformation calculated using different strike directions, slip rates, are used. This results in uncertainties in the earthquake parameters. This study is made to identify the location of origin of most destructive tsunami for Southeast coast of India and to infer the influence of the earthquake parameters in tsunami wave height travel time in deep ocean as well as in the shelf and inundation in the coast. Five tsunamigenic sources were considered in the Andaman - Sumatra trench taking into consideration the tectonic characters of the trench described by various authors and the modeling was carried out using TUNAMI N2 code. The model results were validated using the travel time and runup in the coastal areas and comparing the water elevation along Jason - 1's satellite track. The inundation results are compared from the field data. The assessment of the tsunami threat for the area south of Chennai city the metropolitan city of South India shows that a tsunami originating in Car Nicobar segment of the Andaman - Sumatra subduction zone can generate the most destructive tsunami. Sensitivity analysis in the modelling indicates that fault length influences the results significantly and the tsunami reaches early and with higher amplitude. Strike angle is also modifying the tsunami followed by amount of slip.

  5. Source process of the MW7.8 2016 Kaikoura earthquake in New Zealand and the characteristics of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zang, Y.; Zhou, L.; Han, Y.

    2017-12-01

    The MW7.8 New Zealand earthquake of 2016 occurred near the Kaikoura area in the South Island, New Zealand with the epicenter of 173.13°E and 42.78°S. The MW7.8 Kaikoura earthquake occurred on the transform boundary faults between the Pacific plate and the Australian plate and with the thrust focal mechanism solution. The Kaikoura earthquake is a complex event because the significant difference, especially between the magnitude, seismic moment, radiated energy and the casualties. Only two people were killed, and twenty people injured and no more than twenty buildings are destroyed during this earthquake, the damage level is not so severe in consideration about the huge magnitude. We analyzed the rupture process according to the source parameters, it can be confirmed that the radiated energy and the apparent stress of the Kaikoura earthquake are small and minor. The results indicate a frictional overshoot behavior in the dynamic source process of Kaikoura earthquake, which is actually with sufficient rupture and more affluent moderate aftershocks. It is also found that the observed horizontal Peak Ground Acceleration of the strong ground motion is generally small comparing with the Next Generation Attenuation relationship. We further studied the characteristics of the observed horizontal PGAs at the 6 near fault stations, which are located in the area less than 10 km to the main fault. The relatively high level strong ground motion from the 6 stations may be produced by the higher slip around the asperity area rather than the initial rupture position on the main plane. Actually, the huge surface displacement at the northern of the rupture fault plane indicated why aftershocks are concentrated in the north. And there are more damage in Wellington than in Christchurch, even which is near the south of the epicenter. In conclusion, the less damage level of Kaikoura earthquake in New Zealand may probably because of the smaller strong ground motion and the rare population in the near fault area, with the most severe surface destruction. This work is supported by the Natural Science Foundation of China (No. 41404045).

  6. Earthquake Potential Models for China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Jackson, D. D.

    2002-12-01

    We present three earthquake potential estimates for magnitude 5.4 and larger earthquakes for China. The potential is expressed as the rate density (probability per unit area, magnitude and time). The three methods employ smoothed seismicity-, geologic slip rate-, and geodetic strain rate data. We tested all three estimates, and the published Global Seismic Hazard Assessment Project (GSHAP) model, against earthquake data. We constructed a special earthquake catalog which combines previous catalogs covering different times. We used the special catalog to construct our smoothed seismicity model and to evaluate all models retrospectively. All our models employ a modified Gutenberg-Richter magnitude distribution with three parameters: a multiplicative ``a-value," the slope or ``b-value," and a ``corner magnitude" marking a strong decrease of earthquake rate with magnitude. We assumed the b-value to be constant for the whole study area and estimated the other parameters from regional or local geophysical data. The smoothed seismicity method assumes that the rate density is proportional to the magnitude of past earthquakes and approximately as the reciprocal of the epicentral distance out to a few hundred kilometers. We derived the upper magnitude limit from the special catalog and estimated local a-values from smoothed seismicity. Earthquakes since January 1, 2000 are quite compatible with the model. For the geologic forecast we adopted the seismic source zones (based on geological, geodetic and seismicity data) of the GSHAP model. For each zone, we estimated a corner magnitude by applying the Wells and Coppersmith [1994] relationship to the longest fault in the zone, and we determined the a-value from fault slip rates and an assumed locking depth. The geological model fits the earthquake data better than the GSHAP model. We also applied the Wells and Coppersmith relationship to individual faults, but the results conflicted with the earthquake record. For our geodetic model we derived the uniform upper magnitude limit from the special catalog and assumed local a-values proportional to maximum horizontal strain rate. In prospective tests the geodetic model agrees well with earthquake occurrence. The smoothed seismicity model performs best of the four models.

  7. Fast Identification of Near-Trench Earthquakes Along the Mexican Subduction Zone Based on Characteristics of Ground Motion in Mexico City

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Rodríguez, Q.; Iglesias, A.

    2015-12-01

    The disastrous 1985 Michoacan earthquake gave rise to a seismic alert system for Mexico City which became operational in 1991. Initially limited to earthquakes along the Guerrero coast, the system now has a much wider coverage. Also, the 2004 Sumatra earthquake exposed the need for a tsunami early warning along the Mexican subduction zone. A fast identification of near-trench earthquakes along this zone may be useful in issuing a reliable early tsunami alert. The confusion caused by low PGA for the magnitude of an earthquake, leading to "missed" seismic alert, would be averted if its near-trench origin can be quickly established. It may also help reveal the spatial extent and degree of seismic coupling on the near-trench portion of the plate interface. This would lead to a better understanding of tsunami potential and seismic hazard along the Mexican subduction zone. We explore three methods for quick detection of near-trench earthquakes, testing them on recordings of 65 earthquakes at station CU in Mexico City (4.8 ≤Mw≤8.0; 270≤R≤615 km). The first method is based on the ratio of total to high-frequency energy, ER (Shapiro et al., 1998). The second method is based on parameter Sa*(6) which is the pseudo-acceleration response spectrum with 5% damping, Sa, at 6 s normalized by the PGA. The third parameter is the PGA residual, RESN, at CU, with respect to a newly-derived ground motion prediction equation at CU for coastal shallow-dipping thrust earthquakes following a bayesian approach. Since the near-trench earthquakes are relatively deficient in high-frequency radiation, we expect ER and Sa*(6) to be relatively large and RESN to be negative for such events. Tests on CU recordings show that if ER ≥ 100 and/or Sa*(6) ≥ 0.70, then the earthquake is near trench; for these events RESN ≤ 0. Such an event has greater tsunami potential. Few misidentifications and missed events are most probably a consequence of poor location, although unusual depth and source characteristics may also be responsible in some cases. We propose routine computation of these parameters (along with location and magnitude) by the National Seismological Service of Mexico and dissemination of the information to other interested agencies which are in charge of tsunami alert, seismic alert, and near real time ground motion intensity maps for Mexico City.

  8. Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.

    2016-12-01

    Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.

  9. Source Characterization of the 2015 Collapse in Gypsum Mine in Shandong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Chu, R.; Sheng, M.

    2016-12-01

    Source parameters of mining earthquakes are essential to investigating pressure redistribution and accumulation due to underground excavation. On 25 December 2015, a local magnitude 4.0 earthquake occurred at 07:56:12 BJT in Pingyi County, China (latitude: 35.5°N, longitude: 117.7°E) with a depth of 0 km. This earthquake is caused by underground cave collapse. In this paper, we used sliding-window cross-correlation method to detect aftershocks of this event. The result indicates there are at least six aftershocks within ten minutes after the earthquake. Then we inverted focal mechanisms and depths of the mainshock and the largest aftershock with three-component broadband seismic waveform data recorded by the National Seismic Network. We use the generalized Cut-and-Paste (gCAP) method to obtain their moment tensors, which allows for a characterization of the relative amounts of deviatoric and isotropic source components. This gCAP method divides three component waveforms into Pnl and surface wave segments, and allows adjustable time shifts between observed and synthetic data, so that it reduces the influence of uncertainties in the 1-D velocity model. The results show that both events have similar focal mechanisms, which contains obvious non-double-couple component with a large proportion of isotropic source component. The mechanisms are dominated by 80% implosive isotropic energy and 20% thrusting double couple energy. Such mechanisms might be explained by an asymmetric collapse of the mine cavity due to unevenly distributed in situ stresses, sympathetic shear on a roof fault, or between the roof and floor of the mine.

  10. Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: Implications for source depth constraints

    USGS Publications Warehouse

    Carvajal, M.; Cisternas, M.; Gubler, A.; Catalan, P. A.; Winckler, P.; Wesson, Robert L.

    2017-01-01

    Far-field tsunami records from the Japanese tide gauge network allow the reexamination of the moment magnitudes (Mw) for the 1906 and 1922 Chilean earthquakes, which to date rely on limited information mainly from seismological observations alone. Tide gauges along the Japanese coast provide extensive records of tsunamis triggered by six great (Mw >8) Chilean earthquakes with instrumentally determined moment magnitudes. These tsunami records are used to explore the dependence of tsunami amplitudes in Japan on the parent earthquake magnitude of Chilean origin. Using the resulting regression parameters together with tide gauge amplitudes measured in Japan we estimate apparent moment magnitudes of Mw 8.0–8.2 and Mw8.5–8.6 for the 1906 central and 1922 north-central Chile earthquakes. The large discrepancy of the 1906 magnitude estimated from the tsunami observed in Japan as compared with those previously determined from seismic waves (Ms 8.4) suggests a deeper than average source with reduced tsunami excitation. A deep dislocation along the Chilean megathrust would favor uplift of the coast rather than beneath the sea, giving rise to a smaller tsunami and producing effects consistent with those observed in 1906. The 1922 magnitude inferred from far-field tsunami amplitudes appear to better explain the large extent of damage and the destructive tsunami that were locally observed following the earthquake than the lower seismic magnitudes (Ms 8.3) that were likely affected by the well-known saturation effects. Thus, a repeat of the large 1922 earthquake poses seismic and tsunami hazards in a region identified as a mature seismic gap.

  11. Source Rupture Process for the February 21, 2011, Mw6.1, New Zealand Earthquake and the Characteristics of Near-field Strong Ground Motion

    NASA Astrophysics Data System (ADS)

    Meng, L.; Shi, B.

    2011-12-01

    The New Zealand Earthquake of February 21, 2011, Mw 6.1 occurred in the South Island, New Zealand with the epicenter at longitude 172.70°E and latitude 43.58°S, and with depth of 5 km. The Mw 6.1 earthquake occurred on an unknown blind fault involving oblique-thrust faulting, which is 9 km away from southern of the Christchurch, the third largest city of New Zealand, with a striking direction from east toward west (United State Geology Survey, USGS, 2011). The earthquake killed at least 163 people and caused a lot of construction damages in Christchurch city. The Peak Ground Acceleration (PGA) observed at station Heathcote Valley Primary School (HVSC), which is 1 km away from the epicenter, is up to almost 2.0g. The ground-motion observation suggests that the buried earthquake source generates much higher near-fault ground motion. In this study, we have analyzed the earthquake source spectral parameters based on the strong motion observations, and estimated the near-fault ground motion based on the Brune's circular fault model. The results indicate that the larger ground motion may be caused by a higher dynamic stress drop,Δσd , or effect stress drop named by Brune, in the major source rupture region. In addition, a dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties from the kinematic point of view. For comparison purpose, we also conducted the broadband ground motion predictions for the station of HVSC; the synthetic seismogram of time histories produced for this station has good agreement with the observations in the waveforms, peak values and frequency contents, which clearly indicate that the higher dynamic stress drop during the fault rupture may play an important role to the anomalous ground-motion amplification. The preliminary simulated result illustrated in at Station HVSC is that the synthetics seismograms have a realistic appearance in the waveform and time duration to the observations, especially for the vertical component. Synthetics Fourier spectra are reasonably similar to the recordings. The simulated PGA values of vertical and S26W components are consistent with the recorded, and for the S64E component, the PGA derived from our simulation is smaller than that from observation. The resultant Fourier spectra both for the synthetic and observation is much similar with each other for three components of acceleration time histories, except for the vertical component, where the derived spectra from synthetic data is smaller than that resultant from observation when the frequency is above 10 Hz. Both theoretical study and numerical simulation indicate that, for the 2011 Mw 6.1, New Zealand Earthquake, the higher dynamic stress drop during the source rupture process could play an important role to the anomalous ground-motion amplification beside to the other site-related seismic effects. The composite source modeling based on the simple Brune's pulse model could approximately provide us a good insight into earthquake source related rupture processes for a moderate-sized earthquake.

  12. The 2007 Boso Slow Slip Event and the associated earthquake swarm

    NASA Astrophysics Data System (ADS)

    Sekine, S.; Hirose, H.; Kimura, H.; Obara, K.

    2007-12-01

    In the Boso Peninsula, which is located in southeast of the Japan mainland, slow slip events (SSE) have been observed by the GEONET GPS array operated by the Geographical Survey Institute Japan and the NIED tiltmeter network every 6-7 years (Ozawa et al.,2003; NIED 2003). The unique characteristics of the Boso SSE are that earthquake swarm activities have also occurred in association with the SSE. The latest activity of the SSE and the earthquake swarm took place in August 2007. On 13th August, an earthquake swarm began to occur at east off Boso Peninsula and the slow tilt deformations also started. The earthquake sources migrated to the NNE direction, which is the same direction of the relative plate motion of the subducting Philippine Sea Plate with respect to the overriding plate. The largest earthquake in this episode (Mw 5.3) occurred on 16th and the second largest one (Mw 5.2) on 18th. Most of the larger earthquakes show low- angle thrust type focal mechanisms that are consistent with the plate motion and the geometry of the subduction plate interface. The tilt changes seem to stop on 17th and the activity of the swarm rapidly decreases after 19th. The maximum tilt change of 0.8 micro radian with northwest down tilting was observed at KT2H, the nearest station from the source region. Based on the tilt records around Boso Peninsula, we estimate a fault model for the SSE using genetic algorithm inversion to non-linear parameter and the weighted least squares method to linear parameters. As a result, the estimated moment magnitude and the amount of slip are 6.4 and 10 cm, respectively. The size and the location of the SSE are similar to the previous episodes. The estimated fault plane is very consistent with the configuration of the plate interface (Kimura et al., 2006). Most of the earthquakes are located on the deeper edge of the estimated SSE fault area. The coincidence of the swarm and the SSE suggests a causal relation between them and may help us to understand the mechanism of earthquake triggering. On the other hand, in the southwest Japan, tremors which repeat at approximately six months have occurred in association with the SSE. To compare with these two types of SSE may suggest the difference of the boundary conditions on the same subducting plate.

  13. Uncertainties in the 2004 Sumatra–Andaman source through nonlinear stochastic inversion of tsunami waves

    PubMed Central

    Venugopal, M.; Roy, D.; Rajendran, K.; Guillas, S.; Dias, F.

    2017-01-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra–Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems. PMID:28989311

  14. Uncertainties in the 2004 Sumatra-Andaman source through nonlinear stochastic inversion of tsunami waves.

    PubMed

    Gopinathan, D; Venugopal, M; Roy, D; Rajendran, K; Guillas, S; Dias, F

    2017-09-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra-Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems.

  15. Isotropic source terms of San Jacinto fault zone earthquakes based on waveform inversions with a generalized CAP method

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Ben-Zion, Y.; Zhu, L.

    2015-02-01

    We analyse source tensor properties of seven Mw > 4.2 earthquakes in the complex trifurcation area of the San Jacinto Fault Zone, CA, with a focus on isotropic radiation that may be produced by rock damage in the source volumes. The earthquake mechanisms are derived with generalized `Cut and Paste' (gCAP) inversions of three-component waveforms typically recorded by >70 stations at regional distances. The gCAP method includes parameters ζ and χ representing, respectively, the relative strength of the isotropic and CLVD source terms. The possible errors in the isotropic and CLVD components due to station variability is quantified with bootstrap resampling for each event. The results indicate statistically significant explosive isotropic components for at least six of the events, corresponding to ˜0.4-8 per cent of the total potency/moment of the sources. In contrast, the CLVD components for most events are not found to be statistically significant. Trade-off and correlation between the isotropic and CLVD components are studied using synthetic tests with realistic station configurations. The associated uncertainties are found to be generally smaller than the observed isotropic components. Two different tests with velocity model perturbation are conducted to quantify the uncertainty due to inaccuracies in the Green's functions. Applications of the Mann-Whitney U test indicate statistically significant explosive isotropic terms for most events consistent with brittle damage production at the source.

  16. Site correction of a high-frequency strong-ground-motion simulation based on an empirical transfer function

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Yan; Wen, Kuo-Liang; Lin, Che-Min; Kuo, Chun-Hsiang; Chen, Chun-Te; Chang, Shuen-Chiang

    2017-05-01

    In this study, an empirical transfer function (ETF), which is the spectrum difference in Fourier amplitude spectra between observed strong ground motion and synthetic motion obtained by a stochastic point-source simulation technique, is constructed for the Taipei Basin, Taiwan. The basis stochastic point-source simulations can be treated as reference rock site conditions in order to consider site effects. The parameters of the stochastic point-source approach related to source and path effects are collected from previous well-verified studies. A database of shallow, small-magnitude earthquakes is selected to construct the ETFs so that the point-source approach for synthetic motions might be more widely applicable. The high-frequency synthetic motion obtained from the ETF procedure is site-corrected in the strong site-response area of the Taipei Basin. The site-response characteristics of the ETF show similar responses as in previous studies, which indicates that the base synthetic model is suitable for the reference rock conditions in the Taipei Basin. The dominant frequency contour corresponds to the shape of the bottom of the geological basement (the top of the Tertiary period), which is the Sungshan formation. Two clear high-amplification areas are identified in the deepest region of the Sungshan formation, as shown by an amplification contour of 0.5 Hz. Meanwhile, a high-amplification area was shifted to the basin's edge, as shown by an amplification contour of 2.0 Hz. Three target earthquakes with different kinds of source conditions, including shallow small-magnitude events, shallow and relatively large-magnitude events, and deep small-magnitude events relative to the ETF database, are tested to verify site correction. The results indicate that ETF-based site correction is effective for shallow earthquakes, even those with higher magnitudes, but is not suitable for deep earthquakes. Finally, one of the most significant shallow large-magnitude earthquakes (the 1999 Chi-Chi earthquake in Taiwan) is verified in this study. A finite fault stochastic simulation technique is applied, owing to the complexity of the fault rupture process for the Chi-Chi earthquake, and the ETF-based site-correction function is multiplied to obtain a precise simulation of high-frequency (up to 10 Hz) strong motions. The high-frequency prediction has good agreement in both time and frequency domain in this study, and the prediction level is the same as that predicted by the site-corrected ground motion prediction equation.

  17. Near real-time estimation of the seismic source parameters in a compressed domain

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ismael A. Vera

    Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.

  18. Regional variation of stress level in the Himalayas after the 25 April 2015 Gorkha earthquake (Nepal) estimated using b-values

    NASA Astrophysics Data System (ADS)

    Ramesh, Pudi; Martha, Tapas R.; Vinod Kumar, K.

    2018-06-01

    The Gutenberg-Richter (G-R) relation and its parameters reflect the distribution of magnitude and frequency of earthquakes in a seismically active region. Different segments of the Himalayas from west to east behave differently in their G-R relation. In this study, b-values from the G-R relation were computed for the four different seismic zones of the Himalayas, in order to understand the regional variation of stress levels. It was found that the b-value of the Eastern zone is relatively lower than that of the other zones. The b-values before and after the Gorkha (25 April 2015) and Dolakha (12 May 2015) earthquakes were compared for the Central-II seismic zone, where the epicentres of both earthquakes were located. It was observed that the b-value has increased gradually in this region since stress was released episodically. It was also observed that b-values in adjacent zones are lower than that in the source region of the 25 April 2015 earthquake, implying high-stress accumulation. This indicates that the recurrence period of a large earthquake will be high in adjacent zones, particularly in the Eastern zone.

  19. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  20. Developing of the ionospheric plasma turbulence over the epicenters of the extremely strong earthquakes - the results of the DEMETER satellite observations

    NASA Astrophysics Data System (ADS)

    Blecki, J. S.; Parrot, M.; Wronowski, R.; Kosciesza, M.

    2011-12-01

    The DEMETER French microsatellite satellite was launched in June 2004 and finished its operation in December 2010. During the time of the DEMETER satellite operation some gigantic earthquakes took place. We will report the electromagnetic effects registered by DEMETER prior to the earthquakes with magnitude over 8 or just close to this value. We selected events with good coverage of the measurements in the burst mode when the wave form of the electric field variations were registered. It is because the special attention will be given to study of the characteristics of the spectra of these variations and search of the nonlinear effects. This analysis is possible in the time interval when the waveform has been transmitted. Using wavelet and bispectral analysis as well as the statistical characteristics of the measured parameter, we find that registered variations are associated with developing of the ionospheric plasma turbulence. It is mainly Kolmogorov type of the turbulence. The payload of the DEMETER allows to measure important plasma parameters (ion composition, electron density and temperature, energetic particles) with high temporal resolution in the ionosphere over the seismic regions. The correlation of the observed plasma turbulence with changes of the other parameters will be also given. In the present work analysis of the low frequency fluctuations of the electric and magnetic fields for the selected strong earthquakes will be given. The mechanism of the energy transmission from the earthquake to the ionosphere is not clear, but we can discuss the behavior of the ionospheric plasma and search of the instabilities which could be a source of the electromagnetic field variations. Some attempt of this discussion will be given in the presentation. We will present results obtained prior to the some giant earthquakes (Peru2007, Wechuan China 2008, Haiti 2010, Chile 2010).

  1. New Insights on co-seismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Hovius, Niels

    2015-04-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides should occur downslope preferentially, where pore pressure induced by groundwater flows is the highest [1]. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial and temporal variations of the landslide position (on hillslopes) within the epicentral area of the 1994 Northridge, the 1999 Chichi, the 2004 Niigata, the 2008 Iwate and the 2008 Wenchuan earthquakes. We show that crest clustering is not systematic, non uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232

  2. Prompt identification of tsunamigenic earthquakes from 3-component seismic data

    NASA Astrophysics Data System (ADS)

    Kundu, Ajit; Bhadauria, Y. S.; Basu, S.; Mukhopadhyay, S.

    2016-10-01

    An Artificial Neural Network (ANN) based algorithm for prompt identification of shallow focus (depth < 70 km) tsunamigenic earthquakes at a regional distance is proposed in the paper. The promptness here refers to decision making as fast as 5 min after the arrival of LR phase in the seismogram. The root mean square amplitudes of seismic phases recorded by a single 3-component station have been considered as inputs besides location and magnitude. The trained ANN has been found to categorize 100% of the new earthquakes successfully as tsunamigenic or non-tsunamigenic. The proposed method has been corroborated by an alternate mapping technique of earthquake category estimation. The second method involves computation of focal parameters, estimation of water volume displaced at the source and eventually deciding category of the earthquake. The method has been found to identify 95% of the new earthquakes successfully. Both the methods have been tested using three component broad band seismic data recorded at PALK (Pallekele, Sri Lanka) station provided by IRIS for earthquakes originating from Sumatra region of magnitude 6 and above. The fair agreement between the methods ensures that a prompt alert system could be developed based on proposed method. The method would prove to be extremely useful for the regions that are not adequately instrumented for azimuthal coverage.

  3. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes

    USGS Publications Warehouse

    Harmsen, Stephen C.; Hartzell, Stephen

    2008-01-01

    Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.

  4. Low Stress Drop Swarm Events in the Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Allen, T. I.; Cummins, P. R.; Leonard, M.; Collins, C. D.

    2004-12-01

    Since September 2001, the small rural community of Burakin, southwest Western Australia, has been at the focus of seismic activity in Australia. In the six month period following commencement of seismicity, some 18,000 events had occurred, the largest of which having a moment magnitude of M 4.6. At the onset of activity, Geoscience Australia made a concerted effort to deploy a temporary seismic network in the region. The primary objective of this network was to collect high-quality strong-motion data for use in attenuation studies. Levels of seismicity near Burakin have decreased significantly since the 2001-02 swarm, however the region continues to experience a few small earthquakes per month. Earthquake source and path parameters are evaluated for a subset of 67 earthquakes. The dataset comprises some 375 seismograph and accelerograph records for events of magnitude M 2.3-4.6, including strong-motion data for seven earthquakes of M 4.0 and greater recorded at hypocentral distances less than 10 km. Source parameters are evaluated from far-field displacement spectra. Average corner frequencies are typically quite low, chiefly ranging between 2-3 Hz for events M 3.0 and above. Given the small variability in corner frequency, stress drop is observed to increase with magnitude, from very low values of 0.04 MPa to 18 MPa for the largest events in the catalogue. The stress drops for lower magnitude events (M < 4.0) are typically lower than those obtained for southeastern Australian earthquakes of similar seismic moment. Since corner frequency is not observed to vary significantly with seismic moment, it is thought that the spectral content of shallow, small swarm events and consequently, the stress drop, is characteristically different to that of isolated intraplate earthquakes. We suggest that the larger events may be faulting previously unfractured rock or healed fault asperities, while the smaller events are adjustment events or aftershocks and occur on recently faulted surfaces. The work described has provided a useful framework for the development of regional ground-motion relations for Western Australia and will enable a better understanding of the mechanisms driving intraplate seismicity.

  5. Seismic Moment, Seismic Energy, and Source Duration of Slow Earthquakes: Application of Brownian slow earthquake model to three major subduction zones

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Maury, Julie

    2018-04-01

    Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.

  6. New constraints on the rupture process of the 1999 August 17 Izmit earthquake deduced from estimates of stress glut rate moments

    NASA Astrophysics Data System (ADS)

    Clévédé, E.; Bouin, M.-P.; Bukchin, B.; Mostinskiy, A.; Patau, G.

    2004-12-01

    This paper illustrates the use of integral estimates given by the stress glut rate moments of total degree 2 for constraining the rupture scenario of a large earthquake in the particular case of the 1999 Izmit mainshock. We determine the integral estimates of the geometry, source duration and rupture propagation given by the stress glut rate moments of total degree 2 by inverting long-period surface wave (LPSW) amplitude spectra. Kinematic and static models of the Izmit earthquake published in the literature are quite different from one another. In order to extract the characteristic features of this event, we calculate the same integral estimates directly from those models and compare them with those deduced from our inversion. While the equivalent rupture zone and the eastward directivity are consistent among all models, the LPSW solution displays a strong unilateral character of the rupture associated with a short rupture duration that is not compatible with the solutions deduced from the published models. With the aim of understand this discrepancy, we use simple equivalent kinematic models to reproduce the integral estimates of the considered rupture processes (including ours) by adjusting a few free parameters controlling the western and eastern parts of the rupture. We show that the joint analysis of the LPSW solution and source tomographies allows us to elucidate the scattering of source processes published for this earthquake and to discriminate between the models. Our results strongly suggest that (1) there was significant moment released on the eastern segment of the activated fault system during the Izmit earthquake; (2) the apparent rupture velocity decreases on this segment.

  7. Insight into the rupture process of a rare tsunami earthquake from near-field high-rate GPS

    NASA Astrophysics Data System (ADS)

    Macpherson, K. A.; Hill, E. M.; Elosegui, P.; Banerjee, P.; Sieh, K. E.

    2011-12-01

    We investigated the rupture duration and velocity of the October 25, 2010 Mentawai earthquake by examining high-rate GPS displacement data. This Mw=7.8 earthquake appears to have ruptured either an up-dip part of the Sumatran megathrust or a fore-arc splay fault, and produced tsunami run-ups on nearby islands that were out of proportion with its magnitude. It has been described as a so-called "slow tsunami earthquake", characterised by a dearth of high-frequency signal and long rupture duration in low-strength, near-surface media. The event was recorded by the Sumatran GPS Array (SuGAr), a network of high-rate (1 sec) GPS sensors located on the nearby islands of the Sumatran fore-arc. For this study, the 1 sec time series from 8 SuGAr stations were selected for analysis due to their proximity to the source and high-quality recordings of both static displacements and dynamic waveforms induced by surface waves. The stations are located at epicentral distances of between 50 and 210 km, providing a unique opportunity to observe the dynamic source processes of a tsunami earthquake from near-source, high-rate GPS. We estimated the rupture duration and velocity by simulating the rupture using the spectral finite-element method SPECFEM and comparing the synthetic time series to the observed surface waves. A slip model from a previous study, derived from the inversion of GPS static offsets and tsunami data, and the CRUST2.0 3D velocity model were used as inputs for the simulations. Rupture duration and velocity were varied for a suite of simulations in order to determine the parameters that produce the best-fitting waveforms.

  8. Incorporation of Multiple Datasets in Earthquake Source Inversions: Case Study for the 2015 Illapel Earthquake

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Cummins, P. R.; Newman, A. V.; Benavente, R. F.

    2016-12-01

    The 2015 Illapel, Chile earthquake was recorded over a wide range of seismic, geodetic and oceanographic instruments. The USGS assigned magnitude 8.3 earthquake produced a tsunami that was recorded trans-oceanically at both tide gauges and deep-water tsunami pressure sensors. The event also generated surface deformation along the Chilean coast that was recovered through ascending and descending paths of the Sentinel-1A satellite. Additionally, seismic waves were recorded across various global seismic networks. While the determination of the rupture source through seismic and geodetic means is now commonplace and has been studied extensively in this fashion for the Illapel event, the use of tsunami datasets in the inversion process, rather than purely as a forward validation of models, is less common. In this study, we evaluate the use of both near and far field tsunami pressure gauges in the source inversion process, examining their contribution to seismic and geodetic joint inversions- as well as examine the contribution of dispersive and elastic loading parameters on the numerical tsunami propagation. We determine that the inclusion of near field tsunami pressure gauges assists in resolving the degree of slip in the near-trench environment, where purely geodetic inversions lose most resolvability. The inclusion of a far-field dataset has the potential to add further confidence to tsunami inversions, however at a high computational cost. When applied to the Illapel earthquake, this added near-trench resolvability leads to a better estimation of tsunami arrival times at near field gauges and contributes understanding to the wide variation in tsunamigenic slip present along the highly active Peru-Chile trench.

  9. Source inversion of the 1570 Ferrara earthquake and definitive diversion of the Po River (Italy)

    NASA Astrophysics Data System (ADS)

    Sirovich, L.; Pettenati, F.

    2015-08-01

    An 11-parameter, kinematic-function (KF) model was used to retrieve the approximate geometrical and kinematic characteristics of the fault source of the 1570 Mw 5.8 Ferrara earthquake in the Po Plain, including the double-couple orientation (strike angle 127 ± 16°, dip 28 ± 7°, and rake 77 ± 16°). These results are compatible with either the outermost thrust fronts of the northern Apennines, which are buried beneath the Po Plain's alluvial deposits, or the blind crustal-scale thrust. The 1570 event developed to the ENE of the two main shocks on 20 May 2012 (M 6.1) and 29 May 2012 (M 5.9). The three earthquakes had similar kinematics and are found 20-30 km from each other en echelon in the buried chain. Geomorphological and historical evidence exist which suggest the following: (i) the long-lasting uplift of the buried Apenninic front shifted the central part of the course of the Po River approximately 20 km northward in historical times and (ii) the 1570 earthquake marked the definitive diversion of the final part of the Po River away from Ferrara and the closure of the Po delta 40 km south of its present position.

  10. The Run-Up of Subduction Zones

    NASA Astrophysics Data System (ADS)

    Riquelme, S.; Bravo, F. J.; Fuentes, M.; Matias, M.; Medina, M.

    2016-12-01

    Large earthquakes in subduction zones are liable to produce tsunamis that can cause destruction and fatalities. The Run-up is a geophysical parameter that quantifies damage and if critical facilities or population are exposed to. Here we use the coupling for certain subduction regions measured by different techniques (Potency and GPS observations) to define areas where large earthquakes can occur. Taking the slab 1.0 from the United States Geological Survey (USGS), we can define the geometry of the area including its tsunamigenic potential. By using stochastic earthquakes sources for each area with its maximum tsunamigenic potential, we calculate the numerical and analytical run-up for each case. Then, we perform a statistical analysis and calculate the envelope for both methods. Furthermore, we build an index of risk using: the closest slope to the shore in a piecewise linear approach (last slopecriteria) and the outputsfrom tsunami modeling. Results show that there are areas prone to produce higher run-up than others based on the size of the earthquake, geometrical constraints of the source, tectonic setting and the coast last slope. Based on these results, there are zones that have low risk index which can define escape routes or secure coastal areas for tsunami early warning, urban and planning purposes when detailed data is available.

  11. Double point source W-phase inversion: Real-time implementation and automated model selection

    USGS Publications Warehouse

    Nealy, Jennifer; Hayes, Gavin

    2015-01-01

    Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.

  12. Quantifying uncertainty in NDSHA estimates due to earthquake catalogue

    NASA Astrophysics Data System (ADS)

    Magrin, Andrea; Peresan, Antonella; Vaccari, Franco; Panza, Giuliano

    2014-05-01

    The procedure for the neo-deterministic seismic zoning, NDSHA, is based on the calculation of synthetic seismograms by the modal summation technique. This approach makes use of information about the space distribution of large magnitude earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g., morphostructural features and ongoing deformation processes identified by earth observations). Hence the method does not make use of attenuation models (GMPE), which may be unable to account for the complexity of the product between seismic source tensor and medium Green function and are often poorly constrained by the available observations. NDSHA defines the hazard from the envelope of the values of ground motion parameters determined considering a wide set of scenario earthquakes; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In NDSHA uncertainties are not statistically treated as in PSHA, where aleatory uncertainty is traditionally handled with probability density functions (e.g., for magnitude and distance random variables) and epistemic uncertainty is considered by applying logic trees that allow the use of alternative models and alternative parameter values of each model, but the treatment of uncertainties is performed by sensitivity analyses for key modelling parameters. To fix the uncertainty related to a particular input parameter is an important component of the procedure. The input parameters must account for the uncertainty in the prediction of fault radiation and in the use of Green functions for a given medium. A key parameter is the magnitude of sources used in the simulation that is based on catalogue informations, seismogenic zones and seismogenic nodes. Because the largest part of the existing catalogues is based on macroseismic intensity, a rough estimate of ground motion error can therefore be the factor of 2, intrinsic in MCS scale. We tested this hypothesis by the analysis of uncertainty in ground motion maps due to the catalogue random errors in magnitude and localization.

  13. Land-Ocean-Atmospheric Coupling Associated with Earthquakes

    NASA Astrophysics Data System (ADS)

    Prasad, A. K.; Singh, R. P.; Kumar, S.; Cervone, G.; Kafatos, M.; Zlotnicki, J.

    2007-12-01

    Earthquakes are well known to occur along the plate boundaries and also on the stable shield. The recent studies have shown existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes. We have carried out detailed analysis of multi sensor data (optical and microwave remote) to show existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes with focal depth up to 30 km and magnitude greater than 5.5. Complimentary nature of various land, ocean and atmospheric parameters will be demonstrated in getting an early warning information about an impending earthquake.

  14. Testing earthquake source inversion methodologies

    USGS Publications Warehouse

    Page, M.; Mai, P.M.; Schorlemmer, D.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  15. Near-Fault Broadband Ground Motion Simulations Using Empirical Green's Functions: Application to the Upper Rhine Graben (France-Germany) Case Study

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Sergio; Hok, Sebastien; Festa, Gaetano; Causse, Mathieu; Lancieri, Maria

    2017-09-01

    Seismic hazard estimation relies classically on data-based ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French-German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green's function technique (multi-EGFt) with a k -2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi-EGF is detailed and discussed in our specific situation where less number of events are available. We then showed the impact that each source parameter characterizing the k-2 model has on ground motion amplitude. Finally we performed ground motion simulations showing results for different probable earthquake scenarios in the URG. Dependency of ground motions and of their variability are analyzed at different frequencies in respect of rupture velocity, roughness degree of slip distribution (stress drop), and hypocenter location. In near-source conditions, ground motion variability is shown to be mostly governed by the uncertainty on source parameters. In our specific configuration (magnitude, distance), the directivity effect is only observed in a limited frequency range. Rather, broadband ground motions are shown to be sensitive to both average rupture velocity and its possible variability, and to slip roughness. Ending up with a comparison of simulation results and GMPEs, we conclude that source parameters and their variability should be set up carefully to obtain reliable broadband ground motion estimations. In particular, our study shows that slip roughness should be set up in respect of the target stress drop. This entails the need for a better understanding of the physics of earthquake source and its incorporation in the ground motion modeling.

  16. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the velocity structure of central Chile to improve the real-time monitoring.

  17. The source parameters, surface deformation and tectonic setting of three recent earthquakes: thessalonki (Greece), tabas-e-golshan (iran) and carlisle (u.k.).

    PubMed

    King, G; Soufleris, C; Berberian, M

    1981-03-01

    Abstract- Three earthquakes have been studied. These are the Thessaloniki earthquake of 20th June 1978 (Ms = 6.4, Normal faulting), the Tabase-Golshan earthquake of 16th September 1978 (Ms = 7.7 Thrust faulting) and the Carlisle earth-quake of 26th December 1979 (Mb = 5.0, Thrust faulting). The techniques employed to determine source parameters included field studies of SUP face deformation, fault breaks, locations of locally recorded aftershocks and teleseismic studies including joint hypocentral location, first motion methods and waveform modelling. It is clear that these techniques applied together provide more information than the same methods used separately. The moment of the Thessaloniki earthquake determined teleseismically (Force moment 5.2 times 10(25) dyne cm. Geometric moment 1.72 times 10(8) m(3) ) is an order of magnitude greater than that determined using field data (surface ruptures and aftershock depths) (Force moment 4.5 times 10(24) dyne cm. Geometric moment 0.16 times 10(8) m(3) ). It is concluded that for this earthquake the surface rupture only partly reflects the processes on the main rupture plane. This view i s supported by a distribution of aftershocks and damage which extends well outside the region of ground rupture. However, the surface breaks consistently have the same slip vector direction as the fault plane solutions suggesting that they are in this respect related to to the main faulting and are not superficial slumping. Both field studies and waveform studies suggest a low stress drop which may explain the relatively little damage and loss of life as a result of the Thessaloniki earthquake. In contrast, the teleseismic moment of the Tabas-e-Golshan earthquake (Force moment 4.4 times 10(26) dyne cm. Geometric moment 1.5 times 10(9) m(3) ) is similar t o that determined from field studies (Force moment 10.2 times 10(26) dyne cm. Geometric moment 3.4 times 10(9) m(3) ) and the damage and after-shock distributions clearly relate to the surface faulting. It h a s also been observed that high aftershock activity appears beneath gaps in the surface rupture system. The Carlisle earthquake (Force moment 9 times 10(23) dyne cm. Geometric moment 3 times 10(6) m(3) ) produced no surface ruptures. However, dislocation model-ling suggests that surface deformation will be visible on a first order levelling line which passes very close t o the epicentre. A well controlled fault plane solution, the first in the British Isles, derived from an aftershock study shows north-south compression. All three studied earthquakes occurred along major faults which had been reactivated in geological times. The fault on which the Tabas-e-Golshan earthquake occurred could have been identified a s active from evidence of Quaternary motion and previous smaller earthquakes. However, there were no perceptible events in the 12 months preceeding the catastrophic earthquake. In both Thessaloniki and Carlisle, significant foreshocks did occur within 6 months prior to the main shock*

  18. Earthquake Source Parameter Estimates for the Charlevoix and Western Quebec Seismic Zones in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Onwuemeka, J.; Liu, Y.; Harrington, R. M.; Peña-Castro, A. F.; Rodriguez Padilla, A. M.; Darbyshire, F. A.

    2017-12-01

    The Charlevoix Seismic Zone (CSZ), located in eastern Canada, experiences a high rate of intraplate earthquakes, hosting more than six M >6 events since the 17th century. The seismicity rate is similarly high in the Western Quebec seismic zone (WQSZ) where an MN 5.2 event was reported on May 17, 2013. A good understanding of seismicity and its relation to the St-Lawrence paleorift system requires information about event source properties, such as static stress drop and fault orientation (via focal mechanism solutions). In this study, we conduct a systematic estimate of event source parameters using 1) hypoDD to relocate event hypocenters, 2) spectral analysis to derive corner frequency, magnitude, and hence static stress drops, and 3) first arrival polarities to derive focal mechanism solutions of selected events. We use a combined dataset for 817 earthquakes cataloged between June 2012 and May 2017 from the Canadian National Seismograph Network (CNSN), and temporary deployments from the QM-III Earthscope FlexArray and McGill seismic networks. We first relocate 450 events using P and S-wave differential travel-times refined with waveform cross-correlation, and compute focal mechanism solutions for all events with impulsive P-wave arrivals at a minimum of 8 stations using the hybridMT moment tensor inversion algorithm. We then determine corner frequency and seismic moment values by fitting S-wave spectra on transverse components at all stations for all events. We choose the final corner frequency and moment values for each event using the median estimate at all stations. We use the corner frequency and moment estimates to calculate moment magnitudes, static stress-drop values and rupture radii, assuming a circular rupture model. We also investigate scaling relationships between parameters, directivity, and compute apparent source dimensions and source time functions of 15 M 2.4+ events from second-degree moment estimates. To the first-order, source dimension estimates from both methods generally agree. We observe higher corner frequencies and higher stress drops (ranging from 20 to 70 MPa) typical of intraplate seismicity in comparison with interplate seismicity. We follow similar approaches to studying 25 MN 3+ events reported in the WQSZ using data recorded by the CNSN and USArray Transportable Array.

  19. Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones

    NASA Astrophysics Data System (ADS)

    Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto

    2015-04-01

    Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions Euros, shows that geological and geophysical investigations necessary to assess a reliable deterministic hazard evaluation are largely justified.

  20. Induced Seismicity from different sources in Italy: how to interpret it?

    NASA Astrophysics Data System (ADS)

    Pastori, M.; De Gori, P.; Piccinini, D.; Bagh, S.; Improta, L.; Chiarabba, C.

    2015-12-01

    Typically the term "induced seismicity" is used to refer minor earthquakes and tremors caused by human activities that alter the stresses and strains on the Earth's crust. In the last years, the interest in the induced seismicity related to fluids (oil and gas, and geothermal resources) extraction or injection is increased, because it is believed to be responsible to enucleate earthquakes. Possible sources of induced seismicity are not only represented by the oil and gas production but also, i.e., by changes in the water level of artificial lakes. The aim of this work is to show results from two different sources, wastewater injection and changes in the water level of an artificial reservoir (Pertusillo lake), that can produce induced earthquakes observed in the Val d'Agri basin (Italy) and to compare them with variation in crustal elastic parameters. Val d'Agri basin in the Apennines extensional belt hosts the largest oilfield in onshore Europe and is bordered by NW-SE ­trending fault systems. Most of the recorded seismicity seems to be related to these structures. We correlated the seismicity rate, injection curves and changes in water levels with temporal variations of Vp/Vs and anisotropic parameters of the crustal reservoirs and in the nearby area. We analysed about 983 high-quality recordings occurred from 2002 to 2014 in Val d'Agri basin from temporary and permanent network held by INGV and ENI corporate. 3D high-precision locations and manual-revised P- and S-picking are used to estimate anisotropic parameters (delay time and fast direction polarization) and Vp/Vs ratio. Seismicity is mainly located in two areas: in the SW of the Pertusillo Lake, and near the Eni Oil field (SW and NE of the Val d'Agri basin respectively). Our correlations well recognize the seismicity diffusion process, caused by both water injection and water level changes; these findings could help to model the active and pre-existing faults failure behaviour.

  1. The role of complex site and basin response in Wellington city, New Zealand, during the 2016 Mw 7.8 Kaikōura earthquake and other recent earthquake sequences.

    NASA Astrophysics Data System (ADS)

    Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.

    2017-12-01

    We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.

  2. Research on the spatial analysis method of seismic hazard for island

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-05-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.

  3. The 26 December 2004 tsunami source estimated from satellite radar altimetry and seismic waves

    NASA Technical Reports Server (NTRS)

    Song, Tony Y.; Ji, Chen; Fu, L. -L.; Zlotnicki, Victor; Shum, C. K.; Yi, Yuchan; Hjorleifsdottir, Vala

    2005-01-01

    The 26 December 2004 Indian Ocean tsunami was the first earthquake tsunami of its magnitude to occur since the advent of both digital seismometry and satellite radar altimetry. Both have independently recorded the event from different physical aspects. The seismic data has then been used to estimate the earthquake fault parameters, and a three-dimensional ocean-general-circulation-model (OGCM) coupled with the fault information has been used to simulate the satellite-observed tsunami waves. Here we show that these two datasets consistently provide the tsunami source using independent methodologies of seismic waveform inversion and ocean modeling. Cross-examining the two independent results confirms that the slip function is the most important condition controlling the tsunami strength, while the geometry and the rupture velocity of the tectonic plane determine the spatial patterns of the tsunami.

  4. The Differences in Source Dynamics Between Intermediate-Depth and Deep EARTHQUAKES:A Comparative Study Between the 2014 Rat Islands Intermediate-Depth Earthquake and the 2015 Bonin Islands Deep Earthquake

    NASA Astrophysics Data System (ADS)

    Twardzik, C.; Ji, C.

    2015-12-01

    It has been proposed that the mechanisms for intermediate-depth and deep earthquakes might be different. While previous extensive seismological studies suggested that such potential differences do not significantly affect the scaling relationships of earthquake parameters, there has been only a few investigations regarding their dynamic characteristics, especially for fracture energy. In this work, the 2014 Mw7.9 Rat Islands intermediate-depth (105 km) earthquake and the 2015 Mw7.8 Bonin Islands deep (680 km) earthquake are studied from two different perspectives. First, their kinematic rupture models are constrained using teleseismic body waves. Our analysis reveals that the Rat Islands earthquake breaks the entire cold core of the subducting slab defined as the depth of the 650oC isotherm. The inverted stress drop is 4 MPa, compatible to that of intra-plate earthquakes at shallow depths. On the other hand, the kinematic rupture model of the Bonin Islands earthquake, which occurred in a region lacking of seismicity for the past forty years, according to the GCMT catalog, exhibits an energetic rupture within a 35 km by 30 km slip patch and a high stress drop of 24 MPa. It is of interest to note that although complex rupture patterns are allowed to match the observations, the inverted slip distributions of these two earthquakes are simple enough to be approximated as the summation of a few circular/elliptical slip patches. Thus, we investigate subsequently their dynamic rupture models. We use a simple modelling approach in which we assume that the dynamic rupture propagation obeys a slip-weakening friction law, and we describe the distribution of stress and friction on the fault as a set of elliptical patches. We will constrain the three dynamic parameters that are yield stress, background stress prior to the rupture and slip weakening distance, as well as the shape of the elliptical patches directly from teleseismic body waves observations. The study would help us getting a better understanding of the dynamic conditions that control the rupture behaviour of these two types of earthquakes, and subsequently improving our knowledge of the dynamics of subducting slabs.

  5. Using a pseudo-dynamic source inversion approach to improve earthquake source imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.

    2014-12-01

    Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.

  6. Earthquake nucleation on faults with rate-and state-dependent strength

    USGS Publications Warehouse

    Dieterich, J.H.

    1992-01-01

    Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 115-134. Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading conditions and constitutive parameters which include Dc, the characteristic slip distance. If slip starts on a patch that exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement are proportional to Dc, the moment of premonitory slip scales by D3c. The scaling of Dc is currently an open question. Unless Dc for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the possibility that Dc in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions of the smallest earthquakes in a region provide an upper limit for the size of the nucleation patch. ?? 1992.

  7. The 1911 M ~6.6 Calaveras earthquake: Source parameters and the role of static, viscoelastic, and dynamic coulomb stress changes imparted by the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.

    2009-01-01

    The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.

  8. Introducing ShakeMap to potential users in Puerto Rico using scenarios of damaging historical and probable earthquakes

    NASA Astrophysics Data System (ADS)

    Huerfano, V. A.; Cua, G.; von Hillebrandt, C.; Saffar, A.

    2007-12-01

    The island of Puerto Rico has a long history of damaging earthquakes. Major earthquakes from off-shore sources have affected Puerto Rico in 1520, 1615, 1670, 1751, 1787, 1867, and 1918 (Mueller et al, 2003; PRSN Catalogue). Recent trenching has also yielded evidence of possible M7.0 events inland (Prentice, 2000). The high seismic hazard, large population, high tsunami potential and relatively poor construction practice can result in a potentially devastating combination. Efficient emergency response in event of a large earthquake will be crucial to minimizing the loss of life and disruption of lifeline systems in Puerto Rico. The ShakeMap system (Wald et al, 2004) developed by the USGS to rapidly display and disseminate information about the geographical distribution of ground shaking (and hence potential damage) following a large earthquake has proven to be a vital tool for post earthquake emergency response efforts, and is being adopted/emulated in various seismically active regions worldwide. Implementing a robust ShakeMap system is among the top priorities of the Puerto Rico Seismic Network. However, the ultimate effectiveness of ShakeMap in post- earthquake response depends not only on its rapid availability, but also on the effective use of the information it provides. We developed ShakeMap scenarios of a suite of damaging historical and probable earthquakes that severely impact San Juan, Ponce, and Mayagüez, the 3 largest cities in Puerto Rico. Earthquake source parameters were obtained from McCann and Mercado (1998); and Huérfano (2004). For historical earthquakes that generated tsunamis, tsunami inundation maps were generated using the TIME method (Shuto, 1991). The ShakeMap ground shaking maps were presented to local and regional governmental and emergency response agencies at the 2007 Annual conference of the Puerto Rico Emergency Management and Disaster Administration in San Juan, PR, and at numerous other emergency management talks and training sessions. Economic losses are estimated using the ShakeMap scenario ground motions (Saffar, 2007). The calibration tasks necessary in generating these scenarios (developing Vs30 maps, attenuation relationships) complement the on-going efforts of the Puerto Rico Seismic Network to generate ShakeMaps in real-time.

  9. New data on earthquake focal mechanisms in the Laptev Sea region of the Arctic-Asian seismic belt

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena I.; Melnikova, Valentina I.

    2018-05-01

    We consider 16 earthquakes with M w = 4.2-5.2 that occurred in the south-eastern part of the Laptev Sea shelf, Lena River Delta, and North Verkhoyanye (Russia) in 1990-2014. Focal mechanisms, scalar seismic moments, moment magnitudes, and hypocentral depths of the seismic events have been calculated from the data on amplitude spectra of surface waves and P wave first-motion polarities. The obtained results sufficiently implement the existing dataset on reliable earthquake source parameters for the study region and prove the change of the stress-strain state of the crust from extension on the Laptev Sea shelf to compression on the continent providing finer spatial details of the deformation field in the transition zones such as Buor-Khaya Bay and the Lena River Delta.

  10. Seismic Sources and Recurrence Rates as Adopted by USGS Staff for the Production of the 1982 and 1990 Probabilistic Ground Motion Maps for Alaska and the Conterminous United States

    USGS Publications Warehouse

    Hanson, Stanley L.; Perkins, David M.

    1995-01-01

    The construction of a probabilistic ground-motion hazard map for a region follows a sequence of analyses beginning with the selection of an earthquake catalog and ending with the mapping of calculated probabilistic ground-motion values (Hanson and others, 1992). An integral part of this process is the creation of sources used for the calculation of earthquake recurrence rates and ground motions. These sources consist of areas and lines that are representative of geologic or tectonic features and faults. After the design of the sources, it is necessary to arrange the coordinate points in a particular order compatible with the input format for the SEISRISK-III program (Bender and Perkins, 1987). Source zones are usually modeled as a point-rupture source. Where applicable, linear rupture sources are modeled with articulated lines, representing known faults, or a field of parallel lines, representing a generalized distribution of hypothetical faults. Based on the distribution of earthquakes throughout the individual source zones (or a collection of several sources), earthquake recurrence rates are computed for each of the sources, and a minimum and maximum magnitude is assigned. Over a period of time from 1978 to 1980 several conferences were held by the USGS to solicit information on regions of the United States for the purpose of creating source zones for computation of probabilistic ground motions (Thenhaus, 1983). As a result of these regional meetings and previous work in the Pacific Northwest, (Perkins and others, 1980), California continental shelf, (Thenhaus and others, 1980), and the Eastern outer continental shelf, (Perkins and others, 1979) a consensus set of source zones was agreed upon and subsequently used to produce a national ground motion hazard map for the United States (Algermissen and others, 1982). In this report and on the accompanying disk we provide a complete list of source areas and line sources as used for the 1982 and later 1990 seismic hazard maps for the conterminous U.S. and Alaska. These source zones are represented in the input form required for the hazard program SEISRISK-III, and they include the attenuation table and several other input parameter lines normally found at the beginning of an input data set for SEISRISK-III.

  11. Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Li, Lin; Benjamin Zhan, F.; Zhuang, Yanhua

    2016-06-01

    The objective of this paper is to evaluate seismic-led point source and non-point source water pollution, under the seismic hazard of 10 % probability of exceedance in 50 years, and with the minimum value of the water quality standard in Sichuan, China. The soil conservation service curve number method of calculating the runoff depth in the single rainfall event combined with the seismic damage index were applied to estimate the potential degree of non-point source water pollution. To estimate the potential impact of point source water pollution, a comprehensive water pollution evaluation framework is constructed using a combination of Water Quality Index and Seismic Damage Index methods. The four key findings of this paper are: (1) The water catchment that has the highest factory concentration does not have the highest risk of non-point source water contamination induced by the outbreak of potential earthquake. (2) The water catchment that has the highest numbers of cumulative water pollutants types are typically located in the south western parts of Sichuan where the main river basins in the regions flow through. (3) The most common pollutants in sample factories studied is COD and NH3-N which are found in all catchments. The least common pollutant is pathogen—found present in W1 catchment which has the best rating in the water quality index. (4) Using water quality index as a standardization parameter, parallel comparisons is made among the 16 water catchments. Only catchment W1 reaches level II water quality status which has the rating of moderately polluted in events of earthquake induced water contamination. All other areas suffer from severe water contamination with multiple pollution sources. The results from the data model are significant to urban planning commissions and businesses to strategically choose their factory locations in order to minimize potential hazardous impact during the outbreak of earthquake.

  12. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    NASA Astrophysics Data System (ADS)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases, the inverted slip model and moment rate function better match previous results incorporating field observations, geodetic and seismic data.

  13. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most appropriate in the central Mexico region, important for future ground motion studies and rapid response products such as ShakeMap.

  14. Rupture Speed and Dynamic Frictional Processes for the 1995 ML4.1 Shacheng, Hebei, China, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Liu, B.; Shi, B.

    2010-12-01

    An earthquake with ML4.1 occurred at Shacheng, Hebei, China, on July 20, 1995, followed by 28 aftershocks with 0.9≤ML≤4.0 (Chen et al, 2005). According to ZÚÑIGA (1993), for the 1995 ML4.1 Shacheng earthquake sequence, the main shock is corresponding to undershoot, while aftershocks should match overshoot. With the suggestion that the dynamic rupture processes of the overshoot aftershocks could be related to the crack (sub-fault) extension inside the main fault. After main shock, the local stresses concentration inside the fault may play a dominant role in sustain the crack extending. Therefore, the main energy dissipation mechanism should be the aftershocks fracturing process associated with the crack extending. We derived minimum radiation energy criterion (MREC) following variational principle (Kanamori and Rivera, 2004)(ES/M0')min≧[3M0/(ɛπμR3)](v/β)3, where ES and M0' are radiated energy and seismic moment gained from observation, μ is the modulus of fault rigidity, ɛ is the parameter of ɛ=M0'/M0,M0 is seismic moment and R is rupture size on the fault, v and β are rupture speed and S-wave speed. From II and III crack extending model, we attempt to reconcile a uniform expression for calculate seismic radiation efficiency ηG, which can be used to restrict the upper limit efficiency and avoid the non-physics phenomenon that radiation efficiency is larger than 1. In ML 4.1 Shacheng earthquake sequence, the rupture speed of the main shock was about 0.86 of S-wave speed β according to MREC, closing to the Rayleigh wave speed, while the rupture speeds of the remained 28 aftershocks ranged from 0.05β to 0.55β. The rupture speed was 0.9β, and most of the aftershocks are no more than 0.35β using II and III crack extending model. In addition, the seismic radiation efficiencies for this earthquake sequence were: for the most aftershocks, the radiation efficiencies were less than 10%, inferring a low seismic efficiency, whereas the radiation efficiency was 78% for the main shock. The essential difference in the earthquake energy partition for the aftershock source dynamics indicated that the fracture energy dissipation could not be ignored in the source parameter estimation for the earthquake faulting, especially for small earthquakes. Otherwise, the radiated seismic energy could be overestimated or underestimated.

  15. Active Faults and Seismic Sources of the Middle East Region: Earthquake Model of the Middle East (EMME) Project

    NASA Astrophysics Data System (ADS)

    Gulen, L.; EMME WP2 Team*

    2011-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the GEM (Global Earthquake Model) project (http://www.emme-gem.org/). The EMME project covers Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project consists of three main modules: hazard, risk, and socio-economic modules. The EMME project uses PSHA approach for earthquake hazard and the existing source models have been revised or modified by the incorporation of newly acquired data. The most distinguishing aspect of the EMME project from the previous ones is its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that permits continuous update, refinement, and analysis. An up-to-date earthquake catalog of the Middle East region has been prepared and declustered by the WP1 team. EMME WP2 team has prepared a digital active fault map of the Middle East region in ArcGIS format. We have constructed a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. The EMME project database includes information on the geometry and rates of movement of faults in a "Fault Section Database", which contains 36 entries for each fault section. The "Fault Section" concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far 6,991 Fault Sections have been defined and 83,402 km of faults are fully parameterized in the Middle East region. A separate "Paleo-Sites Database" includes information on the timing and amounts of fault displacement for major fault zones. A digital reference library, that includes the pdf files of relevant papers, reports and maps, is also prepared. A logic tree approach is utilized to encompass different interpretations for the areas where there is no consensus. Finally seismic source zones in the Middle East region have been delineated using all available data. *EMME Project WP2 Team: Levent Gülen, Murat Utkucu, M. Dinçer Köksal, Hilal Yalçin, Yigit Ince, Mine Demircioglu, Shota Adamia, Nino Sadradze, Aleksandre Gvencadze, Arkadi Karakhanyan, Mher Avanesyan, Tahir Mammadli, Gurban Yetirmishli, Arif Axundov, Khaled Hessami, M. Asif Khan, M. Sayab.

  16. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to determine. We use one of the largest aftershocks that can be located by conventional methods as our reference event to calibrate the controlling parameters of ISSA. These parameters include the overall Vp/Vs ratio (because a precise S velocity model was unavailable), the length of scanning time window, and the weighting factor for each station. Our results show that ISSA is not only more efficient in locating earthquake clusters/aftershocks, but also capable of identifying many events missed by conventional phase-picking methods.

  17. SELENA - An open-source tool for seismic risk and loss assessment using a logic tree computation procedure

    NASA Astrophysics Data System (ADS)

    Molina, S.; Lang, D. H.; Lindholm, C. D.

    2010-03-01

    The era of earthquake risk and loss estimation basically began with the seminal paper on hazard by Allin Cornell in 1968. Following the 1971 San Fernando earthquake, the first studies placed strong emphasis on the prediction of human losses (number of casualties and injured used to estimate the needs in terms of health care and shelters in the immediate aftermath of a strong event). In contrast to these early risk modeling efforts, later studies have focused on the disruption of the serviceability of roads, telecommunications and other important lifeline systems. In the 1990s, the National Institute of Building Sciences (NIBS) developed a tool (HAZUS ®99) for the Federal Emergency Management Agency (FEMA), where the goal was to incorporate the best quantitative methodology in earthquake loss estimates. Herein, the current version of the open-source risk and loss estimation software SELENA v4.1 is presented. While using the spectral displacement-based approach (capacity spectrum method), this fully self-contained tool analytically computes the degree of damage on specific building typologies as well as the associated economic losses and number of casualties. The earthquake ground shaking estimates for SELENA v4.1 can be calculated or provided in three different ways: deterministic, probabilistic or based on near-real-time data. The main distinguishing feature of SELENA compared to other risk estimation software tools is that it is implemented in a 'logic tree' computation scheme which accounts for uncertainties of any input (e.g., scenario earthquake parameters, ground-motion prediction equations, soil models) or inventory data (e.g., building typology, capacity curves and fragility functions). The data used in the analysis is assigned with a decimal weighting factor defining the weight of the respective branch of the logic tree. The weighting of the input parameters accounts for the epistemic and aleatoric uncertainties that will always follow the necessary parameterization of the different types of input data. Like previous SELENA versions, SELENA v4.1 is coded in MATLAB which allows for easy dissemination among the scientific-technical community. Furthermore, any user has access to the source code in order to adapt, improve or refine the tool according to his or her particular needs. The handling of SELENA's current version and the provision of input data is customized for an academic environment but which can then support decision-makers of local, state and regional governmental agencies in estimating possible losses from future earthquakes.

  18. Uncertainty estimations for moment tensor inversions: the issue of the 2012 May 20 Emilia earthquake

    NASA Astrophysics Data System (ADS)

    Scognamiglio, Laura; Magnoni, Federica; Tinti, Elisa; Casarotti, Emanuele

    2016-08-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Geoscientists ordinarily use moment tensor catalogues, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their analysis. The 2012 May 20 Emilia main shock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. A variability of ˜0.5 units in magnitude leads to a controversial knowledge of the real size of the event and reveals how the solutions could be poorly constrained. In this work, we investigate the stability of the moment tensor solution for this earthquake, studying the effect of five different 1-D velocity models, the number and the distribution of the stations used in the inversion procedure. We also introduce a 3-D velocity model to account for structural heterogeneity. We finally estimate the uncertainties associated to the computed focal planes and the obtained Mw. We conclude that our reliable source solutions provide a moment magnitude that ranges from 5.87, 1-D model, to 5.96, 3-D model, reducing the variability of the literature to ˜0.1. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, requires coming out with disclosed assumptions and explicit processing workflows. Finally and, probably more important, when moment tensor solution is used for secondary analyses it has to be combined with the same main boundary conditions (e.g. wave-velocity propagation model) to avoid conflicting results.

  19. The 1887 earthquake and tsunami in the Ligurian Sea: analysis of coastal effects studied by numerical modeling and prototype for real-time computing

    NASA Astrophysics Data System (ADS)

    Monnier, Angélique; Gailler, Audrey; Loevenbruck, Anne; Heinrich, Philippe; Hébert, Hélène

    2017-04-01

    The February 1887 earthquake in Italy (Imperia) triggered a tsunami well observed on the French and Italian coastlines. Tsunami waves were recorded on a tide gauge in the Genoa harbour with a small, recently reappraised maximum amplitude of about 10-12 cm (crest-to-trough). The magnitude of the earthquake is still debated in the recent literature, and discussed according to available macroseismic, tectonic and tsunami data. While the tsunami waveform observed in the Genoa harbour may be well explained with a magnitude smaller than 6.5 (Hébert et al., EGU 2015), we investigate in this study whether such source models are consistent with the tsunami effects reported elsewhere along the coastline. The idea is to take the opportunity of the fine bathymetric data recently synthetized for the French Tsunami Warning Center (CENALT) to test the 1887 source parameters using refined, nested grid tsunami numerical modeling down to the harbour scale. Several source parameters are investigated to provide a series of models accounting for various magnitudes and mechanisms. This allows us to compute the tsunami effects for several coastal sites in France (Nice, Villefranche, Antibes, Mandelieu, Cannes) and to compare with observations. Meanwhile we also check the computing time of the chosen scenarios to study whether running nested grids simulation in real time can be suitable in operational context in term of computational cost for these Ligurian scenarios. This work is supported by the FP7 ASTARTE project (Assessment Strategy and Risk Reduction for Tsunamis in Europe, grant 603839 FP7) and by the French PIA TANDEM (Tsunamis in the Atlantic and English ChaNnel: Definition of the Effects through Modeling) project (grant ANR-11-RSNR-00023).

  20. Simulating and analyzing engineering parameters of Kyushu Earthquake, Japan, 1997, by empirical Green function method

    NASA Astrophysics Data System (ADS)

    Li, Zongchao; Chen, Xueliang; Gao, Mengtan; Jiang, Han; Li, Tiefei

    2017-03-01

    Earthquake engineering parameters are very important in the engineering field, especially engineering anti-seismic design and earthquake disaster prevention. In this study, we focus on simulating earthquake engineering parameters by the empirical Green's function method. The simulated earthquake (MJMA6.5) occurred in Kyushu, Japan, 1997. Horizontal ground motion is separated as fault parallel and fault normal, in order to assess characteristics of two new direction components. Broadband frequency range of ground motion simulation is from 0.1 to 20 Hz. Through comparing observed parameters and synthetic parameters, we analyzed distribution characteristics of earthquake engineering parameters. From the comparison, the simulated waveform has high similarity with the observed waveform. We found the following. (1) Near-field PGA attenuates radically all around with strip radiation patterns in fault parallel while radiation patterns of fault normal is circular; PGV has a good similarity between observed record and synthetic record, but has different distribution characteristic in different components. (2) Rupture direction and terrain have a large influence on 90 % significant duration. (3) Arias Intensity is attenuating with increasing epicenter distance. Observed values have a high similarity with synthetic values. (4) Predominant period is very different in the part of Kyushu in fault normal. It is affected greatly by site conditions. (5) Most parameters have good reference values where the hypo-central is less than 35 km. (6) The GOF values of all these parameters are generally higher than 45 which means a good result according to Olsen's classification criterion. Not all parameters can fit well. Given these synthetic ground motion parameters, seismic hazard analysis can be performed and earthquake disaster analysis can be conducted in future urban planning.

  1. Point-source inversion techniques

    NASA Astrophysics Data System (ADS)

    Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.

    1982-11-01

    A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.

  2. Probabilistic seismic demand analysis using advanced ground motion intensity measures

    USGS Publications Warehouse

    Tothong, P.; Luco, N.

    2007-01-01

    One of the objectives in performance-based earthquake engineering is to quantify the seismic reliability of a structure at a site. For that purpose, probabilistic seismic demand analysis (PSDA) is used as a tool to estimate the mean annual frequency of exceeding a specified value of a structural demand parameter (e.g. interstorey drift). This paper compares and contrasts the use, in PSDA, of certain advanced scalar versus vector and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a well-chosen IM is that more accurate evaluations of seismic performance are achieved without the need to perform detailed ground motion record selection for the nonlinear dynamic structural analyses involved in PSDA (e.g. record selection with respect to seismic parameters such as earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural demands that are dominated by a first mode of vibration, using inelastic spectral displacement (Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and the vector IM consisting of Sa and epsilon (??). This paper demonstrates that this is true for ordinary and for near-source pulse-like earthquake records. The latter ground motions cannot be adequately characterized by either Sa alone or the vector of Sa and ??. For structural demands with significant higher-mode contributions (under either of the two types of ground motions), even Sdi (alone) is not sufficient, so an advanced scalar IM that additionally incorporates higher modes is used.

  3. Source Analysis of Bucaramanga Nest Intermediate-Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Prieto, G. A.; Pedraza, P.; Dionicio, V.; Levander, A.

    2016-12-01

    Intermediate-depth earthquakes are those that occur at depths of 50 to 300 km in subducting lithosphere and can occasionally be destructive. Despite their ubiquity in earthquake catalogs, their physical mechanism remains unclear because ambient temperatures and pressures at such depths are expected to lead to ductile flow, rather than brittle failure, as a response to stress. Intermediate-depth seismicity rates vary substantially worldwide, even within a single subduction zone having highly clustered seismicity in some cases (Vrancea, Hindu-Kush, etc.). One such places in known as the Bucaramanga Nest (BN), one of the highest concentration of intermediate-depth earthquakes in the world. Previous work on these earthquakes has shown 1) Focal mechanisms vary substantially within a very small volume. 2) Radiation efficiency is small for M<5 events. 3) repeating and reverse polarity events are present. 4) Larger events show a complex behavior with two distinct rupture stages. Due to on-going efforts by the Colombian Geological Survey (SGC) to densify the national seismic network, it is now possible to better constrain the rupture behavior of these events. In our work we will present results from focal mechanisms based on waveform inversion as well as polarity and S/P amplitude ratios. These results will be contrasted to the detection and classification of repeating families. For the larger events we will determine source parameters and radiation efficiencies. Preliminary results show that reverse polarity events are present and that two main focal mechanisms, with their corresponding reverse polarity events are dominant. Our results have significant implications in our understanding of intermedaite-depth earthquakes and the stress conditions that are responsible for this unusual cluster of seismicity.

  4. Evaluating sources of uncertainties in finite-fault source models: lessons from the 2009 Mw6.1 L'Aquila earthquake, Italy

    NASA Astrophysics Data System (ADS)

    Ragon, T.; Sladen, A.; Bletery, Q.; Simons, M.; Magnoni, F.; Avallone, A.; Cavalié, O.; Vergnolle, M.

    2016-12-01

    Despite the diversity of available data for the Mw 6.1 2009 earthquake in L'Aquila, Italy, published finite fault slip models are surprisingly different. For instance, the amplitude of the maximum coseismic slip patch varies from 80cm to 225cm, and its depth oscillates between 5 and 15km. Discrepancies between proposed source parameters are believed to result from three sources: observational uncertainties, epistemic uncertainties, and the inherent non-uniqueness of inverse problems. We explore the whole solution space of fault-slip models compatible with the data within the range of both observational and epistemic uncertainties by performing a fully Bayesian analysis. In this initial stage, we restrict our analysis to the static problem.In terms of observation uncertainty, we must take into account the difference in time span associated with the different data types: InSAR images provide excellent spatial coverage but usually correspond to a period of a few days to weeks after the mainshock and can thus be potentially biased by significant afterslip. Continuous GPS stations do not have the same shortcoming, but in contrast do not have the desired spatial coverage near the fault. In the case of the L'Aquila earthquake, InSAR images include a minimum of 6 days of afterslip. Here, we explicitly account for these different time windows in the inversion by jointly inverting for coseismic and post-seismic fault slip. Regarding epistemic or modeling uncertainties, we focus on the impact of uncertain fault geometry and elastic structure. Modeling errors, which result from inaccurate model predictions and are generally neglected, are estimated for both earth model and fault geometry as non-diagonal covariance matrices. The L'Aquila earthquake is particularly suited to investigation of these effects given the availability of a detailed aftershock catalog and 3D velocity models. This work aims at improving our knowledge of the L'Aquila earthquake as well as at providing a more general perspective on which uncertainties are the most critical in finite-fault source studies.

  5. First application of tsunami back-projection and source inversion for the 2012 Haida Gwaii earthquake using tsunami data recorded on a dense array of seafloor pressure gauges

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Satake, K.; Sheehan, A. F.; Mulia, I. E.; Heidarzadeh, M.; Maeda, T.

    2015-12-01

    Adaption of absolute or differential pressure gauges (APG or DPG) to Ocean Bottom Seismometers has provided the opportunity to study tsunamis. Recently we extracted tsunami waveforms of the 28 October 2012 Haida Gwaii earthquake recoded by the APG and DPG of Cascadia Initiative program (Sheehan et al., 2015, SRL). We applied such dense tsunami observations (48 stations) together with other records from DARTs (9 stations) to characterize the tsunami source. This study is the first study that used such a large number of offshore tsunami records for earthquake source study. Conventionally the curves of tsunami travel times are drawn backward from station locations to estimate the tsunami source region. Here we propose a more advanced technique called tsunami back-projection to estimate the source region. Our image produced by tsunami back-projection has the largest value or tsunami centroid that is very close to the epicenter and above the Queen Charlotte transform fault (QCF), whereas the negative values are mostly located east of Haida Gwaii in the Hecate Strait. By using tsunami back-projection we avoid picking initial tsunami phase which is a necessary step in the conventional method that is rather subjective. The slip distribution of the 2012 Haida Gwaii earthquake estimated by tsunami waveform inversion shows large slip near the trench (4-5 m) and also on a plate interface southeast the epicenter (3-4 m) below QCF. From the slip distribution, the calculated seismic moment is 5.4 × 1020 N m (Mw 7.8). The steep bathymetry offshore Haida Gwaii and the horizontal movement caused by the earthquake possibly affects the sea surface deformation. The potential tsunami energy calculated from the sea-surface deformation of pure faulting is 2.20 × 1013 J, while that from the bathymetry effect is 0.12 × 1013 J or about 5% of the total potential energy. The significant deformation above the steep slope is confirmed by another tsunami inversion that disregards fault parameters.

  6. The 2016 central Italy earthquake sequence: surface effects, fault model and triggering scenarios

    NASA Astrophysics Data System (ADS)

    Chatzipetros, Alexandros; Pavlides, Spyros; Papathanassiou, George; Sboras, Sotiris; Valkaniotis, Sotiris; Georgiadis, George

    2017-04-01

    The results of fieldwork performed during the 2016 earthquake sequence around the karstic basins of Norcia and La Piana di Castelluccio, at an altitude of 1400 m, on the Monte Vettore (altitude 2476 m) and Vettoretto, as well as the three mapped seismogenic faults, striking NNW-SSW, are presented in this paper. Surface co-seismic ruptures were observed in the Vettore and Vettoretto segment of the fault for several kilometres ( 7 km) in the August earthquakes at high altitudes, and were re-activated and expanded northwards during the October earthquakes. Coseismic ruptures and the neotectonic Mt. Vettore fault zone were modelled in detail using images acquired from specifically planned UAV (drone) flights. Ruptures, typically with displacement of up to 20 cm, were observed after the August event both in the scree and weathered mantle (elluvium), as well as the bedrock, consisting mainly of fragmented carbonate rocks with small tectonic surfaces. These fractures expanded and new ones formed during the October events, typically of displacements of up to 50 cm, although locally higher displacements of up to almost 2 m were observed. Hundreds of rock falls and landslides were mapped through satellite imagery, using pre- and post- earthquake Sentinel 2A images. Several of them were also verified in the field. Based on field mapping results and seismological information, the causative faults were modelled. The model consists of five seismogenic sources, each one associated with a strong event in the sequence. The visualisation of the seismogenic sources follows INGV's DISS standards for the Individual Seismogenic Sources (ISS) layer, while strike, dip and rake of the seismic sources are obtained from selected focal mechanisms. Based on this model, the ground deformation pattern was inferred, using Okada's dislocation solution formulae, which shows that the maximum calculated vertical displacement is 0.53 m. This is in good agreement with the statistical analysis of the observed surface rupture displacement. Stress transfer analysis was also performed in the five modelled seismogenic sources, using seismologically defined parameters. The resulting stress transfer pattern, based on the sequence of events, shows that the causative fault of each event was influenced by loading from the previous ones.

  7. Detection of co-seismic earthquake gravity field signals using GRACE-like mission simulations

    NASA Astrophysics Data System (ADS)

    Sharifi, Mohammad Ali; Shahamat, Abolfazl

    2017-05-01

    After launching the GRACE satellite mission in 2002, the earth's gravity field and its temporal variations are measured with a closer inspection. Although these variations are mainly because of the mass transfer of land water storage, they can also happen due to mass movements related to some natural phenomena including earthquakes, volcanic eruptions, melting of polar ice caps and glacial isostatic adjustment. Therefore this paper shows which parameters of an earthquake are more sensitive to GRACE-Like satellite missions. For this purpose, the parameters of the Maule earthquake that occurred in recent years and Alaska earthquake that occurred in 1964 have been chosen. Then we changed their several parameters to serve our purpose. The GRACE-Like sensitivity is observed by using the simulation of the earthquakes along with gravity changes they caused, as well as using dislocation theory under a half space earth. This observation affects the various faulting parameters which include fault length, width, depth and average slip. These changes were therefore evaluated and the result shows that the GRACE satellite missions tend to be more sensitive to Width among the Length and Width, the other parameter is Dip variations than other parameters. This article can be useful to the upcoming scenario designers and seismologists in their quest to study fault parameters.

  8. Computerized Workstation for Tsunami Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Lavrentiev-Jr, Mikhail; Marchuk, Andrey; Romanenko, Alexey; Simonov, Konstantin; Titov, Vasiliy

    2010-05-01

    We present general structure and functionality of the proposed Computerized Workstation for Tsunami Hazard Monitoring (CWTHM). The tool allows interactive monitoring of hazard, tsunami risk assessment, and mitigation - at all stages, from the period of strong tsunamigenic earthquake preparation to inundation of the defended coastal areas. CWTHM is a software-hardware complex with a set of software applications, optimized to achieve best performance on hardware platforms in use. The complex is calibrated for selected tsunami source zone(s) and coastal zone(s) to be defended. The number of zones (both source and coastal) is determined, or restricted, by available hardware resources. The presented complex performs monitoring of selected tsunami source zone via the Internet. The authors developed original algorithms, which enable detection of the preparation zone of the strong underwater earthquake automatically. For the so-determined zone the event time, magnitude and spatial location of tsunami source are evaluated by means of energy of the seismic precursors (foreshocks) analysis. All the above parameters are updated after each foreshock. Once preparing event is detected, several scenarios are forecasted for wave amplitude parameters as well as the inundation zone. Estimations include the lowest and the highest wave amplitudes and the least and the most inundation zone. In addition to that, the most probable case is calculated. In case of multiple defended coastal zones, forecasts and estimates can be done in parallel. Each time the simulated model wave reaches deep ocean buoys or tidal gauge, expected values of wave parameters and inundation zones are updated with historical events information and pre-calculated scenarios. The Method of Splitting Tsunami (MOST) software package is used for mathematical simulation. The authors suggest code acceleration for deep water wave propagation. As a result, performance is 15 times faster compared to MOST, original version. Performance gain is achieved by compiler options, use of optimized libraries, and advantages of OpenMP parallel technology. Moreover, it is possible to achieve 100 times code acceleration by using modern Graphics Processing Units (GPU). Parallel evaluation of inundation zones for multiple coastal zones is also available. All computer codes can be easily assembled under MS Windows and Unix OS family. Although software is virtually platform independent, the most performance gain is achieved while using the recommended hardware components. When the seismic event occurs, all valuable parameters are updated with seismic data and wave propagation monitoring is enabled. As soon as the wave passes each deep ocean tsunameter, parameters of the initial displacement at source are updated from direct calculations based on original algorithms. For better source reconstruction, a combination of two methods is used: optimal unit source linear combination from preliminary calculated database and direct numerical inversion along the wave ray between real source and particular measurement buoys. Specific dissipation parameter along with the wave ray is also taken into account. During the entire wave propagation process the expected wave parameters and inundation zone(s) characteristics are updated with all available information. If recommended hardware components are used, monitoring results are available in real time. The suggested version of CWTHM has been tested by analyzing seismic precursors (foreshocks) and the measured tsunami waves at North Pacific for the Central Kuril's tsunamigenic earthquake of November 15, 2006.

  9. Evaluation of earthquake potential in China

    NASA Astrophysics Data System (ADS)

    Rong, Yufang

    I present three earthquake potential estimates for magnitude 5.4 and larger earthquakes for China. The potential is expressed as the rate density (that is, the probability per unit area, magnitude and time). The three methods employ smoothed seismicity-, geologic slip rate-, and geodetic strain rate data. I test all three estimates, and another published estimate, against earthquake data. I constructed a special earthquake catalog which combines previous catalogs covering different times. I estimated moment magnitudes for some events using regression relationships that are derived in this study. I used the special catalog to construct the smoothed seismicity model and to test all models retrospectively. In all the models, I adopted a kind of Gutenberg-Richter magnitude distribution with modifications at higher magnitude. The assumed magnitude distribution depends on three parameters: a multiplicative " a-value," the slope or "b-value," and a "corner magnitude" marking a rapid decrease of earthquake rate with magnitude. I assumed the "b-value" to be constant for the whole study area and estimated the other parameters from regional or local geophysical data. The smoothed seismicity method assumes that the rate density is proportional to the magnitude of past earthquakes and declines as a negative power of the epicentral distance out to a few hundred kilometers. I derived the upper magnitude limit from the special catalog, and estimated local "a-values" from smoothed seismicity. I have begun a "prospective" test, and earthquakes since the beginning of 2000 are quite compatible with the model. For the geologic estimations, I adopted the seismic source zones that are used in the published Global Seismic Hazard Assessment Project (GSHAP) model. The zones are divided according to geological, geodetic and seismicity data. Corner magnitudes are estimated from fault length, while fault slip rates and an assumed locking depth determine earthquake rates. The geological model fits the earthquake data better than the GSHAP model. By smoothing geodetic strain rate, another potential model was constructed and tested. I derived the upper magnitude limit from the Special catalog, and assume local "a-values" proportional to geodetic strain rates. "Prospective" tests show that the geodetic strain rate model is quite compatible with earthquakes. By assuming the smoothed seismicity model as a null hypothesis, I tested every other model against it. Test results indicate that the smoothed seismicity model performs best.

  10. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    USGS Publications Warehouse

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions adopted in the loss calculations. This is a sensitivity study aimed at future regional earthquake source modelers, so that they may be informed of the effects on loss introduced by modeling assumptions and epistemic uncertainty in the WG02 earthquake source model.

  11. Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience

    NASA Astrophysics Data System (ADS)

    García, Alicia; De la Cruz-Reyna, Servando; Marrero, José M.; Ortiz, Ramón

    2016-05-01

    Under certain conditions, volcano-tectonic (VT) earthquakes may pose significant hazards to people living in or near active volcanic regions, especially on volcanic islands; however, hazard arising from VT activity caused by localized volcanic sources is rarely addressed in the literature. The evolution of VT earthquakes resulting from a magmatic intrusion shows some orderly behaviour that may allow the occurrence and magnitude of major events to be forecast. Thus governmental decision makers can be supplied with warnings of the increased probability of larger-magnitude earthquakes on the short-term timescale. We present here a methodology for forecasting the occurrence of large-magnitude VT events during volcanic crises; it is based on a mean recurrence time (MRT) algorithm that translates the Gutenberg-Richter distribution parameter fluctuations into time windows of increased probability of a major VT earthquake. The MRT forecasting algorithm was developed after observing a repetitive pattern in the seismic swarm episodes occurring between July and November 2011 at El Hierro (Canary Islands). From then on, this methodology has been applied to the consecutive seismic crises registered at El Hierro, achieving a high success rate in the real-time forecasting, within 10-day time windows, of volcano-tectonic earthquakes.

  12. Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico)

    NASA Astrophysics Data System (ADS)

    Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón

    2018-03-01

    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment.

  13. Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Ting-To; Fernàndez, Josè; Rundle, John B.

    1998-03-01

    Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.

  14. Finite‐fault Bayesian inversion of teleseismic body waves

    USGS Publications Warehouse

    Clayton, Brandon; Hartzell, Stephen; Moschetti, Morgan P.; Minson, Sarah E.

    2017-01-01

    Inverting geophysical data has provided fundamental information about the behavior of earthquake rupture. However, inferring kinematic source model parameters for finite‐fault ruptures is an intrinsically underdetermined problem (the problem of nonuniqueness), because we are restricted to finite noisy observations. Although many studies use least‐squares techniques to make the finite‐fault problem tractable, these methods generally lack the ability to apply non‐Gaussian error analysis and the imposition of nonlinear constraints. However, the Bayesian approach can be employed to find a Gaussian or non‐Gaussian distribution of all probable model parameters, while utilizing nonlinear constraints. We present case studies to quantify the resolving power and associated uncertainties using only teleseismic body waves in a Bayesian framework to infer the slip history for a synthetic case and two earthquakes: the 2011 Mw 7.1 Van, east Turkey, earthquake and the 2010 Mw 7.2 El Mayor–Cucapah, Baja California, earthquake. In implementing the Bayesian method, we further present two distinct solutions to investigate the uncertainties by performing the inversion with and without velocity structure perturbations. We find that the posterior ensemble becomes broader when including velocity structure variability and introduces a spatial smearing of slip. Using the Bayesian framework solely on teleseismic body waves, we find rake is poorly constrained by the observations and rise time is poorly resolved when slip amplitude is low.

  15. Italian Case Studies Modelling Complex Earthquake Sources In PSHA

    NASA Astrophysics Data System (ADS)

    Gee, Robin; Peruzza, Laura; Pagani, Marco

    2017-04-01

    This study presents two examples of modelling complex seismic sources in Italy, done in the framework of regional probabilistic seismic hazard assessment (PSHA). The first case study is for an area centred around Collalto Stoccaggio, a natural gas storage facility in Northern Italy, located within a system of potentially seismogenic thrust faults in the Venetian Plain. The storage exploits a depleted natural gas reservoir located within an actively growing anticline, which is likely driven by the Montello Fault, the underlying blind thrust. This fault has been well identified by microseismic activity (M<2) detected by a local seismometric network installed in 2012 (http://rete-collalto.crs.inogs.it/). At this time, no correlation can be identified between the gas storage activity and local seismicity, so we proceed with a PSHA that considers only natural seismicity, where the rates of earthquakes are assumed to be time-independent. The source model consists of faults and distributed seismicity to consider earthquakes that cannot be associated to specific structures. All potentially active faults within 50 km of the site are considered, and are modelled as 3D listric surfaces, consistent with the proposed geometry of the Montello Fault. Slip rates are constrained using available geological, geophysical and seismological information. We explore the sensitivity of the hazard results to various parameters affected by epistemic uncertainty, such as ground motions prediction equations with different rupture-to-site distance metrics, fault geometry, and maximum magnitude. The second case is an innovative study, where we perform aftershock probabilistic seismic hazard assessment (APSHA) in Central Italy, following the Amatrice M6.1 earthquake of August 24th, 2016 (298 casualties) and the subsequent earthquakes of Oct 26th and 30th (M6.1 and M6.6 respectively, no deaths). The aftershock hazard is modelled using a fault source with complex geometry, based on literature data and field evidence associated with the August mainshock. Earthquake activity rates during the very first weeks after the deadly earthquake were used to calibrated an Omori-Utsu decay curve, and the magnitude distribution of aftershocks is assumed to follow a Gutenberg-Richter distribution. We apply uniform and non-uniform spatial distribution of the seismicity across the fault source, by modulating the rates as a decreasing function of distance from the mainshock. The hazard results are computed for short-exposure periods (1 month, before the occurrences of October earthquakes) and compared to the background hazard given by law (MPS04), and to observations at some reference sites. We also show the results of disaggregation computed for the city of Amatrice. Finally, we attempt to update the results in light of the new "main" events that occurred afterwards in the region. All source modeling and hazard calculations are performed using the OpenQuake engine. We discuss the novelties of these works, and the benefits and limitations of both analyses, particularly in such different contexts of seismic hazard.

  16. Documentation for Initial Seismic Hazard Maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of maps using different assumptions about site conditions. One set of maps is for a firm-rock site condition (30-m averaged shear-wave velocity, Vs30, of 760 m/s). We also developed hazard maps that contain site amplification based on a grid of Vs30 values estimated from topographic slope. These maps take into account amplification from soils. We stress that these new maps are designed to quantify the hazard for Haiti; they do not consider all the sources of earthquake hazard that affect the Dominican Republic and therefore should not be considered as complete hazard maps for eastern Hispaniola. For example, we have not included hazard from earthquakes in the Mona Passage nor from large earthquakes on the subduction zone interface north of Puerto Rico. Furthermore, they do not capture all the earthquake hazards for eastern Cuba.

  17. Testing new methodologies for short -term earthquake forecasting: Multi-parameters precursors

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Tramutoli, Valerio; Lee, Lou; Liu, Tiger; Hattori, Katsumi; Kafatos, Menas

    2014-05-01

    We are conducting real-time tests involving multi-parameter observations over different seismo-tectonics regions in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several selected parameters, namely: gas discharge; thermal infrared radiation; ionospheric electron density; and atmospheric temperature and humidity, which we believe are all associated with the earthquake preparation phase. We are testing a methodology capable to produce alerts in advance of major earthquakes (M > 5.5) in different regions of active earthquakes and volcanoes. During 2012-2013 we established a collaborative framework with PRE-EARTHQUAKE (EU) and iSTEP3 (Taiwan) projects for coordinated measurements and prospective validation over seven testing regions: Southern California (USA), Eastern Honshu (Japan), Italy, Greece, Turkey, Taiwan (ROC), Kamchatka and Sakhalin (Russia). The current experiment provided a "stress test" opportunity to validate the physical based earthquake precursor approach over regions of high seismicity. Our initial results are: (1) Real-time tests have shown the presence of anomalies in the atmosphere and ionosphere before most of the significant (M>5.5) earthquakes; (2) False positives exist and ratios are different for each region, varying between 50% for (Southern Italy), 35% (California) down to 25% (Taiwan, Kamchatka and Japan) with a significant reduction of false positives as soon as at least two geophysical parameters are contemporarily used; (3) Main problems remain related to the systematic collection and real-time integration of pre-earthquake observations. Our findings suggest that real-time testing of physically based pre-earthquake signals provides a short-term predictive power (in all three important parameters, namely location, time and magnitude) for the occurrence of major earthquakes in the tested regions and this result encourages testing to continue with a more detailed analysis of false alarm ratios and understanding of the overall physics of earthquake preparation.

  18. International Collaboration for Strengthening Capacity to Assess Earthquake Hazard in Indonesia

    NASA Astrophysics Data System (ADS)

    Cummins, P. R.; Hidayati, S.; Suhardjono, S.; Meilano, I.; Natawidjaja, D.

    2012-12-01

    Indonesia has experienced a dramatic increase in earthquake risk due to rapid population growth in the 20th century, much of it occurring in areas near the subduction zone plate boundaries that are prone to earthquake occurrence. While recent seismic hazard assessments have resulted in better building codes that can inform safer building practices, many of the fundamental parameters controlling earthquake occurrence and ground shaking - e.g., fault slip rates, earthquake scaling relations, ground motion prediction equations, and site response - could still be better constrained. In recognition of the need to improve the level of information on which seismic hazard assessments are based, the Australian Agency for International Development (AusAID) and Indonesia's National Agency for Disaster Management (BNPB), through the Australia-Indonesia Facility for Disaster Reduction, have initiated a 4-year project designed to strengthen the Government of Indonesia's capacity to reliably assess earthquake hazard. This project is a collaboration of Australian institutions including Geoscience Australia and the Australian National University, with Indonesian government agencies and universities including the Agency for Meteorology, Climatology and Geophysics, the Geological Agency, the Indonesian Institute of Sciences, and Bandung Institute of Technology. Effective earthquake hazard assessment requires input from many different types of research, ranging from geological studies of active faults, seismological studies of crustal structure, earthquake sources and ground motion, PSHA methodology, and geodetic studies of crustal strain rates. The project is a large and diverse one that spans all these components, and these will be briefly reviewed in this presentation

  19. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    NASA Astrophysics Data System (ADS)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  20. Source time functions of large Mexican subduction earthquakes, morphology of the Benioff Zone, age of the plate, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Mortera, F.

    1991-12-01

    We study source parameters of large, shallow Mexican subduction zone earthquakes (95°W to 106°W) which occurred between 1928 and 1986 by modeling the P waves recorded on Galitzin-Wilip seismograph in DeBilt (DBN), Holland. For post-1962 events the source parameters retrieved from DBN seismograms alone agree well with those obtained from long-period World-Wide Standardized Seismograph Network records, giving us confidence in our results for pre-1962 events. All earthquakes are shallow (H˜10 to 20 km). With few exceptions the sources in Oaxaca (95°W to 99°W) are very simple. To the northwest of 99°W they are simple as well as complex. The ratio of surface wave to body wave seismic moment (Mos/MoP), which is a measure of long- to short-period radiation, is smaller in Oaxaca (˜ 1.5±0.5) than in the regions northwest of 99°W (˜3.1±1.3). These results suggest a change in the plate interface characteristics near 99°W. The sharp change in the rupture mode and the intersection of the O'Gorman Fracture Zone (OFZ) with the trench occur near 99°W. Two strike-slip events offshore, close to OFZ, suggest a segmentation of the subducting plate near 99°W. The age of the plate near the trench in Oaxaca is not well known; it is possible that it does not increase continuously from northwest to southeast in the region but jumps across 99°W. If so, then the older age of the subducted plate southeast of 99°W may be the cause of the distinct rupture mode of the Oaxaca earthquakes. The length of the Benioff zone, which is greatest below Oaxaca ( ≈ 400 km) and decreases toward the northwest, can be explained by the correlation between the length of the subducted slab and the product of the lithosphere age and convergence rate. The relative complexity of sources, the weaker background seismicity, and the lesser number of aftershocks northwest of Oaxaca may be explained by a stronger interface coupling resulting from subduction of younger oceanic slabs (˜5 to 13 m.y. old) in this region. This, however, explains neither larger Mos/MoP values northwest of Oaxaca nor the low stress drop estimates obtained from the analysis of near-field strong-motion data for the Michoacan earthquake of 1985, both of which indicate weaker coupling of the interface. Thus the issue of whether subduction of very young plates (≤ 10 m.y. old) results in strong or weak coupling remains unsolved from the presently available Mexican data.

  1. The Rupture Characteristic of 1999 Izmit Sequence Using IRIS Data

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Helmberger, D. V.; Ji, C.; Tan, Y.

    2003-12-01

    The standard source studies use teleseismic data (30° to 90° ) to analyze earthquakes. Therefore, only a limited portion of the focal sphere is involved in source determinations. Furthermore, the locations and origin times of events remain incompatible with local determinations. Here, we attempt to resolve such issues by using IRIS data at all distances, leading to more accurate and detailed rupture properties and accurate relative locations. The 1999 Izmit earthquake sequence is chosen to test our method. The challenge of using data outside the conventional teleseismic distance range is that the arrival times and waveforms are affected more by the Earth structure. We overcome this difficulty by calibrating the path effects for the mainshock using the simpler aftershocks. Therefore, it is crucial to determine the source parameters of the aftershock. We constructed a Green's function library from a regionalized 1-D model and performed a grid search to establish the depth and fault parameters based on waveform matching for the Pnl waves between the synthetics and data, allowing the synthetics in each station to shift separately to account for the path effect. Our results show that the earthquake depth was around 7 km, rather than 19 km from local observatory (Kandilli) and 15 km from the Harvard's CMT solution. The best focal mechanism has a strike of 263° , a dip of 65° , and a rake of 180° , which is very close to the Harvard's CMT solution. The waveform fits of this aftershock is then used as a criterion to select useful source-station paths. A path with a cross-correlation value above 90% between data and synthetics is defined as a "good path" and can be used for studying the Izmit and Duzce earthquakes. We find that the stations in Central Europe and some of the Greek Islands are "good paths", while the stations in Northeast Africa and Italy cannot be used. The time shifts that give the best cross-correlation values are used to calibrate the picks of the Izmit and Duzce events. We realize that this is a very objective way to pick arrival times. However, our preliminary inversions using teleseismic data for Duzce and Izmit events show that handpicked P and S arrival times of the same station from two very close events are not always well correlated. Obviously, how we pick the arrival time governs the rupture pattern and rupture velocity. Therefore, our methodology brings a more objective approach to pick the travel times. To the end, we will invert for the source history of the Duzce and Izmit earthquakes with the regional data and compare with the inversion result using teleseismic data. Moreover, predictions of the teleseismic data, using the solution from the inversion using regional phases will be presented.

  2. Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile

    NASA Astrophysics Data System (ADS)

    Lancieri, M.; Madariaga, R.; Bonilla, F.

    2012-04-01

    We study the scaling of spectral properties of a set of 68 aftershocks of the 2007 November 14 Tocopilla (M 7.8) earthquake in northern Chile. These are all subduction events with similar reverse faulting focal mechanism that were recorded by a homogenous network of continuously recording strong motion instruments. The seismic moment and the corner frequency are obtained assuming that the aftershocks satisfy an inverse omega-square spectral decay; radiated energy is computed integrating the square velocity spectrum corrected for attenuation at high frequencies and for the finite bandwidth effect. Using a graphical approach, we test the scaling of seismic spectrum, and the scale invariance of the apparent stress drop with the earthquake size. To test whether the Tocopilla aftershocks scale with a single parameter, we introduce a non-dimensional number, ?, that should be constant if earthquakes are self-similar. For the Tocopilla aftershocks, Cr varies by a factor of 2. More interestingly, Cr for the aftershocks is close to 2, the value that is expected for events that are approximately modelled by a circular crack. Thus, in spite of obvious differences in waveforms, the aftershocks of the Tocopilla earthquake are self-similar. The main shock is different because its records contain large near-field waves. Finally, we investigate the scaling of energy release rate, Gc, with the slip. We estimated Gc from our previous estimates of the source parameters, assuming a simple circular crack model. We find that Gc values scale with the slip, and are in good agreement with those found by Abercrombie and Rice for the Northridge aftershocks.

  3. An integrated analysis on source parameters, seismogenic structure and seismic hazard of the 2014 Ms 6.3 Kangding earthquake

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2016-12-01

    On November 22, 2014, the Ms6.3 Kangding earthquake ended 30 years of history of no strong earthquake at the Xianshuihe fault zone. The focal mechanism and centroid depth of the Kangding earthquake are inverted by teleseismic waveforms and regional seismograms with CAP method. The result shows that the two nodal planes of focal mechanism are 235°/82°/-173° and 144°/83°/-8° respectively, the latter nodal plane should be the ruptured fault plane with a focal depth of 9 km. The rupture process model of the Kangding earthquake is obtained by joint inversion of teleseismic data and regional seismograms. The Kangding earthquake is a bilateral earthquake, and the major rupture zone is within a depth range of 5-15 km, spanning 10 km and 12 km along dip and strike directions, and maximum slip is about 0.5m. Most seismic moment was released during the first 5 s and the magnitude is Mw6.01, smaller than the model determined by InSAR data. The discrepancy between co-seismic rupture models of the Kangding and its Ms 5.8 aftershock and the InSAR model implies significant afterslip deformation occurred in the two weeks after the mainshock. The afterslip released energy equals to an Mw5.9 earthquake and mainly concentrates in the northwest side and the shallower side to the rupture zone. The CFS accumulation near the epicenter of the 2014 Kangding earthquake is increased by the 2008 Wenchuan earthquake, implying that the Kangding earthquake could be triggered by the Wenchuan earthquake. The CFS at the northwest section of the seismic gap along the Kangding-daofu segment is increased by the Kanding earthquake, and the rupture slip of the Kangding earthquake sequence is too small to release the accumulated strain in the seismic gap. Consequently, the northwest section of the Kangding-daofu seismic gap is under high seismic hazard in the future.

  4. Relating stress models of magma emplacement to volcano-tectonic earthquakes

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D.; Neuberg, J.

    2007-12-01

    Among the various types of seismic signals linked to volcanic processes, volcano-tectonic earthquakes are probably the earliest precursors of volcanic eruptions. Understanding their relationship with magma emplacement can provide insight into the mechanisms of magma transport at depth and assist in the ultimate goal of forecasting eruptions. Volcano-tectonic events have been observed to occur on faults that experience increases in Coulomb stress changes as the result of magma intrusions. To simulate stress changes associated with magmatic injections, we test different models of volcanic sources in an elastic half-space. For each source model, we look at several aspects that influence the stress conditions of the magmatic system such as the regional tectonic setting, the effect of varying the elastic parameters of the media, the evolution of the magma with time, as well as the volume and rheology of the ascending magma.

  5. Implications on 1+1 D runup modeling due to time features of the earthquake source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Campos, J. A.

    2017-12-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1+1D solution for the shoreline motion time series, from the static case to the dynamic case, by including both, rise time and rupture velocity. Results show that the static case correspond to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum run-up may be affected by very slow ruptures and long rise time. The analytical solution has been tested for the Nicaraguan tsunami earthquake, suggesting that the rupture was not slow enough to cause wave amplification to explain the high runup observations.

  6. GPS source solution of the 2004 Parkfield earthquake.

    PubMed

    Houlié, N; Dreger, D; Kim, A

    2014-01-17

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95(th) percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm.

  7. GPS source solution of the 2004 Parkfield earthquake

    PubMed Central

    Houlié, N.; Dreger, D.; Kim, A.

    2014-01-01

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm. PMID:24434939

  8. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Main Shock Characteristics

    USGS Publications Warehouse

    Spudich, Paul

    1996-01-01

    The October 17, 1989, Loma Prieta, Calif., earthquake (0004:15.2 G.m.t. October 18; lat 37.036? N., long 121.883? W.; 19-km depth) had a local magnitude (ML) of about 6.7, a surface-wave magnitude (MS) of 7.1, a seismic moment of 2.2x1019 N-m to 3.5x1019 N-m, a source duration of 6 to 15 s, and an average stress drop of at least 50 bars. Slip occurred on a dipping fault surface about 35 km long and was largely confined to a depth of about 7 to 20 km. The slip vector had a large vertical component, and slip was distributed in two main regions situated northwest and southeast of the hypocenter. This slip distribution caused about half of the earthquake's energy to be focused toward the urbanized San Francisco Bay region, while the other half was focused toward the southeast. Had the rupture initiated at the southeast end of the aftershock zone, shaking in the bay region would have been both longer and stronger. These source parameters suggest that the earthquake was not a typical shallow San Andreas-type event but a deeper event on a different fault with a recurrence interval of many hundreds of years. Therefore, the potential for a damaging shallow event on the San Andreas fault in the Santa Cruz Mountains may still exist.

  9. Effects of strong earthquakes in variations of electrical and meteorological parameters of the near-surface atmosphere in Kamchatka region

    NASA Astrophysics Data System (ADS)

    Smirnov, S. E.; Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.

    2017-09-01

    The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1; January 30, 2016, M = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six-seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of "winter thunderstorm" conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.

  10. Ground Motion Prediction Models for Caucasus Region

    NASA Astrophysics Data System (ADS)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  11. Into the complexity of coseismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Uchida, Taro; Hovius, Niels

    2014-05-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides are more uniformly distributed on hillslopes [1]. In theory, rainfall induced landslides should even occur downslope preferentially, where pore pressure induced by groundwater flows is the highest. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial variation of the landslide position (on hillslopes) within the epicentral area for the cases of the 1999 Chichi, the 2004 Niigata and the 2008 Iwate earthquakes. We show that landslide clustering is not uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232.

  12. Dynamic fault rupture model of the 2008 Iwate-Miyagi Nairiku earthquake, Japan; Role of rupture velocity changes on extreme ground motions

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Dalguer Gudiel, L. A.; Aoi, S.

    2009-12-01

    The Iwate-Miyagi Nairiku earthquake, a reverse earthquake occurred in the southern Iwate prefecture Japan (2008/6/14), produced the largest peak ground acceleration recorded to date (4g) (Aoi et al. 2008), at the West Ichinoseki (IWTH25), KiK-net strong motion station of NIED. This station which is equipped with surface and borehole accelerometers (GL-260), also recorded very high peak accelerations up to 1g at the borehole level, despite being located in a rock site. From comparison of spectrograms of the observed surface and borehole records at IWTH25, Pulido et. al (2008) identified two high frequency (HF) ground motion events located at 4.5s and 6.3s originating at the source, which likely derived in the extreme observed accelerations of 3.9g and 3.5g at IWTH25. In order to understand the generation mechanism of these HF events we performed a dynamic fault rupture model of the Iwate-Miyagi Nairiku earthquake by using the Support Operator Rupture Dynamics (SORD) code, (Ely et al., 2009). SORD solves the elastodynamic equation using a generalized finite difference method that can utilize meshes of arbitrary structure and is capable of handling geometries appropriate to thrust earthquakes. Our spontaneous dynamic rupture model of the Iwate-Miyagi Nairiku earthquake is governed by the simple slip weakening friction law. The dynamic parameters, stress drop, strength excess and critical slip weakening distance are estimated following the procedure described in Pulido and Dalguer (2009) [PD09]. These parameters develop earthquake rupture consistent with the final slip obtained by kinematic source inversion of near source strong ground motion recordings. The dislocation model of this earthquake is characterized by a patch of large slip located ~7 km south of the hypocenter (Suzuki et al. 2009). Our results for the calculation of stress drop follow a similar pattern. Using the rupture times obtained from the dynamic model of the Iwate-Miyagi Nairiku earthquake we estimated the rupture velocity as well as rupture velocity changes distribution across the fault plane based on the procedure proposed by PD09. Our results show that rupture velocity has strong variations concentrated in small patches within large slip areas (asperities). Using this dynamic model we performed the strong motion simulation at the IWTH25 borehole. We obtained that this model is able to reproduce the two HF events observed in the strong motion data. Our preliminary results suggest that the extreme acceleration pulses were induced by two strong rupture velocity acceleration events at the rupture front. References Aoi, S., T. Kunugi, and H. Fujiwara, 2008, Science, 322, 727-730. Ely, G. P., S. M. Day, and J.-B. Minster (2009), Geophys. J. Int., 177(3), 1140-1150. Pulido, N., S. Aoi, and W. Suzuki (2008), AGU Fall meeting, S33C-02. Pulido, N., and L.A. Dalguer, (2009). Estimation of the high-frequency radiation of the 2000 Tottori (Japan) earthquake based on a dynamic model of fault rupture: Application to the strong ground motion simulation, Bull. Seism. Soc. Am. 99(4), 2305-2322. Suzuki, W., S. Aoi, and H. Sekiguchi, (2009), Bull. Seism. Soc. Am. (Accepted).

  13. Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the central Apennines, Italy

    USGS Publications Warehouse

    Akinci, A.; Galadini, F.; Pantosti, D.; Petersen, M.; Malagnini, L.; Perkins, D.

    2009-01-01

    We produce probabilistic seismic-hazard assessments for the central Apennines, Italy, using time-dependent models that are characterized using a Brownian passage time recurrence model. Using aperiodicity parameters, ?? of 0.3, 0.5, and 0.7, we examine the sensitivity of the probabilistic ground motion and its deaggregation to these parameters. For the seismic source model we incorporate both smoothed historical seismicity over the area and geological information on faults. We use the maximum magnitude model for the fault sources together with a uniform probability of rupture along the fault (floating fault model) to model fictitious faults to account for earthquakes that cannot be correlated with known geologic structural segmentation.

  14. A new tool for rapid and automatic estimation of earthquake source parameters and generation of seismic bulletins

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo

    2016-04-01

    RISS S.r.l. is a Spin-off company recently born from the initiative of the research group constituting the Seismology Laboratory of the Department of Physics of the University of Naples Federico II. RISS is an innovative start-up, based on the decade-long experience in earthquake monitoring systems and seismic data analysis of its members and has the major goal to transform the most recent innovations of the scientific research into technological products and prototypes. With this aim, RISS has recently started the development of a new software, which is an elegant solution to manage and analyse seismic data and to create automatic earthquake bulletins. The software has been initially developed to manage data recorded at the ISNet network (Irpinia Seismic Network), which is a network of seismic stations deployed in Southern Apennines along the active fault system responsible for the 1980, November 23, MS 6.9 Irpinia earthquake. The software, however, is fully exportable and can be used to manage data from different networks, with any kind of station geometry or network configuration and is able to provide reliable estimates of earthquake source parameters, whichever is the background seismicity level of the area of interest. Here we present the real-time automated procedures and the analyses performed by the software package, which is essentially a chain of different modules, each of them aimed at the automatic computation of a specific source parameter. The P-wave arrival times are first detected on the real-time streaming of data and then the software performs the phase association and earthquake binding. As soon as an event is automatically detected by the binder, the earthquake location coordinates and the origin time are rapidly estimated, using a probabilistic, non-linear, exploration algorithm. Then, the software is able to automatically provide three different magnitude estimates. First, the local magnitude (Ml) is computed, using the peak-to-peak amplitude of the equivalent Wood-Anderson displacement recordings. The moment magnitude (Mw) is then estimated from the inversion of displacement spectra. The duration magnitude (Md) is rapidly computed, based on a simple and automatic measurement of the seismic wave coda duration. Starting from the magnitude estimates, other relevant pieces of information are also computed, such as the corner frequency, the seismic moment, the source radius and the seismic energy. The ground-shaking maps on a Google map are produced, for peak ground acceleration (PGA), peak ground velocity (PGV) and instrumental intensity (in SHAKEMAP® format), or a plot of the measured peak ground values. Furthermore, based on a specific decisional scheme, the automatic discrimination between local earthquakes occurred within the network and regional/teleseismic events occurred outside the network is performed. Finally, for largest events, if a consistent number of P-wave polarity reading are available, the focal mechanism is also computed. For each event, all of the available pieces of information are stored in a local database and the results of the automatic analyses are published on an interactive web page. "The Bulletin" shows a map with event location and stations, as well as a table listing all the events, with the associated parameters. The catalogue fields are the event ID, the origin date and time, latitude, longitude, depth, Ml, Mw, Md, the number of triggered stations, the S-displacement spectra, and shaking maps. Some of these entries also provide additional information, such as the focal mechanism (when available). The picked traces are uploaded in the database and from the web interface of the Bulletin the traces can be download for more specific analysis. This innovative software represents a smart solution, with a friendly and interactive interface, for high-level analysis of seismic data analysis and it may represent a relevant tool not only for seismologists, but also for non-expert external users who are interested in the seismological data. The software is a valid tool for the automatic analysis of the background seismicity at different time scales and can be a relevant tool for the monitoring of both natural and induced seismicity.

  15. Precursory Anomaly in VLF/LF Recordings Prior to the July 30th, 2009

    NASA Astrophysics Data System (ADS)

    Buyuksarac, Aydin; Pınar, Ali; Kosaroglu, Sinan

    2010-05-01

    An international project network consisting of five receivers for sampling LF and VLF radio signals has been going on to record the data in Europe from different transmission stations around the World. One of them was established in Resadiye, Turkey, located just on the North Anatolian Fault Zone. The receiver works in VLF (16.4, 21.75, 37.5 and 45.9 kHz) and LF (153, 180, 183, 216 and 270 kHz) bands monitoring ten frequencies with one minute sampling interval. An earthquake of Mw = 4.9 took place 225 km away from the VLF/LF station at the eastern tip of the Erzincan basin at 4 km depth on July 30, 2009. We observed some anomalies on the radio signals (37.5 and 153 kHz) that initiated about 7 days before the earthquake and disappeared soon after the earthquake. We attribute this anomaly to the Mw=4.9 earthquake as a seismo-electromagnetic precursor. The radio anomaly that appeared 7 days before the occurrence of the 2009 Erzincan earthquake is in good agreement with other results indicating precursory anomalies in the project network mostly observed in seismically active countries such as Italy and Greece. Several data processing stages were applied to the data. Firstly, we processed the time series of the radio signals to understand how the frequency content of the anomaly differs from that of the normal trend. For this purpose we selected two time windows; one covering the anomaly period and the other spanning a normal period. The selected time window length was a 6 day. The sampling interval and the length of the time window limit the observed spectra from 120 seconds to six days. We identified a significant bias (drop) for the signal energy of the anomaly period at the whole frequency band. Secondly, in order to clearly depict the anomaly we estimated the daily Rayleigh Energy of the calculated spectra following the Parseval's theorem. We initiated the estimations well before the anomaly period. Such calculations gave an obvious sign for the impending event. Thirdly, we constructed a spectrogram including the whole frequency band of the data from fortnight before the earthquake to a week after the earthquake. The strongest anomaly in the spectrogram was identified for the periods larger than 60 hours. In earthquake prediction studies it is crucial to understand the source of the anomaly. Since the sources of the anomaly we are interested in are the earthquakes we tried to derive information on the properties of the earthquake that generated our anomaly in the radio signals. Within this frame, we analyzed the broadband data at several local seismic stations that recorded the event and estimated source parameters such as centroid moment tensor, source radius and stress drop. Our analysis shows that the event was a shallow one showing predominantly normal faulting mechanism and was associated with extremely high stress drop with an average value of about 250 bars.

  16. Source characteristics of the 2015 MW 7.8 Gorkha (Nepal) earthquake and its MW 7.2 aftershock from space geodesy

    NASA Astrophysics Data System (ADS)

    Feng, Wanpeng; Lindsey, Eric; Barbot, Sylvain; Samsonov, Sergey; Dai, Keren; Li, Peng; Li, Zhenhong; Almeida, Rafael; Chen, Jiajun; Xu, Xiaohua

    2017-08-01

    On April 25, 2015, a destructive MW 7.8 earthquake struck the capital of Nepal, Kathmandu, killing more than 8800 people and destroying numerous historical structures. We analyze six coseismic interferograms from several satellites (ALOS-2, Sentinel-1 A, and RADARSAT-2), as well as three-dimensional displacements at six GPS stations to investigate fault structure and slip distribution of the Gorkha earthquake. Using a layered crustal structure, the best-fit slip model shows that the preferred dip angle of the mainshock fault is 6 ± 3.5° and the major slip is concentrated within depths of 8-15 km. The maximum slip of 6.0 m occurs at a depth of 11 km, 70 km south east of the epicenter. The coseismic rupture extends 150 km eastward of the epicentre with a cumulative geodetic moment of 7.8 × 1020 Nm, equivalent to an earthquake of MW 7.84. We also investigate the MW 7.2 aftershock on 12 May 2015 using another three postseismic interferograms from ALOS2, RADARSAT-2, and Sentinel-1 A. The InSAR-based best-fit slip model of the largest aftershock implies that its major slip is next to the eastern lower end of the mainshock rupture with a similar maximum slip of 6 m at a depth of 13 km. This study generates various coseismic geodetic measurements to determine the source parameters of the MW 7.8 Gorkha earthquake and 12 May MW 7.2 afershock, providing an additional chance to understand the local fault structure and slip extent.

  17. Empirical Green's function analysis: Taking the next step

    USGS Publications Warehouse

    Hough, S.E.

    1997-01-01

    An extension of the empirical Green's function (EGF) method is presented that involves determination of source parameters using standard EGF deconvolution, followed by inversion for a common attenuation parameter for a set of colocated events. Recordings of three or more colocated events can thus be used to constrain a single path attenuation estimate. I apply this method to recordings from the 1995-1996 Ridgecrest, California, earthquake sequence; I analyze four clusters consisting of 13 total events with magnitudes between 2.6 and 4.9. I first obtain corner frequencies, which are used to infer Brune stress drop estimates. I obtain stress drop values of 0.3-53 MPa (with all but one between 0.3 and 11 MPa), with no resolved increase of stress drop with moment. With the corner frequencies constrained, the inferred attenuation parameters are very consistent; they imply an average shear wave quality factor of approximately 20-25 for alluvial sediments within the Indian Wells Valley. Although the resultant spectral fitting (using corner frequency and ??) is good, the residuals are consistent among the clusters analyzed. Their spectral shape is similar to the the theoretical one-dimensional response of a layered low-velocity structure in the valley (an absolute site response cannot be determined by this method, because of an ambiguity between absolute response and source spectral amplitudes). I show that even this subtle site response can significantly bias estimates of corner frequency and ??, if it is ignored in an inversion for only source and path effects. The multiple-EGF method presented in this paper is analogous to a joint inversion for source, path, and site effects; the use of colocated sets of earthquakes appears to offer significant advantages in improving resolution of all three estimates, especially if data are from a single site or sites with similar site response.

  18. Earthquake prognosis:cause for failure and ways for the problem solution

    NASA Astrophysics Data System (ADS)

    Kondratiev, O.

    2003-04-01

    Despite of the more than 50-years history of the development of the prognosis earthquake method this problem is yet not to be resolved. This makes one to have doubt in rightness of the chosen approaches retrospective search of the diverse earthquake precursors. It is obvious to speak of long-term, middle-term and short-term earthquake prognosis. They all have a probabilistic character and it would be more correct to consider them as related to the seismic hazard prognosis. In distinction of them, the problem of the operative prognosis is being discussed in report. The operative prognosis should conclude the opportune presenting of the seismic alarm signal of the place, time and power of the earthquake in order to take necessary measures for maximal mitigation of the catastrophic consequence of this event. To do this it is necessary to predict the earthquake location with accuracy of first dozens of kilometres, time of its occurrence with accuracy of the first days and its power with accuracy of the magnitude units. If the problem is formulated in such a way, it cannot principally be resolved in the framework of the concept of the indirect earthquake precursors using. It is necessary to pass from the concept of the passive observatory network to the concept of the object-oriented search of the potential source zones and direct information obtaining on the parameter medium changes within these zones in the process of the earthquake preparation and development. While formulated in this way, the problem becomes a integrated task for the planet and prospecting geophysics. To detect the source zones it is possible to use the method of the converted waves of earthquakes, for monitoring - seismic reflecting and method of the common point. Arrangement of these and possible other geophysical methods should be provided by organising the special integrated geophysic expedition of the rapid response on the occurred strong earthquakes and conducting purposeful investigation within their epicentral zones. As a result the data on understanding of the geodynamic processes of the preparation and realisation of the catastrophic earthquakes will be obtained. And only in this way all the questions of the operative prognosis may be solved basing on the reliable scientific ground. The proposed approach for the operative earthquake prognosis is not the simple and prompt one. However considering the time and efforts which were already spent to the earthquake precursor search it may expect that the new approach would be more direct and effective.

  19. Probabilistic Seismic Hazard Assessment for Iraq Using Complete Earthquake Catalogue Files

    NASA Astrophysics Data System (ADS)

    Ameer, A. S.; Sharma, M. L.; Wason, H. R.; Alsinawi, S. A.

    2005-05-01

    Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29° 38.5° N and longitude 39° 50° E containing more than a thousand events for the period 1905 2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate λ, b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin ≥ m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.

  20. Mechanical and Statistical Evidence of Human-Caused Earthquakes - A Global Data Analysis

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2012-12-01

    The causality of large-scale geoengineering activities and the occurrence of earthquakes with magnitudes of up to M=8 is discussed and mechanical and statistical evidence is provided. The earthquakes were caused by artificial water reservoir impoundments, underground and open-pit mining, coastal management, hydrocarbon production and fluid injections/extractions. The presented global earthquake catalog has been recently published in the Journal of Seismology and is available for the public at www.cdklose.com. The data show evidence that geomechanical relationships exist with statistical significance between a) seismic moment magnitudes of observed earthquakes, b) anthropogenic mass shifts on the Earth's crust, and c) lateral distances of the earthquake hypocenters to the locations of the mass shifts. Research findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. First analyses, however, indicate that that small- to medium size earthquakes (M6) tend to be triggered. The rupture propagation of triggered events might be dominated by pre-existing tectonic stress conditions. Besides event specific evidence, large earthquakes such as China's 2008 M7.9 Wenchuan earthquake fall into a global pattern and can not be considered as outliers or simply seen as an act of god. Observations also indicate that every second seismic event tends to occur after a decade, while pore pressure diffusion seems to only play a role when injecting fluids deep underground. The chance of an earthquake to nucleate after two or 20 years near an area with a significant mass shift is 25% or 75% respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in the Earth's crust in which geoengineering takes place.

  1. Earthquake swarm of Himachal Pradesh in northwest Himalaya and its seismotectonic implications

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Prasath, R. Arun; Paul, Ajay; Kumar, Naresh

    2018-02-01

    On the 27th of August 2016, a seismic swarm activity consisting of 58 earthquakes (1.5 ≤ ML ≤ 4.4), which occurred in Rampur area of the Kullu-Rampur Tectonic window of Himachal Pradesh in Northwest Himalaya. The epicenters of these events are located at the northern front of the Berinag Thrust in its hanging wall. To better understand the seismotectonics of this region, we analyzed the spectral source parameters and source mechanism of this swam activity. Spectral analysis shows the low stress drop values (from 0.05 to 28.9 bars), suggesting that the upper crust has low strength to withstand accumulated strain energy in this region. The Moment Tensor solutions of 12 earthquakes (≥2.7ML) obtained by waveform inversion yield the shallow centroid depths between 5 and 10 km. All these events are of dominantly thrust fault mechanism having an average dip angle of ∼30°. The P-axes and the maximum horizontal compressive stresses are NE-SW oriented; the relative motion of the Indian Plate. The present study reveals that the swarm activity in the Himachal region of NW Himalaya is related to the out-of-sequence thrusting or the Lesser Himalayan Duplex system.

  2. A fault slip model of the 2016 Meinong, Taiwan, earthquake from near-source strong motion and high-rate GPS waveforms

    NASA Astrophysics Data System (ADS)

    Rau, Ruey-Juin; Wen, Yi-Ying; Tseng, Po-Ching; Chen, Wei-Cheng; Cheu, Chi-Yu; Hsieh, Min-Che; Ching, Kuo-En

    2017-04-01

    The 6 February 2016 MW 6.5 Meinong earthquake (03:57:26.1 local time) occurred at about 30 km ESE of the Tainan city with a focal depth of 14.6 km. It is a mid-crust moderate-sized event, however, produced widespread strong shaking in the 30-km-away Tainan city and caused about 10 buildings collapsed and 117 death. Furthermore, the earthquake created a 20 x 10 km2 dome-shaped structure with a maximum uplift of 13 cm in between the epicenter and the Tainan city. We collected 81 50-Hz GPS and 130 strong motion data recorded within 60 km epicentral distances. High-rate GPS data are processed with GIPSY 6.4 and the calculated GPS displacement wavefield record section shows 40-60 cm Peak Ground Displacement (PGD) concentrated at 25-30 km WNW of the epicenter. The large PGDs correspond to 65-85 cm/sec PGV, which are significantly larger than the near-fault ground motion collected from moderate-sized earthquakes occurred worldwide. To investigate the source properties of the causative fault, considering the azimuthal coverage and data quality, we selected waveform data from 10 50-Hz GPS stations and 10 free-field 200-Hz strong motion stations to invert for the finite source parameters using the non-negative least squares approach. A bandpass filter of 0.05-0.5 Hz is applied to both high-rate GPS data and strong motion data, with sampling rate of 0.1 sec. The fault plane parameters (strike 281 degrees, dip 24 degrees) derived from Global Centroid Moment Tensor (CMT) are used in the finite fault inversion. The results of our joint GPS and strong motion data inversion indicates two major slip patches. The first large-slip patch occurred just below the hypocenter propagating westward at a 15-25 km depth range. The second high-slip patch appeared at 5-10 km depth slipping westward under the western side of the erected structure shown by InSAR image. These two large-slip patches appeared to devoid of aftershock seismicity, which concentrated mainly at the low-slip zones.

  3. Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Guillemot, C.; Langbein, J. O.; Murray, J. R.

    2012-12-01

    The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and automatically select the "next best" station to use as reference. We are also working towards minimizing the loss of streamed data during concurrent data downloads by improving file management on the GPS receivers.

  4. Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Kariptas, Cagatay; Biyikoglu, Hikmet; Ozarpa, Cevat

    2017-04-01

    Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network Istanbul Natural Gas Distribution Corporation (IGDAS) is one of the end users of the Istanbul Earthquake Early Warning (EEW) signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867km of gas lines with 750 district regulators and 474,000 service boxes. The natural gas comes to Istanbul city borders with 70bar in 30inch diameter steel pipeline. The gas pressure is reduced to 20bar in RMS stations and distributed to district regulators inside the city. 110 of 750 district regulators are instrumented with strong motion accelerometers in order to cut gas flow during an earthquake event in the case of ground motion parameters exceeds the certain threshold levels. Also, state of-the-art protection systems automatically cut natural gas flow when breaks in the gas pipelines are detected. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 750 district regulator sites. IGDAS Real-time Earthquake Risk Reduction algorithm follows 4 stages as below: 1) Real-time ground motion data transmitted from 110 IGDAS and 110 KOERI (Kandilli Observatory and Earthquake Research Institute) acceleration stations to the IGDAS Scada Center and KOERI data center. 2) During an earthquake event EEW information is sent from IGDAS Scada Center to the IGDAS stations. 3) Automatic Shut-Off is applied at IGDAS district regulators, and calculated parameters are sent from stations to the IGDAS Scada Center and KOERI. 4) Integrated building and gas pipeline damage maps are prepared immediately after the earthquake event. The today's technology allows to rapidly estimate the expected level of shaking when an earthquake starts to occur. However, in Istanbul case for a potential Marmara Sea Earthquake, the time is very limited even to estimate the level of shaking. The robust threshold based EEW system is only algorithm for such a near source event to activate automatic shut-off mechanism in the critical infrastructures before the damaging waves arrive. This safety measure even with a few seconds of early warning time will help to mitigate potential damages and secondary hazards.

  5. Earthquake Relocation in the Middle East with Geodetically-Calibrated Events

    NASA Astrophysics Data System (ADS)

    Brengman, C.; Barnhart, W. D.

    2017-12-01

    Regional and global earthquake catalogs in tectonically active regions commonly contain mislocated earthquakes that impede efforts to address first order characteristics of seismogenic strain release and to monitor anthropogenic seismic events through the Comprehensive Nuclear-Test-Ban Treaty. Earthquake mislocations are particularly limiting in the plate boundary zone between the Arabia and Eurasia plates of Iran, Pakistan, and Turkey where earthquakes are commonly mislocated by 20+ kilometers and hypocentral depths are virtually unconstrained. Here, we present preliminary efforts to incorporate calibrated earthquake locations derived from Interferometric Synthetic Aperture Radar (InSAR) observations into a relocated catalog of seismicity in the Middle East. We use InSAR observations of co-seismic deformation to determine the locations, geometries, and slip distributions of small to moderate magnitude (M4.8+) crustal earthquakes. We incorporate this catalog of calibrated event locations, along with other seismologically-calibrated earthquake locations, as "priors" into a fully Bayesian multi-event relocation algorithm that relocates all teleseismically and regionally recorded earthquakes over the time span 1970-2017, including calibrated and uncalibrated events. Our relocations are conducted using cataloged phase picks and BayesLoc. We present a suite of sensitivity tests for the time span of 2003-2014 to explore the impacts of our input parameters (i.e., how a point source is defined from a finite fault inversion) on the behavior of the event relocations, potential improvements to depth estimates, the ability of the relocation to recover locations outside of the time span in which there are InSAR observations, and the degree to which our relocations can recover "known" calibrated earthquake locations that are not explicitly included as a-priori constraints. Additionally, we present a systematic comparison of earthquake relocations derived from phase picks of two different earthquake catalogs: The USGS Comprehensive Earthquake Catalog (ComCat) and the Reviewed ISC Bulletin (ISCB).

  6. The effect of segmented fault zones on earthquake rupture propagation and termination

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2017-12-01

    A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for rupture propagation through the Anza seismic gap. Our results suggest that a priori knowledge of properties of segmented fault zones is of great importance for predicting sizes of future large earthquakes on major faults.

  7. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  8. Evidences of Attenuation Zones Under Vesuvius Volcano By Local and Regional Seismicity

    NASA Astrophysics Data System (ADS)

    Cubellis, E.; Marturano, A.

    The seismicity at Vesuvius is characterised by events of moderate-energy concentrated in the caldera area. The foci of events are shallow, with depths less than 6 km under sea level. Periods of greater actvity were recorded in 1989, 1990, and, more recently, in 1995 and 1996. On October, 9, 1999 an earthquake (Ml=3.6) felt outside vesuvian area took place at Vesuvius-crater. It was not only the most energetic one since the last eruption of 1944 but also one of the most energetic among those occurring in the Vesuvian area since Roman times, as shown by an analysis of historical seismicity. Following the 9 october 1999 event, questionnaires were sent to all middle schools in the Vesuvian area and surrounding towns in order to define the extent to which the earthquake had been felt. The felt index was thus obtained, which represent the per- centage response to the question: Did you feel the earthquake? and used in later data processing. The felt index is a continuous parameter and this feature makes it possible, among other things, to relate it to ground motion parameters and overcome the prob- lem of the limits involved in using integer values of intensity. In particular, Q quality factor was determined by assuming direct proportionality between energy and felt in- dex. The values obtained were Q=60-90 and, Qa=100-150, in reasonable agreement with the P-wave quality factor of 70 to 100 reported below active volcanoes, consis- tent with high temperatures and generally associated with the presence of magmatic bodies. The near Southern Apennine seismogenetic zone, 50-100 km from Vesuvius, is characterised by prevalent normal faulting and large historical earthquakes. The last, the Irpinia earthquake of November 23, 1980 (Ms=6.9), developed on three fault sources at least, with apenninic trend (NW-SE), was characterised by elevated atten- uation zones in epicentral and external areas too. In particular, the macroseismic field showed a 25 km wide circular attenuation zone corresponding to the vesuvian area testifying the presence of a probable shallow large structure characterized by ductile beahaviour . The quality factor, obtained from local seismicity, and the extension of the circular attenuation zone, observed by regional earthquake, caracterise the attenu- ation source under Vesuvius volcano.

  9. Evaluation of W Phase CMT Based PTWC Real-Time Tsunami Forecast Model Using DART Observations: Events of the Last Decade

    NASA Astrophysics Data System (ADS)

    Wang, D.; Becker, N. C.; Weinstein, S.; Duputel, Z.; Rivera, L. A.; Hayes, G. P.; Hirshorn, B. F.; Bouchard, R. H.; Mungov, G.

    2017-12-01

    The Pacific Tsunami Warning Center (PTWC) began forecasting tsunamis in real-time using source parameters derived from real-time Centroid Moment Tensor (CMT) solutions in 2009. Both the USGS and PTWC typically obtain W-Phase CMT solutions for large earthquakes less than 30 minutes after earthquake origin time. Within seconds, and often before waves reach the nearest deep ocean bottom pressure sensor (DARTs), PTWC then generates a regional tsunami propagation forecast using its linear shallow water model. The model is initialized by the sea surface deformation that mimics the seafloor deformation based on Okada's (1985) dislocation model of a rectangular fault with a uniform slip. The fault length and width are empirical functions of the seismic moment. How well did this simple model perform? The DART records provide a very valuable dataset for model validation. We examine tsunami events of the last decade with earthquake magnitudes ranging from 6.5 to 9.0 including some deep events for which tsunamis were not expected. Most of the forecast results were obtained during the events. We also include events from before the implementation of the WCMT method at USGS and PTWC, 2006-2009. For these events, WCMTs were computed retrospectively (Duputel et al. 2012). We also re-ran the model with a larger domain for some events to include far-field DARTs that recorded a tsunami with identical source parameters used during the events. We conclude that our model results, in terms of maximum wave amplitude, are mostly within a factor of two of the observed at DART stations, with an average error of less than 40% for most events, including the 2010 Maule and the 2011 Tohoku tsunamis. However, the simple fault model with a uniform slip is too simplistic for the Tohoku tsunami. We note model results are sensitive to centroid location and depth, especially if the earthquake is close to land or inland. For the 2016 M7.8 New Zealand earthquake the initial forecast underestimated the tsunami because the initial WCMT centroid was on land (the epicenter was inland but most of the slips occurred offshore). Later WCMTs did provide better forecast. The model also failed to reproduce the observed tsunamis from earthquake-generated landslides. Sea level observations during the events are crucial in determining whether or not a forecast needs to be adjusted.

  10. Source and site response study of the 2008 Mount Carmel, Illinois, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Mendoza, C.

    2011-01-01

    Two separate inversions are performed using the ground-motion data from the 2008 Mount Carmel, Illinois, earthquake. One uses aftershocks as empirical Green’s functions to determine a finite-fault slip distribution. The second uses mainshock ground-motion spectra to calculate source, path, and site response parameters. The slip inversion reveals a prominent asperity at the hypocenter with an area of approximately 6 km2, moment of 7.0 x 1023 dyn cm (Mw 5.20), and stress drop of about 100 bars. Considering all major and minor slip, the total moment is 1.7 x 1024 dyn cm (Mw=5.45). The rupture velocity is not resolvable due to the small source area. After fixing the geometric spreading, the source, path, and site parameter inversion yields a similar moment of 8.8 x 1023 dyn cm (Mw 5.26) and a corner frequency of 0.89 Hz, which also give a stress drop of approximately 100 bars. Our combined geometric and anelastic attenuation function, Q(f)r-b=1137f0.12r-0.94, fits the regional spectral amplitudes, where the data is more plentiful, as well as previously derived attenuation relationships. Site response spectra show prominent resonant frequencies that correlate with the thickness of Mississippi River sediments and Mississippi embayment deposits. In addition, higher frequency resonance peaks are observed that most likely represent higher mode resonances and resonances from shallower structure.

  11. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM

    USGS Publications Warehouse

    Boore, D.M.

    2009-01-01

    Comparisons of ground motions from two widely used point-source and finite-source ground-motion simulation programs (SMSIM and EXSIM) show that the following simple modifications in EXSIM will produce agreement in the motions from a small earthquake at a large distance for the two programs: (1) base the scaling of high frequencies on the integral of the squared Fourier acceleration spectrum; (2) do not truncate the time series from each subfault; (3) use the inverse of the subfault corner frequency for the duration of motions from each subfault; and (4) use a filter function to boost spectral amplitudes at frequencies near and less than the subfault corner frequencies. In addition, for SMSIM an effective distance is defined that accounts for geometrical spreading and anelastic attenuation from various parts of a finite fault. With these modifications, the Fourier and response spectra from SMSIM and EXSIM are similar to one another, even close to a large earthquake (M 7), when the motions are averaged over a random distribution of hypocenters. The modifications to EXSIM remove most of the differences in the Fourier spectra from simulations using pulsing and static subfaults; they also essentially eliminate any dependence of the EXSIM simulations on the number of subfaults. Simulations with the revised programs suggest that the results of Atkinson and Boore (2006), computed using an average stress parameter of 140 bars and the original version of EXSIM, are consistent with the revised EXSIM with a stress parameter near 250 bars.

  12. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters

    USGS Publications Warehouse

    Liu, P.; Archuleta, R.J.; Hartzell, S.H.

    2006-01-01

    We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (< ∼1 Hz) in a 3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by others for the Northridge rupture.

  13. Stress drop variation of M > 4 earthquakes on the Blanco oceanic transform fault using a phase coherence method

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Hawthorne, J.; Rost, S.; Wright, T. J.

    2017-12-01

    Earthquakes on oceanic transform faults often show unusual behaviour. They tend to occur in swarms, have large numbers of foreshocks, and have high stress drops. We estimate stress drops for approximately 60 M > 4 earthquakes along the Blanco oceanic transform fault, a right-lateral fault separating the Juan de Fuca and Pacific plates offshore of Oregon. We find stress drops with a median of 4.4±19.3MPa and examine how they vary with earthquake moment. We calculate stress drops using a recently developed method based on inter-station phase coherence. We compare seismic records of co-located earthquakes at a range of stations. At each station, we apply an empirical Green's function (eGf) approach to remove phase path effects and isolate the relative apparent source time functions. The apparent source time functions at each earthquake should vary among stations at periods shorter than a P wave's travel time across the earthquake rupture area. Therefore we compute the rupture length of the larger earthquake by identifying the frequency at which the relative apparent source time functions start to vary among stations, leading to low inter-station phase coherence. We determine a stress drop from the rupture length and moment of the larger earthquake. Our initial stress drop estimates increase with increasing moment, suggesting that earthquakes on the Blanco fault are not self-similar. However, these stress drops may be biased by several factors, including depth phases, trace alignment, and source co-location. We find that the inclusion of depth phases (such as pP) in the analysis time window has a negligible effect on the phase coherence of our relative apparent source time functions. We find that trace alignment must be accurate to within 0.05 s to allow us to identify variations in the apparent source time functions at periods relevant for M > 4 earthquakes. We check that the alignments are accurate enough by comparing P wave arrival times across groups of earthquakes. Finally, we note that the eGf path effect removal will be unsuccessful if earthquakes are too far apart. We therefore calculate relative earthquake locations from our estimated differential P wave arrival times, then we examine how our stress drop estimates vary with inter-earthquake distance.

  14. Comparison of Different Approach of Back Projection Method in Retrieving the Rupture Process of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Tan, F.; Wang, G.; Chen, C.; Ge, Z.

    2016-12-01

    Back-projection of teleseismic P waves [Ishii et al., 2005] has been widely used to image the rupture of earthquakes. Besides the conventional narrowband beamforming in time domain, approaches in frequency domain such as MUSIC back projection (Meng 2011) and compressive sensing (Yao et al, 2011), are proposed to improve the resolution. Each method has its advantages and disadvantages and should be properly used in different cases. Therefore, a thorough research to compare and test these methods is needed. We write a GUI program, which puts the three methods together so that people can conveniently use different methods to process the same data and compare the results. Then we use all the methods to process several earthquake data, including 2008 Wenchuan Mw7.9 earthquake and 2011 Tohoku-Oki Mw9.0 earthquake, and theoretical seismograms of both simple sources and complex ruptures. Our results show differences in efficiency, accuracy and stability among the methods. Quantitative and qualitative analysis are applied to measure their dependence on data and parameters, such as station number, station distribution, grid size, calculate window length and so on. In general, back projection makes it possible to get a good result in a very short time using less than 20 lines of high-quality data with proper station distribution, but the swimming artifact can be significant. Some ways, for instance, combining global seismic data, could help ameliorate this method. Music back projection needs relatively more data to obtain a better and more stable result, which means it needs a lot more time since its runtime accumulates obviously faster than back projection with the increase of station number. Compressive sensing deals more effectively with multiple sources in a same time window, however, costs the longest time due to repeatedly solving matrix. Resolution of all the methods is complicated and depends on many factors. An important one is the grid size, which in turn influences runtime significantly. More detailed results in this research may help people to choose proper data, method and parameters.

  15. Tsunami geology in paleoseismology

    USGS Publications Warehouse

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26 and 27). Tsunami deposits can be classified into two groups: modern tsunami deposits and paleotsunami deposits. A modern tsunami deposit is a deposit whose source event is known. A paleotsunami deposit is a deposit whose age is estimated and has a source that is either inferred to be a historical event or is unknown.

  16. A new perspective on the generation of the 2016 M6.7 Kaohsiung earthquake, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Zhi

    2017-04-01

    In order to investigate the likely generation mechanism of the 2016 M6.7 Kaohsiung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and σgodels. In this way, multi-geophysical parameter imaging revealed that the 2016 Kaohsiung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-σ body that has high ɛ and somewhat high ζ anomalies above the hypocenter under the Coastal Plain represents fluids contained in the young fold-and-thrust belt associated with the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson's ratio, crack density and saturate fracturegnomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the Coastal Plain and Western Foothills as far as the southeastern lower crust under the Central Range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson's ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake. PIC

  17. A new perspective on the generation of the 2016 M6.4 Meilung earthquake, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2017-12-01

    In order to investigate the likely generation mechanism of the 2016 M6.4 Meilung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and s models. In this way, multi-geophysical parameter imaging revealed that the 2016 Meilung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-Poisson ratio body that has high-crack density and somewhat high-saturate fracture anomalies above the hypocenter under the coastal plain represents fluids contained in the young fold-and-thrust belt relative to the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson ratio, crack density and saturate fracture anomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the coastal plain and western foothills as far as the southeastern lower crust under the central range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt associated with the passive Asian continental margin in the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake.

  18. Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Shearer, Peter M.

    2017-04-01

    Earthquake source spectra contain fundamental information about the dynamics of earthquake rupture. However, the inherent tradeoffs in separating source and path effects, when combined with limitations in recorded signal bandwidth, make it challenging to obtain reliable source spectral estimates for large earthquake data sets. We present here a stable and statistically robust spectral decomposition method that iteratively partitions the observed waveform spectra into source, receiver, and path terms. Unlike previous methods of its kind, our new approach provides formal uncertainty estimates and does not assume self-similar scaling in earthquake source properties. Its computational efficiency allows us to examine large data sets (tens of thousands of earthquakes) that would be impractical to analyze using standard empirical Green's function-based approaches. We apply the spectral decomposition technique to P wave spectra from five areas of active contemporary seismicity in Southern California: the Yuha Desert, the San Jacinto Fault, and the Big Bear, Landers, and Hector Mine regions of the Mojave Desert. We show that the source spectra are generally consistent with an increase in median Brune-type stress drop with seismic moment but that this observed deviation from self-similar scaling is both model dependent and varies in strength from region to region. We also present evidence for significant variations in median stress drop and stress drop variability on regional and local length scales. These results both contribute to our current understanding of earthquake source physics and have practical implications for the next generation of ground motion prediction assessments.

  19. Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Chen, Guangqi; Wu, Yanqiang; Jiang, Han

    2016-11-01

    On April 15, 2016, Kumamoto, Japan, was struck by a large earthquake sequence, leading to severe casualty and building damage. The stochastic finite-fault method based on a dynamic corner frequency has been applied to perform ground-motion simulations for the 2016 Kumamoto earthquake. There are 53 high-quality KiK-net stations available in the Kyushu region, and we employed records from all stations to determine region-specific source, path and site parameters. The calculated S-wave attenuation for the Kyushu region beneath the volcanic and non-volcanic areas can be expressed in the form of Q s = (85.5 ± 1.5) f 0.68±0.01 and Q s = (120 ± 5) f 0.64±0.05, respectively. The effects of lateral S-wave velocity and attenuation heterogeneities on the ground-motion simulations were investigated. Site amplifications were estimated using the corrected cross-spectral ratios technique. Zero-distance kappa filter was obtained to be the value of 0.0514 ± 0.0055 s, using the spectral decay method. The stress drop of the mainshock based on the USGS slip model was estimated optimally to have a value of 64 bars. Our finite-fault model with optimized parameters was validated through the good agreement of observations and simulations at all stations. The attenuation characteristics of the simulated peak ground accelerations were also successfully captured by the ground-motion prediction equations. Finally, the ground motions at two destructively damaged regions, Kumamoto Castle and Minami Aso village, were simulated. We conclude that the stochastic finite-fault method with well-determined parameters can reproduce the ground-motion characteristics of the 2016 Kumamoto earthquake in both the time and frequency domains. This work is necessary for seismic hazard assessment and mitigation.[Figure not available: see fulltext.

  20. Uncertainty, variability, and earthquake physics in ground‐motion prediction equations

    USGS Publications Warehouse

    Baltay, Annemarie S.; Hanks, Thomas C.; Abrahamson, Norm A.

    2017-01-01

    Residuals between ground‐motion data and ground‐motion prediction equations (GMPEs) can be decomposed into terms representing earthquake source, path, and site effects. These terms can be cast in terms of repeatable (epistemic) residuals and the random (aleatory) components. Identifying the repeatable residuals leads to a GMPE with reduced uncertainty for a specific source, site, or path location, which in turn can yield a lower hazard level at small probabilities of exceedance. We illustrate a schematic framework for this residual partitioning with a dataset from the ANZA network, which straddles the central San Jacinto fault in southern California. The dataset consists of more than 3200 1.15≤M≤3 earthquakes and their peak ground accelerations (PGAs), recorded at close distances (R≤20  km). We construct a small‐magnitude GMPE for these PGA data, incorporating VS30 site conditions and geometrical spreading. Identification and removal of the repeatable source, path, and site terms yield an overall reduction in the standard deviation from 0.97 (in ln units) to 0.44, for a nonergodic assumption, that is, for a single‐source location, single site, and single path. We give examples of relationships between independent seismological observables and the repeatable terms. We find a correlation between location‐based source terms and stress drops in the San Jacinto fault zone region; an explanation of the site term as a function of kappa, the near‐site attenuation parameter; and a suggestion that the path component can be related directly to elastic structure. These correlations allow the repeatable source location, site, and path terms to be determined a priori using independent geophysical relationships. Those terms could be incorporated into location‐specific GMPEs for more accurate and precise ground‐motion prediction.

  1. A rapid estimation of near field tsunami run-up

    USGS Publications Warehouse

    Riqueime, Sebastian; Fuentes, Mauricio; Hayes, Gavin; Campos, Jamie

    2015-01-01

    Many efforts have been made to quickly estimate the maximum run-up height of tsunamis associated with large earthquakes. This is a difficult task, because of the time it takes to construct a tsunami model using real time data from the source. It is possible to construct a database of potential seismic sources and their corresponding tsunami a priori.However, such models are generally based on uniform slip distributions and thus oversimplify the knowledge of the earthquake source. Here, we show how to predict tsunami run-up from any seismic source model using an analytic solution, that was specifically designed for subduction zones with a well defined geometry, i.e., Chile, Japan, Nicaragua, Alaska. The main idea of this work is to provide a tool for emergency response, trading off accuracy for speed. The solutions we present for large earthquakes appear promising. Here, run-up models are computed for: The 1992 Mw 7.7 Nicaragua Earthquake, the 2001 Mw 8.4 Perú Earthquake, the 2003Mw 8.3 Hokkaido Earthquake, the 2007 Mw 8.1 Perú Earthquake, the 2010 Mw 8.8 Maule Earthquake, the 2011 Mw 9.0 Tohoku Earthquake and the recent 2014 Mw 8.2 Iquique Earthquake. The maximum run-up estimations are consistent with measurements made inland after each event, with a peak of 9 m for Nicaragua, 8 m for Perú (2001), 32 m for Maule, 41 m for Tohoku, and 4.1 m for Iquique. Considering recent advances made in the analysis of real time GPS data and the ability to rapidly resolve the finiteness of a large earthquake close to existing GPS networks, it will be possible in the near future to perform these calculations within the first minutes after the occurrence of similar events. Thus, such calculations will provide faster run-up information than is available from existing uniform-slip seismic source databases or past events of pre-modeled seismic sources.

  2. Acoustic monitoring of earthquakes along the Blanco Transform Fault zone and Gorda Plate and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Dziak, Robert Paul

    Hydroacoustic tertiary (T-) waves are seismically generated acoustic waves that propagate over great distances in the ocean sound channel with little loss in signal strength. Hydrophone recorded T-waves can provide a lower earthquake detection threshold and an improved epicenter location accuracy for oceanic earthquakes than land-based seismic networks. Thus detection and location of NE Pacific ocean earthquakes along the Blanco Transform Fault (BTFZ) and Gorda plate using the U.S. Navy's SOSUS (SOund SUrveillance System) hydrophone arrays afford greater insight into the current state of stress and crustal deformation mechanics than previously available. Acoustic earthquake information combined with bathymetry, submersible observations, earthquake source- parameter estimates, petrologic samples, and water-column chemistry renders a new tectonic view of the southern Juan de Fuca plate boundaries. Chapter 2 discusses development of seismo-acoustic analysis techniques using the well-documented April 1992 Cape Mendocino earthquake sequence. Findings include a hydrophone detection threshold estimate (M ~ 2.4), and T-wave propagation path modeling to approximate earthquake acoustic source energy. Empirical analyses indicate that acoustic energy provides a reasonable magnitude and seismic moment estimate of oceanic earthquakes not detected by seismic networks. Chapters 3 documents a probable volcanogenic T-wave event swarm along a pull-apart basin within the western BTFZ during January 1994. Response efforts yielded evidence of anomalous water-column 3He concentrations, pillow- lava volcanism, and the first discovery of active hydrothermal vents along an oceanic fracture zone. Chapter 4 discusses the detection of a NE-SW trending microearthquake band along the mid-Gorda plate which was active from initiation of SOSUS recording in August 1991 through July 1992, then abruptly ceased. It is proposed that eventual termination of the Gorda plate seismicity band is due to strain reduction associated with the Cape Mendocino earthquake sequence. Chapter 5 combines bathymetric, hydro-acoustic, seismic, submersible, and gravity data to investigate the active tectonics of the transform parallel Blanco Ridge (BR), along the eastern BTFZ. The BR formation mechanism preferred here is uplift through strike-slip motion (with a normal component) followed by formation and intrusion of mantle-derived serpentinized-peridotite into the shallow ocean crust. The conclusion considers a potential link between the deformation patterns observed along the BTFZ and Gorda plate regions.

  3. Seismicity around the source areas of the 1946 Nankai and the 1944 Tonankai earthquakes detected from data recorded at DONET stations

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Kamiya, S.; Takahashi, N.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) installed DONET (Dense Oceanfloor Network System for Earthquakes and Tsunamis) off the Kii Peninsula, southwest of Japan, to monitor earthquakes and tsunamis. Stations of DONET1, which are distributed in Kumano-nada, and DONET2, which are distributed off Muroto, were installed by August 2011 and April 2016, respectively. After the installation of all of the 51 stations, DONET was transferred to National Research Institute for Earth Science and Disaster Resilience (NIED). NIED and JAMSTEC have now corroborated in the operation of DONET since April 2016. To investigate the seismicity around the source areas of the 1946 Nankai and the 1944 Tonankai earthquakes, we detected earthquakes from the records of the broadband seismometers installed to DONET. Because DONET stations are apart from land stations, we can detect smaller earthquakes than by using only land stations. It is important for understanding the stress state and seismogenic mechanism to monitoring the spatial-temporal seismicity change. In this study we purpose to evaluate to the seismicity around the source areas of the Nankai and the Tonankai earthquakes by using our earthquake catalogue. The frequency-magnitude relationships of earthquakes in the areas of DONET1&2 had an almost constant slope of about -1 for earthquakes of ML larger than 1.5 and 2.5, satisfying the Gutenberg-Richter law, and the slope of smaller earthquakes approached 0, reflecting the detection limits. While the most of the earthquakes occurred in the aftershock area of the 2004 off the Kii Peninsula earthquakes, very limited activity was detected in the source region of the Nankai and Tonankai earthquake except for the large earthquake (MJMA = 6.5) on 1st April 2016 and its aftershocks. We will evaluate the detection limit of the earthquake in more detail and investigate the spatial-temporal seismicity change with waiting the data store.

  4. Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes

    NASA Astrophysics Data System (ADS)

    Mahmood, Irfan; Iqbal, Muhammad Farooq; Shahzad, Muhammad Imran; Qaiser, Saddam

    2017-02-01

    The earthquake precursors' anomalies at diverse elevation ranges over the seismogenic region and prior to the seismic events are perceived using Satellite Remote Sensing (SRS) techniques and reanalysis datasets. In the current research, seismic precursors are obtained by analyzing anomalies in Outgoing Longwave Radiation (OLR), Air Temperature (AT), and Relative Humidity (RH) before the two strong Mw>7 earthquakes in Pakistan occurred on 8th October 2005 in Azad Jammu Kashmir with Mw 7.6, and 24th September 2013 in Awaran, Balochistan with Mw 7.7. Multi-parameter data were computed based on multi-year background data for anomalies computation. Results indicate significant transient variations in observed parameters before the main event. Detailed analysis suggests presence of pre-seismic activities one to three weeks prior to the main earthquake event that vanishes after the event. These anomalies are due to increase in temperature after release of gases and physical and chemical interactions on earth surface before the earthquake. The parameter variations behavior for both Kashmir and Awaran earthquake events are similar to other earthquakes in different regions of the world. This study suggests that energy release is not concentrated to a single fault but instead is released along the fault zone. The influence of earthquake events on lightning were also investigated and it was concluded that there is a significant atmospheric lightning activity after the earthquake suggesting a strong possibility for an earthquake induced thunderstorm. This study is valuable for identifying earthquake precursors especially in earthquake prone areas.

  5. Database for earthquake strong motion studies in Italy

    USGS Publications Warehouse

    Scasserra, G.; Stewart, J.P.; Kayen, R.E.; Lanzo, G.

    2009-01-01

    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M< ??? 5.5) and finite source parameters for larger events. ?? 2009 A.S. Elnashai & N.N. Ambraseys.

  6. Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI v.3 database

    NASA Astrophysics Data System (ADS)

    García-Mayordomo, Julián; Martín-Banda, Raquel; Insua-Arévalo, Juan M.; Álvarez-Gómez, José A.; Martínez-Díaz, José J.; Cabral, João

    2017-08-01

    Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular faults are considered seismogenic sources. Active fault databases are also a very relevant source of information for earth scientists, earthquake engineers and even teachers or journalists. Hence, active fault databases should be updated and thoroughly reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should somehow indicate the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic parameters, such as maximum magnitude and recurrence interval. In this paper we explain how we tackled these issues during the process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote particular attention to describing the scheme devised for classifying the quality and representativeness of the geological evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this information as input for a straightforward rating of the level of reliability of maximum magnitude and recurrence interval fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for proper use in seismic hazard applications or as an informative source for non-specialized users. However, we already envision new improvements for a future update.

  7. Strong correlation between stress drop and peak ground acceleration for recent M1–4 earthquakes in the San Francisco Bay Area

    DOE PAGES

    Trugman, Daniel Taylor; Shearer, Peter M.

    2018-03-06

    Theoretical and observational studies suggest that between-event variability in the median ground motions of larger ( M≥5 ) earthquakes is controlled primarily by the dynamic properties of the earthquake source, such as Brune-type stress drop. Analogous results remain equivocal for smaller events due to the lack of comprehensive and overlapping ground-motion and source-parameter datasets in this regime. Here in this paper, we investigate the relationship between peak ground acceleration (PGA) and dynamic stress drop for a new dataset of 5297 earthquakes that occurred in the San Francisco Bay area from 2002 through 2016. For each event, we measure PGA onmore » horizontal-component channels of stations within 100 km and estimate stress drop from P-wave spectra recorded on vertical-component channels of the same stations. We then develop a nonparametric ground-motion prediction equation (GMPE) applicable for the moderate (M 1–4) earthquakes in our study region, using a mixed-effects generalization of the Random Forest algorithm. We use the Random Forest GMPE to model the joint influence of magnitude, distance, and near-site effects on observed PGA. We observe a strong correlation between dynamic stress drop and the residual PGA of each event, with the events with higher-than-expected PGA associated with higher values of stress drop. The strength of this correlation increases as a function of magnitude but remains significant even for smaller magnitude events with corner frequencies that approach the observable bandwidth of the acceleration records. Mainshock events are characterized by systematically higher stress drop and PGA than aftershocks of equivalent magnitude. Coherent local variations in the distribution of dynamic stress drop provide observational constraints to support the future development of nonergodic GMPEs that account for variations in median stress drop at different source locations.« less

  8. Strong correlation between stress drop and peak ground acceleration for recent M1–4 earthquakes in the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trugman, Daniel Taylor; Shearer, Peter M.

    Theoretical and observational studies suggest that between-event variability in the median ground motions of larger ( M≥5 ) earthquakes is controlled primarily by the dynamic properties of the earthquake source, such as Brune-type stress drop. Analogous results remain equivocal for smaller events due to the lack of comprehensive and overlapping ground-motion and source-parameter datasets in this regime. Here in this paper, we investigate the relationship between peak ground acceleration (PGA) and dynamic stress drop for a new dataset of 5297 earthquakes that occurred in the San Francisco Bay area from 2002 through 2016. For each event, we measure PGA onmore » horizontal-component channels of stations within 100 km and estimate stress drop from P-wave spectra recorded on vertical-component channels of the same stations. We then develop a nonparametric ground-motion prediction equation (GMPE) applicable for the moderate (M 1–4) earthquakes in our study region, using a mixed-effects generalization of the Random Forest algorithm. We use the Random Forest GMPE to model the joint influence of magnitude, distance, and near-site effects on observed PGA. We observe a strong correlation between dynamic stress drop and the residual PGA of each event, with the events with higher-than-expected PGA associated with higher values of stress drop. The strength of this correlation increases as a function of magnitude but remains significant even for smaller magnitude events with corner frequencies that approach the observable bandwidth of the acceleration records. Mainshock events are characterized by systematically higher stress drop and PGA than aftershocks of equivalent magnitude. Coherent local variations in the distribution of dynamic stress drop provide observational constraints to support the future development of nonergodic GMPEs that account for variations in median stress drop at different source locations.« less

  9. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  10. Tilt precursors before earthquakes on the San Andreas fault, California

    USGS Publications Warehouse

    Johnston, M.J.S.; Mortensen, C.E.

    1974-01-01

    An array of 14 biaxial shallow-borehole tiltmeters (at 10-7 radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (>10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  11. Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.

    2012-12-01

    It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Irikura and Miyake (2001, 2011) proposed the characterized source model for strong ground motion prediction, which consists of plural strong ground motion generation area (SMGA, Miyake et al., 2003) patches on the source fault. We obtained the SMGA source models for many events using the empirical Green's function method and found the SMGA size has an empirical scaling relationship with seismic moment. Therefore, the SMGA size can be assumed from that empirical relation under giving the seismic moment for anticipated earthquakes. Concerning to the setting of the SMGAs position, the information of the fault segment is useful for inland crustal earthquakes. For the 1995 Kobe earthquake, three SMGA patches are obtained and each Nojima, Suma, and Suwayama segment respectively has one SMGA from the SMGA modeling (e.g. Kamae and Irikura, 1998). For the 2011 Tohoku earthquake, Asano and Iwata (2012) estimated the SMGA source model and obtained four SMGA patches on the source fault. Total SMGA area follows the extension of the empirical scaling relationship between the seismic moment and the SMGA area for subduction plate-boundary earthquakes, and it shows the applicability of the empirical scaling relationship for the SMGA. The positions of two SMGAs are in Miyagi-Oki segment and those other two SMGAs are in Fukushima-Oki and Ibaraki-Oki segments, respectively. Asano and Iwata (2012) also pointed out that all SMGAs are corresponding to the historical source areas of 1930's. Those SMGAs do not overlap the huge slip area in the shallower part of the source fault which estimated by teleseismic data, long-period strong motion data, and/or geodetic data during the 2011 mainshock. This fact shows the huge slip area does not contribute to strong ground motion generation (10-0.1s). The information of the fault segment in the subduction zone, or historical earthquake source area is also applicable for the construction of SMGA settings for strong ground motion prediction for future earthquakes.

  12. Assessment of teleseismically-determined source parameters for the April 25, 2015 MW 7.9 Gorkha, Nepal earthquake and the May 12, 2015 MW 7.2 aftershock

    NASA Astrophysics Data System (ADS)

    Lay, Thorne; Ye, Lingling; Koper, Keith D.; Kanamori, Hiroo

    2017-09-01

    On April 25, 2015 a major (MW 7.9) thrust earthquake ruptured the deeper portion of the seismogenic plate boundary beneath Nepal along which India is underthrusting Eurasia. An MW 7.2 aftershock on May 12, 2015 extended the eastern, down-dip edge of the rupture. These destructive events caused about 9000 fatalities and 23,000 injuries. The overall rupture zone is about 170 km long and 40-80 km wide. This region of the plate boundary previously experienced a large earthquake in 1833, and in 1934 a larger MS 8.0 event located to the east ruptured all the way to the surface. The Main Himalayan Thrust (MHT) on which slip occurred in 2015 has a very low dip angle of 6°, and the depth of the mainshock slip distribution is very shallow, extending from 7 to 18 km. The shallow dip and depth present challenges for resolving faulting characteristics using teleseismic data. We analyze global teleseismic signals for the mainshock and aftershock to estimate source parameters, evaluating the stability of various procedures used for remotely characterizing kinematics of such shallow faulting. Back-projection and finite-fault slip inversion are used to assess the spatio-temporal rupture history and evidence for frequency-dependent radiation along dip. Slip zone width constraints from near-field geodetic observations are imposed on the preferred models to overcome some limitations of purely teleseismic methods. Radiated energy, stress drop and moment rate functions are determined for both events.

  13. The evaluation of the earthquake hazard using the exponential distribution method for different seismic source regions in and around Ağrı

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrak, Yusuf, E-mail: ybayrak@agri.edu.tr; Türker, Tuğba, E-mail: tturker@ktu.edu.tr

    The aim of this study; were determined of the earthquake hazard using the exponential distribution method for different seismic sources of the Ağrı and vicinity. A homogeneous earthquake catalog has been examined for 1900-2015 (the instrumental period) with 456 earthquake data for Ağrı and vicinity. Catalog; Bogazici University Kandilli Observatory and Earthquake Research Institute (Burke), National Earthquake Monitoring Center (NEMC), TUBITAK, TURKNET the International Seismological Center (ISC), Seismological Research Institute (IRIS) has been created using different catalogs like. Ağrı and vicinity are divided into 7 different seismic source regions with epicenter distribution of formed earthquakes in the instrumental period, focalmore » mechanism solutions, and existing tectonic structures. In the study, the average magnitude value are calculated according to the specified magnitude ranges for 7 different seismic source region. According to the estimated calculations for 7 different seismic source regions, the biggest difference corresponding with the classes of determined magnitudes between observed and expected cumulative probabilities are determined. The recurrence period and earthquake occurrence number per year are estimated of occurring earthquakes in the Ağrı and vicinity. As a result, 7 different seismic source regions are determined occurrence probabilities of an earthquake 3.2 magnitude, Region 1 was greater than 6.7 magnitude, Region 2 was greater than than 4.7 magnitude, Region 3 was greater than 5.2 magnitude, Region 4 was greater than 6.2 magnitude, Region 5 was greater than 5.7 magnitude, Region 6 was greater than 7.2 magnitude, Region 7 was greater than 6.2 magnitude. The highest observed magnitude 7 different seismic source regions of Ağrı and vicinity are estimated 7 magnitude in Region 6. Region 6 are determined according to determining magnitudes, occurrence years of earthquakes in the future years, respectively, 7.2 magnitude was in 158 years, 6.7 magnitude was in 70 years, 6.2 magnitude was in 31 years, 5.7 magnitude was in 13 years, 5.2 magnitude was in 6 years.« less

  14. The evaluation of the earthquake hazard using the exponential distribution method for different seismic source regions in and around Aǧrı

    NASA Astrophysics Data System (ADS)

    Bayrak, Yusuf; Türker, Tuǧba

    2016-04-01

    The aim of this study; were determined of the earthquake hazard using the exponential distribution method for different seismic sources of the Aǧrı and vicinity. A homogeneous earthquake catalog has been examined for 1900-2015 (the instrumental period) with 456 earthquake data for Aǧrı and vicinity. Catalog; Bogazici University Kandilli Observatory and Earthquake Research Institute (Burke), National Earthquake Monitoring Center (NEMC), TUBITAK, TURKNET the International Seismological Center (ISC), Seismological Research Institute (IRIS) has been created using different catalogs like. Aǧrı and vicinity are divided into 7 different seismic source regions with epicenter distribution of formed earthquakes in the instrumental period, focal mechanism solutions, and existing tectonic structures. In the study, the average magnitude value are calculated according to the specified magnitude ranges for 7 different seismic source region. According to the estimated calculations for 7 different seismic source regions, the biggest difference corresponding with the classes of determined magnitudes between observed and expected cumulative probabilities are determined. The recurrence period and earthquake occurrence number per year are estimated of occurring earthquakes in the Aǧrı and vicinity. As a result, 7 different seismic source regions are determined occurrence probabilities of an earthquake 3.2 magnitude, Region 1 was greater than 6.7 magnitude, Region 2 was greater than than 4.7 magnitude, Region 3 was greater than 5.2 magnitude, Region 4 was greater than 6.2 magnitude, Region 5 was greater than 5.7 magnitude, Region 6 was greater than 7.2 magnitude, Region 7 was greater than 6.2 magnitude. The highest observed magnitude 7 different seismic source regions of Aǧrı and vicinity are estimated 7 magnitude in Region 6. Region 6 are determined according to determining magnitudes, occurrence years of earthquakes in the future years, respectively, 7.2 magnitude was in 158 years, 6.7 magnitude was in 70 years, 6.2 magnitude was in 31 years, 5.7 magnitude was in 13 years, 5.2 magnitude was in 6 years.

  15. Tsunami potential assessment based on rupture zones, focal mechanisms and repeat times of strong earthquakes in the major Atlantic-Mediterranean seismic fracture zone

    NASA Astrophysics Data System (ADS)

    Agalos, Apostolos; Papadopoulos, Gerassimos A.; Kijko, Andrzej; Papageorgiou, Antonia; Smit, Ansie; Triantafyllou, Ioanna

    2016-04-01

    In the major Atlantic-Mediterranean seismic fracture zone, extended from Azores islands in the west to the easternmost Mediterranean Sea in the east, including the Marmara and Black Seas, a number of 22 tsunamigenic zones have been determined from historical and instrumental tsunami documentation. Although some tsunamis were produced by volcanic activity or landslides, the majority of them was generated by strong earthquakes. Since the generation of seismic tsunamis depends on several factors, like the earthquake size, focal depth and focal mechanism, the study of such parameters is of particular importance for the assessment of the potential for the generation of future tsunamis. However, one may not rule out the possibility for tsunami generation in areas outside of the 22 zones determined so far. For the Atlantic-Mediterranean seismic fracture zone we have compiled a catalogue of strong, potentially tsunamigenic (focal depth less than 100 km) historical earthquakes from various data bases and other sources. The lateral areas of rupture zones of these earthquakes were determined. Rupture zone is the area where the strain after the earthquake has dropped substantially with respect the strain before the earthquake. Aftershock areas were assumed to determine areas of rupture zones for instrumental earthquakes. For historical earthquakes macroseismic criteria were used such as spots of higher-degree seismic intensity and of important ground failures. For the period of instrumental seismicity, focal mechanism solutions from CMT, EMMA and other data bases were selected for strong earthquakes. From the geographical distribution of seismic rupture zones and the corresponding focal mechanisms in the entire Atlantic-Mediterranean seismic fracture zone we determined potentially tsunamigenic zones regardless they are known to have produced seismic tsunamis in the past or not. An attempt has been made to calculate in each one of such zones the repeat times of strong earthquakes from earthquake catalogue data sets.

  16. Magmatic unrest beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Hill, D.P.; Prejean, S.

    2005-01-01

    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ???57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small (M ??? 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO2, and fumarole gases with elevated 3He/4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  17. Investigation of the relationship between radon anomalıes in deep water resources near Akşehir fault zone and the radial distances of the sources to an earthquake center

    NASA Astrophysics Data System (ADS)

    Gümüş, Ayla; Yalım, Hüseyin Ali

    2018-02-01

    Radon emanation occurs all the rocks and earth containing uranium element. Anomalies in radon concentrations before earthquakes are observed in fault lines, geothermal sources, uranium deposits, volcanic movements. The aim of this study is to investigate the relationship between the radon anomalies in water resources and the radial distances of the sources to the earthquake center. For this purpose, radon concentrations of 9 different deep water sources near Akşehir fault line were determined by taking samples with monthly periods for two years. The relationship between the radon anomalies and the radial distances of the sources to the earthquake center was obtained for the sources.

  18. Biological Indicators in Studies of Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Sidorin, A. Ya.; Deshcherevskii, A. V.

    2012-04-01

    Time series of data on variations in the electric activity (EA) of four species of weakly electric fish Gnathonemus leopoldianus and moving activity (MA) of two cat-fishes Hoplosternum thoracatum and two groups of Columbian cockroaches Blaberus craniifer were analyzed. The observations were carried out in the Garm region of Tajikistan within the frameworks of the experiments aimed at searching for earthquake precursors. An automatic recording system continuously recorded EA and DA over a period of several years. Hourly means EA and MA values were processed. Approximately 100 different parameters were calculated on the basis of six initial EA and MA time series, which characterize different variations in the EA and DA structure: amplitude of the signal and fluctuations of activity, parameters of diurnal rhythms, correlated changes in the activity of various biological indicators, and others. A detailed analysis of the statistical structure of the total array of parametric time series obtained in the experiment showed that the behavior of all animals shows a strong temporal variability. All calculated parameters are unstable and subject to frequent changes. A comparison of the data obtained with seismicity allow us to make the following conclusions: (1) The structure of variations in the studied parameters is represented by flicker noise or even a more complex process with permanent changes in its characteristics. Significant statistics are required to prove the cause-and-effect relationship of the specific features of such time series with seismicity. (2) The calculation of the reconstruction statistics in the EA and MA series structure demonstrated an increase in their frequency in the last hours or a few days before the earthquake if the hypocenter distance is comparable to the source size. Sufficiently dramatic anomalies in the behavior of catfishes and cockroaches (changes in the amplitude of activity variation, distortions of diurnal rhythms, increase in the mismatch of coordination between the activity dynamics of one type of biological indicators) were observed in one case before the November 12, 1987, event at a hypocenter distance of 8 km from the observation point (i.e., the animals were located within the source zone). (3) Changes observed before the earthquakes do not have any specific features and correspond quite well to the variations permanently observed without any relation to the earthquakes. (4) The activity of individual specimens has specific features. This hampers the implication of the biological monitoring. (5) The conclusions made here should not be considered absolute or extrapolated over all cases of observation of the behavior of animals, because the animals were kept under experimental (laboratory) conditions and could be screened from the influence of the stimuli of some modalities.

  19. Stochastic point-source modeling of ground motions in the Cascadia region

    USGS Publications Warehouse

    Atkinson, G.M.; Boore, D.M.

    1997-01-01

    A stochastic model is used to develop preliminary ground motion relations for the Cascadia region for rock sites. The model parameters are derived from empirical analyses of seismographic data from the Cascadia region. The model is based on a Brune point-source characterized by a stress parameter of 50 bars. The model predictions are compared to ground-motion data from the Cascadia region and to data from large earthquakes in other subduction zones. The point-source simulations match the observations from moderate events (M 100 km). The discrepancy at large magnitudes suggests further work on modeling finite-fault effects and regional attenuation is warranted. In the meantime, the preliminary equations are satisfactory for predicting motions from events of M < 7 and provide conservative estimates of motions from larger events at distances less than 100 km.

  20. Forecasting of future earthquakes in the northeast region of India considering energy released concept

    NASA Astrophysics Data System (ADS)

    Zarola, Amit; Sil, Arjun

    2018-04-01

    This study presents the forecasting of time and magnitude size of the next earthquake in the northeast India, using four probability distribution models (Gamma, Lognormal, Weibull and Log-logistic) considering updated earthquake catalog of magnitude Mw ≥ 6.0 that occurred from year 1737-2015 in the study area. On the basis of past seismicity of the region, two types of conditional probabilities have been estimated using their best fit model and respective model parameters. The first conditional probability is the probability of seismic energy (e × 1020 ergs), which is expected to release in the future earthquake, exceeding a certain level of seismic energy (E × 1020 ergs). And the second conditional probability is the probability of seismic energy (a × 1020 ergs/year), which is expected to release per year, exceeding a certain level of seismic energy per year (A × 1020 ergs/year). The logarithm likelihood functions (ln L) were also estimated for all four probability distribution models. A higher value of ln L suggests a better model and a lower value shows a worse model. The time of the future earthquake is forecasted by dividing the total seismic energy expected to release in the future earthquake with the total seismic energy expected to release per year. The epicentre of recently occurred 4 January 2016 Manipur earthquake (M 6.7), 13 April 2016 Myanmar earthquake (M 6.9) and the 24 August 2016 Myanmar earthquake (M 6.8) are located in zone Z.12, zone Z.16 and zone Z.15, respectively and that are the identified seismic source zones in the study area which show that the proposed techniques and models yield good forecasting accuracy.

  1. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    NASA Astrophysics Data System (ADS)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which may be due to that the magnitude and intensity of medium-strong earthquakes are not enough to release the accumulated energy. On the other hand, when the tectonic unit blocking fault movement and its contribution to accumulation of stress play a key role, the earthquake of same magnitude will release higher stress drop.

  2. Recent evolutions of the GEOSCOPE broadband seismic observatory

    NASA Astrophysics Data System (ADS)

    Vallée, Martin; Zigone, Dimitri; Bonaimé, Sébastien; Thoré, Jean-Yves; Pesqueira, Frédéric; Pardo, Constanza; Bernard, Armelle; Stutzmann, Eléonore; Maggi, Alessia; Douet, Vincent; Sayadi, Jihane; Lévêque, Jean-Jacques

    2017-04-01

    The GEOSCOPE observatory provides 35 years of continuous broadband data to the scientific community. The 32 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the GEOSCOPE data center and are automatically transmitted to other data centers (IRIS-DMC and RESIF) and tsunami warning centers. In 2016, a new station has been installed in Wallis and Futuna (FUTU, South-Western Pacific Ocean), and WUS station has been reinstalled in Western China. Data of the stations are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. A scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the GEOSCOPE data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). An important technical work is done to homogenize the data formats of the whole GEOSCOPE database, in order to make easier the data duplication at the IRIS-DMC and RESIF data centers. The GEOSCOPE broadband seismic observatory also provides near-real time information on the World large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method. By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45 minutes after the occurrence of the event. A specific webpage is then generated for each earthquake, which also includes information for a non-seismologist audience (past seismicity, foreshocks and afterschocks, 3D representations of the fault motion…). Examples for recent earthquakes can be seen in http://geoscope.ipgp.fr/index.php/en/data/earthquake-data/latest-earthquakes. This procedure has also been applied to past earthquakes since 1992, resulting in a database of more than 3000 source time functions (http://scardec.projects.sismo.ipgp.fr/).

  3. Estimating the Maximum Magnitude of Induced Earthquakes With Dynamic Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Gilmour, E.; Daub, E. G.

    2017-12-01

    Seismicity in Oklahoma has been sharply increasing as the result of wastewater injection. The earthquakes, thought to be induced from changes in pore pressure due to fluid injection, nucleate along existing faults. Induced earthquakes currently dominate central and eastern United States seismicity (Keranen et al. 2016). Induced earthquakes have only been occurring in the central US for a short time; therefore, too few induced earthquakes have been observed in this region to know their maximum magnitude. The lack of knowledge regarding the maximum magnitude of induced earthquakes means that large uncertainties exist in the seismic hazard for the central United States. While induced earthquakes follow the Gutenberg-Richter relation (van der Elst et al. 2016), it is unclear if there are limits to their magnitudes. An estimate of the maximum magnitude of the induced earthquakes is crucial for understanding their impact on seismic hazard. While other estimates of the maximum magnitude exist, those estimates are observational or statistical, and cannot take into account the possibility of larger events that have not yet been observed. Here, we take a physical approach to studying the maximum magnitude based on dynamic ruptures simulations. We run a suite of two-dimensional ruptures simulations to physically determine how ruptures propagate. The simulations use the known parameters of principle stress orientation and rupture locations. We vary the other unknown parameters of the ruptures simulations to obtain a large number of rupture simulation results reflecting different possible sets of parameters, and use these results to train a neural network to complete the ruptures simulations. Then using a Markov Chain Monte Carlo method to check different combinations of parameters, the trained neural network is used to create synthetic magnitude-frequency distributions to compare to the real earthquake catalog. This method allows us to find sets of parameters that are consistent with earthquakes observed in Oklahoma and find which parameters effect the rupture propagation. Our results show that the stress orientation and magnitude, pore pressure, and friction properties combine to determine the final magnitude of the simulated event.

  4. Mobile Phones and Social Media Empower the Citizen Seismologist

    NASA Astrophysics Data System (ADS)

    Bray, J.; Dashti, S.; Reilly, J.; Bayen, A. M.; Glaser, S. D.

    2014-12-01

    Emergency responders must "see" the effects of an earthquake clearly and rapidly for effective response. Mobile phone and information technology can be used to measure ground motion intensity parameters and relay that information to emergency responders. However, the phone sensor is an imperfect device and has a limited operational range. Thus, shake table tests were performed to evaluate their reliability as seismic monitoring instruments. Representative handheld devices, either rigidly connected to the table or free to move, measured shaking intensity parameters well. Bias in 5%-damped spectral accelerations measured by phones was less than 0.05 and 0.2 [log(g)] during one-dimensional (1-D) and three-dimensional (3-D) shaking in frequencies ranging from 1 Hz to 10 Hz. They did tend to over-estimate the Arias Intensity, but this error declined for stronger motions with larger signal-to-noise ratios. Additionally, much of the data about infrastructure performance and geotechnical effects of an earthquake are lost soon after an earthquake occurs as efforts move to the recovery phase. A better methodology for reliable and rapid collection of perishable hazards data will enhance scientific inquiry and accelerate the building of disaster-resilient cities. Post-earthquake reconnaissance efforts can be aided through the strategic collection and reuse of social media data and other remote sources of information. This is demonstrated through their use following the NSF-sponsored GEER response to the September 2013 flooding in Colorado. With these ubiquitous measurement devices in the hands of the citizen seismologist, a more accurate and rapid portrayal of the damage distribution during an earthquake may be provided to emergency responders and to the public.

  5. Predicting Lg Coda Using Synthetic Seismograms and Media With Stochastic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Stroujkova, A.; Bonner, J. L.; Mayeda, K.

    2005-12-01

    Recent examinations of the characteristics of coda-derived Sn and Lg spectra for yield estimation have shown that the spectral peak of Nevada Test Site (NTS) explosion spectra is depth-of-burial dependent, and that this peak is shifted to higher frequencies for Lop Nor explosions at the same depths. To confidently use coda-based yield formulas, we need to understand and predict coda spectral shape variations with depth, source media, velocity structure, topography, and geological heterogeneity. We present results of a coda modeling study to predict Lg coda. During the initial stages of this research, we have acquired and parameterized a deterministic 6 deg. x 6 deg. velocity and attenuation model centered on the Nevada Test Site. Near-source data are used to constrain density and attenuation profiles for the upper five km. The upper crust velocity profiles are quilted into a background velocity profile at depths greater than five km. The model is parameterized for use in a modified version of the Generalized Fourier Method in two dimensions (GFM2D). We modify this model to include stochastic heterogeneities of varying correlation lengths within the crust. Correlation length, Hurst number and fractional velocity perturbation of the heterogeneities are used to construct different realizations of the random media. We use nuclear explosion and earthquake cluster waveform analysis, as well as well log and geological information to constrain the stochastic parameters for a path between the NTS and the seismic stations near Mina, Nevada. Using multiple runs, we quantify the effects of variations in the stochastic parameters, of heterogeneity location in the crust and attenuation on coda amplitude and spectral characteristics. We calibrate these parameters by matching synthetic earthquake Lg coda envelopes to coda envelopes of local earthquakes with well-defined moments and mechanisms. We generate explosion synthetics for these calibrated deterministic and stochastic models. Secondary effects, including a compensated linear vector dipole source, are superposed on the synthetics in order to adequately characterize the Lg generation. We use this technique to characterize the effects of depth of burial on the coda spectral shapes.

  6. Updating the USGS seismic hazard maps for Alaska

    USGS Publications Warehouse

    Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.

    2015-01-01

    The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.

  7. High Attenuation Rate for Shallow, Small Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Si, Hongjun; Koketsu, Kazuki; Miyake, Hiroe

    2017-09-01

    We compared the attenuation characteristics of peak ground accelerations (PGAs) and velocities (PGVs) of strong motion from shallow, small earthquakes that occurred in Japan with those predicted by the equations of Si and Midorikawa (J Struct Constr Eng 523:63-70, 1999). The observed PGAs and PGVs at stations far from the seismic source decayed more rapidly than the predicted ones. The same tendencies have been reported for deep, moderate, and large earthquakes, but not for shallow, moderate, and large earthquakes. This indicates that the peak values of ground motion from shallow, small earthquakes attenuate more steeply than those from shallow, moderate or large earthquakes. To investigate the reason for this difference, we numerically simulated strong ground motion for point sources of M w 4 and 6 earthquakes using a 2D finite difference method. The analyses of the synthetic waveforms suggested that the above differences are caused by surface waves, which are predominant at stations far from the seismic source for shallow, moderate earthquakes but not for shallow, small earthquakes. Thus, although loss due to reflection at the boundaries of the discontinuous Earth structure occurs in all shallow earthquakes, the apparent attenuation rate for a moderate or large earthquake is essentially the same as that of body waves propagating in a homogeneous medium due to the dominance of surface waves.

  8. Parameter estimation in Probabilistic Seismic Hazard Analysis: current problems and some solutions

    NASA Astrophysics Data System (ADS)

    Vermeulen, Petrus

    2017-04-01

    A typical Probabilistic Seismic Hazard Analysis (PSHA) comprises identification of seismic source zones, determination of hazard parameters for these zones, selection of an appropriate ground motion prediction equation (GMPE), and integration over probabilities according the Cornell-McGuire procedure. Determination of hazard parameters often does not receive the attention it deserves, and, therefore, problems therein are often overlooked. Here, many of these problems are identified, and some of them addressed. The parameters that need to be identified are those associated with the frequency-magnitude law, those associated with earthquake recurrence law in time, and the parameters controlling the GMPE. This study is concerned with the frequency-magnitude law and temporal distribution of earthquakes, and not with GMPEs. TheGutenberg-Richter frequency-magnitude law is usually adopted for the frequency-magnitude law, and a Poisson process for earthquake recurrence in time. Accordingly, the parameters that need to be determined are the slope parameter of the Gutenberg-Richter frequency-magnitude law, i.e. the b-value, the maximum value at which the Gutenberg-Richter law applies mmax, and the mean recurrence frequency,λ, of earthquakes. If, instead of the Cornell-McGuire, the "Parametric-Historic procedure" is used, these parameters do not have to be known before the PSHA computations, they are estimated directly during the PSHA computation. The resulting relation for the frequency of ground motion vibration parameters has an analogous functional form to the frequency-magnitude law, which is described by parameters γ (analogous to the b¬-value of the Gutenberg-Richter law) and the maximum possible ground motion amax (analogous to mmax). Originally, the approach was possible to apply only to the simple GMPE, however, recently a method was extended to incorporate more complex forms of GMPE's. With regards to the parameter mmax, there are numerous methods of estimation, none of which is accepted as the standard one. There is also much controversy surrounding this parameter. In practice, when estimating the above mentioned parameters from seismic catalogue, the magnitude, mmin, from which a seismic catalogue is complete becomes important.Thus, the parameter mmin is also considered as a parameter to be estimated in practice. Several methods are discussed in the literature, and no specific method is preferred. Methods usually aim at identifying the point where a frequency-magnitude plot starts to deviate from linearity due to data loss. Parameter estimation is clearly a rich field which deserves much attention and, possibly standardization, of methods. These methods should be the sound and efficient, and a query into which methods are to be used - and for that matter which ones are not to be used - is in order.

  9. Losses to single-family housing from ground motions in the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.; Leyendecker, E.V.; Roth, R.J.; Petersen, M.D.

    2004-01-01

    The distributions of insured losses to single-family housing following the 1994 Northridge, California, earthquake for 234 ZIP codes can be satisfactorily modeled with gamma distributions. Regressions of the parameters in the gamma distribution on estimates of ground motion, derived from ShakeMap estimates or from interpolated observations, provide a basis for developing curves of conditional probability of loss given a ground motion. Comparison of the resulting estimates of aggregate loss with the actual aggregate loss gives satisfactory agreement for several different ground-motion parameters. Estimates of loss based on a deterministic spatial model of the earthquake ground motion, using standard attenuation relationships and NEHRP soil factors, give satisfactory results for some ground-motion parameters if the input ground motions are increased about one and one-half standard deviations above the median, reflecting the fact that the ground motions for the Northridge earthquake tended to be higher than the median ground motion for other earthquakes with similar magnitude. The results give promise for making estimates of insured losses to a similar building stock under future earthquake loading. ?? 2004, Earthquake Engineering Research Institute.

  10. Observed source parameters for dynamic rupture with non-uniform initial stressand relatively high fracture energy

    USGS Publications Warehouse

    Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,

    2012-01-01

    We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.

  11. Sensitivity analysis of tall buildings in Semarang, Indonesia due to fault earthquakes with maximum 7 Mw

    NASA Astrophysics Data System (ADS)

    Partono, Windu; Pardoyo, Bambang; Atmanto, Indrastono Dwi; Azizah, Lisa; Chintami, Rouli Dian

    2017-11-01

    Fault is one of the dangerous earthquake sources that can cause building failure. A lot of buildings were collapsed caused by Yogyakarta (2006) and Pidie (2016) fault source earthquakes with maximum magnitude 6.4 Mw. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem, Demak and Semarang faults are three closest earthquake sources surrounding Semarang. The ground motion from those three earthquake sources should be taken into account for structural design and evaluation. Most of tall buildings, with minimum 40 meter high, in Semarang were designed and constructed following the 2002 and 2012 Indonesian Seismic Code. This paper presents the result of sensitivity analysis research with emphasis on the prediction of deformation and inter-story drift of existing tall building within the city against fault earthquakes. The analysis was performed by conducting dynamic structural analysis of 8 (eight) tall buildings using modified acceleration time histories. The modified acceleration time histories were calculated for three fault earthquakes with magnitude from 6 Mw to 7 Mw. The modified acceleration time histories were implemented due to inadequate time histories data caused by those three fault earthquakes. Sensitivity analysis of building against earthquake can be predicted by evaluating surface response spectra calculated using seismic code and surface response spectra calculated from acceleration time histories from a specific earthquake event. If surface response spectra calculated using seismic code is greater than surface response spectra calculated from acceleration time histories the structure will stable enough to resist the earthquake force.

  12. Real-time detection and characterization of nuclear explosion using broadband analyses of regional seismic stations

    NASA Astrophysics Data System (ADS)

    Prastowo, T.; Madlazim

    2018-01-01

    This preliminary study aims to propose a new method of real-time detection and characterization of nuclear explosions by analyzing broadband seismic waveforms acquired from a network of regional seismic stations. Signal identification generated by a nuclear test was differentiated from natural sources of either earthquakes or other natural seismo-tectonic events by verifying crucial parameters, namely source depth, type of first motion, and P-wave domination of the broadband seismic wavesunder consideration. We examined and analyzed a recently hypothetical nuclear test performed by the North Koreangovernment that occurred on September 3, 2017 as a vital point to study. From spectral analyses, we found that the source of corresponding signals associated with detonations of the latest underground nuclear test was at a much shallower depth below the surface relatively compared with that of natural earthquakes, the suspected nuclear explosions produced compressional waves with radially directed outward from the source for their first motions, and the waves were only dominated by P-components. The results are then discussed in the context of potential uses of the proposed methodology for human-induced disaster early warning system and/or the need of rapid response purposes for minimizing the disaster risks.

  13. Estimation of vulnerability functions based on a global earthquake damage database

    NASA Astrophysics Data System (ADS)

    Spence, R. J. S.; Coburn, A. W.; Ruffle, S. J.

    2009-04-01

    Developing a better approach to the estimation of future earthquake losses, and in particular to the understanding of the inherent uncertainties in loss models, is vital to confidence in modelling potential losses in insurance or for mitigation. For most areas of the world there is currently insufficient knowledge of the current building stock for vulnerability estimates to be based on calculations of structural performance. In such areas, the most reliable basis for estimating vulnerability is performance of the building stock in past earthquakes, using damage databases, and comparison with consistent estimates of ground motion. This paper will present a new approach to the estimation of vulnerabilities using the recently launched Cambridge University Damage Database (CUEDD). CUEDD is based on data assembled by the Martin Centre at Cambridge University since 1980, complemented by other more-recently published and some unpublished data. The database assembles in a single, organised, expandable and web-accessible database, summary information on worldwide post-earthquake building damage surveys which have been carried out since the 1960's. Currently it contains data on the performance of more than 750,000 individual buildings, in 200 surveys following 40 separate earthquakes. The database includes building typologies, damage levels, location of each survey. It is mounted on a GIS mapping system and links to the USGS Shakemaps of each earthquake which enables the macroseismic intensity and other ground motion parameters to be defined for each survey and location. Fields of data for each building damage survey include: · Basic earthquake data and its sources · Details of the survey location and intensity and other ground motion observations or assignments at that location · Building and damage level classification, and tabulated damage survey results · Photos showing typical examples of damage. In future planned extensions of the database information on human casualties will also be assembled. The database also contains analytical tools enabling data from similar locations, building classes or ground motion levels to be assembled and thus vulnerability relationships derived for any chosen ground motion parameter, for a given class of building, and for particular countries or regions. The paper presents examples of vulnerability relationships for particular classes of buildings and regions of the world, together with the estimated uncertainty ranges. It will discuss the applicability of such vulnerability functions in earthquake loss assessment for insurance purposes or for earthquake risk mitigation.

  14. Constraints on the rupture process of the 17 August 1999 Izmit earthquake

    NASA Astrophysics Data System (ADS)

    Bouin, M.-P.; Clévédé, E.; Bukchin, B.; Mostinski, A.; Patau, G.

    2003-04-01

    Kinematic and static models of the 17 August 1999 Izmit earthquake published in the literature are quite different from one to each other. In order to extract the characteristic features of this event, we determine the integral estimates of the geometry, source duration and rupture propagation of this event. Those estimates are given by the stress glut moments of total degree 2 inverting long period surface wave (LPSW) amplitude spectra (Bukchin, 1995). We draw comparisons with the integral estimates deduced from kinematic models obtained by inversion of strong motion data set and/or teleseismic body wave (Bouchon et al, 2002; Delouis et al., 2000; Yagi and Kukuchi, 2000; Sekiguchi and Iwata, 2002). While the equivalent rupture zone and the eastward directivity are consistent among all models, the LPSW solution displays a strong unilateral character of the rupture associated with a short rupture duration that is not compatible with the solutions deduced from the published models. Using a simple equivalent kinematic model, we reproduce the integral estimates of the rupture process by adjusting a few free parameters controlling the western and eastern parts of the rupture. We show that the LPSW solution strongly suggest that: - There was significant moment released on the eastern segment of the activated fault system during the Izmit earthquake; - The rupture velocity decreases on this segment. We will discuss how these results allow to enlighten the scattering of source process published for this earthquake.

  15. On near-source earthquake triggering

    USGS Publications Warehouse

    Parsons, T.; Velasco, A.A.

    2009-01-01

    When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.

  16. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    NASA Astrophysics Data System (ADS)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the 95%-energy limit of the Husid plots. After appropriate calibration of all parameters involved in the simulations we generated separate stochastic waveforms for both P- and S-waves, and produce the final synthetics by appropriate merging of the two stochastic waveforms. This work has been partly supported by the 3D-SEGMENTS project #1337 funded by EC European Social Fund and the Operational Programme "Education and Lifelong Learning" of the ARISTEIA-I call of the Greek Secretariat of Research and Technology.

  17. Overview of seismic potential in the central and eastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweig, E.S.

    1995-12-31

    The seismic potential of any region can be framed in terms the locations of source zones, the frequency of earthquake occurrence for each source, and the maximum size earthquake that can be expect from each source. As delineated by modern and historical seismicity, the most important seismic source zones affecting the eastern United States include the New Madrid and Wabash Valley seismic zones of the central U.S., the southern Appalachians and Charleston, South Carolina, areas in the southeast, and the northern Appalachians and Adirondacks in the northeast. The most prominant of these in terms of current seismicity and historical seismicmore » moment release in the New Madrid seismic zone, which produced three earthquakes of moment magnitude {ge} 8 in 1811 and 1812. The frequency of earthquake recurrence can be examined using the instrumental record, the historical record, and the geological record. Each record covers a unique time period and has a different scale of temporal resolution and completeness of the data set. The Wabash Valley is an example where the long-term geological record indicates a greater potential than the instrumental and historical records. This points to the need to examine all of the evidence in any region in order to obtain a credible estimates of earthquake hazards. Although earthquake hazards may be dominated by mid-magnitude 6 earthquakes within the mapped seismic source zones, the 1994 Northridge, California, earthquake is just the most recent example of the danger of assuming future events will occur on faults known to have had past events and how destructive such an earthquake can be.« less

  18. A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.

    2015-12-01

    Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.

  19. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    NASA Astrophysics Data System (ADS)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  20. Anomalous Variation in GPS TEC, Land and Ocean Parameters Prior to 3 Earthquakes

    NASA Astrophysics Data System (ADS)

    Yadav, Kunvar; Karia, Sheetal P.; Pathak, Kamlesh N.

    2016-02-01

    The present study reports the analysis of GPS TEC prior to 3 earthquakes ( M > 6.0). The earthquakes are: (1) Loyalty Island (22°36'S, 170°54'E) on 19 January 2009 ( M = 6.6), (2) Samoa Island (15°29'S, 172°5'W) on 30 August 2009 ( M = 6.6), and (3) Tohoku (38°19'N, 142°22'E) on 11 March 2011 ( M = 9.0). In an effort to search for a precursory signature we analysed the land and ocean parameters prior to the earthquakes, namely SLHF (Land) and SST (Ocean). The GPS TEC data indicate an anomalous behaviour from 1-13 days prior to earthquakes. The main purpose of this study was to explore and demonstrate the possibility of any changes in TEC, SST, and SLHF before, during and after the earthquakes which occurred near or beneath an ocean. This study may lead to better understanding of response of land, ocean, and ionosphere parameters prior to seismic activities.

Top