Science.gov

Sample records for eas atmospheric cherenkov

  1. Cerro La Negra EAS Cherenkov array

    NASA Astrophysics Data System (ADS)

    Bello, P.; Garipov, G. K.; Khrenov, B. A.; Martínez, O.; Moreno, E.; Salazar, H.; Silaev, A. A.; Villaseñor, L.; Zepeda, A.

    2001-05-01

    The design of the air Cherenkov detector array for the Cerro La Negra site (elevation 4300 m asl) is presented. The most important features of the array are: autonomous operation of the detectors, low power electronics, laser communication lines and power supplied by solar panels and batteries. The joint operation of the array with water Cherenkov extensive air shower (EAS) particle detectors will allow to obtain information on EAS core positions, primary energies, arrival directions of the primary particles, and temporal profiles of the EAS pulses in air Cherenkov and particle detectors. The study of the EAS development above the shower maximum is among the main goals of this experiment. .

  2. A method of observing cherenkov light from extensive air shower at Yakutsk EAS array

    NASA Astrophysics Data System (ADS)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    Proposed a new method for measuring the cherenkov light from the extensive air shower (EAS) of cosmic rays (CR), which allows to determine not only the primary particle energy and angle of arrival, but also the parameters of the shower in the atmosphere - the maximum depth and "age". For measurements Cherenkov light produced by EAS is proposed to use a ground network of wide-angle telescopes which are separated from each other by a distance 100-300 m depending on the total number of telescopes operating in the coincidence signals, acting autonomously, or includes a detector of the charged components, radio waves, etc. as part of EAS. In a results such array could developed, energy measurement and CR angle of arrival data on the depth of the maximum and the associated mass of the primary particle generating by EAS. This is particularly important in the study of galactic cosmic ray in E> 10^14 eV, where currently there are no direct measurements of the maximum depth of the EAS.

  3. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    NASA Astrophysics Data System (ADS)

    Ong, R. A.; Bhattacharya, D.; Covault, C. E.; Dixon, D. D.; Gregorich, D. T.; Hanna, D. S.; Oser, S.; Québert, J.; Smith, D. A.; Tümer, O. T.; Zych, A. D.

    1996-10-01

    There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.

  4. ChEAS Data: The Chequamegon Ecosystem Atmosphere Study

    DOE Data Explorer

    Davis, Kenneth J. [Penn State

    The Chequamegon Ecosystem-Atmosphere Study (ChEAS) is a multi-organizational research effort studying biosphere/atmosphere interactions within a northern mixed forest in Northern Wisconsin. A primary goal is to understand the processes controlling forest-atmosphere exchange of carbon dioxide and the response of these processes to climate change. Another primary goal is to bridge the gap between canopy-scale flux measurements and the global CO2 flask sampling network. The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

  5. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  6. The major atmospheric gamma-ray imaging Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Garczarczyk, Markus; MAGIC Collaboration

    2011-05-01

    MAGIC is a system of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) for ground-based γ-ray astronomy. During many years, starting with the design phase of the first telescope in 2003, the upgrade of the second telescope in 2008 up to now, novel technologies have been developed, commissioned and continuously improved. Most components and subsystems represent nowadays state of the art techniques and are under consideration to be used in future detectors. The large reflector area, together with small diameter, high quantum efficiency (QE) photomultipliers (PMTs) in combination with an improved trigger and readout system permits an analysis threshold of 25 GeV, the lowest among current IACTs. MAGIC overlaps in energy with the upper end of current satellite experiments and gives the unique opportunity, for the first time, to cross-calibrate ground based versus satellite born detectors. Some selected techniques used in MAGIC, which are in context with this conference, are presented.

  7. Lunar Laser Ranging with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Reitzes, Sarah; Perkins, J.

    2014-01-01

    Lunar laser ranging is the process through which light pulses are bounced off of retroreflectors on the Moon. The travel time of the photons is measured and multiplied by the speed of light to calculate the Earth-Moon distance. The measured Earth-Moon distance can be compared to the Earth-Moon distance predicted by the theory of General Relativity. In that way, possible shortcomings of General Relativity are exposed. The current best measurements are performed by the Apache Point Observatory Lunar Laser-ranging Operation using the ARC 3.5-m Ritchey-Chretien reflector at the Apache Point Observatory yielding errors of less than 1 mm. Upon launching pulses of 3 x 10^17 photons, this telescope yields a one to two photon per pulse return. This study investigates whether the larger surface area of Imaging Atmospheric Cherenkov Telescopes, such as the four 12-m diameter Davies-Cotton dishes that are part of the Very Energetic Radiation Imaging Telescope Array System, allows for a greater photon per pulse return rate and thus a more accurate measurement of the Earth-Moon distance. The feasibility of using these telescopes for lunar laser ranging is assessed, taking into account the poorer optical quality of Davies-Cotton reflectors. It is found that the Davies-Cotton dishes cannot be used as the outgoing beams in lunar laser ranging, so the feasibility of using other telescopes located close to the Very Energetic Radiation Imaging Telescope Array System as outgoing beams is also examined. Other Imaging Atmospheric Cherenkov telescope systems are considered, and the relationship between dish size and the length of time delay present with Davies-Cotton dishes is examined.

  8. Application of imaging to the atmospheric Cherenkov technique

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Hillas, A. M.; Lamb, R. C.; Liebing, D. F.; Mackeown, P. K.; Porter, N. A.; Stenger, V. J.

    1985-01-01

    Turver and Weekes proposed using a system of phototubes in the focal plane of a large reflector to give an air Cherenkov camera for gamma ray astronomy. Preliminary results with a 19 element camera have been reported previously. In 1983 the camera was increased to 37 pixels; it has now been routinely operated for two years. A brief physical description of the camera, its mode of operation, and the data reduction procedures are presented. The Monte Carlo simultations on which these are based on also reviewed.

  9. Large size SiPM matrix for Imaging Atmospheric Cherenkov Telescopes applications

    NASA Astrophysics Data System (ADS)

    Ambrosi, G.; Corti, D.; Ionica, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Schultz, C.

    2016-07-01

    SiPM photo detectors are nowadays commonly used in many applications. For large size telescopes like MAGIC or the future Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) project, a pixel size of some square centimeters is needed. An analog amplifier and sum stage was built and characterized. A large and compact SiPM matrix prototype, with the associated focusing optics, was assembled into a monolithic light detector with an active area of 3 cm2. The performance of the electronics is tailored for Imaging Atmospheric Cherenkov Telescopes (IACT) applications, with fast signal and adequate signal-to-noise (S/N) ratio.

  10. Imprint of the atmospheric attenuation process on electron distribution in EAS

    NASA Astrophysics Data System (ADS)

    Dey, R. K.; Dam, S.; Ray, S.

    2017-04-01

    The lateral density distribution (LDD) of shower particles in an extensive air shower (EAS) experiment is commonly approximated by a particular type of lateral density function (LDF). A standard perception is being used in air shower physics since long, according to which the LDD is assumed to be symmetric about the EAS axis, and the adopted LDF is adequate for the description of the LDD. However, the simulated electron density of a non-vertical EAS is asymmetric. In this work, such asymmetry in the LDD can be qualitatively explained as the atmospheric attenuation suffered by each shower particle. Quantitatively, the asymmetry can be roughly described in terms of a gap length (GL) between the EAS core and the center of the modified density pattern consisting of several equi-density ellipses. This study also validates the use of such a modeling of the atmospheric attenuation on the electromagnetic component in an EAS by investigating the so called GL in simulated density data. A modified LDF is proposed, based on these features of the simulated densities for the purpose of shower reconstruction in EAS experiments. The GL arises from attenuation effect is found to increase with the mass of the shower initiating particle. A different radial dependence of the local age parameter (LAP) is seen, if the modified LDF is applied to simulated electron densities. Primary cosmic-ray mass sensitivity of the LAP is also re-examined.

  11. Multimessenger studies with the VERITAS Atmospheric Cherenkov Telescope

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi; VERITAS Collaboration Collaboration

    2017-01-01

    Synergy between ground-based gamma-ray experiments (imaging Cherenkov telescopes, HAWC), Fermi space telescope, multimessenger facilities such as IceCube, Auger, and the LIGO gravitational wave observatory appear promising in the future. Multimessenger astronomy is an emerging area of study, using different cosmic messengers such as neutrinos, photons, cosmic rays, and gravitational waves to obtain complementary information. The VERITAS observatory has an active multimessenger program, which currently includes studying the connection between very high energy gamma-rays and the astrophysical neutrino flux recently discovered by IceCube. As both gamma-rays and neutrinos are produced in hadronic interactions, a joint study of both messenger channels has the potential for revealing powerful cosmic accelerators. VERITAS will also perform rapid tiling of the sky within the error contours of LIGO/Virgo events, searching for possible electromagnetic counterparts. VERITAS carries out a broad observation program at energies above 0.1 TeV, including the study of Galactic and extragalactic sources, the search for dark matter, and joint studies with HAWC. We present recent results from the VERITAS multimessenger program and discuss the prospects and goals for the future in a CTA era.

  12. Comparison of the Response of the UV and visible Cherenkov Telescopes to the Atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Badran, Hussein

    With atmospheric Cherenkov telescopes the experiment is totally at the mercy of the environment; particularly the atmospheric conditions. The effect of the atmospheric conditions on the Cherenkov light flashes is closely investigated for UV and visible cameras. The telescope response for light generated at different altitudes does not have the same variation with the wind speed or cloud thickness. For both cameras measurements can be carried out up to wind speed ~17 m/s without much change of the atmospheric transmittance from light generated close to the observing level and up to 12 m/s for higher elevation and higher zenith angles. The suggested limit for cloud thickness for both cameras is around 0.5 km. A cloud thickness of ~0.9 km can be tolerated for zenith angles less than 30°. The suggested limits are particularly important whenever the spectrum is to be determined from the data. No real change of the response function with the air pressure and temperature was found. The seasonal variation has a slight effect on the telescope response.

  13. Search for dark matter annihilation in Draco with the Solar Tower Atmospheric Cherenkov Effect Experiment

    NASA Astrophysics Data System (ADS)

    Driscoll, D. D.; Covault, C. E.; Ball, J.; Carson, J. E.; Jarvis, A.; Ong, R. A.; Zweerink, J.; Hanna, D. S.; Kildea, J.; Lindner, T.; Mueller, C.; Ragan, K.; Fortin, P.; Mukherjee, R.; Williams, D. A.; Gingrich, D. M.

    2008-10-01

    For some time, the Draco dwarf spheroidal galaxy has garnered interest as a possible source for the indirect detection of dark matter. Its large mass-to-light ratio and relative proximity to the Earth provide favorable conditions for the production of a detectable flux of gamma rays from dark matter self-annihilation in its core. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an atmospheric Cherenkov telescope located in Albuquerque, NM capable of detecting gamma rays at energies above 100 GeV. We present the results of the STACEE observations of Draco during the 2005 2006 observing season totaling 10.2 hours of live time after cuts. We do not detect a significant gamma-ray signal from Draco, and place an upper limit on a power-law spectrum of (dN)/(dE)|Draco<1.6×10-13((E)/(220GeV))-2.2γs-1cm-2GeV-1 Assuming a smooth Navarro-Frenk-White profile for the dark-matter halo and an annihilation spectrum, we also derive upper limits for the cross-section-velocity product (⟨σv⟩) for weakly interacting massive particles self-annihilation.

  14. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Mazin, D.; Paoletti, R.; Blanch Bigas, O.; Cortina, J.

    2016-04-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light (the so-called Night Sky Background NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99% of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ~ 8%. The selection algorithm was tested on real MAGIC data taken with the current trigger configuration and no γ-like events were found to be lost.

  15. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    NASA Astrophysics Data System (ADS)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  16. PROBING THE PULSAR ORIGIN OF THE ANOMALOUS POSITRON FRACTION WITH AMS-02 AND ATMOSPHERIC CHERENKOV TELESCOPES

    SciTech Connect

    Linden, Tim; Profumo, Stefano

    2013-07-20

    Recent observations by PAMELA, Fermi-LAT, and AMS-02 have conclusively indicated a rise in the cosmic-ray positron fraction above 10 GeV, a feature which is impossible to mimic under the paradigm of secondary positron production with self-consistent Galactic cosmic-ray propagation models. A leading explanation for the positron fraction rise is an additional source of electron-positron pairs, for example one or more mature, energetic, and relatively nearby pulsars. We point out that any one of two well-known nearby pulsars, Geminga and Monogem, can satisfactorily provide enough positrons to reproduce AMS-02 observations. A smoking-gun signature of this scenario is an anisotropy in the arrival direction of the cosmic-ray electrons and positrons, which may be detectable by existing, or future, telescopes. The predicted anisotropy level is, at present, consistent with limits from Fermi-LAT and AMS-02. We argue that the large collecting area of atmospheric Cherenkov telescopes (ACTs) makes them optimal tools for detecting such an anisotropy. Specifically, we show that much of the proton and {gamma}-ray background which affects measurements of the cosmic-ray electron-positron spectrum with ACTs may be controlled in the search for anisotropies. We conclude that observations using archival ACT data could already constrain or substantiate the pulsar origin of the positron anomaly, while upcoming instruments (such as the Cherenkov Telescope Array) will provide strong constraints on the source of the rising positron fraction.

  17. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  18. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Chen, Y. T.; de La Taille, C.; Suomijärvi, T.; Cao, Z.; Deligny, O.; Dulucq, F.; Ge, M. M.; Lhenry-Yvon, I.; Martin-Chassard, G.; Nguyen Trung, T.; Wanlin, E.; Xiao, G.; Yin, L. Q.; Yun Ky, B.; Zhang, L.; Zhang, H. Y.; Zhang, S. S.; Zhu, Z.

    2015-09-01

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  19. Cherenkov Counters

    SciTech Connect

    Barbero, Marlon

    2012-04-19

    When a charged particle passes through an optically transparent medium with a velocity greater than the phase velocity of light in that medium, it emits prompt photons, called Cherenkov radiation, at a characteristic polar angle that depends on the particle velocity. Cherenkov counters are particle detectors that make use of this radiation. Uses include prompt particle counting, the detection of fast particles, the measurement of particle masses, and the tracking or localization of events in very large, natural radiators such as the atmosphere, or natural ice fields, like those at the South Pole in Antarctica. Cherenkov counters are used in a number of different fields, including high energy and nuclear physics detectors at particle accelerators, in nuclear reactors, cosmic ray detectors, particle astrophysics detectors and neutrino astronomy, and in biomedicine for labeling certain biological molecules.

  20. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  1. High energy gamma-ray observations of the Crab Nebula and pulsar with the Solar Tower Atmospheric Cherenkov Effect Experiment

    NASA Astrophysics Data System (ADS)

    Oser, Scott Michael

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a new ground-based atmospheric Cherenkov telescope for gamma-ray astronomy. STACEE uses the large mirror area of a solar heliostat facility to achieve a low energy threshold. A prototype experiment which uses 32 heliostat mirrors with a total mirror area of ~1200 m2 has been constructed. This prototype, called STACEE-32, was used to search for high energy gamma-ray emission from the Crab Nebula and Pulsar. Observations taken between November 1998 and February 1999 yield a strong statistical excess of gamma- like events from the Crab, with a significance of +6.75σ in 43 hours of on-source observing time. No evidence for pulsed emission from the Crab Pulsar was found, and the upper limit on the pulsed fraction of the observed excess was < 5.5% at the 90% confidence level. A subset of the data was used to determine the integral flux of gamma rays from the Crab. We report an energy threshold of Eth = 190 +/- 60 GeV, and a measured integral flux of I(E > Eth) = (2.2 +/- 0.6 +/- 0.2) × 10-10 photons cm-2 s-1. The observed flux is in agreement with a continuation to lower energies of the power law spectrum seen at TeV energies.

  2. ELECTRON–MUON IDENTIFICATION BY ATMOSPHERIC SHOWER AND ELECTRON BEAM IN A NEW EAS DETECTOR CONCEPT

    SciTech Connect

    Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.

    2015-03-10

    We present results demonstrating the time resolution and μ/e separation capabilities of a new concept  for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10–200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.

  3. An astroclimatological study of candidate sites to host an imaging atmospheric Cherenkov telescope in Romania

    NASA Astrophysics Data System (ADS)

    Radu, A. A.; Angelescu, T.; Curtef, V.; Felea, D.; Hasegan, D.; Lucaschi, B.; Manea, A.; Popa, V.; Ralita, I.

    2012-05-01

    This paper presents an astroclimatological study of meteorological data on relative humidity, dew-point temperature, air temperature, wind speed and barometric air pressure recorded at four Romanian locations (Baisoara, Rosia Montana, Semenic, Ceahlau) and the Nordic Optical Telescope (NOT) located at the Observatorio del Roque de Los Muchachos (ORM), on the island of La Palma, Canary Islands, Spain. Long-term trends of microclimates are compared in order to identify site-to-site variations. We performed this analysis as part of a site testing campaign aimed at finding the best location for the establishment of a small Cherenkov telescope in Romania. The conditions at the Romanian sites are compared with those of the Canary Islands considered as a reference. A statistical approach is used for data analysis. Monthly and annual samples are extracted from series of raw data for night-time, day-time and entire-day intervals. For each of these samples, the median values, the standard deviations and the percentages of time when the weather conditions were suitable for the safe operation of a Cherenkov telescope are computed. The distributions of these medians, standard deviations and percentages are analysed in this paper. Significant differences are found between the Romanian sites and the NOT site. The comparison of the Romanian locations indicates Baisoara to be the best site for the establishment of the telescope, closely followed by Rosia Montana. As these two sites are both located in the Apuseni Mountains, we consider this area to be the optimal place for performing astronomical observations in Romania.

  4. Wide-angle cherenkov telescope prototype preliminary data

    NASA Astrophysics Data System (ADS)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    This report presents an observation method of Cherenkov light from extensive air showers (EAS) generated by cosmic rays (CRs) above 10^16eV and preliminary observations. The interest in Cherenkov light differential detectors of EAS is caused by the possibility to measure the depth of cascade maximum, Xmax, and/or the shower age via angular and temporal distributions of the Cherenkov signal. In particular, it was shown using EAS model simulations that the pulse width measured at the periphery of the shower, r > 300 m, at sea level is pronouncedly connected with Xmax. Cherenkov detector is a wide-angle telescope working in coincidence with scintillation detectors, integral and differential Cherenkov detectors Yakutsk complex EAS.

  5. Experimental study of the atmospheric neutrino backgrounds for p{yields}e{sup +}{pi}{sup 0} searches in water Cherenkov detectors

    SciTech Connect

    Mine, S.; Casper, D.; Kropp, W.; Smy, M.; Sobel, H.; Vagins, M.; Alcaraz, J. L.; Andringa, S.; Espinal, X.; Fernandez, E.; Jover, G.; Nova, F.; Rodriguez, A.; Sanchez, F.; Aoki, S.; Asakura, K.; Hara, T.; Moriguchi, Y.; Sekiguchi, M.; Suzuki, A.

    2008-02-01

    The atmospheric neutrino background for proton decay via p{yields}e{sup +}{pi}{sup 0} in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, 3.14x10{sup 5} neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1000 ton water Cherenkov detector (KT). The KT charged-current single {pi}{sup 0} production data are well reproduced by simulation programs of neutrino and secondary hadronic interactions used in the Super-Kamiokande (SK) proton decay search. The obtained p{yields}e{sup +}{pi}{sup 0} background rate by the KT data for SK from the atmospheric neutrinos whose energies are below 3 GeV is 1.63{sub -0.33}{sup +0.42}(stat){sub -0.51}{sup +0.45}(syst)(megaton-year){sup -1}. This result is also relevant to possible future, megaton-scale water Cherenkov detectors.

  6. MACHETE: A transit imaging atmospheric Cherenkov telescope to survey half of the very high energy γ-ray sky

    NASA Astrophysics Data System (ADS)

    Cortina, J.; López-Coto, R.; Moralejo, A.

    2016-01-01

    Current imaging atmospheric Cherenkov telescopes for very high energy γ-ray astrophysics are pointing instruments with a field of view up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5 × 60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Monte Carlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of ˜0.77% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of ˜150 GeV and an angular resolution of ˜0.1°. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other wavelengths.

  7. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    SciTech Connect

    Molina Bueno, Laura

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  8. Cosmic-ray composition measurements and cosmic ray background-free γ -ray observations with Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Neronov, Andrii; Semikoz, Dmitri V.; Vovk, Ievgen; Mirzoyan, Razmik

    2016-12-01

    The muon component of extensive air showers (EAS) initiated by cosmic-ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic-ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic-ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic-ray background in gamma-ray observations. This technique provides a possibility for up to 2 orders of magnitude improvement of sensitivity for γ -ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an order-of-magnitude improvement of sensitivity in the multi-EeV energy band, compared to Pierre Auger Observatory.

  9. On the potential of atmospheric Cherenkov telescope arrays for resolving TeV gamma-ray sources in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Ambrogi, L.; De Oña Wilhelmi, E.; Aharonian, F.

    2016-07-01

    The potential of an array of imaging atmospheric Cherenkov telescopes to detect gamma-ray sources in complex regions has been investigated. The basic characteristics of the gamma-ray instrument have been parameterized using simple analytic representations. In addition to the ideal (Gaussian form) point spread function (PSF), the impact of more realistic non-Gaussian PSFs with tails has been considered. Simulations of isolated point-like and extended sources have been used as a benchmark to test and understand the response of the instrument. The capability of the instrument to resolve multiple sources has been analyzed and the corresponding instrument sensitivities calculated. The results are of particular interest for weak gamma-ray emitters located in crowded regions of the Galactic plane, where the chance of clustering of two or more gamma-ray sources within 1 deg is high.

  10. The History of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Atmospheric Air Cherenkov Telescope Technique

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2013-06-01

    In the recent two decades the ground-based technique of imaging atmosphericescopes has established itself as a powerful new discipline in science. As of today some ˜ 150 sources of gamma rays of very different types, of both galactic and extragalactic origin, have been discovered due to this technique. The study of these sources is providing clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. The current generation of telescopes, despite the young age of the technique, offers a solid performance. The technique is still maturing, leading to the next generation large instrument known under the name Cherenkov Telescope Array. The latter's sensitivity will be an order of magnitude higher than that of the currently best instruments VERITAS, H.E.S.S. and MAGIC. This article is devoted to outlining the milestones in a long history that step-by-step have given shape to this technique and have brought about today's successful source marathon.

  11. Brief history of ground-based very high energy gamma-ray astrophysics with atmospheric air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2014-01-01

    The discovery of the Crab Nebula as the first source of TeV gamma rays in 1989, using the technique of ground-based imaging air Cherenkov telescope, has marked the birthday of observational gamma astronomy in very high energy range. The team led by Trevor Weekes, after twenty years of trial and error, success and misfortune, step-by-step improvements in both the technique and understanding of gamma shower discrimination methods, used the 10 m diameter telescope on Mount Hopkins in Arizona, and succeeded measuring a 9σ signal from the direction of Crab Nebula. As of today over 160 sources of gamma rays of very different types, of both galactic and extra-galactic origin, have been discovered due to this technique. This is a really fast evolving branch in science, rapidly improving our understanding of the most violent and energetic sources and processes in the sky. The study of these sources provides clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. Today's telescopes, despite the young age of the technique, offer a solid performance. The technique is still maturing, leading to the next generation large instrument. This article is devoted to outlining the milestones in a long history that step-by-step have made this technique emerge and have brought about today's successful source hunting.

  12. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy γ-ray sky

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén; Cortina, Juan; Moralejo, Abelardo

    2016-10-01

    Current Cherenkov Telescopes for VHE gamma ray astrophysics are pointing instruments with a field of view up to a few tens of deg2. We propose to build an array of two non-steerable telescopes with a FoV of 5×60 deg2 oriented along the meridian. Roughly half of the sky drifts through this FoV in a year. We have performed a MC simulation to estimate the performance of this instrument, which we dub MACHETE. The sensitivity that MACHETE would achieve after 5 years of operation for every source in this half of the sky is comparable to the sensitivity that a current IACT achieves for a specific source after a 50 h devoted observation. The analysis energy threshold would be 150 GeV and the angular resolution 0.1 deg. For astronomical objects that transit over MACHETE for a specific night, it would achieve an integral sensitivity of 12% of Crab in a night. This makes MACHETE a powerful tool to trigger observations of variable sources at VHE or any other wavelengths.

  13. The arrival time distribution of EAS at Taro

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Kuramochi, H.; Ono, S.; Sakuyama, H.; Suzuki, N.

    The arrival time distribution of EAS has been observed since 1995 at Taro cosmicray laboratory (200m above sea level). The EAS arrays consist of 1m2 and 0.25m2 scintillation detectors, 0.25m2 fast timing counters and ultra fast Cherenkov detectors (UFC). 169 0.25m2 scintillation detectors are arranged in alattice configuration with a unit distance of 1.5m. UFC is placed at 20m from the center of lattice array. The arrival time distribution has been analyzed with distance from EAS core (r=10-60m). One of the results shows that the radius of corvature increases as shower size (Ne), near to the EAS core.

  14. Temporal signatures of the Cherenkov light induced by extensive air showers of cosmic rays detected with the Yakutsk array

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Timofeev, L. V.

    2016-05-01

    We analyze temporal characteristics of signals from the wide field-of-view (WFOV) Cherenkov telescope (CT) detecting extensive air showers (EAS) of cosmic rays (CRs) in coincidence with surface detectors of the Yakutsk array. Our aim is to reveal causal relationships between measured characteristics and physical properties of EAS.

  15. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  16. EAS-BUAP: Lateral Distribution and Performance

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Martinez, O.; Cotzomi, J.; Moreno, E.; Aguilar, S.; Villaseñor, L.

    2003-07-01

    We describe the operation and performance of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays (Eo > 1014eV) after one year of operation. The array is located at the Campus of Puebla University, 2200 m above sea level. It consists of 10 liquid scintillator detectors, each with an active surface of 1 m2 and a detector spacing of 20 m in a square grid. One Auger Water Cherenkov detector is also included as part of the array. In this report we discuss the stability, the calibration and lateral distribution function reconstruction capabilities of the detector array. We also present the analysis of the shower size spectrum. In addition, the main characteristics of this array allow us to use it as an educational and training facility.

  17. Spectrum of energy depositions in the Auger Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto

    1999-08-01

    The measured spectrum of energy depositions in a Water Cherenkov Detector (WCD) prototype for the Pierre Auger Observatory is presented. A WCD (area 10 m2 )is located in the Puebla University campus at a depth of 800 g/cm2 (2200 m above sea level). Differential and integral spectra in a wide energy deposition range (0.5 - 150 of vertical equivalent muons) are presented. The problem of the WCD "self calibration" procedure (by rate of the muon events) is discussed. The characteristic change of the slopes of the differential spectrum at the transition from single muon signals to EAS signals is also discussed. The measured energy deposition spectrum at extreme signals is used to estimate the linearity of the response of the WCD PMTs. Key words: Auger array, water Cherenkov detector, extensive air showers

  18. Relation between gamma-ray family and EAS core: Monte-Carlo simulation of EAS core

    NASA Technical Reports Server (NTRS)

    Yanagita, T.

    1985-01-01

    Preliminary results of Monte-Carlo simulation on Extensive Air Showers (EAS) (Ne=100,000) core is reported. For the first collision at the top of the atmosphere, high multiplicity (high rapidity, density) and a large Pt (1.5GeV average) model is assumed. Most of the simulated cores show a complicated structure.

  19. Bokeh mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Mueller, S. A.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Neise, D.; Neronov, A.; Noethe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2016-08-01

    Segmented imaging reflectors are a great choice for Imaging Atmospheric Cherenkov Telescopes (IACTs). However, the alignment of the individual mirror facets is challenging. We align a segmented reflector by observing and optimizing its Bokeh function. Bokeh alignment can already be done with very little resources and little preparation time. Further, Bokeh alignment can be done anytime, even during the day. We present a first usage of Bokeh alignment on FACT, a 4m IACT on Canary Island La Palma, Spain and further a first Bokeh alignment test on the CTA MST IACT prototype in Brelin Adlershof.

  20. EA 18G Growler Aircraft (EA 18G)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-378 EA-18G Growler Aircraft (EA-18G) As of FY 2017 President’s Budget Defense Acquisition...RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY - Then Year

  1. On Linsley Effect and Electromagnetic Radiation from Large EAS

    NASA Astrophysics Data System (ADS)

    Deb, Manab Jyoti

    The aim of the present work was to study the following aspects of EAS : i) Detection and determination of air showers parameters by measuring the particle densities. ii) Measurement of inclination of shower axis by recording arrival time distribution of shower front particles. iii) Measurement of FWHM of pulses photographed and study of Linsley effect. iv) Characteristics of Cherenkov radiation from air showers. v) Characteristics of low frequency (120 KHz) radio signal from showers. The experiments based on the above investigations were carried out at the Cosmic Ray Research Laboratory, Gauhati University, India, since September 91 to March, 1994. Electromagnetic radiation both optical Cherenkov radiation and radio frequency (120 KHz) as well as pulses associated with extensive air showers (EAS) of energy ranging from 1.5 X 1015ev to 2.1 X 10 18ev and zenith angles 15° < 0 < 60° were selected for the present analysis. The lateral distribution of Cherenkov pulses were assumed to have an exponential form fitted with an exponential law with an exponent reflecting the depth of shower maxima (Xm). The variation of rise time (FWHM) with core distance (R) was studied from pulses photographed. The high field associated with low frequency radio signal (120KHz) and its variation with primary energy (Ep), core distance and zenith angle (0) were observed. The thesis consists of the following five chapters: 1. INTRODUCTION - This chapter contains a brief history of cosmic rays, its composition, development of EAS, emission of electromagnetic radiation from EAS, a brief introduction to the present work including review of the earlier works and aim of the experiment. 2. THEORY - This chapter mainly reviews the theories and numerical calculations. 3. EXPERIMENTAL SET-UP - This chapter describes in detail the instrumentation developed, working principle, calibration etc. 4. DATA COLLECTION AND ANALYSIS - This chapter includes data collection, selection of data for required

  2. Design of a Cherenkov telescope for the measurement of PCR composition above 1 PeV

    NASA Astrophysics Data System (ADS)

    Borisov, A. S.; Galkin, V. I.

    2013-02-01

    The problem of PCR Composition at super high energies is far from being solved. EAS Cherenkov light spatial-angular distribution (CL SAD) can yield important information on the primary mass. In order to use EAS CL SAD for the study of PCR composition one needs a set of imaging telescopes with the appropriate parameters. On the basis of full Monte-Carlo simulations the main features of such telescopes are analyzed for a specific observation level 4km which is typical for the Eastern Pamir mountains.

  3. Camera Development for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  4. Josephson-vortex Cherenkov radiation

    SciTech Connect

    Mints, R.G.; Snapiro, I.B.

    1995-10-01

    We predict the Josephson-vortex Cherenkov radiation of an electromagnetic wave. We treat a long one-dimensional Josephson junction. We consider the wavelength of the radiated electromagnetic wave to be much less than the Josephson penetration depth. We use for calculations the nonlocal Josephson electrodynamics. We find the expression for the radiated power and for the radiation friction force acting on a Josephson vortex and arising due to the Cherenkov radiation. We calculate the relation between the density of the bias current and the Josephson vortex velocity.

  5. EA Shuttle Document Retention Effort

    NASA Technical Reports Server (NTRS)

    Wagner, Howard A.

    2010-01-01

    This slide presentation reviews the effort of code EA at Johnson Space Center (JSC) to identify and acquire databases and documents from the space shuttle program that are adjudged important for retention after the retirement of the space shuttle.

  6. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  7. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  8. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  9. Observation of the reversed Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Duan, Zhaoyun; Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Chen, Xiaodong; Chen, Min; Gong, Yubin

    2017-03-01

    Reversed Cherenkov radiation is the exotic electromagnetic radiation that is emitted in the opposite direction of moving charged particles in a left-handed material. Reversed Cherenkov radiation has not previously been observed, mainly due to the absence of both suitable all-metal left-handed materials for beam transport and suitable couplers for extracting the reversed Cherenkov radiation signal. In this paper, we develop an all-metal metamaterial, consisting of a square waveguide loaded with complementary electric split ring resonators. We demonstrate that this metamaterial exhibits a left-handed behaviour, and we directly observe the Cherenkov radiation emitted predominantly near the opposite direction to the movement of a single sheet electron beam bunch in the experiment. These observations confirm the reversed behaviour of Cherenkov radiation. The reversed Cherenkov radiation has many possible applications, such as novel vacuum electronic devices, particle detectors, accelerators and new types of plasmonic couplers.

  10. Very-High-Energy Astrophysics with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    2016-04-01

    The Cherenkov Telescope Array (CTA) will be a new gamma-ray observatory in the energy band ~30 GeV to ~100 TeV, designed to achieve an order of magnitude improvement in sensitivity over the currently operating imaging atmospheric Cherenkov telescopes. CTA will probe known sources with unprecedented sensitivity, angular resolution, and spectral coverage, with the potential of detecting hundreds of new sources. The CTA Consortium will also conduct a number of Key Science Projects, including a Galactic Plane survey and a survey of one quarter of the extragalactic sky. Data taken by CTA will be accessible by members of the wider astronomical community, for the first time in this energy band. This presentation will give an overview of CTA, and its proposed key science program.Submitted with the CTA Consortium

  11. Recent multiwave Cherenkov generator experiments

    SciTech Connect

    Adler, R.; Richter-Sand, R.; Hacker, F.; Walsh, J.; Arman, M.

    1994-12-31

    The initial operating characteristics of the North Star Research Corporation (NSRC) multiwave generator experiment are discussed. The first radiation from the NSRC apparatus has now been observed and the immediate goal is to optimize the power output by providing a beam which is better matched to the field profile (a thinner beam propagating closer to the vanes). When this has been accomplished a detailed comparison of the performance of MWCG/MWDG (multiwave diffraction generator/multiwave Cherenkov generator) structures with BWO structures of the same interaction length will be undertaken.

  12. Design of a Cherenkov telescope for the measurement of PCR composition above 1 PeV

    NASA Astrophysics Data System (ADS)

    Borisov, A. S.; Galkin, V. I.

    2013-06-01

    The problem of PCR Composition at super high energies is far from being solved.EAS Cherenkov light spatial-angular distribution (CL SAD) can yield important information on the primary mass. In order to use EAS CL SAD for the study of PCR composition one needs a set of imaging telescopes with the appropriate parameters supported by a dense net of fast optical detectors capable of measuring EAS Cherenkov light pulses. On the basis of full Monte-Carlo simulations the pixel size of imaging telescopes is optimized for a specific observation level ˜4km which is typical for the Eastern Pamir mountains. Another goal to be pursued by the new detector array is the search for ultra high energy gamma ray sources and this is where the imaging technique can help a lot. A simple criterion is introduced to recognize gamma-quanta against the proton background and its performance, once again analyzed using simulated events, sets certain limits to the pixel size.

  13. Anomalous Cherenkov spin-orbit sound

    SciTech Connect

    Smirnov, Sergey

    2011-02-15

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  14. 32 CFR 651.34 - EA components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true EA components. 651.34 Section 651.34 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Environmental Assessment § 651.34 EA components. EAs should...

  15. 32 CFR 651.34 - EA components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true EA components. 651.34 Section 651.34 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Environmental Assessment § 651.34 EA components. EAs should...

  16. 32 CFR 651.34 - EA components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false EA components. 651.34 Section 651.34 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Environmental Assessment § 651.34 EA components. EAs should...

  17. 32 CFR 651.34 - EA components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false EA components. 651.34 Section 651.34 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Environmental Assessment § 651.34 EA components. EAs should...

  18. PyFACT: Python and FITS analysis for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Raue, Martin; Deil, Christoph

    2012-12-01

    Ground-based very-high energy (VHE; E>100 GeV) gamma-ray astronomy is growing from being conducted by small teams in closed collaborations into a full-fledged branch of astronomy with open observatories. This is best illustrated by the number of known sources: it increased by one order of magnitude in the past ten years, from 10 in the year 2000 to more than 100 in 2010. It is expected that this trend will continue with the next-generation instrument Cherenkov Telescope Array (CTA). This transformation has a profound impact on the data format and analysis of Imaging Atmospheric Cherenkov Telescopes (IACTs). Up to now, IACT data analysis was an internal task performed by specialists with no public access to the data or software. In the future, a large community of VHE astronomers from different scientific topics should be enabled to work with the data. Ease of use, compatibility, and integration with existing astronomy standards and tools will be key. In this contribution, a collection of Python tools for the analysis of data in FITS format (PyFACT; Python and FITS Analysis for Cherenkov Telescopes) is presented, which connects with existing tools like xspec, sherpa, and ds9. The package is available as open source (https://github.com/mraue/pyfact, comments and contributions welcome). Advantages of the chosen ansatz are discussed and implications for future observatories and data archival are presented.

  19. Investigation of the energy characteristics of EAS muon component with the NEVOD-DECOR setup

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Barbashina, N. S.; Dushkin, L. I.; Kindin, V. V.; Kokoulin, R. P.; Kompaniets, K. G.; Mannocchi, G.; Petrukhin, A. A.; Romanenkova, E. V.; Saavedra, O.; Trinchero, G.; Khomyakov, V. A.; Khokhlov, S. S.; Chernov, D. V.; Shutenko, V. V.; Yurina, E. A.; Yashin, I. I.

    2016-02-01

    Investigations of the energy characteristics of muon component with the increase of the primary cosmic rays energy can be a key to solving ‘muon puzzle’ - the problem of excess of EAS muons (observed in several experiments at high - ALEPH, DELPHI - and ultrahigh energies - DECOR, Pierre Auger Observatory) in comparison with the expected flux. The measurements results of the energy deposit of inclined muon bundles in water depending on the zenith angle and the local density of muons are presented. As a measure of the energy deposit, the total number of photoelectrons registered by PMTs of the Cherenkov water calorimeter NEVOD was used. The local density of muons, which gives an estimate of the energy of primary particles was obtained from the data of coordinate-tracking detector DECOR. The experimental data are compared with the results of calculations based on simulations of the muon component of EAS by means of the CORSIKA code.

  20. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  1. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sadeh, I.; Oya, I.; Schwarz, J.; Pietriga, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  2. THz Cherenkov radiation of Josephson vortex

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2008-01-01

    It is shown that Josephson vortices travelling in sandwich embedded in dielectric media radiate electromagnetic waves with THz frequencies. This phenomenon is caused by the Cherenkov effect and takes place if vortex velocity exceeds the speed of light in dielectric.

  3. Deep Water Cherenkov Light Scatter Meter

    SciTech Connect

    Pappalardo, L; Petta, C.; Russo, G.V.

    2000-12-31

    The relevant parameters for the site choice of an underwater neutrino's telescope are discussed. The in situ measurement of the scattering distribution of the cherenkov light requires a suitable experimental setup. Its main features are described here.

  4. Comparison of absolute intensity between EAS with gamma-families and general EAS at Mount Norikura

    NASA Technical Reports Server (NTRS)

    Mitsumune, T.; Nakatsuka, T.; Nishikawa, K.; Saito, T.; Sakata, M.; Shima, M.; Yamamoto, Y.; Dake, S.; Kawamoto, M.; Kusumose, M.

    1985-01-01

    Gamma-families with total energy greater than 10 TeV, found in the EX chamber which was cooperated with the EAS array were combined with EAS triggered by big bursts. The absolute intensity of the size spectrum of these combined EAS was compared with that of general EAS obtained by AS trigger. The EAS with sizes greater than 2x1 million were always accompanied by gamma-families with sigma E sub gamma H 10 TeV, n sub gamma, H 2 and Emin=3 TeV, although the rate of EAS accompaning such gamma-families decreases rapidly as their sizes decrease.

  5. 47 CFR 11.18 - EAS Designations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emergency messages from sources such as the National Weather Service or local emergency management offices... Designations. (a) National Primary (NP) is a source of EAS Presidential messages. (b) Local Primary (LP) is a... source of EAS State messages. It is part of the State Relay Network and relays National and State...

  6. 47 CFR 11.18 - EAS Designations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... emergency messages from sources such as the National Weather Service or local emergency management offices... Designations. (a) National Primary (NP) is a source of EAS Presidential messages. (b) Local Primary (LP) is a... source of EAS State messages. It is part of the State Relay Network and relays National and State...

  7. 47 CFR 11.31 - EAS protocol.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... originator codes are: Originator ORG code EAS Participant EAS Civil authorities CIV National Weather Service... section. The Event codes must be compatible with the codes used by the NWS Weather Radio Specific Area... Information Processing Standard (FIPS) numbers as described by the U.S. Department of Commerce in...

  8. 47 CFR 11.18 - EAS Designations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... emergency messages from sources such as the National Weather Service or local emergency management offices... Designations. (a) National Primary (NP) is a source of EAS Presidential messages. (b) Local Primary (LP) is a... source of EAS State messages. It is part of the State Relay Network and relays National and State...

  9. 47 CFR 11.18 - EAS Designations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... emergency messages from sources such as the National Weather Service or local emergency management offices... Designations. (a) National Primary (NP) is a source of EAS Presidential messages. (b) Local Primary (LP) is a... source of EAS State messages. It is part of the State Relay Network and relays National and State...

  10. 47 CFR 11.31 - EAS protocol.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... originator codes are: Originator ORG code EAS Participant EAS Civil authorities CIV National Weather Service... section. The Event codes must be compatible with the codes used by the NWS Weather Radio Specific Area... Information Processing Standard (FIPS) numbers as described by the U.S. Department of Commerce in...

  11. 47 CFR 11.18 - EAS Designations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... emergency messages from sources such as the National Weather Service or local emergency management offices... Designations. (a) National Primary (NP) is a source of EAS Presidential messages. (b) Local Primary (LP) is a... source of EAS State messages. It is part of the State Relay Network and relays National and State...

  12. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  13. Photon Detection Systems for Modern Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Britting, A.; Cowie, E.; Eyrich, W.; Hoek, M.; Keri, T.; Lehmann, A.; Montgomery, R.; Uhlig, F.

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particle and their momentum vectors. The ANDA experiment at FAIR and the CLAS 12 experiment and Jefferson Laboratory both plan to use imaging Cherenkov counters for particle identification. CLAS 12 will feature a Ring Imaging CHerenkov counter (RICH), while ANDA plans to construct Cherenkov counters relying on the Detections of Internally Reflected Cherenkov light (DIRC). These detectors require high-rate, single-photon capable light detection systems with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of the rate dependence, cross-talk, time-resolution and position resolution fro a range of commercially available photon detection solutions are presented and evaluated on their applicability to the ANDA and CLAS12 Cherenkov counters.

  14. On-site mirror facet condensation measurements for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dipold, J.; Medina, M. C.; García, B.; Rasztocky, E.; Mancilla, A.; Maya, J.; Larrarte, J. J.; de Souza, V.

    2016-09-01

    The Imaging Atmospheric Cherenkov Technique (IACT) has provided very important discoveries in Very High Energy (VHE) γ-ray astronomy for the last two decades, being exploited mainly by experiments such as H.E.S.S., MAGIC and VERITAS. The same technique will be used by the next generation of γ-ray telescopes, Cherenkov Telescope Array - CTA, which is conceived to be an Observatory composed by two arrays strategically placed in both hemispheres, one in the Northern and one in the Southern. Each site will consist of several tens of Cherenkov telescopes of different sizes and will be equipped with about 10000 m2 of reflective surface. Because of its large size, the reflector of a Cherenkov telescope is composed of many individual mirror facets. Cherenkov telescopes operate without any protective system from weather conditions therefore it is important to understand how the reflective surfaces behave under different environmental conditions. This paper describes a study of the behavior of the mirrors in the presence of water vapor condensation. The operational time of a telescope is reduced by the presence of condensation on the mirror surface, therefore, to control and to monitor the formation of condensation is an important issue for IACT observatories. We developed a method based on pictures of the mirrors to identify the areas with water vapor condensation. The method is presented here and we use it to estimate the time and area two mirrors had condensation when exposed to the environmental conditions in the Argentinean site. The study presented here shows important guidelines in the selection procedure of mirror technologies and shows an innovative monitoring tool to be used in future Cherenkov telescopes.

  15. HAWC: The high altitude water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Goodman, Jordan A.

    2013-02-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed at 4100m above sea level on the Vulcan Sierra Negra near Puebla, Mexico. The HAWC observatory will consist of 250-300 Water Cherenkov Detectors totaling approximately 22,000 m2 of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma-ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals, instrument performance and status of the HAWC observatory will be presented.

  16. Cherenkov TOF PET with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  17. Metamaterials for Cherenkov Radiation Based Particle Detectors

    SciTech Connect

    Tyukhtin, A. V.; Schoessow, P.; Kanareykin, A.; Antipov, S.

    2009-01-22

    Measurement of Cherenkov radiation (CR) has long been a useful technique for charged particle detection and beam diagnostics. We are investigating metamaterials engineered to have refractive indices tailored to enhance properties of CR that are useful for particle detectors and that cannot be obtained using conventional media. Cherenkov radiation in dispersive media with a large refractive index differs significantly from the same effect in conventional detector media, like gases or aerogel. The radiation pattern of CR in dispersive metamaterials presents lobes at very large angles with respect to particle motion. Moreover, the frequency and particle velocity dependence of the radiated energy can differ significantly from CR in a conventional dielectric medium.

  18. Multi-messenger particle astrophysics with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Justin; Cherenkov Telescope Array Collaboration

    2017-01-01

    The Cherenkov Telescope Array (CTA) is a next-generation array of imaging atmospheric Cherenkov telescopes. Building on the success of H.E.S.S., MAGIC, and VERITAS, in an energy range complementary to that of the Fermi Large Area Telescope (LAT), CTA will investigate the particle physics of the cosmos through observations of gamma rays between tens of GeV and several hundred TeV. The observatory is especially well suited for follow-up of transient events detected in other wavelengths and messengers including neutrinos and gravitational waves. CTA will feature one array in each hemisphere for full sky coverage. The largest telescopes will have a 20 GeV energy threshold and will be able to quickly (in less than 50 seconds) slew to transient targets. The excellent effective area of CTA (thousands of times greater than that of the Fermi LAT at 20 GeV) will enable it to provide powerful and unique contributions to multi-messenger particle astrophysics.

  19. The Cherenkov Surface Detector of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Billoir, Pierre

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense "infill" subarray.

  20. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... message was transmitted. The message shall be in the primary language of the EAS Participant and be fully... input. (8) Decoder Programming. Access to decoder programming shall be protected by a lock or...

  1. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... network, or any other source that uses the EAS protocol. (2) Valid codes. There must be a means to... systems and wireless cable systems may upgrade their decoders on an optional basis to include a...

  2. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., satellite, public switched telephone network, or any other source that uses the EAS protocol. (2) Valid..., analog radio and television broadcast stations, analog cable systems and wireless cable systems...

  3. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... network, or any other source that uses the EAS protocol. (2) Valid codes. There must be a means to... systems and wireless cable systems may upgrade their decoders on an optional basis to include a...

  4. 7 CFR 1794.71 - Adoption of an EA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Adoption of an EA. 1794.71 Section 1794.71... Adoption of an EA. RUS may adopt a Federal EA or EIS or a portion thereof as its EA. RUS shall make the EA available and assure that notice is provided in the same manner as if RUS had prepared the EA....

  5. Tachyonic Cherenkov radiation from supernova remnants

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2015-12-01

    The subexponential decay observed in the γ-ray spectral maps of supernova remnants is explained in terms of tachyonic Cherenkov emission from a relativistic electron population. The tachyonic radiation densities of an electronic spinor current are derived, the total density as well as the transversal and longitudinal polarization components, taking account of electron recoil. Tachyonic flux quantization subject to dispersive and dissipative permeabilities is discussed, the matrix elements of the transversal and longitudinal Poynting vectors of the Maxwell-Proca field are obtained, Cherenkov emission angles and radiation conditions are derived. The spectral energy flux of an ultra-relativistic electron plasma is calculated, a tachyonic Cherenkov fit to the high-energy (1 GeV to 30 TeV) γ-ray spectrum of the Crab Nebula is performed, and estimates of the linear polarization degree are given. The spectral tail shows subexponential Weibull decay, which can be modeled with a frequency-dependent tachyon mass in the dispersion relations. Tachyonic flux densities interpolate between exponential and power-law spectral decay, which is further illustrated by Cherenkov fits to the γ-ray spectra of the supernova remnants IC 443 and W44. Subexponential spectral decay is manifested in double-logarithmic spectral maps as curved Weibull or straight power-law slope.

  6. Feasibility study of airborne calibration of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Brown, Anthony M.; Chadwick, Paula M.; Frizzelle, Miranda; Gaug, Markus; Clark, Paul; Graham, Jamie; Armstrong, Thomas

    2016-07-01

    The advances in battery life, flight control software and carbon fibre technology over recent years have made the use of small unmanned aerial vehicles (UAVs) as an airborne calibration platform for astronomical facilities a possibility. This is especially attractive for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). It is envisaged that the CTA will use UAVs to perform a range of calibration routines, with the primary routines being the cross-calibration of the optical throughput for different telescope types, as well as monitoring of the multi-wavelength performance of CTA's telescopes and the characterisation of the atmosphere above CTA. In this contribution, the cross-calibrating performance of an airborne calibration device is described, together with some preliminary test flights to characterise the flight performance of a UAV carrying the calibration payload.

  7. 47 CFR 11.46 - EAS public service announcements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false EAS public service announcements. 11.46 Section...) Organization § 11.46 EAS public service announcements. EAS Participants may use Public Service Announcements or obtain commercial sponsors for announcements, infomercials, or programs explaining the EAS to the......

  8. 47 CFR 11.46 - EAS public service announcements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false EAS public service announcements. 11.46 Section...) Organization § 11.46 EAS public service announcements. EAS Participants may use Public Service Announcements or obtain commercial sponsors for announcements, infomercials, or programs explaining the EAS to the......

  9. 7 CFR 1794.71 - Adoption of an EA.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Adoption of an EA. 1794.71 Section 1794.71... AGRICULTURE (CONTINUED) ENVIRONMENTAL POLICIES AND PROCEDURES Adoption of Environmental Documents § 1794.71 Adoption of an EA. RUS may adopt a Federal EA or EIS or a portion thereof as its EA. RUS shall make the...

  10. 7 CFR 1794.71 - Adoption of an EA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Adoption of an EA. 1794.71 Section 1794.71... AGRICULTURE (CONTINUED) ENVIRONMENTAL POLICIES AND PROCEDURES Adoption of Environmental Documents § 1794.71 Adoption of an EA. RUS may adopt a Federal EA or EIS or a portion thereof as its EA. RUS shall make the...

  11. 7 CFR 1794.71 - Adoption of an EA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Adoption of an EA. 1794.71 Section 1794.71... AGRICULTURE (CONTINUED) ENVIRONMENTAL POLICIES AND PROCEDURES Adoption of Environmental Documents § 1794.71 Adoption of an EA. RUS may adopt a Federal EA or EIS or a portion thereof as its EA. RUS shall make the...

  12. Array for measurement of the EAS pulse temporal structure at distances R>500 m

    NASA Astrophysics Data System (ADS)

    Fernandez, Arturo

    Indications of the existence of temporal structure in the signals of Extensive Air Showers (EAS) of energies 10 greater than 17 eV at core distances of about 500 m (Atrashkevich et al ,1997, J.Phys.G, Nucl. Part. Phys., v.23,p. 237 and papers cited there) and the preliminary analysis of the Auger Water Cherenkov Detector (WCD) signal traces (Fernandez et al, this conference) stimulated us to intensify the temporal signal studies. For this aim we started to construct a hybrid array of one WCD plus an array of seven Air Cherenkov Detectors (ACD) one near the WCD and six in a regular hexagonal network centered on the WCD. Separation between ACDs is of about 750 m. The correlation in the temporal structure of the WCD signals and the position of the maximum obtained from the ACD array is studied. This hybrid array is located at the campus of the University of Puebla which is inside the city. Evidence that such an array can be successfully used to detect EASs with 10 primary energies above 16 eV in conditions of moderate to heavy light pollution environment such as the city of Puebla is presented.

  13. Extensive Air Shower Array at the University of Puebla (EAS-BUAP)

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Martinez, O.; Moreno, E.; Cotzomi, J.; Villaseñor, L.

    2003-06-01

    We describe the design and operation of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays (1016 > Eo > 1014eV). The array is located at the Campus of Puebla University. It consist of 18 liquid scintillator detectors, with an active surface of 1 m2 each and a detector spacing of 20 m in a square grid. One Auger Water Cherenkov detector is also included as part of the array. In this report we discuss the stability, the calibration, the arrival direction and lateral distribution function reconstruction capabilities of the detector array, as derived from the 10 detectors in operation in the first stage. Our results shows that the angular accuracy in arrival direction is less than 5.5° in the range from 20° to 60°. The measurements in the Water Cherenkov Detector show us the possibility to separete electromagnetic and muon component. The main characteristics of the array allow us also to use it as educational and training facility.

  14. Reverse surface-polariton cherenkov radiation

    PubMed Central

    Tao, Jin; Wang, Qi Jie; Zhang, Jingjing; Luo, Yu

    2016-01-01

    The existence of reverse Cherenkov radiation for surface plasmons is demonstrated analytically. It is shown that in a metal-insulator-metal (MIM) waveguide, surface plasmon polaritons (SPPs) excited by an electron moving at a speed higher than the phase velocity of SPPs can generate Cherenkov radiation, which can be switched from forward to reverse direction by tuning the core thickness of the waveguide. Calculations are performed in both frequency and time domains, demonstrating that a radiation pattern with a backward-pointing radiation cone can be achieved at small waveguide core widths, with energy flow opposite to the wave vector of SPPs. Our study suggests the feasibility of generating and steering electron radiation in simple plasmonic systems, opening the gate for various applications such as velocity-selective particle detections. PMID:27477061

  15. HAWC - The High Altitude Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  16. Characterization of coherent Cherenkov radiation source

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.

    2015-01-01

    Engineering formulae for calculation of peak, and spectral brightness of resonant long-range wakefield extractor are given. It is shown that the brightness is dominated by beam density in the slow wave structure and antenna gain of the outcoupling. Far field radiation patterns and brightness of circular and high aspect ratio planar radiators are compared. A possibility to approach diffraction limited brightness is demonstrated. The role of group velocity in designing of the Cherenkov source is analyzed. The approach can be applied for design and characterization of various structure-dominated sources (e.g., wakefield extractors with gratings or dielectrics, or FEL-Cherenkov combined sources) radiating into a free space using an antenna (in microwave to sub-mm wave regions). The high group velocity structures can be also effective as energy dechirpers and for diagnostics of microbunched relativistic electron beams.

  17. RESEARCH NOTES FROM COLLABORATIONS: How to focus a Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2001-04-01

    Cherenkov telescopes image the Cherenkov emission from air showers. A priori, it is not obvious if the `best' images are achieved by measuring Cherenkov photon angles, i.e. focusing the telescope at infinity, or by considering the air shower as an object to be imaged, in which case one might focus the telescope on the central region of the shower. The issue is addressed using shower simulations.

  18. 24 CFR 50.31 - The EA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The EA. 50.31 Section 50.31 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments and Related Reviews § 50.31 The...

  19. 47 CFR 11.31 - EAS protocol.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Participant EAS Civil authorities CIV National Weather Service WXR Primary Entry Point System PEP (e) The... section. The Event codes must be compatible with the codes used by the NWS Weather Radio Specific Area... described in the American National Standards Institute (ANSI) standard, ANSI INCITS 31-2009...

  20. 47 CFR 11.31 - EAS protocol.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Participant EAS Civil authorities CIV National Weather Service WXR Primary Entry Point System PEP (e) The... section. The Event codes must be compatible with the codes used by the NWS Weather Radio Specific Area... described in the American National Standards Institute (ANSI) standard, ANSI INCITS 31-2009...

  1. 47 CFR 11.31 - EAS protocol.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Participant EAS Civil authorities CIV National Weather Service WXR Primary Entry Point System PEP (e) The... section. The Event codes must be compatible with the codes used by the NWS Weather Radio Specific Area... described in the American National Standards Institute (ANSI) standard, ANSI INCITS 31-2009...

  2. 24 CFR 50.31 - The EA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false The EA. 50.31 Section 50.31 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments and Related Reviews § 50.31 The...

  3. 24 CFR 50.31 - The EA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false The EA. 50.31 Section 50.31 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments and Related Reviews § 50.31 The...

  4. 24 CFR 50.31 - The EA.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false The EA. 50.31 Section 50.31 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments and Related Reviews § 50.31 The...

  5. 24 CFR 50.31 - The EA.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false The EA. 50.31 Section 50.31 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments and Related Reviews § 50.31 The...

  6. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  7. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    SciTech Connect

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  8. Sensitivity of a proposed space-based Cherenkov astrophysical-neutrino telescope

    NASA Astrophysics Data System (ADS)

    Neronov, Andrii; Semikoz, Dmitri V.; Anchordoqui, Luis A.; Adams, James H.; Olinto, Angela V.

    2017-01-01

    Neutrinos with energies in the PeV to EeV range produce upgoing extensive air showers when they interact underground close enough to the surface of the Earth. We study the possibility for detection of such showers with a system of very wide field-of-view imaging atmospheric Cherenkov telescopes, named CHANT (Cherenkov from astrophysical neutrinos telescope), pointing down to a strip below the Earth's horizon from space. We find that CHANT provides sufficient sensitivity for the study of the astrophysical neutrino flux in a wide energy range, from 10 PeV to 10 EeV. A space-based CHANT system can discover and study in detail the cosmogenic neutrino flux originating from interactions of ultra-high-energy cosmic rays in the intergalactic medium.

  9. Representations and image classification methods for Cherenkov telescopes

    SciTech Connect

    Malagon, C.; Parcerisa, D. S.; Barrio, J. A.; Nieto, D.

    2008-05-29

    The problem of identifying gamma ray events out of charged cosmic ray background (so called hadrons) in Cherenkov telescopes is one of the key problems in VHE gamma ray astronomy. In this contribution, we present a novel approach to this problem by implementing different classifiers relying on the information of each pixel of the camera of a Cherenkov telescope.

  10. Proposal for Cherenkov Time of Flight Technique with Picosecond Resolution

    SciTech Connect

    S. Majewski; A. Margaryan; L. Tang

    2005-08-05

    A new particle identification device for Jlab 12 GeV program is proposed. It is based on the measurement of time information obtained by means of a new photon detector and time measuring concept. The expected time measurement precision for the Cherenkov time-of-flight detector is about or less than 10 picosecond for Cherenkov radiators with lengths less than 50 cm.

  11. Cherenkov radiation as a serendipitous phenomenon

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.

    2015-05-01

    A brief account is given of P A Cherenkov's Voronezh years, a period during which the future Nobel laureate in physics attended school (in the village of Novaya Chigla near Voronezh) and studied at Voronezh State University. The history of the serendipitous discovery of the radiation which was to be named after him is described and its importance for modern science is discussed. Possible modern approaches are considered to explain — without using the concept of 'cold nuclear synthesis' — some other unexpected experimental results on the nonthermonuclear fusion of light nuclei stimulated by electron beams and by laser and gamma radiations.

  12. 47 CFR 90.761 - EA and Regional licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regional licenses. (a) EA licenses for spectrum blocks listed in Table 2 of § 90.721(b) are available in 175 Economic Areas (EAs) as defined in § 90.7. (b) Regional licenses for spectrum blocks listed...

  13. 47 CFR 90.761 - EA and Regional licenses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regional licenses. (a) EA licenses for spectrum blocks listed in Table 2 of § 90.721(b) are available in 175 Economic Areas (EAs) as defined in § 90.7. (b) Regional licenses for spectrum blocks listed...

  14. 47 CFR 90.761 - EA and Regional licenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regional licenses. (a) EA licenses for spectrum blocks listed in Table 2 of § 90.721(b) are available in 175 Economic Areas (EAs) as defined in § 90.7. (b) Regional licenses for spectrum blocks listed...

  15. 36 CFR 1010.11 - Preparation of an EA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Preparation of an EA. 1010.11... Preparation of an EA. (a) When to prepare. The Trust will begin the preparation of an EA (or require it to be... prepare or require an EA at any time to assist planning and decision-making. (b) Content and format. An...

  16. 47 CFR 11.61 - Tests of EAS procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Tests § 11.61 Tests of EAS.... The time and script content will be developed by State Emergency Communications Committees in cooperation with affected EAS Participants. Script content may be in the primary language of the...

  17. 47 CFR 101.1329 - EA Station license, location, modifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false EA Station license, location, modifications... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multiple Address Systems System Requirements § 101.1329 EA Station license, location, modifications. EA licensees may construct master and remote stations...

  18. 33 CFR 230.10 - Environmental Assessments (EA).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Environmental Assessments (EA..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.10 Environmental Assessments (EA). (a) Purpose. An EA is a brief document which provides sufficient information to the district commander...

  19. 36 CFR 1010.11 - Preparation of an EA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Preparation of an EA. 1010.11... Preparation of an EA. (a) When to prepare. The Trust will begin the preparation of an EA (or require it to be... determines that an EIS is required, then prior to preparation of an EIS, the proposal may be revised in...

  20. 36 CFR 1010.11 - Preparation of an EA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Preparation of an EA. 1010.11... Preparation of an EA. (a) When to prepare. The Trust will begin the preparation of an EA (or require it to be... determines that an EIS is required, then prior to preparation of an EIS, the proposal may be revised in...

  1. 36 CFR 1010.11 - Preparation of an EA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Preparation of an EA. 1010.11... Preparation of an EA. (a) When to prepare. The Trust will begin the preparation of an EA (or require it to be... determines that an EIS is required, then prior to preparation of an EIS, the proposal may be revised in...

  2. 36 CFR 1010.11 - Preparation of an EA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Preparation of an EA. 1010.11... Preparation of an EA. (a) When to prepare. The Trust will begin the preparation of an EA (or require it to be... determines that an EIS is required, then prior to preparation of an EIS, the proposal may be revised in...

  3. 76 FR 8726 - EasTrans, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission EasTrans, LLC; Notice of Filing Take notice that on February 4, 2011, EasTrans, LLC (EasTrans) filed a revised Statement of Operating Conditions (SOC) reflecting...

  4. 47 CFR 11.44 - EAS message priorities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false EAS message priorities. 11.44 Section 11.44 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Organization § 11.44 EAS... sources (NP, LP, SP and SR) and Participating National (PN) sources that remain on the air during...

  5. Signal acquisition in Cherenkov-type diagnostics of electron beams within tokamak facilities

    NASA Astrophysics Data System (ADS)

    Rabiński, Marek; Jakubowski, Lech; Sadowski, Marek J.; Żebrowski, Jarosław; Jakubowski, Marcin J.; Malinowski, Karol; Mirowski, Robert

    2015-09-01

    The paper presents feasibility and design studies of Cherenkov-type probes, a development of the measuring head construction designed for different tokamak devices, and in particular the acquisition of optical signals to a data storage system. In order to lower the energy threshold of the electron detection the authors applied radiators with the highest values of the refractive index. Different radiator materials, such as aluminium nitride and CVD diamond were applied. Several versions of measuring heads and different manipulators, e.g., a movable vacuum-tight shaft or a fast-moving reciprocating probe, were manufactured and used. The practical application of the Cherenkov probes required also a consideration of spectral characteristics of optical fibres and photomultipliers. The Cherenkov radiation, as generated inside the radiators, is lead out through separate fibres (optical cables) to the atmospheric pressure side. The emitted radiation in the blue (near ultraviolet) spectrum range should be collected and delivered through appropriate optical cables to a control room, amplified within photomultipliers and recorded in a digital form. In order to investigate an electron energy distribution the multi-channel probes have also been designed and applied.

  6. The Environment of ``E+A'' Galaxies

    NASA Astrophysics Data System (ADS)

    Zabludoff, Ann I.; Zaritsky, Dennis; Lin, Huan; Tucker, Douglas; Hashimoto, Yasuhiro; Shectman, Stephen A.; Oemler, Augustus; Kirshner, Robert P.

    1996-07-01

    The spectrum of an "E + A" galaxy (Dressier & Gunn) which is dominated by a young stellar component but lacks the emission lines characteristic of any significant, on-going star formation suggests that the galaxy experienced a brief, powerful starburst within the last gigayear (Dressler & Gunn; Couch & Sharples). In past work, this violent star formation history and the detection of these galaxies almost exclusively in distant clusters linked them to the Butcher-Oemler (B-O) effect (Butcher & Oemler) and argued for the influence of cluster environment in the evolution of galaxies. However, no statistical survey of the environments of "E+A"s had ever been made. From 11,113 galaxy spectra in the Las Campanas Redshift Survey (Shectman and coworkers), we have obtained a unique and well-defined sample of 21 nearby "E+A" galaxies with the same spectral characteristics as "E+A"s in distant clusters. These "E+A"s are selected to have the strongest Balmer absorption lines (the average of the equivalent widths of Hβ, γ, δ is >5.5 A) and weakest [O II] emission-line equivalent widths (<2.5 A, which corresponds to a detection of [O II] of less than 2 σ significance) of any of the galaxies in the survey. In contrast to inferences drawn from previous studies, we find that a large fraction (75%) of nearby "E + A "s lie in the field, well outside of clusters and rich groups of galaxies. We conclude that interactions with the cluster environment, in the form of the intracluster medium or cluster potential, are not essential for "E+A" formation and therefore that the presence of these galaxies in distant clusters does not provide strong evidence for the effects of cluster environment on galaxy evolution. If one mechanism is responsible for "E+A" formation, then the observations that "E+A"s exist in the field and that at least five of the 21 in our sample have clear tidal features argue that galaxy-galaxy interactions and mergers are that mechanism. The most likely environments

  7. The High-Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  8. New Electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Feinstein, F.; Bolmont, J.; Delagnes, E.; Gascón, D.; Glicenstein, J.-F.; Nayman, P.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    Very high energy gamma-ray astronomy is now bringing an invaluable contribution to the understanding of violent phenomena in the Universe, as well as the search for exotic physics such as indirect detection of dark matter or a test of Lorentz invariance violation. The current Imaging Arrays of Cherenkov Telescopes (IACT) show that this technique is mature. In Europe, the community is gathering around the Cherenkov Telescope Array consortium, to design and build the next generation ground-based array. It should reach an order of magnitude in sensitivity in a wide energy band, ranging from 10GeV to more than 100TeV. This goal can be achieved with an array of 50-100telescopes of various sizes at various spacings. With about 2000channels per camera, a specific effort has to be made to design front-end electronics with a lower cost and better performances. A gain in cost and performances can be obtained by maximising the integration of the front-end electronics in an ASIC. The amplifiers, analogue memories, digitization and first level buffering can be embedded in the same component. We present here the NECTAr project aiming at building a demonstrator element of a generic camera built around this component.

  9. The High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  10. The High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  11. Performance comparisons between PCA-EA-LBG and PCA-LBG-EA approaches in VQ codebook generation for image compression

    NASA Astrophysics Data System (ADS)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Chou, Jyh-Horng

    2015-11-01

    The aim of this study is to generate vector quantisation (VQ) codebooks by integrating principle component analysis (PCA) algorithm, Linde-Buzo-Gray (LBG) algorithm, and evolutionary algorithms (EAs). The EAs include genetic algorithm (GA), particle swarm optimisation (PSO), honey bee mating optimisation (HBMO), and firefly algorithm (FF). The study is to provide performance comparisons between PCA-EA-LBG and PCA-LBG-EA approaches. The PCA-EA-LBG approaches contain PCA-GA-LBG, PCA-PSO-LBG, PCA-HBMO-LBG, and PCA-FF-LBG, while the PCA-LBG-EA approaches contain PCA-LBG, PCA-LBG-GA, PCA-LBG-PSO, PCA-LBG-HBMO, and PCA-LBG-FF. All training vectors of test images are grouped according to PCA. The PCA-EA-LBG used the vectors grouped by PCA as initial individuals, and the best solution gained by the EAs was given for LBG to discover a codebook. The PCA-LBG approach is to use the PCA to select vectors as initial individuals for LBG to find a codebook. The PCA-LBG-EA used the final result of PCA-LBG as an initial individual for EAs to find a codebook. The search schemes in PCA-EA-LBG first used global search and then applied local search skill, while in PCA-LBG-EA first used local search and then employed global search skill. The results verify that the PCA-EA-LBG indeed gain superior results compared to the PCA-LBG-EA, because the PCA-EA-LBG explores a global area to find a solution, and then exploits a better one from the local area of the solution. Furthermore the proposed PCA-EA-LBG approaches in designing VQ codebooks outperform existing approaches shown in the literature.

  12. The Potential of Spaced-based High-Energy Neutrino Measurements via the Airshower Cherenkov Signal

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.; Mitchell, John W.

    2011-01-01

    Future space-based experiments, such as (Orbiting Wide-angle Light Collectors (OWL) and JEM-EUSO, view large atmospheric and terrestrial neutrino targets. With energy thresholds slightly above 10(exp 19) eV for observing airshowers via air fluorescence, the potential for observing the cosmogenic neutrino flux associated with the GZK effect is limited. However, the forward Cherenkov signal associated with the airshower can be observed at much lower energies. A simulation was developed to determine the Cherenkov signal strength and spatial extent at low-Earth orbit for upward-moving airshowers. A model of tau neutrino interactions in the Earth was employed to determine the event rate of interactions that yielded a tau lepton which would induce an upward-moving airshower observable by a space-based instrument. The effect of neutrino attenuation by the Earth forces the viewing of the Earth's limb to observe the vT-induced Cherenkov airshower signal at above the OWL Cherenkov energy threshold of approximately 10(exp 16.5) eV for limb-viewed events. Furthermore, the neutrino attenuation limits the effective terrestrial neutrino target area to approximately 3 x 10(exp 5) square km at 10(exp 17) eV, for an orbit of 1000 km and an instrumental full Field-of-View of 45 deg. This translates into an observable cosmogenic neutrino event rate of approx. l/year based upon two different models of the cosmogenic neutrino flux, assuming neutrino oscillations and a 10% duty cycle for observation.

  13. Type Determination for SN 2005ea

    NASA Astrophysics Data System (ADS)

    Gal-Yam, A.; Leonard, D. C.

    2005-10-01

    A. Gal-Yam and D. Leonard report for the CCCP: We have observed SN 2005ea (Gray and Lane; IAUC #8600) with the DBSP spectrograph mounted on the Hale 200" telescope at Palomar Observatory on 2005 October 25 UT, under poor conditions. Reduction of the noisy red spectrum shows it is similar to that of SN Ia 1994D around 30 days after maximum light (Filippenko 1997, ARA&A, 35, 309). We therefore tentatively identify this event as a type Ia SN.

  14. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  15. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  16. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    NASA Astrophysics Data System (ADS)

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  17. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  18. Calibration of the Cherenkov telescope array using cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Parsons, R. D.; Hinton, J. A.; Schoorlemmer, H.

    2016-11-01

    Cosmic ray electrons represent a background for gamma-ray observations with Cherenkov telescopes, initiating air-showers which are difficult to distinguish from photon-initiated showers. This similarity, however, and the presence of cosmic ray electrons in every field observed, makes them potentially very useful for calibration purposes. Here we study the precision with which the relative energy scale and collection area/efficiency for photons can be established using electrons for a major next generation instrument such as CTA. We find that variations in collection efficiency on hour timescales can be corrected to better than 1%. Furthermore, the break in the electron spectrum at ∼ 0.9 TeV can be used to calibrate the energy scale at the 3% level on the same timescale. For observations on the order of hours, statistical errors become negligible below a few TeV and allow for an energy scale cross-check with instruments such as CALET and AMS. Cosmic ray electrons therefore provide a powerful calibration tool, either as an alternative to intensive atmospheric monitoring and modelling efforts, or for independent verification of such procedures.

  19. Nonlinear theory of a plasma Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a plasma Cherenkov maser (PCM) propagating the intense relativistic electron beam through a circular waveguide partially filled with a dense annular plasma, is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the slow wave structure. We show that the saturation mechanism of a PCM instablity is a close correspondence in that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. And the optimal conditions in PCM operation are also obtained from performing our nonliear analysis together with computer simulations.

  20. MultiPixel Balloon-borne Air CHerenkov: Detecting Silicon to Iron from 30 TeV to 3PeV

    NASA Astrophysics Data System (ADS)

    Evenson, Paul; Clem, John; Holder, Jamie; Seckel, David; Mulrey, Katherine

    2012-07-01

    A balloon borne high resolution optical camera array (MP BACH) would enable observation of the elemental composition from Si through Fe at energies from roughly 30 TeV - 3 PeV. This would provide an observational link between direct detection techniques and ground-based air-shower detectors. The method exploits direct Cherenkov light produced in the atmosphere as the particle is deflected by the geomagnetic field at altitudes of 40-100km. The amplitude and distortion of the Cherenkov light pool provide event by event estimates of the nuclear charge and rigidity.

  1. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Kimura, Rampei; Tanaka, Takahiro; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-09-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than 100 eV, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  2. Color quench correction for low level Cherenkov counting.

    PubMed

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  3. Electron Beam Diagnostics using Coherent Cherenkov Radiation in Aerogel

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Ruelas, M.

    2009-01-22

    The use of coherent Cherenkov radiation as a diagnostic tool for longitudinal distribution of an electron beam is studied in this paper. Coherent Cherenkov radiation is produced in an aerogel with an index of refraction close to unity. An aerogel spectral properties are experimentally studied and analyzed. This method will be employed for the helical IFEL bunching experiment at Neptune linear accelerator facility at UCLA.

  4. e-A PHYSICS AT A COLLIDER.

    SciTech Connect

    G. T. GARVEY

    2001-01-09

    An electron-nucleus (e-A) collider with center-of-mass energy in excess of 50 GeV per electron-nucleon collision will allow the physics community to obtain unprecedented new knowledge of the partonic structure of nuclei. If reliable information is to be extracted on these partonic densities, it is essential to realize that with our current level of understanding of QCD, momentum transfers to the struck partons greater than 1 GeV/c are necessary. This requirement puts a priority on high center-of-mass energy if partonic densities are to be measured over a wide range. Comparing the partonic structure of the free nucleon to that of bound nucleons and measuring the systematic changes in that structure as a function of nucleon number (A) will provide deeper insight into the origins and dynamics of nuclear binding. In addition, e-A collisions will allow the exploration of partonic densities appreciably higher than is accessible in e-p collisions. An e-A collider will allow one to measure the gluonic structure functions of nuclei down to x {approx} 10{sup -3}, information valuable in its own right and essential to a quantitative understanding of highly relativistic A-A collisions. The time-space evolution of partons can only be investigated by studying the modifications of hard collisions that take place when nuclear targets are employed. In a hard collision the partonic fragments interact, hadronize, and reinteract on their way to the distant detectors without revealing their evolution into the hadrons finally detected. Nuclear targets of differing A place varying amounts of nuclear matter in proximity to the hard collision producing unique information about the quantum fluctuations of incident projectile prior to the collision and on the early evolution of the produced partons. Using charged leptons (e, {mu}) to investigate this physics has been the richest source of information to date and extending the reach of these investigations by the constructing an e -A collider

  5. High-Energy Astrophysics with the High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Pretz, John; HAWC Collaboration

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) observatory, under construction at Sierra Negra in the state of Puebla, Mexico, consists of a 22500 square meter area of water Cherenkov detectors: water tanks instrumented with light-sensitive photomultiplier tubes. The experiment is used to detect energetic secondary particles reaching the ground when a 50 GeV to 100 TeV cosmic ray or gamma ray interacts in the atmosphere above the experiment. By timing the arrival of particles on the ground, the direction of the original primary particle may be resolved with an error of between 1.0 (50 GeV) and 0.1 (10 TeV) degrees. Gamma-ray primaries may be distinguished from cosmic ray background by identifying the penetrating particles characteristic of a hadronic particle shower. The instrument is 10% complete and is performing as expected, with 30% of the channels anticipated by the summer of 2013. HAWC will complement existing Imaging Atmospheric Cherenkov Telescopes and space-based gamma-ray telescopes with its extreme high-energy sensitivity and its large field-of-view. The observatory will be used to study particle acceleration in Pulsar Wind Nebulae, Supernova Remnants, Active Galactic Nuclei and Gamma-ray Bursts. Additionally, the instrument can be used to probe dark matter annihilation in halo and sub-halos of the galaxy. We will present the sensitivity of the HAWC instrument in the context of the main science objectives. We will also present the status of the deployment including first data from the instrument and prospects for the future.

  6. Cherenkov light imaging in astro-particle physics

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments.

  7. Cherenkov imaging and biochemical sensing in vivo during radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao

    While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of

  8. Efficient PCA-driven EAs and metamodel-assisted EAs, with applications in turbomachinery

    NASA Astrophysics Data System (ADS)

    Kyriacou, Stylianos A.; Asouti, Varvara G.; Giannakoglou, Kyriakos C.

    2014-07-01

    This article presents methods to enhance the efficiency of Evolutionary Algorithms (EAs), particularly those assisted by surrogate evaluation models or metamodels. The gain in efficiency becomes important in applications related to industrial optimization problems with a great number of design variables. The development is based on the principal components analysis of the elite members of the evolving EA population, the outcome of which is used to guide the application of evolution operators and/or train dependable metamodels/artificial neural networks by reducing the number of sensory units. Regarding the latter, the metamodels are trained with less computing cost and yield more relevant objective function predictions. The proposed methods are applied to constrained, single- and two-objective optimization of thermal and hydraulic turbomachines.

  9. Expected performance of the ASTRI mini-array in the framework of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Di Pierro, F.; Bigongiari, C.; Stamerra, A.; Vallania, P.; ASTRI Collaboration; CTA Consortium, the

    2016-05-01

    The Cherenkov Telescope Array (CTA) Observatory is a world-wide project for the ground-based study of the sources of the highest energy photons. By adopting telescopes of three different size categories it will cover the wide energy range from tens of GeV up to hundreds of TeV, limited only by the source physical properties and the gamma absorption by the extragalactic background light. The full sky coverage will be assured by two arrays, one in each hemisphere. An array of small size telescopes (SSTs), covering the highest energy region (3-100 TeV), the region most flux limited for current imaging atmospheric Cherenkov telescopes, is planned to be deployed at the southern CTA site in the first phase of the CTA project. The ASTRI collaboration has developed a prototype of a dual mirror SST equipped with a SiPM-based focal plane (ASTRI SST-2M) and has proposed to install a mini-array of nine of such telescopes at the CTA southern site (the ASTRI mini-array). In order to study the expected performance and the scientific capabilities of different telescope configurations, full Monte Carlo (MC) simulations of the shower development in the atmosphere for both gammas and hadronic background have been performed, followed by detailed simulations of the telescopes. In this work the expected performance of the ASTRI mini-array in terms of sensitivity, angular and energy resolution are presented and discussed.

  10. Electromagnetic field strength levels surrounding electronic article surveillance (EAS) systems.

    PubMed

    Harris, C; Boivin, W; Boyd, S; Coletta, J; Kerr, L; Kempa, K; Aronow, S

    2000-01-01

    Electronic article surveillance (EAS) is used in many applications throughout the world to prevent theft. EAS systems produce electromagnetic (EM) energy around exits to create an EM interrogation zone through which protected items must pass before leaving the establishment. Specially designed EAS tags are attached to these items and must either be deactivated or removed prior to passing through the EAS EM interrogation zone to prevent the alarm from sounding. Recent reports in the scientific literature have noted the possibility that EM energy transmitted by EAS systems may interfere with the proper operation of sensitive electronic medical devices. The Food and Drug Administration has the regulatory responsibility to ensure the safety and effectiveness of medical devices. Because of the possibility of electromagnetic interference (EMI) between EAS systems and electronic medical devices, in situ measurements of the electric and magnetic fields were made around various types of EAS systems. Field strength levels were measured around four types of EAS systems: audio frequency magnetic, pulsed magnetic resonant, radio frequency, and microwave. Field strengths from these EAS systems varied with magnetic fields as high as 1073.6 Am(-1) (in close proximity to the audio frequency magnetic EAS system towers), and electric fields up to 23.8 Vm(-1) (in close proximity to the microwave EAS system towers). Medical devices are only required to withstand 3 Vm(-1) by the International Electrotechnical Commission's current medical device standards. The modulation scheme of the signal transmitted by some types of EAS systems (especially the pulsed magnetic resonant) has been shown to be more likely to cause EMI with electronic medical devices. This study complements other work in the field by attaching specific characteristics to EAS transmitted EM energy. The quantitative data could be used to relate medical device EMI with specific field strength levels and signal waveforms

  11. Sensivity studies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  12. 47 CFR 101.1311 - Initial EA license authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Initial EA license authorization. 101.1311 Section 101.1311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... EA license authorization. (a) Winning bidders must file an application (FCC Form 601) for an...

  13. 47 CFR 101.1327 - Renewal expectancy for EA licensees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Renewal expectancy for EA licensees. 101.1327 Section 101.1327 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... expectancy for EA licensees. (a) A renewal applicant shall receive a renewal expectancy at the end of...

  14. 47 CFR 90.904 - Aggregation of EA licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Aggregation of EA licenses. 90.904 Section 90.904 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... Service § 90.904 Aggregation of EA licenses. The Commission will license each Spectrum Block A through...

  15. 28 CFR 91.64 - Supplemental EA or EIS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Supplemental EA or EIS. 91.64 Section 91.64 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) GRANTS FOR CORRECTIONAL FACILITIES... Supplemental EA or EIS. (a) OJP's duty to supplement. OJP shall prepare supplements to either...

  16. Draft Genome Sequence of Rice Isolate Pseudomonas chlororaphis EA105

    PubMed Central

    McCully, Lucy M.; Bitzer, Adam S.; Spence, Carla A.; Bais, Harsh P.

    2014-01-01

    Pseudomonas chlororaphis EA105, a strain isolated from rice rhizosphere, has shown antagonistic activities against a rice fungal pathogen, and could be important in defense against rice blast. We report the draft genome sequence of EA105, which is an estimated size of 6.6 Mb. PMID:25540352

  17. 47 CFR 11.11 - The Emergency Alert System (EAS).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Video interrupt must cause all channels that carry programming to flash for the duration of the EAS... transmission of data such as interactive games. Wireless Cable Systems (BRS/EBS STATIONS) System Size and... all channels that carry programming to flash for the duration of the EAS emergency message. The...

  18. 47 CFR 11.11 - The Emergency Alert System (EAS).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... all channels that carry programming to flash for the duration of the EAS emergency message. The audio... as interactive games.] Wireless Cable Systems (BRS/EBS Stations) Wireless cable systems are subject... to flash for the duration of the EAS emergency message. The audio alert must give the channel...

  19. 7 CFR 1794.23 - Proposals normally requiring an EA.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... water and waste programs. An EA shall be prepared for applications for financial assistance for all... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or...

  20. 7 CFR 1794.23 - Proposals normally requiring an EA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... water and waste programs. An EA shall be prepared for applications for financial assistance for all... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or...

  1. Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    NASA Technical Reports Server (NTRS)

    Antonov, R. A.; Galkin, V. I.; Hein, L. A.; Ivanenko, I. P.; Kanevsky, B. L.; Kuzmin, V. A.

    1985-01-01

    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M.

  2. A Major Upgrade of the H.E.S.S. Cherenkov Cameras

    NASA Astrophysics Data System (ADS)

    Lypova, Iryna; Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-03-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in Namibia. It was built to detect Very High Energy (VHE, >100 GeV) cosmic gamma rays, and consists of four 12 m diameter Cherenkov telescopes (CT1-4), built in 2003, and a larger 28 m telescope (CT5), built in 2012. The larger mirror surface of CT5 permits to lower the energy threshold of the array down to 30 GeV. The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Technical solutions forseen for the next-generation Cherenkov Telescope Array (CTA) observatory have been introduced, most notably the readout is based on the NECTAr analog memory chip. The camera control subsystems and the control software framework also pursue an innovative design, increasing the camera performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 will upgraded in Fall 2016. Together they will assure continuous operation of H.E.S.S at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded H.E.S.S. camera.

  3. A versatile digital camera trigger for telescopes in the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Schwanke, U.; Shayduk, M.; Sulanke, K.-H.; Vorobiov, S.; Wischnewski, R.

    2015-05-01

    This paper describes the concept of an FPGA-based digital camera trigger for imaging atmospheric Cherenkov telescopes, developed for the future Cherenkov Telescope Array (CTA). The proposed camera trigger is designed to select images initiated by the Cherenkov emission of extended air showers from very-high energy (VHE, E > 20 GeV) photons and charged particles while suppressing signatures from background light. The trigger comprises three stages. A first stage employs programmable discriminators to digitize the signals arriving from the camera channels (pixels). At the second stage, a grid of low-cost FPGAs is used to process the digitized signals for camera regions with 37 pixels. At the third stage, trigger conditions found independently in any of the overlapping 37-pixel regions are combined into a global camera trigger by few central FPGAs. Trigger prototype boards based on Xilinx FPGAs have been designed, built and tested and were shown to function properly. Using these components a full camera trigger with a power consumption and price per channel of about 0.5 W and 19 €, respectively, can be built. With the described design the camera trigger algorithm can take advantage of pixel information in both the space and the time domain allowing, for example, the creation of triggers sensitive to the time-gradient of a shower image; the time information could also be exploited to online adjust the time window of the acquisition system for pixel data. Combining the results of the parallel execution of different trigger algorithms (optimized, for example, for the lowest and highest energies, respectively) on each FPGA can result in a better response over all photons energies (as demonstrated by Monte Carlo simulation in this work).

  4. Status of the array control and data acquisition system for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Füßling, Matthias; Oya, Igor; Balzer, Arnim; Berge, David; Borkowski, Jerzy; Conforti, Vito; Colomé, Josep; Lindemann, Rico; Lyard, Etienne; Melkumyan, David; Punch, Michael; Schwanke, Ullrich; Schwarz, Joseph; Tanci, Claudio; Tosti, Gino; Wegner, Peter; Wischnewski, Ralf; Weinstein, Amanda

    2016-08-01

    The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory using the atmospheric Cherenkov technique. The CTA instrument will allow researchers to explore the gamma-ray sky in the energy range from 20 GeV to 300 TeV. CTA will comprise two arrays of telescopes, one with about 100 telescopes in the Southern hemisphere and another smaller array of telescopes in the North. CTA poses novel challenges in the field of ground-based Cherenkov astronomy, due to the demands of operating an observatory composed of a large and distributed system with the needed robustness and reliability that characterize an observatory. The array control and data acquisition system of CTA (ACTL) provides the means to control, readout and monitor the telescopes and equipment of the CTA arrays. The ACTL system must be flexible and reliable enough to permit the simultaneous and automatic control of multiple sub-arrays of telescopes with a minimum effort of the personnel on-site. In addition, the system must be able to react to external factors such as changing weather conditions and loss of telescopes and, on short timescales, to incoming scientific alerts from time-critical transient phenomena. The ACTL system provides the means to time-stamp, readout, filter and store the scientific data at aggregated rates of a few GB/s. Monitoring information from tens of thousands of hardware elements need to be channeled to high performance database systems and will be used to identify potential problems in the instrumentation. This contribution provides an overview of the ACTL system and a status report of the ACTL project within CTA.

  5. CLASSiC: Cherenkov light detection with silicon carbide

    NASA Astrophysics Data System (ADS)

    Adriani, Oscar; Albergo, Sebastiano; D'Alessandro, Raffaello; Lenzi, Piergiulio; Sciuto, Antonella; Starodubtsev, Oleksandr; Tricomi, Alessia

    2017-02-01

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  6. Detection of tau neutrinos by imaging air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  7. Improved Detection of Cherenkov Radiation using Wavelength-Shifting Paints

    NASA Astrophysics Data System (ADS)

    Schmookler, Barak; Ou, Longwu

    2014-03-01

    Photomultiplier Tubes (PMTs) are often used to detect Cherenkov radiation in accelerator-based physics experiments. Since the Cherenkov spectrum is inversely proportional to the square of the photon's wavelength, PMTs with relatively good quantum efficiencies in the ultraviolet region can produce on average a higher number of photoelectrons. The application of certain paints, which absorb light at ultraviolet wavelengths and emit in the visible spectrum, to the surface of some PMTs allows for better sampling of the Cherenkov spectrum. The effects of various wavelength-shifting (WLS) paints designed by Eljen Technologies were tested on ET Enterprises, Model: 9390KB PMTs. Using a 106Ru β-source, Cherenkov light was produced in disks of fused silica. The charge spectrums of the PMTs were measured before and after application of the paint. The average number of photoelectrons produced from the Cherenkov radiation could be determined by knowing the value of the single-photoelectron peak and the mean of the charge spectrum. Four paints were tested, and the gain in the number photoelectrons produced varied from 10-35% for the different paints. Work Conducted at Thomas Jefferson National Accelerator Facility.

  8. INSTRUMENTS AND METHODS OF INVESTIGATION: Vavilov-Cherenkov amplifiers with irregular electrodynamic structures

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yurii V.; Kravchenko, Viktor F.; Kuraev, Aleksandr A.

    2004-06-01

    Optimal control theory-based methods for improving the efficiency of Cherenkov microwave amplifiers with irregular electrodynamic structures are reviewed. The physics of optimal processes in amplifiers and oscillators with Cherenkov- and combined-type interactions is discussed.

  9. Spin-Cherenkov effect and magnonic Mach cones

    NASA Astrophysics Data System (ADS)

    Yan, Ming; Kákay, Attila; Andreas, Christian; Hertel, Riccardo

    2013-12-01

    We report on the Cherenkov-type excitation of spin waves (SWs) in ferromagnets. Our micromagnetic simulations show that a localized magnetic field pulse moving sufficiently fast along the surface of a ferromagnet generates a SW boom, with a Mach-type cone of propagating wave fronts. The SWs are formed when the velocity of the source exceeds the propagation speed of SWs. Unlike the single cone of the usual Cherenkov effect, we find that the magnetic Mach cone consists of two wave fronts with different wave numbers. In patterned thin strips, this magnetic analog of the Cherenkov effect should enable the excitation of SWs with well-defined and velocity-dependent frequency. It thereby provides a promising route towards tunable SW generation, with important potential for applications in magnonic devices.

  10. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    SciTech Connect

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillation light yield was measured to be(1.01±0.12)×103photons/MeV.

  11. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be(1.01±0.12)×103photons/MeV.« less

  12. The High-Altitude Water Cherenkov Observatory: First Light

    NASA Astrophysics Data System (ADS)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  13. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE PAGES

    Adli, E.; Gessner, S. J.; Corde, S.; ...

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  14. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Brown, A. M.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; de Frondat, F.; Dournaux, J.-L.; Dumas, D.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jégouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.

    2016-07-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is 0:4 m in diameter and has 2048 pixels; each pixel has a 0:2° angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  15. 47 CFR 11.55 - EAS operation during a State or Local Area emergency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false EAS operation during a State or Local Area... SYSTEM (EAS) Emergency Operations § 11.55 EAS operation during a State or Local Area emergency. (a) The EAS may be activated at the State and Local Area levels by EAS Participants at their discretion...

  16. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Yoshiki; Katsuya, Ryoichi; Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao; Tajima, Norio; Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3 ×1015 eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10-100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  17. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    atmospheric muons, that is needed to asses a reference model of the through-target integrated flux. Here we describe our plans for the production of a Cherenkov telescope with suitable characteristics for installation in the summit zone of Etna volcano.

  18. MARS - CheObs ed. -- A flexible Software Framework for future Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Dorner, D.

    2010-04-01

    In gamma-ray astronomy, a new ground-based project named DWARF (Dedicated multiWavelength Agn Research Facility) is entering the field. It is a Cherenkov telescope project aimed at long-term monitoring of the brightest AGNs in the TeV energy range. One of the former HEGRA telescopes is being refurbished and upgraded with a Geigermode-APD camera. It is planned to be operated as a robotic telescope on the Canary Island of La Palma. Using new technologies, an improvement in sensitivity and an energy threshold of 400GeV are expected. Future plans foresee more small Cherenkov telescopes around the globe enabling for the first time 24 h monitoring in the VHE range. Long-term observations of the brightest AGNs provide the possibility to search for orbital modulation of blazar emission due to super-massive black hole binaries, to study the statistics of flares and their physical origin, and to correlate the data with corresponding data from the neutrino observatory IceCube to search for evidence of hadronic emission processes. For this project, a flexible and user friendly software package is available: Modular Analysis and Reconstruction Software - Cherenkov Observatory edition (MARS - CheObs ed.). The package provides a framework for any event-based analysis. For the application in the Imaging Air Cherenkov Technique, various methods and algorithms are available. Currently, it is being used for the MAGIC telescope. To allow for automatic analysis, MARS - CheObs ed. includes an automation concept which allows not only for automatic processing of the data, but also for automatic production of simulated data. For the DWARF project, a simulation program (ceres) has been developed and included in the software package. Using this, a design study for the technical upgrades of the telescope was performed. The simulation of the showers in the atmosphere is performed using the CORSIKA package. The output of this is fed into the telescope simulation ceres. Proper simulations are

  19. Lorentz-invariant formulation of Cherenkov radiation by tachyons

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1972-01-01

    Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.

  20. Light concentrator of the wide field of view Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Sheng, Xi Yi; Liao, Bo Lin

    2016-10-01

    The Wide Field of View Cherenkov Telescope (WFCT) is mainly constituted by optical reflector and focal-plane photomultiplier (PMT) array camera. In order to avoid loss of Cherenkov signal resulting from the dead area between circular PMT tubes and invalid fringe of each PMT, the light concentrator used as front window of PMT is considered to improve detective efficiency. Basing on the edge-ray principle and features of WFCT, several light concentrators are designed and simulated with ZEMAX. The result shows that the hollow hexahedral compound parabolic concentrator (hex-CPC) has good performance in collecting light. Moreover, the samples of the hollow hexahedral CPC have been manufactured and tested.

  1. Cherenkov Radiation from Jets in Heavy-ion Collisions

    SciTech Connect

    Koch, Volker; Majumder, Abhijit; Wang, Xin-Nian

    2005-07-26

    The possibility of Cherenkov-like gluon bremsstrahlung in dense matter is studied. We point out that the occurrence of Cherenkov radiation in dense matter is sensitive to the presence of partonic bound states. This is illustrated by a calculation of the dispersion relation of a massless particle in a simple model in which it couples to two different massive resonance states. We further argue that detailed spectroscopy of jet correlations can directly probe the index of refraction of this matter, which in turn will provide information about the mass scale of these partonic bound states.

  2. On the use of Cherenkov Telescopes for outer Solar system body occultations

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2014-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) are arrays of very large optical telescopes that are well-suited for rapid photometry of bright sources. I investigate their potential in observing stellar occultations by small objects in the outer Solar system, Transjovian Objects (TJOs). These occultations cast diffraction patterns on the Earth. Current IACT arrays are capable of detecting objects smaller than 100 m in radius in the Kuiper Belt and 1 km radius out to 5000 au. The future Cherenkov Telescope Array (CTA) will have even greater capabilities. Because the arrays include several telescopes, they can potentially measure the speeds of TJOs without degeneracies, and the sizes of the TJOs and background stars. I estimate the achievable precision using a Fisher matrix analysis. With CTA, the precisions of these parameter estimations will be as good as a few per cent. I consider how often detectable occultations occur by members of different TJO populations, including Centaurs, Kuiper Belt Objects (KBOs), Oort Cloud objects, and satellites and Trojans of Uranus and Neptune. The great sensitivity of IACT arrays means that they likely detect KBO occultations once every O(10) hours when looking near the ecliptic. IACTs can also set useful limits on many other TJO populations.

  3. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  4. The single mirror small size telescope (SST-1M) of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; WiÈ©cek, M.; Zagdański, A.

    2016-07-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). The CTA south array will be composed of about 100 telescopes, out of which about 70 are of SST class, which are optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV. The SST-1M implements a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light produced in atmospheric showers is focused onto a 88 cm wide hexagonal photo-detection plane, composed of 1296 custom designed large area hexagonal silicon photomultipliers (SiPM) and a fully digital readout and trigger system. The SST-1M camera has been designed to provide high performance in a robust as well as compact and lightweight design. In this contribution, we review the different steps that led to the realization of the telescope prototype and its innovative camera.

  5. Microsecond Time Resolution Optical Photometry using a H.E.S.S. Cherenkov Telescope

    SciTech Connect

    Deil, Christoph; Domainko, Wilfried; Hermann, German

    2008-02-22

    We have constructed an optical photometer with microsecond time resolution, which is currently being operated on one of the H.E.S.S. telescopes. H.E.S.S. is an array of four Cherenkov telescopes, each with a 107 m{sup 2} mirror, located in the Khomas highland in Namibia. In its normal mode of operation H.E.S.S. observes Cherenkov light from air showers generated by very high energy gamma-rays in the upper atmosphere. Our detector consists of seven photomultipliers, one in the center to record the lightcurve from the target and six concentric photomultipliers as a veto system to reject disturbing signals e.g. from meteorites or lightning at the horizon. The data acquisition system has been designed to continuously record the signals with zero deadtime. The Crab pulsar has been observed to verify the performance of the instrument and the GPS timing system. Compact galactic targets were observed to search for flares on timescales of a few microseconds to {approx}100 ms. The design and sensitivity of the instrument as well as the data analysis method are presented.

  6. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: opto-mechanical performance

    NASA Astrophysics Data System (ADS)

    Canestrari, Rodolfo; Giro, Enrico; Sironi, Giorgia; Antolini, Elisa; Fugazza, Dino; Scuderi, Salvatore; Tosti, Gino; Tanci, Claudio; Russo, Federico; Gardiol, Daniele; Fermino, Carlos Eduardo; Stringhetti, Luca; Pareschi, Giovanni; Marchiori, G.; Busatta, A.; Marcuzzi, E.; Folla, I.

    2016-08-01

    ASTRI SST-2M is an end-to-end telescope prototype developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA). The CTA observatory, with a combination of large-, medium-, and small-sized telescopes (LST, MST and SST, respectively), will represent the next generation of imaging atmospheric Cherenkov telescopes. It will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope structure and mirrors have been installed at the INAF observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. Its performance verification phase began in autumn 2015. Part of the scheduled activities foresees the study and characterization of the optical and opto-mechanical performance of the telescope prototype. In this contribution we report the results achieved in terms of kinematic model analysis, mirrors reflectivity evolution, telescopes positioning, flexures and pointing model and the thermal behavior.

  7. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  8. GCT, the Gamma-ray Cherenkov Telescope for multi-TeV science with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sol, H.; Dournaux, J.-L.; Laporte, P.

    2016-12-01

    GCT is a gamma-ray telescope proposed for the high-energy section of the Cherenkov Telescope Array (CTA). A GCT prototype telescope has been designed, built and installed at the Observatoire de Paris in Meudon. Equipped with the first GCT prototype camera developed by an international collaboration, the complete GCT prototype was inaugurated in December 2015, after getting its first Cherenkov light on the night sky in November. The phase of tests, assessment, and optimisation is now coming to an end. Pre-production of the first GCT telescopes and cameras should start in 2017, for an installation on the Chilean site of CTA in 2018.

  9. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  10. VERITAS Distant Laser Calibration and Atmospheric Monitoring

    SciTech Connect

    Hui, C. M.

    2008-12-24

    As a calibrated laser pulse propagates through the atmosphere, the intensity of the Rayleigh scattered light arriving at the VERITAS telescopes can be calculated precisely. This allows for absolute calibration of imaging atmospheric Cherenkov telescopes (IACT) to be simple and straightforward. In these proceedings, we present the comparison between laser data and simulation to estimate the light collection efficiencies of the VERITAS telescopes, and the analysis of multiple laser data sets taken in different months for atmospheric monitoring purpose.

  11. Thermophysical Properties and Spectral Characterization of EA 6043

    DTIC Science & Technology

    2014-10-01

    methylphosphonothiolate, identified in this report as EA 6043, were determined and are reported herein. The title compound is a structural isomer of VX...data. Comparisons of selected properties of the structural isomers are provided when possible. Electron impact mass; 1 H, 13 C, and 31 P nuclear...provided in this report. Previous reports include similar data for two isomers of EA 6043: VX [O-ethyl-S-(2-diisopropylaminoethyl

  12. Long term biological developments in water Cherenkov detector media

    NASA Astrophysics Data System (ADS)

    Venturini, M.; Filevich, A.; Pizarro, R.; Ibáñez, J.; Bauleo, P.; Rodríguez Martino, J.

    2011-12-01

    Fourteen years ago, studies on bacteria growing in clean water were made in order to assess the hazard imposed by a possible expansion of bacteria population in the water tanks of the Pierre Auger Observatory Cherenkov detectors. In 1999 TANGO Array, a reduced-size unitary cell, composed of four water Cherenkov detectors, was constructed at the TANDAR campus of the Atomic Energy Commission, in Buenos Aires, to be used as a working model of the proposed surface array. TANGO Array ran for one year observing energy, intensity, and arrival directions of cosmic rays at sea level. Nine years after it was decommissioned, the water tanks configuring the Cherenkov detectors are still kept closed. In May 2009 water and liner samples from these tanks were collected to determine eventual long term bacteria growth in the internal detector environment, which is very similar to those of the detectors installed in the Malargüe Site. In the present note we report the results of the bacteriological study performed on the samples obtained from the TANGO Array detector tanks. Cultivable, long time surviving, bacterial species were identified, both in the water mass and on the liner surface, and the light transmission in water at the relevant Cherenkov wavelength was studied. An upper limit of possible interferences caused by bacteria is estimated.

  13. Cherenkov radiation by Josephson vortex travelling in the long sandwich

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2009-03-01

    Vortex motion in the long Josephson sandwich embedded in dielectric media is described. It is shown that vortices traveling with velocities greater than the speed of light in the dielectric generate electromagnetic waves. Appearance of radiation is due to Cherenkov phenomenon. Radiation appearing at rather high vortex velocities has high enough frequencies. For typical sandwiches radiation frequencies fall on THz domain.

  14. A Monte Carlo template based analysis for air-Cherenkov arrays

    NASA Astrophysics Data System (ADS)

    Parsons, R. D.; Hinton, J. A.

    2014-04-01

    We present a high-performance event reconstruction algorithm: an Image Pixel-wise fit for Atmospheric Cherenkov Telescopes (ImPACT). The reconstruction algorithm is based around the likelihood fitting of camera pixel amplitudes to an expected image template. A maximum likelihood fit is performed to find the best-fit shower parameters. A related reconstruction algorithm has already been shown to provide significant improvements over traditional reconstruction for both the CAT and H.E.S.S. experiments. We demonstrate a significant improvement to the template generation step of the procedure, by the use of a full Monte Carlo air shower simulation in combination with a ray-tracing optics simulation to more accurately model the expected camera images. This reconstruction step is combined with an MVA-based background rejection.

  15. Response of the Pierre Auger Observatory water Cherenkov detectors to muons

    SciTech Connect

    Aglietta, M.; Allison, P.; Andres, E.C.; Arneodo, F.; Bertou, Xavier; Bonifazi, C.; Busca, N.; Creusot, A.; Deligny, O.; Dornic, D.; Genolini, B.; Ghia, P.L.; Grunfeld, C.M.; Lhenry-Yvon, I.; Mazur, P.O.; Moreno, E.; Perez, G.; Salazar, H.; Suomijarvi, T.

    2005-07-01

    Two test detectors similar to the Pierre Auger Observatory Water Cherenkov Detectors have been installed at the Observatory site and at the Institut de Physique Nucleaire d'Orsay. The signals from the tanks are read out using three 9'' photomultipliers and analyzed by both a digital oscilloscope with high sampling frequency and the Auger surface detector electronics. Additionally, the detectors are equipped with plastic scintillators serving as muon telescopes. The trigger is provided either by the muon telescope or by the coincidence of the three PMTs. The scintillators are movable allowing the study of the detector response to atmospheric muons arriving with different incident angles. In this paper, the results of measurements for vertical and inclined background muons are presented. These results are compared to simulations and important calibration parameters are extracted. The influence of the direct light detected by the PMTs, particularly important for inclined showers, is discussed.

  16. A hybrid version of the Whipple observatory's air Cherenkov imaging camera for use in moonlight

    NASA Astrophysics Data System (ADS)

    Chantell, M. C.; Akerlof, C. W.; Badran, H. M.; Buckley, J.; Carter-Lewis, D. A.; Cawley, M. F.; Connaughton, V.; Fegan, D. J.; Fleury, P.; Gaidos, J.; Hillas, A. M.; Lamb, R. C.; Pare, E.; Rose, H. J.; Rovero, A. C.; Sarazin, X.; Sembroski, G.; Schubnell, M. S.; Urban, M.; Weekes, T. C.; Wilson, C.

    1997-02-01

    A hybrid version of the Whipple Observatory's atmospheric Cherenkov imaging camera that permits observation during periods of bright moonlight is described. The hybrid camera combines a blue-light blocking filter with the standard Whipple imaging camera to reduce sensitivity to wavelengths greater than 360 nm. Data taken with this camera are found to be free from the effects of the moonlit night-sky after the application of simple off-line noise filtering. This camera has been used to successfully detect TeV gamma rays, in bright moon light, from both the Crab Nebula and the active galactic nucleus Markarian 421 at the 4.9σ and 3.9σ levels of statistical significance, respectively. The energy threshold of the camera is estimated to be 1.1 ( +0.6/-0.3) TeV from Monte Carlo simulations.

  17. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228.

    PubMed

    Aleissa, Khalid A; Almasoud, Fahad I; Islam, Mohammed S; L'Annunziata, Michael F

    2008-12-01

    The activities of (228)Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide (228)Ac. The radium was pre-concentrated on MnO(2) and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter (228)Ra((228)Ac), the daughter nuclide (228)Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by (228)Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9+/-0.1% was measured for (228)Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317+/-0.013cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of (228)Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for (228)Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure (228)Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume, which are not at all required when liquid

  18. 7 CFR 520.6 - Preparation of an Environmental Assessment (EA).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Preparation of an Environmental Assessment (EA). 520.6... Preparation of an Environmental Assessment (EA). (a) Actions requiring EA. The following actions would normally require an EA: (1) Programs, supported in the majority by ARS, which may assist in the...

  19. 47 CFR 90.685 - Authorization, construction and implementation of EA licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of EA licenses. 90.685 Section 90.685 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Licensing and Use of Ea-Based Smr Systems in the 809-824/851-869 Mhz Band § 90.685 Authorization, construction and implementation of EA licenses. (a) EA licenses in the 809-824/854-869 MHz band will be...

  20. 47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false EAS code and Attention Signal Monitoring... SYSTEM (EAS) Emergency Operations § 11.52 EAS code and Attention Signal Monitoring requirements. (a) EAS Participants must be capable of receiving the Attention Signal required by § 11.32(a)(9) and emergency...

  1. 47 CFR 11.55 - EAS operation during a State or Local Area emergency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false EAS operation during a State or Local Area... SYSTEM (EAS) Emergency Operations § 11.55 EAS operation during a State or Local Area emergency. (a) All... conducted as specified in State and Local Area EAS Plans. The plans must list all authorized...

  2. Observation of EAS using a large water tank

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-08-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  3. Observation of EAS using a large water tank

    NASA Technical Reports Server (NTRS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-01-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  4. Nonlinear saturation characteristics of a dielectric Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a dielectric Cherenkov maser (DCM) with the TM mode and the intense relativistic electron beam is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the dielectric materials and show that the characteristics of a DCM instablity has a strong resemblance to that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. Finally, the nonlinear analysis shows that the Cherenkov maser operation with a lower-energy beam can be more efficient in the higher frequency regime for the case of the high power DCM with a high current.

  5. GEANT4 simulations of Cherenkov reaction history diagnostics

    SciTech Connect

    Rubery, M. S.; Horsfield, C. J.; Herrmann, H. W.; Kim, Y.; Mack, J. M.; Young, C. S.; Caldwell, S. E.; Evans, S. C.; Sedilleo, T. J.; McEvoy, A.; Miller, E. K.; Stoeffl, W.; Ali, Z.

    2010-10-15

    This paper compares the results from a GEANT4 simulation of the gas Cherenkov detector 1 (GCD1) with previous simulations and experimental data from the Omega laser facility. The GCD1 collects gammas emitted during a deuterium-tritium capsule implosion and converts them, through several processes, to Cherenkov light. Photon signals are recorded using subnanosecond photomultiplier tubes, producing burn reaction histories. The GEANT4 GCD1 simulation is first benchmarked against ACCEPT, an integrated tiger series code, with good agreement. The simulation is subsequently compared with data from the Omega laser facility, where experiments have been performed to measure the effects of Hohlraum materials on reaction history signals, in preparation for experiments at the National Ignition Facility.

  6. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide

    NASA Astrophysics Data System (ADS)

    Hummelt, J. S.; Lu, X.; Xu, H.; Mastovsky, I.; Shapiro, M. A.; Temkin, R. J.

    2016-12-01

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  7. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    SciTech Connect

    Bache, M.; Bang, O.; Zhou, B. B.; Moses, J.; Wise, F. W.

    2010-12-15

    We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum. The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near-transform-limited ultrashort mid-IR pulses with pulse durations much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considered ({beta}-barium borate) is found for pump wavelengths in the range {lambda}=0.95-1.45 {mu}m, and is located in the regime {lambda}=1.5-3.5 {mu}m. For shorter pump wavelengths, the phase-matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength radiation that can occur during soliton compression. We discuss the conditions that lead to this alternative dynamics rather than generation of Cherenkov radiation.

  8. Supernova Registration in Water Cherenkov Veto of Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Litvinovich, E. A.; Machulin, I. N.; Pugachev, D. A.; Skorokhvatov, M. D.

    2017-01-01

    Registration of supernova neutrinos is one of the main goals of large underground neutrino detectors. We consider the possibility of using the large water veto tanks of future dark matter experiments as the additional facilities for supernova detection. Simulations were performed for registration of Cherenkov light in 2 kt water veto of Darkside-20k from high energy positrons created by supernova electron antineutrinos via inverse beta decay reaction. Comparison between characteristics of different supernova neutrino detectors are presented.

  9. A Cherenkov viewing device for used-fuel verification

    NASA Astrophysics Data System (ADS)

    Attas, E. M.; Chen, J. D.; Young, G. J.

    1990-12-01

    A Cherenkov viewing device (CVD) has been developed to help verify declared inventories of used nuclear fuel stored in water bays. The device detects and amplifies the faint ultraviolet Cherenkov glow from the water surrounding the fuel, producing a real-time visible image on a phosphor screen. Quartz optics, a UV-pass filter and a microchannel-plate image-intensifier tube serve to form the image, which can be photographed or viewed directly through an eyepiece. Normal fuel bay lighting does not interfere with the Cherenkov light image. The CVD has been successfully used to detect anomalous PWR, BWR and CANDU (CANada Deuterium Uranium: registered trademark) fuel assemblies in the presence of normal-burnup assemblies stored in used-fuel bays. The latest version of the CVD, known as Mark IV, is being used by inspectors from the International Atomic Energy Agency for verification of light-water power-reactor fuel. Its design and operation are described, together with plans for further enhancements of the instrumentation.

  10. Simulation of the ASTRI two-mirrors small-size telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Bigongiari, C.; Cusumano, G.; Di Pierro, F.; La Parola, V.; Stamerra, A.; Vallania, P.; ASTRI Collaboration; CTA Consortium, the

    2016-05-01

    The Cherenkov Telescope Array (CTA) is a world-wide project to build a new generation ground-based gamma-ray instrument operating in the energy range from some tens of GeV to above 100 TeV. To ensure full sky coverage CTA will consist of two arrays of Imaging Atmospheric Cherenkov Telescopes (IACTs), one in the southern hemisphere and another one in the northern hemisphere. CTA has just completed the design phase and it is entering in the pre-production one that includes the development of telescope precursor mini-arrays. ASTRI is an ongoing project, to develop and install at the southern CTA site one of such mini-arrays composed by nine dual-mirror small size telescopes equipped with an innovative camera based on silicon photomultiplier sensors. The end-to-end telescope prototype, named ASTRI SST-2M, has been recently inaugurated at the Serra La Nave observing station, on Mount Etna, Italy. ASTRI SST-2M expected performance has been carefully studied using a full Monte Carlo simulation of the shower development in the atmosphere and detector response. Simulated data have been analyzed using the traditional Hillas moment analysis to obtain the expected angular and energy resolution. Simulation results, together with the comparison with the available experimental measurements, are shown.

  11. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Wood, M.; Jogler, T.; Dumm, J.; Funk, S.

    2016-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies-Cotton (DC) and Schwarzchild-Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30-40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. We attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.

  12. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  13. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    SciTech Connect

    Wood, M. D.; Jogler, T.; Dumm, J.; Funk, S.

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.

  14. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  15. Searching for Dark Matter signatures in dwarf spheroidal galaxies with the ASTRI mini-array in the framework of Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Giammaria, P.; Lombardi, S.; Antonelli, L. A.; Brocato, E.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.; ASTRI Collaboration; CTA Consortium, the

    2016-07-01

    The nature of Dark Matter (DM) is an open issue of modern physics. Cosmological considerations and observational evidences indicate a behaviour beyond the Standard Model for feasible DM particle candidates. Non-baryonic DM is compatible with cold and weakly interacting massive particles (WIMPs) expected to have a mass in the range between ∼10 GeV and ∼100 TeV. Indirect DM searches with imaging atmospheric Cherenkov telescopes may play a crucial role in constraining the nature of the DM particle(s) through the study of their annihilation in very high energy (VHE) gamma rays from promising targets, such as the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way. Here, we focus on indirect DM searches in dSphs, presenting the preliminary prospects of this research beyond the TeV mass region achievable with the ASTRI mini-array, proposed to be installed at the Cherenkov Telescope Array southern site.

  16. Ganglion and “Dendrite” Populations in EAS Ears

    PubMed Central

    Rask-Andersen, Helge; Liu, Wei; Linthicum, Fred H

    2010-01-01

    Background/Aims EAS technique combines electric and acoustic stimulation in the same ear and utilizes both low frequency acoustic hearing and electric stimulation of preserved neurons. We present data of ganglion cell and dendrite populations in ears from normal individuals and those suffered from adult-onset hereditary progressive hearing loss with various residual low tone hearing. Some of these were potential candidates for EAS surgery. The data may give us information about the neuro-anatomic situation in EAS ears. Methods Dendrites and ganglion cells were calculated and audio-cytocochleograms constructed. The temporal bones were from the collection at the House Ear Institute in Los Angeles, USA. Normal human anatomy, based on surgical specimens, is presented. Results IHCs and OHCs, supporting cells, ganglion cells and dendrites were preserved in the apical region. In the mid-frequency region, around 1 kHz, the OC with inner and outer hair cells were often conserved while in the lower basal turn, representing frequencies above 3 kHz, OC was atrophic and replaced by thin cells. Despite loss of hair cells and lamina fibers ganglion cells were present even after 28 years duration of deafness. Conclusions Conditions with profound SNHL with preserved low tone hearing may have several causes and the pathology may vary accordingly. In our patients with progressive adult-onset SNHL (amalgamated into “presbyacusis”) neurons were conserved even after long duration of deafness. These spiral ganglion cells may be excellent targets for electric stimulation using EAS technique. PMID:19955718

  17. 47 CFR 11.11 - The Emergency Alert System (EAS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... broadcast networks, cable networks and program suppliers; and other entities and industries operating on an... transmission of data such as interactive games. Wireless Cable Systems (BRS/EBS STATIONS) System Size and... EAS message. Note: Programmed channels do not include channels used for the transmission of...

  18. 47 CFR 101.1311 - Initial EA license authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Initial EA license authorization. 101.1311 Section 101.1311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multiple Address Systems System License Requirements § 101.1311...

  19. 7 CFR 1794.23 - Proposals normally requiring an EA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or diesel...) at a fossil-fueled generating station where the existing fuel combustion technology of the...

  20. 7 CFR 1794.23 - Proposals normally requiring an EA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or diesel...) at a fossil-fueled generating station where the existing fuel combustion technology of the...

  1. 7 CFR 1794.23 - Proposals normally requiring an EA.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or diesel...) at a fossil-fueled generating station where the existing fuel combustion technology of the...

  2. Mechanical properties of Hysol EA-9394 structural adhesive

    SciTech Connect

    Guess, T.R.; Reedy, E.D.; Stavig, M.E.

    1995-02-01

    Dextor`s Hysol EA-9394 is a room temperature curable paste adhesive representative of the adhesives used in wind turbine blade joints. A mechanical testing program has been performed to characterize this adhesive. Tension, compression stress relaxation, flexural, butt tensile, and fracture toughness test results are reported.

  3. 7 CFR 1794.71 - Adoption of an EA.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Adoption of an EA. 1794.71 Section 1794.71 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) ENVIRONMENTAL POLICIES AND PROCEDURES Adoption of Environmental Documents § 1794.71 Adoption...

  4. 47 CFR 90.904 - Aggregation of EA licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Aggregation of EA licenses. 90.904 Section 90.904 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Competitive Bidding Procedures for 800 MHz Specialized Mobile...

  5. 47 CFR 90.904 - Aggregation of EA licenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Aggregation of EA licenses. 90.904 Section 90.904 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Competitive Bidding Procedures for 800 MHz Specialized Mobile...

  6. 47 CFR 90.904 - Aggregation of EA licenses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Aggregation of EA licenses. 90.904 Section 90.904 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Competitive Bidding Procedures for 800 MHz Specialized Mobile...

  7. 47 CFR 90.904 - Aggregation of EA licenses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Aggregation of EA licenses. 90.904 Section 90.904 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Competitive Bidding Procedures for 800 MHz Specialized Mobile...

  8. 32 CFR 651.24 - Supplemental EAs and supplemental EISs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Supplemental EAs and supplemental EISs. 651.24 Section 651.24 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Records and Documents §...

  9. 32 CFR 651.24 - Supplemental EAs and supplemental EISs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Supplemental EAs and supplemental EISs. 651.24 Section 651.24 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Records and Documents §...

  10. 32 CFR 651.24 - Supplemental EAs and supplemental EISs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Supplemental EAs and supplemental EISs. 651.24 Section 651.24 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Records and Documents §...

  11. 32 CFR 651.24 - Supplemental EAs and supplemental EISs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Supplemental EAs and supplemental EISs. 651.24 Section 651.24 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Records and Documents §...

  12. 32 CFR 651.24 - Supplemental EAs and supplemental EISs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Supplemental EAs and supplemental EISs. 651.24 Section 651.24 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Records and Documents §...

  13. 47 CFR 11.61 - Tests of EAS procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... channels monthly (excluding local-into-local channels for which the monthly transmission tests are passed through by the DBS provider), with channels tested varying from month to month, so that over the course of a given year, 100% of all channels are tested. (2) Required Weekly Tests: (i) EAS Header Codes...

  14. A new paradigm for Environmental Assessment (EA) in Korea

    SciTech Connect

    Song, Young-Il; Glasson, John

    2010-02-15

    Over the last 30 years, Environmental Impact Assessment (EIA) in Korea has played an important role in decision-making processes particularly for environmentally sensitive projects. However, the EIA system alone has sometimes not been effective enough to ensure the successful resolution of environmental concerns. In order to compensate for the limitations of the EIA system, a new assessment system called Prior Environmental Review System (PERS), which is relevant to Strategic Environmental Assessment (SEA) in some aspects, was introduced in 1993. PERS aims to balance development and preservation by identifying possible environmental impacts of some administrative plans mainly related to development projects in the early stages of planning. However, PERS still appeared to have some weak points such as a limited range of subjects to be assessed, and weakness of tiering (or vertical integration) from PERS to EIA. Therefore, the necessity for reform of the Korean Environmental Assessment (EA) system, including PERS, was raised. In response, the Korean government sought to establish its policy direction for implementing SEA by enhancing the objectivity and expertise of PERS. The policy was approved by the National Assembly in May 2005, and went into effect in June 2006. The introduction of SEA, by enhancing PERS, provides a framework for a system of EA from the strategic level, including PPPs, to the project level. Yet, despite such improvements, some managerial and technical problems associated with subsequent EA implementation remain. This paper critically reviews the evolution of the EA system in Korea and suggests essential improvements for the current EA system based on experiences of implementation of both EIA and SEA since June 2006, in the context of international good practice.

  15. The Gamma-ray Cherenkov Telescope, an end-to end Schwarzschild-Couder telescope prototype proposed for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Dangeon, L.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hameau, B.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraush, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.

    2016-08-01

    The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.

  16. Cherenkov telescopes as optical telescopes for bright sources: today's specialized 30-m telescopes?

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2011-10-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) use large-aperture (3-30 m) optical telescopes with arcminute angular resolution to detect TeV gamma-rays in the atmosphere. I show that IACTs are well suited for optical observations of bright sources (V≲ 8-10), because these sources are brighter than the sky background. Their advantages are especially great on rapid time-scales. Thus, IACTs might study many phenomena optically, including transiting exoplanets and the brightest gamma-ray bursts. In principle, an IACT could achieve millimagnitude photometry of these objects with second-long exposures. I also consider the potential for optical spectroscopy with IACTs, finding that their poor angular resolution limits their usefulness for high spectral resolutions, unless complex instruments are developed. The high photon collection rate of IACTs is potentially useful for precise polarimetry. Finally, I briefly discuss the broader possibilities of extremely large, low-resolution telescopes, including a 10 arcsec resolution telescope and space-borne telescopes.

  17. Ultra-High Gravity Darkening in the oEA Star RZ Cas

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Lehmann, H.; Tsymbal, V.; Mkrtichian, D. E.

    2008-12-01

    We report on first results obtained in the framework of a larger study of oEA stars, i.e. Algol-type systems with oscillating components. We investigate an extended time series of high-resolution spectra of the oEA star RZ Cas taken in 2006. By comparing our model calculations with the observations, we try to determine the system and atmospheric parameters of RZ Cas. Starting values were obtained from uvby photometry and from an analysis of the mean out-of-eclipse spectra by means of the KOREL program. The fine tuning of the model was done using the modified SHELLSPEC code. With SHELLSPEC we determined an unusual large gravity darkening exponent of 0.5 for the secondary of RZ Cas. This value is far above the theoretical limit given by the Von Zeipel law but in good agreement with those obtained by Unno et al. in 1994. We attribute the large value of different large star spots on the front and back sides of the secondary with respect to the primary that exists in the result of mass-outflow from the donor to the gainer.

  18. Design constraints on Cherenkov telescopes with Davies-Cotton reflectors

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Ribordy, M.

    2013-05-01

    This paper discusses the construction of high-performance ground-based gamma-ray Cherenkov telescopes with a Davies-Cotton reflector. For the design of such telescopes, usually physics constrains the field-of-view, while the photo-sensor size is defined by limited options. Including the effect of light-concentrators, it is demonstrated that these constraints are enough to mutually constrain all other design parameters. The dependability of the various design parameters naturally arises once a relationship between the value of the point-spread functions at the edge of the field-of-view and the pixel field-of-view is introduced. To be able to include this constraint into a system of equations, an analytical description for the point-spread function of a tessellated Davies-Cotton reflector is derived from Taylor developments and ray-tracing simulations. Including higher order terms renders the result precise on the percent level. Design curves are provided within the typical phase space of Cherenkov telescopes. The impact of all design parameters on the overall design is discussed. Allowing an immediate comparison of several options with identical physics performance allows the determination of the most cost efficient solution. Emphasis is given on the possible application of solid light concentrators with their typically about two times better concentration compared with hollow cones which allows the use of small photo sensors such as Geiger-mode avalanche photo diodes. This is discussed in more details in the context of possible design options for the Cherenkov Telescope Array. In particular, a solution for a 60 mm2 photo sensor with hollow cone is compared to a 36 mm2 with solid cone.

  19. Nonlinear Cherenkov difference-frequency generation exploiting birefringence of KTP

    SciTech Connect

    Ni, R.; Du, L.; Wu, Y.; Hu, X. P. Zou, J.; Zhang, Y.; Zhu, S. N.; Sheng, Y.; Arie, A.

    2016-01-18

    In this letter, we demonstrate the realization of nonlinear Cherenkov difference-frequency generation (CDFG) exploiting the birefringence property of KTiOPO{sub 4} (KTP) crystal. The pump and signal waves were set to be along different polarizations, thus the phase-matching requirement of CDFG, which is, the refractive index of the pump wave should be smaller than that of the signal wave, was fulfilled. The radiation angles and the intensity dependence of the CDFG on the pump wave were measured, which agreed well with the theoretical ones.

  20. The fluid systems for the SLD Cherenkov ring imaging detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw, H.; Simopoulos, C.; Solodov, E.; Toge, N.; Vavra, J.; Watt, R.; Weber, T.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C{sub 2}H{sub 6} + TMAE), radiator gas (C{sub 5}F{sub 12} + N{sub 2}) and radiator liquid (C{sub 6}F{sub 14}). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  1. Corrugated capillary as THz Cherenkov Smith-Purcell radiator

    NASA Astrophysics Data System (ADS)

    Lekomtsev, K. V.; Aryshev, A. S.; Tishchenko, A. A.; Ponomarenko, A. A.; Sukharev, V. M.; Terunuma, N.; Urakawa, J.; Strikhanov, M. N.

    2016-07-01

    In this article we discussed Particle In Cell electromagnetic simulations and mechanical design of dielectric capillaries that produce THz Cherenkov Smith-Purcell radiation (ChSPR), arising when a femtosecond electron multi-bunch beam propagates through corrugated and non-corrugated dielectric capillaries with metallic radiation reflectors. We investigated the influence of the four-bunch beam on the SPR field spectrum and on the ChSPR power spectrum, and the influence of the non-central beam propagation on the ChSPR power spectrum. We also discussed the design and assembly of the capillaries, constructed as sets of cylindrical rings.

  2. First scientific contributions from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  3. Initial Blazar Studies with the CELESTE Cherenkov Telescope

    NASA Astrophysics Data System (ADS)

    Münz, F.

    1999-08-01

    CELESTE began systematic blazar observations in March 1999 with a 40-heliostat array at the site of the solar array at Themis in the French Pyrenees. Data is recorded using 1 GHz Flash ADC's which allow faint Cherenkov pulses to be measured. The hybrid analog-logic trigger scheme provides good hadron rejection and high efficiency for low-energy showers. A trigger threshold below 50 GeV allows CELESTE to probe the region near the peak of the inverse compton spectrum observed in many blazars. In this first observation campaign we are concentrating on Mrk 421, Mrk 501, and 1ES 1426+428.

  4. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  5. Nuclear higher-twist effects in eA DIS

    SciTech Connect

    Zakharov, B. G.

    2009-03-23

    We discuss the relation between the treatments of the higher twist nuclear effects in eA DIS based on the pQCD collinear approximation and the light-cone path integral formalism. We show that in the collinear approximation the N = 1 rescattering contribution to the gluon emission vanishes. It is demonstrated that the nonzero gluon spectrum obtained by Guo, Wang and Zhang is a consequence of unjustified neglect of some terms in the collinear expansion.

  6. 47 CFR 11.56 - Obligation to process CAP-formatted EAS messages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and EAS Header Codes, audio Attention Signal, audio message, and Preamble and EAS End of Message (EOM... voluntary basis). (3) Processing such converted messages in accordance with the other sections of this...

  7. 47 CFR 90.681 - EA-based SMR service areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false EA-based SMR service areas. 90.681 Section 90..., 851-869, 896-901, and 935-940 MHz Bands Policies Governing the Licensing and Use of Ea-Based Smr Systems in the 809-824/851-869 Mhz Band § 90.681 EA-based SMR service areas. EA licenses in for...

  8. The water Cherenkov detectors of the HAWC Observatory

    NASA Astrophysics Data System (ADS)

    Longo, Megan; Mostafa, Miguel

    2012-10-01

    The High Altitude Water Cherenkov (HAWC) observatory is a very high-energy gamma-ray detector which is currently under construction at 4100 m in Sierra Negra, Mexico. The observatory will be composed of an array of 300 Water Cherenkov Detectors (WCDs). Each WCD consists of a 5 m tall by 7.3 m wide steel tank containing a hermetically sealed plastic bag, called a bladder, which is filled with 200,000 liters of purified water. The detectors are each equipped with four upward-facing photomultiplier tubes (PMTs), anchored to the bottom of the bladder. At Colorado State University (CSU) we have the only full-size prototype outside of the HAWC site. It serves as a testbed for installation and operation procedures for the HAWC observatory. The WCD at CSU has been fully operational since March 2011, and has several components not yet present at the HAWC site. In addition to the four HAWC position PMTs, our prototype has three additional PMTs, including one shrouded (dark) PMT. We also have five scintillator paddles, four buried underneath the HAWC position PMTs, and one freely moving paddle above the volume of water. These extra additions will allow us to work on muon reconstruction with a single WCD. We will describe the analysis being done with the data taken with the CSU prototype, its impact on the HAWC detector, and future plans for the prototype.

  9. Probing the inert doublet dark matter model with Cherenkov telescopes

    SciTech Connect

    Garcia-Cely, Camilo; Gustafsson, Michael; Ibarra, Alejandro E-mail: michael.gustafsson@theorie.physik.uni-goettingen.de

    2016-02-01

    We present a detailed study of the annihilation signals of the inert dark matter doublet model in its high mass regime. Concretely, we study the prospects to observe gamma-ray signals of the model in current and projected Cherenkov telescopes taking into account the Sommerfeld effect and including the contribution to the spectrum from gamma-ray lines as well as from internal bremsstrahlung. We show that present observations of the galactic center by the H.E.S.S. instrument are able to exclude regions of the parameter space that give the correct dark matter relic abundance. In particular, models with the charged and the neutral components of the inert doublet nearly degenerate in mass have strong gamma-ray signals. Furthermore, for dark matter particle masses above 1 TeV, we find that the non-observation of the continuum of photons generated by the hadronization of the annihilation products typically give stronger constraints on the model parameters than the sharp spectral features associated to annihilation into monochromatic photons and the internal bremsstrahlung process. Lastly, we also analyze the interplay between indirect and direct detection searches for this model, concluding that the prospects for the former are more promising. In particular, we find that the upcoming Cherenkov Telescope Array will be able to probe a significant part of the high mass regime of the model.

  10. Scientific verification of High Altitude Water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  11. SST dual-mirror telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Pareschi, Giovanni; Canestrari, Rodolfo; Stringhetti, Luca; Catalano, Osvaldo; White, Richard; Greenshaw, Tim; Hinton, Jim; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) is an international collaboration that aims to create the world's foremost very high energy gamma-ray observatory, composed of large, medium and small size telescopes (SST). The SSTs will be the most numerous telescopes on site and will focus on capturing the rarer highest energy photons. Three prototypes of SST are designed and currently under construction; two of them, ASTRI and SST-GATE, have been designed, based on a dual-mirror Schwarzschild-Couder (SC) design which has never been built before for any astronomical observation. The SC optical design allows for a small plate scale, a wide field of view and a lightweight cameras aiming to minimize the cost of SST telescopes in order to increase their number in the array. The aim of this article is to report the progress of the two telescope projects prototyping telescope structures and cameras for the Small Size Telescopes for CTA. After a discussion of the CTA project and its scientific objectives, the performance of the SC design is described, with focus on the specific designs of SST-GATE and ASTRI telescopes. The design of both prototypes and their progress is reported in the current prototyping phase. The designs of Cherenkov cameras, CHEC and ASTRI, to be mounted on these telescopes are discussed and progresses are reported.

  12. The HERA-B ring imaging Cherenkov counter

    NASA Astrophysics Data System (ADS)

    Ariño, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmić, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorišek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Križan, P.; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R. F.; Siero, X.; Starič, M.; Stanovnik, A.; Škrk, D.; Živko, T.

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C 4F 10 gas and a large 24 m2 spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a β=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  13. Tagging spallation backgrounds with showers in water Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-11-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6-18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit low-energy studies in Super-Kamiokande, and will be especially important for detectors at shallower depths, like the proposed Hyper-Kamiokande.

  14. 76 FR 24874 - Initiation of Scoping for an Environmental Assessment (EA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... AGENCY Initiation of Scoping for an Environmental Assessment (EA) AGENCY: Environmental Protection Agency... Assessment (EA) to analyze the potential environmental impacts related to the reissuance of the National.... The EA will evaluate the potential environmental impacts from the discharge of pollutants...

  15. 7 CFR 1794.24 - Proposals normally requiring an EA with scoping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Proposals normally requiring an EA with scoping. 1794... Classification of Proposals § 1794.24 Proposals normally requiring an EA with scoping. (a) General. Applications... development of the EA. These types of actions are subject to the requirements of §§ 1794.50 through...

  16. 76 FR 80366 - Availability of an Environmental Assessment (EA) and Finding of No Significant Impact (FONSI)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...] Availability of an Environmental Assessment (EA) and Finding of No Significant Impact (FONSI) AGENCY: Environmental Protection Agency (EPA). ACTION: Environmental Assessment (EA)/Finding of No Significant Impact... implementing NEPA (40 CFR Part 6), EPA has prepared an Environmental Assessment (EA) to analyze the...

  17. 47 CFR 90.763 - EA, Regional and nationwide system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false EA, Regional and nationwide system operations... Frequencies in the 220-222 MHz Band Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide Systems § 90.763 EA, Regional and nationwide system operations. (a) A nationwide...

  18. 7 CFR 1955.136 - Environmental Assessment (EA) and Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Environmental Assessment (EA) and Environmental Impact... Disposal of Inventory Property General § 1955.136 Environmental Assessment (EA) and Environmental Impact... prepare an EA or an EIS is found in Subpart G of Part 1940 of this Chapter. Assessments must be made...

  19. 78 FR 68835 - Initiation of Scoping for an Environmental Assessment (EA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... AGENCY Initiation of Scoping for an Environmental Assessment (EA) AGENCY: Environmental Protection Agency... Assessment (EA) to analyze the potential environmental impacts related to the reissuance of the National..., also referred to as the Multi-Sector General Permit. The EA will evaluate the potential...

  20. 36 CFR 1010.6 - Determination of requirement for EA or EIS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for EA or EIS. 1010.6 Section 1010.6 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL QUALITY § 1010.6 Determination of requirement for EA or EIS. In deciding whether to require the preparation of an EA or an EIS, the NEPA Compliance Coordinator will determine whether the proposal is...

  1. 7 CFR 650.8 - When to prepare an environmental assessment (EA).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false When to prepare an environmental assessment (EA). 650... for NRCS-Assisted Programs § 650.8 When to prepare an environmental assessment (EA). An environmental assessment (EA) is to be prepared for: (a) Land and water resource projects that are not included in §...

  2. 47 CFR 90.767 - Construction and implementation of EA and Regional licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Construction and implementation of EA and... Use of Frequencies in the 220-222 MHz Band Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide Systems § 90.767 Construction and implementation of EA and Regional licenses....

  3. 77 FR 1676 - EasTrans, LLC; Notice Granting Extension of Time

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission EasTrans, LLC; Notice Granting Extension of Time On December 16, 2011, Eas... an extension of time for EasTrans to file its section 284.123 rate petition is granted to...

  4. 47 CFR 11.45 - Prohibition of false or deceptive EAS transmissions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Prohibition of false or deceptive EAS transmissions. 11.45 Section 11.45 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Organization § 11.45 Prohibition of false or deceptive EAS transmissions. No person...

  5. 47 CFR 11.45 - Prohibition of false or deceptive EAS transmissions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prohibition of false or deceptive EAS transmissions. 11.45 Section 11.45 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Organization § 11.45 Prohibition of false or deceptive EAS transmissions. No person...

  6. 47 CFR 11.45 - Prohibition of false or deceptive EAS transmissions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Prohibition of false or deceptive EAS transmissions. 11.45 Section 11.45 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Organization § 11.45 Prohibition of false or deceptive EAS transmissions. No person...

  7. 47 CFR 11.45 - Prohibition of false or deceptive EAS transmissions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Prohibition of false or deceptive EAS transmissions. 11.45 Section 11.45 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Organization § 11.45 Prohibition of false or deceptive EAS transmissions. No person...

  8. 47 CFR 11.45 - Prohibition of false or deceptive EAS transmissions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Prohibition of false or deceptive EAS transmissions. 11.45 Section 11.45 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Organization § 11.45 Prohibition of false or deceptive EAS transmissions. No person...

  9. 78 FR 46295 - Special Conditions: Eclipse, EA500, Certification of Autothrottle Functions Under Part 23

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Federal Aviation Administration 14 CFR Part 23 Special Conditions: Eclipse, EA500, Certification of... proposed special conditions. SUMMARY: This action proposes special conditions for the Eclipse EA500.... The Eclipse Model EA500 was certificated under part 23 by the FAA on September 30, 2006...

  10. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits for EA-licensed LMS... § 90.359 Field strength limits for EA-licensed LMS systems. EA-licensed multilateration systems shall limit the field strength of signals transmitted from their base stations to 47 dBuV/m at their...

  11. Study of the shower maximum depth by the method of detection of the EAS Cerenkov light pulse shape

    NASA Technical Reports Server (NTRS)

    Aliev, N.; Alimov, T.; Kakhkharov, M.; Khakimov, N.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Khristiansen, G. B.; Prosin, V. V.; Zhukov, V. Y.

    1985-01-01

    The results of processing the data on the shape of the EAS Cerenkov light pulses recorded by the extensive air showers (EAS) array are presented. The pulse FWHM is used to find the mean depth of EAS maximum.

  12. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  13. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter (90)Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  14. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  15. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu

    2015-03-01

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  16. First year operational experience with the Cherenkov Detector (DIRC) of BaBar

    SciTech Connect

    Adam, I.; BaBar Collaboration

    2000-04-01

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Y(4s) resonance.

  17. First Year Operational Experience with the Cherenkov Detector (DIRC) of BaBar

    SciTech Connect

    Spanier, Stefane

    2000-04-21

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Upsilon(4S) resonance.

  18. EA-6B high-lift wing modifications

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Allison, D. O.

    1987-01-01

    NASA-Langley has accomplished the computational design and experimental verification of EA-6B aircraft wing modifications for improved high lift capability. The modifications are comparatively simple, and attempt to improve low speed high lift performance while maintaining high speed cruise efficiency. Several two- and three-dimensional low speed and transonic computational techniques were employed, together with extensive wind tunnel tests. The modified inboard and outboard edge slat/flap system sections yielded efficiency improvements that were verified by three-dimensional wind tunnel experiments to amount to an 11-percent wing-body lift coefficient enhancement at low speed.

  19. Selective Filtration of Gadolinium Trichloride for Use in Neutron Detection in Large Water Cherenkov Detectors

    SciTech Connect

    Vagins, Mark R.

    2013-04-10

    Water Cherenkov detectors have been used for many years as inexpensive, effective detectors for neutrino interactions and nucleon decay searches. While many important measurements have been made with these detectors a major drawback has been their inability to detect the absorption of thermal neutrons. We believe an inexpensive, effective technique could be developed to overcome this situation via the addition to water of a solute with a large neutron cross section and energetic gamma daughters which would make neutrons detectable. Gadolinium seems an excellent candidate especially since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially-available gadolinium trichloride, GdCl{sub 3}. This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields a gamma cascade which would be easily seen in detectors like Super-Kamiokande. We have been investigating the use of GdCl{sub 3} as a possible upgrade for the Super-Kamiokande detector with a view toward improving its performance as a detector for atmospheric neutrinos, supernova neutrinos, wrong-sign solar neutrinos, reactor neutrinos, proton decay, and also as a target for the coming T2K long-baseline neutrino experiment. This focused study of selective water filtration and GdCl{sub 3} extraction techniques, conducted at UC Irvine, followed up on highly promising benchtop-scale and kiloton-scale work previously carried out with the assistance of 2003 and 2005 Advanced Detector Research Program grants.

  20. Design, transport, and installation of autonomous Cherenkov detectors at high altitude

    NASA Astrophysics Data System (ADS)

    Rubén Calderón Cueva, Mario; Alejandro Vasquez, Nicolas; Martínez, Oscar; Carrera, Edgar; Cazar, Dennis; Audelo, Mario; Mantilla, Cristina; Quishpe, Raquel

    2015-08-01

    Ecuador, as a member of the Latin American Giant Observatory (LAGO), wishes to expand the understanding of astroparticle physics and space weather by the installation of Water Cherenkov detectors at high altitude. The challenge for such devices lies on their transport to the remote areas of operation, the autonomy of their electrical power supply, the robustness of their data transmission system, their remote operation stability, and the reliability of the water integrity for long periods of time. LAGO Ecuador features several studies of gamma ray bursts and high energy astrophysical sources, as well as of space weather. Based on these studies, we develop a feasibility study for the design, installation, operation and maintenance of the aforementioned devices in Papallacta, Chimborazo and Cruz Loma in the Ecuadorean highlands. As the atmospheric absorption, and so the area of detection to be instrumented, is significantly reduced with the altitude, the easy access to locations higher than 4000 m a.s.l. is one of the main advantages of the Ecuadorean Andes for the installation of these facilities.

  1. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  2. Oscillation of Very Low Energy Atmospheric Neutrinos

    SciTech Connect

    Peres, Orlando L. G.

    2010-03-30

    We discuss the oscillation effects of sub-sub-GeV atmospheric neutrinos, the sample with energies E < or approx. 100 MeV. The energy spectra of the e-like events in water Cherenkov detectors are computed and dependence of the spectra on the 2-3 mixing angle, theta{sub 23}, the 1-3 mixing and CP-violation phase are studied.

  3. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    NASA Astrophysics Data System (ADS)

    Arrabito, L.; Bregeon, J.; Haupt, A.; Graciani Diaz, R.; Stagni, F.; Tsaregorodtsev, A.

    2015-12-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production system prototype has been developed, based on the two main DIRAC components, i.e. the Workload Management and Data Management Systems. After three years of successful exploitation of this prototype, for simulations and analysis, we proved that DIRAC provides suitable functionalities needed for the CTA data processing. Based on these results, the CTA development plan aims to achieve an operational production system, based on the DIRAC Workload Management System, to be ready for the start of CTA operation phase in 2017-2018. One more important challenge consists of the development of a fully automatized execution of the CTA workflows. For this purpose, we have identified a third DIRAC component, the so-called Transformation System, which offers very interesting functionalities to achieve this automatisation. The Transformation System is a ’data-driven’ system, allowing to automatically trigger data-processing and data management operations according to pre

  4. About a Gadolinium-doped Water Cherenkov LAGUNA Detector

    SciTech Connect

    Labarga, Luis

    2010-11-24

    Water Cherenkov (wC) detectors are extremely powerful apparatuses for scientific research. Nevertheless they lack of neutron tagging capabilities, which translates, mainly, into an inability to identify the anti-matter nature of the reacting incoming anti-neutrino particles. A solution was proposed by R. Beacon and M. Vagins back in 2004: by dissolving in the water a compound with nucleus with very large cross section for neutron capture like the Gadolinium, with a corresponding emission of photons of enough energy to be detected, they can tag thermal neutrons with an efficiency larger than 80%. In this talk we detail the technique and its implications in the measurement capabilities and, as well, the new backgrounds induced. We discuss the improvement on their physics program, also for the case of LAGUNA type detectors. We comment shortly the status of the pioneering R and D program of the Super-Kamiokande Collaboration towards dissolving a Gadolinium compound in its water.

  5. Coherent Cherenkov radiation as an intense THz source

    NASA Astrophysics Data System (ADS)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.

  6. Status of Coherent Cherenkov Wakefield Experiment at UCLA

    SciTech Connect

    Cook, A. M.; Knyazik, A.; Rosenzweig, J. B.; Tikhoplav, R.; Travish, G.; Williams, O. B.

    2009-01-22

    Coherent Cherenkov radiation (CCR) wakefields are produced when a compressed electron beam travels along the axis of a hollow cylindrical dielectric tube. In a dielectric wakefield accelerator (DWA) these wakefields accelerate either a trailing electron bunch or the tail of the driving bunch, depending on the modal structure of the radiation. For an appropriate choice of dielectric structure geometry and beam parameters the device operates in a single-mode regime, producing sinusoidal wakefields with wavelengths in the THz range. We report on preliminary results of an experiment at UCLA studying the potential of a DWA structure to produce high-power, narrow-band THz radiation. First measurements include observation of 1 MW peak-power pulses of coherent broadband radiation from a compact dipole beam dump magnet.

  7. First year results of the High Altitude Water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  8. Suppressing the numerical Cherenkov radiation in the Yee numerical scheme

    SciTech Connect

    Nuter, Rachel Tikhonchuk, Vladimir

    2016-01-15

    The next generation of laser facilities will routinely produce relativistic particle beams from the interaction of intense laser pulses with solids and/or gases. Their modeling with Particle-In-Cell (PIC) codes needs dispersion-free Maxwell solvers in order to properly describe the interaction of electromagnetic waves with relativistic particles. A particular attention is devoted to the suppression of the numerical Cherenkov instability, responsible for the noise generation. It occurs when the electromagnetic wave is artificially slowed down because of the finite mesh size, thus allowing for the high energy particles to propagate with super-luminous velocities. In the present paper, we show how a slight increase of the light velocity in the Maxwell's equations enables to suppress this instability while keeping a good overall precision of calculations.

  9. The HERMES dual-radiator ring imaging Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  10. The Non-Imaging CHErenkov (NICHE) Array: A TA/TALE extension using Cherenkov radiation to measure Cosmic Ray Composition to sub-PeV energies

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Bergman, Douglas; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2017-01-01

    Co-sited with the Telescope Array (TA) Low Energy (TALE) extension, the Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV in its eventual full deployment. NICHE will co-measure CR air showers with TA/TALE and will initially be deployed to observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode, providing the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (jNICHE) that will be deployed in early 2017 at the TA/TALE site. In this talk, the NICHE design, array performance, jNICHE development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  11. Optical properties of water for the Yangbajing water cherenkov detector

    NASA Astrophysics Data System (ADS)

    Gao, Shang-qi; Sun, Zhi-bin; Jiang, Yuan-da; Wang, Chao; Du, Ke-ming

    2011-08-01

    Cherenkov radiation is used to study the production of particles during collisions, cosmic rays detections and distinguishing between different types of neutrinos and electrons. The optical properties of water are very important to the research of Cherenkov Effect. Lambert-beer law is a method to study the attenuation of light through medium. In this paper, optical properties of water are investigated by use of a water attenuation performance test system. The system is composed of the light-emitting diode (LED) light source and the photon receiver models. The LED light source model provides a pulse light signal which frequency is 1 kHz and width is 100ns. In photon receiver model, a high sensitivity photomultiplier tube (PMT) is used to detect the photons across the water. Because the output voltage amplitude of PMT is weak which is from 80mv to 120mV, a low noise pre-amplifier is used to improve the detector precise. An effective detector maximum time window of PMT is 100ns for a long lifetime, so a peak holder circuit is used to hold the maximum peak amplitude of PMT for the induced photons signal before the digitalization. In order to reduce the noise of peak holder, a multi-pulse integration is used before the sampling of analog to digital converter. At last, the detector of photons from the light source to the PMT across the water is synchronized to the pulse width of the LED. In order to calculate the attenuation coefficient and attenuation length of water precisely, the attenuation properties of air-to-water boundary is considered in the calculation.

  12. Drastic increase in the Cherenkov losses of Josephson vortices propagating under the influence of transport current

    NASA Astrophysics Data System (ADS)

    Malishevskiĭ, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskiĭ, S. G.

    2007-06-01

    It is demonstrated that when the velocity of vortices in a Josephson junction magnetically coupled to a waveguide approaches the limits of the allowed ranges, the relative contribution of the Cherenkov losses to the transport current density increases drastically.

  13. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    SciTech Connect

    Luigi Lagamba; Evaristo Cisbani; S. Colilli; R. Crateri; R. De Leo; Salvatore Frullani; Franco Garibaldi; F. Giuliani; M. Gricia; Mauro Iodice; Riccardo Iommi; A. Leone; M. Lucentini; A. Mostarda; E. Nappi; Roberto Perrino; L. Pierangeli; F. Santavenere; Guido M. Urciuoli

    2001-10-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performance.

  14. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild-Couder telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; De Franco, A.; Laporte, P.; White, R.; Greenshaw, T.; Sol, H.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J. J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gaudemard, J.; Graham, J. A.; Gironnet, J.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Lapington, J. S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Morhrmann, L.; Molnyeux, P.; Nolan, S. J.; Okumura, A.; Parsons, R. D.; Ross, D.; Rowell, G.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J.; Yamane, N.; Zech, A.; Zink, A.

    2017-02-01

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild-Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon,

  15. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide.

    PubMed

    Hummelt, J S; Lu, X; Xu, H; Mastovsky, I; Shapiro, M A; Temkin, R J

    2016-12-02

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  16. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    SciTech Connect

    Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  17. 77 FR 67862 - Notice of Availability of the Final Environmental Assessment (EA) and Finding of No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Federal Aviation Administration Notice of Availability of the Final Environmental Assessment (EA) and... of a Final EA and FONSI/ROD. SUMMARY: The FAA has issued the final EA final Environmental Assessment (EA) for the Aberdeen Regional Airport Updates and FONSI/ROD for the proposed decoupling of runways...

  18. Photoacoustic microscopy of electronic acupuncture (EA) effect in small animals.

    PubMed

    Yang, Jinge; Wu, Dan; Tang, Yong; Jiang, Huabei

    2017-02-01

    Acupuncture has been an effective treatment for various pain in China for several thousand years. However, the mechanisms underlying this mysterious ancient healing are still largely unknown. Here we applied photoacoustic microscopy (PAM) to investigate brain hemodynamic changes in response to electronic acupuncture (EA) at ST36 (Zusanli). Due to the high optical absorption of blood at 532 nm, PAM could sensitively probe changes in hemoglobin concentration (HbT, i.e., cerebral blood volume [CBV]) of cortical regions in high resolution. Six healthy mice were stimulated at the acupoint and three healthy mice were stimulated at sham points. Remarkable CBV changes in sensorimotor and retrosplenial agranular cortex were observed. Results showed the potential of PAM as a visualization tool to study the acupuncture effect on brain hemodynamics in animal models. (a) Schematic showing the stimulation points. (b) B-scan images overlaid with mouse atlas. (c) & (d) Statistical results of CBV changes from cortical regions.

  19. The software architecture to control the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and

  20. The Alignment System for a Medium-Sized Schwarzschild-Couder Telescope Prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Ribeiro, Deivid; Humensky, Brian; Nieto, Daniel; V Vassiliev Group in UCLA division of Astronomy and Astrophysics, P Kaaret Group at Iowa University Department of Physics and Astronomy, CTA Consortium

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. The Schwarzschild-Couder design is a candidate 9-m diameter medium-sized telescope featuring a novel aplanatic two-mirror optical design capable of a wide field of view with significantly improved imaging resolution as compared to the traditional Davies-Cotton optical design. Achieving this imaging resolution imposes strict mirror alignment requirements that necessitate a sophisticated alignment system. This system uses a collection of position sensors between panels to determine the relative position of adjacent panels; each panel is mounted on a Stewart platform to allow motion control with six degrees of freedom, facilitating the alignment of the optical surface for the segmented primary and secondary mirrors. Alignments of the primary and secondary mirrors and the camera focal plane with respect to each other are performed utilizing a set of CCD cameras which image LEDs placed on the mirror panels to measure relative translation, and custom-built auto-collimators to measure relative tilt between the primary and secondary mirrors along the optical axis of the telescope. In this contribution we present the status of the development of the SC optical alignment system, soon to be materialized in a full-scale prototype SC medium-size telescope (pSCT) at the Fred Lawrence Whipple Observatory in southern Arizona.

  1. SU-E-I-87: Calibrating Cherenkov Emission to Match Superficial Dose in Tissue

    SciTech Connect

    Zhang, R; Pogue, B; Glaser, A; Gladstone, D

    2015-06-15

    Purpose: Through Monte Carlo simulations and phantom studies, the dominant factors affecting the calibration of superficial Cherenkov intensity to absolute surface dose was investigated, including tissue optical properties, curvatures, beam properties and imaging angle. Methods: The phasespace files for the TrueBeam system from Varian were used in GAMOS (a GEANT4 based Monte Carlo simulation toolkit) to simulate surface emission Cherenkov signals and the correlated deposited dose. The parameters examined were: i) different tissue optical properties (skin color from light to dark), ii) beam types (X-ray and electron beam), iii) beam energies, iv) thickness of tissues (2.5 cm to 20 cm), v) SSD (80 cm to 120 cm), vi) field sizes (0.5×0.5 cm2 to 20×20 cm2), vii) entrance/exit sides, viii) curvatures (cylinders with diameters from 2.5 cm to 20cm) and ix) imaging angles (0 to 90 degrees). In a specific case, for any Cherenkov photon emitted from the surface, the original position and direction, final position and direction and energy were recorded. Similar experimental measurements were taken in a range of the most pertinent parameters using tissue phantoms. Results: Combining the dose distribution and sampling sensitivity of Cherenkov emission, quantitatively accurate calibration factors (the amount of radiation dose represented by a single Cherenkov photon) were calculated. The data showed relatively large dependence upon different optical properties, curvature, entrance/exit and beam types. For a diffusive surface, the calibration factor was insensitive to imaging angles smaller than 60 degrees. Normalization with the reflectance image was experimentally validated as a simple and accurate method for calibrations of different optical properties. Conclusion: This study sheds light on how and to what extent different conditions affect the calibration from Cherenkov intensity to absolute superficial dose and provides practical solutions to allow quantitative Cherenkov

  2. Evaluation of polarized terahertz waves generated by Cherenkov phase matching.

    PubMed

    Akiba, Takuya; Akimoto, Yasuhiro; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2014-03-10

    We report terahertz (THz) wave generation by satisfying Cherenkov phase-matching condition in both s and p polarizations. A dual-wavelength optical parametric oscillator is constructed from two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. By rotating the orientation of both a lithium niobate crystal (LiNbO3) and the polarization of the pump waves, the polarization of the THz wave changes. Due to the difference in the refractive index and absorption, the output power for p polarization is one tenth that for s polarization. A tuning range from 0.2 to 6.5 THz is obtained for s polarization, and from 0.2 to 4.2 and 5.4 to 6.9 THz for p polarization. The extraction efficiency is improved by changing the angle of prism for p polarization, and a large phase change occurs at total internal reflection. Consequently, p-polarized THz waves are optimal for spectroscopic applications.

  3. Particle Identification Using a Ring Imaging Cherenkov Counter

    NASA Astrophysics Data System (ADS)

    Goodwill, Justin; Benmokthar, Fatiha

    2016-09-01

    The installation of a Ring Imaging Cherenkov counter (RICH) on the CLAS12 spectrometer in Hall B of Jefferson Lab will aid in particle identification, specifically with regard to the separation between protons, pions, kaons. The RICH functions by detecting a ring of radiation that is given off by particles moving faster than the speed of light in a medium through the use of multi-anode photomultiplier tubes (MAPMTs). Because the size of the ring is dependent on the velocity of the particles, one can separate the incoming charged particles. With 391 MAPMTs being used in the specific design at Jefferson Lab, sophisticated electronic systems are needed to achieve complete data acquisition and ensure the safe operation of RICH. To monitor these electronic systems, the slow control system uses a compilation of graphical user interfaces (GUIs) that communicates and, if necessary, changes certain process variables such as the high voltage going to the MAPMTs and the temperature of the system. My actual project focuses on the development of an efficient and reliable slow control system for this detector as well as a java based analyzer for offline data analysis.

  4. Latest news from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  5. Comparative Analysis of Cherenkov Light Detectors in an Oil Drum

    NASA Astrophysics Data System (ADS)

    Niduaza, Rexavalmar; Wedel, Zachary; Castro, Juan; Zavala, Favian; Fan, Sewan; Fatuzzo, Laura

    2014-03-01

    The multi-pixel photon counters (MPPC) has been used in a number of research development in astro-particle physics and particle physics. In an effort to further implement the MPPC detector, we constructed a modular experimental setup using a 16-inch tall acrylic cylinder filled with distilled water as the light producing medium to determine its feasibility as a possible detector for weak Cherenkov light. We have since progressed towards utilizing an oil drum (approximately 30 gallons) as our light-tight container replacing our prototype. In this talk, we would discuss the results regarding our investigation utilizing 1-inch and 3-inch photo-multiplier tubes (PMTs) in an oil drum as we did for our prototype. We would also present our experimental findings comparing our prototype and our oil drum setup using PMTs in coincidence with the MPPC coupled with wavelength-shifting fibers that are submerged in distilled water inside the oil drum vessel. Department of Education grant nymber P031S90007.

  6. Cherenkov radiation with massive, C P T -violating photons

    NASA Astrophysics Data System (ADS)

    Colladay, Don; McDonald, Patrick; Potting, Robertus

    2016-06-01

    The source of C P T violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field kAF μ . These Lorentz- and C P T -violating photons have well-known theoretical issues that arise from missing states at low momenta when kAF μ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the C P T -preserving case by using the Stückelberg mechanism. We explicitly construct a covariant basis of properly normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike kAF μ and find a radiation rate at high energies that has a contribution that does not depend on the mass used to regulate the photons.

  7. Time-domain measurement of broadband coherent Cherenkov radiation

    SciTech Connect

    Miocinovic, P.; Gorham, P. W.; Guillian, E.; Milincic, R.; Field, R. C.; Walz, D.; Saltzberg, D.; Williams, D.

    2006-08-15

    We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole array antenna is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; {sigma}{sub RvertcalbarEverticalbar}=0.039 {mu}V/MHz/TeV and {sigma}{sub {phi}}=17 deg. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E{sub {nu}}(greater-or-similar sign)10{sup 15} eV.

  8. Time-Domain Measurement of Broadband Coherent Cherenkov Radiation

    SciTech Connect

    Miocinovic, P.; Field, R.C.; Gorham, P.W.; Guillian, E.; Milincic, R.; Saltzberg, D.; Walz, D.; Williams, D.; /UCLA

    2006-03-13

    We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole antenna (LPDA) is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; {sigma}{sub R|E|} = 0.039 {micro}V/MHz/TeV and {sigma}{sub {phi}} = 17{sup o}. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E{sub v} {ge} 10{sup 15} eV.

  9. Electron-muon identification by atmospheric shower in a new concept of an EAS detector

    NASA Astrophysics Data System (ADS)

    Iori, M.; Arslan, E.; Denizli, H.; Kaya, M.; Yilmaz, A.; Russ, J.

    2012-11-01

    We show the test results for TOF resolution and μ/e separation capabilities of a prototype element (Iori and Sergi, 2008 [1]), intended for deployment in an array capable of measuring large zenith angle cosmic rays as well as detecting the signature of Ultra High Energy tau neutrino interactions using the Earth skimming strategy (Fargion et al., 2004 [2], Feng et al., 2002 [3], Beacom et al., 2003 [4], Zas, 2005 [5]). The module was designed to recognize single particles and determine the direction of motion (up/down) and measure the trajectory angles. It uses two pairs of scintillator counters, named towers, each composed by two tiles (20×20 cm2, 1.4 cm thick), separated by 160 cm. Each tile is read by one low voltage R5783 Hamamatsu photomultiplier (PMT). Two PMT boxes are attached to a metal structure that defines the axis of the array. Each tile is embedded in a PVC box which also contains the PMT. The PMT has excellent time resolution (≈400 ps) for good TOF precision. The PMT signal was digitized by the MATAQ board in coincidence with KASCADE-GRANDE (KG) shower Delagnes and Breton, 2001 [6].

  10. 47 CFR 101.1317 - Competitive bidding procedures for mutually exclusive MAS EA applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Competitive bidding procedures for mutually exclusive MAS EA applications. 101.1317 Section 101.1317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... License Requirements § 101.1317 Competitive bidding procedures for mutually exclusive MAS EA...

  11. 47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...), EAS Participants' EAS equipment must interface with the Federal Emergency Management Agency's Integrated Public Alert and Warning System (IPAWS) to enable (whether through “pull” interface technologies, such as Really Simple Syndication (RSS) and Atom Syndication Format (ATOM), or “push”...

  12. 7 CFR 650.8 - When to prepare an environmental assessment (EA).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that the EE reveals may be a major Federal action significantly affecting the quality of the human environment. (c) Criteria for determining the need for a program EA: (1) A program EA is to be prepared when NRCS has determined, based on the environmental evaluation, that a program EIS is not required and...

  13. 47 CFR 73.4097 - EBS (now EAS) attention signals on automated programing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false EBS (now EAS) attention signals on automated programing systems. 73.4097 Section 73.4097 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... (now EAS) attention signals on automated programing systems. See Public Notice dated March 1, 1979....

  14. 47 CFR 11.54 - EAS operation during a National Level emergency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Discontinue normal programming and follow the transmission procedures in the appropriate section of the EAS Operating Handbook. Announcements may be made in the same language as the primary language of the EAS... visually and aurally as specified in § 11.51(j). (8) Announcements may be made in the same language as...

  15. 47 CFR 11.54 - EAS operation during a National Level emergency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... serve during an EAS activation. State and Local Area identifications must be given as provided in State and Local Area EAS Plans. (2) Analog and digital broadcast stations are exempt from complying with... voice message from an alternative source, such as a broadcast network audio feed....

  16. Analysis of equi-intensity curves and NU distribution of EAS

    NASA Astrophysics Data System (ADS)

    Tanahashi, G.

    1985-08-01

    The distribution of the number of muons in extensive air showers (EAS) and the equi-intensity curves of EAS are analyzed on the basis of Monte Carlo simulation of various cosmic ray composition and the interaction models. Problems in the two best combined models are discussed.

  17. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to U.S./Canadian and U.S./Mexican border areas; (3) The EA licensee limits the field strength of its base stations at any location on the border of the EA service area in accordance with § 90.689;...

  18. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to U.S./Canadian and U.S./Mexican border areas; (3) The EA licensee limits the field strength of its base stations at any location on the border of the EA service area in accordance with § 90.689;...

  19. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to U.S./Canadian and U.S./Mexican border areas; (3) The EA licensee limits the field strength of its base stations at any location on the border of the EA service area in accordance with § 90.689;...

  20. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to U.S./Canadian and U.S./Mexican border areas; (3) The EA licensee limits the field strength of its base stations at any location on the border of the EA service area in accordance with § 90.689;...

  1. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to U.S./Canadian and U.S./Mexican border areas; (3) The EA licensee limits the field strength of its base stations at any location on the border of the EA service area in accordance with § 90.689;...

  2. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236EA WITH FOUR DIFFERENT EXXON LUBRICANTS

    EPA Science Inventory

    The report discusses miscibility, solubility, viscosity, and density data for the refrigerant hydrofluorocarbon (HFC)-236ea (or R-236ea) and four lubricants supplied by Exxon Corporation. Such data are needed to determine the suitability of refrigerant/lubricant combinations for ...

  3. MODELING AND DESIGN STUDY USING HFC-236EA AS AN ALTERNATIVE REFRIGERANT IN A CENTRIFUGAL COMPRESSOR

    EPA Science Inventory

    The report gives results of an investigation of the operation of a centrifugal compressor--part of a chlorofluorocarbon (CFC)-114 chiller installation--with the new refrigerant hydrofluorocarbon (HFC)-236ea, a proposed alternative to CFC-114. A large set of CFC-236ea operating da...

  4. 47 CFR 11.51 - EAS code and Attention Signal Transmission requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... include the location codes for the State and counties in its service area. When transmitting the required..., Event, Location and the valid time period of an EAS message. Effective June 30, 2012, visual messages derived from CAP-formatted EAS messages shall contain the Originator, Event, Location and the valid...

  5. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... systems. 90.359 Section 90.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.359 Field strength limits for EA-licensed LMS systems. EA-licensed multilateration systems...

  6. Cherenkov and scintillation light separation on the TheiaR &D experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin

    2016-03-01

    Identifying by separate the scintillation and Cherenkov light produced in a scintillation medium enables outstanding capabilities for future particle detectors, being the most relevant: allowing particle directionality information in a low energy threshold detector and improved particle identification. The TheiaR &D experiment uses an array of small and fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium, based on the number of produced photoelectrons and the timing information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by <1ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WBLS) provides a medium with a tunable Cherenkov/Scintillation light yield ratio, enhancing the visibility of the dimer Cherenkov light in presence of the scintillation light. Description of the experiment, details of the analysis and preliminary results of the first months of running will be discussed.

  7. NICHE: Using Cherenkov radiation to extend Telescope Array to sub-PeV energies

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas; Krizmanic, John; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2016-03-01

    The Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV. NICHE will be co-sited with the Telescope Array (TA) Low Energy (TALE) extension, and will observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode. This will be the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (j-NICHE) that will be deployed in Summer 2016. In this talk, the NICHE design, array performance, prototype development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  8. On potential energy models for EA-based ab initio protein structure prediction.

    PubMed

    Mijajlovic, Milan; Biggs, Mark J; Djurdjevic, Dusan P

    2010-01-01

    Ab initio protein structure prediction involves determination of the three-dimensional (3D) conformation of proteins on the basis of their amino acid sequence, a potential energy (PE) model that captures the physics of the interatomic interactions, and a method to search for and identify the global minimum in the PE (or free energy) surface such as an evolutionary algorithm (EA). Many PE models have been proposed over the past three decades and more. There is currently no understanding of how the behavior of an EA is affected by the PE model used. The study reported here shows that the EA behavior can be profoundly affected: the EA performance obtained when using the ECEPP PE model is significantly worse than that obtained when using the Amber, OPLS, and CVFF PE models, and the optimal EA control parameter values for the ECEPP model also differ significantly from those associated with the other models.

  9. EA follow-up in the Ghanaian mining sector: Challenges and opportunities

    SciTech Connect

    Appiah-Opoku, Seth; Bryan, Hobson C.

    2013-07-15

    Environmental assessment (EA) follow-up provides a means for monitoring and evaluating the implementation of environmental impact studies. It is integral to the success or failure of a project or program. In spite of its importance, very little attention is given to the need for follow-up programs in most jurisdictions in Africa. Using a case study in the Ghanaian mining sector, this paper explores the challenges and opportunities within the country's EA process for an effective follow-up program. The paper is based on informal interviews, content analysis of relevant publications, official EA documents, and internet searches. The authors suggest a standard EA follow-up program to be formalized as an integral part of Ghana's environmental assessment policy. They also propose a follow-up process that harnesses existing opportunities within the country's EA system. This approach can be replicated in other African countries.

  10. Evaluation of HFC 245ca and HFC 236ea as foam blowing agents

    NASA Technical Reports Server (NTRS)

    Sharpe, Jon; Macarthur, Doug; Kollie, Tom; Graves, Ron; Liu, Matthew; Hendriks, Robert V.

    1995-01-01

    Hydrochlorofluorocarbon (HCFC) 141b has been selected as the interim blowing agent for use in urethane insulations on NASA's Space Shuttle External Tank. Due to the expected limited commercial lifetime of this material, research efforts at the NASA Thermal Protection Systems Materials Research Laboratory at the Marshall Space Flight Center are now being devoted to the identification and development of alternatives with zero ozone depletion potential. Physical blowing agents identified to date have included hydrocarbons, fluorocarbons, hydrofluoroethers, and more predominantly, hydrofluorocarbons (HFCs). The majority of the HFC evaluations in industry have focused on the more readily available, low boiling candidates such as HFC 134a. Higher boiling HFC candidates that could be handled at ambient conditions and use current processing equipment would be more desirable. This paper will describe results from a research program of two such candidate HFC's performed as a cooperative effort between Martin Marietta Manned Space Systems, the U.S. Environmental Protection Agency, and Oak Ridge National Laboratories. The purpose of this effort was to perform a cursory evaluation of the developmental HFC's 245ca and 236ea as blowing agents in urethane based insulations. These two materials were selected from screening tests of 37 C2, C3, and C4 isomers based on physical properties, atmospheric lifetime, flammability, estimated toxicity, difficulty of synthesis, suitability for dual use as a refrigerant, and other factors. Solubility of the two materials in typical foam components was tested, pour foaming trials were performed, and preliminary data were gathered regarding foam insulation performance.

  11. Observation of arrival times of EAS with energies or = 6 x 10 (14) eV

    NASA Technical Reports Server (NTRS)

    Sun, L.

    1985-01-01

    The Earth's atmosphere is continually being bombarded by primary cosmic ray particles which are generally believed to be high-energy nuclei. The fact that the majority of cosmic ray primaries are charged particles and that space is permeated with random magnetic fields, means that the particles do not travel in straight lines. The arrival time distribution of EAS may also transfer some information about the primary particles. Actually, if the particles come to our Earth in a completely random process, the arrival time distribution of pairs of successive particles should fit an exponential law. The work reported here was arried out at Sydney University from May 1982 to January 1983. All the data are used to plot the arrival-time distribution of the events, that is, the distribution of time-separation between consecutive events on a 1 minute bin size. During this period more than 2300 showers were recorded. The results are discussed and compared with that of some other experiments.

  12. SNM Detection with an Optimized Water Cherenkov Neutron Detector

    DOE PAGES

    Dazeley, S.; Sweany, M.; Bernstein, A.

    2012-07-23

    Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype—a technology thatmore » could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions, demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In our paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. These simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.« less

  13. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    NASA Astrophysics Data System (ADS)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  14. SYNCHROTRON EMISSION DRIVEN BY THE CHERENKOV-DRIFT INSTABILITY IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Osmanov, Z.; Chkheidze, N.

    2013-02-10

    In the present paper, we study the generation of synchrotron emission by means of the feedback of Cherenkov-drift waves on the particle distribution through the diffusion process. Despite the efficient synchrotron losses, it is demonstrated that the excited Cherenkov-drift instability leads to the quasi-linear diffusion (QLD), the effect of which is balanced by dissipation factors and, as a result, the pitch angles are prevented from damping, thus maintaining the corresponding synchrotron emission. We analyze the model for a wide range of physical parameters and determine that the mechanism of QLD guarantees the generation of electromagnetic radiation from soft X-rays up to soft {gamma}-rays, which is strongly correlated with Cherenkov-drift emission ranging from IR up to UV energy domains.

  15. Cherenkov radiation in a surface wave accelerator based on silicon carbide (SWABSiC)

    NASA Astrophysics Data System (ADS)

    Wang, Tianhong; Lai, Kueifu; Khudik, Vladimir N.; Shvets, Gennady

    2017-03-01

    We report on theoretical investigations of Cherenkov-type emission of surface phonon polaritons (SPhPs) by relativistic electron bunches. The polaritons are confined by a planar waveguide comprised of two SiC slabs separated by a vacuum gap. The SPhPs are generated in the reststrahlen band, where the dielectric permittivity of SiC is negative. Two surface modes are analyzed: the accelerating (symmetric) and the deflecting (anti-symmetric) wakes. Both form Cherenkov cones that exhibit rapid spatial oscillations and beats behind the moving charge. Moreover, the accelerating mode forms a reversed Cherenkov radiation cone due the negative group velocity for sufficiently small gaps. The wakefield acceleration of electron bunches inside the structure is also discussed, as well as our recent experimental progress in propagating the electron beam through the structure at the Advanced Test Facility (ATF) that resulted in > 12% beam transmission.

  16. Cherenkov light detection as a velocity selector for uranium fission products at intermediate energies

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Enomoto, A.; Kouno, J.; Yamaki, S.; Matsunaga, S.; Suzaki, F.; Suzuki, T.; Abe, Y.; Nagae, D.; Okada, S.; Ozawa, A.; Saito, Y.; Sawahata, K.; Kitagawa, A.; Sato, S.

    2014-12-01

    The in-flight particle separation capability of intermediate-energy radioactive ion (RI) beams produced at a fragment separator can be improved with the Cherenkov light detection technique. The cone angle of Cherenkov light emission varies as a function of beam velocity. This can be exploited as a velocity selector for secondary beams. Using heavy ion beams available at the HIMAC synchrotron facility, the Cherenkov light angular distribution was measured for several thin radiators with high refractive indices (n = 1.9 2.1). A velocity resolution of 10-3 was achieved for a 56Fe beam with an energy of 500 MeV/nucleon. Combined with the conventional rigidity selection technique coupled with energy-loss analysis, the present method will enable the efficient selection of an exotic species from huge amounts of various nuclides, such as uranium fission products at the BigRIPS fragment separator located at the RI Beam Factory.

  17. Status and updates from the High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Baughman, B. M.

    2013-06-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed on the slopes of Volcan Sierra Negra, Puebla, Mexico. The HAWC observatory will consist of 300 Water Cherenkov Detectors totaling approximately 22,000 m of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals and performance of the HAWC observatory as well as how it will complement contemporaneous space and ground-based detectors will be presented.

  18. Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array

    SciTech Connect

    Amenomori, M.; Nanjo, H.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Lu, H.; Lu, S. L.; Ren, J. R.; Tan, Y. H.; Wang, B.; Wang, H.; Wang, Y.; Wu, H. R.; Zhang, H. M.; Zhang, J. L.; Zhang, Y.; Chen, D.; Kawata, K.

    2008-12-24

    We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the underground water Cherenkov muon detector.

  19. Reversed Cherenkov-Transition Radiation by a Charge Crossing a Left-Handed Medium Boundary

    SciTech Connect

    Galyamin, Sergey N.; Tyukhtin, Andrey V.; Kanareykin, Alexey; Schoessow, Paul

    2009-11-06

    We analyze the radiation from a charged particle crossing the boundary between an ordinary medium and a 'left-handed' metamaterial. We obtain exact and approximate expressions for the field components and develop algorithms for their computation. The spatial radiation in this system can be separated into three distinct components, corresponding to ordinary transition radiation having a relatively large magnitude, Cherenkov radiation, and reversed Cherenkov-transition radiation (RCTR). The last one is explained by reflection and refraction of reversed Cherenkov radiation at the interface. Conditions for generating of RCTR are obtained. We note properties of this radiation that have potential applications in the detection of charged particles and accelerator beams and for the characterization of metamaterial macroscopic parameters (epsilon, mu).

  20. Results on the Performance of a Broad Band Focussing Cherenkov Counter

    DOE R&D Accomplishments Database

    Cester, R.; Fitch, V. L.; Montag, A.; Sherman, S.; Webb, R. C.; Witherell, M. S.

    1980-01-01

    The field of ring imaging (broad band differential) Cherenkov detectors has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously reported on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using standard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters for use in a particle search experiment at Fermi National Accelerator Laboratory (FNAL). This new detector operates over the range 0.998 < ..beta.. < 1.000 in velocity with a delta..beta.. approx. 2 x 10{sup -4}. The acceptance in angle is +- 14 mrad in the horizontal and +- 28 mrad in the vertical. We report here on the performance of this counter.

  1. Use of Cherenkov-type detectors for measurements of runaway electrons in the ISTTOK tokamak

    SciTech Connect

    Plyusnin, V. V.; Fernandes, H.; Silva, C.; Duarte, P.

    2008-10-15

    Gas, fluid, or solid Cherenkov-type detectors have been widely used in high-energy physics for determination of parameters of charged particles, which are moving with relativistic velocities. This paper presents experimental results on the detection of runaway electrons using Cherenkov-type detectors in the ISTTOK tokamak discharges. Such detectors have been specially designed for measurements of energetic electrons in tokamak plasma. The technique based on the use of the Cherenkov-type detectors has enabled the detection of energetic electrons (energies higher than 80 keV) and determination of their spatial and temporal parameters in the ISTTOK discharges. Obtained experimental data were found in adequate agreement to the results of numerical modeling of the runaway electron generation in ISTTOK.

  2. Quantum calculation of the Vavilov-Cherenkov radiation by twisted electrons

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Serbo, V. G.; Zaytsev, V. A.

    2016-05-01

    We present a detailed quantum electrodynamical description of Vavilov-Cherenkov radiation emitted by a relativistic twisted electron in the transparent medium. Simple expressions for the spectral and spectral-angular distributions as well as for the polarization properties of the emitted radiation are obtained. Unlike the plane-wave case, the twisted electron produces radiation within the annular angular region, with enhancement towards its boundaries. Additionally, the emitted photons can have linear polarization not only in the scattering plane but also in the orthogonal direction. We find that the Vavilov-Cherenkov radiation emitted by an electron in a superposition of two vortex states exhibits a strong azimuthal asymmetry. Thus, the Vavilov-Cherenkov radiation offers itself as a convenient diagnostic tool of such electrons and complements the traditional microscopic imaging.

  3. Reconfigurable ASIC for a low level trigger system in Cherenkov Telescope Cameras

    NASA Astrophysics Data System (ADS)

    Gascon, D.; Barrio, J. A.; Blanch, O.; Boix, J.; Delagnes, E.; Delgado, C.; Freixas, L.; Guilloux, F.; Coto, R. L.; Griffiths, S.; Martínez, G.; Martínez, O.; Sanuy, A.; Tejedor, L. Á.

    2016-11-01

    A versatile and reconfigurable ASIC is presented, which implements two different concepts of low level trigger (L0) for Cherenkov telescopes: the Majority trigger (sum of discriminated inputs) and the Sum trigger concept (analogue clipped sum of inputs). Up to 7 input signals can be processed following one or both of the previous trigger concepts. Each differential pair output of the discriminator is also available as a LVDS output. Differential circuitry using local feedback allows the ASIC to achieve high speed (500 MHz) while maintaining good linearity in a 1 Vpp range. Experimental results are presented. A number of prototype camera designs of the Cherenkov Telescope Array (CTA) project will use this ASIC.

  4. Beam tests of a MWPC with CsI photocathode for Cherenkov Ring Imaging

    SciTech Connect

    Krizan, P.; Staric, M.; Stanovnik, A.; Cindro, M.; Skrk, D.; Zavrtanik, M.; Korpar, S.; Hamacher, T.; Michel, E.

    1995-08-01

    A 24 x 24 cm{sup 2} asymmetric multiwire proportional chamber, with 7.5 x 7.5 mm{sup 2} photosensitive CsI pads, has been tested with Cherenkov radiation of 3 GeV/c electrons in the T24 test beam at DESY. The performance of the chamber with specially designed low-noise, charge-sensitive preamplifiers is described. The parameters of the CsI-MWPC are compared to those of a TMAE photon detector in order to evaluate their potential as Ring Imaging Cherenkov (RICH) counters for the HERA-B experiment at DESY.

  5. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Amat, F.; Bizouard, P.; Bryant, J.; Carroll, T. J.; Rijck, S. De; Germani, S.; Joyce, T.; Kriesten, B.; Marshak, M.; Meier, J.; Nelson, J. K.; Perch, A. J.; Pfützner, M. M.; Salazar, R.; Thomas, J.; Trokan-Tenorio, J.; Vahle, P.; Wade, R.; Wendt, C.; Whitehead, L. H.; Whitney, M.

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  6. On gravitational wave-Cherenkov radiation from photons when passing through diffused dark matters

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu

    2017-03-01

    Analogous to Cherenkov radiation, when a particle moves faster than the propagation velocity of gravitational wave in matter (v > cg), we expect gravitational wave-Cherenkov radiation (GWCR). In the situation that a photon travels across diffuse dark matters, the GWCR condition is always satisfied, photon will thence lose its energy all along the path. This effect has long been ignored in the practice of astrophysics and cosmology without justification with serious calculation. We study this effect for the first time, and shows that this energy loss time of the photon is far longer than the Hubble time and therefore justify the practice of ignoring this effect in the context of astrophysics.

  7. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    SciTech Connect

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Fernandez, F.; Hallewell, G.; Kawahara, H.; Korff, P.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Rabinowitz, L.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'Vra, J.; Williams, S.; Whitaker, J.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; McHugh, S.; Mathys, L.; Morriso

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs.

  8. Constraints on general second-order scalar-tensor models from gravitational Cherenkov radiation

    SciTech Connect

    Kimura, Rampei; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2012-07-01

    We demonstrate that the general second-order scalar-tensor theories, which have attracted attention as possible modified gravity models to explain the late time cosmic acceleration, could be strongly constrained from the argument of the gravitational Cherenkov radiation. To this end, we consider the purely kinetic coupled gravity and the extended galileon model on a cosmological background. In these models, the propagation speed of tensor mode could be less than the speed of light, which puts very strong constraints from the gravitational Cherenkov radiation.

  9. Nonlinear Cherenkov radiation at the interface of two different nonlinear media.

    PubMed

    Zhao, Xiaohui; Zheng, Yuanlin; Ren, Huaijin; An, Ning; Deng, Xuewei; Chen, Xianfeng

    2016-06-13

    We discuss the nonlinear response due to the spatial modulation of the second-order susceptibility at the interface between two nonlinear media, and experimentally demonstrate that the nonlinear Cherenkov radiation is enhanced by the interface of two nonlinear crystals with a large disparity in χ(2). In our experiment, the intensity of the nonlinear Cherenkov radiation generated at the nonlinear interface was approximately 4 to 10 times that at the crystal boundary. This result suggests potential applications to efficient frequency conversion.

  10. Diagnostics of Electron Beams Based on Cherenkov Radiation in an Optical Fiber

    NASA Astrophysics Data System (ADS)

    Vukolov, A. V.; Novokshonov, A. I.; Potylitsyn, A. P.; Uglov, S. R.

    2017-02-01

    The use of an optical fiber in which Cherenkov radiation is generated instead of a metal wire for scanning a beam profile allows a compact and noise-proof device for diagnostics of charged particle beams in a wide energy range to be developed. Results of experimental investigation of the yield of Vavilov-Cherenkov radiation generated in optical fibers with thickness in the range from 0.125 to 1 mm by electrons with energy of 5.7 MeV are presented.

  11. Mixed optical Cherenkov-Bremsstrahlung radiation in vicinity of the Cherenkov cone from relativistic heavy ions: Unusual dependence of the angular distribution width on the radiator thickness

    NASA Astrophysics Data System (ADS)

    Rozhkova, E. I.; Pivovarov, Yu. L.

    2016-07-01

    The Cherenkov radiation (ChR) angular distribution is usually described by the Tamm-Frank (TF) theory, which assumes that relativistic charged particle moves uniformly and rectilinearly in the optically transparent radiator. According to the TF theory, the full width at half maximum (FWHM) of the ChR angular distribution inversely depends on the radiator thickness. In the case of relativistic heavy ions (RHI) a slowing-down in the radiator may sufficiently change the angular distribution of optical radiation in vicinity of the Cherenkov cone, since there appears a mixed ChR-Bremsstrahlung radiation. As a result, there occurs a drastic transformation of the FWHM of optical radiation angular distribution in dependence on the radiator thickness: from inversely proportional (TF theory) to the linearly proportional one. In our paper we present the first analysis of this transformation taking account of the gradual velocity decrease of RHI penetrating through a radiator.

  12. Human T cell activation. III. Induction of an early activation antigen, EA 1 by TPA, mitogens and antigens

    SciTech Connect

    Hara, T.; Jung, L.K.L.; FU, S.M.

    1986-03-01

    With human T cells activated for 12 hours by 12-o-tetradecanoyl phorbol-13-acetate (TPA) as immunogen, an IgG/sub 2a/ monoclonal antibody, mAb Ea 1, has been generated to a 60KD phosphorylated protein with 32KD and 28KD subunits. The antigen, Ea 1, is readily detected on 60% of isolated thymocytes by indirect immunofluorescence. A low level of Ea 1 expression is detectable on 2-6% of blood lymphocytes. Isolated T cells have been induced to express Ea 1 by TPA, mitogens and anitgens. TPA activated T cells express Ea 1 as early as 1 hour after activation. By 4 hours, greater than 95% of the T cells stain with mAb Ea 1. About 50% of the PHA or Con A activated T cells express Ea 1 with a similar kinetics. Ea 1 expression proceeds that of IL-2 receptor in these activation processes. T cells activated by soluble antigens (tetanus toxoid and PPD) and alloantigens in MLR also express Ea 1 after a long incubation. About 20% of the T cells stain for Ea 1 at day 6. Ea 1 expression is not limited to activated T cells. B cells activated by TPA or anti-IgM Ab plus B cell growth factor express Ea 1. The kinetics of Ea 1 expression is slower and the staining is less intense. Repeated attempts to detect Ea 1 on resting and activated monocytes and granulocytes have not been successful. Ea 1 expression is due to de novo synthesis for its induction is blocked by cycloheximide and actinomycin D. Ea 1 is the earliest activation antigen detectable to-date.

  13. Measuring the energy spectrum of primary cosmic rays with the Yakutsk EAS array

    NASA Technical Reports Server (NTRS)

    Khristiansen, G. B.

    1986-01-01

    The Yakutsk Extensive Air Showers (EAS) array was designed for detecting the showers generated by the 10 to the 47th power to 10 to the 20th power eV primary cosmic rays and consists of numerous electron, muon, and Cerenkov light detectors arranged on a 20 sq km area terrain. The array is featured by the feasibility to detect the EAS-produced Cerenkov light, hence, as will be shown, to find the mean energy of the primary particles generating an ensemble of EAS of given size. Date collected is discussed.

  14. Development of Yangbajing air shower core detector for a new EAS hybrid experiment

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Sheng; Huang, Jing; Chen, Ding; Zhang, Ying; Zhai, Liu-Ming; Chen, Xu; Hu, Xiao-Bin; Lin, Yu-Hui; Zhang, Xue-Yao; Feng, Cun-Feng; Jia, Huan-Yu; Zhou, Xun-Xiu; Danzengluobu; Chen, Tian-Lu; Li, Hai-Jin; Liu, Mao-Yuan; Yuan, Ai-Fang

    2015-08-01

    Aiming at the observation of cosmic-ray chemical composition in the “knee” energy region, we have been developing a new type of air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522° E, 30.102° N, 4300 m above sea level, atmospheric depth: 606 g/m2) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water Cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thickness and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to 106 MIPs. The first phase of this experiment, named “YAC- I”, consists of 16 YAC detectors each with a size of 40 cm×50 cm and distributed in a grid with an effective area of 10 m2. YAC- I is used to check hadronic interaction models. The second phase of the experiment, called “YAC- II”, consists of 124 YAC detectors with coverage of about 500 m2. The inner 100 detectors of 80 cm×50 cm each are deployed in a 10×10 matrix with a 1.9 m separation; the outer 24 detectors of 100 cm×50 cm each are distributed around these to reject non-core events whose shower cores are far from the YAC- II array. YAC- II is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of protons, helium and iron nuclei between 5×1013 eV and 1016 eV, covering the “knee” and also connected with direct observations at energies around 100 TeV. We present the design and performance of YAC- II in this paper. Supported by grants from the National Natural Science Foundation of China (11078002, 11275212, 11165013), the Chinese Academy of Sciences (H9291450S3, Y4293211S5) and the Knowledge Innovation Fund of Institute of High Energy Physics (IHEP), China (H95451D0U2, H8515530U1)

  15. The Cherenkov Telescope Array Observatory: top level use cases

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  16. Design of a 7m Davies-Cotton Cherenkov telescope mount for the high energy section of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Rovero, A. C.; Ringegni, P.; Vallejo, G.; Supanitsky, A. D.; Actis, M.; Botani, A.; Ochoa, I.; Hughes, G.

    2013-08-01

    The Cherenkov Telescope Array is the next generation ground-based observatory for the study of very-high-energy gamma-rays. It will provide an order of magnitude more sensitivity and greater angular resolution than present systems as well as an increased energy range (20 GeV to 300 TeV). For the high energy portion of this range, a relatively large area has to be covered by the array. For this, the construction of ˜7 m diameter Cherenkov telescopes is an option under study. We have proposed an innovative design of a Davies-Cotton mount for such a telescope, within Cherenkov Telescope Array specifications, and evaluated its mechanical and optical performance. The mount is a reticulated-type structure with steel tubes and tensioned wires, designed in three main parts to be assembled on site. In this work we show the structural characteristics of the mount and the optical aberrations at the focal plane for three options of mirror facet size caused by mount deformations due to wind and gravity.

  17. 78 FR 54635 - Notice of Intent To Prepare an Environmental Impact Statement for EA-18G Growler Airfield...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Department of the Navy Notice of Intent To Prepare an Environmental Impact Statement for EA-18G Growler... intent to prepare an Environmental Impact Statement (EIS) for EA-18G Growler airfield operations at Naval... effects associated with the introduction of two additional EA-18G Growler expeditionary squadrons...

  18. 76 FR 54525 - Notice of Availability of a Final Environmental Assessment (Final EA) and a Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... EA) and a Finding of No Significant Impact (FONSI)/Record of Decision (ROD) for a Proposed Airport... Assessment (Final EA) and Finding of No Significant Impact (FONSI)/Record of Decision (ROD) for a Proposed... Decision (ROD) based on the Final Environmental Assessment (Final EA) for a Proposed Airport...

  19. 75 FR 49016 - Notice of Public Availability of the Final Environmental Assessment (EA) and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... Federal Aviation Administration Notice of Public Availability of the Final Environmental Assessment (EA... of Transportation (DOT). ACTION: Notice of availability of a final EA and FONSI/ROD for the... County Airport in Bowman County, North Dakota. SUMMARY: The FAA has made available the final EA and...

  20. 75 FR 42820 - Notice of Availability of a Final Environmental Assessment (Final EA) and a Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Federal Aviation Administration Notice of Availability of a Final Environmental Assessment (Final EA) and... Assessment (Final EA) and Finding of No Significant Impact (FONSI)/Record of Decision (ROD) for a Proposed... (FONSI)/Record of Decision (ROD) based on the Final Environmental Assessment (Final EA) for a...

  1. 75 FR 42819 - Notice of Availability of a Final Environmental Assessment (Final EA) and a Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Federal Aviation Administration Notice of Availability of a Final Environmental Assessment (Final EA) and...: Notice of Availability of a Final Environmental Assessment (Final EA) and Finding of No Significant...)/Record of Decision (ROD) based on the Final Environmental Assessment (Final EA) for the Proposed...

  2. The `PAMIR XXI' Project of a Complex Setup for the PCR Study in a Wide Energy Range 1014 - 1018 eV

    NASA Astrophysics Data System (ADS)

    Borisov, Alexander; Muminov, Khikmat; Galkin, Vladimir; Puchkov, Vitaly

    2013-06-01

    A new comprehensive EAS experiment for multi-component study of the energy spectrum behavior and composition of the PCR in a wide energy range 1014 - 1018 eV is launched at the Pamirs this year. The experimental setup of ~ 1 km2 in area combines conventional EAS array technique with those of X-Ray emulsion chamber, Cherenkov detector array and Cherenkov atmospheric imaging telescopes (IACT). The goals of the experiment and the experimental techniques are discussed.

  3. Cherenkov and scintillation light separation on the CheSS experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  4. Gaseous photomultipliers for the readout of scintillators and detection Cherenkov radiation

    SciTech Connect

    Peskov, V.; Borovik-Romanov, A.

    1993-11-01

    The latest achievements in the development of gaseous detectors for registering UV and visible photons are described. Possible modifications of their design for some particular applications such as the readout of crystal scintillators. noble liquids, fibers and for large area Cherenkov detectors are discussed.

  5. Nuclear Physics with CLAS12 and the High Threshold Cherenkov Counter

    NASA Astrophysics Data System (ADS)

    Mazurek, Jeffrey

    2011-10-01

    New construction is underway at Thomas Jefferson National Lab for the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) and the CEABF Large Acceptance Spectrometer detector upgrade (CLAS12) at Hall B. This upgrade allows a broad experimental program with the new CLAS12 detector to map the nucleon's 3-dimensional spin and flavor content through the measurement of deeply exclusive and semi-inclusive processes. During an experiment, CLAS12 will record data when its High Threshold Cherenkov Counter (HTCC) identifies a scattered electron through the generation of Cherenkov Light. Cherenkov Light indicates an event and is created when a charged particle moves faster than the speed of light in a medium. The HTCC uses a system of 48 ellipsoidal mirrors assembled into one circular, 8-ft diameter mirror to capture this light. While both pions and electrons can generate Cherenkov Light, only that from an electron identifies an event. Therefore, the HTCC must distinguish the light of a scattered electron from the light by pion contamination. This paper offers an overview of Jefferson National Lab's new CLAS12 detector and a detailed presentation of the HTCC.

  6. Digital FDIRC: A focused differential internal reflection Cherenkov imaged by SiPM arrays

    NASA Astrophysics Data System (ADS)

    Marrocchesi, P. S.; Bagliesi, M. G.; Basti, A.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Checchia, C.; Collazuol, G.; Maestro, P.; Morsani, F.; Piemonte, C.; Stolzi, F.; Suh, J. E.; Sulaj, A.

    2016-07-01

    A prototype of an Internal Reflection Cherenkov, equipped with a SiO2 (fused silica) radiator bar optically connected to a cylindrical mirror, was tested at CERN SPS in March 2015 with a beam of relativistic ions obtained from fragmentation of primary argon nuclei at energies 13, 19 and 30 GeV/n. The detector, designed to identify cosmic nuclei, features an imaging focal plane of dimensions 4 cm × 3 cm equipped with 16 arrays of NUV-SiPM (near-ultraviolet sensitive silicon photon avalanche detector) for a total of 1024 sensitive elements. The outstanding performance of the photodetectors (with negligible background in between adjacent photopeaks) allowed us to apply the technique of photon counting to the Cherenkov light collected on the focal plane. Thanks to the fine granularity of the array elements, the Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z. In this paper, we report the performance of the SiPM arrays and the excellent resolution achieved by the digital Cherenkov prototype in the charge identification of the elements present in the beam.

  7. Gamma ray measurements at OMEGA with the newest gas Cherenkov Detector “GCD-3”

    DOE PAGES

    McEvoy, A. M.; Herrmann, H. W.; Kim, Y.; ...

    2016-05-26

    Initial results from the newest Gas Cherenkov Detector (GCD-3) are reported demonstrating improved performance over previous GCD iterations. Increased shielding and lengthening of the Cherenkov photon optical path have resulted in a diminished precursor signal with increased temporal separation between the precursor and the primary DT Cherenkov signal. Design changes resulted in a measured GCD-3 sensitivity comparable to GCD-1 at identical 100 psia CO2 operation. All metal gasket seals and pressure vessel certification to 400 psia operation allow for a GCD-3 lower Cherenkov threshold of 1.8 MeV using the fluorinated gas C2F6 as compared to the 6.3 MeV lower limitmore » of GCD-1 and GCD-2. Calibration data will be used to benchmark GEANT4 and ACCEPT detector models. Lastly, the GCD-3 acts as a prototype for the Super GCD being fielded at the National Ignition Facility (NIF) as part of the National Diagnostics Plan and will be installed at NIF in early 2016.« less

  8. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    SciTech Connect

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  9. Gamma Ray Measurements at OMEGA with the Newest Gas Cherenkov Detector “GCD-3”

    NASA Astrophysics Data System (ADS)

    McEvoy, A. M.; Herrmann, H. W.; Kim, Y.; Zylstra, A. B.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Sedillo, T. J.; Archuleta, T. N.; Aragonez, R. J.; Malone, R. M.; Horsfield, C. J.; Rubery, M.; Gales, S.; Leatherland, A.; Stoeffl, W.; Gatu Johnson, M.; Shmayda, W. T.; Batha, S. H.

    2016-05-01

    Initial results from the newest Gas Cherenkov Detector (GCD-3) are reported demonstrating improved performance over previous GCD iterations. Increased shielding and lengthening of the Cherenkov photon optical path have resulted in a diminished precursor signal with increased temporal separation between the precursor and the primary DT Cherenkov signal. Design changes resulted in a measured GCD-3 sensitivity comparable to GCD-1 at identical 100 psia CO2 operation. All metal gasket seals and pressure vessel certification to 400 psia operation allow for a GCD-3 lower Cherenkov threshold of 1.8 MeV using the fluorinated gas C2F6 as compared to the 6.3 MeV lower limit of GCD-1 and GCD-2. Calibration data will be used to benchmark GEANT4 and ACCEPT detector models. The GCD-3 acts as a prototype for the Super GCD being fielded at the National Ignition Facility (NIF) as part of the National Diagnostics Plan and will be installed at NIF in early 2016.

  10. Gamma ray measurements at OMEGA with the newest gas Cherenkov Detector “GCD-3”

    SciTech Connect

    McEvoy, A. M.; Herrmann, H. W.; Kim, Y.; Zylstra, A. B.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Sedillo, T. J.; Archuleta, T. N.; Aragonez, R. J.; Malone, R. M.; Horsfield, C. J.; Rubery, M.; Gales, S.; Leatherland, A.; Stoeffl, W.; Johnson, M. Gatu; Shmayda, W. T.; Batha, S. H.

    2016-05-26

    Initial results from the newest Gas Cherenkov Detector (GCD-3) are reported demonstrating improved performance over previous GCD iterations. Increased shielding and lengthening of the Cherenkov photon optical path have resulted in a diminished precursor signal with increased temporal separation between the precursor and the primary DT Cherenkov signal. Design changes resulted in a measured GCD-3 sensitivity comparable to GCD-1 at identical 100 psia CO2 operation. All metal gasket seals and pressure vessel certification to 400 psia operation allow for a GCD-3 lower Cherenkov threshold of 1.8 MeV using the fluorinated gas C2F6 as compared to the 6.3 MeV lower limit of GCD-1 and GCD-2. Calibration data will be used to benchmark GEANT4 and ACCEPT detector models. Lastly, the GCD-3 acts as a prototype for the Super GCD being fielded at the National Ignition Facility (NIF) as part of the National Diagnostics Plan and will be installed at NIF in early 2016.

  11. Town of Chino Valley Municipal Water System Improvement Project FONSI and EA

    EPA Pesticide Factsheets

    EPA Region 9 has prepared an Environmental Assessment (EA) describing the potential environmental impacts associated with, and the alternatives to, the proposed Water System Improvement Project in the town of China Valley, Arizona. This Finding of No Signi

  12. MISCIBILITY, SOLUBILITY, AND VISCOSITY MEASUREMENTS FOR R-236EA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. (NOTE: The data were needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The lubricants...

  13. Business Architecture Development at Public Administration - Insights from Government EA Method Engineering Project in Finland

    NASA Astrophysics Data System (ADS)

    Valtonen, Katariina; Leppänen, Mauri

    Governments worldwide are concerned for efficient production of services to customers. To improve quality of services and to make service production more efficient, information and communication technology (ICT) is largely exploited in public administration (PA). Succeeding in this exploitation calls for large-scale planning which embraces issues from strategic to technological level. In this planning the notion of enterprise architecture (EA) is commonly applied. One of the sub-architectures of EA is business architecture (BA). BA planning is challenging in PA due to a large number of stakeholders, a wide set of customers, and solid and hierarchical structures of organizations. To support EA planning in Finland, a project to engineer a government EA (GEA) method was launched. In this chapter, we analyze the discussions and outputs of the project workshops and reflect emerged issues on current e-government literature. We bring forth insights into and suggestions for government BA and its development.

  14. Electron and thermal neutron lateral distribution functions in EAS at high altitude

    NASA Astrophysics Data System (ADS)

    Shchegolev, O. B.; Alekseenko, V. V.; Cai, Z. Y.; Cao, Z.; Cui, S. W.; Gromushkin, D. M.; Guo, X. W.; He, H. H.; Liu, Y.; Ma, X.; Stenkin, Yu V.; Stepanov, V. I.; Zhao, J.

    2016-05-01

    EAS array of novel type have been constructed on the base of ARGO-YBJ experiment (Tibet, China). It consists of the four specially designed scintillator en-detectors capable to measure two main EAS components: hadrons through thermal neutrons (n) and electrons (e). The results of simulation for these arrays using CORSIKA and GEANT4 codes are presented. Simulated thermal neutron and electron lateral distributions are compared with experimental data. Obtained distributions are compared with those obtained by other arrays.

  15. Studies on the nature of EA binding by lymphocytes from rheumatoid arthritis patients

    PubMed Central

    Sharpin, Rosemary K. C.; Wilson, J. D.

    1977-01-01

    Investigation of the nature of the increased erythrocyte-antibody (EA) binding activity of peripheral blood lymphocytes (PBL) from rheumatoid arthritis (RA) patients reported in the preceding paper has revealed that IgG is the active class of antibody in this rosette formation. Some IgM binding also occurs. SRBC sensitized with F(ab)2 preparations of IgG do not give rosette formation even at high concentrations. EA binding is inhibited by prior incubation of lymphocytes with heat-aggregated human IgG but antigen-antibody complexes did not give significant inhibition. The majority of these rosettes were found to be stable at 4°C and room temperature but labile at 37°C. Enzyme studies with pronase, trypsin, neuraminidase and treatment with sodium azide gave results strongly supporting the conclusion that the increased binding observed is increased Fc-receptor activity. This activity appears not to be a result of Fc binding by cell-bound rheumatoid factor. A range of titres of antibody and of IgG was used to sensitize erythrocytes to form EA and the enhanced EA-rosette formation by PBL from RA patients occurred throughout the range of concentrations of sensitizing antibody. Significantly more EA were bound by individual lymphocytes from RA patients than control subjects. This data suggest that the Fc receptors on RA lymphocytes are more avid for EA than receptors on lymphocytes from healthy people. PMID:908173

  16. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  17. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    SciTech Connect

    Zhang, R; Glaser, A; Jarvis, L; Gladstone, D; Andreozzi, J; Hitchcock, W; Pogue, B

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  18. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    SciTech Connect

    Sanchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gomez, Mario E.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  19. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    SciTech Connect

    Actis, M

    2012-04-17

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  20. Glass mirrors by cold slumping to cover 100 m2 of the MAGIC II Cherenkov telescope reflecting surface

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Giro, E.; Banham, R.; Basso, S.; Bastieri, D.; Canestrari, R.; Ceppatelli, G.; Citterio, O.; Doro, M.; Ghigo, M.; Marioni, F.; Mariotti, M.; Salvati, M.; Sanvito, F.; Vernani, D.

    2008-07-01

    We report on the production and implementation of 100 square panels 1 m x 1 m, based on the innovative approach of cold slumping of thin glass sheets. The more than 100 segments will cover around one half of the 240 m-square reflecting surface of the MAGIC II, a clone of the atmospheric Cherenkov telescope MAGIC I (with a single-dish 17 m diameter mirror) which is already operating since late 2003 at La Palma. The MAGIC II telescope will be completed by the end of 2008 and will operate in stereoscopic mode with MAGIC I. While the central part of the of the reflector is composed of by diamond milled Aluminum of 1m2 area panels (following a design similar to that already used for MAGIC I), the outer coronas will be made of sandwiched glass segments. The glass panel production foresees the following steps: a) a thin glass sheet (1-2mm) is elastically deformed so as to retain the shape imparted by a master with convex profile - the radius of curvature is large, the sheet can be pressed against the master using vacuum suction -; b) on the deformed glass sheet a honeycomb structure that provides the needed rigidity is glued ; c) then a second glass sheet is glued on the top in order to obtain a sandwich; d) after on the concave side a reflecting coating (Aluminum) and a thin protective coating (Quartz) are deposited. The typical weight of each panel is about 12 kg and its resolution is better than 1 mrad at a level of diameter that contains the 90% of the energy reflected by the mirror; the areal cost of glass panels is ~2 k per 1m2. The technology based on cold slumping is a good candidate for the production of the primary mirrors of the telescopes forming the Cherenkov Telescope Array (CTA), the future large TeV observatory currently being studied in Europe. Details on the realization of MAGIC II new mirrors based on cold slumping glass will be presented.

  1. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    SciTech Connect

    Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini; Germack, Renee; Rosenthal, Nadia; Santini, Maria Paola

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac

  2. Glasses for Detection of Penetrating Radiation via the Cherenkov Effect

    DTIC Science & Technology

    2015-07-01

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data ... Isotopic Gammas Photosensor Unclassified Unclassified Unclassified SAR 27 David Petersen 703-767-3164...TO GET TO GET BY DIVIDE angstrom atmosphere (normal) bar barn British thermal unit

  3. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    SciTech Connect

    Andreozzi, Jacqueline M. E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.; Williams, Benjamin B.; Jarvis, Lesley A. E-mail: Lesley.A.Jarvis@hitchcock.org; Pogue, Brian W.

    2016-02-15

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial

  4. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    PubMed Central

    Zhang, Rongxiao; Gladstone, David J.; Williams, Benjamin B.; Glaser, Adam K.; Pogue, Brian W.; Jarvis, Lesley A.

    2016-01-01

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R2 = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles

  5. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  6. Study of the energy spectrum of primary cosmic rays: EAS size fluctuations at a fixed primary energy

    NASA Technical Reports Server (NTRS)

    Allev, N.; Alimov, T.; Kakhharov, N.; Khakimov, K.; Rakhimova, N.; Tashpulatov, R.; Khristiansen, G. B.

    1985-01-01

    During the initial period of the Samarkand EAS array operations the showers were selected on the basis of charged-particle flux density, and during the subsequent periods the showers were selected on the basis of Cerenkov light flux density. This procedure made it possible to measure the shower energy, to estimate the EAS size fluctuations at a fixed primary energy, and to experimentally obtain the scaling factor K(Ne, Eo) from the EAS size spectrum to the primary energy spectrum. Six scintillators of area S = 2 sq m each were added to the array. The fluctuations of EAS sizes in the showers of fixed primary energies and the scaling factors K(Ne, Eo) were inferred from the data obtained. The showers with zenith angles 30 deg were selected. The EAS axis positions were inferred from the amplitude data of the scintillators. The primary energy Eo was determined by the method of least squares for the known EAS axis position using the data of the Cerenkov detector located at 80 to 150 m EAS axis. It is shown that the Cerenkov light flux fluctuations at 100 m from EAS axis, q sub 100, do not exceed 10% at a fixed EAS energy, so the parameter q sub 100 may be used to estimate the EAS-generating primary particle-energy.

  7. Aspherical mirrors for the Gamma-ray Cherenkov Telescope, a Schwarschild-Couder prototype proposed for the future Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the

  8. Genotoxicity of Casiopeina III-Ea in mouse bone marrow cells.

    PubMed

    Álvarez-Barrera, Lucila; Rodríguez-Mercado, Juan J; López-Chaparro, Michel; Altamirano-Lozano, Mario A

    2016-10-26

    Casiopeina III-Ea® (Cas III-Ea®) is a chelated copper complex with antineoplastic activity that is capable of reducing tumor size and inducing antiproliferative and apoptotic effects. However, little is known about its in vivo genotoxic effects. Therefore, this study evaluated two cytogenetic and two proliferative parameters 24 h after the administration of Casiopeina III-Ea® to male CD-1 mice. Three doses of Cas III-Ea® were administered by intraperitoneal injections of 1.69, 3.39 and 6.76 mg/kg (corresponding to 1/8, 1/4 and 1/2 of LD50, respectively). A reduction in the mitotic index (MI) and an increased numbers of cells with structural chromosomal aberrations (SCA) were detected. Additionally, a low but significant increase in the frequency of sister chromatid exchange (SCE) was observed at the highest dose. Changes in the DNA replication index (RI) were not observed. These results indicate that Casiopeina III-Ea® shows cytotoxic and clastogenic activity in bone marrow cells from treated mice.

  9. Isolation and characterization of new lignin streams derived from extractive-ammonia (EA) pretreatment

    SciTech Connect

    da Costa Sousa, Leonardo; Foston, Marcus; Bokade, Vijay; Azarpira, Ali; Lu, Fachuang; Ragauskas, Arthur J.; Ralph, John; Dale, Bruce; Balan, Venkatesh

    2016-05-05

    One of the key challenges facing lignin conversion to fuels and chemicals is related to the level of carbohydrate and ash impurities found in extracted lignin. Structural modifications of lignin may also occur as a result of biomass pretreatment and harsh lignin extraction protocols. Extractive-Ammonia (EA) is a new pretreatment technology that uses liquid ammonia to cleave lignin–carbohydrate complexes, decrystallize cellulose, solubilize lignin, and selectively extract lignin from lignocellulosic biomass, enabling better utilization of both lignin and carbohydrate components in a biorefinery. The EA-based biorefinery produces two different lignin-rich streams, with different properties, that could potentially be upgraded to fuels and chemicals using green processes. In this work, a water/ethanol-based fractionation method was developed to enrich the ammonia-soluble extractives, resulting in a major product stream containing 92% lignin. Detailed characterization of the various streams resulting from EA treatment, including compositional analysis, structural characterization by nuclear magnetic resonance (NMR) spectrometry, elemental analysis, molecular weight analysis, and thermo-gravimetric analysis provides a broad evaluation of the EA-derived lignin product stream structures and properties, assessing their potential for commercial applications. In summary, EA-derived lignins preserve much of lignin's functionality, including the sensitive β-aryl ether units. Furthermore, nitrogen incorporation was observed in the lignin-rich streams, notably due to the presence of hydroxycinnamoyl amides formed during ammonia pretreatment.

  10. Isolation and characterization of new lignin streams derived from extractive-ammonia (EA) pretreatment

    DOE PAGES

    da Costa Sousa, Leonardo; Foston, Marcus; Bokade, Vijay; ...

    2016-05-05

    One of the key challenges facing lignin conversion to fuels and chemicals is related to the level of carbohydrate and ash impurities found in extracted lignin. Structural modifications of lignin may also occur as a result of biomass pretreatment and harsh lignin extraction protocols. Extractive-Ammonia (EA) is a new pretreatment technology that uses liquid ammonia to cleave lignin–carbohydrate complexes, decrystallize cellulose, solubilize lignin, and selectively extract lignin from lignocellulosic biomass, enabling better utilization of both lignin and carbohydrate components in a biorefinery. The EA-based biorefinery produces two different lignin-rich streams, with different properties, that could potentially be upgraded to fuelsmore » and chemicals using green processes. In this work, a water/ethanol-based fractionation method was developed to enrich the ammonia-soluble extractives, resulting in a major product stream containing 92% lignin. Detailed characterization of the various streams resulting from EA treatment, including compositional analysis, structural characterization by nuclear magnetic resonance (NMR) spectrometry, elemental analysis, molecular weight analysis, and thermo-gravimetric analysis provides a broad evaluation of the EA-derived lignin product stream structures and properties, assessing their potential for commercial applications. In summary, EA-derived lignins preserve much of lignin's functionality, including the sensitive β-aryl ether units. Furthermore, nitrogen incorporation was observed in the lignin-rich streams, notably due to the presence of hydroxycinnamoyl amides formed during ammonia pretreatment.« less

  11. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    PubMed

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora.

  12. Vacuum Cherenkov radiation in quantum electrodynamics with high-energy Lorentz violation

    SciTech Connect

    Anselmi, Damiano; Taiuti, Martina

    2011-03-01

    We study phenomena predicted by a renormalizable, CPT invariant extension of the standard model that contains higher-dimensional operators and violates Lorentz symmetry explicitly at energies greater than some scale {Lambda}{sub L}. In particular, we consider the Cherenkov radiation in vacuo. In a rather general class of dispersion relations, there exists an energy threshold above which radiation is emitted. The threshold is enhanced in composite particles by a sort of kinematic screening mechanism. We study the energy loss and compare the predictions of our model with known experimental bounds on Lorentz violating parameters and observations of ultrahigh-energy cosmic rays. We argue that the scale of Lorentz violation {Lambda}{sub L} (with preserved CPT invariance) can be smaller than the Planck scale, actually as small as 10{sup 14}-10{sup 15} GeV. Our model also predicts the Cherenkov radiation of neutral particles.

  13. Rapid screening of 90Sr activity in water and milk samples using Cherenkov radiation.

    PubMed

    Stamoulis, K C; Ioannides, K G; Karamanis, D T; Patiris, D C

    2007-01-01

    A method for screening 90Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of 90Sr/90Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L(-1)(90)Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of 40K. For this reason, the interference of 40K in the measurements of 90Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L(-1)90Sr.

  14. Studies of Multi-Anode PMTs for a Ring Imaging Cherenkov for CLAS12

    NASA Astrophysics Data System (ADS)

    Lendacky, Andrew; Benmokhtar, Fatiha; Kubarovsky, Valery; Kim, Andrey

    2015-10-01

    At Thomas Jefferson National Accelerator Facility (TJNAF), the CLAS12 detector in Hall B is undergoing an upgrade. A Ring Imaging Cherenkov (R.I.C.H) detector is being built to improve particle identification in the 3-8 GeV/c momentum range. Approximately four hundred Hamamatsu H121700 Multi-Anode Photomultiplier Tubes (MA-PMTs) are being used in this detector to measure photons emitted through Cherenkov Radiation. These MA-PMTs' characteristics are being tested and measured, and I will be presenting my work about the crosstalk study. Crosstalk is the occurrence of incident light striking one area of the photocathode, but is additionally measured in nearby areas. By using a Class 3b laser in the 470 nm wavelength, and an optical density resembling the single photon emission spectrum, the crosstalk for the H121700 MA-PMTs are measured and categorized into a database for future reference.

  15. Photonic chip-based optical frequency comb using soliton Cherenkov radiation.

    PubMed

    Brasch, V; Geiselmann, M; Herr, T; Lihachev, G; Pfeiffer, M H P; Gorodetsky, M L; Kippenberg, T J

    2016-01-22

    Optical solitons are propagating pulses of light that retain their shape because nonlinearity and dispersion balance each other. In the presence of higher-order dispersion, optical solitons can emit dispersive waves via the process of soliton Cherenkov radiation. This process underlies supercontinuum generation and is of critical importance in frequency metrology. Using a continuous wave-pumped, dispersion-engineered, integrated silicon nitride microresonator, we generated continuously circulating temporal dissipative Kerr solitons. The presence of higher-order dispersion led to the emission of red-shifted soliton Cherenkov radiation. The output corresponds to a fully coherent optical frequency comb that spans two-thirds of an octave and whose phase we were able to stabilize to the sub-Hertz level. By preserving coherence over a broad spectral bandwidth, our device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy.

  16. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction.

    PubMed

    Xia, Jing; Zhang, Xichao; Yan, Ming; Zhao, Weisheng; Zhou, Yan

    2016-05-04

    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient spin wave generation and propagation, with potential applications in spintronic and magnonic devices.

  17. CHerenkov detectors In mine PitS (CHIPS) Letter of Intent to FNAL

    SciTech Connect

    Adamson, P.; Austin, J.; Cao, S. V.; Coelho, J. A. B.; Davies, G. S.; Evans, J. J.; Guzowski, P.; Habig, A.; Holin, A.; Huang, J.; Johnson, R.; St. John, J.; Kreymer, A.; Kordosky, M.; Lang, K.; Marshak, M. L.; Mehdiyev, R.; Meier, J.; Miller, W.; Naples, D.; Nelson, J. K.; Nichol, R. J.; Patterson, R. B.; Paolone, V.; Pawloski, G.; Perch, A.; Pfutzner, M.; Proga, M.; Qian, X.; Radovic, A.; Sanchez, M. C.; Schreiner, S.; Soldner-Rembold, S.; Sousa, A.; Thomas, J.; Vahle, P.; Wendt, C.; Whitehead, L. H.; Wojcicki, S.

    2013-12-30

    This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute to the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.

  18. Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel

    2016-09-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

  19. Photonic chip-based optical frequency comb using soliton Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Brasch, V.; Geiselmann, M.; Herr, T.; Lihachev, G.; Pfeiffer, M. H. P.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-01-01

    Optical solitons are propagating pulses of light that retain their shape because nonlinearity and dispersion balance each other. In the presence of higher-order dispersion, optical solitons can emit dispersive waves via the process of soliton Cherenkov radiation. This process underlies supercontinuum generation and is of critical importance in frequency metrology. Using a continuous wave-pumped, dispersion-engineered, integrated silicon nitride microresonator, we generated continuously circulating temporal dissipative Kerr solitons. The presence of higher-order dispersion led to the emission of red-shifted soliton Cherenkov radiation. The output corresponds to a fully coherent optical frequency comb that spans two-thirds of an octave and whose phase we were able to stabilize to the sub-Hertz level. By preserving coherence over a broad spectral bandwidth, our device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy.

  20. LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter

    SciTech Connect

    Majumder, Abhijit; Wang, Xin-Nian

    2005-07-26

    Gluon bremsstrahlung induced by multiple parton scattering in a finite dense medium has a unique angular distribution with respect to the initial parton direction. A dead-cone structure with an opening angle; theta2{sub 0}; approx 2(1-z)/(zLE) for gluons with fractional energy z arises from the Landau-Pomeran chuck-Migdal (LPM) interference. In a medium where the gluon's dielectric constant is; epsilon>1, the LPM interference pattern is shown to become Cherenkov-like with an increased opening angle determined by the dielectric constant$/cos2/theta{sub c}=z+(1-z)//epsilon$. For a large dielectric constant/epsilon; gg 1+2/z2LE, the corresponding total radiative parton energy loss is about twice that from normal gluon bremsstrahlung. Implications of this Cherenkov-like gluon bremsstrahlung to the jet correlation pattern in high-energy heavy-ion collisions is discussed.

  1. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction

    PubMed Central

    Xia, Jing; Zhang, Xichao; Yan, Ming; Zhao, Weisheng; Zhou, Yan

    2016-01-01

    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient spin wave generation and propagation, with potential applications in spintronic and magnonic devices. PMID:27143311

  2. Cherenkov friction on a neutral particle moving parallel to a dielectric.

    PubMed

    Pieplow, Gregor; Henkel, Carsten

    2015-06-03

    We describe a simple mechanism of quantum friction for a particle moving parallel to a dielectric, based on a fully relativistic framework and the assumption of local equilibrium. The Cherenkov effect explains how the bare ground state becomes globally unstable and how fluctuations of the electromagnetic field and the particle's dipole are converted into pairs of excitations. Modeling the particle as a silver nano-sphere, we investigate the spectrum of the force and its velocity dependence. We find that the damping of the plasmon resonance in the silver particle has a relatively strong impact near the Cherenkov threshold velocity. We also present an expansion of the friction force near the threshold velocity for both damped and undamped particles.

  3. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    SciTech Connect

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-11-09

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of {pi}/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach {approx}10{sup -3} proton and 10{sup -2} kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was {approx}16 and {approx}8, respectively. Moderate particle identification is feasible near threshold.

  4. Design and fabrication of a window for the gas Cherenkov detector 3

    NASA Astrophysics Data System (ADS)

    Fatherley, V. E.; Bingham, D. A.; Cartelli, M. D.; DiDomizio, R. A.; Griego, J. R.; Herrmann, H. W.; Lopez, F. E.; Oertel, J. A.; Pollack, M. J.

    2016-11-01

    The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set of requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described.

  5. Coherent Cherenkov radio emission and problems of ultrahigh-energy cosmic ray and neutrino detection

    NASA Astrophysics Data System (ADS)

    Tsarev, V. A.

    2006-08-01

    This review is concerned with prospects for employment of coherent Cherenkov radio emission for detecting ultrahigh-energy cosmic rays and neutrinos. Reasons for interest in and problems of studying the ultrahigh-energy particles are summarized. A history of the development of a radio-wave method and its main merits are recalled. Current experiments and proposals based on this method are briefly discussed with emphasize on the most recent Lunar Orbital Radio Detector (LORD) proposal.

  6. Performance study of the fast timing Cherenkov detector based on a microchannel plate PMT

    NASA Astrophysics Data System (ADS)

    Finogeev, D. A.; Grigoriev, V. A.; Kaplin, V. A.; Karavichev, O. V.; Karavicheva, T. L.; Konevskikh, A. S.; Kurepin, A. B.; Kurepin, A. N.; Loginov, V. A.; Mayevskaya, A. I.; Melikyan, Yu A.; Morozov, I. V.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, M.; Tikhonov, A. A.; Trzaska, W. H.

    2017-01-01

    Prototype of the fast timing Cherenkov detector, applicable in high-energy collider experiments, has been developed basing on the modified Planacon XP85012 MCP-PMT and fused silica radiators. We present the reasons and description of the MCP-PMT modification, timing and amplitude characteristics of the prototype including the summary of the detector’s response on particle hits at oblique angles and MCP-PMT performance at high illumination rates.

  7. Studies of signal waveforms from the water-cherenkov detectors of the Pierre Auger Observatory

    SciTech Connect

    Allison, P.S.; Bui-Duc, H.; Chye, J.; Dagoret-Campagne, S.; Dorofeev, A.; Matthews, J.; Nitz, D.F.; Ranchon, S.; Urban, M.; Veberic, D.; Watson, A.A.; Wileman, C.

    2005-08-01

    The ground array of the Pierre Auger Observatory will consist of 1600 water-Cherenkov detectors. Such detectors give signals which can help differentiate between muons and electrons in extensive air showers. The relative numbers of muons and electrons is sensitive to the type of primary particle which initiated the shower. Results are presented using methods which describe the muon content and related information, such as the time structure of the shower front.

  8. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    PubMed Central

    Glaser, Adam K.; Zhang, Rongxiao; Andreozzi, Jacqueline M.; Gladstone, David J.; Pogue, Brian W.

    2016-01-01

    Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01 – 1 nW/cm2 per MBq/g for radionuclides, and 1 – 100 µW/cm2 per Gy/sec for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ/cm2 for radionuclides, and mJ/cm2 for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The simulation tools of this study are available upon request. PMID:26270125

  9. Picosecond Cherenkov detectors for high-energy heavy ion experiments at LHEP/JINR

    NASA Astrophysics Data System (ADS)

    Yurevich, V. I.; Batenkov, O. I.

    2016-07-01

    The modular Cherenkov detectors based on MCP-PMTs are developed for study Au+Au collisions in MPD and BM@N experiments with beams of Nuclotron and future collider NICA in Dubna. The aim of the detector is fast and effective triggering nucleus-nucleus collisions and generation of start signal for TOF detectors. The detector performance is studied with MC simulation and test measurements with a beam of Nuclotron.

  10. Effect of low frequency noise on the echocardiographic parameter E/A ratio.

    PubMed

    Chao, Pao-Chiang; Yeh, Ching-Ying; Juang, Yow-Jer; Hu, Ching-Yao; Chen, Chiou-Jong

    2012-01-01

    The hearing condition of the Taiwanese aerospace maintenance workers affected by the low frequency noise had not been reported. The purpose of this research is to clarify the maintenance workers' health effect when exposed to low frequency and/or general noises and to understand the relationship between the variations of the worker's echocardiographic E/A ratio and the low frequency noise. The low frequency noise monitoring and echocardiographic E/A ratio results obtained for 213 aerospace maintenance workers indicated that the workers' hearing loss was more serious at high frequency 4k and 6k when exposed to the low frequency noise and could be more than 40 dB. The abnormality of echocardiographic E/A ratio was also higher than that of control group.

  11. Evaluation of Multi-Anode Photomultipliers for the CLAS12 Ring-Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Samuel, Jenna

    2015-04-01

    Thomas Jefferson National Accelerator Facility has recently upgraded its Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS12) to provide a comprehensive study of the complex internal structure and dynamics of the nucleon. The upgrade includes new detectors such as the Ring Imaging Cherenkov detector (RICH). The RICH will use multi-anode photomultipliers (MAPMTs) for the detection of Cherenkov photons. Our study compared two models of Hamamatsu MAPMTs (H8500 and H12700) under consideration for the CLAS12 RICH in terms of their single photoelectron (SPE) peak, dark current, and crosstalk. The MAPMTs were tested inside a light-tight box, using a low intensity laser to simulate single photoelectron events similar to Cherenkov radiation. The H12700's SPE peaks were on average 78% the width of the H8500's peaks. For both models, the probability of dark current was on the order of 10-4. The probability of crosstalk for H8500s was 1.6 to 2.7 times that for H12700s. The H12700s were deemed better because they had negligible crosstalk and dark current while providing a narrower peak for single photoelectron events. Thomas Jefferson National Accelerator Facility, Science Undergraduate Laboratory Internship.

  12. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    SciTech Connect

    Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  13. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  14. Photon counting with a FDIRC Cherenkov prototype readout by SiPM arrays

    NASA Astrophysics Data System (ADS)

    Marrocchesi, P. S.; Bagliesi, M. G.; Basti, A.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Checchia, C.; Collazuol, G.; Maestro, P.; Morsani, F.; Piemonte, C.; Stolzi, F.; Suh, J. E.; Sulaj, A.

    2017-02-01

    A prototype of a Focused Internal Reflection Cherenkov, equipped with 16 arrays of NUV-SiPM, was tested at CERN SPS in March 2015 with beams of relativistic ions at 13, 19 and 30 GeV/n obtained from fragmentation of an Ar primary beam. The detector, designed to identify cosmic nuclei, features a Fused Silica radiator bar optically connected to a cylindrical mirror of the same material and an imaging focal plane of dimensions ∼4 cm×3 cm covered with a total of 1024 SiPM photosensors. Thanks to the outstanding performance of the SiPM arrays, the detector could be operated in photon counting mode as a fully digital device. The Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z of the beam particle. In this paper, we report on the characterization and test of the SiPM arrays and the performance of the Cherenkov prototype for the charge identification of the beam particles.

  15. Cherenkov radiation in a surface wave accelerator based on silicon carbide

    NASA Astrophysics Data System (ADS)

    Wang, Tianhong; Khudik, Vladimir; Shvets, Gennady

    2016-10-01

    We report on our theoretical investigations of Cherenkov-type emission of surface phonon polaritons (SPPs) by relativistic electron bunches. The polaritons are confined by a planar waveguide comprised of two SiC slabs separated by an air gap. The SPPs are generated in the spectral range known as the reststrahlen band, where the dielectric permittivity of SiC is negative. Two surface modes of the radiation are analyzed: the longitudinal (accelerating) and the transverse (deflecting) ones. Both form Cherenkov cones that are different in the magnitude of the cone angle and the central frequency. However, both exhibits rapid spatial oscillations and beats behind the moving charge. Moreover, the longitudinal mode forms a reversed Cherenkov radiation cone due the negative group velocity for sufficiently small air gaps, but the transverse mode does not. The wakefield acceleration of electron beam inside the structure is also studied. Transverse instabilities and BBU effects can be suppressed by flat driver beam, meanwhile the longitudinal mode can support accelerating fields >1 GeV.

  16. Towards the development of a SiPM-based camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Ambrosi, G.; Bissaldi, E.; Di Venere, L.; Fiandrini, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Simone, D.; Vagelli, V.

    2017-03-01

    The Italian National Institute for Nuclear Physics (INFN) is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs) for the Cherenkov Telescope Array (CTA), a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the `Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it)' for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV) has been carried out. The developed device is a NUV High-Density (NUV-HD) SiPM based on a micro cell of 30 μm × 30 μm and an area of 6 mm × 6 mm, produced by Fondazione Bruno Kessler (FBK). A full characterization of the single NUV-HD SiPM will be presented. A matrix of 8 × 8 single NUV-HD SiPMs will be part of the focal plane of the Schwarzschild- Couder Telescope prototype (pSCT) for CTA. An update on recent tests on the detectors arranged in this matrix configuration and on the front-end electronics will be given.

  17. Large-scale gadolinium-doped water Cherenkov detector for nonproliferation

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Bernstein, A.; Bowden, N. S.; Dazeley, S.; Keefer, G.; Svoboda, R.; Tripathi, M.

    2011-10-01

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high-energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cherenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cherenkov detectors, we have designed and built a 3.5 kL water Cherenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.

  18. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.; Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.

    2016-11-01

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO2 clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1-3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  19. The ASTRI SST-2M prototype for the next generation of Cherenkov telescopes: a single framework approach from requirement analysis to integration and verification strategy definition

    NASA Astrophysics Data System (ADS)

    Fiorini, Mauro; La Palombara, Nicola; Stringhetti, Luca; Canestrari, Rodolfo; Catalano, Osvaldo; Giro, Enrico; Leto, Giuseppe; Maccarone, Maria Concetta; Pareschi, Giovanni; Tosti, Gino; Vercellone, Stefano

    2014-08-01

    ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an endto- end prototype of one of the three types of telescopes to be part of the Cherenkov Telescope Array (CTA), an observatory which will be the main representative of the next generation of Imaging Atmospheric Cherenkov Telescopes. The ASTRI project, led by the Italian National Institute of Astrophysics (INAF), has proposed an original design for the Small Size Telescope, which is aimed to explore the uppermost end of the Very High Energy domain up to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. It is characterized by challenging and innovative technological solutions which will be adopted for the first time in a Cherenkov telescope: a dual-mirror Schwarzschild-Couder configuration, a modular, light and compact camera based on silicon photomultipliers, and a front-end electronic based on a specifically designed ASIC. The end-to-end project is also including all the data-analysis software and the data archive. In this paper we describe the process followed to derive the ASTRI specifications from the CTA general requirements, a process which had to take into proper account the impact on the telescope design of the different types of the CTA requirements (performance, environment, reliability-availability-maintenance, etc.). We also describe the strategy adopted to perform the specification verification, which will be based on different methods (inspection, analysis, certification, and test) in order to demonstrate the telescope compliance with the CTA requirements. Finally we describe the integration planning of the prototype assemblies (structure, mirrors, camera, control software, auxiliary items) and the test planning of the end-to-end telescope. The approach followed by the ASTRI project is to have all the information needed to report the verification process along all project stages in a single

  20. Crystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum

    PubMed Central

    Kim, Boo-Young; Yoo, Wanki; Ryu, Bum Han; Kim, Han-Woo; Shin, Seung Chul; Kim, Sunghwan; Park, Hyun; Kim, T. Doohun; Lee, Jun Hyuck

    2017-01-01

    A novel microbial esterase, EaEST, from a psychrophilic bacterium Exiguobacterium antarcticum B7, was identified and characterized. To our knowledge, this is the first report describing structural analysis and biochemical characterization of an esterase isolated from the genus Exiguobacterium. Crystal structure of EaEST, determined at a resolution of 1.9 Å, showed that the enzyme has a canonical α/β hydrolase fold with an α-helical cap domain and a catalytic triad consisting of Ser96, Asp220, and His248. Interestingly, the active site of the structure of EaEST is occupied by a peracetate molecule, which is the product of perhydrolysis of acetate. This result suggests that EaEST may have perhydrolase activity. The activity assay showed that EaEST has significant perhydrolase and esterase activity with respect to short-chain p-nitrophenyl esters (≤C8), naphthyl derivatives, phenyl acetate, and glyceryl tributyrate. However, the S96A single mutant had low esterase and perhydrolase activity. Moreover, the L27A mutant showed low levels of protein expression and solubility as well as preference for different substrates. On conducting an enantioselectivity analysis using R- and S-methyl-3-hydroxy-2-methylpropionate, a preference for R-enantiomers was observed. Surprisingly, immobilized EaEST was found to not only retain 200% of its initial activity after incubation for 1 h at 80°C, but also retained more than 60% of its initial activity after 20 cycles of reutilization. This research will serve as basis for future engineering of this esterase for biotechnological and industrial applications. PMID:28125606

  1. Temporal and lateral distributions of EAS neutron component measured with PRISMA-32

    NASA Astrophysics Data System (ADS)

    Gromushkin, D. M.; Bogdanov, F. A.; Petrukhin, A. A.; Shchegolev, O. B.; Stenkin, Yu V.; Stepanov, V. I.; Yashin, I. I.; Yurin, K. O.

    2017-01-01

    Some results on the EAS neutron component measurements by means of the PRISMA-32 array are presented. The array consists of 32 electron-neutron detectors (en-detectors) capable to detect two main EAS components: electromagnetic one consisting of charged particles, and hadronic one by measuring delayed thermal neutrons accompanying the showers. For thermal neutrons detection, a compound of a well-known inorganic scintillator ZnS(Ag) and LiF, enriched to 90 % with 6Li isotope is used. The setup allows us to record neutron component over the whole array area.

  2. Observation of EAS Core with the Small Scintillation Detector at Taro

    NASA Astrophysics Data System (ADS)

    Sakuyama, H.; Kuramochi, Hiroshi; Obara, Hitoshi; Ono, Shunichi; Origasa, Satoru; Mochida, Akinori; Sakayama, Hiroshi; Suzuki, Noboru

    2003-07-01

    We have observed the core structure of extensive air showers(EAS) that primary energy above 1016 eV. To measure the more detail and the correct density of the incident particles near EAS core, we installed 100 small scintillation detectors (using plastic scintillator : 15cm × 15cm × 2.5cm) that are placed on a lattice 10 × 10, and 40cm separation, at Taro Cosmic Ray Lab oratory, at autumn 2002. We report the detail of the small detector, and preliminary results.

  3. EAS accompanied by gamma-families at Mt. Norikura and comparison with Monte Carlo simulation

    NASA Technical Reports Server (NTRS)

    Shima, M.; Saito, T.; Sakata, M.; Yamamoto, Y.; Kasahara, K.; Yuda, T.; Torii, S.; Hotta, N.

    1985-01-01

    The experimental data of extensive air showers (EAS) accompanied by gamma-families, with total energy greater than 10 TeV, were compared with a Monte Carlo simulation with a rising cross section proportional to E sup 0.04 for the p-air inelastic cross section. It is found that the absolute intensity of size spectrum of such EAS is strongly affected by the primary protons intensity at 10 to the 15th power approx. 10 to the 16th power eV region and the experimental size spectrum agrees with the simulated spectra for the p-poor primary composition better than the p-rich one.

  4. Muon fluctuation studies of EAS 10(17) eV

    NASA Technical Reports Server (NTRS)

    Blake, P. R.; Luksys, M.; Nash, W. F.; Sephton, A. J.

    1985-01-01

    Fluctuation studies need to compare a parameter which is sensitive to longitudinal fluctuations against a parameter which is insensitive. Cascade calculations indicate that the shower size parameter at Haverah Park, rho (500), and the muon density are insensitive while parameters that significantly reflect the longitudinal development of a particular extensive air shower (EAS) include the muon/water Cerenkov response ratio and the muon arrival time dispersion. This paper presents conclusions based on muon fluctuation studies of EAS measured between 1976 and 1981 at Haverah Park.

  5. Investigation of the Muon Pseudorapidities in EAS with the Muon Tracking Detector of the KASCADE Experiment

    NASA Astrophysics Data System (ADS)

    Zabierowski, J.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Büttner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Feßler, F.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hörandel, J. R.; Iwan, A.; Kampert, K-H.; Klages, H. O.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Müller, M.; Obenland, R.; Oehschläger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; van Buren, J.; Vardanyan, A.; Weindl, A.; Wochele, J.

    2003-07-01

    High angular accuracy of muon track measurements in KASCADE Muon Tracking Detector (MTD), together with the high precision in determination of the shower direction and shower core position, allow to investigate the pseudorapidity of muons in EAS using the concept of radial and tangential angles. Preliminary results of the pseudorapidity distribution of muons registered by the KASCADE experiment are presented. Mean muon pseudorapidity values at different stages of the longitudinal development of the EAS cascade are calculated using additionally the reconstructed muon production height provided by the MTD data. experimental results are compared with Monte Carlo simulations.

  6. Expression of an early Epstein-Barr virus antigen (EA-D) in E. coli. Brief report.

    PubMed

    Roeckel, D; Boos, H; Mueller-Lantzsch, N

    1987-01-01

    The 1.34 kb BcII-BgIII-fragment of the BamHI-M region of Epstein-Barr virus genome, comprising the complete BMRF1 open reading frame, was cloned into the tryptophan regulated E. coli expression vector pATH1. The resulting fusion protein, having a molecular weight of 80 kd, is recognized not only by anti-early antigen (EA)-positive human sera but also by the monoclonal antibody R3 directed against the diffuse component of EA (EA-D). A possible use for this fusion protein as an indicator protein in diagnosis of IgA antibodies against EA-D is presented.

  7. EAS Cerenkov measurements of the composition of the cosmic ray flux around 10 to the 16th power eV

    NASA Technical Reports Server (NTRS)

    Dawson, B. R.; Prescott, J. R.; Clay, R. W.

    1985-01-01

    Information can be obtained about the nature of a primary cosmic ray by looking at the way in which an extensive air shower (EAS) develops in the atmosphere. Heavy nuclei give rise to showers that develop high in the atmosphere and the depth of maximum development is subjected to much smaller fluctuations than is the case for showers originating from protons. This development is followed by optical methods based on the observations of Cerenkov light or fluorescence light. The Cerenkov observations have two complementary techniques: measurement of the time profile of the Cerenkov pulse with resolution of a few nanoseconds and measurement of the lateral distribution of the Cerenkov light. In each case the measured quantities must be related to some characteristic development parameters.

  8. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    SciTech Connect

    Andreozzi, Jacqueline M. Glaser, Adam K.; Zhang, Rongxiao; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2015-02-15

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  9. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.

    PubMed

    Brunner, Stefan E; Schaart, Dennis

    2017-03-30

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of ∽10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of ∽2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm × 3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite trend.

  10. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    PubMed Central

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Jarvis, Lesley A.; Pogue, Brian W.; Gladstone, David J.

    2015-01-01

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  11. 25. C.W. Todd and E.A. Rand, May 1902 'OUTLINE,' SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. C.W. Todd and E.A. Rand, May 1902 'OUTLINE,' SHOWING END AND SIDE ELEVATIONS OF THE 4,000-VOLT, ATB-TYPE GENERATORS (4 AND 5) - Washington Water Power Company Monroe Street Plant, Units 4 & 5, South Bank Spokane River, below Monroe Street Bridge, Spokane, Spokane County, WA

  12. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Field strength limits for EA-licensed LMS systems. 90.359 Section 90.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio...

  13. HEAT TRANSFER EVALUATION OF HFC-236EA AND CFC-114 IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of a heat transfer evaluation of the refrigerants hexafluoropropane (HFC-236ea) and 1,1,2,2-dichloro-tetrafluoroethane (CFC-114). (NOTE: With the mandatory phase-out of chlorofluorocarbons (CFCs), as dictated by the Montreal Protocol and Clean Air Act Ame...

  14. 47 CFR 101.1317 - Competitive bidding procedures for mutually exclusive MAS EA applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Competitive bidding procedures for mutually exclusive MAS EA applications. 101.1317 Section 101.1317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multiple Address Systems...

  15. 47 CFR 90.763 - EA, Regional and nationwide system operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... authorized pursuant to § 90.761 may construct and operate any number of land mobile or paging base stations...-nationwide base stations as follows: (i) The EA or Regional licensee must locate its land mobile or paging base stations, or fixed stations transmitting on base station transmit frequencies, at least 120...

  16. 47 CFR 90.763 - EA, Regional and nationwide system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorized pursuant to § 90.761 may construct and operate any number of land mobile or paging base stations...-nationwide base stations as follows: (i) The EA or Regional licensee must locate its land mobile or paging base stations, or fixed stations transmitting on base station transmit frequencies, at least 120...

  17. 47 CFR 90.763 - EA, Regional and nationwide system operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... authorized pursuant to § 90.761 may construct and operate any number of land mobile or paging base stations...-nationwide base stations as follows: (i) The EA or Regional licensee must locate its land mobile or paging base stations, or fixed stations transmitting on base station transmit frequencies, at least 120...

  18. 47 CFR 90.763 - EA, Regional and nationwide system operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... authorized pursuant to § 90.761 may construct and operate any number of land mobile or paging base stations...-nationwide base stations as follows: (i) The EA or Regional licensee must locate its land mobile or paging base stations, or fixed stations transmitting on base station transmit frequencies, at least 120...

  19. Evaluation of EA-934NA with 2.5 percent Cab-O-Sil

    NASA Technical Reports Server (NTRS)

    Caldwell, Gordon A.

    1990-01-01

    Currently, Hysol adhesive EA-934NA is used to bond the Field Joint Protection System on the Shuttle rocket motors at Kennedy Space Center. However, due to processing problems, an adhesive with a higher viscosity is needed to alleviate these difficulties. One possible solution is to add Cab-O-Sil to the current adhesive. The adhesive strength and bond strengths that can be obtained when 2.5 percent Cab-O-Sil is added to adhesive EA-934NA are examined and tested over a range of test temperatures from -20 to 300 F. Tensile adhesion button and lap shear specimens were bonded to D6AC steel and uniaxial tensile specimens (testing for strength, initial tangent modulus, elongation and Poisson's ratio) were prepared using Hysol adhesive EA-934NA with 2.5 percent Cab-O-Sil added. These specimens were tested at -20, 20, 75, 100, 125, 150, 200, 250, and 300 F, respectively. Additional tensile adhesion button specimens bonding Rust-Oleum primed and painted D6AC steel to itself and to cork using adhesive EA-934NA with 2.5 percent Cab-O-Sil added were tested at 20, 75, 125, 200, and 300 F, respectively. Results generally show decreasing strength values with increasing test temperatures. The bond strengths obtained using cork as a substrate were totally dependent on the cohesive strength of the cork.

  20. 47 CFR 1.1308 - Consideration of environmental assessments (EAs); findings of no significant impact.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...), that the proposal will have a significant environmental impact upon the quality of the human...); findings of no significant impact. 1.1308 Section 1.1308 Telecommunication FEDERAL COMMUNICATIONS... significant impact. (a) Applicants shall prepare EAs for actions that may have a significant...

  1. 78 FR 70529 - Notice of Availability for the Final Environmental Assessment (EA) and Finding No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... for the Final Environmental Assessment (EA) and Finding No Significant Impact (FONSI) for the Cotton... Service (ARS) has made a FONSI for transferring the land and real estate at the Cotton Quality Research... and facilities at the Cotton Quality Research Station (CQRS) from the USDA Agricultural...

  2. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  3. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-236EA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC-236ea or 1, 1, 1, 2, 3, 3-hexafluoropropane) as a possible alternative for chlorofluorocarbon (CFC)-114 (1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) refrigerant in chillers and high-temperature i...

  4. 7 CFR 1955.136 - Environmental Assessment (EA) and Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Environmental Impact Statement (EIS). (a) Prior to a final decision on some disposal actions, an environmental... 7 Agriculture 14 2014-01-01 2014-01-01 false Environmental Assessment (EA) and Environmental Impact Statement (EIS). 1955.136 Section 1955.136 Agriculture Regulations of the Department...

  5. 7 CFR 1955.136 - Environmental Assessment (EA) and Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Environmental Impact Statement (EIS). (a) Prior to a final decision on some disposal actions, an environmental... 7 Agriculture 14 2012-01-01 2012-01-01 false Environmental Assessment (EA) and Environmental Impact Statement (EIS). 1955.136 Section 1955.136 Agriculture Regulations of the Department...

  6. 7 CFR 1955.136 - Environmental Assessment (EA) and Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Environmental Impact Statement (EIS). (a) Prior to a final decision on some disposal actions, an environmental... 7 Agriculture 14 2011-01-01 2011-01-01 false Environmental Assessment (EA) and Environmental Impact Statement (EIS). 1955.136 Section 1955.136 Agriculture Regulations of the Department...

  7. 7 CFR 1955.136 - Environmental Assessment (EA) and Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Environmental Impact Statement (EIS). (a) Prior to a final decision on some disposal actions, an environmental... 7 Agriculture 14 2013-01-01 2013-01-01 false Environmental Assessment (EA) and Environmental Impact Statement (EIS). 1955.136 Section 1955.136 Agriculture Regulations of the Department...

  8. 7 CFR 520.6 - Preparation of an Environmental Assessment (EA).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... may have a significant environmental impact and thus warrant preparation of an EIS. The EA will... need for the project or other proposal, alternatives, environmental impacts of the proposed action and... or that no significant environmental impact will occur, and will document the decision and...

  9. 47 CFR 11.54 - EAS operation during a National Level emergency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... systems, digital cable systems, and wireless cable systems shall transmit all EAS announcements visually... letters and analog cable systems, digital cable systems and wireless cable systems may transmit the names... analog cable systems, digital cable systems and wireless cable systems operating and identified with...

  10. 78 FR 57470 - Special Conditions: Eclipse, EA500, Certification of Autothrottle Functions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... an update to the aircraft software to activate the previously installed autothrottle provisions in... Type Certificate (STC) to update the aircraft software for implementation of an autothrottle function on the EA500 aircraft. Included with the software upgrade is the activation of previously...

  11. Environmental Assessment (EA): Proposed Public Works Facility, City of West Wendover, Nevada

    DTIC Science & Technology

    2010-08-11

    be approximately 10 feet bgs. The scoping discussions did not identify any issues related to quantity of water, groundwater, or wellhead protection ...Act EA Environmental Assessment EIAP Environmental Impact Analysis Process EIS Environmental Impact Statement EPA Environmental Protection Agency...Nevada, implemented by the Nevada Department of Conservation and Natural Resources, Division of Environmental Protection . • Safety guidelines of the

  12. 47 CFR 90.691 - Emission mask requirements for EA-based systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emission mask requirements for EA-based systems... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use...

  13. 76 FR 71619 - Availability of the Final Environmental Assessment (EA) and Finding of No Significant Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... TRANSPORTATION Federal Aviation Administration Availability of the Final Environmental Assessment (EA) and... of Transportation. ACTIONS: Notice. SUMMARY: In accordance with the National Environmental Policy Act (NEPA) of 1969, 42 United States Code Sec. 4321-4347 (as amended), Council on Environmental Quality...

  14. 36 CFR 1010.7 - Actions that do not require an EA or EIS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... QUALITY § 1010.7 Actions that do not require an EA or EIS. (a) Categorical Exclusions. Pursuant to 40 CFR..., fees, bonds and royalties; (5) Management, formulation, allocation, transfer and reprogramming of the... materials and structures in order to restore natural conditions when such removal has no potential...

  15. COMPARISON OF CFC-114 AND HFC-236EA PERFORMANCE IN SHIPBOARD VAPOR COMPRESSION SYSTEMS

    EPA Science Inventory

    The report gives results of a comparison of the performance of two refrigerants - 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and 1,2-dichloro-tetrafluoroethane (CFC-114) - in shipboard vapor compression refrigeration systems. (NOTE: In compliance with the Montreal Protocol and Dep...

  16. 36 CFR 1010.7 - Actions that do not require an EA or EIS.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... QUALITY § 1010.7 Actions that do not require an EA or EIS. (a) Categorical Exclusions. Pursuant to 40 CFR... materials and structures in order to restore natural conditions when such removal has no potential for..., installation of traffic control devices, and repair/replacement of guardrails, culverts, signs, and other...

  17. 7 CFR 4280.190 - EA/REDA grant applications-content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.190 EA/REDA...) Applicant's experience as follows: (i) If applying for a renewable energy development assistance grant, the applicant's experience in completing similar renewable energy development assistance activities,...

  18. 7 CFR 4280.190 - EA/REDA grant applications-content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.190 EA/REDA...) Applicant's experience as follows: (i) If applying for a renewable energy development assistance grant, the applicant's experience in completing similar renewable energy development assistance activities,...

  19. 7 CFR 4280.190 - EA/REDA grant applications-content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.190 EA/REDA...) Applicant's experience as follows: (i) If applying for a renewable energy development assistance grant, the applicant's experience in completing similar renewable energy development assistance activities,...

  20. 75 FR 45075 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration (FAA... Register on July 9, 2010 (75 FR 39472), and applies to certain Eclipse Aerospace, Inc. (Eclipse) Model... Reduction Modification per any revision level of Eclipse SB 500-99-001'' instead of ``000039 through...

  1. 47 CFR 11.55 - EAS operation during a State or Local Area emergency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... emergency. 11.55 Section 11.55 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT... include: Toxic gas leaks or liquid spills, widespread power failures, industrial explosions, and civil... State Relay Network or follow the State EAS plan for instructions from the State Primary (SP) source....

  2. 47 CFR 11.55 - EAS operation during a State or Local Area emergency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... emergency. 11.55 Section 11.55 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT... leaks or liquid spills, widespread power failures, industrial explosions, and civil disorders. (1) DBS... (SR) sources monitor the State Relay Network or follow the State EAS plan for instructions from...

  3. 47 CFR 11.55 - EAS operation during a State or Local Area emergency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... emergency. 11.55 Section 11.55 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT... include: Toxic gas leaks or liquid spills, widespread power failures, industrial explosions, and civil... State Relay Network or follow the State EAS plan for instructions from the State Primary (SP) source....

  4. 7 CFR 650.8 - When to prepare an environmental assessment (EA).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... that the EE reveals may be a major Federal action significantly affecting the quality of the human... NRCS has determined, based on the environmental evaluation, that a program EIS is not required and the... the process of tiering, is to determine if a site-specific EA or EIS is required for an action that...

  5. 36 CFR 1010.10 - Actions that normally require an EA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action that normally require an EA, but not necessarily an EIS, include: (1) Potential for degradation of environmental quality; (2) Potential for cumulative adverse impact on environmental quality; and (3) Potential for adverse impact on protected resources (e.g., natural, scenic, recreational, historical,...

  6. 36 CFR 1010.10 - Actions that normally require an EA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action that normally require an EA, but not necessarily an EIS, include: (1) Potential for degradation of environmental quality; (2) Potential for cumulative adverse impact on environmental quality; and (3) Potential for adverse impact on protected resources (e.g., natural, scenic, recreational, historical,...

  7. 47 CFR 11.51 - EAS code and Attention Signal Transmission requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... television stations shall transmit EAS messages in the main audio channel. Effective December 31, 2006, all... transmitter at the maximum possible level, but in no case less than 50% of full channel modulation limits...,000 subscribers per headend and wireline video systems and wireless cable systems with fewer than...

  8. Pedagogical Emphasis and Practice in the NBPTS EA/ELA Standards.

    ERIC Educational Resources Information Center

    Koziol, Stephen M., Jr.

    This report on professional development of English teachers discusses the Dimensions of Teaching as a basis for the judging of performance in the National Board for Professional Teaching Standards [for] Early Adolescence/English Language Arts (NBPTS EA/ELA) assessment. The report focuses on how the professional literature on Models of Teacher…

  9. Performance of the Gamma-ray Cherenkov Telescope structure: a dual-mirror telescope prototype proposed for the future Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Amans, J. P.; Dangeon, L.; Fasola, G.; Gironnet, J.; Huet, J. M.; Laporte, P.; Abchiche, A.; Barkaoui, S.; Bousquet, J. J.; Buchholtz, G.; Dumas, D.; Gaudemard, J.; Jégouzo, I.; Poinsignon, P.; Vergne, L.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High-Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays from 20 GeV to above 100 TeV. Because of this wide energy band, three classes of telescopes, associated with different energy ranges and different mirror sizes, are defined. The Small Size Telescopes (SSTs) are associated with the highest energy range. Seventy of these telescopes are foreseen on the Southern site of the CTA. The large number of telescopes constrains their mechanical structure because easy maintenance and reduced cost per telescope are needed. Moreover, of course, the design shall fulfill the required performance and lifetime in the environment conditions of the site. The Observatoire de Paris started design studies in 2011 of the mechanical structure of the GCT (Gamma-ray Cherenkov Telescope), a four-meter prototype telescope for the SSTs of CTA, from optical and preliminary mechanical designs made by the University of Durham. At the end of 2014 these studies finally resulted in a lightweight ( 8 tons) and stiff design. This structure was based on the dual-mirror Schwarzschild-Couder (SC) optical design, which is an interesting and innovative alternative to the one-mirror Davies-Cotton design commonly used in ground-based Cherenkov astronomy. The benefits of such a design are many since it enables a compact structure, lightweight camera and a good angular resolution across the entire field-of-view. The mechanical structure was assembled on the Meudon site of the Observatoire de Paris in spring 2015. The secondary mirror, panels of the primary mirror and the Telescope Control System were successfully implemented afterwards leading now to a fully operational telescope. This paper focuses on the mechanics of the telescope prototype. It describes the mechanical structure and presents its performance identified from computations or direct measurements. Upgrades of the design

  10. Testing of an automated online EA-IRMS method for fast and simultaneous carbon content and stable isotope measurement of aerosol samples

    NASA Astrophysics Data System (ADS)

    Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály

    2016-04-01

    Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment

  11. 77 FR 41811 - In the Matter of Tennessee Valley Authority Watts Bar Nuclear Plant EA-12-021; Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Tennessee Valley Authority Watts Bar Nuclear Plant EA-12-021; Confirmatory Order... for all matters discussed in the NRC's letter to TVA of March 23, 2012 (EA-12- 021). 8. This...

  12. 77 FR 14855 - Notice of Availability and Request for Comment on the Draft Environmental Assessment (EA) for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... Assessment (EA) for the Launch and Reentry of SpaceShipTwo Reusable Suborbital Rockets at the Mojave Air and Space Port AGENCY: Federal Aviation Administration (FAA), lead Federal agency and United States Air... Mojave Air and Space Port. The Draft EA was prepared to analyze the potential environmental impacts...

  13. 78 FR 78943 - Notice of Availability (NOA) of an Environmental Assessment (EA) for the Temporary Storage of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... of the Secretary Notice of Availability (NOA) of an Environmental Assessment (EA) for the Temporary... Agency, DoD. ACTION: Notice of Availability (NOA) of an Environmental Assessment (EA) for the Temporary...: The public comment period will end 30 days after publication of this NOA in the Federal...

  14. Project of the URAN array for registration of atmospheric neutrons

    NASA Astrophysics Data System (ADS)

    Gromushkin, D. M.; Barbashina, N. S.; Bogdanov, F. A.; Kokoulin, R. P.; Ovchinnikov, V. V.; Petrukhin, A. A.; Stenkin, Yu V.; Khokhlov, S. S.; Shulzhenko, I. A.; Yashin, I. I.

    2016-02-01

    The project of a new setup is directed at the registration of atmospheric neutrons (URAN) generated by hadronic component of extensive air showers (EAS). The setup includes 72 en-detector which simultaneously register two major EAS components: electromagnetic by the group passage of charged particles and hadron component by the thermal neutrons. The neutrons and charged particles are detected using a specialized scintillation composition made of granulated alloy of crystals based on the ZnS(Ag) powder with an admixture of B2O3.

  15. Maximal Cherenkov γ-radiation on Fermi-surface of compact stars

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-05-15

    The quantum magnetohydrodynamic model is employed in this paper to study the extraordinary (XO) elliptically polarized electromagnetic wave dispersion in quantum plasmas with spin-1/2 magnetization and relativistic degeneracy effects, considering also the electron-exchange and quantum diffraction of electrons. From the lower and upper calculated XO-modes, it is observed that, for electrons on the surface of the Fermi-sphere, the lower XO-mode can excite the Cherenkov radiation by crossing the Fermi-line, with some proper conditions depending on the values of independent plasma parameters, such as the relativistic-degeneracy, the atomic-number of constituent ions, and the magnetic field strength. Particularly, a lower electron number-density and Cherenkov radiation frequency limits are found to exist, for instance, for given values of the plasma ions atomic-number and the magnetic field strength below which the radiation can not be excited by the electrons on the Fermi-surface. This lower density limit increases by decrease in the atomic-number but decreases with decrease in the strength of the ambient magnetic field. It is remarkable that in this research it is discovered that the maximal Cherenkov-radiation per unit-length (the energy radiated by superluminal electrons traveling through the dielectric medium) coincides with the plasma number-densities, which is present in compact stars with the maximal radiation frequency lying in the gamma-ray spectrum. Current study can provide an important plasma diagnostic tool for a wide plasma density range, be it the solid density, the warm dense matter, the inertial confined or the astrophysical compact plasmas and may reveal an important cooling mechanism for white dwarfs. Current findings may also answer the fundamental astrophysical question on the mysterious origin of intense cosmic gamma-ray emissions.

  16. Silicon Photomultipliers and front-end electronics performance for Cherenkov Telescope Array camera development

    NASA Astrophysics Data System (ADS)

    Ambrosi, G.; Bissaldi, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Rando, R.; Simone, D.; Vagelli, V.

    2017-02-01

    In the last few years a number of efforts have been undertaken to develop new technology related to Silicon Photomultipliers (SiPMs). These photosensors consist of an array of identical Avalanche Photodiodes operating in Geiger mode and connected in parallel to a single output. The Italian Institute of Nuclear Physics (INFN) is involved in the R&D program Progetto Premiale Telescopi CHErenkov made in Italy (TECHE.it) to develop photosensors for a SiPM based camera that will be part of the Cherenkov Telescope Array (CTA) observatory. In this framework tests are ongoing on innovative devices suitable to detect Cherenkov light in the blue and near-UV wavelength region, the so-called Near Ultra-Violet Silicon Photomultipliers (NUV SiPMs). The tests on photosensors produced by Fondazione Bruno Kessler (FBK) are revealing promising performance: low operating voltage, capability to detect very low intensity light down to a single photon and high Photo Detection Efficiency (PDE) in the range 390-410 nm. In particular the developed device is a High Density NUV-SiPM (NUV-HD SiPM) based on a micro-cell of 30 μm×30 μm and 6 mm×6 mm area. Tests on this detector in single-cell configuration and in a matrix arrangement have been done. At the same time front-end electronics based on the waveform sampling technique optimized for the new NUV-HD SIPMs is under study and development.

  17. Design of Cherenkov bars for the optical part of the time-of-flight detector in Geant4.

    PubMed

    Nozka, L; Brandt, A; Rijssenbeek, M; Sykora, T; Hoffman, T; Griffiths, J; Steffens, J; Hamal, P; Chytka, L; Hrabovsky, M

    2014-11-17

    We present the results of studies devoted to the development and optimization of the optical part of a high precision time-of-flight (TOF) detector for the Large Hadron Collider (LHC). This work was motivated by a proposal to use such a detector in conjunction with a silicon detector to tag and measure protons from interactions of the type p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The fast timing detector uses fused silica (quartz) bars that emit Cherenkov radiation as a relativistic particle passes through and the emitted Cherenkov photons are detected by, for instance, a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT). Several possible designs are implemented in Geant4 and studied for timing optimization as a function of the arrival time, and the number of Cherenkov photons reaching the photo-sensor.

  18. Determination of 90Sr-90Y activity in urine samples by using Cherenkov counting.

    PubMed

    Tsroya, S; German, U; Pelled, O; Katorza, E; Alfassi, Z B

    2013-03-01

    Cherenkov counting of the (90)Sr-(90)Y pure beta emitters in aqueous samples is an attractive method; but color quenching correction is needed, this being especially significant for urine which is characterized by a strong coloration. A quench correction method based on the external source of some liquid scintillation systems (named ESAR-External Source Area Ratio) was proposed for aqueous solutions. In the present work, the application of the ESAR method for determination of (90)Sr-(90)Y in human urine samples is described.

  19. Fast determination of ⁹⁰Sr/⁹⁰Y activity in milk by Cherenkov counting.

    PubMed

    Tsroya, S; Dolgin, B; German, U; Pelled, O; Alfassi, Z B

    2013-12-01

    Cherenkov counting of the ⁹⁰Sr/⁹⁰Y pure beta emitters is an attractive method for ⁹⁰Sr activity determination, but the color quenching effect may be significant, especially for strongly colored or semi-opaque media. A quench correction method based on the external source of some liquid scintillation systems (named ESAR - external source area ratio) was proposed and checked for aqueous solutions and was proved to be effective also for urine samples. In the present work, the application of the ESAR method for fast determination of ⁹⁰Sr/⁹⁰Y activity in milk samples is described.

  20. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    PubMed

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  1. The fluid systems for the SLD Cherenkov ring imaging detector. [01

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H. . Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw,

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C[sub 2]H[sub 6] + TMAE), radiator gas (C[sub 5]F[sub 12] + N[sub 2]) and radiator liquid (C[sub 6]F[sub 14]). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  2. TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb Upgrade at CERN

    NASA Astrophysics Data System (ADS)

    Föhl, K.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcì a, A.; van Dijk, M.

    2016-05-01

    TORCH is a large-area precision time-of-flight detector, based on Cherenkov light production and propagation in a quartz radiator plate, which is read out at its edges. TORCH is proposed for the LHCb experiment at CERN to provide positive particle identification for kaons, and is currently in the Research-and-Development phase. A brief overview of the micro-channel plate photon sensor development, the custom-made electronics, and an introduction to the current test beam activities is given. Optical readout solutions are presented for the potential use of BaBar DIRC bar boxes as part of the TORCH configuration in LHCb.

  3. Cherenkov radiation of a Josephson vortex moving in a sandwich embedded in a dielectric medium

    SciTech Connect

    Malishevskii, A. S. Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2008-08-15

    A motion of a Josephson vortex in a long sandwich embedded in a dielectric medium is described. If the velocity of the vortex is greater than the velocity of light in the dielectric, terahertz-band Cherenkov radiation is generated and emitted from the lateral surface of the sandwich. The radiation loss power is determined. In the case when radiation loss is compensated for by the energy gain due to transport current, a relation between the current and the velocity of the vortex is obtained.

  4. Characterizing Scitillation and Cherenkov Light Yield in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, B. J.; Caravaca, J.; Descamps, F. B.; Orebi Gann, G. D.

    2016-03-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light, which lends itself well to a broad program of neutrino physics. Here we explore the light yields and optical properties of WbLS materials in development for Theia (formerly ASDC) as measured in our benchtop Theia R&D at Berkeley Lab and extrapolate to larger detectors.

  5. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    SciTech Connect

    Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony; Hynes, Michael; Blackburn, Brandon; Bernstein, Adam

    2011-12-13

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  6. Cherenkov radiation of a Josephson vortex moving in a sandwich embedded in a dielectric medium

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2008-08-01

    A motion of a Josephson vortex in a long sandwich embedded in a dielectric medium is described. If the velocity of the vortex is greater than the velocity of light in the dielectric, terahertz-band Cherenkov radiation is generated and emitted from the lateral surface of the sandwich. The radiation loss power is determined. In the case when radiation loss is compensated for by the energy gain due to transport current, a relation between the current and the velocity of the vortex is obtained.

  7. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation

    NASA Astrophysics Data System (ADS)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R.; Esipova, Tatiana V.; Vinogradov, Sergei; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-05-01

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  8. Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2010-01-01

    Spectrally-isolated narrowband Cherenkov radiation from commercial nonlinear photonic crystal fibers is demonstrated as an ultrafast optical source with a visible tuning range of 485–690 nm, which complementarily extends the near-infrared tuning range of 690–1020 nm from the corresponding femtosecond Ti:sapphire pump laser. Pump-to-signal conversion efficiency routinely surpasses 10%, enabling multimilliwatt visible output across the entire tuning range. Appropriate selection of fiber parameters and pumping conditions efficiently suppresses the supercontinuum generation typically associated with Cherenkov radiation. PMID:19506636

  9. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    NASA Astrophysics Data System (ADS)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  10. Front-end and slow control electronics for large area SiPMs used for the single mirror Small Size Telescope (SST-1M) of the Cherenkov Telescope Array (CTA)

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszalek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Curyło, M.; Dyrda, M.; Frankowski, A.; Grudniki, Ł.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michalowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowinski, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; Wiecek, M.; Zagdański, A.; Żychowski, P.

    2016-07-01

    The single mirror Small Size Telescope (SST-1M) project proposes a design among others for the smallest type of telescopes (SST), that will compose the south observatory of the Cherenkov Telescope Array (CTA). The SST camera collecting the Cherenkov light resulting from very high energy gamma-ray interactions in the atmosphere proposes to use Silicon PhotoMultipliers (SiPM). The SST-1M design has led to the use of unique pixel shape and size that required a dedicated development by the University of Geneva and Hamamatsu. An active surface of 94 mm2 and a resulting total capacitance of 3.4 nF combined with the stringent requirements of the CTA project on timing and charge resolution have led the University of Geneva to develop a custom preamplifier stage and slow-control system. The design and performance of the tailor made preamplifier stage and of the slow control electronics will be briefly described. The bias circuit of the sensor contains a resistor meant to prevent the sensor from drawing high current. However this resistor also introduces a voltage drop at the sensor input impacting the stability of its operation. A model has been developed in order to derive the parameters needed to account for it at the data analysis level. A solution based on the SST-1M front-end and digital readout is proposed to compensate for the voltage drop at the sensor cathode.

  11. Spatial filter and feature selection optimization based on EA for multi-channel EEG.

    PubMed

    Wang, Yubo; Mohanarangam, Krithikaa; Mallipeddi, Rammohan; Veluvolu, K C

    2015-01-01

    The EEG signals employed for BCI systems are generally band-limited. The band-limited multiple Fourier linear combiner (BMFLC) with Kalman filter was developed to obtain amplitude estimates of the EEG signal in a pre-fixed frequency band in real-time. However, the high-dimensionality of the feature vector caused by the application of BMFLC to multi-channel EEG based BCI deteriorates the performance of the classifier. In this work, we apply evolutionary algorithm (EA) to tackle this problem. The real-valued EA encodes both the spatial filter and the feature selection into its solution and optimizes it with respect to the classification error. Three BMFLC based BCI configurations are proposed. Our results show that the BMFLC-KF with covariance matrix adaptation evolution strategy (CMAES) has the best overall performance.

  12. Immobilization of aminoglycosidic aminocyclitols antibiotic onto soap-free poly(MMA-EA-AA) latex particles.

    PubMed

    Kang, Kai; Kan, Chengyou; Du, Yi; Liu, Deshan; Yeung, Anthony

    2006-01-01

    Monodispersed soap-free poly(MMA-EA-AA) latex particles with surface carboxyl groups were synthesized by emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and acrylic acid (AA) in aqueous medium, and streptomycin sulfate (SMS) was immobilized onto these particles using three different methods. A model experiment was designed to test the feasibility of the reaction between the carboxyl groups of polymer and the amino groups of the medicine. The covalent coupling between the latex particles and the medicine was confirmed by XPS. Results showed that the medicine molecules were located on the particle surface after immobilization, and the coupling efficiency of SMS in pre-adsorption method was higher than that in direct method. The highest coupling efficiency of this medicine was achieved using the spacer-arm method. It was demonstrated that the immobilized medicine had similar antimicrobial activity as the free form using Escherichia coli as an evaluating organism.

  13. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    PubMed

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  14. Structure of an Aspergillus fumigatus old yellow enzyme (EasA) involved in ergot alkaloid biosynthesis

    PubMed Central

    Chilton, Annemarie S.; Ellis, Ashley L.; Lamb, Audrey L.

    2014-01-01

    The Aspergillus fumigatus old yellow enzyme (OYE) EasA reduces chano­clavine-I aldehyde to dihydrochanoclavine aldehyde and works in conjunction with festuclavine synthase at the branchpoint for ergot alkaloid pathways. The crystal structure of the FMN-loaded EasA was determined to 1.8 Å resolution. The active-site amino acids of OYE are conserved, supporting a similar mechanism for reduction of the α/β-unsaturated aldehyde. The C-terminal tail of one monomer packs into the active site of a monomer in the next asymmetric unit, which is most likely to be a crystallization artifact and not a mechanism of self-regulation. PMID:25286934

  15. Parent ratings of EAS temperaments in twins, full siblings, half siblings, and step siblings.

    PubMed

    Saudino, K J; McGuire, S; Reiss, D; Hetherington, E M; Plomin, R

    1995-04-01

    A twin/family design was used to explore genetic contributions to personality; to evaluate whether twins and nontwins yield different genetic results; and to test for the presence of contrast effects, the tendency of a rater to contrast one sibling with the other, thereby magnifying existing behavioral differences. The sample consisted of 708 adolescent same-sex sibling pairs from 10 to 18 years of age. Pairs included identical (monozygotic; MZ) and fraternal (dizygotic; DZ) twins, and full siblings in nondivorced families; and full, half, and unrelated siblings in stepfamilies. Mothers and fathers rated the temperament of their children on the EAS Temperament Survey (A. H. Buss & R. Plomin, 1984). Model-fitting analyses revealed significant genetic influences on each of the four EAS dimensions; however, for some dimensions, heritability estimates were significantly greater for twins than for nontwins. Overall, the data were best described by a sibling interaction model, which indicated significant contrast effects.

  16. A Comparison of Radio-loud and Radio-quiet E+A Galaxies

    NASA Astrophysics Data System (ADS)

    Camacho, Yssavo; Wallack, Nicole; Learis, Anna; Liu, Charles

    2015-01-01

    E+A galaxies are systems undergoing an important evolutionary transition. Their optical spectra show significant numbers of A-type stars in an elliptical galaxy that has little to no star formation (SF). These galaxies have likely experienced a recent starburst (< 1 Gyr) followed by an even more recent quench in their SF. What caused their recent SF quench remains one of the most prominent questions surrounding E+A galaxies. Within the Goto (2007, MNRAS 381,187) catalogue of 564 E+A galaxies, there is a small fraction (~3%) that have detectable radio continuum emission from FIRST or NVSS. One possible cause for the observed radio continuum is active galactic nuclei (AGN). AGN feedback is believed to be important in galaxy evolution, including SF quenching (Dubois et al. 2013, MNRAS 433, 3297). In an effort to understand better the differences between radio-loud and radio-quiet E+As, we obtained and compared their spectral energy distributions (SEDs) using the publicly available data from SDSS, 2MASS, and WISE. We also compared them to the SEDs of other known galaxy types. We find that the radio-loud and radio-quiet samples exhibit statistically insignificant differences in the optical, near-infrared, and mid-infrared bands. We also compare the two samples on a (J-H) vs. (H-K) color-color diagram. This work was supported by the National Science Foundation via grant AST-1004583 to the CUNY College of Staten Island, and grant AST-1004591 to the American Museum of Natural History.

  17. Measurement of the methyl cyanide E/A ratio in TMC-1

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.; Ohishi, M.; Ishikawa, S.; Saito, S.; Kaifu, N.

    1993-01-01

    We have observed the methyl cyanide (CH3CN) J = 2-1 K = 0 and 1 transitions toward the cyanopolyyne peak of TMC-1 and have derived an E/A (ortho/para)abundance ratio N(E)/N(A) = 0.75 +/- 0.10. The total methyl cyanide column density is N(total) = 5 x 10 exp 12/sq cm toward TMC-1, in agreement with earlier results from the J = 1-0 lines.

  18. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.

    PubMed

    Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna

    2014-12-01

    Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.

  19. Methotrexate modulates folate phenotype and inflammatory profile in EA.hy 926 cells.

    PubMed

    Summers, Carolyn M; Hammons, Andrea L; Arora, Jasbir; Zhang, Suhong; Jochems, Jeanine; Blair, Ian A; Whitehead, Alexander S

    2014-06-05

    EA.hy 926 cells grown under low folate conditions adopt a "pro-atherosclerotic" morphology and biochemical phenotype. Pharmacologically relevant doses of the antifolate drug methotrexate (MTX) were applied to EA.hy 926 cells maintained in normal (Hi) and low (Lo) folate culture media. Under both folate conditions, MTX caused inhibition of cell proliferation without significantly compromising metabolic activity. MTX treated Hi cells were depleted of folate derivatives, which were present in altered proportions relative to untreated cells. Transcript profiling using microarrays indicated that MTX treatment modified the transciptome in similar ways for both Hi and Lo cells. Many inflammation-related genes, most prominently those encoding C3 and IL-8, were up-regulated, whereas many genes involved in cell division were down-regulated. The results for C3 and IL-8 were confirmed by quantitative RT-PCR and ELISA. MTX appears to modify the inflammatory potential of EA.hy 926 cells such that its therapeutic properties may, at least under some conditions, be accompanied by the induction of a subset of gene products that promote and/or maintain comorbid pathologies.

  20. Hearing preservation and clinical outcome of 32 consecutive electric acoustic stimulation (EAS) surgeries

    PubMed Central

    Moteki, Hideaki; Tsukada, Keita; Miyagawa, Maiko; Nishio, Shin-Ya; Takumi, Yutaka; Iwasaki, Satoshi; Kumakawa, Kozo; Naito, Yasushi; Takahashi, Haruo; Kanda, Yukihiko; Tono, Tetsuya

    2014-01-01

    Conclusions Our results indicated that electric acoustic stimulation (EAS) is beneficial for Japanese-speaking patients, including those with less residual hearing at lower frequencies. Comparable outcomes for the patients with less residual hearing indicated that current audiological criteria for EAS could be expanded. Successful hearing preservation results, together with the progressive nature of loss of residual hearing in these patients, mean that minimally invasive full insertion of medium/long electrodes in cochlear implantation (CI) surgery is a desirable solution. The minimally invasive concepts that have been obtained through EAS surgery are, in fact, crucial for all CI patients. Objectives This study was conducted to evaluate hearing preservation results and speech discrimination outcomes of hearing preservation surgeries using medium/long electrodes. Methods A total of 32 consecutive minimally invasive hearing preservation CIs (using a round window approach with deep insertion of a flexible electrode) were performed in 30 Japanese patients (two were bilateral cases), including patients with less residual hearing. Hearing preservation rates as well as speech discrimination/perception scores were investigated on a multicenter basis. Results Postoperative evaluation after full insertion of the flexible electrodes (24 mm, 31.5 mm) showed that residual hearing was well preserved in all 32 ears. In all patients, speech discrimination and perception scores were improved postoperatively. PMID:24834939