Semantic SenseLab: implementing the vision of the Semantic Web in neuroscience
Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi
2011-01-01
Summary Objective Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Methods Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. Conclusion We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/ PMID:20006477
Semantic SenseLab: Implementing the vision of the Semantic Web in neuroscience.
Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi
2010-01-01
Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/. 2009 Elsevier B.V. All rights reserved.
A user-centred evaluation framework for the Sealife semantic web browsers
Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma
2009-01-01
Background Semantically-enriched browsing has enhanced the browsing experience by providing contextualised dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. Methods This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. Results It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Conclusion Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues. PMID:19796398
A user-centred evaluation framework for the Sealife semantic web browsers.
Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma
2009-10-01
Semantically-enriched browsing has enhanced the browsing experience by providing contextualized dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues.
USI: a fast and accurate approach for conceptual document annotation.
Fiorini, Nicolas; Ranwez, Sylvie; Montmain, Jacky; Ranwez, Vincent
2015-03-14
Semantic approaches such as concept-based information retrieval rely on a corpus in which resources are indexed by concepts belonging to a domain ontology. In order to keep such applications up-to-date, new entities need to be frequently annotated to enrich the corpus. However, this task is time-consuming and requires a high-level of expertise in both the domain and the related ontology. Different strategies have thus been proposed to ease this indexing process, each one taking advantage from the features of the document. In this paper we present USI (User-oriented Semantic Indexer), a fast and intuitive method for indexing tasks. We introduce a solution to suggest a conceptual annotation for new entities based on related already indexed documents. Our results, compared to those obtained by previous authors using the MeSH thesaurus and a dataset of biomedical papers, show that the method surpasses text-specific methods in terms of both quality and speed. Evaluations are done via usual metrics and semantic similarity. By only relying on neighbor documents, the User-oriented Semantic Indexer does not need a representative learning set. Yet, it provides better results than the other approaches by giving a consistent annotation scored with a global criterion - instead of one score per concept.
Menninghaus, Winfried; Bohrn, Isabel C; Knoop, Christine A; Kotz, Sonja A; Schlotz, Wolff; Jacobs, Arthur M
2015-10-01
Studies on rhetorical features of language have reported both enhancing and adverse effects on ease of processing. We hypothesized that two explanations may account for these inconclusive findings. First, the respective gains and losses in ease of processing may apply to different dimensions of language processing (specifically, prosodic and semantic processing) and different types of fluency (perceptual vs. conceptual) and may well allow for an integration into a more comprehensive framework. Second, the effects of rhetorical features may be sensitive to interactions with other rhetorical features; employing a feature separately or in combination with others may then predict starkly different effects. We designed a series of experiments in which we expected the same rhetorical features of the very same sentences to exert adverse effects on semantic (conceptual) fluency and enhancing effects on prosodic (perceptual) fluency. We focused on proverbs that each employ three rhetorical features: rhyme, meter, and brevitas (i.e., artful shortness). The presence of these target features decreased ease of conceptual fluency (semantic comprehension) while enhancing perceptual fluency as reflected in beauty and succinctness ratings that were mainly driven by prosodic features. The rhetorical features also predicted choices for persuasive purposes, yet only for the sentence versions featuring all three rhetorical features; the presence of only one or two rhetorical features had an adverse effect on the choices made. We suggest that the facilitating effects of a combination of rhyme, meter, and rhetorical brevitas on perceptual (prosodic) fluency overcompensated for their adverse effects on conceptual (semantic) fluency, thus resulting in a total net gain both in processing ease and in choices for persuasive purposes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.
ERIC Educational Resources Information Center
Mu, Xiangming; Marchionini, Gary
2003-01-01
Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…
Do U Txt? Event-Related Potentials to Semantic Anomalies in Standard and Texted English
ERIC Educational Resources Information Center
Berger, Natalie I.; Coch, Donna
2010-01-01
Texted English is a hybrid, technology-based language derived from standard English modified to facilitate ease of communication via instant and text messaging. We compared semantic processing of texted and standard English sentences by recording event-related potentials in a classic semantic incongruity paradigm designed to elicit an N400 effect.…
The Benefits of Sensorimotor Knowledge: Body-Object Interaction Facilitates Semantic Processing
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Wilson, Kim; Locheed, Keri; Owen, William J.
2008-01-01
This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable.…
Argument structure and the representation of abstract semantics.
Rodríguez-Ferreiro, Javier; Andreu, Llorenç; Sanz-Torrent, Mònica
2014-01-01
According to the dual coding theory, differences in the ease of retrieval between concrete and abstract words are related to the exclusive dependence of abstract semantics on linguistic information. Argument structure can be considered a measure of the complexity of the linguistic contexts that accompany a verb. If the retrieval of abstract verbs relies more on the linguistic codes they are associated to, we could expect a larger effect of argument structure for the processing of abstract verbs. In this study, sets of length- and frequency-matched verbs including 40 intransitive verbs, 40 transitive verbs taking simple complements, and 40 transitive verbs taking sentential complements were presented in separate lexical and grammatical decision tasks. Half of the verbs were concrete and half were abstract. Similar results were obtained in the two tasks, with significant effects of imageability and transitivity. However, the interaction between these two variables was not significant. These results conflict with hypotheses assuming a stronger reliance of abstract semantics on linguistic codes. In contrast, our data are in line with theories that link the ease of retrieval with availability and robustness of semantic information.
The benefits of sensorimotor knowledge: body-object interaction facilitates semantic processing.
Siakaluk, Paul D; Pexman, Penny M; Sears, Christopher R; Wilson, Kim; Locheed, Keri; Owen, William J
2008-04-05
This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable. Responses were faster and more accurate for high BOI words (e.g., mask) than for low BOI words (e.g., ship). In Experiment 2, BOI effects were examined in a semantic lexical decision task (SLDT), which taps both semantic feedback and semantic processing. The BOI effect was larger in the SLDT than in the SCT, suggesting that BOI facilitates both semantic feedback and semantic processing. The findings are consistent with the embodied cognition perspective (e.g., Barsalou's, 1999, Perceptual Symbols Theory), which proposes that sensorimotor interactions with the environment are incorporated in semantic knowledge. 2008 Cognitive Science Society, Inc.
The Neuronal Correlates of Indeterminate Sentence Comprehension: An fMRI Study
de Almeida, Roberto G.; Riven, Levi; Manouilidou, Christina; Lungu, Ovidiu; Dwivedi, Veena D.; Jarema, Gonia; Gillon, Brendan
2016-01-01
Sentences such as The author started the book are indeterminate because they do not make explicit what the subject (the author) started doing with the object (the book). In principle, indeterminate sentences allow for an infinite number of interpretations. One theory, however, assumes that these sentences are resolved by semantic coercion, a linguistic process that forces the noun book to be interpreted as an activity (e.g., writing the book) or by a process that interpolates this activity information in the resulting enriched semantic composition. An alternative theory, pragmatic, assumes classical semantic composition, whereby meaning arises from the denotation of words and how they are combined syntactically, with enrichment obtained via pragmatic inferences beyond linguistic-semantic processes. Cognitive neuroscience studies investigating the neuroanatomical and functional correlates of indeterminate sentences have shown activations either at the ventromedial pre-frontal cortex (vmPFC) or at the left inferior frontal gyrus (L-IFG). These studies have supported the semantic coercion theory assuming that one of these regions is where enriched semantic composition takes place. Employing functional magnetic resonance imaging (fMRI), we found that indeterminate sentences activate bilaterally the superior temporal gyrus (STG), the right inferior frontal gyrus (R-IFG), and the anterior cingulate cortex (ACC), more so than control sentences (The author wrote the book). Activation of indeterminate sentences exceeded that of anomalous sentences (…drank the book) and engaged more left- and right-hemisphere areas than other sentence types. We suggest that the widespread activations for indeterminate sentences represent the deployment of pragmatic-inferential processes, which seek to enrich sentence content without necessarily resorting to semantic coercion. PMID:28066204
Photos That Increase Feelings of Learning Promote Positive Evaluations
ERIC Educational Resources Information Center
Cardwell, Brittany A.; Newman, Eryn J.; Garry, Maryanne; Mantonakis, Antonia; Beckett, Randi
2017-01-01
Research shows that when semantic context makes it feel easier for people to bring related thoughts and images to mind, people can misinterpret that feeling of ease as evidence that information is positive. But research also shows that semantic context does more than help people bring known concepts to mind--it also teaches people new concepts. In…
ERIC Educational Resources Information Center
Kennison, Shelia M.; Fernandez, Elaine C.; Bowers, J. Michael
2014-01-01
The research investigated the roles of semantic and phonological processing in word production. Spanish-English bilingual individuals produced English target words when cued with definitions that were also written in English. When the correct word was not produced, a secondary task was performed in which participants rated the ease of…
Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud
NASA Astrophysics Data System (ADS)
Choudhury, Smitashree; Breslin, John G.; Passant, Alexandre
The increase of personal digital cameras with video functionality and video-enabled camera phones has increased the amount of user-generated videos on the Web. People are spending more and more time viewing online videos as a major source of entertainment and "infotainment". Social websites allow users to assign shared free-form tags to user-generated multimedia resources, thus generating annotations for objects with a minimum amount of effort. Tagging allows communities to organise their multimedia items into browseable sets, but these tags may be poorly chosen and related tags may be omitted. Current techniques to retrieve, integrate and present this media to users are deficient and could do with improvement. In this paper, we describe a framework for semantic enrichment, ranking and integration of web video tags using Semantic Web technologies. Semantic enrichment of folksonomies can bridge the gap between the uncontrolled and flat structures typically found in user-generated content and structures provided by the Semantic Web. The enhancement of tag spaces with semantics has been accomplished through two major tasks: (1) a tag space expansion and ranking step; and (2) through concept matching and integration with the Linked Data cloud. We have explored social, temporal and spatial contexts to enrich and extend the existing tag space. The resulting semantic tag space is modelled via a local graph based on co-occurrence distances for ranking. A ranked tag list is mapped and integrated with the Linked Data cloud through the DBpedia resource repository. Multi-dimensional context filtering for tag expansion means that tag ranking is much easier and it provides less ambiguous tag to concept matching.
Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article
Shotton, David; Portwin, Katie; Klyne, Graham; Miles, Alistair
2009-01-01
Scientific innovation depends on finding, integrating, and re-using the products of previous research. Here we explore how recent developments in Web technology, particularly those related to the publication of data and metadata, might assist that process by providing semantic enhancements to journal articles within the mainstream process of scholarly journal publishing. We exemplify this by describing semantic enhancements we have made to a recent biomedical research article taken from PLoS Neglected Tropical Diseases, providing enrichment to its content and increased access to datasets within it. These semantic enhancements include provision of live DOIs and hyperlinks; semantic markup of textual terms, with links to relevant third-party information resources; interactive figures; a re-orderable reference list; a document summary containing a study summary, a tag cloud, and a citation analysis; and two novel types of semantic enrichment: the first, a Supporting Claims Tooltip to permit “Citations in Context”, and the second, Tag Trees that bring together semantically related terms. In addition, we have published downloadable spreadsheets containing data from within tables and figures, have enriched these with provenance information, and have demonstrated various types of data fusion (mashups) with results from other research articles and with Google Maps. We have also published machine-readable RDF metadata both about the article and about the references it cites, for which we developed a Citation Typing Ontology, CiTO (http://purl.org/net/cito/). The enhanced article, which is available at http://dx.doi.org/10.1371/journal.pntd.0000228.x001, presents a compelling existence proof of the possibilities of semantic publication. We hope the showcase of examples and ideas it contains, described in this paper, will excite the imaginations of researchers and publishers, stimulating them to explore the possibilities of semantic publishing for their own research articles, and thereby break down present barriers to the discovery and re-use of information within traditional modes of scholarly communication. PMID:19381256
Semantic concept-enriched dependence model for medical information retrieval.
Choi, Sungbin; Choi, Jinwook; Yoo, Sooyoung; Kim, Heechun; Lee, Youngho
2014-02-01
In medical information retrieval research, semantic resources have been mostly used by expanding the original query terms or estimating the concept importance weight. However, implicit term-dependency information contained in semantic concept terms has been overlooked or at least underused in most previous studies. In this study, we incorporate a semantic concept-based term-dependence feature into a formal retrieval model to improve its ranking performance. Standardized medical concept terms used by medical professionals were assumed to have implicit dependency within the same concept. We hypothesized that, by elaborately revising the ranking algorithms to favor documents that preserve those implicit dependencies, the ranking performance could be improved. The implicit dependence features are harvested from the original query using MetaMap. These semantic concept-based dependence features were incorporated into a semantic concept-enriched dependence model (SCDM). We designed four different variants of the model, with each variant having distinct characteristics in the feature formulation method. We performed leave-one-out cross validations on both a clinical document corpus (TREC Medical records track) and a medical literature corpus (OHSUMED), which are representative test collections in medical information retrieval research. Our semantic concept-enriched dependence model consistently outperformed other state-of-the-art retrieval methods. Analysis shows that the performance gain has occurred independently of the concept's explicit importance in the query. By capturing implicit knowledge with regard to the query term relationships and incorporating them into a ranking model, we could build a more robust and effective retrieval model, independent of the concept importance. Copyright © 2013 Elsevier Inc. All rights reserved.
Neural bases of event knowledge and syntax integration in comprehension of complex sentences.
Malaia, Evie; Newman, Sharlene
2015-01-01
Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest that telic verbs facilitate online processing by means of consolidating the event schemas in episodic memory and by easing the computation of syntactico-thematic hierarchies in the left inferior frontal gyrus. The results demonstrate that syntax-semantics integration relies on trade-offs among a distributed network of regions for maximum comprehension efficiency.
Augmented Robotics Dialog System for Enhancing Human–Robot Interaction
Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel
2015-01-01
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202
Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.
Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel
2015-07-03
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.
Discovering Central Practitioners in a Medical Discussion Forum Using Semantic Web Analytics.
Rajabi, Enayat; Abidi, Syed Sibte Raza
2017-01-01
The aim of this paper is to investigate semantic web based methods to enrich and transform a medical discussion forum in order to perform semantics-driven social network analysis. We use the centrality measures as well as semantic similarity metrics to identify the most influential practitioners within a discussion forum. The centrality results of our approach are in line with centrality measures produced by traditional SNA methods, thus validating the applicability of semantic web based methods for SNA, particularly for analyzing social networks for specialized discussion forums.
Semantically Enriched Data Access Policies in eHealth.
Drozdowicz, Michał; Ganzha, Maria; Paprzycki, Marcin
2016-11-01
Internet of Things (IoT) requires novel solutions to facilitate autonomous, though controlled, resource access. Access policies have to facilitate interactions between heterogeneous entities (devices and humans). Here, we focus our attention on access control in eHealth. We propose an approach based on enriching policies, based on well-known and widely-used eXtensible Access Control Markup Language, with semantics. In the paper we describe an implementation of a Policy Information Point integrated with the HL7 Security and Privacy Ontology.
''How To Do Things with Words'': Role of Motor Cortex in Semantic Representation of Action Words
ERIC Educational Resources Information Center
Kana, Rajesh K.; Blum, Elizabeth R.; Ladden, Stacy Levin; Ver Hoef, Lawrence W.
2012-01-01
Language, believed to have originated from actions, not only functions as a medium to access other minds, but it also helps us commit actions and enriches our social life. This fMRI study investigated the semantic and neural representations of actions and mental states. We focused mainly on language semantics (comprehending sentences with "action"…
Semantic Enrichment of Movement Behavior with Foursquare--A Visual Analytics Approach.
Krueger, Robert; Thom, Dennis; Ertl, Thomas
2015-08-01
In recent years, many approaches have been developed that efficiently and effectively visualize movement data, e.g., by providing suitable aggregation strategies to reduce visual clutter. Analysts can use them to identify distinct movement patterns, such as trajectories with similar direction, form, length, and speed. However, less effort has been spent on finding the semantics behind movements, i.e. why somebody or something is moving. This can be of great value for different applications, such as product usage and consumer analysis, to better understand urban dynamics, and to improve situational awareness. Unfortunately, semantic information often gets lost when data is recorded. Thus, we suggest to enrich trajectory data with POI information using social media services and show how semantic insights can be gained. Furthermore, we show how to handle semantic uncertainties in time and space, which result from noisy, unprecise, and missing data, by introducing a POI decision model in combination with highly interactive visualizations. Finally, we evaluate our approach with two case studies on a large electric scooter data set and test our model on data with known ground truth.
Determining Semantically Related Significant Genes.
Taha, Kamal
2014-01-01
GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.
Enriching semantic knowledge bases for opinion mining in big data applications.
Weichselbraun, A; Gindl, S; Scharl, A
2014-10-01
This paper presents a novel method for contextualizing and enriching large semantic knowledge bases for opinion mining with a focus on Web intelligence platforms and other high-throughput big data applications. The method is not only applicable to traditional sentiment lexicons, but also to more comprehensive, multi-dimensional affective resources such as SenticNet. It comprises the following steps: (i) identify ambiguous sentiment terms, (ii) provide context information extracted from a domain-specific training corpus, and (iii) ground this contextual information to structured background knowledge sources such as ConceptNet and WordNet. A quantitative evaluation shows a significant improvement when using an enriched version of SenticNet for polarity classification. Crowdsourced gold standard data in conjunction with a qualitative evaluation sheds light on the strengths and weaknesses of the concept grounding, and on the quality of the enrichment process.
Menezes, Pedro Monteiro; Cook, Timothy Wayne; Cavalini, Luciana Tricai
2016-01-01
To present the technical background and the development of a procedure that enriches the semantics of Health Level Seven version 2 (HL7v2) messages for software-intensive systems in telemedicine trauma care. This study followed a multilevel model-driven approach for the development of semantically interoperable health information systems. The Pre-Hospital Trauma Life Support (PHTLS) ABCDE protocol was adopted as the use case. A prototype application embedded the semantics into an HL7v2 message as an eXtensible Markup Language (XML) file, which was validated against an XML schema that defines constraints on a common reference model. This message was exchanged with a second prototype application, developed on the Mirth middleware, which was also used to parse and validate both the original and the hybrid messages. Both versions of the data instance (one pure XML, one embedded in the HL7v2 message) were equally validated and the RDF-based semantics recovered by the receiving side of the prototype from the shared XML schema. This study demonstrated the semantic enrichment of HL7v2 messages for intensive-software telemedicine systems for trauma care, by validating components of extracts generated in various computing environments. The adoption of the method proposed in this study ensures the compliance of the HL7v2 standard in Semantic Web technologies.
An Enriched Unified Medical Language System Semantic Network with a Multiple Subsumption Hierarchy
Zhang, Li; Perl, Yehoshua; Halper, Michael; Geller, James; Cimino, James J.
2004-01-01
Objective: The Unified Medical Language System's (UMLS's) Semantic Network's (SN's) two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. In this article, the SN is expanded into a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links are added as warranted. Design: Two methodologies are presented to identify and add new viable IS-A links. The first methodology is based on imposing the characteristic of connectivity on a previously presented partition of the SN. Four transformations are provided to find viable IS-A links in the process of converting the partition's disconnected groups into connected ones. The second methodology identifies new IS-A links through a string matching process involving names and definitions of various semantic types in the SN. A domain expert is needed to review all the results to determine the validity of the new IS-A links. Results: Nineteen new IS-A links are added to the SN, and four new semantic types are also created to support the multiple subsumption framework. The resulting network, called the Enriched Semantic Network (ESN), exhibits a DAG-structured hierarchy. A partition of the ESN containing 19 connected groups is also derived. Conclusion: The ESN is an expanded abstraction of the UMLS compared with the original SN. Its multiple subsumption hierarchy can accommodate semantic types with multiple parents. Its representation thus provides direct access to a broader range of subsumption knowledge. PMID:14764611
The difficult mountain: enriched composition in adjective–noun phrases
Pickering, Martin J.; McElree, Brian
2012-01-01
When readers need to go beyond the straightforward compositional meaning of a sentence (i.e., when enriched composition is required), costly additional processing is the norm. However, this conclusion is based entirely on research that has looked at enriched composition between two phrases or within the verb phrase (e.g., the verb and its complement in … started the book …) where there is a discrepancy between the semantic expectations of the verb and the semantics of the noun. We carried out an eye-tracking experiment investigating enriched composition within a single noun phrase, as in the difficult mountain. As compared with adjective–noun phrases that allow a straightforward compositional interpretation (the difficult exercise), the coerced phrases were more difficult to process. These results indicate that coercion effects can be found in the absence of a typing violation and within a single noun phrase. PMID:21826403
Enriching semantic knowledge bases for opinion mining in big data applications
Weichselbraun, A.; Gindl, S.; Scharl, A.
2014-01-01
This paper presents a novel method for contextualizing and enriching large semantic knowledge bases for opinion mining with a focus on Web intelligence platforms and other high-throughput big data applications. The method is not only applicable to traditional sentiment lexicons, but also to more comprehensive, multi-dimensional affective resources such as SenticNet. It comprises the following steps: (i) identify ambiguous sentiment terms, (ii) provide context information extracted from a domain-specific training corpus, and (iii) ground this contextual information to structured background knowledge sources such as ConceptNet and WordNet. A quantitative evaluation shows a significant improvement when using an enriched version of SenticNet for polarity classification. Crowdsourced gold standard data in conjunction with a qualitative evaluation sheds light on the strengths and weaknesses of the concept grounding, and on the quality of the enrichment process. PMID:25431524
Semantic transference for enriching multilingual biomedical knowledge resources.
Pérez, María; Berlanga, Rafael
2015-12-01
Biomedical knowledge resources (KRs) are mainly expressed in English, and many applications using them suffer from the scarcity of knowledge in non-English languages. The goal of the present work is to take maximum profit from existing multilingual biomedical KRs lexicons to enrich their non-English counterparts. We propose to combine different automatic methods to generate pair-wise language alignments. More specifically, we use two well-known translation methods (GIZA++ and Moses), and we propose a new ad hoc method specially devised for multilingual KRs. Then, resulting alignments are used to transfer semantics between KRs across their languages. Transference quality is ensured by checking the semantic coherence of the generated alignments. Experiments have been carried out over the Spanish, French and German UMLS Metathesaurus counterparts. As a result, the enriched Spanish KR can grow up to 1,514,217 concepts (originally 286,659), the French KR up to 1,104,968 concepts (originally 83,119), and the German KR up to 1,136,020 concepts (originally 86,842). Copyright © 2015 Elsevier Inc. All rights reserved.
Towards an Approach of Semantic Access Control for Cloud Computing
NASA Astrophysics Data System (ADS)
Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai
With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.
The Semantic Morphological Category of Noun Number in Structurally Different Languages
ERIC Educational Resources Information Center
Mingazova, Nailya G.; Subich, Vitaly G.; Shangaraeva, Liya
2016-01-01
The article represents structural semantic analysis of the grammatical number of nouns in the Indo-European (English, German), Semitic (Arabic, Hebrew), and Altai (Tatar, Japanese) languages. The category of number comprises numerous phenomena, including some transitive and historical aspects, which complicate and enrich the system of language.…
Cook, Timothy Wayne; Cavalini, Luciana Tricai
2016-01-01
Objectives To present the technical background and the development of a procedure that enriches the semantics of Health Level Seven version 2 (HL7v2) messages for software-intensive systems in telemedicine trauma care. Methods This study followed a multilevel model-driven approach for the development of semantically interoperable health information systems. The Pre-Hospital Trauma Life Support (PHTLS) ABCDE protocol was adopted as the use case. A prototype application embedded the semantics into an HL7v2 message as an eXtensible Markup Language (XML) file, which was validated against an XML schema that defines constraints on a common reference model. This message was exchanged with a second prototype application, developed on the Mirth middleware, which was also used to parse and validate both the original and the hybrid messages. Results Both versions of the data instance (one pure XML, one embedded in the HL7v2 message) were equally validated and the RDF-based semantics recovered by the receiving side of the prototype from the shared XML schema. Conclusions This study demonstrated the semantic enrichment of HL7v2 messages for intensive-software telemedicine systems for trauma care, by validating components of extracts generated in various computing environments. The adoption of the method proposed in this study ensures the compliance of the HL7v2 standard in Semantic Web technologies. PMID:26893947
A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs
Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav
2015-01-01
With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the “right” information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for. PMID:26205265
NASA Astrophysics Data System (ADS)
Armas, Iuliana; Bostenaru Dan, Maria
2010-05-01
The COST action TU0801 "Semantic enrichment of 3D city models for sustainable urban development" aims at using ontologies to enrich three dimensional models of cities. Such models can be used for various purposes, one of them being disaster management. COST actions are European networks of nationally funded projects, the European Science Foundation funding the networking activities. Romania adhered to the above mentioned COST action in 2009, the nationally funded project being concerned with the use of GIS for the vulnerability to hazards of the city of Bucharest. Among the networking activites Romanian representatives participated in are a training school on 3D GIS for disaster management (with two trainees) and a working group and management committee meeting. It is aimed to further develop the issues of usability and guidance of semantically enriched city models as task from the working group within the Action for the nationally funded project. In this contribution there will be shown how it is aimed to achieve this. One of the issues is on how to extrude GIS to achieve a simple 3D representation for a pilot area in the historic centre of Bucharest. Another one is on how to use this for the study of urbanism aspects, ranging from visual urban composition to the complex 3D aspects in restoration projects, including addition of new floors to buildings.
Biotea: RDFizing PubMed Central in support for the paper as an interface to the Web of Data
2013-01-01
Background The World Wide Web has become a dissemination platform for scientific and non-scientific publications. However, most of the information remains locked up in discrete documents that are not always interconnected or machine-readable. The connectivity tissue provided by RDF technology has not yet been widely used to support the generation of self-describing, machine-readable documents. Results In this paper, we present our approach to the generation of self-describing machine-readable scholarly documents. We understand the scientific document as an entry point and interface to the Web of Data. We have semantically processed the full-text, open-access subset of PubMed Central. Our RDF model and resulting dataset make extensive use of existing ontologies and semantic enrichment services. We expose our model, services, prototype, and datasets at http://biotea.idiginfo.org/ Conclusions The semantic processing of biomedical literature presented in this paper embeds documents within the Web of Data and facilitates the execution of concept-based queries against the entire digital library. Our approach delivers a flexible and adaptable set of tools for metadata enrichment and semantic processing of biomedical documents. Our model delivers a semantically rich and highly interconnected dataset with self-describing content so that software can make effective use of it. PMID:23734622
Operationalizing Semantic Medline for meeting the information needs at point of care.
Rastegar-Mojarad, Majid; Li, Dingcheng; Liu, Hongfang
2015-01-01
Scientific literature is one of the popular resources for providing decision support at point of care. It is highly desirable to bring the most relevant literature to support the evidence-based clinical decision making process. Motivated by the recent advance in semantically enhanced information retrieval, we have developed a system, which aims to bring semantically enriched literature, Semantic Medline, to meet the information needs at point of care. This study reports our work towards operationalizing the system for real time use. We demonstrate that the migration of a relational database implementation to a NoSQL (Not only SQL) implementation significantly improves the performance and makes the use of Semantic Medline at point of care decision support possible.
Operationalizing Semantic Medline for meeting the information needs at point of care
Rastegar-Mojarad, Majid; Li, Dingcheng; Liu, Hongfang
2015-01-01
Scientific literature is one of the popular resources for providing decision support at point of care. It is highly desirable to bring the most relevant literature to support the evidence-based clinical decision making process. Motivated by the recent advance in semantically enhanced information retrieval, we have developed a system, which aims to bring semantically enriched literature, Semantic Medline, to meet the information needs at point of care. This study reports our work towards operationalizing the system for real time use. We demonstrate that the migration of a relational database implementation to a NoSQL (Not only SQL) implementation significantly improves the performance and makes the use of Semantic Medline at point of care decision support possible. PMID:26306259
CASAS: A tool for composing automatically and semantically astrophysical services
NASA Astrophysics Data System (ADS)
Louge, T.; Karray, M. H.; Archimède, B.; Knödlseder, J.
2017-07-01
Multiple astronomical datasets are available through internet and the astrophysical Distributed Computing Infrastructure (DCI) called Virtual Observatory (VO). Some scientific workflow technologies exist for retrieving and combining data from those sources. However selection of relevant services, automation of the workflows composition and the lack of user-friendly platforms remain a concern. This paper presents CASAS, a tool for semantic web services composition in astrophysics. This tool proposes automatic composition of astrophysical web services and brings a semantics-based, automatic composition of workflows. It widens the services choice and eases the use of heterogeneous services. Semantic web services composition relies on ontologies for elaborating the services composition; this work is based on Astrophysical Services ONtology (ASON). ASON had its structure mostly inherited from the VO services capacities. Nevertheless, our approach is not limited to the VO and brings VO plus non-VO services together without the need for premade recipes. CASAS is available for use through a simple web interface.
Moffat, Michael; Siakaluk, Paul D; Sidhu, David M; Pexman, Penny M
2015-04-01
It has been proposed that much of conceptual knowledge is acquired through situated conceptualization, such that both external (e.g., agents, objects, events) and internal (e.g., emotions, introspections) environments are considered important (Barsalou, 2003). To evaluate this proposal, we characterized two dimensions by which situated conceptualization may be measured and which should have different relevance for abstract and concrete concepts; namely, emotional experience (i.e., the ease with which words evoke emotional experience; Newcombe, Campbell, Siakaluk, & Pexman, 2012) and context availability (i.e., the ease with which words evoke contexts in which their referents may appear; Schwanenflugel & Shoben, 1983). We examined the effects of these two dimensions on abstract and concrete word processing in verbal semantic categorization (VSCT) and naming tasks. In the VSCT, emotional experience facilitated processing of abstract words but inhibited processing of concrete words, whereas context availability facilitated processing of both types of words. In the naming task in which abstract words and concrete words were not blocked by emotional experience, context availability facilitated responding to only the abstract words. In the naming task in which abstract words and concrete words were blocked by emotional experience, emotional experience facilitated responding to only the abstract words, whereas context availability facilitated responding to only the concrete words. These results were observed even with several lexical (e.g., frequency, age of acquisition) and semantic (e.g., concreteness, arousal, valence) variables included in the analyses. As such, the present research suggests that emotional experience and context availability tap into different aspects of situated conceptualization and make unique contributions to the representation and processing of abstract and concrete concepts.
Text-Content-Analysis based on the Syntactic Correlations between Ontologies
NASA Astrophysics Data System (ADS)
Tenschert, Axel; Kotsiopoulos, Ioannis; Koller, Bastian
The work presented in this chapter is concerned with the analysis of semantic knowledge structures, represented in the form of Ontologies, through which Service Level Agreements (SLAs) are enriched with new semantic data. The objective of the enrichment process is to enable SLA negotiation in a way that is much more convenient for a Service Users. For this purpose the deployment of an SLA-Management-System as well as the development of an analyzing procedure for Ontologies is required. This chapter will refer to the BREIN, the FinGrid and the LarKC projects. The analyzing procedure examines the syntactic correlations of several Ontologies whose focus lies in the field of mechanical engineering. A method of analyzing text and content is developed as part of this procedure. In order to so, we introduce a formalism as well as a method for understanding content. The analysis and methods are integrated to an SLA Management System which enables a Service User to interact with the system as a service by negotiating the user requests and including the semantic knowledge. Through negotiation between Service User and Service Provider the analysis procedure considers the user requests by extending the SLAs with semantic knowledge. Through this the economic use of an SLA-Management-System is increased by the enhancement of SLAs with semantic knowledge structures. The main focus of this chapter is the analyzing procedure, respectively the Text-Content-Analysis, which provides the mentioned semantic knowledge structures.
Semantic Variability and Word Comprehension. Educational Reports Umea, No. 17.
ERIC Educational Resources Information Center
Backman, Jarl
Swedes in four different age groups (9, 12, 15 and 18 years) judged written words which varied in three dimensions: syntactic category, objective frequency, and polysemy (multiple meaning). The subjects judged ease of comprehension of 24 words in a factorial arrangement. The method used was Thurstone's paired comparisons. A predicted complex…
Bucur, Anca; van Leeuwen, Jasper; Chen, Njin-Zu; Claerhout, Brecht; de Schepper, Kristof; Perez-Rey, David; Paraiso-Medina, Sergio; Alonso-Calvo, Raul; Mehta, Keyur; Krykwinski, Cyril
2016-01-01
This paper describes a new Cohort Selection application implemented to support streamlining the definition phase of multi-centric clinical research in oncology. Our approach aims at both ease of use and precision in defining the selection filters expressing the characteristics of the desired population. The application leverages our standards-based Semantic Interoperability Solution and a Groovy DSL to provide high expressiveness in the definition of filters and flexibility in their composition into complex selection graphs including splits and merges. Widely-adopted ontologies such as SNOMED-CT are used to represent the semantics of the data and to express concepts in the application filters, facilitating data sharing and collaboration on joint research questions in large communities of clinical users. The application supports patient data exploration and efficient collaboration in multi-site, heterogeneous and distributed data environments. PMID:27570644
Semantic retrieval and navigation in clinical document collections.
Kreuzthaler, Markus; Daumke, Philipp; Schulz, Stefan
2015-01-01
Patients with chronic diseases undergo numerous in- and outpatient treatment periods, and therefore many documents accumulate in their electronic records. We report on an on-going project focussing on the semantic enrichment of medical texts, in order to support recall-oriented navigation across a patient's complete documentation. A document pool of 1,696 de-identified discharge summaries was used for prototyping. A natural language processing toolset for document annotation (based on the text-mining framework UIMA) and indexing (Solr) was used to support a browser-based platform for document import, search and navigation. The integrated search engine combines free text and concept-based querying, supported by dynamically generated facets (diagnoses, procedures, medications, lab values, and body parts). The prototype demonstrates the feasibility of semantic document enrichment within document collections of a single patient. Originally conceived as an add-on for the clinical workplace, this technology could also be adapted to support personalised health record platforms, as well as cross-patient search for cohort building and other secondary use scenarios.
Neural Localization of Semantic Context Effects in Electromagnetic and Hemodynamic Studies
ERIC Educational Resources Information Center
Van Petten, Cyma; Luka, Barbara J.
2006-01-01
Measures of electrical brain activity (event-related potentials, ERPs) have been useful in understanding language processing for several decades. Extant data suggest that the amplitude of the N400 component of the ERP is a general index of the ease or difficulty of retrieving stored conceptual knowledge associated with a word, which is dependent…
Object Naming and Later Lexical Development: From Baby Bottle to Beer Bottle
ERIC Educational Resources Information Center
Ameel, Eef; Malt, Barbara; Storms, Gert
2008-01-01
Despite arguments for the relative ease of learning common noun meanings, semantic development continues well past the early years of language acquisition even for names of concrete objects. We studied evolution of the use of common nouns during later lexical development. Children aged 5-14 years and adults named common household objects and their…
Marelli, Marco; Baroni, Marco
2015-07-01
The present work proposes a computational model of morpheme combination at the meaning level. The model moves from the tenets of distributional semantics, and assumes that word meanings can be effectively represented by vectors recording their co-occurrence with other words in a large text corpus. Given this assumption, affixes are modeled as functions (matrices) mapping stems onto derived forms. Derived-form meanings can be thought of as the result of a combinatorial procedure that transforms the stem vector on the basis of the affix matrix (e.g., the meaning of nameless is obtained by multiplying the vector of name with the matrix of -less). We show that this architecture accounts for the remarkable human capacity of generating new words that denote novel meanings, correctly predicting semantic intuitions about novel derived forms. Moreover, the proposed compositional approach, once paired with a whole-word route, provides a new interpretative framework for semantic transparency, which is here partially explained in terms of ease of the combinatorial procedure and strength of the transformation brought about by the affix. Model-based predictions are in line with the modulation of semantic transparency on explicit intuitions about existing words, response times in lexical decision, and morphological priming. In conclusion, we introduce a computational model to account for morpheme combination at the meaning level. The model is data-driven, theoretically sound, and empirically supported, and it makes predictions that open new research avenues in the domain of semantic processing. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Chen, Jidong
2017-01-01
Children have to figure out the lexicalization of meaning components in learning verb semantics (e.g. Behrens, 1998; Gentner, 1982; Tomasello & Brooks, 1998). The meaning of an English state-change verb (e.g. "break") is divided into two portions (i.e. cause and result), respectively encoded with a separate verb in a Mandarin…
DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.
Yu, Guangchuang; Wang, Li-Gen; Yan, Guang-Rong; He, Qing-Yu
2015-02-15
Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). Supplementary data are available at Bioinformatics online. gcyu@connect.hku.hk or tqyhe@jnu.edu.cn. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Investigating the capabilities of semantic enrichment of 3D CityEngine data
NASA Astrophysics Data System (ADS)
Solou, Dimitra; Dimopoulou, Efi
2016-08-01
In recent years the development of technology and the lifting of several technical limitations, has brought the third dimension to the fore. The complexity of urban environments and the strong need for land administration, intensify the need of using a three-dimensional cadastral system. Despite the progress in the field of geographic information systems and 3D modeling techniques, there is no fully digital 3D cadastre. The existing geographic information systems and the different methods of three-dimensional modeling allow for better management, visualization and dissemination of information. Nevertheless, these opportunities cannot be totally exploited because of deficiencies in standardization and interoperability in these systems. Within this context, CityGML was developed as an international standard of the Open Geospatial Consortium (OGC) for 3D city models' representation and exchange. CityGML defines geometry and topology for city modeling, also focusing on semantic aspects of 3D city information. The scope of CityGML is to reach common terminology, also addressing the imperative need for interoperability and data integration, taking into account the number of available geographic information systems and modeling techniques. The aim of this paper is to develop an application for managing semantic information of a model generated based on procedural modeling. The model was initially implemented in CityEngine ESRI's software, and then imported to ArcGIS environment. Final goal was the original model's semantic enrichment and then its conversion to CityGML format. Semantic information management and interoperability seemed to be feasible by the use of the 3DCities Project ESRI tools, since its database structure ensures adding semantic information to the CityEngine model and therefore automatically convert to CityGML for advanced analysis and visualization in different application areas.
Effect of hearing loss on semantic access by auditory and audiovisual speech in children.
Jerger, Susan; Tye-Murray, Nancy; Damian, Markus F; Abdi, Hervé
2013-01-01
This research studied whether the mode of input (auditory versus audiovisual) influenced semantic access by speech in children with sensorineural hearing impairment (HI). Participants, 31 children with HI and 62 children with normal hearing (NH), were tested with the authors' new multimodal picture word task. Children were instructed to name pictures displayed on a monitor and ignore auditory or audiovisual speech distractors. The semantic content of the distractors was varied to be related versus unrelated to the pictures (e.g., picture distractor of dog-bear versus dog-cheese, respectively). In children with NH, picture-naming times were slower in the presence of semantically related distractors. This slowing, called semantic interference, is attributed to the meaning-related picture-distractor entries competing for selection and control of the response (the lexical selection by competition hypothesis). Recently, a modification of the lexical selection by competition hypothesis, called the competition threshold (CT) hypothesis, proposed that (1) the competition between the picture-distractor entries is determined by a threshold, and (2) distractors with experimentally reduced fidelity cannot reach the CT. Thus, semantically related distractors with reduced fidelity do not produce the normal interference effect, but instead no effect or semantic facilitation (faster picture naming times for semantically related versus unrelated distractors). Facilitation occurs because the activation level of the semantically related distractor with reduced fidelity (1) is not sufficient to exceed the CT and produce interference but (2) is sufficient to activate its concept, which then strengthens the activation of the picture and facilitates naming. This research investigated whether the proposals of the CT hypothesis generalize to the auditory domain, to the natural degradation of speech due to HI, and to participants who are children. Our multimodal picture word task allowed us to (1) quantify picture naming results in the presence of auditory speech distractors and (2) probe whether the addition of visual speech enriched the fidelity of the auditory input sufficiently to influence results. In the HI group, the auditory distractors produced no effect or a facilitative effect, in agreement with proposals of the CT hypothesis. In contrast, the audiovisual distractors produced the normal semantic interference effect. Results in the HI versus NH groups differed significantly for the auditory mode, but not for the audiovisual mode. This research indicates that the lower fidelity auditory speech associated with HI affects the normalcy of semantic access by children. Further, adding visual speech enriches the lower fidelity auditory input sufficiently to produce the semantic interference effect typical of children with NH.
NASA Astrophysics Data System (ADS)
Di Giulio, R.; Maietti, F.; Piaia, E.; Medici, M.; Ferrari, F.; Turillazzi, B.
2017-02-01
The generation of high quality 3D models can be still very time-consuming and expensive, and the outcome of digital reconstructions is frequently provided in formats that are not interoperable, and therefore cannot be easily accessed. This challenge is even more crucial for complex architectures and large heritage sites, which involve a large amount of data to be acquired, managed and enriched by metadata. In this framework, the ongoing EU funded project INCEPTION - Inclusive Cultural Heritage in Europe through 3D semantic modelling proposes a workflow aimed at the achievements of efficient 3D digitization methods, post-processing tools for an enriched semantic modelling, web-based solutions and applications to ensure a wide access to experts and non-experts. In order to face these challenges and to start solving the issue of the large amount of captured data and time-consuming processes in the production of 3D digital models, an Optimized Data Acquisition Protocol (DAP) has been set up. The purpose is to guide the processes of digitization of cultural heritage, respecting needs, requirements and specificities of cultural assets.
CHIP Demonstrator: Semantics-Driven Recommendations and Museum Tour Generation
NASA Astrophysics Data System (ADS)
Aroyo, Lora; Stash, Natalia; Wang, Yiwen; Gorgels, Peter; Rutledge, Lloyd
The main objective of the CHIP project is to demonstrate how Semantic Web technologies can be deployed to provide personalized access to digital museum collections. We illustrate our approach with the digital database ARIA of the Rijksmuseum Amsterdam. For the semantic enrichment of the Rijksmuseum ARIA database we collaborated with the CATCH STITCH project to produce mappings to Iconclass, and with the MultimediaN E-culture project to produce the RDF/OWL of the ARIA and Adlib databases. The main focus of CHIP is on exploring the potential of applying adaptation techniques to provide personalized experience for the museum visitors both on the Web site and in the museum.
Executing SADI services in Galaxy.
Aranguren, Mikel Egaña; González, Alejandro Rodríguez; Wilkinson, Mark D
2014-01-01
In recent years Galaxy has become a popular workflow management system in bioinformatics, due to its ease of installation, use and extension. The availability of Semantic Web-oriented tools in Galaxy, however, is limited. This is also the case for Semantic Web Services such as those provided by the SADI project, i.e. services that consume and produce RDF. Here we present SADI-Galaxy, a tool generator that deploys selected SADI Services as typical Galaxy tools. SADI-Galaxy is a Galaxy tool generator: through SADI-Galaxy, any SADI-compliant service becomes a Galaxy tool that can participate in other out-standing features of Galaxy such as data storage, history, workflow creation, and publication. Galaxy can also be used to execute and combine SADI services as it does with other Galaxy tools. Finally, we have semi-automated the packing and unpacking of data into RDF such that other Galaxy tools can easily be combined with SADI services, plugging the rich SADI Semantic Web Service environment into the popular Galaxy ecosystem. SADI-Galaxy bridges the gap between Galaxy, an easy to use but "static" workflow system with a wide user-base, and SADI, a sophisticated, semantic, discovery-based framework for Web Services, thus benefiting both user communities.
Semantics driven approach for knowledge acquisition from EMRs.
Perera, Sujan; Henson, Cory; Thirunarayan, Krishnaprasad; Sheth, Amit; Nair, Suhas
2014-03-01
Semantic computing technologies have matured to be applicable to many critical domains such as national security, life sciences, and health care. However, the key to their success is the availability of a rich domain knowledge base. The creation and refinement of domain knowledge bases pose difficult challenges. The existing knowledge bases in the health care domain are rich in taxonomic relationships, but they lack nontaxonomic (domain) relationships. In this paper, we describe a semiautomatic technique for enriching existing domain knowledge bases with causal relationships gleaned from Electronic Medical Records (EMR) data. We determine missing causal relationships between domain concepts by validating domain knowledge against EMR data sources and leveraging semantic-based techniques to derive plausible relationships that can rectify knowledge gaps. Our evaluation demonstrates that semantic techniques can be employed to improve the efficiency of knowledge acquisition.
Review of the "AS-BUILT BIM" Approaches
NASA Astrophysics Data System (ADS)
Hichri, N.; Stefani, C.; De Luca, L.; Veron, P.
2013-02-01
Today, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain.
The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances
Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary
2013-01-01
Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273
Sugarman, Michael A.; Woodard, John L.; Nielson, Kristy A.; Seidenberg, Michael; Smith, J. Carson; Durgerian, Sally; Rao, Stephen M.
2011-01-01
Extensive research efforts have been directed toward strategies for predicting risk of developing Alzheimer’s disease (AD) prior to the appearance of observable symptoms. Existing approaches for early detection of AD vary in terms of their efficacy, invasiveness, and ease of implementation. Several non-invasive magnetic resonance imaging strategies have been developed for predicting decline in cognitively healthy older adults. This review will survey a number of studies, beginning with the development of a famous name discrimination task used to identify neural regions that participate in semantic memory retrieval and to test predictions of several key theories of the role of the hippocampus in memory. This task has revealed medial temporal and neocortical contributions to recent and remote memory retrieval, and it has been used to demonstrate compensatory neural recruitment in older adults, apolipoprotein E ε4 carriers, and amnestic mild cognitive impairment patients. Recently, we have also found that the famous name discrimination task provides predictive value for forecasting episodic memory decline among asymptomatic older adults. Other studies investigating the predictive value of semantic memory tasks will also be presented. We suggest several advantages associated with the use of semantic processing tasks, particularly those based on person identification, in comparison to episodic memory tasks to study AD risk. Future directions for research and potential clinical uses of semantic memory paradigms are also discussed. PMID:21996618
NASA Astrophysics Data System (ADS)
Quattrini, R.; Battini, C.; Mammoli, R.
2018-05-01
Recently we assist to an increasing availability of HBIM models rich in geometric and informative terms. Instead, there is still a lack of researches implementing dedicated libraries, based on parametric intelligence and semantically aware, related to the architectural heritage. Additional challenges became from their portability in non-desktop environment (such as VR). The research article demonstrates the validity of a workflow applied to the architectural heritage, which starting from the semantic modeling reaches the visualization in a virtual reality environment, passing through the necessary phases of export, data migration and management. The three-dimensional modeling of the classical Doric order takes place in the BIM work environment and is configured as a necessary starting point for the implementation of data, parametric intelligences and definition of ontologies that exclusively qualify the model. The study also enables an effective method for data migration from the BIM model to databases integrated into VR technologies for AH. Furthermore, the process intends to propose a methodology, applicable in a return path, suited to the achievement of an appropriate data enrichment of each model and to the possibility of interaction in VR environment with the model.
Anguita, Alberto; García-Remesal, Miguel; Graf, Norbert; Maojo, Victor
2016-04-01
Modern biomedical research relies on the semantic integration of heterogeneous data sources to find data correlations. Researchers access multiple datasets of disparate origin, and identify elements-e.g. genes, compounds, pathways-that lead to interesting correlations. Normally, they must refer to additional public databases in order to enrich the information about the identified entities-e.g. scientific literature, published clinical trial results, etc. While semantic integration techniques have traditionally focused on providing homogeneous access to private datasets-thus helping automate the first part of the research, and there exist different solutions for browsing public data, there is still a need for tools that facilitate merging public repositories with private datasets. This paper presents a framework that automatically locates public data of interest to the researcher and semantically integrates it with existing private datasets. The framework has been designed as an extension of traditional data integration systems, and has been validated with an existing data integration platform from a European research project by integrating a private biological dataset with data from the National Center for Biotechnology Information (NCBI). Copyright © 2016 Elsevier Inc. All rights reserved.
Semantic framework for mapping object-oriented model to semantic web languages
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework. PMID:25762923
Semantic framework for mapping object-oriented model to semantic web languages.
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.
Semantically Enriching the Search System of a Music Digital Library
NASA Astrophysics Data System (ADS)
de Juan, Paloma; Iglesias, Carlos
Traditional search systems are usually based on keywords, a very simple and convenient mechanism to express a need for information. This is the most popular way of searching the Web, although it is not always an easy task to accurately summarize a natural language query in a few keywords. Working with keywords means losing the context, which is the only thing that can help us deal with ambiguity. This is the biggest problem of keyword-based systems. Semantic Web technologies seem a perfect solution to this problem, since they make it possible to represent the semantics of a given domain. In this chapter, we present three projects, Harmos, Semusici and Cantiga, whose aim is to provide access to a music digital library. We will describe two search systems, a traditional one and a semantic one, developed in the context of these projects and compare them in terms of usability and effectiveness.
Enabling Energy-Awareness in the Semantic 3d City Model of Vienna
NASA Astrophysics Data System (ADS)
Agugiaro, G.
2016-09-01
This paper presents and discusses the first results regarding selection, analysis, preparation and eventual integration of a number of energy-related datasets, chosen in order to enrich a CityGML-based semantic 3D city model of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. The still-in-development Energy Application Domain Extension (ADE) is a CityGML extension conceived to specifically model, manage and store energy-related features and attributes for buildings. The work presented in this paper is embedded within the European Marie-Curie ITN project "CINERGY, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban data model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area in Vienna, Austria, and the available data sources, it shows and exemplifies the main data integration issues, the strategies developed to solve them in order to obtain the enriched 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.
Lifting Events in RDF from Interactions with Annotated Web Pages
NASA Astrophysics Data System (ADS)
Stühmer, Roland; Anicic, Darko; Sen, Sinan; Ma, Jun; Schmidt, Kay-Uwe; Stojanovic, Nenad
In this paper we present a method and an implementation for creating and processing semantic events from interaction with Web pages which opens possibilities to build event-driven applications for the (Semantic) Web. Events, simple or complex, are models for things that happen e.g., when a user interacts with a Web page. Events are consumed in some meaningful way e.g., for monitoring reasons or to trigger actions such as responses. In order for receiving parties to understand events e.g., comprehend what has led to an event, we propose a general event schema using RDFS. In this schema we cover the composition of complex events and event-to-event relationships. These events can then be used to route semantic information about an occurrence to different recipients helping in making the Semantic Web active. Additionally, we present an architecture for detecting and composing events in Web clients. For the contents of events we show a way of how they are enriched with semantic information about the context in which they occurred. The paper is presented in conjunction with the use case of Semantic Advertising, which extends traditional clickstream analysis by introducing semantic short-term profiling, enabling discovery of the current interest of a Web user and therefore supporting advertisement providers in responding with more relevant advertisements.
Semantic Segmentation of Indoor Point Clouds Using Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Babacan, K.; Chen, L.; Sohn, G.
2017-11-01
As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.
High-performance analysis of filtered semantic graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Fox, Armando; Gilbert, John R.
2012-01-01
High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less
Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises
NASA Astrophysics Data System (ADS)
Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara
Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.
Depth of Processing and Age Differences.
Kheirzadeh, Shiela; Pakzadian, Sarah Sadat
2016-10-01
The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in J Verbal Learning Verbal Behav 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the result of differential levels of processing on the retrieved input. Additionally, they claim that there are three levels of visual, auditory and semantic processes applied on the stimuli in the short-term memory leading to discrepancy in the durability of the memory traces and the later ease of recall and retrieval. In the present article, it is tried to demonstrate if there are evidences of more durable memory traces formed after semantic, visual and auditory processions of the incoming language data in two groups of (a) children in their language learning critical age and (b) youngsters who have passed the critical age period. The comparisons of the results made using two-way ANOVAs revealed the superiority of semantic processing for both age groups in recall, retention and consequently recognition of the new English vocabularies by EFL learners.
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Hallot, P.; Van Wersch, L.; Luczfalvy Jancsó, A.; Billen, R.
2017-05-01
While virtual copies of the real world tend to be created faster than ever through point clouds and derivatives, their working proficiency by all professionals' demands adapted tools to facilitate knowledge dissemination. Digital investigations are changing the way cultural heritage researchers, archaeologists, and curators work and collaborate to progressively aggregate expertise through one common platform. In this paper, we present a web application in a WebGL framework accessible on any HTML5-compatible browser. It allows real time point cloud exploration of the mosaics in the Oratory of Germigny-des-Prés, and emphasises the ease of use as well as performances. Our reasoning engine is constructed over a semantically rich point cloud data structure, where metadata has been injected a priori. We developed a tool that directly allows semantic extraction and visualisation of pertinent information for the end users. It leads to efficient communication between actors by proposing optimal 3D viewpoints as a basis on which interactions can grow.
Sugarman, Michael A; Woodard, John L; Nielson, Kristy A; Seidenberg, Michael; Smith, J Carson; Durgerian, Sally; Rao, Stephen M
2012-03-01
Extensive research efforts have been directed toward strategies for predicting risk of developing Alzheimer's disease (AD) prior to the appearance of observable symptoms. Existing approaches for early detection of AD vary in terms of their efficacy, invasiveness, and ease of implementation. Several non-invasive magnetic resonance imaging strategies have been developed for predicting decline in cognitively healthy older adults. This review will survey a number of studies, beginning with the development of a famous name discrimination task used to identify neural regions that participate in semantic memory retrieval and to test predictions of several key theories of the role of the hippocampus in memory. This task has revealed medial temporal and neocortical contributions to recent and remote memory retrieval, and it has been used to demonstrate compensatory neural recruitment in older adults, apolipoprotein E ε4 carriers, and amnestic mild cognitive impairment patients. Recently, we have also found that the famous name discrimination task provides predictive value for forecasting episodic memory decline among asymptomatic older adults. Other studies investigating the predictive value of semantic memory tasks will also be presented. We suggest several advantages associated with the use of semantic processing tasks, particularly those based on person identification, in comparison to episodic memory tasks to study AD risk. Future directions for research and potential clinical uses of semantic memory paradigms are also discussed. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011 Elsevier B.V. All rights reserved.
Source memory enhancement for emotional words.
Doerksen, S; Shimamura, A P
2001-03-01
The influence of emotional stimuli on source memory was investigated by using emotionally valenced words. The words were colored blue or yellow (Experiment 1) or surrounded by a blue or yellow frame (Experiment 2). Participants were asked to associate the words with the colors. In both experiments, emotionally valenced words elicited enhanced free recall compared with nonvalenced words; however, recognition memory was not affected. Source memory for the associated color was also enhanced for emotional words, suggesting that even memory for contextual information is benefited by emotional stimuli. This effect was not due to the ease of semantic clustering of emotional words because semantically related words were not associated with enhanced source memory, despite enhanced recall (Experiment 3). It is suggested that enhancement resulted from facilitated arousal or attention, which may act to increase organization processes important for source memory.
Palm: Easing the Burden of Analytical Performance Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallent, Nathan R.; Hoisie, Adolfy
2014-06-01
Analytical (predictive) application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult because they must be both accurate and concise. To ease the burden of performance modeling, we developed Palm, a modeling tool that combines top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. To express insight, Palm defines a source code modeling annotation language. By coordinating models and source code, Palm's models are `first-class' and reproducible. Unlike prior work, Palm formally links models, functions, and measurements. As a result, Palm (a) uses functions to either abstract or express complexitymore » (b) generates hierarchical models (representing an application's static and dynamic structure); and (c) automatically incorporates measurements to focus attention, represent constant behavior, and validate models. We discuss generating models for three different applications.« less
Combining Semantic and Lexical Methods for Mapping MedDRA to VCM Icons.
Lamy, Jean-Baptiste; Tsopra, Rosy
2018-01-01
VCM (Visualization of Concept in Medicine) is an iconic language that represents medical concepts, such as disorders, by icons. VCM has a formal semantics described by an ontology. The icons can be used in medical software for providing a visual summary or enriching texts. However, the use of VCM icons in user interfaces requires to map standard medical terminologies to VCM. Here, we present a method combining semantic and lexical approaches for mapping MedDRA to VCM. The method takes advantage of the hierarchical relations in MedDRA. It also analyzes the groups of lemmas in the term's labels, and relies on a manual mapping of these groups to the concepts in the VCM ontology. We evaluate the method on 50 terms. Finally, we discuss the method and suggest perspectives.
Martínez-Costa, Catalina; Cornet, Ronald; Karlsson, Daniel; Schulz, Stefan; Kalra, Dipak
2015-05-01
To improve semantic interoperability of electronic health records (EHRs) by ontology-based mediation across syntactically heterogeneous representations of the same or similar clinical information. Our approach is based on a semantic layer that consists of: (1) a set of ontologies supported by (2) a set of semantic patterns. The first aspect of the semantic layer helps standardize the clinical information modeling task and the second shields modelers from the complexity of ontology modeling. We applied this approach to heterogeneous representations of an excerpt of a heart failure summary. Using a set of finite top-level patterns to derive semantic patterns, we demonstrate that those patterns, or compositions thereof, can be used to represent information from clinical models. Homogeneous querying of the same or similar information, when represented according to heterogeneous clinical models, is feasible. Our approach focuses on the meaning embedded in EHRs, regardless of their structure. This complex task requires a clear ontological commitment (ie, agreement to consistently use the shared vocabulary within some context), together with formalization rules. These requirements are supported by semantic patterns. Other potential uses of this approach, such as clinical models validation, require further investigation. We show how an ontology-based representation of a clinical summary, guided by semantic patterns, allows homogeneous querying of heterogeneous information structures. Whether there are a finite number of top-level patterns is an open question. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Enriching step-based product information models to support product life-cycle activities
NASA Astrophysics Data System (ADS)
Sarigecili, Mehmet Ilteris
The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.
Raj, Vidya; Liang, Han-Chun; Woodward, Neil D.; Bauernfeind, Amy L.; Lee, Junghee; Dietrich, Mary; Park, Sohee; Cowan, Ronald L.
2011-01-01
Objectives MDMA users have impaired verbal memory, and voxel-based morphometry has demonstrated decreased gray matter in Brodmann area (BA) 18, 21 and 45. Because these regions play a role in verbal memory, we hypothesized that MDMA users would show altered brain activation in these areas during performance of an fMRI task that probed semantic verbal memory. Methods Polysubstance users enriched for MDMA exposure participated in a semantic memory encoding and recognition fMRI task that activated left BA 9, 18, 21/22 and 45. Primary outcomes were percent BOLD signal change in left BA 9, 18, 21/22 and 45, accuracy and response time. Results During semantic recognition, lifetime MDMA use was associated with decreased activation in left BA 9, 18 and 21/22 but not 45. This was partly influenced by contributions from cannabis and cocaine use. MDMA exposure was not associated with accuracy or response time during the semantic recognition task. Conclusions During semantic recognition, MDMA exposure is associated with reduced regional brain activation in regions mediating verbal memory. These findings partially overlap with prior structural evidence for reduced gray matter in MDMA users and may, in part, explain the consistent verbal memory impairments observed in other studies of MDMA users. PMID:19304866
The Minority Recruitment Program at the Pennsylvania College of Optometry.
ERIC Educational Resources Information Center
Cohen, Karen
1987-01-01
A program to recruit and retain minority group optometry students is described, including the program's design, student financial aid, a preenrollment enrichment program to ease the adjustment to professional school, and the personal and academic program outcomes. (MSE)
Siakaluk, Paul D; Pexman, Penny M; Aguilera, Laura; Owen, William J; Sears, Christopher R
2008-01-01
We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., mask) and a set of low BOI words (e.g., ship) were created, matched on imageability and concreteness. Facilitatory BOI effects were observed in lexical decision and phonological lexical decision tasks: responses were faster for high BOI words than for low BOI words. We discuss how our findings may be accounted for by (a) semantic feedback within the visual word recognition system, and (b) an embodied view of cognition (e.g., Barsalou's perceptual symbol systems theory), which proposes that semantic knowledge is grounded in sensorimotor interactions with the environment.
An approach to define semantics for BPM systems interoperability
NASA Astrophysics Data System (ADS)
Rico, Mariela; Caliusco, María Laura; Chiotti, Omar; Rosa Galli, María
2015-04-01
This article proposes defining semantics for Business Process Management systems interoperability through the ontology of Electronic Business Documents (EBD) used to interchange the information required to perform cross-organizational processes. The semantic model generated allows aligning enterprise's business processes to support cross-organizational processes by matching the business ontology of each business partner with the EBD ontology. The result is a flexible software architecture that allows dynamically defining cross-organizational business processes by reusing the EBD ontology. For developing the semantic model, a method is presented, which is based on a strategy for discovering entity features whose interpretation depends on the context, and representing them for enriching the ontology. The proposed method complements ontology learning techniques that can not infer semantic features not represented in data sources. In order to improve the representation of these entity features, the method proposes using widely accepted ontologies, for representing time entities and relations, physical quantities, measurement units, official country names, and currencies and funds, among others. When the ontologies reuse is not possible, the method proposes identifying whether that feature is simple or complex, and defines a strategy to be followed. An empirical validation of the approach has been performed through a case study.
Rational's experience using Ada for very large systems
NASA Technical Reports Server (NTRS)
Archer, James E., Jr.; Devlin, Michael T.
1986-01-01
The experience using the Rational Environment has confirmed the advantages forseen when the project was started. Interactive syntatic and semantic information makes a tremendous difference in the ease of constructing programs and making changes to them. The ability to follow semantic references makes it easier to understand exisiting programs and the impact of changes. The integrated debugger makes it much easier to find bugs and test fixes quickly. Taken together, these facilites have helped greatly in reducing the impact of ongoing maintenance of the ability to produce a new code. Similar improvements are anticipated as the same level of integration and interactivity are achieved for configuration management and version control. The environment has also proven useful in introducing personnel to the project and existing personnel to new parts of the system. Personnel benefit from the assistance with syntax and semantics; everyone benefits from the ability to traverse and understand the structure of unfamiliar software. It is often possible for someone completely unfamiliar with a body of code to use these facilities, to understand it well enough to successfully with a body of code to use these facilities to understand it well enough to successfully diagnose and fix bugs in a matter of minutes.
Context-rich semantic framework for effective data-to-decisions in coalition networks
NASA Astrophysics Data System (ADS)
Grueneberg, Keith; de Mel, Geeth; Braines, Dave; Wang, Xiping; Calo, Seraphin; Pham, Tien
2013-05-01
In a coalition context, data fusion involves combining of soft (e.g., field reports, intelligence reports) and hard (e.g., acoustic, imagery) sensory data such that the resulting output is better than what it would have been if the data are taken individually. However, due to the lack of explicit semantics attached with such data, it is difficult to automatically disseminate and put the right contextual data in the hands of the decision makers. In order to understand the data, explicit meaning needs to be added by means of categorizing and/or classifying the data in relationship to each other from base reference sources. In this paper, we present a semantic framework that provides automated mechanisms to expose real-time raw data effectively by presenting appropriate information needed for a given situation so that an informed decision could be made effectively. The system utilizes controlled natural language capabilities provided by the ITA (International Technology Alliance) Controlled English (CE) toolkit to provide a human-friendly semantic representation of messages so that the messages can be directly processed in human/machine hybrid environments. The Real-time Semantic Enrichment (RTSE) service adds relevant contextual information to raw data streams from domain knowledge bases using declarative rules. The rules define how the added semantics and context information are derived and stored in a semantic knowledge base. The software framework exposes contextual information from a variety of hard and soft data sources in a fast, reliable manner so that an informed decision can be made using semantic queries in intelligent software systems.
Integrating historical clinical and financial data for pharmacological research.
Deshmukh, Vikrant G; Sower, N Brett; Hunter, Cheri Y; Mitchell, Joyce A
2011-11-18
Retrospective research requires longitudinal data, and repositories derived from electronic health records (EHR) can be sources of such data. With Health Information Technology for Economic and Clinical Health (HITECH) Act meaningful use provisions, many institutions are expected to adopt EHRs, but may be left with large amounts of financial and historical clinical data, which can differ significantly from data obtained from newer systems, due to lack or inconsistent use of controlled medical terminologies (CMT) in older systems. We examined different approaches for semantic enrichment of financial data with CMT, and integration of clinical data from disparate historical and current sources for research. Snapshots of financial data from 1999, 2004 and 2009 were mapped automatically to the current inpatient pharmacy catalog, and enriched with RxNorm. Administrative metadata from financial and dispensing systems, RxNorm and two commercial pharmacy vocabularies were used to integrate data from current and historical inpatient pharmacy modules, and the outpatient EHR. Data integration approaches were compared using percentages of automated matches, and effects on cohort size of a retrospective study. During 1999-2009, 71.52%-90.08% of items in use from the financial catalog were enriched using RxNorm; 64.95%-70.37% of items in use from the historical inpatient system were integrated using RxNorm, 85.96%-91.67% using a commercial vocabulary, 87.19%-94.23% using financial metadata, and 77.20%-94.68% using dispensing metadata. During 1999-2009, 48.01%-30.72% of items in use from the outpatient catalog were integrated using RxNorm, and 79.27%-48.60% using a commercial vocabulary. In a cohort of 16304 inpatients obtained from clinical systems, 4172 (25.58%) were found exclusively through integration of historical clinical data, while 15978 (98%) could be identified using semantically enriched financial data. Data integration using metadata from financial/dispensing systems and pharmacy vocabularies were comparable. Given the current state of EHR adoption, semantic enrichment of financial data and integration of historical clinical data would allow the repurposing of these data for research. With the push for HITECH meaningful use, institutions that are transitioning to newer EHRs will be able to use their older financial and clinical data for research using these methods.
Integrating historical clinical and financial data for pharmacological research
2011-01-01
Background Retrospective research requires longitudinal data, and repositories derived from electronic health records (EHR) can be sources of such data. With Health Information Technology for Economic and Clinical Health (HITECH) Act meaningful use provisions, many institutions are expected to adopt EHRs, but may be left with large amounts of financial and historical clinical data, which can differ significantly from data obtained from newer systems, due to lack or inconsistent use of controlled medical terminologies (CMT) in older systems. We examined different approaches for semantic enrichment of financial data with CMT, and integration of clinical data from disparate historical and current sources for research. Methods Snapshots of financial data from 1999, 2004 and 2009 were mapped automatically to the current inpatient pharmacy catalog, and enriched with RxNorm. Administrative metadata from financial and dispensing systems, RxNorm and two commercial pharmacy vocabularies were used to integrate data from current and historical inpatient pharmacy modules, and the outpatient EHR. Data integration approaches were compared using percentages of automated matches, and effects on cohort size of a retrospective study. Results During 1999-2009, 71.52%-90.08% of items in use from the financial catalog were enriched using RxNorm; 64.95%-70.37% of items in use from the historical inpatient system were integrated using RxNorm, 85.96%-91.67% using a commercial vocabulary, 87.19%-94.23% using financial metadata, and 77.20%-94.68% using dispensing metadata. During 1999-2009, 48.01%-30.72% of items in use from the outpatient catalog were integrated using RxNorm, and 79.27%-48.60% using a commercial vocabulary. In a cohort of 16304 inpatients obtained from clinical systems, 4172 (25.58%) were found exclusively through integration of historical clinical data, while 15978 (98%) could be identified using semantically enriched financial data. Conclusions Data integration using metadata from financial/dispensing systems and pharmacy vocabularies were comparable. Given the current state of EHR adoption, semantic enrichment of financial data and integration of historical clinical data would allow the repurposing of these data for research. With the push for HITECH meaningful use, institutions that are transitioning to newer EHRs will be able to use their older financial and clinical data for research using these methods. PMID:22099213
Development Issues on Linked Data Weblog Enrichment
NASA Astrophysics Data System (ADS)
Ruiz-Rube, Iván; Cornejo, Carlos M.; Dodero, Juan Manuel; García, Vicente M.
In this paper, we describe the issues found during the development of LinkedBlog, a Linked Data extension for WordPress blogs. This extension enables to enrich text-based and video information contained in blog entries with RDF triples that are suitable to be stored, managed and exploited by other web-based applications. The issues have to do with the generality, usability, tracking, depth, security, trustiness and performance of the linked data enrichment process. The presented annotation approach aims at maintaining web-based contents independent from the underlying ontological model, by providing a loosely coupled RDFa-based approach in the linked data application. Finally, we detail how the performance of annotations can be improved through a semantic reasoner.
A Gene Ontology Tutorial in Python.
Vesztrocy, Alex Warwick; Dessimoz, Christophe
2017-01-01
This chapter is a tutorial on using Gene Ontology resources in the Python programming language. This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of the tutorial, including solutions, is available at http://gohandbook.org .
The Fertility of Some Types of Vocabulary Instruction.
ERIC Educational Resources Information Center
Beck, Isabel L.; And Others
Designed to improve reading comprehension and other complex verbal functions, fertile instruction in word skill focuses on improving accuracy of word knowledge, increasing fluency of access to meanings in memory, and enriching semantic network connections among related concepts. It is particularly appropriate for teaching the high frequency words…
Basic Composition and Enriched Integration in Idiom Processing: An EEG Study
ERIC Educational Resources Information Center
Canal, Paolo; Pesciarelli, Francesca; Vespignani, Francesco; Molinaro, Nicola; Cacciari, Cristina
2017-01-01
We investigated the extent to which the literal meanings of the words forming literally plausible idioms (e.g., "break the ice") are semantically composed and how the idiomatic meaning is integrated in the unfolding sentence representation. Participants read ambiguous idiom strings embedded in highly predictable, literal, and idiomatic…
Schlenker, Philippe; Chemla, Emmanuel; Zuberbühler, Klaus
2016-12-01
A field of primate linguistics is gradually emerging. It combines general questions and tools from theoretical linguistics with rich data gathered in experimental primatology. Analyses of several monkey systems have uncovered very simple morphological and syntactic rules and have led to the development of a primate semantics that asks new questions about the division of semantic labor between the literal meaning of monkey calls, additional mechanisms of pragmatic enrichment, and the environmental context. We show that comparative studies across species may validate this program and may in some cases help in reconstructing the evolution of monkey communication over millions of years. Copyright © 2016. Published by Elsevier Ltd.
Word add-in for ontology recognition: semantic enrichment of scientific literature.
Fink, J Lynn; Fernicola, Pablo; Chandran, Rahul; Parastatidis, Savas; Wade, Alex; Naim, Oscar; Quinn, Gregory B; Bourne, Philip E
2010-02-24
In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles. The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at http://www.codeplex.com/UCSDBioLit. The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata.
SoFoCles: feature filtering for microarray classification based on gene ontology.
Papachristoudis, Georgios; Diplaris, Sotiris; Mitkas, Pericles A
2010-02-01
Marker gene selection has been an important research topic in the classification analysis of gene expression data. Current methods try to reduce the "curse of dimensionality" by using statistical intra-feature set calculations, or classifiers that are based on the given dataset. In this paper, we present SoFoCles, an interactive tool that enables semantic feature filtering in microarray classification problems with the use of external, well-defined knowledge retrieved from the Gene Ontology. The notion of semantic similarity is used to derive genes that are involved in the same biological path during the microarray experiment, by enriching a feature set that has been initially produced with legacy methods. Among its other functionalities, SoFoCles offers a large repository of semantic similarity methods that are used in order to derive feature sets and marker genes. The structure and functionality of the tool are discussed in detail, as well as its ability to improve classification accuracy. Through experimental evaluation, SoFoCles is shown to outperform other classification schemes in terms of classification accuracy in two real datasets using different semantic similarity computation approaches.
Rebholz-Schuhmann, Dietrich; Grabmüller, Christoph; Kavaliauskas, Silvestras; Croset, Samuel; Woollard, Peter; Backofen, Rolf; Filsell, Wendy; Clark, Dominic
2014-07-01
In the Semantic Enrichment of the Scientific Literature (SESL) project, researchers from academia and from life science and publishing companies collaborated in a pre-competitive way to integrate and share information for type 2 diabetes mellitus (T2DM) in adults. This case study exposes benefits from semantic interoperability after integrating the scientific literature with biomedical data resources, such as UniProt Knowledgebase (UniProtKB) and the Gene Expression Atlas (GXA). We annotated scientific documents in a standardized way, by applying public terminological resources for diseases and proteins, and other text-mining approaches. Eventually, we compared the genetic causes of T2DM across the data resources to demonstrate the benefits from the SESL triple store. Our solution enables publishers to distribute their content with little overhead into remote data infrastructures, such as into any Virtual Knowledge Broker. Copyright © 2013. Published by Elsevier Ltd.
Semantic enrichment of medical forms - semi-automated coding of ODM-elements via web services.
Breil, Bernhard; Watermann, Andreas; Haas, Peter; Dziuballe, Philipp; Dugas, Martin
2012-01-01
Semantic interoperability is an unsolved problem which occurs while working with medical forms from different information systems or institutions. Standards like ODM or CDA assure structural homogenization but in order to compare elements from different data models it is necessary to use semantic concepts and codes on an item level of those structures. We developed and implemented a web-based tool which enables a domain expert to perform semi-automated coding of ODM-files. For each item it is possible to inquire web services which result in unique concept codes without leaving the context of the document. Although it was not feasible to perform a totally automated coding we have implemented a dialog based method to perform an efficient coding of all data elements in the context of the whole document. The proportion of codable items was comparable to results from previous studies.
Semantic mechanisms may be responsible for developing synesthesia
Mroczko-Wąsowicz, Aleksandra; Nikolić, Danko
2014-01-01
Currently, little is known about how synesthesia develops and which aspects of synesthesia can be acquired through a learning process. We review the increasing evidence for the role of semantic representations in the induction of synesthesia, and argue for the thesis that synesthetic abilities are developed and modified by semantic mechanisms. That is, in certain people semantic mechanisms associate concepts with perception-like experiences—and this association occurs in an extraordinary way. This phenomenon can be referred to as “higher” synesthesia or ideasthesia. The present analysis suggests that synesthesia develops during childhood and is being enriched further throughout the synesthetes’ lifetime; for example, the already existing concurrents may be adopted by novel inducers or new concurrents may be formed. For a deeper understanding of the origin and nature of synesthesia we propose to focus future research on two aspects: (i) the similarities between synesthesia and ordinary phenomenal experiences based on concepts; and (ii) the tight entanglement of perception, cognition and the conceptualization of the world. Importantly, an explanation of how biological systems get to generate experiences, synesthetic or not, may have to involve an explanation of how semantic networks are formed in general and what their role is in the ability to be aware of the surrounding world. PMID:25191239
Pervasive Knowledge, Social Networks, and Cloud Computing: E-Learning 2.0
ERIC Educational Resources Information Center
Anshari, Muhammad; Alas, Yabit; Guan, Lim Sei
2015-01-01
Embedding Web 2.0 in learning processes has extended learning from traditional based learning-centred to a collaborative based learning-centred institution that emphasises learning anywhere and anytime. While deploying Semantic Web into e-learning offers a broader spectrum of pervasive knowledge acquisition to enrich users' experience in learning.…
ERIC Educational Resources Information Center
Roehm, Dietmar; Sorace, Antonella; Bornkessel-Schlesewsky, Ina
2013-01-01
Sometimes, the relationship between form and meaning in language is not one-to-one. Here, we used event-related brain potentials (ERPs) to illuminate the neural correlates of such flexible syntax-semantics mappings during sentence comprehension by examining split-intransitivity. While some ("rigid") verbs consistently select one…
Validation of Modifications to the ANSR(®) Listeria Method for Improved Ease of Use and Performance.
Caballero, Oscar; Alles, Susan; Le, Quynh-Nhi; Gray, R Lucas; Hosking, Edan; Pinkava, Lisa; Norton, Paul; Tolan, Jerry; Mozola, Mark; Rice, Jennifer; Chen, Yi; Odumeru, Joseph; Ryser, Elliot
2016-01-01
A study was conducted to validate minor reagent formulation, enrichment, and procedural changes to the ANSR(®) Listeria method, Performance-Tested Method(SM) 101202. In order to improve ease of use and diminish risk of amplicon contamination, the lyophilized reagent components were reformulated for increased solubility, thus eliminating the need to mix by pipetting. In the alternative procedure, an aliquot of the lysate is added to lyophilized ANSR reagents, immediately capped, and briefly mixed by vortexing. When three foods (hot dogs, Mexican-style cheese, and cantaloupe) and sponge samples taken from a stainless steel surface were tested, significant differences in performance between the ANSR and U.S. Food and Drug Administration Bacteriological Analytical Manual or U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedures were seen with hot dogs and Mexican-style cheese after 16 h enrichment, with the reference methods producing more positive results. After 24 h enrichment, however, there were no significant differences in method performance for any of the four matrixes tested. Robustness testing was also conducted, with variations to lysis buffer volume, lysis time, and sample volume having no demonstrable effect on assay results. Accelerated stability testing was carried out over a 10-week period and showed no diminishment in assay performance. A second phase of the study examined performance of the ANSR assay following enrichment in a new medium, LESS Plus broth, designed for use with all food and environmental sample types. With the alternative LESS Plus broth, there were no significant differences in performance between the ANSR method and the reference culture procedures for any of the matrixes tested after either 16 or 24 h enrichment, although 24 h enrichment is recommended for hot dogs due to higher sensitivity. Results of inclusivity and exclusivity testing using LESS Plus broth showed that the ANSR assay is highly specific, with 100% expected results for target and nontarget bacteria.
An ontology-driven tool for structured data acquisition using Web forms.
Gonçalves, Rafael S; Tu, Samson W; Nyulas, Csongor I; Tierney, Michael J; Musen, Mark A
2017-08-01
Structured data acquisition is a common task that is widely performed in biomedicine. However, current solutions for this task are far from providing a means to structure data in such a way that it can be automatically employed in decision making (e.g., in our example application domain of clinical functional assessment, for determining eligibility for disability benefits) based on conclusions derived from acquired data (e.g., assessment of impaired motor function). To use data in these settings, we need it structured in a way that can be exploited by automated reasoning systems, for instance, in the Web Ontology Language (OWL); the de facto ontology language for the Web. We tackle the problem of generating Web-based assessment forms from OWL ontologies, and aggregating input gathered through these forms as an ontology of "semantically-enriched" form data that can be queried using an RDF query language, such as SPARQL. We developed an ontology-based structured data acquisition system, which we present through its specific application to the clinical functional assessment domain. We found that data gathered through our system is highly amenable to automatic analysis using queries. We demonstrated how ontologies can be used to help structuring Web-based forms and to semantically enrich the data elements of the acquired structured data. The ontologies associated with the enriched data elements enable automated inferences and provide a rich vocabulary for performing queries.
Ellouze, Afef Samet; Bouaziz, Rafik; Ghorbel, Hanen
2016-10-01
Integrating semantic dimension into clinical archetypes is necessary once modeling medical records. First, it enables semantic interoperability and, it offers applying semantic activities on clinical data and provides a higher design quality of Electronic Medical Record (EMR) systems. However, to obtain these advantages, designers need to use archetypes that cover semantic features of clinical concepts involved in their specific applications. In fact, most of archetypes filed within open repositories are expressed in the Archetype Definition Language (ALD) which allows defining only the syntactic structure of clinical concepts weakening semantic activities on the EMR content in the semantic web environment. This paper focuses on the modeling of an EMR prototype for infants affected by Cerebral Palsy (CP), using the dual model approach and integrating semantic web technologies. Such a modeling provides a better delivery of quality of care and ensures semantic interoperability between all involved therapies' information systems. First, data to be documented are identified and collected from the involved therapies. Subsequently, data are analyzed and arranged into archetypes expressed in accordance of ADL. During this step, open archetype repositories are explored, in order to find the suitable archetypes. Then, ADL archetypes are transformed into archetypes expressed in OWL-DL (Ontology Web Language - Description Language). Finally, we construct an ontological source related to these archetypes enabling hence their annotation to facilitate data extraction and providing possibility to exercise semantic activities on such archetypes. Semantic dimension integration into EMR modeled in accordance to the archetype approach. The feasibility of our solution is shown through the development of a prototype, baptized "CP-SMS", which ensures semantic exploitation of CP EMR. This prototype provides the following features: (i) creation of CP EMR instances and their checking by using a knowledge base which we have constructed by interviews with domain experts, (ii) translation of initially CP ADL archetypes into CP OWL-DL archetypes, (iii) creation of an ontological source which we can use to annotate obtained archetypes and (vi) enrichment and supply of the ontological source and integration of semantic relations by providing hence fueling the ontology with new concepts, ensuring consistency and eliminating ambiguity between concepts. The degree of semantic interoperability that could be reached between EMR systems depends strongly on the quality of the used archetypes. Thus, the integration of semantic dimension in archetypes modeling process is crucial. By creating an ontological source and annotating archetypes, we create a supportive platform ensuring semantic interoperability between archetypes-based EMR-systems. Copyright © 2016. Published by Elsevier Inc.
Yang, Jianfeng; Shu, Hua; McCandliss, Bruce D.; Zevin, Jason D.
2013-01-01
Learning to read any language requires learning to map among print, sound and meaning. Writing systems differ in a number of factors that influence both the ease and rate with which reading skill can be acquired, as well as the eventual division of labor between phonological and semantic processes. Further, developmental reading disability manifests differently across writing systems, and may be related to different deficits in constitutive processes. Here we simulate some aspects of reading acquisition in Chinese and English using the same model architecture for both writing systems. The contribution of semantic and phonological processing to literacy acquisition in the two languages is simulated, including specific effects of phonological and semantic deficits. Further, we demonstrate that similar patterns of performance are observed when the same model is trained on both Chinese and English as an "early bilingual." The results are consistent with the view that reading skill is acquired by the application of statistical learning rules to mappings among print, sound and meaning, and that differences in the typical and disordered acquisition of reading skill between writing systems are driven by differences in the statistical patterns of the writing systems themselves, rather than differences in cognitive architecture of the learner. PMID:24587693
Semantics-Based Interoperability Framework for the Geosciences
NASA Astrophysics Data System (ADS)
Sinha, A.; Malik, Z.; Raskin, R.; Barnes, C.; Fox, P.; McGuinness, D.; Lin, K.
2008-12-01
Interoperability between heterogeneous data, tools and services is required to transform data to knowledge. To meet geoscience-oriented societal challenges such as forcing of climate change induced by volcanic eruptions, we suggest the need to develop semantic interoperability for data, services, and processes. Because such scientific endeavors require integration of multiple data bases associated with global enterprises, implicit semantic-based integration is impossible. Instead, explicit semantics are needed to facilitate interoperability and integration. Although different types of integration models are available (syntactic or semantic) we suggest that semantic interoperability is likely to be the most successful pathway. Clearly, the geoscience community would benefit from utilization of existing XML-based data models, such as GeoSciML, WaterML, etc to rapidly advance semantic interoperability and integration. We recognize that such integration will require a "meanings-based search, reasoning and information brokering", which will be facilitated through inter-ontology relationships (ontologies defined for each discipline). We suggest that Markup languages (MLs) and ontologies can be seen as "data integration facilitators", working at different abstraction levels. Therefore, we propose to use an ontology-based data registration and discovery approach to compliment mark-up languages through semantic data enrichment. Ontologies allow the use of formal and descriptive logic statements which permits expressive query capabilities for data integration through reasoning. We have developed domain ontologies (EPONT) to capture the concept behind data. EPONT ontologies are associated with existing ontologies such as SUMO, DOLCE and SWEET. Although significant efforts have gone into developing data (object) ontologies, we advance the idea of developing semantic frameworks for additional ontologies that deal with processes and services. This evolutionary step will facilitate the integrative capabilities of scientists as we examine the relationships between data and external factors such as processes that may influence our understanding of "why" certain events happen. We emphasize the need to go from analysis of data to concepts related to scientific principles of thermodynamics, kinetics, heat flow, mass transfer, etc. Towards meeting these objectives, we report on a pair of related service engines: DIA (Discovery, integration and analysis), and SEDRE (Semantically-Enabled Data Registration Engine) that utilize ontologies for semantic interoperability and integration.
Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin
2017-05-01
Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the biomedical domain with generalizability. Copyright © 2017 Elsevier Inc. All rights reserved.
Zero-Adjective Contrast in Much-less Ellipsis: The Advantage for Parallel Syntax.
Carlson, Katy; Harris, Jesse A
2018-01-01
This paper explores the processing of sentences with a much less coordinator ( I don't own a pink hat, much less a red one ). This understudied ellipsis sentence, one of several focus-sensitive coordination structures, imposes syntactic and semantic conditions on the relationship between the correlate ( a pink hat ) and remnant ( a red one ). We present the case of zero-adjective contrast, in which an NP remnant introduces an adjective without an overt counterpart in the correlate ( I don't own a hat, much less a red one ). Although zero-adjective contrast could in principle ease comprehension by limiting the possible relationships between the remnant and correlate to entailment, we find that zero-adjective contrast is avoided in production and taxing in online processing. Results from several studies support a processing model in which syntactic parallelism is the primary guide for determining contrast in ellipsis structures, even when violating parallelism would assist in computing semantic relationships.
Crowded and sparse domains in object recognition: consequences for categorization and naming.
Gale, Tim M; Laws, Keith R; Foley, Kerry
2006-03-01
Some models of object recognition propose that items from structurally crowded categories (e.g., living things) permit faster access to superordinate semantic information than structurally dissimilar categories (e.g., nonliving things), but slower access to individual object information when naming items. We present four experiments that utilize the same matched stimuli: two examine superordinate categorization and two examine picture naming. Experiments 1 and 2 required participants to sort pictures into their appropriate superordinate categories and both revealed faster categorization for living than nonliving things. Nonetheless, the living thing superiority disappeared when the atypical categories of body parts and musical instruments were excluded. Experiment 3 examined naming latency and found no difference between living and nonliving things. This finding was replicated in Experiment 4 where the same items were presented in different formats (e.g., color and line-drawn versions). Taken as a whole, these experiments show that the ease with which people categorize items maps strongly onto the ease with which they name them.
USDA-ARS?s Scientific Manuscript database
Such Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The annotation of gene products is mainly accelerated by Gene Ontology (GO) and more recently by Medical Subject Headings (MeSH). MeSH is the National Library of Medicine's controlled vocabulary and it is making ...
Word add-in for ontology recognition: semantic enrichment of scientific literature
2010-01-01
Background In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles. Results The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at http://www.codeplex.com/UCSDBioLit. Conclusions The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata. PMID:20181245
Semantic markup of sensor capabilities: how simple it too simple?
NASA Astrophysics Data System (ADS)
Rueda-Velasquez, C. A.; Janowicz, K.; Fredericks, J.
2016-12-01
Semantics plays a key role for the publication, retrieval, integration, and reuse of observational data across the geosciences. In most cases, one can safely assume that the providers of such data, e.g., individual scientists, understand the observation context in which their data are collected,e.g., the used observation procedure, the sampling strategy, the feature of interest being studied, and so forth. However, can we expect that the same is true for the technical details of the used sensors and especially the nuanced changes that can impact observations in often unpredictable ways? Should the burden of annotating the sensor capabilities, firmware, operation ranges, and so forth be really part of a scientist's responsibility? Ideally, semantic annotations should be provided by the parties that understand these details and have a vested interest in maintaining these data. With manufactures providing semantically-enabled metadata for their sensors and instruments, observations could more easily be annotated and thereby enriched using this information. Unfortunately, today's sensor ontologies and tool chains developed for the Semantic Web community require expertise beyond the knowledge and interest of most manufacturers. Consequently, knowledge engineers need to better understand the sweet spot between simple ontologies/vocabularies and sufficient expressivity as well as the tools required to enable manufacturers to share data about their sensors. Here, we report on the current results of EarthCube's X-Domes project that aims to address the questions outlined above.
NASA Astrophysics Data System (ADS)
Lin, Po-Chuan; Chen, Bo-Wei; Chang, Hangbae
2016-07-01
This study presents a human-centric technique for social video expansion based on semantic processing and graph analysis. The objective is to increase metadata of an online video and to explore related information, thereby facilitating user browsing activities. To analyze the semantic meaning of a video, shots and scenes are firstly extracted from the video on the server side. Subsequently, this study uses annotations along with ConceptNet to establish the underlying framework. Detailed metadata, including visual objects and audio events among the predefined categories, are indexed by using the proposed method. Furthermore, relevant online media associated with each category are also analyzed to enrich the existing content. With the above-mentioned information, users can easily browse and search the content according to the link analysis and its complementary knowledge. Experiments on a video dataset are conducted for evaluation. The results show that our system can achieve satisfactory performance, thereby demonstrating the feasibility of the proposed idea.
Knowledge Enriched Learning by Converging Knowledge Object & Learning Object
ERIC Educational Resources Information Center
Sabitha, Sai; Mehrotra, Deepti; Bansal, Abhay
2015-01-01
The most important dimension of learning is the content, and a Learning Management System (LMS) suffices this to a certain extent. The present day LMS are designed to primarily address issues like ease of use, search, content and performance. Many surveys had been conducted to identify the essential features required for the improvement of LMS,…
2011-01-01
Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research. PMID:21595881
Chepelev, Leonid L; Dumontier, Michel
2011-05-19
Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research.
ERIC Educational Resources Information Center
Piedra, Nelson; Chicaiza, Janneth Alexandra; López, Jorge; Tovar, Edmundo
2014-01-01
The Linked Data initiative is considered as one of the most effective alternatives for creating global shared information spaces, it has become an interesting approach for discovering and enriching open educational resources data, as well as achieving semantic interoperability and re-use between multiple OER repositories. The notion of Linked Data…
ERIC Educational Resources Information Center
Ruiz-Iniesta, Almudena; Jiménez-Díaz, Guillermo; Gómez-Albarrán, Mercedes
2014-01-01
This paper describes a knowledge-based strategy for recommending educational resources-worked problems, exercises, quiz questions, and lecture notes-to learners in the first two courses in the introductory sequence of a computer science major (CS1 and CS2). The goal of the recommendation strategy is to provide support for personalized access to…
A comparative analysis of the density of the SNOMED CT conceptual content for semantic harmonization
He, Zhe; Geller, James; Chen, Yan
2015-01-01
Objectives Medical terminologies vary in the amount of concept information (the “density”) represented, even in the same sub-domains. This causes problems in terminology mapping, semantic harmonization and terminology integration. Moreover, complex clinical scenarios need to be encoded by a medical terminology with comprehensive content. SNOMED Clinical Terms (SNOMED CT), a leading clinical terminology, was reported to lack concepts and synonyms, problems that cannot be fully alleviated by using post-coordination. Therefore, a scalable solution is needed to enrich the conceptual content of SNOMED CT. We are developing a structure-based, algorithmic method to identify potential concepts for enriching the conceptual content of SNOMED CT and to support semantic harmonization of SNOMED CT with selected other Unified Medical Language System (UMLS) terminologies. Methods We first identified a subset of English terminologies in the UMLS that have ‘PAR’ relationship labeled with ‘IS_A’ and over 10% overlap with one or more of the 19 hierarchies of SNOMED CT. We call these “reference terminologies” and we note that our use of this name is different from the standard use. Next, we defined a set of topological patterns across pairs of terminologies, with SNOMED CT being one terminology in each pair and the other being one of the reference terminologies. We then explored how often these topological patterns appear between SNOMED CT and each reference terminology, and how to interpret them. Results Four viable reference terminologies were identified. Large density differences between terminologies were found. Expected interpretations of these differences were indeed observed, as follows. A random sample of 299 instances of special topological patterns (“2:3 and 3:2 trapezoids”) showed that 39.1% and 59.5% of analyzed concepts in SNOMED CT and in a reference terminology, respectively, were deemed to be alternative classifications of the same conceptual content. In 30.5% and 17.6% of the cases, it was found that intermediate concepts could be imported into SNOMED CT or into the reference terminology, respectively, to enhance their conceptual content, if approved by a human curator. Other cases included synonymy and errors in one of the terminologies. Conclusion These results show that structure-based algorithmic methods can be used to identify potential concepts to enrich SNOMED CT and the four reference terminologies. The comparative analysis has the future potential of supporting terminology authoring by suggesting new content to improve content coverage and semantic harmonization between terminologies. PMID:25890688
Web Video Event Recognition by Semantic Analysis From Ubiquitous Documents.
Yu, Litao; Yang, Yang; Huang, Zi; Wang, Peng; Song, Jingkuan; Shen, Heng Tao
2016-12-01
In recent years, the task of event recognition from videos has attracted increasing interest in multimedia area. While most of the existing research was mainly focused on exploring visual cues to handle relatively small-granular events, it is difficult to directly analyze video content without any prior knowledge. Therefore, synthesizing both the visual and semantic analysis is a natural way for video event understanding. In this paper, we study the problem of Web video event recognition, where Web videos often describe large-granular events and carry limited textual information. Key challenges include how to accurately represent event semantics from incomplete textual information and how to effectively explore the correlation between visual and textual cues for video event understanding. We propose a novel framework to perform complex event recognition from Web videos. In order to compensate the insufficient expressive power of visual cues, we construct an event knowledge base by deeply mining semantic information from ubiquitous Web documents. This event knowledge base is capable of describing each event with comprehensive semantics. By utilizing this base, the textual cues for a video can be significantly enriched. Furthermore, we introduce a two-view adaptive regression model, which explores the intrinsic correlation between the visual and textual cues of the videos to learn reliable classifiers. Extensive experiments on two real-world video data sets show the effectiveness of our proposed framework and prove that the event knowledge base indeed helps improve the performance of Web video event recognition.
Baggio, Giosuè; Granello, Giulia; Verriello, Lorenzo; Eleopra, Roberto
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with subtle adverse effects on cognition. It is still unclear whether ALS also affects language and semantics, and if so, what aspects and processes exactly. We investigated how ALS patients understand verb phrases modified by temporal preposition phrases, e.g., “To watch TV for half an hour.” Interpretation here requires operations such as aspectual coercion that add or delete elements from event structures, depending on temporal modifiers, and constraints on coercion, which make combinations with certain modifiers not viable. Using a theoretically-motivated experimental design, we observed that acceptance rates for aspectual coercion were abnormally high in ALS patients. The effect was largest for the more complex cases of coercion: not those that involve enrichment of event structures (“To switch on the TV in half an hour,” where a number of failed attempts must be included in the interpretation) but those that, if applied, would result in deletion of event structure elements (“To repair the TV for half an hour”). Our experimental results are consistent with a deficit of constraints on coercion, and not with impaired semantic processes or representations, in line with recent studies suggesting that verb semantics is largely spared in ALS. PMID:27867369
Fargier, Raphaël; Laganaro, Marina
2017-03-01
Picture naming tasks are largely used to elicit the production of specific words and sentences in psycholinguistic and neuroimaging research. However, the generation of lexical concepts from a visual input is clearly not the exclusive way speech production is triggered. In inferential speech encoding, the concept is not provided from a visual input, but is elaborated though semantic and/or episodic associations. It is therefore likely that the cognitive operations leading to lexical selection and word encoding are different in inferential and referential expressive language. In particular, in picture naming lexical selection might ensue from a simple association between a perceptual visual representation and a word with minimal semantic processes, whereas richer semantic associations are involved in lexical retrieval in inferential situations. Here we address this hypothesis by analyzing ERP correlates during word production in a referential and an inferential task. The participants produced the same words elicited from pictures or from short written definitions. The two tasks displayed similar electrophysiological patterns only in the time-period preceding the verbal response. In the stimulus-locked ERPs waveform amplitudes and periods of stable global electrophysiological patterns differed across tasks after the P100 component and until 400-500 ms, suggesting the involvement of different, task-specific neural networks. Based on the analysis of the time-windows affected by specific semantic and lexical variables in each task, we conclude that lexical selection is underpinned by a different set of conceptual and brain processes, with semantic processes clearly preceding word retrieval in naming from definition whereas the semantic information is enriched in parallel with word retrieval in picture naming.
Rönnberg, Jerker; Danielsson, Henrik; Rudner, Mary; Arlinger, Stig; Sternäng, Ola; Wahlin, Ake; Nilsson, Lars-Göran
2011-04-01
To test the relationship between degree of hearing loss and different memory systems in hearing aid users. Structural equation modeling (SEM) was used to study the relationship between auditory and visual acuity and different cognitive and memory functions in an age-hetereogenous subsample of 160 hearing aid users without dementia, drawn from the Swedish prospective cohort aging study known as Betula (L.-G. Nilsson et al., 1997). Hearing loss was selectively and negatively related to episodic and semantic long-term memory (LTM) but not short-term memory (STM) performance. This held true for both ears, even when age was accounted for. Visual acuity alone, or in combination with auditory acuity, did not contribute to any acceptable SEM solution. The overall relationships between hearing loss and memory systems were predicted by the ease of language understanding model (J. Rönnberg, 2003), but the exact mechanisms of episodic memory decline in hearing aid users (i.e., mismatch/disuse, attentional resources, or information degradation) remain open for further experiments. The hearing aid industry should strive to design signal processing algorithms that are cognition friendly.
Similarity of wh-Phrases and Acceptability Variation in wh-Islands
Atkinson, Emily; Apple, Aaron; Rawlins, Kyle; Omaki, Akira
2016-01-01
In wh-questions that form a syntactic dependency between the fronted wh-phrase and its thematic position, acceptability is severely degraded when the dependency crosses another wh-phrase. It is well known that the acceptability degradation in wh-island violation ameliorates in certain contexts, but the source of this variation remains poorly understood. In the syntax literature, an influential theory – Featural Relativized Minimality – has argued that the wh-island effect is modulated exclusively by the distinctness of morpho-syntactic features in the two wh-phrases, but psycholinguistic theories of memory encoding and retrieval mechanisms predict that semantic properties of wh-phrases should also contribute to wh-island amelioration. We report four acceptability judgment experiments that systematically investigate the role of morpho-syntactic and semantic features in wh-island violations. The results indicate that the distribution of wh-island amelioration is best explained by an account that incorporates the distinctness of morpho-syntactic features as well as the semantic denotation of the wh-phrases. We argue that an integration of syntactic theories and perspectives from psycholinguistics can enrich our understanding of acceptability variation in wh-dependencies. PMID:26793156
Identifying biological concepts from a protein-related corpus with a probabilistic topic model
Zheng, Bin; McLean, David C; Lu, Xinghua
2006-01-01
Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA) model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO) terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text. PMID:16466569
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Billen, R.
2017-08-01
Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.
Modeling loosely annotated images using both given and imagined annotations
NASA Astrophysics Data System (ADS)
Tang, Hong; Boujemaa, Nozha; Chen, Yunhao; Deng, Lei
2011-12-01
In this paper, we present an approach to learn latent semantic analysis models from loosely annotated images for automatic image annotation and indexing. The given annotation in training images is loose due to: 1. ambiguous correspondences between visual features and annotated keywords; 2. incomplete lists of annotated keywords. The second reason motivates us to enrich the incomplete annotation in a simple way before learning a topic model. In particular, some ``imagined'' keywords are poured into the incomplete annotation through measuring similarity between keywords in terms of their co-occurrence. Then, both given and imagined annotations are employed to learn probabilistic topic models for automatically annotating new images. We conduct experiments on two image databases (i.e., Corel and ESP) coupled with their loose annotations, and compare the proposed method with state-of-the-art discrete annotation methods. The proposed method improves word-driven probability latent semantic analysis (PLSA-words) up to a comparable performance with the best discrete annotation method, while a merit of PLSA-words is still kept, i.e., a wider semantic range.
Impact of ontology evolution on functional analyses.
Groß, Anika; Hartung, Michael; Prüfer, Kay; Kelso, Janet; Rahm, Erhard
2012-10-15
Ontologies are used in the annotation and analysis of biological data. As knowledge accumulates, ontologies and annotation undergo constant modifications to reflect this new knowledge. These modifications may influence the results of statistical applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. Here, we investigate to what degree modifications of the Gene Ontology (GO) impact these statistical analyses for both experimental and simulated data. The analysis is based on new measures for the stability of result sets and considers different ontology and annotation changes. Our results show that past changes in the GO are non-uniformly distributed over different branches of the ontology. Considering the semantic relatedness of significant categories in analysis results allows a more realistic stability assessment for functional enrichment studies. We observe that the results of term-enrichment analyses tend to be surprisingly stable despite changes in ontology and annotation.
A journey to Semantic Web query federation in the life sciences.
Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian
2009-10-01
As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community.
A journey to Semantic Web query federation in the life sciences
Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian
2009-01-01
Background As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. Methods and results We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. Conclusion We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community. PMID:19796394
First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery
NASA Astrophysics Data System (ADS)
Obrock, L. S.; Gülch, E.
2018-05-01
The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.
Hearing and seeing meaning in speech and gesture: insights from brain and behaviour
Özyürek, Aslı
2014-01-01
As we speak, we use not only the arbitrary form–meaning mappings of the speech channel but also motivated form–meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal–posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. PMID:25092664
Hearing and seeing meaning in speech and gesture: insights from brain and behaviour.
Özyürek, Aslı
2014-09-19
As we speak, we use not only the arbitrary form-meaning mappings of the speech channel but also motivated form-meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal-posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Spatial Relation Predicates in Topographic Feature Semantics
Varanka, Dalia E.; Caro, Holly K.
2013-01-01
Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.
A Semantic Big Data Platform for Integrating Heterogeneous Wearable Data in Healthcare.
Mezghani, Emna; Exposito, Ernesto; Drira, Khalil; Da Silveira, Marcos; Pruski, Cédric
2015-12-01
Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.
Individual differences in language and working memory affect children's speech recognition in noise.
McCreery, Ryan W; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc
2017-05-01
We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Ninety-six children with normal hearing, who were between 5 and 12 years of age. Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Working memory and language both influence children's speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child's auditory skills, consistent with the Ease of Language Understanding model.
Unsupervised active learning based on hierarchical graph-theoretic clustering.
Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve
2009-10-01
Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.
Kolers, P A
1973-09-01
Two commonplace assumptions about encoding are that sentences are encoded and recognized on the basis of their semantic features primarily and that information regarding form features such as typography is typically ignored or discarded. These assumptions were tested m the present experiment where, within a signal-detection paradigm, S sorted sentences according to whether he had seen them before or not (old vs new) and, if they were old, whether their reappearance was in the same typography as on the first occurrence or a different one. Of the two typographies, one was familiar and the other unfamiliar. Results show that a considerable amount of information regarding surface features is stored for many minutes and that ease of initial encoding is inversely related to likelihood of subsequent recognition: sentences in the unfamiliar typography were remembered better. The results are probably not due to time spent encoding; control tests suggest that time spent encoding a difficult typography does not by itself increase recognition of the semantic content embodied in the typography. Other control tests show that pictorial features or images of the sentences play no significant role in their subsequent recognition. One interpretation of the results is that the analytic activities or cognitive operations that characterize initial acquisition play a significant role in subsequent recognition.
BioPortal: An Open-Source Community-Based Ontology Repository
NASA Astrophysics Data System (ADS)
Noy, N.; NCBO Team
2011-12-01
Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its content, enabling its integration in semantically enriched applications. [1] Noy, N.F., Shah, N.H., et al., BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res, 2009. 37(Web Server issue): p. W170-3.
A semantic autonomous video surveillance system for dense camera networks in Smart Cities.
Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio
2012-01-01
This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.
From Patient Discharge Summaries to an Ontology for Psychiatry.
Richard, Marion; Aimé, Xavier; Jaulent, Marie-Christine; Krebs, Marie-Odile; Charlet, Jean
2017-01-01
Psychiatry aims at detecting symptoms, providing diagnoses and treating mental disorders. We developed ONTOPSYCHIA, an ontology for psychiatry in three modules: social and environmental factors of mental disorders, mental disorders, and treatments. The use of ONTOPSYCHIA, associated with dedicated tools, will facilitate semantic research in Patient Discharge Summaries (PDS). To develop the first module of the ontology we propose a PDS text analysis in order to explicit psychiatry concepts. We decided to set aside classifications during the construction of the modu le, to focus only on the information contained in PDS (bottom-up approach) and to return to domain classifications solely for the enrichment phase (top-down approach). Then, we focused our work on the development of the LOVMI methodology (Les Ontologies Validées par Méthode Interactive - Ontologies Validated by Interactive Method), which aims to provide a methodological framework to validate the structure and the semantic of an ontology.
A Semantic Autonomous Video Surveillance System for Dense Camera Networks in Smart Cities
Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio
2012-01-01
This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network. PMID:23112607
Clinical Knowledge Governance Framework for Nationwide Data Infrastructure Projects.
Wulff, Antje; Haarbrandt, Birger; Marschollek, Michael
2018-01-01
The availability of semantically-enriched and interoperable clinical information models is crucial for reusing once collected data across institutions like aspired in the German HiGHmed project. Funded by the Federal Ministry of Education and Research, this nationwide data infrastructure project adopts the openEHR approach for semantic modelling. Here, strong governance is required to define high-quality and reusable models. Design of a clinical knowledge governance framework for openEHR modelling in cross-institutional settings like HiGHmed. Analysis of successful practices from international projects, published ideas on archetype governance and own modelling experiences as well as modelling of BPMN processes. We designed a framework by presenting archetype variations, roles and responsibilities, IT support and modelling workflows. Our framework has great potential to make the openEHR modelling efforts manageable. Because practical experiences are rare, prospectively our work will be predestinated to evaluate the benefits of such structured governance approaches.
Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol
2007-11-27
A huge amount of biomedical textual information has been produced and collected in MEDLINE for decades. In order to easily utilize biomedical information in the free text, document clustering and text summarization together are used as a solution for text information overload problem. In this paper, we introduce a coherent graph-based semantic clustering and summarization approach for biomedical literature. Our extensive experimental results show the approach shows 45% cluster quality improvement and 72% clustering reliability improvement, in terms of misclassification index, over Bisecting K-means as a leading document clustering approach. In addition, our approach provides concise but rich text summary in key concepts and sentences. Our coherent biomedical literature clustering and summarization approach that takes advantage of ontology-enriched graphical representations significantly improves the quality of document clusters and understandability of documents through summaries.
Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol
2007-01-01
Background A huge amount of biomedical textual information has been produced and collected in MEDLINE for decades. In order to easily utilize biomedical information in the free text, document clustering and text summarization together are used as a solution for text information overload problem. In this paper, we introduce a coherent graph-based semantic clustering and summarization approach for biomedical literature. Results Our extensive experimental results show the approach shows 45% cluster quality improvement and 72% clustering reliability improvement, in terms of misclassification index, over Bisecting K-means as a leading document clustering approach. In addition, our approach provides concise but rich text summary in key concepts and sentences. Conclusion Our coherent biomedical literature clustering and summarization approach that takes advantage of ontology-enriched graphical representations significantly improves the quality of document clusters and understandability of documents through summaries. PMID:18047705
Application of the Semantics Enrichment Concept in the Information Fusion for Command Support
2006-12-01
ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13 ...Arcueil. Juin 93. Rudnianski M. L’aide à la décision tactique dans la crise internationale. in Colloque de l’ARESAD. Paris. Novembre 1989...is defined by : μR A x C (x,z):: Maxy∈B [Min [μR A x B (x,y), μR B x C (y,z)
Corpus annotation for mining biomedical events from literature
Kim, Jin-Dong; Ohta, Tomoko; Tsujii, Jun'ichi
2008-01-01
Background Advanced Text Mining (TM) such as semantic enrichment of papers, event or relation extraction, and intelligent Question Answering have increasingly attracted attention in the bio-medical domain. For such attempts to succeed, text annotation from the biological point of view is indispensable. However, due to the complexity of the task, semantic annotation has never been tried on a large scale, apart from relatively simple term annotation. Results We have completed a new type of semantic annotation, event annotation, which is an addition to the existing annotations in the GENIA corpus. The corpus has already been annotated with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which 36,114 events are identified. The major challenges during event annotation were (1) to design a scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the homogeneity of annotation quality across annotators. To meet these challenges, we introduced new concepts such as Single-facet Annotation and Semantic Typing, which have collectively contributed to successful completion of a large scale annotation. Conclusion The resulting event-annotated corpus is the largest and one of the best in quality among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural Language Processing)-based TM in the bio-medical domain. PMID:18182099
Do Adults Show an Effect of Delayed First Language Acquisition When Calculating Scalar Implicatures?
Davidson, Kathryn; Mayberry, Rachel I
Language acquisition involves learning not only grammatical rules and a lexicon, but also what someone is intending to convey with their utterance: the semantic/pragmatic component of language. In this paper we separate the contributions of linguistic development and cognitive maturity to the acquisition of the semantic/pragmatic component of language by comparing deaf adults who had either early or late first exposure to their first language (ASL). We focus on the particular type of meaning at the semantic/pragmatic interface called scalar implicature , for which preschool-age children typically differ from adults. Children's behavior has been attributed to either their not knowing appropriate linguistic alternatives to consider or to cognitive developmental differences between children and adults. Unlike children, deaf adults with late language exposure are cognitively mature, although they never fully acquire some complex linguistic structures, and thus serve as a test for the role of language in such interpretations. Our results indicate an overall high performance by late learners, especially when implicatures are not based on conventionalized items. However, compared to early language learners, late language learners compute fewer implicatures when conventionalized linguistic alternatives are involved (e.g.
Motif-based analysis of large nucleotide data sets using MEME-ChIP
Ma, Wenxiu; Noble, William S; Bailey, Timothy L
2014-01-01
MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by cLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix–based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP’s interactive HTML output groups and aligns significant motifs to ease interpretation. this protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods. PMID:24853928
Systems approach used in the Gas Centrifuge Enrichment Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooks, W.A. Jr.
A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materialsmore » and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.« less
Comparison of amine-selective properties of weak and strong cation-exchangers.
Stenholm, Ake; Lindgren, Helena; Shaffie, Juliana
2006-09-22
The capacity of several weak and strong cation-exchangers to adsorb 2-diethylaminoethanol (DEAE) and (2,3-hydroxypropyl) trimethylammonium chloride (HPMAC) from sodium-containing process water streams, and the ease of subsequently eluting the amines and regenerating the exchangers, were investigated. (2,3-hydroxypropyl) trimethylammonium chloride was enriched 40-fold compared with the initial amine/sodium-ratio in the bulk fluid by Amberlite IRC-50. The highest selectivity for 2-diethylaminoethanol (26-fold) was provided by Imac HP336. Neither of the selected strong cation-exchangers showed any selectivity towards 2-diethylaminoethanol, but they enriched (2,3-hydroxypropyl) trimethylammonium chloride approximately three to four fold. These findings suggest that weak cation-exchangers (WCX) could be readily used for the selective removal of these or similar amines from sodium-containing process waters.
Concept-Based Retrieval from Critical Incident Reports.
Denecke, Kerstin
2017-01-01
Critical incident reporting systems (CIRS) are used as a means to collect anonymously entered information of incidents that occurred for example in a hospital. Analyzing this information helps to identify among others problems in the workflow, in the infrastructure or in processes. The entire potential of these sources of experiential knowledge remains often unconsidered since retrieval of relevant reports and their analysis is difficult and time-consuming, and the reporting systems often do not provide support for these tasks. The objective of this work is to develop a method for retrieving reports from the CIRS related to a specific user query. atural language processing (NLP) and information retrieval (IR) methods are exploited for realizing the retrieval. We compare standard retrieval methods that rely upon frequency of words with an approach that includes a semantic mapping of natural language to concepts of a medical ontology. By an evaluation, we demonstrate the feasibility of semantic document enrichment to improve recall in incident reporting retrieval. It is shown that a combination of standard keyword-based retrieval with semantic search results in highly satisfactory recall values. In future work, the evaluation should be repeated on a larger data set and real-time user evaluation need to be performed to assess user satisfactory with the system and results.
A concept ideation framework for medical device design.
Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar
2015-06-01
Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.
A brain-based account of “basic-level” concepts
Bauer, Andrew James; Just, Marcel Adam
2017-01-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. PMID:28826947
A brain-based account of "basic-level" concepts.
Bauer, Andrew James; Just, Marcel Adam
2017-11-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. Copyright © 2017 Elsevier Inc. All rights reserved.
Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong
2016-01-01
Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider.
Valavanis, Ioannis; Pilalis, Eleftherios; Georgiadis, Panagiotis; Kyrtopoulos, Soterios; Chatziioannou, Aristotelis
2015-01-01
DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO) tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies. PMID:27600245
Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong
2016-01-01
Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider. PMID:27571421
Russia ties HEU sale to suspension agreement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
Unless the US government allows the Russians access to the US uranium fuel market, the successful completion of a high-enriched uranium (HEU) sales agreement between the two governments may be in jeopardy. It had been rumored that the Russians, who have been unhappy about the stiff tariffs imposed on former Soviet uranium in the US market, might use the ongoing HEU negotiations with the White House to ease the antidumping tariffs imposed by the Department of Commerce's International Trade Commission.
Inferring ontology graph structures using OWL reasoning.
Rodríguez-García, Miguel Ángel; Hoehndorf, Robert
2018-01-05
Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.
McCarthy, Laura Mary; Kalinyak-Fliszar, Michelene; Kohen, Francine; Martin, Nadine
2017-01-01
Deep dysphasia is a relatively rare subcategory of aphasia, characterised by word repetition impairment and a profound auditory-verbal short-term memory (STM) limitation. Repetition of words is better than nonwords (lexicality effect) and better for high-image than low-image words (imageability effect). Another related language impairment profile is phonological dysphasia, which includes all of the characteristics of deep dysphasia except for the occurrence of semantic errors in single word repetition. The overlap in symptoms of deep and phonological dysphasia has led to the hypothesis that they share the same root cause, impaired maintenance of activated representation of words, but that they differ in severity of that impairment, with deep dysphasia being more severe. We report a single-subject multiple baseline, multiple probe treatment study of a person who presented with a pattern of repetition that was consistent with the continuum of deep-phonological dysphasia: imageability and lexicality effects in repetition of single and multiple words and semantic errors in repetition of multiple-word utterances. The aim of this treatment study was to improve access to and repetition of low-imageability words by embedding them in modifier-noun phrases that enhanced their imageability. The treatment involved repetition of abstract noun pairs. We created modifier-abstract noun phrases that increased the semantic and syntactic cohesiveness of the words in the pair. For example, the phrases "long distance" and "social exclusion" were developed to improve repetition of the abstract pair "distance-exclusion". The goal of this manipulation was to increase the probability of accessing lexical and semantic representations of abstract words in repetition by enriching their semantic -syntactic context. We predicted that this increase in accessibility would be maintained when the words were repeated as pairs, but without the contextual phrase. Treatment outcomes indicated that increasing the semantic and syntactic cohesiveness of low-imageability and low-frequency words later improved this participant's ability to repeat those words when presented in isolation. This treatment approach to improving access to abstract word pairs for repetition was successful for our participant with phonological dysphasia. The approach exemplifies the potential value in manipulating linguistic characteristics of stimuli in ways that improve access between phonological and lexical-semantic levels of representation. Additionally, this study demonstrates how principles of a cognitive model of word processing can be used to guide treatment of word processing impairments in aphasia.
Hanauer, David A; Wu, Danny T Y; Yang, Lei; Mei, Qiaozhu; Murkowski-Steffy, Katherine B; Vydiswaran, V G Vinod; Zheng, Kai
2017-03-01
The utility of biomedical information retrieval environments can be severely limited when users lack expertise in constructing effective search queries. To address this issue, we developed a computer-based query recommendation algorithm that suggests semantically interchangeable terms based on an initial user-entered query. In this study, we assessed the value of this approach, which has broad applicability in biomedical information retrieval, by demonstrating its application as part of a search engine that facilitates retrieval of information from electronic health records (EHRs). The query recommendation algorithm utilizes MetaMap to identify medical concepts from search queries and indexed EHR documents. Synonym variants from UMLS are used to expand the concepts along with a synonym set curated from historical EHR search logs. The empirical study involved 33 clinicians and staff who evaluated the system through a set of simulated EHR search tasks. User acceptance was assessed using the widely used technology acceptance model. The search engine's performance was rated consistently higher with the query recommendation feature turned on vs. off. The relevance of computer-recommended search terms was also rated high, and in most cases the participants had not thought of these terms on their own. The questions on perceived usefulness and perceived ease of use received overwhelmingly positive responses. A vast majority of the participants wanted the query recommendation feature to be available to assist in their day-to-day EHR search tasks. Challenges persist for users to construct effective search queries when retrieving information from biomedical documents including those from EHRs. This study demonstrates that semantically-based query recommendation is a viable solution to addressing this challenge. Published by Elsevier Inc.
Towards ontology personalization to enrich social conversations on AAC systems
NASA Astrophysics Data System (ADS)
Mancilla V., Daniela; Sastoque H., Sebastian; Iregui G., Marcela
2015-01-01
Communication is one of the essential needs of human beings. Augmentative and Alternative Communication Systems (AAC) seek to help in the generation of oral and written language to people with physical disorders that limit their natural communication. These systems present significant challenges such as: the composition of consistent messages according to syntactic and semantic rules, the improvement of message production times, the application to social contexts and, consequently, the incorporation of user-specific information. This work presents an original ontology personalization approach for an AAC instant messaging system incorporating personalized information to improve the efficacy and efficiency of the message production. This proposal is based on a projection of a general ontology into a more specific one, avoiding storage redundancy and data coupling, representing a big opportunity to enrich communication capabilities of current AAC systems. The evaluation was performed for a study case based on an AAC system for assistance in composing messages. The results show that adding user-specific information allows generation of enriched phrases, so improving the accuracy of the message, facilitating the communication process.
Conservation-Oriented Hbim. The Bimexplorer Web Tool
NASA Astrophysics Data System (ADS)
Quattrini, R.; Pierdicca, R.; Morbidoni, C.; Malinverni, E. S.
2017-05-01
The application of (H)BIM within the domain of Architectural Historical Heritage has huge potential that can be even exploited within the restoration domain. The work presents a novel approach to solve the widespread interoperability issue related to the data enrichment in BIM environment, by developing and testing a web tool based on a specific workflow experienced choosing as the case study a Romanic church in Portonovo, Ancona, Italy. Following the need to make the data, organized in a BIM environment, usable for the different actors involved in the restoration phase, we have created a pipeline that take advantage of BIM existing platforms and semantic-web technologies, enabling the end user to query a repository composed of semantically structured data. The pipeline of work consists in four major steps: i) modelling an ontology with the main information needs for the domain of interest, providing a data structure that can be leveraged to inform the data-enrichment phase and, later, to meaningfully query the data; ii) data enrichment, by creating a set of shared parameters reflecting the properties in our domain ontology; iii) structuring data in a machine-readable format (through a data conversion) to represent the domain (ontology) and analyse data of specific buildings respectively; iv) development of a demonstrative data exploration web application based on the faceted browsing paradigm and allowing to exploit both structured metadata and 3D visualization. The application can be configured by a domain expert to reflect a given domain ontology, and used by an operator to query and explore the data in a more efficient and reliable way. With the proposed solution the analysis of data can be reused together with the 3D model, providing the end-user with a non proprietary tool; in this way, the planned maintenance or the restoration project became more collaborative and interactive, optimizing the whole process of HBIM data collection.
Informative Top-k Retrieval for Advanced Skill Management
NASA Astrophysics Data System (ADS)
Colucci, Simona; di Noia, Tommaso; Ragone, Azzurra; Ruta, Michele; Straccia, Umberto; Tinelli, Eufemia
The paper presents a knowledge-based framework for skills and talent management based on an advanced matchmaking between profiles of candidates and available job positions. Interestingly, informative content of top-k retrieval is enriched through semantic capabilities. The proposed approach allows to: (1) express a requested profile in terms of both hard constraints and soft ones; (2) provide a ranking function based also on qualitative attributes of a profile; (3) explain the resulting outcomes (given a job request, a motivation for the obtained score of each selected profile is provided). Top-k retrieval allows to select most promising candidates according to an ontology formalizing the domain knowledge. Such a knowledge is further exploited to provide a semantic-based explanation of missing or conflicting features in retrieved profiles. They also indicate additional profile characteristics emerging by the retrieval procedure for a further request refinement. A concrete case study followed by an exhaustive experimental campaign is reported to prove the approach effectiveness.
NASA Astrophysics Data System (ADS)
Murphy, M.; Corns, A.; Cahill, J.; Eliashvili, K.; Chenau, A.; Pybus, C.; Shaw, R.; Devlin, G.; Deevy, A.; Truong-Hong, L.
2017-08-01
Cultural heritage researchers have recently begun applying Building Information Modelling (BIM) to historic buildings. The model is comprised of intelligent objects with semantic attributes which represent the elements of a building structure and are organised within a 3D virtual environment. Case studies in Ireland are used to test and develop the suitable systems for (a) data capture/digital surveying/processing (b) developing library of architectural components and (c) mapping these architectural components onto the laser scan or digital survey to relate the intelligent virtual representation of a historic structure (HBIM). While BIM platforms have the potential to create a virtual and intelligent representation of a building, its full exploitation and use is restricted to narrow set of expert users with access to costly hardware, software and skills. The testing of open BIM approaches in particular IFCs and the use of game engine platforms is a fundamental component for developing much wider dissemination. The semantically enriched model can be transferred into a WEB based game engine platform.
Turnlund, Judith R; Keyes, William R
2002-09-01
Stable isotopes are used with increasing frequency to trace the metabolic fate of minerals in human nutrition studies. The precision of the analytical methods used must be sufficient to permit reliable measurement of low enrichments and the accuracy should permit comparisons between studies. Two methods most frequently used today are thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to compare the two methods. Multiple natural samples of copper, zinc, molybdenum, and magnesium were analyzed by both methods to compare their internal and external precision. Samples with a range of isotopic enrichments that were collected from human studies or prepared from standards were analyzed to compare their accuracy. TIMS was more precise and accurate than ICP-MS. However, the cost, ease, and speed of analysis were better for ICP-MS. Therefore, for most purposes, ICP-MS is the method of choice, but when the highest degrees of precision and accuracy are required and when enrichments are very low, TIMS is the method of choice.
OrganismTagger: detection, normalization and grounding of organism entities in biomedical documents.
Naderi, Nona; Kappler, Thomas; Baker, Christopher J O; Witte, René
2011-10-01
Semantic tagging of organism mentions in full-text articles is an important part of literature mining and semantic enrichment solutions. Tagged organism mentions also play a pivotal role in disambiguating other entities in a text, such as proteins. A high-precision organism tagging system must be able to detect the numerous forms of organism mentions, including common names as well as the traditional taxonomic groups: genus, species and strains. In addition, such a system must resolve abbreviations and acronyms, assign the scientific name and if possible link the detected mention to the NCBI Taxonomy database for further semantic queries and literature navigation. We present the OrganismTagger, a hybrid rule-based/machine learning system to extract organism mentions from the literature. It includes tools for automatically generating lexical and ontological resources from a copy of the NCBI Taxonomy database, thereby facilitating system updates by end users. Its novel ontology-based resources can also be reused in other semantic mining and linked data tasks. Each detected organism mention is normalized to a canonical name through the resolution of acronyms and abbreviations and subsequently grounded with an NCBI Taxonomy database ID. In particular, our system combines a novel machine-learning approach with rule-based and lexical methods for detecting strain mentions in documents. On our manually annotated OT corpus, the OrganismTagger achieves a precision of 95%, a recall of 94% and a grounding accuracy of 97.5%. On the manually annotated corpus of Linnaeus-100, the results show a precision of 99%, recall of 97% and grounding accuracy of 97.4%. The OrganismTagger, including supporting tools, resources, training data and manual annotations, as well as end user and developer documentation, is freely available under an open-source license at http://www.semanticsoftware.info/organism-tagger. witte@semanticsoftware.info.
QTLTableMiner++: semantic mining of QTL tables in scientific articles.
Singh, Gurnoor; Kuzniar, Arnold; van Mulligen, Erik M; Gavai, Anand; Bachem, Christian W; Visser, Richard G F; Finkers, Richard
2018-05-25
A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner ++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.
Assigning clinical codes with data-driven concept representation on Dutch clinical free text.
Scheurwegs, Elyne; Luyckx, Kim; Luyten, Léon; Goethals, Bart; Daelemans, Walter
2017-05-01
Clinical codes are used for public reporting purposes, are fundamental to determining public financing for hospitals, and form the basis for reimbursement claims to insurance providers. They are assigned to a patient stay to reflect the diagnosis and performed procedures during that stay. This paper aims to enrich algorithms for automated clinical coding by taking a data-driven approach and by using unsupervised and semi-supervised techniques for the extraction of multi-word expressions that convey a generalisable medical meaning (referred to as concepts). Several methods for extracting concepts from text are compared, two of which are constructed from a large unannotated corpus of clinical free text. A distributional semantic model (i.c. the word2vec skip-gram model) is used to generalize over concepts and retrieve relations between them. These methods are validated on three sets of patient stay data, in the disease areas of urology, cardiology, and gastroenterology. The datasets are in Dutch, which introduces a limitation on available concept definitions from expert-based ontologies (e.g. UMLS). The results show that when expert-based knowledge in ontologies is unavailable, concepts derived from raw clinical texts are a reliable alternative. Both concepts derived from raw clinical texts perform and concepts derived from expert-created dictionaries outperform a bag-of-words approach in clinical code assignment. Adding features based on tokens that appear in a semantically similar context has a positive influence for predicting diagnostic codes. Furthermore, the experiments indicate that a distributional semantics model can find relations between semantically related concepts in texts but also introduces erroneous and redundant relations, which can undermine clinical coding performance. Copyright © 2017. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Citygml and the Streets of New York - a Proposal for Detailed Street Space Modelling
NASA Astrophysics Data System (ADS)
Beil, C.; Kolbe, T. H.
2017-10-01
Three-dimensional semantic city models are increasingly used for the analysis of large urban areas. Until now the focus has mostly been on buildings. Nonetheless many applications could also benefit from detailed models of public street space for further analysis. However, there are only few guidelines for representing roads within city models. Therefore, related standards dealing with street modelling are examined and discussed. Nearly all street representations are based on linear abstractions. However, there are many use cases that require or would benefit from the detailed geometrical and semantic representation of street space. A variety of potential applications for detailed street space models are presented. Subsequently, based on related standards as well as on user requirements, a concept for a CityGML-compliant representation of street space in multiple levels of detail is developed. In the course of this process, the CityGML Transportation model of the currently valid OGC standard CityGML2.0 is examined to discover possibilities for further developments. Moreover, a number of improvements are presented. Finally, based on open data sources, the proposed concept is implemented within a semantic 3D city model of New York City generating a detailed 3D street space model for the entire city. As a result, 11 thematic classes, such as roadbeds, sidewalks or traffic islands are generated and enriched with a large number of thematic attributes.
Adaptive refinement tools for tetrahedral unstructured grids
NASA Technical Reports Server (NTRS)
Pao, S. Paul (Inventor); Abdol-Hamid, Khaled S. (Inventor)
2011-01-01
An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.
Clustering, hierarchical organization, and the topography of abstract and concrete nouns.
Troche, Joshua; Crutch, Sebastian; Reilly, Jamie
2014-01-01
The empirical study of language has historically relied heavily upon concrete word stimuli. By definition, concrete words evoke salient perceptual associations that fit well within feature-based, sensorimotor models of word meaning. In contrast, many theorists argue that abstract words are "disembodied" in that their meaning is mediated through language. We investigated word meaning as distributed in multidimensional space using hierarchical cluster analysis. Participants (N = 365) rated target words (n = 400 English nouns) across 12 cognitive dimensions (e.g., polarity, ease of teaching, emotional valence). Factor reduction revealed three latent factors, corresponding roughly to perceptual salience, affective association, and magnitude. We plotted the original 400 words for the three latent factors. Abstract and concrete words showed overlap in their topography but also differentiated themselves in semantic space. This topographic approach to word meaning offers a unique perspective to word concreteness.
NASA Astrophysics Data System (ADS)
Varela-González, M.; Riveiro, B.; Arias-Sánchez, P.; González-Jorge, H.; Martínez-Sánchez, J.
2014-11-01
The rapid evolution of integral schemes, accounting for geometric and semantic data, has been importantly motivated by the advances in the last decade in mobile laser scanning technology; automation in data processing has also recently influenced the expansion of the new model concepts. This paper reviews some important issues involved in the new paradigms of city 3D modelling: an interoperable schema for city 3D modelling (cityGML) and mobile mapping technology to provide the features that composing the city model. This paper focuses in traffic signs, discussing their characterization using cityGML in order to ease the implementation of LiDAR technology in road management software, as well as analysing some limitations of the current technology in the labour of automatic detection and classification.
Explicit processing demands reveal language modality-specific organization of working memory.
Rudner, Mary; Rönnberg, Jerker
2008-01-01
The working memory model for Ease of Language Understanding (ELU) predicts that processing differences between language modalities emerge when cognitive demands are explicit. This prediction was tested in three working memory experiments with participants who were Deaf Signers (DS), Hearing Signers (HS), or Hearing Nonsigners (HN). Easily nameable pictures were used as stimuli to avoid confounds relating to sensory modality. Performance was largely similar for DS, HS, and HN, suggesting that previously identified intermodal differences may be due to differences in retention of sensory information. When explicit processing demands were high, differences emerged between DS and HN, suggesting that although working memory storage in both groups is sensitive to temporal organization, retrieval is not sensitive to temporal organization in DS. A general effect of semantic similarity was also found. These findings are discussed in relation to the ELU model.
Terminology for Neuroscience Data Discovery: Multi-tree Syntax and Investigator-Derived Semantics
Goldberg, David H.; Grafstein, Bernice; Robert, Adrian; Gardner, Esther P.
2009-01-01
The Neuroscience Information Framework (NIF), developed for the NIH Blueprint for Neuroscience Research and available at http://nif.nih.gov and http://neurogateway.org, is built upon a set of coordinated terminology components enabling data and web-resource description and selection. Core NIF terminologies use a straightforward syntax designed for ease of use and for navigation by familiar web interfaces, and readily exportable to aid development of relational-model databases for neuroscience data sharing. Datasets, data analysis tools, web resources, and other entities are characterized by multiple descriptors, each addressing core concepts, including data type, acquisition technique, neuroanatomy, and cell class. Terms for each concept are organized in a tree structure, providing is-a and has-a relations. Broad general terms near each root span the category or concept and spawn more detailed entries for specificity. Related but distinct concepts (e.g., brain area and depth) are specified by separate trees, for easier navigation than would be required by graph representation. Semantics enabling NIF data discovery were selected at one or more workshops by investigators expert in particular systems (vision, olfaction, behavioral neuroscience, neurodevelopment), brain areas (cerebellum, thalamus, hippocampus), preparations (molluscs, fly), diseases (neurodegenerative disease), or techniques (microscopy, computation and modeling, neurogenetics). Workshop-derived integrated term lists are available Open Source at http://brainml.org; a complete list of participants is at http://brainml.org/workshops. PMID:18958630
Complementarity of Historic Building Information Modelling and Geographic Information Systems
NASA Astrophysics Data System (ADS)
Yang, X.; Koehl, M.; Grussenmeyer, P.; Macher, H.
2016-06-01
In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.
OPPL-Galaxy, a Galaxy tool for enhancing ontology exploitation as part of bioinformatics workflows
2013-01-01
Background Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment. Results We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL (i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s capability for enriching, modifying and querying biomedical ontologies. Conclusions Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical ontologies, including automated reasoning, paving the way towards advanced biological data analyses. PMID:23286517
Virtual Patients on the Semantic Web: A Proof-of-Application Study
Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David
2015-01-01
Background Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. Objective An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. Methods A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. Results We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system’s main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications’ ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. Conclusions The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning. PMID:25616272
Virtual patients on the semantic Web: a proof-of-application study.
Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David; Bamidis, Panagiotis D
2015-01-22
Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system's main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications' ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning.
Automatically augmenting lifelog events using pervasively generated content from millions of people.
Doherty, Aiden R; Smeaton, Alan F
2010-01-01
In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor's output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one's life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with "Web 2.0" content collected by millions of other individuals.
Basic composition and enriched integration in idiom processing: An EEG study.
Canal, Paolo; Pesciarelli, Francesca; Vespignani, Francesco; Molinaro, Nicola; Cacciari, Cristina
2017-06-01
We investigated the extent to which the literal meanings of the words forming literally plausible idioms (e.g., break the ice) are semantically composed and how the idiomatic meaning is integrated in the unfolding sentence representation. Participants read ambiguous idiom strings embedded in highly predictable, literal, and idiomatic contexts while their EEG was recorded. Control sentences only contained the idiom-final word whose cloze values were as high as in literal and idiomatic contexts. Event-related potentials data showed that differences in the amplitude of a frontal positivity (PNP) emerged at the beginning and at the end of the idiom strings, with the idiomatic context condition associated with more positive voltages. The time frequency analysis of the EEG showed an increase in power of the middle gamma frequency band only in the literal context condition. These findings suggest that sentence revision mechanisms, associated with the frontal PNP, are involved in idiom meaning integration, and that the literal semantic composition of the idiomatic constituents, associated with changes in gamma frequency, is not carried out after idiom recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Discovering gene annotations in biomedical text databases
Cakmak, Ali; Ozsoyoglu, Gultekin
2008-01-01
Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values. PMID:18325104
Discovering gene annotations in biomedical text databases.
Cakmak, Ali; Ozsoyoglu, Gultekin
2008-03-06
Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.
Reilly, Jamie; Harnish, Stacy; Garcia, Amanda; Hung, Jinyi; Rodriguez, Amy D.; Crosson, Bruce
2014-01-01
Embodied cognition offers an approach to word meaning firmly grounded in action and perception. A strong prediction of embodied cognition is that sensorimotor simulation is a necessary component of lexical-semantic representation. One semantic distinction where motor imagery is likely to play a key role involves the representation of manufactured artifacts. Many questions remain with respect to the scope of embodied cognition. One dominant unresolved issue is the extent to which motor enactment is necessary for representing and generating words with high motor salience. We investigated lesion correlates of manipulable relative to non-manipulable name generation (e.g., name a school supply; name a mountain range) in patients with nonfluent aphasia (N=14). Lesion volumes within motor (BA4) and premotor (BA6) cortices were not predictive of category discrepancies. Lesion symptom mapping linked impairment for manipulable objects to polymodal convergence zones and to projections of the left, primary visual cortex specialized for motion perception (MT/V5+). Lesions to motor and premotor cortex were not predictive of manipulability impairment. This lesion correlation is incompatible with an embodied perspective premised on necessity of motor cortex for the enactment and subsequent production of motor-related words. These findings instead support a graded or ‘soft’ approach to embodied cognition premised on an ancillary role of modality-specific cortical regions in enriching modality-neutral representations. We discuss a dynamic, hybrid approach to the neurobiology of semantic memory integrating both embodied and disembodied components. PMID:24839997
Lentiviral gene transduction of mouse and human hematopoietic stem cells.
van Til, Niek P; Wagemaker, Gerard
2014-01-01
Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.
Konstantinidis, S; Fernandez-Luque, L; Bamidis, P; Karlsen, R
2013-01-01
An increasing amount of health education resources for patients and professionals are distributed via social media channels. For example, thousands of health education videos are disseminated via YouTube. Often, tags are assigned by the disseminator. However, the lack of use of standardized terminologies in those tags and the presence of misleading videos make it particularly hard to retrieve relevant videos. i) Identify the use of standardized medical thesauri (SNOMED CT) in YouTube Health videos tags from preselected YouTube Channels and demonstrate an information technology (IT) architecture for treating the tags of these health (video) resources. ii) Investigate the relative percentage of the tags used that relate to SNOMED CT terms. As such resources may play a key role in educating professionals and patients, the use of standardized vocabularies may facilitate the sharing of such resources. iii) Demonstrate how such resources may be properly exploited within the new generation of semantically enriched content or learning management systems that allow for knowledge expansion through the use of linked medical data and numerous literature resources also described through the same vocabularies. We implemented a video portal integrating videos from 500 US Hospital channels. The portal integrated 4,307 YouTube videos regarding surgery as described by 64,367 tags. BioPortal REST services were used within our portal to match SNOMED CT terms with YouTube tags by both exact match and non-exact match. The whole architecture was complemented with a mechanism to enrich the retrieved video resources with other educational material residing in other repositories by following contemporary semantic web advances, in the form of Linked Open Data (LOD) principles. The average percentage of YouTube tags that were expressed using SNOMED CT terms was about 22.5%, while one third of YouTube tags per video contained a SNOMED CT term in a loose search; this analogy became one tenth in the case of exact match. Retrieved videos were then linked further to other resources by using LOD compliant systems. Such results were exemplified in the case of systems and technologies used in the mEducator EC funded project. YouTube Health videos can be searched for and retrieved using SNOMED CT terms with a high possibility of identifying health videos that users want based on their search criteria. Despite the fact that tagging of this information with SNOMED CT terms may vary, its availability and linked data capacity opens the door to new studies for personalized retrieval of content and linking with other knowledge through linked medical data and semantic advances in (learning) content management systems.
NASA Astrophysics Data System (ADS)
Smart, Philip D.; Quinn, Jonathan A.; Jones, Christopher B.
The combination of mobile communication technology with location and orientation aware digital cameras has introduced increasing interest in the exploitation of 3D city models for applications such as augmented reality and automated image captioning. The effectiveness of such applications is, at present, severely limited by the often poor quality of semantic annotation of the 3D models. In this paper, we show how freely available sources of georeferenced Web 2.0 information can be used for automated enrichment of 3D city models. Point referenced names of prominent buildings and landmarks mined from Wikipedia articles and from the OpenStreetMaps digital map and Geonames gazetteer have been matched to the 2D ground plan geometry of a 3D city model. In order to address the ambiguities that arise in the associations between these sources and the city model, we present procedures to merge potentially related buildings and implement fuzzy matching between reference points and building polygons. An experimental evaluation demonstrates the effectiveness of the presented methods.
Ambiguity effects of rhyme and meter.
Wallot, Sebastian; Menninghaus, Winfried
2018-04-23
Previous research has shown that rhyme and meter-although enhancing prosodic processing ease and memorability-also tend to make semantic processing more demanding. Using a set of rhymed and metered proverbs, as well as nonrhymed and nonmetered versions of these proverbs, the present study reveals this hitherto unspecified difficulty of comprehension to be specifically driven by perceived ambiguity. Roman Jakobson was the 1st to propose this hypothesis, in 1960. He suggested that "ambiguity is an intrinsic, inalienable feature" of "parallelistic" diction of which the combination of rhyme and meter is a pronounced example. Our results show that ambiguity indeed explains a substantial portion of the rhyme- and meter-driven difficulty of comprehension. Longer word-reading times differentially reflected ratings for ambiguity and comprehension difficulty. However, the ambiguity effect is not "inalienable." Rather, many rhymed and metered sentences turned out to be low in ambiguity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
2013-01-01
Background A recent study of lateral septum (LS) suggested a large number of autism-related genes with altered expression in the postpartum state. However, formally testing the findings for enrichment of autism-associated genes proved to be problematic with existing software. Many gene-disease association databases have been curated which are not currently incorporated in popular, full-featured enrichment tools, and the use of custom gene lists in these programs can be difficult to perform and interpret. As a simple alternative, we have developed the Modular Single-set Enrichment Test (MSET), a minimal tool that enables one to easily evaluate expression data for enrichment of any conceivable gene list of interest. Results The MSET approach was validated by testing several publicly available expression data sets for expected enrichment in areas of autism, attention deficit hyperactivity disorder (ADHD), and arthritis. Using nine independent, unique autism gene lists extracted from association databases and two recent publications, a striking consensus of enrichment was detected within gene expression changes in LS of postpartum mice. A network of 160 autism-related genes was identified, representing developmental processes such as synaptic plasticity, neuronal morphogenesis, and differentiation. Additionally, maternal LS displayed enrichment for genes associated with bipolar disorder, schizophrenia, ADHD, and depression. Conclusions The transition to motherhood includes the most fundamental social bonding event in mammals and features naturally occurring changes in sociability. Some individuals with autism, schizophrenia, or other mental health disorders exhibit impaired social traits. Genes involved in these deficits may also contribute to elevated sociability in the maternal brain. To date, this is the first study to show a significant, quantitative link between the maternal brain and mental health disorders using large scale gene expression data. Thus, the postpartum brain may provide a novel and promising platform for understanding the complex genetics of improved sociability that may have direct relevance for multiple psychiatric illnesses. This study also provides an important new tool that fills a critical analysis gap and makes evaluation of enrichment using any database of interest possible with an emphasis on ease of use and methodological transparency. PMID:24245670
Eisinger, Brian E; Saul, Michael C; Driessen, Terri M; Gammie, Stephen C
2013-11-19
A recent study of lateral septum (LS) suggested a large number of autism-related genes with altered expression in the postpartum state. However, formally testing the findings for enrichment of autism-associated genes proved to be problematic with existing software. Many gene-disease association databases have been curated which are not currently incorporated in popular, full-featured enrichment tools, and the use of custom gene lists in these programs can be difficult to perform and interpret. As a simple alternative, we have developed the Modular Single-set Enrichment Test (MSET), a minimal tool that enables one to easily evaluate expression data for enrichment of any conceivable gene list of interest. The MSET approach was validated by testing several publicly available expression data sets for expected enrichment in areas of autism, attention deficit hyperactivity disorder (ADHD), and arthritis. Using nine independent, unique autism gene lists extracted from association databases and two recent publications, a striking consensus of enrichment was detected within gene expression changes in LS of postpartum mice. A network of 160 autism-related genes was identified, representing developmental processes such as synaptic plasticity, neuronal morphogenesis, and differentiation. Additionally, maternal LS displayed enrichment for genes associated with bipolar disorder, schizophrenia, ADHD, and depression. The transition to motherhood includes the most fundamental social bonding event in mammals and features naturally occurring changes in sociability. Some individuals with autism, schizophrenia, or other mental health disorders exhibit impaired social traits. Genes involved in these deficits may also contribute to elevated sociability in the maternal brain. To date, this is the first study to show a significant, quantitative link between the maternal brain and mental health disorders using large scale gene expression data. Thus, the postpartum brain may provide a novel and promising platform for understanding the complex genetics of improved sociability that may have direct relevance for multiple psychiatric illnesses. This study also provides an important new tool that fills a critical analysis gap and makes evaluation of enrichment using any database of interest possible with an emphasis on ease of use and methodological transparency.
Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling
NASA Astrophysics Data System (ADS)
Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.
2013-09-01
Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.
Kroenke, Klaus-Martin; Kraft, Indra; Regenbrecht, Frank; Obrig, Hellmuth
2013-01-01
Gestures accompany speech and enrich human communication. When aphasia interferes with verbal abilities, gestures become even more relevant, compensating for and/or facilitating verbal communication. However, small-scale clinical studies yielded diverging results with regard to a therapeutic gesture benefit for lexical retrieval. Based on recent functional neuroimaging results, delineating a speech-gesture integration network for lexical learning in healthy adults, we hypothesized that the commonly observed variability may stem from differential patholinguistic profiles in turn depending on lesion pattern. Therefore we used a controlled novel word learning paradigm to probe the impact of gestures on lexical learning, in the lesioned language network. Fourteen patients with chronic left hemispheric lesions and mild residual aphasia learned 30 novel words for manipulable objects over four days. Half of the words were trained with gestures while the other half were trained purely verbally. For the gesture condition, rootwords were visually presented (e.g., Klavier, [piano]), followed by videos of the corresponding gestures and the auditory presentation of the novel words (e.g., /krulo/). Participants had to repeat pseudowords and simultaneously reproduce gestures. In the verbal condition no gesture-video was shown and participants only repeated pseudowords orally. Correlational analyses confirmed that gesture benefit depends on the patholinguistic profile: lesser lexico-semantic impairment correlated with better gesture-enhanced learning. Conversely largely preserved segmental-phonological capabilities correlated with better purely verbal learning. Moreover, structural MRI-analysis disclosed differential lesion patterns, most interestingly suggesting that integrity of the left anterior temporal pole predicted gesture benefit. Thus largely preserved semantic capabilities and relative integrity of a semantic integration network are prerequisites for successful use of the multimodal learning strategy, in which gestures may cause a deeper semantic rooting of the novel word-form. The results tap into theoretical accounts of gestures in lexical learning and suggest an explanation for the diverging effect in therapeutical studies advocating gestures in aphasia rehabilitation. Copyright © 2013 Elsevier Ltd. All rights reserved.
TRENCADIS--a WSRF grid MiddleWare for managing DICOM structured reporting objects.
Blanquer, Ignacio; Hernandez, Vicente; Segrelles, Damià
2006-01-01
The adoption of the digital processing of medical data, especially on radiology, has leaded to the availability of millions of records (images and reports). However, this information is mainly used at patient level, being the extraction of information, organised according to administrative criteria, which make the extraction of knowledge difficult. Moreover, legal constraints make the direct integration of information systems complex or even impossible. On the other side, the widespread of the DICOM format has leaded to the inclusion of other information different from just radiological images. The possibility of coding radiology reports in a structured form, adding semantic information about the data contained in the DICOM objects, eases the process of structuring images according to content. DICOM Structured Reporting (DICOM-SR) is a specification of tags and sections to code and integrate radiology reports, with seamless references to findings and regions of interests of the associated images, movies, waveforms, signals, etc. The work presented in this paper aims at developing of a framework to efficiently and securely share medical images and radiology reports, as well as to provide high throughput processing services. This system is based on a previously developed architecture in the framework of the TRENCADIS project, and uses other components such as the security system and the Grid processing service developed in previous activities. The work presented here introduces a semantic structuring and an ontology framework, to organise medical images considering standard terminology and disease coding formats (SNOMED, ICD9, LOINC..).
TOPSAN: a dynamic web database for structural genomics.
Ellrott, Kyle; Zmasek, Christian M; Weekes, Dana; Sri Krishna, S; Bakolitsa, Constantina; Godzik, Adam; Wooley, John
2011-01-01
The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.
Enriching and improving the quality of linked data with GIS
NASA Astrophysics Data System (ADS)
Iwaniak, Adam; Kaczmarek, Iwona; Strzelecki, Marek; Lukowicz, Jaromar; Jankowski, Piotr
2016-06-01
Standardization of methods for data exchange in GIS has along history predating the creation of World Wide Web. The advent of World Wide Web brought the emergence of new solutions for data exchange and sharing including; more recently, standards proposed by the W3C for data exchange involving Semantic Web technologies and linked data. Despite the growing interest in integration, GIS and linked data are still two separate paradigms for describing and publishing spatial data on the Web. At the same time, both paradigms offer complementary ways of representing real world phenomena and means of analysis using different processing functions. The complementarity of linked data and GIS can be leveraged to synergize both paradigms resulting in richer data content and more powerful inferencing. The article presents an approach aimed at integrating linked data with GIS. The approach relies on the use of GIS tools for integration, verification and enrichment of linked data. The GIS tools are employed to enrich linked data by furnishing access to collection of data resources, defining relationship between data resources, and subsequently facilitating GIS data integration with linked data. The proposed approach is demonstrated with examples using data from DBpedia, OSM, and tools developed by the authors for standard GIS software.
Linguistic complexity and information structure in Korean: Evidence from eye-tracking during reading
Lee, Yoonhyoung; Lee, Hanjung; Gordon, Peter C.
2006-01-01
The nature of the memory processes that support language comprehension and the manner in which information packaging influences online sentence processing were investigated in three experiments that used eye-tracking during reading to measure the ease of understanding complex sentences in Korean. All three experiments examined reading of embedded complement sentences; the third experiment additionally examined reading of sentences with object-modifying, object-extracted relative clauses. In Korean, both of these structures place two NPs with nominative case marking early in the sentence, with the embedded and matrix verbs following later. The type (pronoun, name or description) of these two critical NPs was varied in the experiments. When the initial NPs were of the same type, comprehension was slowed after participants had read the sentence-final verbs, a finding that supports the view that working memory in language comprehension is constrained by similarity-based interference during the retrieval of information necessary to determine the syntactic or semantic relations between noun phrases and verb phrases. Ease of comprehension was also influenced by the association between type of NP and syntactic position, with the best performance being observed when more definite NPs (pronouns and names) were in a prominent syntactic position (e.g., matrix subject) and less definite NPs (descriptions) were in a non-prominent syntactic position (embedded subject). This pattern provides evidence that the interpretation of sentences is facilitated by consistent packaging of information in different linguistic elements. PMID:16970936
Gaither, C A; Bagozzi, R P; Ascione, F J; Kirking, D M
1997-10-01
To improve upon the theory of reasoned action and apply it to pharmaceutical research, we investigated the effects of relevant appraisals attributes, and past behavior of physicians on the use of drug information sources. We also examined the moderating effects of practice characteristics. A mail questionnaire asked HMO physicians to evaluate seven common sources of drug information on general appraisals (degree of usefulness and ease of use), specific attributes (availability, quality of information on harmful effects and on drug efficacy), and past behavior when searching for information on a new, simulated H2 antagonist agent. Semantic differential scales were used to measure each appraisal, attribute and past behavior. Information was also collected on practice characteristics. Findings from 108/200 respondents indicated that appraisals and attributes were useful determinants of attitudes and subjective norms toward use. Degree of usefulness and quality of information on harmful effects were important predictors of attitudes toward use for several sources of information. Ease of use and degree of usefulness were important predictors of subjective norms toward use. In many cases, moderating effects of practice characteristics were in opposing directions. Past behavior had significant direct effects on attitudes toward the PDR. The findings suggest ways to improve the usefulness of the theory of reasoned action as a model of decision-making. We also propose practical guidelines that can be used to improve the types of drug information sources used by physicians.
Sharma, Deepak K; Solbrig, Harold R; Tao, Cui; Weng, Chunhua; Chute, Christopher G; Jiang, Guoqian
2017-06-05
Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable meaning when data are exchanged between heterogeneous computer systems. To better support clinical cancer data capturing and reporting, there is an emerging need to develop informatics solutions for standards-based clinical models in cancer study domains. The objective of the study is to develop and evaluate a cancer genome study metadata management system that serves as a key infrastructure in supporting clinical information modeling in cancer genome study domains. We leveraged a Semantic Web-based metadata repository enhanced with both ISO11179 metadata standard and Clinical Information Modeling Initiative (CIMI) Reference Model. We used the common data elements (CDEs) defined in The Cancer Genome Atlas (TCGA) data dictionary, and extracted the metadata of the CDEs using the NCI Cancer Data Standards Repository (caDSR) CDE dataset rendered in the Resource Description Framework (RDF). The ITEM/ITEM_GROUP pattern defined in the latest CIMI Reference Model is used to represent reusable model elements (mini-Archetypes). We produced a metadata repository with 38 clinical cancer genome study domains, comprising a rich collection of mini-Archetype pattern instances. We performed a case study of the domain "clinical pharmaceutical" in the TCGA data dictionary and demonstrated enriched data elements in the metadata repository are very useful in support of building detailed clinical models. Our informatics approach leveraging Semantic Web technologies provides an effective way to build a CIMI-compliant metadata repository that would facilitate the detailed clinical modeling to support use cases beyond TCGA in clinical cancer study domains.
Dyson, Kirstie E; Bulling, Mark T; Solan, Martin; Hernandez-Milian, Gema; Raffaelli, David G; White, Piran C.L; Paterson, David M
2007-01-01
Despite the complexity of natural systems, heterogeneity caused by the fragmentation of habitats has seldom been considered when investigating ecosystem processes. Empirical approaches that have included the influence of heterogeneity tend to be biased towards terrestrial habitats; yet marine systems offer opportunities by virtue of their relative ease of manipulation, rapid response times and the well-understood effects of macrofauna on sediment processes. Here, the influence of heterogeneity on microphytobenthic production in synthetic estuarine assemblages is examined. Heterogeneity was created by enriching patches of sediment with detrital algae (Enteromorpha intestinalis) to provide a source of allochthonous organic matter. A gradient of species density for four numerically dominant intertidal macrofauna (Hediste diversicolor, Hydrobia ulvae, Corophium volutator, Macoma balthica) was constructed, and microphytobenthic biomass at the sediment surface was measured. Statistical analysis using generalized least squares regression indicated that heterogeneity within our system was a significant driving factor that interacted with macrofaunal density and species identity. Microphytobenthic biomass was highest in enriched patches, suggesting that nutrients were obtained locally from the sediment–water interface and not from the water column. Our findings demonstrate that organic enrichment can cause the development of heterogeneity which influences infaunal bioturbation and consequent nutrient generation, a driver of microphytobenthic production. PMID:17698480
Dyson, Kirstie E; Bulling, Mark T; Solan, Martin; Hernandez-Milian, Gema; Raffaelli, David G; White, Piran C L; Paterson, David M
2007-10-22
Despite the complexity of natural systems, heterogeneity caused by the fragmentation of habitats has seldom been considered when investigating ecosystem processes. Empirical approaches that have included the influence of heterogeneity tend to be biased towards terrestrial habitats; yet marine systems offer opportunities by virtue of their relative ease of manipulation, rapid response times and the well-understood effects of macrofauna on sediment processes. Here, the influence of heterogeneity on microphytobenthic production in synthetic estuarine assemblages is examined. Heterogeneity was created by enriching patches of sediment with detrital algae (Enteromorpha intestinalis) to provide a source of allochthonous organic matter. A gradient of species density for four numerically dominant intertidal macrofauna (Hediste diversicolor, Hydrobia ulvae, Corophium volutator, Macoma balthica) was constructed, and microphytobenthic biomass at the sediment surface was measured. Statistical analysis using generalized least squares regression indicated that heterogeneity within our system was a significant driving factor that interacted with macrofaunal density and species identity. Microphytobenthic biomass was highest in enriched patches, suggesting that nutrients were obtained locally from the sediment-water interface and not from the water column. Our findings demonstrate that organic enrichment can cause the development of heterogeneity which influences infaunal bioturbation and consequent nutrient generation, a driver of microphytobenthic production.
Dharmasiri, Udara; Witek, Małgorzata A.; Adams, Andre A.; Osiri, John K.; Hupert, Mateusz L.; Bianchi, Thomas S.; Roelke, Daniel L.; Soper, Steven A.
2010-01-01
Low abundant (<100 cells mL-1) E. coli O157:H7 cells were isolated and enriched from environmental water samples using a microfluidic chip. The poly(methylmethacrylate), PMMA, chip contained 8 devices each equipped with 16 curvilinear high aspect ratio channels that were covalently decorated with polyclonal anti-O157 antibodies (pAb) and could search for rare cells through a pAb mediated process. The chip could process independently 8 different samples or one sample using 8 different parallel inputs to increase volume processing throughput. After cell enrichment, cells were released and enumerated using bench top real-time quantitative PCR, targeting genes which effectively discriminated the O157:H7 serotype from other non-pathogenic bacteria. The recovery of target cells from water samples was determined to be ~72%, and the limit-of-detection was found to be 6 colony forming units (cfu) using the slt1 gene as a reporter. We subsequently performed analysis of lake and waste water samples. The simplicity in manufacturing and ease of operation makes this device attractive for the selection of pathogenic species from a variety of water supplies suspected of containing bacterial pathogens at extremely low frequencies. PMID:20218574
Processing temporal agreement in a tenseless language: an ERP study of Mandarin Chinese.
Qiu, Yinchen; Zhou, Xiaolin
2012-03-29
Human languages are equipped with an impressive repertoire of time-encoding devices which vary significantly across different cultures. Previous research on temporal processing has focused on morphosyntactic processes in Indo-European languages. This study investigated the neural correlates of temporal processing in Mandarin Chinese, a language that is not morphologically marked for tense. In a sentence acceptability judgment task, we manipulated the agreement between semantically enriched temporal adverbs or a highly grammaticalized aspectual particle (-guo) and temporal noun phrases. Disagreement of both the temporal adverbs and the aspectual particle elicited a centro-parietal P600 effect in event-related potentials (ERPs) whereas only disagreeing temporal adverbs evoked an additional broadly distributed N400 effect. Moreover, a sustained negativity effect was observed on both the words following the critical ones and the last words in sentences with temporal disagreement. These results reveal both commonalities and differences between Chinese and Indo-European languages in temporal agreement processing. In particular, we demonstrate that temporal reference in Chinese relies on both lexical semantics and morphosyntactic processes and that the level of grammaticalization of linguistic devices representing similar temporal information is reflected in differential ERP responses. Copyright © 2012 Elsevier B.V. All rights reserved.
Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.
Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework,more » to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.« less
The MMI Device Ontology: Enabling Sensor Integration
NASA Astrophysics Data System (ADS)
Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group
2010-12-01
The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e.g., SensorML, NetCDF). These identifiers can be resolved through a web browser, or other client applications via HTTP against the MMI Ontology Registry and Repository (ORR), where the ontology is maintained. SPARQL-based query capabilities, which are enhanced with reasoning, along with several supported output formats, allow the effective interaction of diverse client applications with the semantic information associated with the device ontology. In this presentation we describe the process for the development of the MMI Device Ontology and illustrate extensions and applications that demonstrate the benefits of adopting this semantic approach, including example queries involving inference. We also highlight the issues encountered and future work.
GO2PUB: Querying PubMed with semantic expansion of gene ontology terms
2012-01-01
Background With the development of high throughput methods of gene analyses, there is a growing need for mining tools to retrieve relevant articles in PubMed. As PubMed grows, literature searches become more complex and time-consuming. Automated search tools with good precision and recall are necessary. We developed GO2PUB to automatically enrich PubMed queries with gene names, symbols and synonyms annotated by a GO term of interest or one of its descendants. Results GO2PUB enriches PubMed queries based on selected GO terms and keywords. It processes the result and displays the PMID, title, authors, abstract and bibliographic references of the articles. Gene names, symbols and synonyms that have been generated as extra keywords from the GO terms are also highlighted. GO2PUB is based on a semantic expansion of PubMed queries using the semantic inheritance between terms through the GO graph. Two experts manually assessed the relevance of GO2PUB, GoPubMed and PubMed on three queries about lipid metabolism. Experts’ agreement was high (kappa = 0.88). GO2PUB returned 69% of the relevant articles, GoPubMed: 40% and PubMed: 29%. GO2PUB and GoPubMed have 17% of their results in common, corresponding to 24% of the total number of relevant results. 70% of the articles returned by more than one tool were relevant. 36% of the relevant articles were returned only by GO2PUB, 17% only by GoPubMed and 14% only by PubMed. For determining whether these results can be generalized, we generated twenty queries based on random GO terms with a granularity similar to those of the first three queries and compared the proportions of GO2PUB and GoPubMed results. These were respectively of 77% and 40% for the first queries, and of 70% and 38% for the random queries. The two experts also assessed the relevance of seven of the twenty queries (the three related to lipid metabolism and four related to other domains). Expert agreement was high (0.93 and 0.8). GO2PUB and GoPubMed performances were similar to those of the first queries. Conclusions We demonstrated that the use of genes annotated by either GO terms of interest or a descendant of these GO terms yields some relevant articles ignored by other tools. The comparison of GO2PUB, based on semantic expansion, with GoPubMed, based on text mining techniques, showed that both tools are complementary. The analysis of the randomly-generated queries suggests that the results obtained about lipid metabolism can be generalized to other biological processes. GO2PUB is available at http://go2pub.genouest.org. PMID:22958570
George, Nathan R.; Göksun, Tilbe; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick
2014-01-01
Linguistics, psychology, and neuroscience all have rich histories in language research. Crosstalk among these disciplines, as realized in studies of phonology, is pivotal for understanding a fundamental challenge for first and second language learners (SLLs): learning verbs. Linguistic and behavioral research with monolinguals suggests that infants attend to foundational event components (e.g., path, manner). Language then heightens or dampens attention to these components as children map word to world in language-specific ways. Cross-linguistic differences in semantic organization also reveal sources of struggles for SLLs. We discuss how better integrating neuroscience into this literature can unlock additional mysteries of verb learning. PMID:24854772
Rethinking GIS Towards The Vision Of Smart Cities Through CityGML
NASA Astrophysics Data System (ADS)
Guney, C.
2016-10-01
Smart cities present a substantial growth opportunity in the coming years. The role of GIS in the smart city ecosystem is to integrate different data acquired by sensors in real time and provide better decisions, more efficiency and improved collaboration. Semantically enriched vision of GIS will help evolve smart cities into tomorrow's much smarter cities since geospatial/location data and applications may be recognized as a key ingredient of smart city vision. However, it is need for the Geospatial Information communities to debate on "Is 3D Web and mobile GIS technology ready for smart cities?" This research places an emphasis on the challenges of virtual 3D city models on the road to smarter cities.
George, Nathan R; Göksun, Tilbe; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick
2014-01-01
Linguistics, psychology, and neuroscience all have rich histories in language research. Crosstalk among these disciplines, as realized in studies of phonology, is pivotal for understanding a fundamental challenge for first and second language learners (SLLs): learning verbs. Linguistic and behavioral research with monolinguals suggests that infants attend to foundational event components (e.g., path, manner). Language then heightens or dampens attention to these components as children map word to world in language-specific ways. Cross-linguistic differences in semantic organization also reveal sources of struggles for SLLs. We discuss how better integrating neuroscience into this literature can unlock additional mysteries of verb learning.
Systematic reconstruction of TRANSPATH data into Cell System Markup Language
Nagasaki, Masao; Saito, Ayumu; Li, Chen; Jeong, Euna; Miyano, Satoru
2008-01-01
Background Many biological repositories store information based on experimental study of the biological processes within a cell, such as protein-protein interactions, metabolic pathways, signal transduction pathways, or regulations of transcription factors and miRNA. Unfortunately, it is difficult to directly use such information when generating simulation-based models. Thus, modeling rules for encoding biological knowledge into system-dynamics-oriented standardized formats would be very useful for fully understanding cellular dynamics at the system level. Results We selected the TRANSPATH database, a manually curated high-quality pathway database, which provides a plentiful source of cellular events in humans, mice, and rats, collected from over 31,500 publications. In this work, we have developed 16 modeling rules based on hybrid functional Petri net with extension (HFPNe), which is suitable for graphical representing and simulating biological processes. In the modeling rules, each Petri net element is incorporated with Cell System Ontology to enable semantic interoperability of models. As a formal ontology for biological pathway modeling with dynamics, CSO also defines biological terminology and corresponding icons. By combining HFPNe with the CSO features, it is possible to make TRANSPATH data to simulation-based and semantically valid models. The results are encoded into a biological pathway format, Cell System Markup Language (CSML), which eases the exchange and integration of biological data and models. Conclusion By using the 16 modeling rules, 97% of the reactions in TRANSPATH are converted into simulation-based models represented in CSML. This reconstruction demonstrates that it is possible to use our rules to generate quantitative models from static pathway descriptions. PMID:18570683
The textual characteristics of traditional and Open Access scientific journals are similar.
Verspoor, Karin; Cohen, K Bretonnel; Hunter, Lawrence
2009-06-15
Recent years have seen an increased amount of natural language processing (NLP) work on full text biomedical journal publications. Much of this work is done with Open Access journal articles. Such work assumes that Open Access articles are representative of biomedical publications in general and that methods developed for analysis of Open Access full text publications will generalize to the biomedical literature as a whole. If this assumption is wrong, the cost to the community will be large, including not just wasted resources, but also flawed science. This paper examines that assumption. We collected two sets of documents, one consisting only of Open Access publications and the other consisting only of traditional journal publications. We examined them for differences in surface linguistic structures that have obvious consequences for the ease or difficulty of natural language processing and for differences in semantic content as reflected in lexical items. Regarding surface linguistic structures, we examined the incidence of conjunctions, negation, passives, and pronominal anaphora, and found that the two collections did not differ. We also examined the distribution of sentence lengths and found that both collections were characterized by the same mode. Regarding lexical items, we found that the Kullback-Leibler divergence between the two collections was low, and was lower than the divergence between either collection and a reference corpus. Where small differences did exist, log likelihood analysis showed that they were primarily in the area of formatting and in specific named entities. We did not find structural or semantic differences between the Open Access and traditional journal collections.
The textual characteristics of traditional and Open Access scientific journals are similar
Verspoor, Karin; Cohen, K Bretonnel; Hunter, Lawrence
2009-01-01
Background Recent years have seen an increased amount of natural language processing (NLP) work on full text biomedical journal publications. Much of this work is done with Open Access journal articles. Such work assumes that Open Access articles are representative of biomedical publications in general and that methods developed for analysis of Open Access full text publications will generalize to the biomedical literature as a whole. If this assumption is wrong, the cost to the community will be large, including not just wasted resources, but also flawed science. This paper examines that assumption. Results We collected two sets of documents, one consisting only of Open Access publications and the other consisting only of traditional journal publications. We examined them for differences in surface linguistic structures that have obvious consequences for the ease or difficulty of natural language processing and for differences in semantic content as reflected in lexical items. Regarding surface linguistic structures, we examined the incidence of conjunctions, negation, passives, and pronominal anaphora, and found that the two collections did not differ. We also examined the distribution of sentence lengths and found that both collections were characterized by the same mode. Regarding lexical items, we found that the Kullback-Leibler divergence between the two collections was low, and was lower than the divergence between either collection and a reference corpus. Where small differences did exist, log likelihood analysis showed that they were primarily in the area of formatting and in specific named entities. Conclusion We did not find structural or semantic differences between the Open Access and traditional journal collections. PMID:19527520
Systematic reconstruction of TRANSPATH data into cell system markup language.
Nagasaki, Masao; Saito, Ayumu; Li, Chen; Jeong, Euna; Miyano, Satoru
2008-06-23
Many biological repositories store information based on experimental study of the biological processes within a cell, such as protein-protein interactions, metabolic pathways, signal transduction pathways, or regulations of transcription factors and miRNA. Unfortunately, it is difficult to directly use such information when generating simulation-based models. Thus, modeling rules for encoding biological knowledge into system-dynamics-oriented standardized formats would be very useful for fully understanding cellular dynamics at the system level. We selected the TRANSPATH database, a manually curated high-quality pathway database, which provides a plentiful source of cellular events in humans, mice, and rats, collected from over 31,500 publications. In this work, we have developed 16 modeling rules based on hybrid functional Petri net with extension (HFPNe), which is suitable for graphical representing and simulating biological processes. In the modeling rules, each Petri net element is incorporated with Cell System Ontology to enable semantic interoperability of models. As a formal ontology for biological pathway modeling with dynamics, CSO also defines biological terminology and corresponding icons. By combining HFPNe with the CSO features, it is possible to make TRANSPATH data to simulation-based and semantically valid models. The results are encoded into a biological pathway format, Cell System Markup Language (CSML), which eases the exchange and integration of biological data and models. By using the 16 modeling rules, 97% of the reactions in TRANSPATH are converted into simulation-based models represented in CSML. This reconstruction demonstrates that it is possible to use our rules to generate quantitative models from static pathway descriptions.
Relational integrativity of prime-target pairs moderates congruity effects in evaluative priming.
Ihmels, Max; Freytag, Peter; Fiedler, Klaus; Alexopoulos, Theodore
2016-05-01
In evaluative priming, positive or negative primes facilitate reactions to targets that share the same valence. While this effect is commonly explained as reflecting invariant structures in semantic long-term memory or in the sensorimotor system, the present research highlights the role of integrativity in evaluative priming. Integrativity refers to the ease of integrating two concepts into a new meaningful compound representation. In extended material tests using paired comparisons from two pools of positive and negative words, we show that evaluative congruity is highly correlated with integrativity. Therefore, in most priming studies, congruity and integrativity are strongly confounded. When both aspects are disentangled by manipulating congruity and integrativity orthogonally, three priming experiments show that evaluative-priming effects were confined to integrative prime-target pairs. No facilitation of prime-congruent targets was obtained for non-integrative stimuli. These findings are discussed from a broader perspective on priming conceived as flexible, context-dependent, and serving a generative adaptation function.
The role of memory for visual search in scenes
Võ, Melissa Le-Hoa; Wolfe, Jeremy M.
2014-01-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. While a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. PMID:25684693
Development of FuGO: An Ontology for Functional Genomics Investigations
Whetzel, Patricia L.; Brinkman, Ryan R.; Causton, Helen C.; Fan, Liju; Field, Dawn; Fostel, Jennifer; Fragoso, Gilberto; Gray, Tanya; Heiskanen, Mervi; Hernandez-Boussard, Tina; Morrison, Norman; Parkinson, Helen; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Schober, Daniel; Smith, Barry; Stevens, Robert; Stoeckert, Christian J.; Taylor, Chris; White, Joe; Wood, Andrew
2009-01-01
The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the “semantic glue” to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans. PMID:16901226
The role of memory for visual search in scenes.
Le-Hoa Võ, Melissa; Wolfe, Jeremy M
2015-03-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. Although a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. © 2015 New York Academy of Sciences.
Walls, Ramona L; Deck, John; Guralnick, Robert; Baskauf, Steve; Beaman, Reed; Blum, Stanley; Bowers, Shawn; Buttigieg, Pier Luigi; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Morrison, Norman; Ó Tuama, Éamonn; Schildhauer, Mark; Smith, Barry; Stucky, Brian J; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John
2014-01-01
The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.
Baskauf, Steve; Blum, Stanley; Bowers, Shawn; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Tuama, Éamonn Ó.; Schildhauer, Mark; Smith, Barry; Stucky, Brian J.; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John
2014-01-01
The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers. PMID:24595056
LADM and IndoorGML for Support of Indoor Space Identification
NASA Astrophysics Data System (ADS)
Zlatanova, S.; Van Oosterom, P. J. M.; Lee, J.; Li, K.-J.; Lemmen, C. H. J.
2016-10-01
Guidance and security in large public buildings such as airports, museums and shopping malls requires much more information that traditional 2D methods offer. Therefore 3D semantically-reach models have been actively investigated with the aim to gather knowledge about availability and accessibility of spaces. Spaces can be unavailable to specific users because of plenty of reasons: the 3D geometry of spaces (too low, too narrow), the properties of the objects to be guided to a specific part of the building (walking, driving, flying), the status of the indoor environment (e.g. crowded, limited light, under reconstruction), property regulations (private areas), security considerations and so on. However, such information is not explicitly avaible in the existing 3D semantically-reach models. IFC and CityGML are restricted to architectural building components and provide little to no means to describe such properties. IndoorGML has been designed to establish a generic approach for space identification allowing a space subdivision and automatic creation of a network for route computation. But currently it also represents only spaces as they are defined by the architectural layout of the building. The Land Administration Domain Model is currently the only available model to specify spaces on the basis of ownership and rights for use. In this paper we compare the principles of IndoorGML and LADM, investigate the approaches to define spaces and suggest options to the linking of the two types of spaces. We argue that LADM space subdivision on basis of properties and rights of use can be used to define to semantically and geometrically available and accessible spaces and therefore can enrich the IndoorGML concept.
HealthRecSys: A semantic content-based recommender system to complement health videos.
Sanchez Bocanegra, Carlos Luis; Sevillano Ramos, Jose Luis; Rizo, Carlos; Civit, Anton; Fernandez-Luque, Luis
2017-05-15
The Internet, and its popularity, continues to grow at an unprecedented pace. Watching videos online is very popular; it is estimated that 500 h of video are uploaded onto YouTube, a video-sharing service, every minute and that, by 2019, video formats will comprise more than 80% of Internet traffic. Health-related videos are very popular on YouTube, but their quality is always a matter of concern. One approach to enhancing the quality of online videos is to provide additional educational health content, such as websites, to support health consumers. This study investigates the feasibility of building a content-based recommender system that links health consumers to reputable health educational websites from MedlinePlus for a given health video from YouTube. The dataset for this study includes a collection of health-related videos and their available metadata. Semantic technologies (such as SNOMED-CT and Bio-ontology) were used to recommend health websites from MedlinePlus. A total of 26 healths professionals participated in evaluating 253 recommended links for a total of 53 videos about general health, hypertension, or diabetes. The relevance of the recommended health websites from MedlinePlus to the videos was measured using information retrieval metrics such as the normalized discounted cumulative gain and precision at K. The majority of websites recommended by our system for health videos were relevant, based on ratings by health professionals. The normalized discounted cumulative gain was between 46% and 90% for the different topics. Our study demonstrates the feasibility of using a semantic content-based recommender system to enrich YouTube health videos. Evaluation with end-users, in addition to healthcare professionals, will be required to identify the acceptance of these recommendations in a nonsimulated information-seeking context.
SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data.
Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A
2015-01-01
There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA's applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from http://www.molgenis.org/wiki/SORTA. © The Author(s) 2015. Published by Oxford University Press.
SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data
Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K.; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A.
2015-01-01
There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA’s applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from http://www.molgenis.org/wiki/SORTA PMID:26385205
Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol
2013-11-01
Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.
FunRich proteomics software analysis, let the fun begin!
Benito-Martin, Alberto; Peinado, Héctor
2015-08-01
Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small-scale and high-throughput studies. However, user-friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597-2601) report the development of FunRich software, an open-access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Neuman, Yair; Cohen, Yochai; Israeli, Navot; Tamir, Boaz
2018-02-01
The availability of historical textual corpora has led to the study of words' frequency along the historical time line, as representing the public's focus of attention over time. However, studying of the dynamics of words' meaning is still in its infancy. In this paper, we propose a methodology for studying the historical trajectory of words' meaning through Tsallis entropy. First, we present the idea that the meaning of a word may be studied through the entropy of its embedding. Using two historical case studies, we show that this entropy measure is correlated with the intensity in which a word is used. More importantly, we show that using Tsallis entropy with a superadditive entropy index may provide a better estimation of a word's frequency of use than using Shannon entropy. We explain this finding as resulting from an increasing redundancy between the words that comprise the semantic field of the target word and develop a new measure of redundancy between words. Using this measure, which relies on the Tsallis version of the Kullback-Leibler divergence, we show that the evolving meaning of a word involves the dynamics of increasing redundancy between components of its semantic field. The proposed methodology may enrich the toolkit of researchers who study the dynamics of word senses.
Lorusso, Maria Luisa; Biffi, Emilia; Molteni, Massimo; Reni, Gianluigi
2018-01-01
Recently, a few software applications (apps) have been developed to enhance vocabulary and conceptual networks to address the needs of children with language impairments (LI), but there is no evidence about their impact and their usability in therapy contexts. Here, we try to fill this gap presenting a system aimed at improving the semantic competence and the structural knowledge of children with LI. The goal of the study is to evaluate learnability, usability, user satisfaction and quality of the interaction between the system and the children. The system consists of a tablet, hosting an app with educational and training purposes, equipped with a Near Field Communication (NFC) reader, used to interact with the user by means of objects. Fourteen preschool children with LI played with the device during one 45-minute speech therapy session. Reactions and feedbacks were recorded and rated. The system proved to be easy to understand and learn, as well as engaging and rewarding. The success of the device probably rests on the integration of smart technology and real, tangible objects. The device can be seen as a valuable aid to support and enhance communication abilities in children with LI as well as typically developing individuals.
The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length
ERIC Educational Resources Information Center
Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam
2017-01-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…
Markov Chain Ontology Analysis (MCOA)
2012-01-01
Background Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. Results In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. Conclusion A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches. PMID:22300537
Markov Chain Ontology Analysis (MCOA).
Frost, H Robert; McCray, Alexa T
2012-02-03
Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.
Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao
2017-01-01
The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff’s skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices. PMID:28886088
Yuan, Yu-Hsi; Tsai, Sang-Bing; Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao
2017-01-01
The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff's skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices.
NASA Astrophysics Data System (ADS)
Jara, A. J.; Bocchi, Y.; Fernandez, D.; Molina, G.; Gomez, A.
2017-09-01
Smart Cities requires the support of context-aware and enriched semantic descriptions to support a scalable and cross-domain development of smart applications. For example, nowadays general purpose sensors such as crowd monitoring (counting people in an area), environmental information (pollution, air quality, temperature, humidity, noise) etc. can be used in multiple solutions with different objectives. For that reason, a data model that offers advanced capabilities for the description of context is required. This paper presents an overview of the available technologies for this purpose and how it is being addressed by the Open and Agile Smart Cities principles and FIWARE platform through the data models defined by the ETSI ISG Context Information Management (ETSI CIM).
Semantic Memory in the Clinical Progression of Alzheimer Disease.
Tchakoute, Christophe T; Sainani, Kristin L; Henderson, Victor W
2017-09-01
Semantic memory measures may be useful in tracking and predicting progression of Alzheimer disease. We investigated relationships among semantic memory tasks and their 1-year predictive value in women with Alzheimer disease. We conducted secondary analyses of a randomized clinical trial of raloxifene in 42 women with late-onset mild-to-moderate Alzheimer disease. We assessed semantic memory with tests of oral confrontation naming, category fluency, semantic recognition and semantic naming, and semantic density in written narrative discourse. We measured global cognition (Alzheimer Disease Assessment Scale, cognitive subscale), dementia severity (Clinical Dementia Rating sum of boxes), and daily function (Activities of Daily Living Inventory) at baseline and 1 year. At baseline and 1 year, most semantic memory scores correlated highly or moderately with each other and with global cognition, dementia severity, and daily function. Semantic memory task performance at 1 year had worsened one-third to one-half standard deviation. Factor analysis of baseline test scores distinguished processes in semantic and lexical retrieval (semantic recognition, semantic naming, confrontation naming) from processes in lexical search (semantic density, category fluency). The semantic-lexical retrieval factor predicted global cognition at 1 year. Considered separately, baseline confrontation naming and category fluency predicted dementia severity, while semantic recognition and a composite of semantic recognition and semantic naming predicted global cognition. No individual semantic memory test predicted daily function. Semantic-lexical retrieval and lexical search may represent distinct aspects of semantic memory. Semantic memory processes are sensitive to cognitive decline and dementia severity in Alzheimer disease.
Das, Dhiman; Phan, Dinh-Tuan; Zhao, Yugang; Kang, Yuejun; Chan, Vincent; Yang, Chun
2017-03-01
A novel continuous flow microfluidic platform specifically designed for environmental monitoring of O/W emulsions during an aftermath of oil spills is reported herein. Ionized polycyclic aromatic hydrocarbons which are toxic are readily released from crude oil to the surrounding water phase through the smaller oil droplets with enhanced surface area. Hence, a multi-module microfluidic device is fabricated to form ion enrichment zones in the water phase of O/W emulsions for the ease of detection and to separate micron-sized oil droplets from the O/W emulsions. Fluorescein ions in the water phase are used to simulate the presence of these toxic ions in the O/W emulsion. A DC-biased AC electric field is employed in both modules. In the first module, a nanoporous Nafion membrane is used for activating the concentration polarization effect on the fluorescein ions, resulting in the formation of stable ion enrichment zones in the water phase of the emulsion. A 35.6% amplification of the fluorescent signal is achieved in the ion enrichment zone; corresponding to 100% enrichment of the fluorescent dye concentration. In this module, the main inlet is split into two channels by using a Y-junction so that there are two outlets for the oil droplets. The second module located downstream of the first module consists of two oil droplet entrapment zones at two outlets. By switching on the appropriate electrodes, either one of the two oil droplet entrapment zones can be activated and the droplets can be blocked in the corresponding outlet. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Speltini, Andrea; Merlo, Francesca; Maraschi, Federica; Sturini, Michela; Contini, Matteo; Calisi, Nicola; Profumo, Antonella
2018-03-09
Pristine humic acids (HAs) were thermally condensed onto silica microparticles by a one-pot, inexpensive and green preparation route obtaining a mixed-mode sorbent (HA-C@silica) with good sorption affinity for glucocorticoids (GCs). The carbon-based material, characterized by various techniques, was indeed applied as the sorbent for fixed-bed solid-phase extraction of eight GCs from river water and wastewater treatment plant effluent, spiked at different concentration levels in the range 1-400 ng L -1 . After sample extraction, the target analytes were simultaneously and quantitatively eluted in a single fraction of methanol, achieving enrichment factor 4000 and 1000 in river water and wastewater effluent, respectively. Full recovery for all compounds, was gained in the real matrices studied (80-125% in river water, 79-126% in wastewater effluent), with inter-day precision showing relative standard deviations (RSD) below 15% and 18% (n = 3), for river and wastewater effluent, correspondingly. The high enrichment factors coupled with high-performance liquid chromatography tandem mass spectrometry quantification (MRM mode) provided method quantification limits of 0.009-0.48 ng L -1 in river water and 0.06-3 ng L -1 in wastewater effluent and, at the same time, secure identification of the selected drugs. As also evidenced by comparison with literature, HA-C@silica proved to be a valid alternative to the current commercial sorbents, in terms of extraction capability, enrichment factor, ease of preparation and cost. The batch-to-batch reproducibility was assessed by recovery tests on three independently prepared HA-C@silica powders (RSD lower than 7%). Copyright © 2018 Elsevier B.V. All rights reserved.
ERP evidence for telicity effects on syntactic processing in garden-path sentences
Malaia, Evguenia; Wilbur, Ronnie B.; Weber-Fox, Christine
2009-01-01
Verbs contain multifaceted information about both the semantics of an action, and potential argument structures. Linguistic theory classifies verbs according to whether the denoted action has an inherent (telic) end-point (fall, awaken), or whether it is considered homogenous, or atelic (read, worship). The aim of our study was to examine how this distinction influences online sentence processing, investigating the effects of verbal telicity on the ease of syntactic re-analysis of Object reduced relative clauses. Event-related brain potentials (ERPs) were recorded from 22 English speakers as they read sentences in which the main verb was either telic or atelic, e.g., “The actress awakened/worshippedby the writer left in a hurry”. ERPs elicited by telic and atelic verbs, the preposition “by” introducing the second argument (Agent), and the second argument itself, e.g., “writer”, were compared. Additionally, participants were grouped according to receptive syntactic proficiency: normal (NP) or high (HP). ERPs from the NP group first diverged at the second argument, with the atelic condition eliciting larger amplitude negativity at the N100, and continuing to the P200 interval. In contrast, ERPs from the HP group first diverged earlier in the sentence, on the word “by”. ERPs elicited by “by” in the atelic condition were also characterized by increased negativity, in this case significant at P200 and Anterior Negativity between 320-500ms post stimulus onset. Our results support the postulated conceptual/semantic distinction underlying the two verb categories, and demonstrate that world-knowledge about actions designated by verbs and syntactic proficiency are reflected in on-line processing of sentence structure. PMID:18945484
Facilitating NCAR Data Discovery by Connecting Related Resources
NASA Astrophysics Data System (ADS)
Rosati, A.
2012-12-01
Linking datasets, creators, and users by employing the proper standards helps to increase the impact of funded research. In order for users to find a dataset, it must first be named. Data citations play the important role of giving datasets a persistent presence by assigning a formal "name" and location. This project focuses on the next step of the "name-find-use" sequence: enhancing discoverability of NCAR data by connecting related resources on the web. By examining metadata schemas that document datasets, I examined how Semantic Web approaches can help to ensure the widest possible range of data users. The focus was to move from search engine optimization (SEO) to information connectivity. Two main markup types are very visible in the Semantic Web and applicable to scientific dataset discovery: The Open Archives Initiative-Object Reuse and Exchange (OAI-ORE - www.openarchives.org) and Microdata (HTML5 and www.schema.org). My project creates pilot aggregations of related resources using both markup types for three case studies: The North American Regional Climate Change Assessment Program (NARCCAP) dataset and related publications, the Palmer Drought Severity Index (PSDI) animation and image files from NCAR's Visualization Lab (VisLab), and the multidisciplinary data types and formats from the Advanced Cooperative Arctic Data and Information Service (ACADIS). This project documents the differences between these markups and how each creates connectedness on the web. My recommendations point toward the most efficient and effective markup schema for aggregating resources within the three case studies based on the following assessment criteria: ease of use, current state of support and adoption of technology, integration with typical web tools, available vocabularies and geoinformatic standards, interoperability with current repositories and access portals (e.g. ESG, Java), and relation to data citation tools and methods.
Event-Based Media Enrichment Using an Adaptive Probabilistic Hypergraph Model.
Liu, Xueliang; Wang, Meng; Yin, Bao-Cai; Huet, Benoit; Li, Xuelong
2015-11-01
Nowadays, with the continual development of digital capture technologies and social media services, a vast number of media documents are captured and shared online to help attendees record their experience during events. In this paper, we present a method combining semantic inference and multimodal analysis for automatically finding media content to illustrate events using an adaptive probabilistic hypergraph model. In this model, media items are taken as vertices in the weighted hypergraph and the task of enriching media to illustrate events is formulated as a ranking problem. In our method, each hyperedge is constructed using the K-nearest neighbors of a given media document. We also employ a probabilistic representation, which assigns each vertex to a hyperedge in a probabilistic way, to further exploit the correlation among media data. Furthermore, we optimize the hypergraph weights in a regularization framework, which is solved as a second-order cone problem. The approach is initiated by seed media and then used to rank the media documents using a transductive inference process. The results obtained from validating the approach on an event dataset collected from EventMedia demonstrate the effectiveness of the proposed approach.
Systematic identification of latent disease-gene associations from PubMed articles.
Zhang, Yuji; Shen, Feichen; Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research.
Systematic identification of latent disease-gene associations from PubMed articles
Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research. PMID:29373609
Methods for culturing saltwater rotifers (Brachionus plicatilis) for rearing larval zebrafish.
Lawrence, Christian; Sanders, Erik; Henry, Eric
2012-09-01
The saltwater rotifer, Brachionus plicatilis, is widely used in the aquaculture industry as a prey item for first-feeding fishes due to its ease of culture, small size, rapid reproductive rate, and amenability to enrichment with nutrients. Despite the distinct advantages of this approach, rotifers have only been sporadically utilized for rearing larval zebrafish, primarily because of the common misconception that maintaining cultures of rotifers is difficult and excessively time-consuming. Here we present simple methods for maintaining continuous cultures of rotifers capable of supporting even the very largest zebrafish aquaculture facility, with minimal investments in materials, time, labor, and space. Examples of the methods' application in one large, existing facility is provided, and troubleshooting of common problems is discussed.
Griffon, Nicolas; Kerdelhué, Gaétan; Hamek, Saliha; Hassler, Sylvain; Boog, César; Lamy, Jean-Baptiste; Duclos, Catherine; Venot, Alain; Darmoni, Stéfan J
2014-10-01
Doc'CISMeF (DC) is a semantic search engine used to find resources in CISMeF-BP, a quality controlled health gateway, which gathers guidelines available on the internet in French. Visualization of Concepts in Medicine (VCM) is an iconic language that may ease information retrieval tasks. This study aimed to describe the creation and evaluation of an interface integrating VCM in DC in order to make this search engine much easier to use. Focus groups were organized to suggest ways to enhance information retrieval tasks using VCM in DC. A VCM interface was created and improved using the ergonomic evaluation approach. 20 physicians were recruited to compare the VCM interface with the non-VCM one. Each evaluator answered two different clinical scenarios in each interface. The ability and time taken to select a relevant resource were recorded and compared. A usability analysis was performed using the System Usability Scale (SUS). The VCM interface contains a filter based on icons, and icons describing each resource according to focus group recommendations. Some ergonomic issues were resolved before evaluation. Use of VCM significantly increased the success of information retrieval tasks (OR=11; 95% CI 1.4 to 507). Nonetheless, it took significantly more time to find a relevant resource with VCM interface (101 vs 65 s; p=0.02). SUS revealed 'good' usability with an average score of 74/100. VCM was successfully implemented in DC as an option. It increased the success rate of information retrieval tasks, despite requiring slightly more time, and was well accepted by end-users. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.
2009-01-01
In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) data from Salmonella typhimurium reverse mutagenicity assays conducted by the U.S. National Toxicology Program, and (3) hepatotoxicity data published in the Registry of Toxic Effects of Chemical Substances. Enrichments of structural features in toxic compounds are evaluated for their statistical significance and compiled into a simple additive model of toxicity and then used to score new compounds for potential toxicity. The predictive power of the model for cytotoxicity was validated using an independent set of compounds from the U.S. Environmental Protection Agency tested also at the National Institutes of Health Chemical Genomics Center. We compared the performance of our WFS approach with classical classification methods such as Naive Bayesian clustering and support vector machines. In most test cases, WFS showed similar or slightly better predictive power, especially in the prediction of hepatotoxic compounds, where WFS appeared to have the best performance among the three methods. The new algorithm has the important advantages of simplicity, power, interpretability, and ease of implementation. PMID:19805409
Douglas, Timothy E L; Dokupil, Agnieszka; Reczyńska, Katarzyna; Brackman, Gilles; Krok-Borkowicz, Malgorzata; Keppler, Julia K; Božič, Mojca; Van Der Voort, Pascal; Pietryga, Krzysztof; Samal, Sangram Keshari; Balcaen, Lieve; van den Bulcke, Jan; Van Acker, Joris; Vanhaecke, Frank; Schwarz, Karin; Coenye, Tom; Pamuła, Elżbieta
2016-08-10
Hydrogels offer several advantages as biomaterials for bone regeneration, including ease of incorporation of soluble substances such as mineralization-promoting enzymes and antibacterial agents. Mineralization with calcium phosphate (CaP) increases bioactivity, while antibacterial activity reduces the risk of infection. Here, gellan gum (GG) hydrogels were enriched with alkaline phosphatase (ALP) and/or Seanol(®), a seaweed extract rich in phlorotannins (brown algae-derived polyphenols), to induce mineralization with CaP and increase antibacterial activity, respectively. The sample groups were unmineralized hydrogels, denoted as GG, GG/ALP, GG/Seanol and GG/Seanol/ALP, and hydrogels incubated in mineralization medium (0.1 M calcium glycerophosphate), denoted as GG/ALP_min, GG/Seanol_min and GG/Seanol/ALP_min. Seanol(®) enhanced mineralization with CaP and also increased compressive modulus. Seanol(®) and ALP interacted in a non-covalent manner. Release of Seanol(®) occurred in a burst phase and was impeded by ALP-mediated mineralization. Groups GG/Seanol and GG/ALP/Seanol exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. GG/Seanol/ALP_min, but not GG/Seanol_min, retained some antibacterial activity. Eluates taken from groups GG/ALP_min, GG/Seanol_min and GG/ALP/Seanol_min displayed comparable cytotoxicity towards MG-63 osteoblast-like cells. These results suggest that enrichment of hydrogel biomaterials with phlorotannin-rich extracts is a promising strategy to increase mineralizability and antibacterial activity.
A comparison of the effects of two methods of acclimation of aerobic biodegradability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, H.M.
1993-11-01
The acclimation or adaptation of microorganisms to organic chemicals is an important factor influencing both the rate and the extent of biodegradation. In this study two acclimation procedures were evaluated in terms of their effectiveness in enhancing biodegradation, their relative ease of use in the laboratory, and the implications for biodegradability testing. In the single-flask procedure, microorganisms were acclimated for 2 to 7 d in a single acclimation flask at constant or increasing concentrations of the test chemical without transfer of microorganisms. In the second procedure, the enrichment procedure, microorganisms were acclimated in a series of flasks over a 21-dmore » period by making adaptive transfers to increasing concentrations of the test chemical. Acclimated microorganisms from each procedure were used as the source of inoculum for subsequent biodegradation tests in which carbon dioxide evolution was measured. Six chemicals were tested: quinoline, p-nitrophenol, N-methylaniline, N,N-dimethylaniline, acrylonitrile, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate. Microorganisms acclimated in the single-flask procedure were much more effective than those acclimated in the enrichment procedure in degrading the test chemicals. The single-flask procedure is more convenient to use, and it permits monitoring of the time needed for acclimation. The results from these studies have implications for the methodology used in biodegradation test systems and suggest caution before adopting a multiple-flask, enrichment acclimation procedure before the performance of standardized tests for aerobic biodegradability.« less
Triage by ranking to support the curation of protein interactions
Pasche, Emilie; Gobeill, Julien; Rech de Laval, Valentine; Gleizes, Anne; Michel, Pierre-André; Bairoch, Amos
2017-01-01
Abstract Today, molecular biology databases are the cornerstone of knowledge sharing for life and health sciences. The curation and maintenance of these resources are labour intensive. Although text mining is gaining impetus among curators, its integration in curation workflow has not yet been widely adopted. The Swiss Institute of Bioinformatics Text Mining and CALIPHO groups joined forces to design a new curation support system named nextA5. In this report, we explore the integration of novel triage services to support the curation of two types of biological data: protein–protein interactions (PPIs) and post-translational modifications (PTMs). The recognition of PPIs and PTMs poses a special challenge, as it not only requires the identification of biological entities (proteins or residues), but also that of particular relationships (e.g. binding or position). These relationships cannot be described with onto-terminological descriptors such as the Gene Ontology for molecular functions, which makes the triage task more challenging. Prioritizing papers for these tasks thus requires the development of different approaches. In this report, we propose a new method to prioritize articles containing information specific to PPIs and PTMs. The new resources (RESTful APIs, semantically annotated MEDLINE library) enrich the neXtA5 platform. We tuned the article prioritization model on a set of 100 proteins previously annotated by the CALIPHO group. The effectiveness of the triage service was tested with a dataset of 200 annotated proteins. We defined two sets of descriptors to support automatic triage: the first set to enrich for papers with PPI data, and the second for PTMs. All occurrences of these descriptors were marked-up in MEDLINE and indexed, thus constituting a semantically annotated version of MEDLINE. These annotations were then used to estimate the relevance of a particular article with respect to the chosen annotation type. This relevance score was combined with a local vector-space search engine to generate a ranked list of PMIDs. We also evaluated a query refinement strategy, which adds specific keywords (such as ‘binds’ or ‘interacts’) to the original query. Compared to PubMed, the search effectiveness of the nextA5 triage service is improved by 190% for the prioritization of papers with PPIs information and by 260% for papers with PTMs information. Combining advanced retrieval and query refinement strategies with automatically enriched MEDLINE contents is effective to improve triage in complex curation tasks such as the curation of protein PPIs and PTMs. Database URL: http://candy.hesge.ch/nextA5 PMID:29220432
Empowering citizens with access control mechanisms to their personal health resources.
Calvillo, J; Román, I; Roa, L M
2013-01-01
Advancements in information and communication technologies have allowed the development of new approaches to the management and use of healthcare resources. Nowadays it is possible to address complex issues such as meaningful access to distributed data or communication and understanding among heterogeneous systems. As a consequence, the discussion focuses on the administration of the whole set of resources providing knowledge about a single subject of care (SoC). New trends make the SoC administrator and responsible for all these elements (related to his/her demographic data, health, well-being, social conditions, etc.) and s/he is granted the ability of controlling access to them by third parties. The subject of care exchanges his/her passive role without any decision capacity for an active one allowing to control who accesses what. We study the necessary access control infrastructure to support this approach and develop mechanisms based on semantic tools to assist the subject of care with the specification of access control policies. This infrastructure is a building block of a wider scenario, the Person-Oriented Virtual Organization (POVO), aiming at integrating all the resources related to each citizen's health-related data. The POVO covers the wide range and heterogeneity of available healthcare resources (e.g., information sources, monitoring devices, or software simulation tools) and grants each SoC the access control to them. Several methodological issues are crucial for the design of the targeted infrastructure. The distributed system concept and focus are reviewed from the service oriented architecture (SOA) perspective. The main frameworks for the formalization of distributed system architectures (Reference Model-Open Distributed Processing, RM-ODP; and Model Driven Architecture, MDA) are introduced, as well as how the use of the Unified Modelling Language (UML) is standardized. The specification of access control policies and decision making mechanisms are essential keys for this approach and they are accomplished by using semantic technologies (i.e., ontologies, rule languages, and inference engines). The results are mainly focused on the security and access control of the proposed scenario. An ontology has been designed and developed for the POVO covering the terminology of the scenario and easing the automation of administration tasks. Over that ontology, an access control mechanism based on rule languages allows specifying access control policies, and an inference engine performs the decision making process automatically. The usability of solutions to ease administration tasks to the SoC is improved by the Me-As-An-Admin (M3A) application. This guides the SoC through the specification of personal access control policies to his/her distributed resources by using semantic technologies (e.g., metamodeling, model-to-text transformations, etc.). All results are developed as services and included in an architecture in accordance with standards and principles of openness and interoperability. Current technology can bring health, social and well-being care actually centered on citizens, and granting each person the management of his/her health information. However, the application of technology without adopting methodologies or normalized guidelines will reduce the interoperability of solutions developed, failing in the development of advanced services and improved scenarios for health delivery. Standards and reference architectures can be cornerstones for future-proof and powerful developments. Finally, not only technology must follow citizen-centric approaches, but also the gaps needing legislative efforts that support these new paradigms of healthcare delivery must be identified and addressed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A Joint Investigation of Semantic Facilitation and Semantic Interference in Continuous Naming
ERIC Educational Resources Information Center
Scaltritti, Michele; Peressotti, Francesca; Navarrete, Eduardo
2017-01-01
When speakers name multiple semantically related items, opposing effects can be found. Semantic facilitation is found when naming 2 semantically related items in a row. In contrast, semantic interference is found when speakers name semantically related items separated by 1 or more intervening unrelated items. This latter form of interference is…
Adams, Sarah C.; Kiefer, Markus
2012-01-01
Recent studies challenged the classical notion of automaticity and indicated that even unconscious automatic semantic processing is under attentional control to some extent. In line with our attentional sensitization model, these data suggest that a sensitization of semantic pathways by a semantic task set is necessary for subliminal semantic priming to occur while non-semantic task sets attenuate priming. In the present study, we tested whether masked semantic priming is also reduced by phonological task sets using the previously developed induction task paradigm. This would substantiate the notion that attention to semantics is necessary for eliciting unconscious semantic priming. Participants first performed semantic and phonological induction tasks that should either activate a semantic or a phonological task set. Subsequent to the induction task, a masked prime word, either associated or non-associated with the following lexical decision target word, was presented. Across two experiments, we varied the nature of the phonological induction task (word phonology vs. letter phonology) to assess whether the attentional focus on the entire word vs. single letters modulates subsequent masked semantic priming. In both experiments, subliminal semantic priming was only found subsequent to the semantic induction task, but was attenuated following either phonological induction task. These results indicate that attention to phonology attenuates subsequent semantic processing of unconsciously presented primes whether or not attention is directed to the entire word or to single letters. The present findings therefore substantiate earlier evidence that an attentional orientation toward semantics is necessary for subliminal semantic priming to be elicited. PMID:22952461
Mesh-To from Segmented Mesh Elements to Bim Model with Limited Parameters
NASA Astrophysics Data System (ADS)
Yang, X.; Koehl, M.; Grussenmeyer, P.
2018-05-01
Building Information Modelling (BIM) technique has been widely utilized in heritage documentation and comes to a general term Historical/Heritage BIM (HBIM). The current HBIM project mostly employs the scan-to-BIM process to manually create the geometric model from the point cloud. This paper explains how it is possible to shape from the mesh geometry with reduced human involvement during the modelling process. Aiming at unbuilt heritage, two case studies are handled in this study, including a ruined Roman stone architectural and a severely damaged abbey. The pipeline consists of solid element modelling based on documentation data using Autodesk Revit, a common BIM platform, and the successive modelling from these geometric primitives using Autodesk Dynamo, a visual programming built-in plugin tool in Revit. The BIM-based reconstruction enriches the classic visual model from computer graphics approaches with measurement, semantic and additional information. Dynamo is used to develop a semi-automated function to reduce the manual process, which builds the final BIM model from segmented parametric elements directly. The level of detail (LoD) of the final models is dramatically relevant with the manual involvement in the element creation. The proposed outline also presents two potential issues in the ongoing work: combining the ontology semantics with the parametric BIM model, and introducing the proposed pipeline into the as-built HBIM process.
Relationships between cognitive performance, neuroimaging, and vascular disease: the DHS-Mind Study
Hsu, Fang-Chi; Raffield, Laura M.; Hugenschmidt, Christina E.; Cox, Amanda; Xu, Jianzhao; Carr, J. Jeffery; Freedman, Barry I.; Maldjian, Joseph A.; Williamson, Jeff D.; Bowden, Donald W.
2015-01-01
Background Type 2 diabetes mellitus increases risk for cognitive decline and dementia; elevated burdens of vascular disease are hypothesized to contribute to this risk. These relationships were examined in the Diabetes Heart Study-Mind using a battery of cognitive tests, neuroimaging measures, and subclinical cardiovascular disease (CVD) burden assessed by coronary artery calcified plaque (CAC). We hypothesized that CAC would attenuate the association between neuroimaging measures and cognition performance. Methods Associations were examined using marginal models in this family-based cohort of 572 European Americans from 263 families. All models were adjusted for age, gender, education, type 2 diabetes, and hypertension, with some neuroimaging measures additionally adjusted for intracranial volume. Results Higher total brain volume (TBV) was associated with better performance on the Digit Symbol Substitution Task (DSST) and Semantic Fluency (both p≤7.0 x 10−4). Higher gray matter volume (GMV) was associated with better performance on the Modified Mini-Mental State Examination and Semantic Fluency (both p≤9.0 x 10−4). Adjusting for CAC caused minimal changes to the results. Conclusions Relationships exist between neuroimaging measures and cognitive performance in a type 2 diabetes-enriched European American cohort. Associations were minimally attenuated after adjusting for subclinical CVD. Additional work is needed to understand how subclinical CVD burden interacts with other factors and impacts relationships between neuroimaging and cognitive testing measures. PMID:26185004
Design for Connecting Spatial Data Infrastructures with Sensor Web (sensdi)
NASA Astrophysics Data System (ADS)
Bhattacharya, D.; M., M.
2016-06-01
Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. It is about research to harness the sensed environment by utilizing domain specific sensor data to create a generalized sensor webframework. The challenges being semantic enablement for Spatial Data Infrastructures, and connecting the interfaces of SDI with interfaces of Sensor Web. The proposed research plan is to Identify sensor data sources, Setup an open source SDI, Match the APIs and functions between Sensor Web and SDI, and Case studies like hazard applications, urban applications etc. We take up co-operative development of SDI best practices to enable a new realm of a location enabled and semantically enriched World Wide Web - the "Geospatial Web" or "Geosemantic Web" by setting up one to one correspondence between WMS, WFS, WCS, Metadata and 'Sensor Observation Service' (SOS); 'Sensor Planning Service' (SPS); 'Sensor Alert Service' (SAS); a service that facilitates asynchronous message interchange between users and services, and between two OGC-SWE services, called the 'Web Notification Service' (WNS). Hence in conclusion, it is of importance to geospatial studies to integrate SDI with Sensor Web. The integration can be done through merging the common OGC interfaces of SDI and Sensor Web. Multi-usability studies to validate integration has to be undertaken as future research.
DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures.
Mazandu, Gaston K; Mulder, Nicola J
2013-09-25
The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis.
Ontology of gaps in content-based image retrieval.
Deserno, Thomas M; Antani, Sameer; Long, Rodney
2009-04-01
Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the inability of these applications in overcoming the "semantic gap." The semantic gap divides the high-level scene understanding and interpretation available with human cognitive capabilities from the low-level pixel analysis of computers, based on mathematical processing and artificial intelligence methods. In this paper, we suggest a more systematic and comprehensive view of the concept of "gaps" in medical CBIR research. In particular, we define an ontology of 14 gaps that addresses the image content and features, as well as system performance and usability. In addition to these gaps, we identify seven system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application, as the systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Wiese, Holger; Schweinberger, Stefan R
2015-01-01
The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.
PCAN: phenotype consensus analysis to support disease-gene association.
Godard, Patrice; Page, Matthew
2016-12-07
Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and biologically interpret genes underlying disease traits of interest. We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity of phenotypes in a candidate gene's signaling neighborhood. We demonstrate that significant phenotype consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes. We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN to the community as an R package ( http://bioconductor.org/packages/PCAN/ ) to allow flexible configuration, extension and standalone use or integration to supplement existing gene prioritization workflows.
AIRID: an application of the KAS/Prospector expert system builder to airplane identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, J.P.
1984-01-01
The Knowledge Acquisition System/Prospector expert system building tool developed by SRI, International, has been used to construct an expert system to identify aircraft on the basis of observables such as wing shape, engine number/location, fuselage shape, and tail assembly shape. Additional detailed features are allowed to influence the identification as other favorable features. Constraints on the observations imposed by bad weather and distant observations have been included as contexts to the models. Models for Soviet and US fighter aircraft have been included. Inclusion of other types of aircraft such as bombers, transports, and reconnaissance craft is straightforward. Two models permitmore » exploration of the interaction of semantic and taxonomic networks with the models. A full set of text data for fluid communication with the user has been included. The use of demons as triggered output responses to enhance utility to the user has been explored. This paper presents discussion of the ease of building the expert system using this powerful tool and problems encountered in the construction process.« less
What you see is what you expect: rapid scene understanding benefits from prior experience.
Greene, Michelle R; Botros, Abraham P; Beck, Diane M; Fei-Fei, Li
2015-05-01
Although we are able to rapidly understand novel scene images, little is known about the mechanisms that support this ability. Theories of optimal coding assert that prior visual experience can be used to ease the computational burden of visual processing. A consequence of this idea is that more probable visual inputs should be facilitated relative to more unlikely stimuli. In three experiments, we compared the perceptions of highly improbable real-world scenes (e.g., an underwater press conference) with common images matched for visual and semantic features. Although the two groups of images could not be distinguished by their low-level visual features, we found profound deficits related to the improbable images: Observers wrote poorer descriptions of these images (Exp. 1), had difficulties classifying the images as unusual (Exp. 2), and even had lower sensitivity to detect these images in noise than to detect their more probable counterparts (Exp. 3). Taken together, these results place a limit on our abilities for rapid scene perception and suggest that perception is facilitated by prior visual experience.
Building a VO-compliant Radio Astronomical DAta Model for Single-dish radio telescopes (RADAMS)
NASA Astrophysics Data System (ADS)
Santander-Vela, Juan de Dios; García, Emilio; Leon, Stephane; Espigares, Victor; Ruiz, José Enrique; Verdes-Montenegro, Lourdes; Solano, Enrique
2012-11-01
The Virtual Observatory (VO) is becoming the de-facto standard for astronomical data publication. However, the number of radio astronomical archives is still low in general, and even lower is the number of radio astronomical data available through the VO. In order to facilitate the building of new radio astronomical archives, easing at the same time their interoperability with VO framework, we have developed a VO-compliant data model which provides interoperable data semantics for radio data. That model, which we call the Radio Astronomical DAta Model for Single-dish (RADAMS) has been built using standards of (and recommendations from) the International Virtual Observatory Alliance (IVOA). This article describes the RADAMS and its components, including archived entities and their relationships to VO metadata. We show that by using IVOA principles and concepts, the effort needed for both the development of the archives and their VO compatibility has been lowered, and the joint development of two radio astronomical archives have been possible. We plan to adapt RADAMS to be able to deal with interferometry data in the future.
Kovalenko, Lyudmyla Y; Chaumon, Maximilien; Busch, Niko A
2012-07-01
Semantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)--a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material. However, semantic processing of visual objects (as opposed to words) is an important issue in research on visual cognition. In this study, we present a set of 800 pairs of semantically related and unrelated visual objects. The images were rated for semantic relatedness by a sample of 132 participants. Furthermore, we analyzed low-level image properties and matched the two semantic categories according to these features. An ERP study confirmed the suitability of this image set for evoking a robust N400 effect of semantic integration. Additionally, using a general linear modeling approach of single-trial data, we also demonstrate that low-level visual image properties and semantic relatedness are in fact only minimally overlapping. The image set is available for download from the authors' website. We expect that the image set will facilitate studies investigating mechanisms of semantic and contextual processing of visual stimuli.
A Semantic Analysis Method for Scientific and Engineering Code
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1998-01-01
This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
The Role of Simple Semantics in the Process of Artificial Grammar Learning.
Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara
2017-10-01
This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL experiment; in the without-semantics control condition, participants did not receive semantic information. It was hypothesized that semantics would generally facilitate grammar acquisition and that the learning benefit in the with-semantics conditions would increase with increasing grammar complexity. Experiment 1 showed learning effects for all grammars but no performance difference between conditions. Experiment 2 replicated the absence of a semantic benefit for all grammars even though semantic information was more prominent during grammar acquisition as compared to Experiment 1. Thus, we did not find evidence for the idea that semantics facilitates grammar acquisition, which seems to support the view of an independent syntactic processing component.
Lexical-semantic processing in the semantic priming paradigm in aphasic patients.
Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès
2012-09-01
There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.
Semantic Networks and Social Networks
ERIC Educational Resources Information Center
Downes, Stephen
2005-01-01
Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…
Hoffman, Paul
2018-05-25
Semantic cognition refers to the appropriate use of acquired knowledge about the world. This requires representation of knowledge as well as control processes which ensure that currently-relevant aspects of knowledge are retrieved and selected. Although these abilities can be impaired selectively following brain damage, the relationship between them in healthy individuals is unclear. It is also commonly assumed that semantic cognition is preserved in later life, because older people have greater reserves of knowledge. However, this claim overlooks the possibility of decline in semantic control processes. Here, semantic cognition was assessed in 100 young and older adults. Despite having a broader knowledge base, older people showed specific impairments in semantic control, performing more poorly than young people when selecting among competing semantic representations. Conversely, they showed preserved controlled retrieval of less salient information from the semantic store. Breadth of semantic knowledge was positively correlated with controlled retrieval but was unrelated to semantic selection ability, which was instead correlated with non-semantic executive function. These findings indicate that three distinct elements contribute to semantic cognition: semantic representations that accumulate throughout the lifespan, processes for controlled retrieval of less salient semantic information, which appear age-invariant, and mechanisms for selecting task-relevant aspects of semantic knowledge, which decline with age and may relate more closely to domain-general executive control.
Semantics, Pragmatics, and the Nature of Semantic Theories
ERIC Educational Resources Information Center
Spewak, David Charles, Jr.
2013-01-01
The primary concern of this dissertation is determining the distinction between semantics and pragmatics and how context sensitivity should be accommodated within a semantic theory. I approach the question over how to distinguish semantics from pragmatics from a new angle by investigating what the objects of a semantic theory are, namely…
Long, Nicole M.; Kahana, Michael J.
2016-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high frequency EEG activity (HFA, 44 – 100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. PMID:27617775
Long, Nicole M; Kahana, Michael J
2017-02-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high-frequency EEG activity (HFA, 44-100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Semantic memory in object use.
Silveri, Maria Caterina; Ciccarelli, Nicoletta
2009-10-01
We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.
Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants.
Ehsan, Sheeba; Baker, Gus A.; Rogers, Timothy T.
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants. PMID:22287382
Thompson, Hannah E; Jefferies, Elizabeth
2013-08-01
Research suggests that semantic memory deficits can occur in at least three ways. Patients can (1) show amodal degradation of concepts within the semantic store itself, such as in semantic dementia (SD), (2) have difficulty in controlling activation within the semantic system and accessing appropriate knowledge in line with current goals or context, as in semantic aphasia (SA) and (3) experience a semantic deficit in only one modality following degraded input from sensory cortex. Patients with SA show deficits of semantic control and access across word and picture tasks, consistent with the view that their problems arise from impaired modality-general control processes. However, there are a few reports in the literature of patients with semantic access problems restricted to auditory-verbal materials, who show decreasing ability to retrieve concepts from words when they are presented repeatedly with closely related distractors. These patients challenge the notion that semantic control processes are modality-general and suggest instead a separation of 'access' to auditory-verbal and non-verbal semantic systems. We had the rare opportunity to study such a case in detail. Our aims were to examine the effect of manipulations of control demands in auditory-verbal semantic, non-verbal semantic and non-semantic tasks, allowing us to assess whether such cases always show semantic control/access impairments that follow a modality-specific pattern, or whether there are alternative explanations. Our findings revealed: (1) deficits on executive tasks, unrelated to semantic demands, which were more evident in the auditory modality than the visual modality; (2) deficits in executively-demanding semantic tasks which were accentuated in the auditory-verbal domain compared with the visual modality, but still present on non-verbal tasks, and (3) a coupling between comprehension and executive control requirements, in that mild impairment on single word comprehension was greatly increased on more demanding, associative judgements across modalities. This pattern of results suggests that mild executive-semantic impairment, paired with disrupted connectivity from auditory input, may give rise to semantic 'access' deficits affecting only the auditory modality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Selective Short-Term Memory Deficits Arise from Impaired Domain-General Semantic Control Mechanisms
ERIC Educational Resources Information Center
Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Hopper, Samantha; Lambon Ralph, Matthew A.
2009-01-01
Semantic short-term memory (STM) patients have a reduced ability to retain semantic information over brief delays but perform well on other semantic tasks; this pattern suggests damage to a dedicated buffer for semantic information. Alternatively, these difficulties may arise from mild disruption to domain-general semantic processes that have…
Coderre, Emily L; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry
2017-03-01
Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we compared event-related potentials (ERPs) in response to lexico-semantic processing (written words) and visuo-semantic processing (pictures) in adults with ASD and adults with typical development (TD). The ASD group showed successful lexico-semantic and visuo-semantic processing, indicated by similar N400 effects between groups for word and picture stimuli. However, differences in N400 latency and topography in word conditions suggested different lexico-semantic processing mechanisms: an expectancy-based strategy for the TD group but a controlled post-lexical integration strategy for the ASD group.
Exploiting Recurring Structure in a Semantic Network
NASA Technical Reports Server (NTRS)
Wolfe, Shawn R.; Keller, Richard M.
2004-01-01
With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.
Introduction to geospatial semantics and technology workshop handbook
Varanka, Dalia E.
2012-01-01
The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.
NASA Astrophysics Data System (ADS)
Mallepudi, Sri Abhishikth; Calix, Ricardo A.; Knapp, Gerald M.
2011-02-01
In recent years there has been a rapid increase in the size of video and image databases. Effective searching and retrieving of images from these databases is a significant current research area. In particular, there is a growing interest in query capabilities based on semantic image features such as objects, locations, and materials, known as content-based image retrieval. This study investigated mechanisms for identifying materials present in an image. These capabilities provide additional information impacting conditional probabilities about images (e.g. objects made of steel are more likely to be buildings). These capabilities are useful in Building Information Modeling (BIM) and in automatic enrichment of images. I2T methodologies are a way to enrich an image by generating text descriptions based on image analysis. In this work, a learning model is trained to detect certain materials in images. To train the model, an image dataset was constructed containing single material images of bricks, cloth, grass, sand, stones, and wood. For generalization purposes, an additional set of 50 images containing multiple materials (some not used in training) was constructed. Two different supervised learning classification models were investigated: a single multi-class SVM classifier, and multiple binary SVM classifiers (one per material). Image features included Gabor filter parameters for texture, and color histogram data for RGB components. All classification accuracy scores using the SVM-based method were above 85%. The second model helped in gathering more information from the images since it assigned multiple classes to the images. A framework for the I2T methodology is presented.
Text-based Analytics for Biosurveillance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, Lauren E.; Smith, William P.; Rounds, Jeremiah
The ability to prevent, mitigate, or control a biological threat depends on how quickly the threat is identified and characterized. Ensuring the timely delivery of data and analytics is an essential aspect of providing adequate situational awareness in the face of a disease outbreak. This chapter outlines an analytic pipeline for supporting an advanced early warning system that can integrate multiple data sources and provide situational awareness of potential and occurring disease situations. The pipeline, includes real-time automated data analysis founded on natural language processing (NLP), semantic concept matching, and machine learning techniques, to enrich content with metadata related tomore » biosurveillance. Online news articles are presented as an example use case for the pipeline, but the processes can be generalized to any textual data. In this chapter, the mechanics of a streaming pipeline are briefly discussed as well as the major steps required to provide targeted situational awareness. The text-based analytic pipeline includes various processing steps as well as identifying article relevance to biosurveillance (e.g., relevance algorithm) and article feature extraction (who, what, where, why, how, and when). The ability to prevent, mitigate, or control a biological threat depends on how quickly the threat is identified and characterized. Ensuring the timely delivery of data and analytics is an essential aspect of providing adequate situational awareness in the face of a disease outbreak. This chapter outlines an analytic pipeline for supporting an advanced early warning system that can integrate multiple data sources and provide situational awareness of potential and occurring disease situations. The pipeline, includes real-time automated data analysis founded on natural language processing (NLP), semantic concept matching, and machine learning techniques, to enrich content with metadata related to biosurveillance. Online news articles are presented as an example use case for the pipeline, but the processes can be generalized to any textual data. In this chapter, the mechanics of a streaming pipeline are briefly discussed as well as the major steps required to provide targeted situational awareness. The text-based analytic pipeline includes various processing steps as well as identifying article relevance to biosurveillance (e.g., relevance algorithm) and article feature extraction (who, what, where, why, how, and when).« less
Hodgson, Catherine; Lambon Ralph, Matthew A
2008-01-01
Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study utilised a novel method- tempo picture naming. Experiment 1 showed that, compared to standard deadline naming tasks, participants made more errors on the tempo picture naming tasks. Further, RTs were longer and more errors were produced to living items than non-living items a pattern seen in both semantic dementia and semantically-impaired stroke aphasic patients. Experiment 2 showed that providing the initial phoneme as a cue enhanced performance whereas providing an incorrect phonemic cue further reduced performance. These results support the contention that the tempo picture naming paradigm reduces the time allowed for controlled semantic processing causing increased error rates. This experimental procedure would, therefore, appear to mimic the performance of aphasic patients with multi-modal semantic impairment that results from poor semantic control rather than the degradation of semantic representations observed in semantic dementia [Jefferies, E. A., & Lambon Ralph, M. A. (2006). Semantic impairment in stoke aphasia vs. semantic dementia: A case-series comparison. Brain, 129, 2132-2147]. Further implications for theories of semantic cognition and models of speech processing are discussed.
Chen, Xuqian; Liao, Yuanlan; Chen, Xianzhe
2017-08-01
Using a non-alphabetic language (e.g., Chinese), the present study tested a novel view that semantic information at the sublexical level should be activated during handwriting production. Over 80% of Chinese characters are phonograms, in which semantic radicals represent category information (e.g., 'chair,' 'peach,' 'orange' are related to plants) while phonetic radicals represent phonetic information (e.g., 'wolf,' 'brightness,' 'male,' are all pronounced /lang/). Under different semantic category conditions at the lexical level (semantically related in Experiment 1; semantically unrelated in Experiment 2), the orthographic relatedness and semantic relatedness of semantic radicals in the picture name and its distractor were manipulated under different SOAs (i.e., stimulus onset asynchrony, the interval between the onset of the picture and the onset of the interference word). Two questions were addressed: (1) Is it possible that semantic information could be activated in the sublexical level conditions? (2) How are semantic and orthographic information dynamically accessed in word production? Results showed that both orthographic and semantic information were activated under the present picture-word interference paradigm, dynamically under different SOAs, which supported our view that discussions on semantic processes in the writing modality should be extended to the sublexical level. The current findings provide possibility for building new orthography-phonology-semantics models in writing. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Demb, J B; Desmond, J E; Wagner, A D; Vaidya, C J; Glover, G H; Gabrieli, J D
1995-09-01
Prefrontal cortical function was examined during semantic encoding and repetition priming using functional magnetic resonance imaging (fMRI), a noninvasive technique for localizing regional changes in blood oxygenation, a correlate of neural activity. Words studied in a semantic (deep) encoding condition were better remembered than words studied in both easier and more difficult nonsemantic (shallow) encoding conditions, with difficulty indexed by response time. The left inferior prefrontal cortex (LIPC) (Brodmann's areas 45, 46, 47) showed increased activation during semantic encoding relative to nonsemantic encoding regardless of the relative difficulty of the nonsemantic encoding task. Therefore, LIPC activation appears to be related to semantic encoding and not task difficulty. Semantic encoding decisions are performed faster the second time words are presented. This represents semantic repetition priming, a facilitation in semantic processing for previously encoded words that is not dependent on intentional recollection. The same LIPC area activated during semantic encoding showed decreased activation during repeated semantic encoding relative to initial semantic encoding of the same words. This decrease in activation during repeated encoding was process specific; it occurred when words were semantically reprocessed but not when words were nonsemantically reprocessed. The results were apparent in both individual and averaged functional maps. These findings suggest that the LIPC is part of a semantic executive system that contributes to the on-line retrieval of semantic information.
Cousins, Katheryn A Q; Grossman, Murray
2017-12-01
Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.
Type-specific proactive interference in patients with semantic and phonological STM deficits.
Harris, Lara; Olson, Andrew; Humphreys, Glyn
2014-01-01
Prior neuropsychological evidence suggests that semantic and phonological components of short-term memory (STM) are functionally and neurologically distinct. The current paper examines proactive interference (PI) from semantic and phonological information in two STM-impaired patients, DS (semantic STM deficit) and AK (phonological STM deficit). In Experiment 1 probe recognition tasks with open and closed sets of stimuli were used. Phonological PI was assessed using nonword items, and semantic and phonological PI was assessed using words. In Experiment 2 phonological and semantic PI was elicited by an item recognition probe test with stimuli that bore phonological and semantic relations to the probes. The data suggested heightened phonological PI for the semantic STM patient, and exaggerated effects of semantic PI in the phonological STM case. The findings are consistent with an account of extremely rapid decay of activated type-specific representations in cases of severely impaired phonological and semantic STM.
Integrated Japanese Dependency Analysis Using a Dialog Context
NASA Astrophysics Data System (ADS)
Ikegaya, Yuki; Noguchi, Yasuhiro; Kogure, Satoru; Itoh, Toshihiko; Konishi, Tatsuhiro; Kondo, Makoto; Asoh, Hideki; Takagi, Akira; Itoh, Yukihiro
This paper describes how to perform syntactic parsing and semantic analysis in a dialog system. The paper especially deals with how to disambiguate potentially ambiguous sentences using the contextual information. Although syntactic parsing and semantic analysis are often studied independently of each other, correct parsing of a sentence often requires the semantic information on the input and/or the contextual information prior to the input. Accordingly, we merge syntactic parsing with semantic analysis, which enables syntactic parsing taking advantage of the semantic content of an input and its context. One of the biggest problems of semantic analysis is how to interpret dependency structures. We employ a framework for semantic representations that circumvents the problem. Within the framework, the meaning of any predicate is converted into a semantic representation which only permits a single type of predicate: an identifying predicate "aru". The semantic representations are expressed as sets of "attribute-value" pairs, and those semantic representations are stored in the context information. Our system disambiguates syntactic/semantic ambiguities of inputs referring to the attribute-value pairs in the context information. We have experimentally confirmed the effectiveness of our approach; specifically, the experiment confirmed high accuracy of parsing and correctness of generated semantic representations.
Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control
Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.
2011-01-01
Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought and can occur as a result of mild disruption to semantic control processes, i.e., mechanisms that bias semantic processing towards task-relevant aspects of knowledge and away from irrelevant information. We tested three semantic STM patients with tasks that tapped four aspects of semantic control: (i) resolving ambiguity between word meanings, (ii) sensitivity to cues, (iii) ignoring irrelevant information and (iv) detecting weak semantic associations. All were impaired in conditions requiring more semantic control, irrespective of the STM demands of the task, suggesting a mild, but task-general, deficit in regulating semantic knowledge. This mild deficit has a disproportionate effect on STM tasks because they have high intrinsic control demands: in STM tasks, control is required to keep information active when it is no longer available in the environment and to manage competition between items held in memory simultaneously. By re-interpreting the core deficit in semantic STM patients in this way, we are able to explain their apparently selective impairment without the need for a specialised STM store. Instead, we argue that semantic STM patients occupy the mildest end of spectrum of semantic control disorders. PMID:21195105
[Schizophrenia and semantic priming effects].
Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S
2006-01-01
This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.
ERIC Educational Resources Information Center
Robson, Holly; Sage, Karen; Lambon Ralph, Matthew A.
2012-01-01
Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and…
Kakati, Tulika; Kashyap, Hirak; Bhattacharyya, Dhruba K
2016-11-30
There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer's disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer's disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer's disease brains. The biological pathways associated with Alzheimer's disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature.
Kakati, Tulika; Kashyap, Hirak; Bhattacharyya, Dhruba K.
2016-01-01
There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer’s disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer’s disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer’s disease brains. The biological pathways associated with Alzheimer’s disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature. PMID:27901073
Semantator: semantic annotator for converting biomedical text to linked data.
Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G
2013-10-01
More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.
Renoult, Louis; Tanguay, Annick; Beaudry, Myriam; Tavakoli, Paniz; Rabipour, Sheida; Campbell, Kenneth; Moscovitch, Morris; Levine, Brian; Davidson, Patrick S R
2016-03-01
Declarative memory is thought to consist of two independent systems: episodic and semantic. Episodic memory represents personal and contextually unique events, while semantic memory represents culturally-shared, acontextual factual knowledge. Personal semantics refers to aspects of declarative memory that appear to fall somewhere in between the extremes of episodic and semantic. Examples include autobiographical knowledge and memories of repeated personal events. These two aspects of personal semantics have been studied little and rarely compared to both semantic and episodic memory. We recorded the event-related potentials (ERPs) of 27 healthy participants while they verified the veracity of sentences probing four types of questions: general (i.e., semantic) facts, autobiographical facts, repeated events, and unique (i.e., episodic) events. Behavioral results showed equivalent reaction times in all 4 conditions. True sentences were verified faster than false sentences, except for unique events for which no significant difference was observed. Electrophysiological results showed that the N400 (which is classically associated with retrieval from semantic memory) was maximal for general facts and the LPC (which is classically associated with retrieval from episodic memory) was maximal for unique events. For both ERP components, the two personal semantic conditions (i.e., autobiographical facts and repeated events) systematically differed from semantic memory. In addition, N400 amplitudes also differentiated autobiographical facts from unique events. Autobiographical facts and repeated events did not differ significantly from each other but their corresponding scalp distributions differed from those associated with general facts. Our results suggest that the neural correlates of personal semantics can be distinguished from those of semantic and episodic memory, and may provide clues as to how unique events are transformed to semantic memory. Copyright © 2015 Elsevier Ltd. All rights reserved.
Joubert, Sven; Brambati, Simona M; Ansado, Jennyfer; Barbeau, Emmanuel J; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Céline; Kergoat, Marie-Jeanne
2010-03-01
Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls. Item-by-item analyses showed that anomia in aMCI and early AD was significantly associated with underlying semantic knowledge of famous people but not with semantic knowledge of objects. Moreover, semantic knowledge of the same concepts was impaired in both the visual and the verbal modalities. Finally, voxel-based morphometry analyses revealed that semantic impairment in aMCI and AD was associated with cortical atrophy in the anterior temporal lobe (ATL) region as well as in the inferior prefrontal cortex (IPC), some of the key regions of the semantic cognition network. These findings suggest that the semantic impairment in aMCI may result from a breakdown of semantic knowledge of famous people and objects, combined with difficulties in the selection, manipulation and retrieval of this knowledge. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Rule-based support system for multiple UMLS semantic type assignments
Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia
2012-01-01
Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716
An investigation of time course of category and semantic priming.
Ray, Suchismita
2008-04-01
Low semantically similar exemplars in a category demonstrate the category-priming effect through priming of the category (i.e., exemplar-category-exemplar), whereas high semantically similar exemplars in the same category demonstrate the semantic-priming effect (i.e., direct activation of one high semantically similar exemplar by another). The author asked whether the category- and semantic-priming effects are based on a common memory process. She examined this question by testing the time courses of category- and semantic-priming effects. She tested participants on either category- or semantic-priming paradigm at 2 different time intervals (6 min and 42 min) by using a lexical decision task using exemplars from categories. Results showed that the time course of category priming was different from that of semantic priming. The author concludes that these 2 priming effects are based on 2 separate memory processes.
Varieties of semantic ‘access’ deficit in Wernicke’s aphasia and semantic aphasia
Robson, Holly; Lambon Ralph, Matthew A.; Jefferies, Elizabeth
2015-01-01
Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke’s aphasia, associated with poor auditory–verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic ‘access’ deficit, as opposed to the ‘storage’ deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of ‘access’ impairment—related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke’s aphasia). We used a case series design to compare patients with Wernicke’s aphasia and those with semantic aphasia on Warrington’s paradigmatic assessment of semantic ‘access’ deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic ‘blocking’ effects). Patients with Wernicke’s aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability—one that mapped onto classical ‘syndromes’ and one that did not—predicted aspects of the semantic ‘access’ deficit. Both semantic aphasia and Wernicke’s aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke’s aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially ‘beneficial’ effects of stimulus repetition: cases with Wernicke’s aphasia showed initial improvement with repetition of words and pictures, while in semantic aphasia, semantic access was initially good but declined in the face of competition from previous targets. Prefrontal damage predicted the ‘harmful’ effects of repetition: the ability to reselect both word and picture targets in the face of mounting competition was linked to left prefrontal damage in both groups. Therefore, patients with semantic aphasia and Wernicke’s aphasia have partially distinct impairment of semantic ‘access’ but, across these syndromes, prefrontal lesions produce declining comprehension with repetition in both verbal and non-verbal tasks. PMID:26454668
Varieties of semantic 'access' deficit in Wernicke's aphasia and semantic aphasia.
Thompson, Hannah E; Robson, Holly; Lambon Ralph, Matthew A; Jefferies, Elizabeth
2015-12-01
Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke's aphasia, associated with poor auditory-verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic 'access' deficit, as opposed to the 'storage' deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of 'access' impairment-related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke's aphasia). We used a case series design to compare patients with Wernicke's aphasia and those with semantic aphasia on Warrington's paradigmatic assessment of semantic 'access' deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic 'blocking' effects). Patients with Wernicke's aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability-one that mapped onto classical 'syndromes' and one that did not-predicted aspects of the semantic 'access' deficit. Both semantic aphasia and Wernicke's aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke's aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially 'beneficial' effects of stimulus repetition: cases with Wernicke's aphasia showed initial improvement with repetition of words and pictures, while in semantic aphasia, semantic access was initially good but declined in the face of competition from previous targets. Prefrontal damage predicted the 'harmful' effects of repetition: the ability to reselect both word and picture targets in the face of mounting competition was linked to left prefrontal damage in both groups. Therefore, patients with semantic aphasia and Wernicke's aphasia have partially distinct impairment of semantic 'access' but, across these syndromes, prefrontal lesions produce declining comprehension with repetition in both verbal and non-verbal tasks. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir
2013-08-07
A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material was packed into a standard syringe (0.5 mL) to enhance the ease of use of the sol-gel material and for the elimination of additional mixing and separation procedures during the adsorption, washing and elution steps of the enrichment procedure. It was found that up to 28 phosphopeptides in milk digest were easily detectable by MALDI-MS at femtomole levels (around 20 fmol) using the microextraction syringe within less than one minute.
Semantic-gap-oriented active learning for multilabel image annotation.
Tang, Jinhui; Zha, Zheng-Jun; Tao, Dacheng; Chua, Tat-Seng
2012-04-01
User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.
The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.
Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao
2015-09-01
Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.
Combining rules, background knowledge and change patterns to maintain semantic annotations.
Cardoso, Silvio Domingos; Chantal, Reynaud-Delaître; Da Silveira, Marcos; Pruski, Cédric
2017-01-01
Knowledge Organization Systems (KOS) play a key role in enriching biomedical information in order to make it machine-understandable and shareable. This is done by annotating medical documents, or more specifically, associating concept labels from KOS with pieces of digital information, e.g., images or texts. However, the dynamic nature of KOS may impact the annotations, thus creating a mismatch between the evolved concept and the associated information. To solve this problem, methods to maintain the quality of the annotations are required. In this paper, we define a framework based on rules, background knowledge and change patterns to drive the annotation adaption process. We evaluate experimentally the proposed approach in realistic cases-studies and demonstrate the overall performance of our approach in different KOS considering the precision, recall, F1-score and AUC value of the system.
Combining rules, background knowledge and change patterns to maintain semantic annotations
Cardoso, Silvio Domingos; Chantal, Reynaud-Delaître; Da Silveira, Marcos; Pruski, Cédric
2017-01-01
Knowledge Organization Systems (KOS) play a key role in enriching biomedical information in order to make it machine-understandable and shareable. This is done by annotating medical documents, or more specifically, associating concept labels from KOS with pieces of digital information, e.g., images or texts. However, the dynamic nature of KOS may impact the annotations, thus creating a mismatch between the evolved concept and the associated information. To solve this problem, methods to maintain the quality of the annotations are required. In this paper, we define a framework based on rules, background knowledge and change patterns to drive the annotation adaption process. We evaluate experimentally the proposed approach in realistic cases-studies and demonstrate the overall performance of our approach in different KOS considering the precision, recall, F1-score and AUC value of the system. PMID:29854115
Episodic representations support early semantic learning: evidence from midazolam induced amnesia.
Merritt, Paul; Hirshman, Elliot; Zamani, Shane; Hsu, John; Berrigan, Michael
2006-07-01
Current controversy exists regarding the role of episodic representations in the formation of long-term semantic memories. Using the drug midazolam to induce temporary amnesia we tested participants' memories for newly learned facts in a semantic cue condition or an episodic and semantic cue condition. Following midazolam administration, memory performance was superior in the episodic and semantic condition, suggesting early semantic learning is supported by episodic representations.
Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts
He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang
2018-01-01
The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments. PMID:29375930
Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts.
He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang
2017-11-01
The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments.
Robson, Holly; Sage, Karen; Ralph, Matthew A Lambon
2012-01-01
Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and semantic aphasia) and (b) an ongoing debate about the underlying causes of comprehension impairment in WA. By directly comparing these three patient groups for the first time, we demonstrate that the comprehension impairment in Wernicke's aphasia is best accounted for by dual deficits in acoustic-phonological analysis (associated with pSTG) and semantic cognition (associated with pMTG and angular gyrus). The WA group were impaired on both nonverbal and verbal comprehension assessments consistent with a generalised semantic impairment. This semantic deficit was most similar in nature to that of the semantic aphasia group suggestive of a disruption to semantic control processes. In addition, only the WA group showed a strong effect of input modality on comprehension, with accuracy decreasing considerably as acoustic-phonological requirements increased. These results deviate from traditional accounts which emphasise a single impairment and, instead, implicate two deficits underlying the comprehension disorder in WA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Different Loci of Semantic Interference in Picture Naming vs. Word-Picture Matching Tasks.
Harvey, Denise Y; Schnur, Tatiana T
2016-01-01
Naming pictures and matching words to pictures belonging to the same semantic category impairs performance relative to when stimuli come from different semantic categories (i.e., semantic interference). Despite similar semantic interference phenomena in both picture naming and word-picture matching tasks, the locus of interference has been attributed to different levels of the language system - lexical in naming and semantic in word-picture matching. Although both tasks involve access to shared semantic representations, the extent to which interference originates and/or has its locus at a shared level remains unclear, as these effects are often investigated in isolation. We manipulated semantic context in cyclical picture naming and word-picture matching tasks, and tested whether factors tapping semantic-level (generalization of interference to novel category items) and lexical-level processes (interactions with lexical frequency) affected the magnitude of interference, while also assessing whether interference occurs at a shared processing level(s) (transfer of interference across tasks). We found that semantic interference in naming was sensitive to both semantic- and lexical-level processes (i.e., larger interference for novel vs. old and low- vs. high-frequency stimuli), consistent with a semantically mediated lexical locus. Interference in word-picture matching exhibited stable interference for old and novel stimuli and did not interact with lexical frequency. Further, interference transferred from word-picture matching to naming. Together, these experiments provide evidence to suggest that semantic interference in both tasks originates at a shared processing stage (presumably at the semantic level), but that it exerts its effect at different loci when naming pictures vs. matching words to pictures.
Different Loci of Semantic Interference in Picture Naming vs. Word-Picture Matching Tasks
Harvey, Denise Y.; Schnur, Tatiana T.
2016-01-01
Naming pictures and matching words to pictures belonging to the same semantic category impairs performance relative to when stimuli come from different semantic categories (i.e., semantic interference). Despite similar semantic interference phenomena in both picture naming and word-picture matching tasks, the locus of interference has been attributed to different levels of the language system – lexical in naming and semantic in word-picture matching. Although both tasks involve access to shared semantic representations, the extent to which interference originates and/or has its locus at a shared level remains unclear, as these effects are often investigated in isolation. We manipulated semantic context in cyclical picture naming and word-picture matching tasks, and tested whether factors tapping semantic-level (generalization of interference to novel category items) and lexical-level processes (interactions with lexical frequency) affected the magnitude of interference, while also assessing whether interference occurs at a shared processing level(s) (transfer of interference across tasks). We found that semantic interference in naming was sensitive to both semantic- and lexical-level processes (i.e., larger interference for novel vs. old and low- vs. high-frequency stimuli), consistent with a semantically mediated lexical locus. Interference in word-picture matching exhibited stable interference for old and novel stimuli and did not interact with lexical frequency. Further, interference transferred from word-picture matching to naming. Together, these experiments provide evidence to suggest that semantic interference in both tasks originates at a shared processing stage (presumably at the semantic level), but that it exerts its effect at different loci when naming pictures vs. matching words to pictures. PMID:27242621
Semantic Typicality Effects in Acquired Dyslexia: Evidence for Semantic Impairment in Deep Dyslexia.
Riley, Ellyn A; Thompson, Cynthia K
2010-06-01
BACKGROUND: Acquired deep dyslexia is characterized by impairment in grapheme-phoneme conversion and production of semantic errors in oral reading. Several theories have attempted to explain the production of semantic errors in deep dyslexia, some proposing that they arise from impairments in both grapheme-phoneme and lexical-semantic processing, and others proposing that such errors stem from a deficit in phonological production. Whereas both views have gained some acceptance, the limited evidence available does not clearly eliminate the possibility that semantic errors arise from a lexical-semantic input processing deficit. AIMS: To investigate semantic processing in deep dyslexia, this study examined the typicality effect in deep dyslexic individuals, phonological dyslexic individuals, and controls using an online category verification paradigm. This task requires explicit semantic access without speech production, focusing observation on semantic processing from written or spoken input. METHODS #ENTITYSTARTX00026; PROCEDURES: To examine the locus of semantic impairment, the task was administered in visual and auditory modalities with reaction time as the primary dependent measure. Nine controls, six phonological dyslexic participants, and five deep dyslexic participants completed the study. OUTCOMES #ENTITYSTARTX00026; RESULTS: Controls and phonological dyslexic participants demonstrated a typicality effect in both modalities, while deep dyslexic participants did not demonstrate a typicality effect in either modality. CONCLUSIONS: These findings suggest that deep dyslexia is associated with a semantic processing deficit. Although this does not rule out the possibility of concomitant deficits in other modules of lexical-semantic processing, this finding suggests a direction for treatment of deep dyslexia focused on semantic processing.
Harvey, Denise Y; Schnur, Tatiana T
2015-06-01
Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lack of semantic priming effects in famous person recognition in Mild Cognitive Impairment.
Brambati, Simona M; Peters, Frédéric; Belleville, Sylvie; Joubert, Sven
2012-04-01
Growing evidence indicates that individuals with Mild Cognitive Impairment (MCI) manifest semantic deficits that are often more severe for items that are characterized by a unique semantic and lexical association, such as famous people and famous buildings, than common concepts, such as objects. However, it is still controversial whether the semantic deficits observed in MCI are determined by a degradation of semantic information or by a deficit in intentional access to semantic knowledge. Here we used a semantic priming task in order to assess the integrity of the semantic system without requiring explicit access to this system. This paradigm may provide new insights in clarifying the nature of the semantic deficits in MCI. We assessed the semantic and repetition priming effect in 13 individuals with MCI and 13 age-matched controls who engaged in a familiarity judgment task of famous names. In the semantic priming condition, the prime was the name of a member of the same occupation category as the target (Tom Cruise-Brad Pitt), while in the repetition priming condition the prime was the same name as the target (Charlie Chaplin-Charlie Chaplin). The results showed a defective priming effect in MCI in the semantic but not in the repetition priming condition. Specifically, when compared to controls, MCI patients did not show a facilitation effect in responding to the same occupation prime-target pairs, but they showed an equivalent facilitation effect when the target was the same name as the prime. The present results provide support to the hypothesis that the semantic impairments observed in MCI cannot be uniquely ascribed to a deficit in intentional access to semantic information. Instead, these findings point to the semantic nature of these deficits and, in particular, to a degraded representation of semantic information concerning famous people. Copyright © 2011 Elsevier Srl. All rights reserved.
A Semantic Graph Query Language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, I L
2006-10-16
Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.
SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services
USDA-ARS?s Scientific Manuscript database
SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...
Semantic Priming for Coordinate Distant Concepts in Alzheimer's Disease Patients
ERIC Educational Resources Information Center
Perri, R.; Zannino, G. D.; Caltagirone, C.; Carlesimo, G. A.
2011-01-01
Semantic priming paradigms have been used to investigate semantic knowledge in patients with Alzheimer's disease (AD). While priming effects produced by prime-target pairs with associative relatedness reflect processes at both lexical and semantic levels, priming effects produced by words that are semantically related but not associated should…
Semantic Categories and Context in L2 Vocabulary Learning
ERIC Educational Resources Information Center
Bolger, Patrick; Zapata, Gabriela
2011-01-01
This article extends recent findings that presenting semantically related vocabulary simultaneously inhibits learning. It does so by adding story contexts. Participants learned 32 new labels for known concepts from four different semantic categories in stories that were either semantically related (one category per story) or semantically unrelated…
The Semantics of Plurals: A Defense of Singularism
ERIC Educational Resources Information Center
Florio, Salvatore
2010-01-01
In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…
Semantic Priming Effects in Normal versus Poor Readers
ERIC Educational Resources Information Center
Assink, Egbert M. H.; Van Bergen, Floor; Van Teeseling, Heleen; Knuijt, Paul P. N. A.
2004-01-01
The authors studied sensitivity to semantic priming, as distinct from semantic judgment, in poor readers. Association strength (high vs. low semantic association) was manipulated factorially with semantic association type (categoric vs. thematic association). Participants were 11-year-old poor readers (n = 15) who were matched with a group of…
Mapping the Structure of Semantic Memory
ERIC Educational Resources Information Center
Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J.
2013-01-01
Aggregating snippets from the semantic memories of many individuals may not yield a good map of an individual's semantic memory. The authors analyze the structure of semantic networks that they sampled from individuals through a new snowball sampling paradigm during approximately 6 weeks of 1-hr daily sessions. The semantic networks of individuals…
Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support
ERIC Educational Resources Information Center
Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.
2007-01-01
Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…
Individual Variability in the Semantic Processing of English Compound Words
ERIC Educational Resources Information Center
Schmidtke, Daniel; Van Dyke, Julie A.; Kuperman, Victor
2018-01-01
Semantic transparency effects during compound word recognition provide critical insight into the organization of semantic knowledge and the nature of semantic processing. The past 25 years of psycholinguistic research on compound semantic transparency has produced discrepant effects, leaving the existence and nature of its influence unresolved. In…
A Defense of Semantic Minimalism
ERIC Educational Resources Information Center
Kim, Su
2012-01-01
Semantic Minimalism is a position about the semantic content of declarative sentences, i.e., the content that is determined entirely by syntax. It is defined by the following two points: "Point 1": The semantic content is a complete/truth-conditional proposition. "Point 2": The semantic content is useful to a theory of…
Semantic distance effects on object and action naming.
Vigliocco, Gabriella; Vinson, David P; Damian, Markus F; Levelt, Willem
2002-10-01
Graded interference effects were tested in a naming task, in parallel for objects and actions. Participants named either object or action pictures presented in the context of other pictures (blocks) that were either semantically very similar, or somewhat semantically similar or semantically dissimilar. We found that naming latencies for both object and action words were modulated by the semantic similarity between the exemplars in each block, providing evidence in both domains of graded semantic effects.
An Experiment in Scientific Code Semantic Analysis
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1998-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, distributed expert parsers. These semantic parser are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. The parsers will automatically recognize and document some static, semantic concepts and locate some program semantic errors. Results are shown for a subroutine test case and a collection of combustion code routines. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.
Smith, Ryan M; Beversdorf, David Q
2008-07-01
Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.
Natural speech reveals the semantic maps that tile human cerebral cortex
Huth, Alexander G.; de Heer, Wendy A.; Griffiths, Thomas L.; Theunissen, Frédéric E.; Gallant, Jack L.
2016-01-01
The meaning of language is represented in regions of the cerebral cortex collectively known as the “semantic system”. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modeling of fMRI data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that appear consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods—commonplace in studies of human neuroanatomy and functional connectivity—provide a powerful and efficient means for mapping functional representations in the brain. PMID:27121839
Linked data scientometrics in semantic e-Science
NASA Astrophysics Data System (ADS)
Narock, Tom; Wimmer, Hayden
2017-03-01
The Semantic Web is inherently multi-disciplinary and many domains have taken advantage of semantic technologies. Yet, the geosciences are one of the fields leading the way in Semantic Web adoption and validation. Astronomy, Earth science, hydrology, and solar-terrestrial physics have seen a noteworthy amount of semantic integration. The geoscience community has been willing early adopters of semantic technologies and have provided essential feedback to the broader semantic web community. Yet, there has been no systematic study of the community as a whole and there exists no quantitative data on the impact and status of semantic technologies in the geosciences. We explore the applicability of Linked Data to scientometrics in the geosciences. In doing so, we gain an initial understanding of the breadth and depth of the Semantic Web in the geosciences. We identify what appears to be a transitionary period in the applicability of these technologies.
From Data to Semantic Information
NASA Astrophysics Data System (ADS)
Floridi, Luciano
2003-06-01
There is no consensus yet on the definition of semantic information. This paper contributes to the current debate by criticising and revising the Standard Definition of semantic Information (SDI) as meaningful data, in favour of the Dretske-Grice approach: meaningful and well-formed data constitute semantic information only if they also qualify as contingently truthful. After a brief introduction, SDI is criticised for providing necessary but insufficient conditions for the definition of semantic information. SDI is incorrect because truth-values do not supervene on semantic information, and misinformation (that is, false semantic information) is not a type of semantic information, but pseudo-information, that is not semantic information at all. This is shown by arguing that none of the reasons for interpreting misinformation as a type of semantic information is convincing, whilst there are compelling reasons to treat it as pseudo-information. As a consequence, SDI is revised to include a necessary truth-condition. The last section summarises the main results of the paper and indicates the important implications of the revised definition for the analysis of the deflationary theories of truth, the standard definition of knowledge and the classic, quantitative theory of semantic information.
Semantic dementia Brazilian study of nineteen cases
Senaha, Mirna Lie Hosogi; Caramelli, Paulo; Porto, Claudia Sellitto; Nitrini, Ricardo
2007-01-01
The term semantic dementia was devised by Snowden et al. in 1989 and nowadays, the semantic dementia syndrome is recognized as one of the clinical forms of frontotemporal lobar degeneration (FTLD) and is characterized by a language semantic disturbance associated to non-verbal semantic memory impairment. Objectives The aim of this study was to describe a Brazilian sample of 19 semantic dementia cases, emphasizing the clinical characteristics important for differential diagnosis of this syndrome. Methods Nineteen cases with semantic dementia were evaluated between 1999 and 2007. All patients were submitted to neurological evaluation, neuroimaging exams and cognitive, language and semantic memory evaluation. Results All patients presented fluent spontaneous speech, preservation of syntactic and phonological aspects of the language, word-finding difficulty, semantic paraphasias, word comprehension impairment, low performance in visual confrontation naming tasks, impairment on tests of non-verbal semantic memory and preservation of autobiographical memory and visuospatial skills. Regarding radiological investigations, temporal lobe atrophy and/or hypoperfusion were found in all patients. Conclusions The cognitive, linguistic and of neuroimaging data in our case series corroborate other studies showing that semantic dementia constitutes a syndrome with well defined clinical characteristics associated to temporal lobe atrophy. PMID:29213413
Visual and semantic processing of living things and artifacts: an FMRI study.
Zannino, Gian Daniele; Buccione, Ivana; Perri, Roberta; Macaluso, Emiliano; Lo Gerfo, Emanuele; Caltagirone, Carlo; Carlesimo, Giovanni A
2010-03-01
We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word-picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target-foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.
Péron, Julie A.; Piolino, Pascale; Moal-Boursiquot, Sandrine Le; Biseul, Isabelle; Leray, Emmanuelle; Bon, Laetitia; Desgranges, Béatrice; Eustache, Francis; Belliard, Serge
2015-01-01
Semantic dementia patients seem to have better knowledge of information linked to the self. More specifically, despite having severe semantic impairment, these patients show that they have more general information about the people they know personally by direct experience than they do about other individuals they know indirectly. However, the role of direct personal experience remains debated because of confounding factors such as frequency, recency of exposure, and affective relevance. We performed an exploratory study comparing the performance of five semantic dementia patients with that of 10 matched healthy controls on the recognition (familiarity judgment) and identification (biographic information recall) of personally familiar names vs. famous names. As expected, intergroup comparisons indicated a semantic breakdown in semantic dementia patients as compared with healthy controls. Moreover, unlike healthy controls, the semantic dementia patients recognized and identified personally familiar names better than they did famous names. This pattern of results suggests that direct personal experience indeed plays a specific role in the relative preservation of person-specific semantic meaning in semantic dementia. We discuss the role of direct personal experience on the preservation of semantic knowledge and the potential neurophysiological mechanisms underlying these processes. PMID:26635578
Senaha, Mirna Lie Hosogi; Caramelli, Paulo; Porto, Claudia Sellitto; Nitrini, Ricardo
2007-01-01
Selective disturbances of semantic memory have attracted the interest of many investigators and the question of the existence of single or multiple semantic systems remains a very controversial theme in the literature. Objectives To discuss the question of multiple semantic systems based on a longitudinal study of a patient who presented semantic dementia from fluent primary progressive aphasia. Methods A 66 year-old woman with selective impairment of semantic memory was examined on two occasions, undergoing neuropsychological and language evaluations, the results of which were compared to those of three paired control individuals. Results In the first evaluation, physical examination was normal and the score on the Mini-Mental State Examination was 26. Language evaluation revealed fluent speech, anomia, disturbance in word comprehension, preservation of the syntactic and phonological aspects of the language, besides surface dyslexia and dysgraphia. Autobiographical and episodic memories were relatively preserved. In semantic memory tests, the following dissociation was found: disturbance of verbal semantic memory with preservation of non-verbal semantic memory. Magnetic resonance of the brain revealed marked atrophy of the left anterior temporal lobe. After 14 months, the difficulties in verbal semantic memory had become more severe and the semantic disturbance, limited initially to the linguistic sphere, had worsened to involve non-verbal domains. Conclusions Given the dissociation found in the first examination, we believe there is sufficient clinical evidence to refute the existence of a unitary semantic system. PMID:29213389
Relations between Short-term Memory Deficits, Semantic Processing, and Executive Function
Allen, Corinne M.; Martin, Randi C.; Martin, Nadine
2012-01-01
Background Previous research has suggested separable short-term memory (STM) buffers for the maintenance of phonological and lexical-semantic information, as some patients with aphasia show better ability to retain semantic than phonological information and others show the reverse. Recently, researchers have proposed that deficits to the maintenance of semantic information in STM are related to executive control abilities. Aims The present study investigated the relationship of executive function abilities with semantic and phonological short-term memory (STM) and semantic processing in such patients, as some previous research has suggested that semantic STM deficits and semantic processing abilities are critically related to specific or general executive function deficits. Method and Procedures 20 patients with aphasia and STM deficits were tested on measures of short-term retention, semantic processing, and both complex and simple executive function tasks. Outcome and Results In correlational analyses, we found no relation between semantic STM and performance on simple or complex executive function tasks. In contrast, phonological STM was related to executive function performance in tasks that had a verbal component, suggesting that performance in some executive function tasks depends on maintaining or rehearsing phonological codes. Although semantic STM was not related to executive function ability, performance on semantic processing tasks was related to executive function, perhaps due to similar executive task requirements in both semantic processing and executive function tasks. Conclusions Implications for treatment and interpretations of executive deficits are discussed. PMID:22736889
Principal semantic components of language and the measurement of meaning.
Samsonovich, Alexei V; Samsonovic, Alexei V; Ascoli, Giorgio A
2010-06-11
Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of "good/bad" (valence), "calm/excited" (arousal), and "open/closed" (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number ( approximately 4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for semantics of human experiences, which is necessary for developing a rigorous science of the mind.
Lindblad, Britt-Marie; Holritz-Rasmussen, Birgit; Sandman, Per-Olof
2007-06-01
The majority of children affected by disability are cared for at home by their parents. It is well documented in research literature that the parents are in need of professional support. In the striving to improve the professional caring, it is also important to deepen our understanding about the meaning of informal support from the perspective of parents' life world. The aim of this study was to illuminate the meanings of lived experience of informal support, when being a parent of a child affected by disability. Thirteen parents, eight mothers and five fathers within eight families, participated in narrative interviews, which were analysed by using a phenomenological-hermeneutic method. The meanings resulted in three themes: 'being gratified by experiences of the child as having a natural place in relation with others', 'being provided a room for sorrow and joy' and 'being enabled to live an eased and spontaneous daily life'. These themes emanated from the experiences of other persons' being and doing in relation to the parents, the child affected by disability and the siblings. According to our interpretation, informal support means a life enriching togetherness, the core of which is natural human caring. The findings also showed that parents highly valued professional support concerning informal supporters.
Liu, Yu; Xin, Zhao-Zhe; Zhang, Dai-Zhen; Zhu, Xiao-Yu; Wang, Ying; Chen, Li; Tang, Bo-Ping; Zhou, Chun-Lin; Chai, Xin-Yue; Tian, Ji-Wu; Liu, Qiu-Ning
2018-06-01
Antheraea pernyi is not only an important economic insect, it is increasingly employed as a model organism due to a variety of advantages, including ease of rearing and experimental manipulation compared with other Lepidoptera. Peptidoglycan (PGN) is a major component of the bacterial cell wall, and interactions between PGN and A. pernyi cause a series of physiological changes in the insect. In the present study, we constructed cDNA libraries from a A. pernyi PGN-infected group and a control group stimulated with phosphate-buffered saline (PBS). The transcriptome was de novo assembled using the Trinity platform, and 1698 differentially expressed genes (DEGs) were identified, comprising 894 up-regulated and 804 down-regulated genes. To further investigate immune-related DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. GO analysis identified major immune-related GO terms and KEGG enrichment indicated gene responses to three pathways related to the insect immune system. Several homologous genes related to the immune response of the A. pernyi fat body post-PGN infection were identified and categorised. Taken together, the results provide insight into the complex molecular mechanisms of the responses to bacterial infection at the transcriptional level. Copyright © 2018 Elsevier B.V. All rights reserved.
Multiplexed microsatellite recovery using massively parallel sequencing
Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.
2011-01-01
Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).
ERIC Educational Resources Information Center
Coderre, Emily L.; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry
2017-01-01
Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we…
ERIC Educational Resources Information Center
Jefferies, Elizabeth; Rogers, Timothy T.; Hopper, Samantha; Lambon Ralph, Matthew A.
2010-01-01
Patients with semantic dementia show a specific pattern of impairment on both verbal and non-verbal "pre-semantic" tasks, e.g., reading aloud, past tense generation, spelling to dictation, lexical decision, object decision, colour decision and delayed picture copying. All seven tasks are characterised by poorer performance for items that are…
Shared Features Dominate Semantic Richness Effects for Concrete Concepts
ERIC Educational Resources Information Center
Grondin, Ray; Lupker, Stephen J.; McRae, Ken
2009-01-01
When asked to list semantic features for concrete concepts, participants list many features for some concepts and few for others. Concepts with many semantic features are processed faster in lexical and semantic decision tasks [Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). "The impact of feedback semantics in visual word recognition:…
ERIC Educational Resources Information Center
Long, Nicole M.; Kahana, Michael J.
2017-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of…
Verb Production during Action Naming in Semantic Dementia
ERIC Educational Resources Information Center
Meligne, D.; Fossard, M.; Belliard, S.; Moreaud, O.; Duvignau, K.; Demonet, J.-F.
2011-01-01
In contrast with widely documented deficits of semantic knowledge relating to object concepts and the corresponding nouns in semantic dementia (SD), little is known about action semantics and verb production in SD. The degradation of action semantic knowledge was studied in 5 patients with SD compared with 17 matched control participants in an…
The Function of Semantics in Automated Language Processing.
ERIC Educational Resources Information Center
Pacak, Milos; Pratt, Arnold W.
This paper is a survey of some of the major semantic models that have been developed for automated semantic analysis of natural language. Current approaches to semantic analysis and logical interference are based mainly on models of human cognitive processes such as Quillian's semantic memory, Simmon's Protosynthex III and others. All existing…
ERIC Educational Resources Information Center
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have…
ERIC Educational Resources Information Center
de Wit, Bianca; Kinoshita, Sachiko
2015-01-01
Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…
Interpreting semantic clustering effects in free recall.
Manning, Jeremy R; Kahana, Michael J
2012-07-01
The order in which participants choose to recall words from a studied list of randomly selected words provides insights into how memories of the words are represented, organised, and retrieved. One pervasive finding is that when a pair of semantically related words (e.g., "cat" and "dog") is embedded in the studied list, the related words are often recalled successively. This tendency to successively recall semantically related words is termed semantic clustering (Bousfield, 1953; Bousfield & Sedgewick, 1944; Cofer, Bruce, & Reicher, 1966). Measuring semantic clustering effects requires making assumptions about which words participants consider to be similar in meaning. However, it is often difficult to gain insights into individual participants' internal semantic models, and for this reason researchers typically rely on standardised semantic similarity metrics. Here we use simulations to gain insights into the expected magnitudes of semantic clustering effects given systematic differences between participants' internal similarity models and the similarity metric used to quantify the degree of semantic clustering. Our results provide a number of useful insights into the interpretation of semantic clustering effects in free recall.
Language Networks Associated with Computerized Semantic Indices
Pakhomov, Serguei V. S.; Jones, David T.; Knopman, David S.
2014-01-01
Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. PMID:25315785
McCarthy, Rosaleen A; Warrington, Elizabeth K
2016-10-01
We summarize the main findings and conclusions of Warrington's (1975) paper, The Selective Impairment of Semantic memory, a neuropsychological paper that described three cases with degenerative neurological conditions [Warrington, E. K. (1975). The selective impairment of semantic memory. The Quarterly Journal of Experimental Psychology, 27, 635-657]. We consider the developments that have followed from its publication and give a selective overview of the field in 2014. The initial impact of the paper was on neuropsychological investigations of semantic loss followed some 14 years later by the identification of Semantic Dementia (the condition shown by the original cases) as a distinctive form of degenerative disease with unique clinical and pathological characteristics. We discuss the distinction between disorders of semantic storage and refractory semantic access, the evidence for category- and modality-specific impairments of semantics, and the light that has been shed on the structure and organization of semantic memory. Finally we consider the relationship between semantic memory and the skills of reading and writing, phonological processing, and autobiographical memory.
Modise, David M.; Gemeildien, Junaid; Ndimba, Bongani K.; Christoffels, Alan
2018-01-01
Background Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations. Methods In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO), Trait Ontology (TO), Plant Ontology (PO), Growth Ontology (GRO) and Environment Ontology (EO) were used to semantically integrate drought related information. Results Target genes linked to Quantitative Trait Loci (QTLs) controlling yield and stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%), salt (32%), cold (20%), heat (8%) and oxidative stress (25%) were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape. Conclusions We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species. PMID:29590108
ADO: a disease ontology representing the domain knowledge specific to Alzheimer's disease.
Malhotra, Ashutosh; Younesi, Erfan; Gündel, Michaela; Müller, Bernd; Heneka, Michael T; Hofmann-Apitius, Martin
2014-03-01
Biomedical ontologies offer the capability to structure and represent domain-specific knowledge semantically. Disease-specific ontologies can facilitate knowledge exchange across multiple disciplines, and ontology-driven mining approaches can generate great value for modeling disease mechanisms. However, in the case of neurodegenerative diseases such as Alzheimer's disease, there is a lack of formal representation of the relevant knowledge domain. Alzheimer's disease ontology (ADO) is constructed in accordance to the ontology building life cycle. The Protégé OWL editor was used as a tool for building ADO in Ontology Web Language format. ADO was developed with the purpose of containing information relevant to four main biological views-preclinical, clinical, etiological, and molecular/cellular mechanisms-and was enriched by adding synonyms and references. Validation of the lexicalized ontology by means of named entity recognition-based methods showed a satisfactory performance (F score = 72%). In addition to structural and functional evaluation, a clinical expert in the field performed a manual evaluation and curation of ADO. Through integration of ADO into an information retrieval environment, we show that the ontology supports semantic search in scientific text. The usefulness of ADO is authenticated by dedicated use case scenarios. Development of ADO as an open ADO is a first attempt to organize information related to Alzheimer's disease in a formalized, structured manner. We demonstrate that ADO is able to capture both established and scattered knowledge existing in scientific text. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures
2013-01-01
Background The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. Results We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. Conclusions The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis. PMID:24067102
DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes.
Piñero, Janet; Queralt-Rosinach, Núria; Bravo, Àlex; Deu-Pons, Jordi; Bauer-Mehren, Anna; Baron, Martin; Sanz, Ferran; Furlong, Laura I
2015-01-01
DisGeNET is a comprehensive discovery platform designed to address a variety of questions concerning the genetic underpinning of human diseases. DisGeNET contains over 380,000 associations between >16,000 genes and 13,000 diseases, which makes it one of the largest repositories currently available of its kind. DisGeNET integrates expert-curated databases with text-mined data, covers information on Mendelian and complex diseases, and includes data from animal disease models. It features a score based on the supporting evidence to prioritize gene-disease associations. It is an open access resource available through a web interface, a Cytoscape plugin and as a Semantic Web resource. The web interface supports user-friendly data exploration and navigation. DisGeNET data can also be analysed via the DisGeNET Cytoscape plugin, and enriched with the annotations of other plugins of this popular network analysis software suite. Finally, the information contained in DisGeNET can be expanded and complemented using Semantic Web technologies and linked to a variety of resources already present in the Linked Data cloud. Hence, DisGeNET offers one of the most comprehensive collections of human gene-disease associations and a valuable set of tools for investigating the molecular mechanisms underlying diseases of genetic origin, designed to fulfill the needs of different user profiles, including bioinformaticians, biologists and health-care practitioners. Database URL: http://www.disgenet.org/ © The Author(s) 2015. Published by Oxford University Press.
Multi-talker background and semantic priming effect
Dekerle, Marie; Boulenger, Véronique; Hoen, Michel; Meunier, Fanny
2014-01-01
The reported studies have aimed to investigate whether informational masking in a multi-talker background relies on semantic interference between the background and target using an adapted semantic priming paradigm. In 3 experiments, participants were required to perform a lexical decision task on a target item embedded in backgrounds composed of 1–4 voices. These voices were Semantically Consistent (SC) voices (i.e., pronouncing words sharing semantic features with the target) or Semantically Inconsistent (SI) voices (i.e., pronouncing words semantically unrelated to each other and to the target). In the first experiment, backgrounds consisted of 1 or 2 SC voices. One and 2 SI voices were added in Experiments 2 and 3, respectively. The results showed a semantic priming effect only in the conditions where the number of SC voices was greater than the number of SI voices, suggesting that semantic priming depended on prime intelligibility and strategic processes. However, even if backgrounds were composed of 3 or 4 voices, reducing intelligibility, participants were able to recognize words from these backgrounds, although no semantic priming effect on the targets was observed. Overall this finding suggests that informational masking can occur at a semantic level if intelligibility is sufficient. Based on the Effortfulness Hypothesis, we also suggest that when there is an increased difficulty in extracting target signals (caused by a relatively high number of voices in the background), more cognitive resources were allocated to formal processes (i.e., acoustic and phonological), leading to a decrease in available resources for deeper semantic processing of background words, therefore preventing semantic priming from occurring. PMID:25400572
Distinct behavioural profiles in frontotemporal dementia and semantic dementia
Snowden, J; Bathgate, D; Varma, A; Blackshaw, A; Gibbons, Z; Neary, D
2001-01-01
OBJECTIVE—To test predictions that frontotemporal dementia and semantic dementia give rise to distinct patterns of behavioural change. METHODS—An informant based semistructured behavioural interview, covering the domains of basic and social emotions, social and personal behaviour, sensory behaviour, eating and oral behaviour, repetitive behaviours, rituals, and compulsions, was administered to carers of 41 patients with semantic dementia and with apathetic (FTD-A) and disinhibited (FTD-D) forms of frontotemporal dementia. RESULTS—Consistent with prediction, emotional changes differentiated FTD from semantic dementia. Whereas lack of emotional response was pervasive in FTD, it was more selective in semantic dementia, affecting particularly the capacity to show fear. Social avoidance occurred more often in FTD and social seeking in semantic dementia. Patients with FTD showed reduced response to pain, whereas patients with semantic dementia more often showed exaggerated reactions to sensory stimuli. Gluttony and indiscriminate eating were characteristic of FTD, whereas patients with semantic dementia were more likely to exhibit food fads. Hyperorality, involving inedible objects, was unrelated to gluttony, indicating different underlying mechanisms. Repetitive behaviours were common in both FTD and semantic dementia, but had a more compulsive quality in semantic dementia. Behavioural differences were greater between semantic dementia and FTD-A than FTD-D. A logistic regression analysis indicated that emotional and repetitive, compulsive behaviours discriminated FTD from semantic dementia with 97% accuracy. CONCLUSION—The findings confirm predictions regarding behavioural differences in frontotemporal and semantic dementia and point to differential roles of the frontal and temporal lobes in affect, social functioning, eating, and compulsive behaviour. PMID:11181853
Thompson, Hannah E.; Henshall, Lauren; Jefferies, Elizabeth
2016-01-01
Semantic control processes guide conceptual retrieval so that we are able to focus on non-dominant associations and features when these are required for the task or context, yet the neural basis of semantic control is not fully understood. Neuroimaging studies have emphasised the role of left inferior frontal gyrus (IFG) in controlled retrieval, while neuropsychological investigations of semantic control deficits have almost exclusively focussed on patients with left-sided damage (e.g., patients with semantic aphasia, SA). Nevertheless, activation in fMRI during demanding semantic tasks typically extends to right IFG. To investigate the role of the right hemisphere (RH) in semantic control, we compared nine RH stroke patients with 21 left-hemisphere SA patients, 11 mild SA cases and 12 healthy, aged-matched controls on semantic and executive tasks, plus experimental tasks that manipulated semantic control in paradigms particularly sensitive to RH damage. RH patients had executive deficits to parallel SA patients but they performed well on standard semantic tests. Nevertheless, multimodal semantic control deficits were found in experimental tasks involving facial emotions and the ‘summation’ of meaning across multiple items. On these tasks, RH patients showed effects similar to those in SA cases – multimodal deficits that were sensitive to distractor strength and cues and miscues, plus increasingly poor performance in cyclical matching tasks which repeatedly probed the same set of concepts. Thus, despite striking differences in single-item comprehension, evidence presented here suggests semantic control is bilateral, and disruption of this component of semantic cognition can be seen following damage to either hemisphere. PMID:26945505
Grilli, Matthew D
2017-11-01
Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.
The structure of semantic person memory: evidence from semantic priming in person recognition.
Wiese, Holger
2011-11-01
This paper reviews research on the structure of semantic person memory as examined with semantic priming. In this experimental paradigm, a familiarity decision on a target face or written name is usually faster when it is preceded by a related as compared to an unrelated prime. This effect has been shown to be relatively short lived and susceptible to interfering items. Moreover, semantic priming can cross stimulus domains, such that a written name can prime a target face and vice versa. However, it remains controversial whether representations of people are stored in associative networks based on co-occurrence, or in more abstract semantic categories. In line with prominent cognitive models of face recognition, which explain semantic priming by shared semantic information between prime and target, recent research demonstrated that priming could be obtained from purely categorically related, non-associated prime/target pairs. Although strategic processes, such as expectancy and retrospective matching likely contribute, there is also evidence for a non-strategic contribution to priming, presumably related to spreading activation. Finally, a semantic priming effect has been demonstrated in the N400 event-related potential (ERP) component, which may reflect facilitated access to semantic information. It is concluded that categorical relatedness is one organizing principle of semantic person memory. ©2011 The British Psychological Society.
Measuring effectiveness of semantic cues in degraded English sentences in non-native listeners.
Shi, Lu-Feng
2014-01-01
This study employed Boothroyd and Nittrouer's k (1988) to directly quantify effectiveness in native versus non-native listeners' use of semantic cues. Listeners were presented speech-perception-in-noise sentences processed at three levels of concurrent multi-talker babble and reverberation. For each condition, 50 sentences with multiple semantic cues and 50 with minimum semantic cues were randomly presented. Listeners verbally reported and wrote down the target words. The metric, k, was derived from percent-correct scores for sentences with and without semantics. Ten native and 33 non-native listeners participated. The presence of semantics increased recognition benefit by over 250% for natives, but access to semantics remained limited for non-native listeners (90-135%). The k was comparable across conditions for native listeners, but level-dependent for non-natives. The k for non-natives was significantly different from 1 in all conditions, suggesting semantic cues, though reduced in importance in difficult conditions, were helpful for non-natives. Non-natives as a group were not as effective in using semantics to facilitate English sentence recognition as natives. Poor listening conditions were particularly adverse to the use of semantics in non-natives, who may rely on clear acoustic-phonetic cues before benefitting from semantic cues when recognizing connected speech.
Balthazar, Marcio Luiz Figueredo; Cendes, Fernando; Damasceno, Benito Pereira
2008-11-01
Naming difficulty is common in Alzheimer's disease (AD), but the nature of this problem is not well established. The authors investigated the presence of semantic breakdown and the pattern of general and semantic errors in patients with mild AD, patients with amnestic mild cognitive impairment (aMCI), and normal controls by examining their spontaneous answers on the Boston Naming Test (BNT) and verifying whether they needed or were benefited by semantic and phonemic cues. The errors in spontaneous answers were classified in four mutually exclusive categories (semantic errors, visual paragnosia, phonological errors, and omission errors), and the semantic errors were further subclassified as coordinate, superordinate, and circumlocutory. Patients with aMCI performed normally on the BNT and needed fewer semantic and phonemic cues than patients with mild AD. After semantic cues, subjects with aMCI and control subjects gave more correct answers than patients with mild AD, but after phonemic cues, there was no difference between the three groups, suggesting that the low performance of patients with AD cannot be completely explained by semantic breakdown. Patterns of spontaneous naming errors and subtypes of semantic errors were similar in the three groups, with decreasing error frequency from coordinate to superordinate to circumlocutory subtypes.
Stuellein, Nicole; Radach, Ralph R; Jacobs, Arthur M; Hofmann, Markus J
2016-05-15
Computational models of word recognition already successfully used associative spreading from orthographic to semantic levels to account for false memories. But can they also account for semantic effects on event-related potentials in a recognition memory task? To address this question, target words in the present study had either many or few semantic associates in the stimulus set. We found larger P200 amplitudes and smaller N400 amplitudes for old words in comparison to new words. Words with many semantic associates led to larger P200 amplitudes and a smaller N400 in comparison to words with a smaller number of semantic associations. We also obtained inverted response time and accuracy effects for old and new words: faster response times and fewer errors were found for old words that had many semantic associates, whereas new words with a large number of semantic associates produced slower response times and more errors. Both behavioral and electrophysiological results indicate that semantic associations between words can facilitate top-down driven lexical access and semantic integration in recognition memory. Our results support neurophysiologically plausible predictions of the Associative Read-Out Model, which suggests top-down connections from semantic to orthographic layers. Copyright © 2016 Elsevier B.V. All rights reserved.
Intrusive effects of semantic information on visual selective attention.
Malcolm, George L; Rattinger, Michelle; Shomstein, Sarah
2016-10-01
Every object is represented by semantic information in extension to its low-level properties. It is well documented that such information biases attention when it is necessary for an ongoing task. However, whether semantic relationships influence attentional selection when they are irrelevant to the ongoing task remains an open question. The ubiquitous nature of semantic information suggests that it could bias attention even when these properties are irrelevant. In the present study, three objects appeared on screen, two of which were semantically related. After a varying time interval, a target or distractor appeared on top of each object. The objects' semantic relationships never predicted the target location. Despite this, a semantic bias on attentional allocation was observed, with an initial, transient bias to semantically related objects. Further experiments demonstrated that this effect was contingent on the objects being attended: if an object never contained the target, it no longer exerted a semantic influence. In a final set of experiments, we demonstrated that the semantic bias is robust and appears even in the presence of more predictive cues (spatial probability). These results suggest that as long as an object is attended, its semantic properties bias attention, even if it is irrelevant to an ongoing task and if more predictive factors are available.
Rupp, Kyle; Roos, Matthew; Milsap, Griffin; Caceres, Carlos; Ratto, Christopher; Chevillet, Mark; Crone, Nathan E; Wolmetz, Michael
2017-03-01
Non-invasive neuroimaging studies have shown that semantic category and attribute information are encoded in neural population activity. Electrocorticography (ECoG) offers several advantages over non-invasive approaches, but the degree to which semantic attribute information is encoded in ECoG responses is not known. We recorded ECoG while patients named objects from 12 semantic categories and then trained high-dimensional encoding models to map semantic attributes to spectral-temporal features of the task-related neural responses. Using these semantic attribute encoding models, untrained objects were decoded with accuracies comparable to whole-brain functional Magnetic Resonance Imaging (fMRI), and we observed that high-gamma activity (70-110Hz) at basal occipitotemporal electrodes was associated with specific semantic dimensions (manmade-animate, canonically large-small, and places-tools). Individual patient results were in close agreement with reports from other imaging modalities on the time course and functional organization of semantic processing along the ventral visual pathway during object recognition. The semantic attribute encoding model approach is critical for decoding objects absent from a training set, as well as for studying complex semantic encodings without artificially restricting stimuli to a small number of semantic categories. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Irish, Muireann; Addis, Donna Rose; Hodges, John R; Piguet, Olivier
2012-07-01
Semantic dementia is a progressive neurodegenerative condition characterized by the profound and amodal loss of semantic memory in the context of relatively preserved episodic memory. In contrast, patients with Alzheimer's disease typically display impairments in episodic memory, but with semantic deficits of a much lesser magnitude than in semantic dementia. Our understanding of episodic memory retrieval in these cohorts has greatly increased over the last decade, however, we know relatively little regarding the ability of these patients to imagine and describe possible future events, and whether episodic future thinking is mediated by divergent neural substrates contingent on dementia subtype. Here, we explored episodic future thinking in patients with semantic dementia (n=11) and Alzheimer's disease (n=11), in comparison with healthy control participants (n=10). Participants completed a battery of tests designed to probe episodic and semantic thinking across past and future conditions, as well as standardized tests of episodic and semantic memory. Further, all participants underwent magnetic resonance imaging. Despite their relatively intact episodic retrieval for recent past events, the semantic dementia cohort showed significant impairments for episodic future thinking. In contrast, the group with Alzheimer's disease showed parallel deficits across past and future episodic conditions. Voxel-based morphometry analyses confirmed that atrophy in the left inferior temporal gyrus and bilateral temporal poles, regions strongly implicated in semantic memory, correlated significantly with deficits in episodic future thinking in semantic dementia. Conversely, episodic future thinking performance in Alzheimer's disease correlated with atrophy in regions associated with episodic memory, namely the posterior cingulate, parahippocampal gyrus and frontal pole. These distinct neuroanatomical substrates contingent on dementia group were further qualified by correlational analyses that confirmed the relation between semantic memory deficits and episodic future thinking in semantic dementia, in contrast with the role of episodic memory deficits and episodic future thinking in Alzheimer's disease. Our findings demonstrate that semantic knowledge is critical for the construction of novel future events, providing the necessary scaffolding into which episodic details can be integrated. Further research is necessary to elucidate the precise contribution of semantic memory to future thinking, and to explore how deficits in self-projection manifest on behavioural and social levels in different dementia subtypes.
SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services
Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T
2009-01-01
Background SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. Results There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at , developer tools at , and a portal to third-party ontologies at (a "swap meet"). Conclusion SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs. PMID:19775460
ERIC Educational Resources Information Center
Ebbels, Susan H.; Nicoll, Hilary; Clark, Becky; Eachus, Beth; Gallagher, Aoife L.; Horniman, Karen; Jennings, Mary; McEvoy, Kate; Nimmo, Liz; Turner, Gail
2012-01-01
Background: Word-finding difficulties (WFDs) in children have been hypothesized to be caused at least partly by poor semantic knowledge. Therefore, improving semantic knowledge should decrease word-finding errors. Previous studies of semantic therapy for WFDs are inconclusive. Aims: To investigate the effectiveness of semantic therapy for…
The Influence of Semantic Neighbours on Visual Word Recognition
ERIC Educational Resources Information Center
Yates, Mark
2012-01-01
Although it is assumed that semantics is a critical component of visual word recognition, there is still much that we do not understand. One recent way of studying semantic processing has been in terms of semantic neighbourhood (SN) density, and this research has shown that semantic neighbours facilitate lexical decisions. However, it is not clear…
Tao, Hu-Chun; Zhang, He-Ran; Li, Jin-Bo; Ding, Wen-Yi
2015-09-01
Sewage sludge and bagasse were used as raw materials to produce cheap and efficient adsorbent with great adsorption capacity of Pb(2+). By pyrolysis at 800 °C for 0.5 h, the largest surface area (806.57 m(2)/g) of the adsorbent was obtained, enriched with organic functional groups. The optimal conditions for production of the adsorbent and adsorption of Pb(2+) were investigated. The results of adsorb-ability fitted the Langmuir isotherm and pseudo-second-order model well. The highest Pb(2+) (at pH = 4.0) adsorption capacity was achieved by treating with 60% (v/v) HNO3. This is a promising approach for metal removal from wastewater, as well as recycling sewage sludge and bagasse to ease their disposal pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.
As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less
Co-occurrence frequency evaluated with large language corpora boosts semantic priming effects.
Brunellière, Angèle; Perre, Laetitia; Tran, ThiMai; Bonnotte, Isabelle
2017-09-01
In recent decades, many computational techniques have been developed to analyse the contextual usage of words in large language corpora. The present study examined whether the co-occurrence frequency obtained from large language corpora might boost purely semantic priming effects. Two experiments were conducted: one with conscious semantic priming, the other with subliminal semantic priming. Both experiments contrasted three semantic priming contexts: an unrelated priming context and two related priming contexts with word pairs that are semantically related and that co-occur either frequently or infrequently. In the conscious priming presentation (166-ms stimulus-onset asynchrony, SOA), a semantic priming effect was recorded in both related priming contexts, which was greater with higher co-occurrence frequency. In the subliminal priming presentation (66-ms SOA), no significant priming effect was shown, regardless of the related priming context. These results show that co-occurrence frequency boosts pure semantic priming effects and are discussed with reference to models of semantic network.
Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.
Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K
2004-07-01
Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.
Zeng, Tao; Mao, Wen; Lu, Qing
2016-05-25
Scalp-recorded event-related potentials are known to be sensitive to particular aspects of sentence processing. The N400 component is widely recognized as an effect closely related to lexical-semantic processing. The absence of an N400 effect in participants performing tasks in Indo-European languages has been considered evidence that failed syntactic category processing appears to block lexical-semantic integration and that syntactic structure building is a prerequisite of semantic analysis. An event-related potential experiment was designed to investigate whether such syntactic primacy can be considered to apply equally to Chinese sentence processing. Besides correct middles, sentences with either single semantic or single syntactic violation as well as double syntactic and semantic anomaly were used in the present research. Results showed that both purely semantic and combined violation induced a broad negativity in the time window 300-500 ms, indicating the independence of lexical-semantic integration. These findings provided solid evidence that lexical-semantic parsing plays a crucial role in Chinese sentence comprehension.
Semantic richness effects in lexical decision: The role of feedback.
Yap, Melvin J; Lim, Gail Y; Pexman, Penny M
2015-11-01
Across lexical processing tasks, it is well established that words with richer semantic representations are recognized faster. This suggests that the lexical system has access to meaning before a word is fully identified, and is consistent with a theoretical framework based on interactive and cascaded processing. Specifically, semantic richness effects are argued to be produced by feedback from semantic representations to lower-level representations. The present study explores the extent to which richness effects are mediated by feedback from lexical- to letter-level representations. In two lexical decision experiments, we examined the joint effects of stimulus quality and four semantic richness dimensions (imageability, number of features, semantic neighborhood density, semantic diversity). With the exception of semantic diversity, robust additive effects of stimulus quality and richness were observed for the targeted dimensions. Our results suggest that semantic feedback does not typically reach earlier levels of representation in lexical decision, and further reinforces the idea that task context modulates the processing dynamics of early word recognition processes.
Sanjuán, Ana; Hope, Thomas M.H.; Parker Jones, 'Ōiwi; Prejawa, Susan; Oberhuber, Marion; Guerin, Julie; Seghier, Mohamed L.; Green, David W.; Price, Cathy J.
2015-01-01
We used fMRI in 35 healthy participants to investigate how two neighbouring subregions in the lateral anterior temporal lobe (LATL) contribute to semantic matching and object naming. Four different levels of processing were considered: (A) recognition of the object concepts; (B) search for semantic associations related to object stimuli; (C) retrieval of semantic concepts of interest; and (D) retrieval of stimulus specific concepts as required for naming. During semantic association matching on picture stimuli or heard object names, we found that activation in both subregions was higher when the objects were semantically related (mug–kettle) than unrelated (car–teapot). This is consistent with both LATL subregions playing a role in (C), the successful retrieval of amodal semantic concepts. In addition, one subregion was more activated for object naming than matching semantically related objects, consistent with (D), the retrieval of a specific concept for naming. We discuss the implications of these novel findings for cognitive models of semantic processing and left anterior temporal lobe function. PMID:25496810
Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray
2016-01-01
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. PMID:27030767
Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H
2016-03-30
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., "leaf" and "wet" can be combined into the more complex representation "wet leaf"). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. Copyright © 2016 the authors 0270-6474/16/363829-10$15.00/0.
Montembeault, M; Brambati, S M; Joubert, S; Boukadi, M; Chapleau, M; Laforce, R Jr; Wilson, M A; Macoir, J; Rouleau, I
2017-01-27
While the semantic variant of primary progressive aphasia (svPPA) is characterized by a predominant semantic memory impairment, episodic memory impairments are the clinical hallmark of Alzheimer's disease (AD). However, AD patients also present with semantic deficits, which are more severe for semantically unique entities (e.g. a famous person) than for common concepts (e.g. a beaver). Previous studies in these patient populations have largely focused on famous-person naming. Therefore, we aimed to evaluate if these impairments also extend to other semantically unique entities such as famous places and famous logos. In this study, 13 AD patients, 9 svPPA patients, and 12 cognitively unimpaired elderly subjects (CTRL) were tested with a picture-naming test of non-unique entities (Boston Naming Test) and three experimental tests of semantically unique entities assessing naming of famous persons, places, and logos. Both clinical groups were overall more impaired at naming semantically unique entities than non-unique entities. Naming impairments in AD and svPPA extended to the other types of semantically unique entities, since a CTRL>AD>svPPA pattern was found on the performance of all naming tests. Naming famous places and famous persons appeared to be most impaired in svPPA, and both specific and general semantic knowledge for these entities were affected in these patients. Although AD patients were most significantly impaired on famous-person naming, only their specific semantic knowledge was impaired, while general knowledge was preserved. Post-hoc neuroimaging analyses also showed that famous-person naming impairments in AD correlated with atrophy in the temporo-parietal junction, a region functionally associated with lexical access. In line with previous studies, svPPA patients' impairment in both naming and semantic knowledge suggest a more profound semantic impairment, while naming impairments in AD may arise to a greater extent from impaired lexical access, even though semantic impairment for specific knowledge is also present. These results highlight the critical importance of developing and using a variety of semantically-unique-entity naming tests in neuropsychological assessments of patients with neurodegenerative diseases, which may unveil different patterns of lexical-semantic deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.
Semantically Interoperable XML Data
Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel
2013-01-01
XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789
Soshi, Takahiro; Nakajima, Heizo; Hagiwara, Hiroko
2016-10-01
Static knowledge about the grammar of a natural language is represented in the cortico-subcortical system. However, the differences in dynamic verbal processing under different cognitive conditions are unclear. To clarify this, we conducted an electrophysiological experiment involving a semantic priming paradigm in which semantically congruent or incongruent word sequences (prime nouns-target verbs) were randomly presented. We examined the event-related brain potentials that occurred in response to congruent and incongruent target words that were preceded by primes with or without grammatical case markers. The two participant groups performed either the shallow (lexical judgment) or deep (direct semantic judgment) semantic tasks. We hypothesized that, irrespective of the case markers, the congruent targets would reduce centro-posterior N400 activities under the deep semantic condition, which induces selective attention to the semantic relatedness of content words. However, the same congruent targets with correct case markers would reduce lateralized negativity under the shallow semantic condition because grammatical case markers are related to automatic structural integration under semantically unattended conditions. We observed that congruent targets (e.g., 'open') that were preceded by primes with congruent case markers (e.g., 'shutter-object case') reduced lateralized negativity under the shallow semantic condition. In contrast, congruent targets, irrespective of case markers, consistently yielded N400 reductions under the deep semantic condition. To summarize, human neural verbal processing differed in response to the same grammatical markers in the same verbal expressions under semantically attended or unattended conditions.
Subliminal semantic priming in speech.
Daltrozzo, Jérôme; Signoret, Carine; Tillmann, Barbara; Perrin, Fabien
2011-01-01
Numerous studies have reported subliminal repetition and semantic priming in the visual modality. We transferred this paradigm to the auditory modality. Prime awareness was manipulated by a reduction of sound intensity level. Uncategorized prime words (according to a post-test) were followed by semantically related, unrelated, or repeated target words (presented without intensity reduction) and participants performed a lexical decision task (LDT). Participants with slower reaction times in the LDT showed semantic priming (faster reaction times for semantically related compared to unrelated targets) and negative repetition priming (slower reaction times for repeated compared to semantically related targets). This is the first report of semantic priming in the auditory modality without conscious categorization of the prime.
Subliminal Semantic Priming in Speech
Tillmann, Barbara; Perrin, Fabien
2011-01-01
Numerous studies have reported subliminal repetition and semantic priming in the visual modality. We transferred this paradigm to the auditory modality. Prime awareness was manipulated by a reduction of sound intensity level. Uncategorized prime words (according to a post-test) were followed by semantically related, unrelated, or repeated target words (presented without intensity reduction) and participants performed a lexical decision task (LDT). Participants with slower reaction times in the LDT showed semantic priming (faster reaction times for semantically related compared to unrelated targets) and negative repetition priming (slower reaction times for repeated compared to semantically related targets). This is the first report of semantic priming in the auditory modality without conscious categorization of the prime. PMID:21655277
ERIC Educational Resources Information Center
Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.
2016-01-01
We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…
Knowledge of the human body: a distinct semantic domain.
Coslett, H Branch; Saffran, Eleanor M; Schwoebel, John
2002-08-13
Patients with selective deficits in the naming and comprehension of animals, plants, and artifacts have been reported. These descriptions of specific semantic category deficits have contributed substantially to the understanding of the architecture of semantic representations. This study sought to further understanding of the organization of the semantic system by demonstrating that another semantic category, knowledge of the human body, may be selectively preserved. The performance of a patient with semantic dementia was compared with the performance of healthy controls on a variety of tasks assessing distinct types of body representations, including the body schema, body image, and body structural description. Despite substantial deficits on tasks involving language and knowledge of the world generally, the patient performed normally on all tests of body knowledge except body part naming; even in this naming task, however, her performance with body parts was significantly better than on artifacts. The demonstration that body knowledge may be preserved despite substantial semantic deficits involving other types of semantic information argues that body knowledge is a distinct and dissociable semantic category. These data are interpreted as support for a model of semantics that proposes that knowledge is distributed across different cortical regions reflecting the manner in which the information was acquired.
The semantic pathfinder: using an authoring metaphor for generic multimedia indexing.
Snoek, Cees G M; Worring, Marcel; Geusebroek, Jan-Mark; Koelma, Dennis C; Seinstra, Frank J; Smeulders, Arnold W M
2006-10-01
This paper presents the semantic pathfinder architecture for generic indexing of multimedia archives. The semantic pathfinder extracts semantic concepts from video by exploring different paths through three consecutive analysis steps, which we derive from the observation that produced video is the result of an authoring-driven process. We exploit this authoring metaphor for machine-driven understanding. The pathfinder starts with the content analysis step. In this analysis step, we follow a data-driven approach of indexing semantics. The style analysis step is the second analysis step. Here, we tackle the indexing problem by viewing a video from the perspective of production. Finally, in the context analysis step, we view semantics in context. The virtue of the semantic pathfinder is its ability to learn the best path of analysis steps on a per-concept basis. To show the generality of this novel indexing approach, we develop detectors for a lexicon of 32 concepts and we evaluate the semantic pathfinder against the 2004 NIST TRECVID video retrieval benchmark, using a news archive of 64 hours. Top ranking performance in the semantic concept detection task indicates the merit of the semantic pathfinder for generic indexing of multimedia archives.
Language networks associated with computerized semantic indices.
Pakhomov, Serguei V S; Jones, David T; Knopman, David S
2015-01-01
Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. Copyright © 2014 Elsevier Inc. All rights reserved.
Semantic processing during morphological priming: an ERP study.
Beyersmann, Elisabeth; Iakimova, Galina; Ziegler, Johannes C; Colé, Pascale
2014-09-04
Previous research has yielded conflicting results regarding the onset of semantic processing during morphological priming. The present study was designed to further explore the time-course of morphological processing using event-related potentials (ERPs). We conducted a primed lexical decision study comparing a morphological (LAVAGE - laver [washing - wash]), a semantic (LINGE - laver [laundry - wash]), an orthographic (LAVANDE - laver [lavender - wash]), and an unrelated control condition (HOSPICE - laver [nursing home - wash]), using the same targets across the four priming conditions. The behavioral data showed significant effects of morphological and semantic priming, with the magnitude of morphological priming being significantly larger than the magnitude of semantic priming. The ERP data revealed significant morphological but no semantic priming at 100-250 ms. Furthermore, a reduction of the N400 amplitude in the morphological condition compared to the semantic and orthographic condition demonstrates that the morphological priming effect was not entirely due to the semantic or orthographic overlap between the prime and the target. The present data reflect an early process of semantically blind morphological decomposition, and a later process of morpho-semantic decomposition, which we discuss in the context of recent morphological processing theories. Copyright © 2014 Elsevier B.V. All rights reserved.
Semantic-based crossmodal processing during visual suppression.
Cox, Dustin; Hong, Sang Wook
2015-01-01
To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.
Li, Yuanqing; Wang, Guangyi; Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.
Thompson, Hannah E; Henshall, Lauren; Jefferies, Elizabeth
2016-05-01
Semantic control processes guide conceptual retrieval so that we are able to focus on non-dominant associations and features when these are required for the task or context, yet the neural basis of semantic control is not fully understood. Neuroimaging studies have emphasised the role of left inferior frontal gyrus (IFG) in controlled retrieval, while neuropsychological investigations of semantic control deficits have almost exclusively focussed on patients with left-sided damage (e.g., patients with semantic aphasia, SA). Nevertheless, activation in fMRI during demanding semantic tasks typically extends to right IFG. To investigate the role of the right hemisphere (RH) in semantic control, we compared nine RH stroke patients with 21 left-hemisphere SA patients, 11 mild SA cases and 12 healthy, aged-matched controls on semantic and executive tasks, plus experimental tasks that manipulated semantic control in paradigms particularly sensitive to RH damage. RH patients had executive deficits to parallel SA patients but they performed well on standard semantic tests. Nevertheless, multimodal semantic control deficits were found in experimental tasks involving facial emotions and the 'summation' of meaning across multiple items. On these tasks, RH patients showed effects similar to those in SA cases - multimodal deficits that were sensitive to distractor strength and cues and miscues, plus increasingly poor performance in cyclical matching tasks which repeatedly probed the same set of concepts. Thus, despite striking differences in single-item comprehension, evidence presented here suggests semantic control is bilateral, and disruption of this component of semantic cognition can be seen following damage to either hemisphere. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration. PMID:21750692
Semantic e-Learning: Next Generation of e-Learning?
NASA Astrophysics Data System (ADS)
Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi
Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.
Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A; Barak, Ohr; Lambon Ralph, Matthew A; Jefferies, Elizabeth
2018-01-03
Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., , Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal 'hub' in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive-semantic goal representations, largely supported by executive regions such as frontal and parietal cortex, are thought to allow the generation of non-dominant aspects of knowledge when these are appropriate for the task or context. Semantic aphasia (SA) patients have executive-semantic deficits, and these are correlated with general executive impairment. If the CSC proposal is correct, patients with executive impairment should not only exhibit impaired semantic cognition, but should also show characteristics that align with those observed in SA. This possibility remains largely untested, as patients selected on the basis that they show executive impairment (i.e., with 'dysexecutive syndrome') have not been extensively tested on tasks tapping semantic control and have not been previously compared with SA cases. We explored conceptual processing in 12 patients showing symptoms consistent with dysexecutive syndrome (DYS) and 24 SA patients, using a range of multimodal semantic assessments which manipulated control demands. Patients with executive impairments, despite not being selected to show semantic impairments, nevertheless showed parallel patterns to SA cases. They showed strong effects of distractor strength, cues and miscues, and probe-target distance, plus minimal effects of word frequency on comprehension (unlike semantic dementia patients with degradation of conceptual knowledge). This supports a component process account of semantic cognition in which retrieval is shaped by control processes, and confirms that deficits in SA patients reflect difficulty controlling semantic retrieval. © 2018 The Authors. Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Hippocampal activation during retrieval of spatial context from episodic and semantic memory.
Hoscheidt, Siobhan M; Nadel, Lynn; Payne, Jessica; Ryan, Lee
2010-10-15
The hippocampus, a region implicated in the processing of spatial information and episodic memory, is central to the debate concerning the relationship between episodic and semantic memory. Studies of medial temporal lobe amnesic patients provide evidence that the hippocampus is critical for the retrieval of episodic but not semantic memory. On the other hand, recent neuroimaging studies of intact individuals report hippocampal activation during retrieval of both autobiographical memories and semantic information that includes historical facts, famous faces, and categorical information, suggesting that episodic and semantic memory may engage the hippocampus during memory retrieval in similar ways. Few studies have matched episodic and semantic tasks for the degree to which they include spatial content, even though spatial content may be what drives hippocampal activation during semantic retrieval. To examine this issue, we conducted a functional magnetic resonance imaging (fMRI) study in which retrieval of spatial and nonspatial information was compared during an episodic and semantic recognition task. Results show that the hippocampus (1) participates preferentially in the retrieval of episodic memories; (2) is also engaged by retrieval of semantic memories, particularly those that include spatial information. These data suggest that sharp dissociations between episodic and semantic memory may be overly simplistic and that the hippocampus plays a role in the retrieval of spatial content whether drawn from a memory of one's own life experiences or real-world semantic knowledge. Published by Elsevier B.V.
Shen, Wei; Qu, Qingqing; Li, Xingshan
2016-07-01
In the present study, we investigated whether the activation of semantic information during spoken word recognition can mediate visual attention's deployment to printed Chinese words. We used a visual-world paradigm with printed words, in which participants listened to a spoken target word embedded in a neutral spoken sentence while looking at a visual display of printed words. We examined whether a semantic competitor effect could be observed in the printed-word version of the visual-world paradigm. In Experiment 1, the relationship between the spoken target words and the printed words was manipulated so that they were semantically related (a semantic competitor), phonologically related (a phonological competitor), or unrelated (distractors). We found that the probability of fixations on semantic competitors was significantly higher than that of fixations on the distractors. In Experiment 2, the orthographic similarity between the spoken target words and their semantic competitors was manipulated to further examine whether the semantic competitor effect was modulated by orthographic similarity. We found significant semantic competitor effects regardless of orthographic similarity. Our study not only reveals that semantic information can affect visual attention, it also provides important new insights into the methodology employed to investigate the semantic processing of spoken words during spoken word recognition using the printed-word version of the visual-world paradigm.
Schweppe, Judith; Rummer, Ralf; Bormann, Tobias; Martin, Randi C
2011-12-01
We present one experiment and a neuropsychological case study to investigate to what extent phonological and semantic representations contribute to short-term sentence recall. We modified Potter and Lombardi's (1990) intrusion paradigm, in which retention of a list interferes with sentence recall such that on the list a semantically related lure is presented, which is expected to intrude into sentence recall. In our version, lure words are either semantically related to target words in the sentence or semantically plus phonologically related. With healthy participants, intrusions are more frequent when lure and target overlap phonologically in addition to semantically than when they solely overlap semantically. When this paradigm is applied to a patient with a phonological short-term memory impairment, both lure types induce the same amount of intrusions. These findings indicate that usually phonological information is retained in sentence recall in addition to semantic information.
SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.
2004-01-01
SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.
Lehrner, J; Coutinho, G; Mattos, P; Moser, D; Pflüger, M; Gleiss, A; Auff, E; Dal-Bianco, P; Pusswald, G; Stögmann, E
2017-07-01
Semantic memory may be impaired in clinically recognized states of cognitive impairment. We investigated the relationship between semantic memory and depressive symptoms (DS) in patients with cognitive impairment. 323 cognitively healthy controls and 848 patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia were included. Semantic knowledge for famous faces, world capitals, and word vocabulary was investigated. Compared to healthy controls, we found a statistically significant difference of semantic knowledge in the MCI groups and the AD group, respectively. Results of the SCD group were mixed. However, two of the three semantic memory measures (world capitals and word vocabulary) showed a significant association with DS. We found a difference in semantic memory performance in MCI and AD as well as an association with DS. Results suggest that the difference in semantic memory is due to a storage loss rather than to a retrieval problem.
Rodd, Jennifer M; Vitello, Sylvia; Woollams, Anna M; Adank, Patti
2015-02-01
We conducted an Activation Likelihood Estimation (ALE) meta-analysis to identify brain regions that are recruited by linguistic stimuli requiring relatively demanding semantic or syntactic processing. We included 54 functional MRI studies that explicitly varied the semantic or syntactic processing load, while holding constant demands on earlier stages of processing. We included studies that introduced a syntactic/semantic ambiguity or anomaly, used a priming manipulation that specifically reduced the load on semantic/syntactic processing, or varied the level of syntactic complexity. The results confirmed the critical role of the posterior left Inferior Frontal Gyrus (LIFG) in semantic and syntactic processing. These results challenge models of sentence comprehension highlighting the role of anterior LIFG for semantic processing. In addition, the results emphasise the posterior (but not anterior) temporal lobe for both semantic and syntactic processing. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Layer, P G; Sporns, O
1987-01-01
Close relationships between acetylcholinesterase (AcChoEase; acetylcholine acetylhydrolase, true cholinesterase, EC, 3.1.1.7) and butyrylcholinesterase (BtChoEase, acylcholine acylhydrolase, pseudocholinesterase, EC, 3.1.1.8) with cell proliferation were observed in the early chicken brain. These include the following: BtChoEase is transiently accumulating in patchy fashion on the ventricular side of the neuroepithelium shortly before AcChoEase appears in cell bodies along the opposing mantle layer. The amount of BtChoEase in retina and brain is greatest in the early phase (E3-E5, or incubation periods of 3-5 days); in retina it decreases about 2 days later than in brain. However, AcChoEase expression increases with time, in inverse order to that of BtChoEase. In both tissues decrease of cell proliferation is closely followed by decrease in BtChoEase. A double-labeling technique of cholinesterase staining together with [3H]thymidine autoradiography reveals proliferation zones that are diffusely stained by BtChoEase but not by AcChoEase. Patches intensely stained for BtChoEase accompany clusters of cells in final stages of mitosis on their way to the differentiation zone, where they begin expressing AcChoEase. By applying different thymidine pulses, we identify an 11-hr lag from the last thymidine-uptake to full AcChoEase expression. (iv) These findings are confirmed by studying lens development, where areas of proliferation and differentiation are well separated. The spatiotemporal pattern of the transition of neuroblasts from a proliferating into a differentiating state correlates with the expression of BtChoEase just before and during mitosis and that of AcChoEase about 11 hr after mitosis. Thus cholinesterases could be involved in the regulation of this transition. Images PMID:3467355
Semantic Richness and Aging: The Effect of Number of Features in the Lexical Decision Task
ERIC Educational Resources Information Center
Robert, Christelle; Rico Duarte, Liliana
2016-01-01
The aim of this study was to examine whether the effect of semantic richness in visual word recognition (i.e., words with a rich semantic representation are faster to recognize than words with a poorer semantic representation), is changed with aging. Semantic richness was investigated by manipulating the number of features of words (NOF), i.e.,…
ERIC Educational Resources Information Center
Laszlo, Sarah; Stites, Mallory; Federmeier, Kara D.
2012-01-01
A growing body of evidence suggests that semantic access is obligatory. Several studies have demonstrated that brain activity associated with semantic processing, measured in the N400 component of the event-related brain potential (ERP), is elicited even by meaningless, orthographically illegal strings, suggesting that semantic access is not gated…
The Use of a Context-Based Information Retrieval Technique
2009-07-01
provided in context. Latent Semantic Analysis (LSA) is a statistical technique for inferring contextual and structural information, and previous studies...WAIS). 10 DSTO-TR-2322 1.4.4 Latent Semantic Analysis LSA, which is also known as latent semantic indexing (LSI), uses a statistical and...1.4.6 Language Models In contrast, natural language models apply algorithms that combine statistical information with semantic information. Semantic
Wilson, Stephen M; DeMarco, Andrew T; Henry, Maya L; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L; Gorno-Tempini, Maria Luisa
2014-05-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA; also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the ATLs is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA to determine which regions normally involved in syntactic processing are damaged in semantic PPA and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural MRI and fMRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that, in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, whereas anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the ATLs but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left ATL did show abnormal functionality in semantic PPA patients; however, this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the ATL in sentence processing is less likely to relate to syntactic structure-building and more likely to relate to higher-level processes such as combinatorial semantic processing.
An efficient and extensible approach for compressing phylogenetic trees
2011-01-01
Background Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. Results On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. Conclusions TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community. PMID:22165819
An efficient and extensible approach for compressing phylogenetic trees.
Matthews, Suzanne J; Williams, Tiffani L
2011-10-18
Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community.
Robinson, Sally J; Temple, Christine M
2013-04-01
This paper addresses the relative independence of different types of lexical- and factually-based semantic knowledge in JM, a 9-year-old boy with Klinefelter syndrome (KS). JM was matched to typically developing (TD) controls on the basis of chronological age. Lexical-semantic knowledge was investigated for common noun (CN) and mathematical vocabulary items (MV). Factually-based semantic knowledge was investigated for general and number facts. For CN items, JM's lexical stores were of a normal size but the volume of correct 'sensory feature' semantic knowledge he generated within verbal item descriptions was significantly reduced. He was also significantly impaired at naming item descriptions and pictures, particularly for fruit and vegetables. There was also weak object decision for fruit and vegetables. In contrast, for MV items, JM's lexical stores were elevated, with no significant difference in the amount and type of correct semantic knowledge generated within verbal item descriptions and normal naming. JM's fact retrieval accuracy was normal for all types of factual knowledge. JM's performance indicated a dissociation between the representation of CN and MV vocabulary items during development. JM's preserved semantic knowledge of facts in the face of impaired semantic knowledge of vocabulary also suggests that factually-based semantic knowledge representation is not dependent on normal lexical-semantic knowledge during development. These findings are discussed in relation to the emergence of distinct semantic knowledge representations during development, due to differing degrees of dependency upon the acquisition and representation of semantic knowledge from verbal propositions and perceptual input.
Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging
Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.
2013-01-01
A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321
Gardner, Hannah E; Lambon Ralph, Matthew A; Dodds, Naomi; Jones, Theresa; Ehsan, Sheeba; Jefferies, Elizabeth
2012-04-01
Aphasic patients with multimodal semantic impairment following pFC or temporo-parietal (TP) cortex damage (semantic aphasia [SA]) have deficits characterized by poor control of semantic activation/retrieval, as opposed to loss of semantic knowledge per se. In line with this, SA patients show "refractory effects"; that is, declining accuracy in cyclical word-picture matching tasks when semantically related sets are presented rapidly and repeatedly. This is argued to follow a build-up of competition between targets and distractors. However, the link between poor semantic control and refractory effects is still controversial for two reasons. (1) Some theories propose that refractory effects are specific to verbal or auditory tasks, yet SA patients show poor control over semantic processing in both word and picture semantic tasks. (2) SA can result from lesions to either the left pFC or TP cortex, yet previous work suggests that refractory effects are specifically linked to the left inferior frontal cortex. For the first time, verbal, visual, and nonverbal auditory refractory effects were explored in nine SA patients who had pFC (pFC+) or TP cortex (TP-only) lesions. In all modalities, patient accuracy declined significantly over repetitions. This refractory effect at the group level was driven by pFC+ patients and was not shown by individuals with TP-only lesions. These findings support the theory that SA patients have reduced control over multimodal semantic retrieval and, additionally, suggest there may be functional specialization within the posterior versus pFC elements of the semantic control network.
When fruits lose to animals: Disorganized search of semantic memory in Parkinson's disease.
Tagini, Sofia; Seyed-Allaei, Shima; Scarpina, Federica; Toraldo, Alessio; Mauro, Alessandro; Cherubini, Paolo; Reverberi, Carlo
2018-04-16
The semantic fluency task is widely used in both clinical and research settings to assess both the integrity of the semantic store and the effectiveness of the search through it. Our aim was to investigate whether nondemented Parkinson's disease (PD) patients show an impairment in the strategic exploration of the semantic store and whether the tested semantic category has an impact on multiple measures of performance. We compared 74 nondemented PD patients with 254 healthy subjects in a semantic fluency test using relatively small (fruits) and large (animals) semantic categories. Number of words produced, number of explored semantic subcategories, and degree of order in the produced sequences were computed as dependent variables. PD patients produced fewer words than healthy subjects did, regardless of the category. Number of subcategories was also lower in PD patients than in healthy subjects, without a significant difference between categories. Critically, PD patients' sequences were less semantically organized than were those of controls, but this effect appeared in only the smaller category (fruits), thus pointing to a lack of strategy in exploring the semantic store. Our results show that the semantic fluency deficit in PD patients has a strategic component, even though that may not be the only cause of the impaired performance. Furthermore, our evidence suggests that the semantic category used in the test influences performance, hence providing an explanation for the failure by previous studies, which often used large categories such as animals, to detect strategy deficits in PD. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Visser, M; Embleton, K V; Jefferies, E; Parker, G J; Ralph, M A Lambon
2010-05-01
The neural basis of semantic memory generates considerable debate. Semantic dementia results from bilateral anterior temporal lobe (ATL) atrophy and gives rise to a highly specific impairment of semantic memory, suggesting that this region is a critical neural substrate for semantic processing. Recent rTMS experiments with neurologically-intact participants also indicate that the ATL are a necessary substrate for semantic memory. Exactly which regions within the ATL are important for semantic memory are difficult to detect from these methods (because the damage in SD covers a large part of the ATL). Functional neuroimaging might provide important clues about which specific areas exhibit activation that correlates with normal semantic performance. Neuroimaging studies, however, have not consistently found anterior temporal lobe activation in semantic tasks. A recent meta-analysis indicates that this inconsistency may be due to a collection of technical limitations associated with previous studies, including a reduced field-of-view and magnetic susceptibility artefacts associated with standard gradient echo fMRI. We conducted an fMRI study of semantic memory using a combination of techniques which improve sensitivity to ATL activations whilst preserving whole-brain coverage. As expected from SD patients and ATL rTMS experiments, this method revealed bilateral temporal activation extending from the inferior temporal lobe along the fusiform gyrus to the anterior temporal regions, bilaterally. We suggest that the inferior, anterior temporal lobe region makes a crucial contribution to semantic cognition and utilising this version of fMRI will enable further research on the semantic role of the ATL. 2010 Elsevier Ltd. All rights reserved.
Modelling Metamorphism by Abstract Interpretation
NASA Astrophysics Data System (ADS)
Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.
Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.
A Tri-network Model of Human Semantic Processing
Xu, Yangwen; He, Yong; Bi, Yanchao
2017-01-01
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266
SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.
Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T
2009-09-23
SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.
KBWS: an EMBOSS associated package for accessing bioinformatics web services.
Oshita, Kazuki; Arakawa, Kazuharu; Tomita, Masaru
2011-04-29
The availability of bioinformatics web-based services is rapidly proliferating, for their interoperability and ease of use. The next challenge is in the integration of these services in the form of workflows, and several projects are already underway, standardizing the syntax, semantics, and user interfaces. In order to deploy the advantages of web services with locally installed tools, here we describe a collection of proxy client tools for 42 major bioinformatics web services in the form of European Molecular Biology Open Software Suite (EMBOSS) UNIX command-line tools. EMBOSS provides sophisticated means for discoverability and interoperability for hundreds of tools, and our package, named the Keio Bioinformatics Web Service (KBWS), adds functionalities of local and multiple alignment of sequences, phylogenetic analyses, and prediction of cellular localization of proteins and RNA secondary structures. This software implemented in C is available under GPL from http://www.g-language.org/kbws/ and GitHub repository http://github.com/cory-ko/KBWS. Users can utilize the SOAP services implemented in Perl directly via WSDL file at http://soap.g-language.org/kbws.wsdl (RPC Encoded) and http://soap.g-language.org/kbws_dl.wsdl (Document/literal).
NASA Astrophysics Data System (ADS)
Delgado, F. J.; Martinez, R.; Finat, J.; Martinez, J.; Puche, J. C.; Finat, F. J.
2013-07-01
In this work we develop a multiply interconnected system which involves objects, agents and interactions between them from the use of ICT applied to open repositories, users communities and web services. Our approach is applied to Architectural Cultural Heritage Environments (ACHE). It includes components relative to digital accessibility (to augmented ACHE repositories), contents management (ontologies for the semantic web), semiautomatic recognition (to ease the reuse of materials) and serious videogames (for interaction in urban environments). Their combination provides a support for local real/remote virtual tourism (including some tools for low-level RT display of rendering in portable devices), mobile-based smart interactions (with a special regard to monitored environments) and CH related games (as extended web services). Main contributions to AR models on usual GIS applied to architectural environments, concern to an interactive support performed directly on digital files which allows to access to CH contents which are referred to GIS of urban districts (involving facades, historical or preindustrial buildings) and/or CH repositories in a ludic and transversal way to acquire cognitive, medial and social abilities in collaborative environments.
Insights from child development on the relationship between episodic and semantic memory.
Robertson, Erin K; Köhler, Stefan
2007-11-05
The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.
The effects of associative and semantic priming in the lexical decision task.
Perea, Manuel; Rosa, Eva
2002-08-01
Four lexical decision experiments were conducted to examine under which conditions automatic semantic priming effects can be obtained. Experiments 1 and 2 analyzed associative/semantic effects at several very short stimulus-onset asynchronies (SOAs), whereas Experiments 3 and 4 used a single-presentation paradigm at two response-stimulus intervals (RSIs). Experiment 1 tested associatively related pairs from three semantic categories (synonyms, antonyms, and category coordinates). The results showed reliable associative priming effects at all SOAs. In addition, the correlation between associative strength and magnitude of priming was significant only at the shortest SOA (66 ms). When prime-target pairs were semantically but not associatively related (Experiment 2), reliable priming effects were obtained at SOAs of 83 ms and longer. Using the single-presentation paradigm with a short RSI (200 ms, Experiment 3), the priming effect was equal in size for associative + semantic and for semantic-only pairs (a 21-ms effect). When the RSI was set much longer (1,750 ms, Experiment 4), only the associative + semantic pairs showed a reliable priming effect (23 ms). The results are interpreted in the context of models of semantic memory.
Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir
2018-01-01
Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.
Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy
Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth
2015-01-01
The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956
Zannino, Gian Daniele; Perri, Roberta; Monaco, Marco; Caltagirone, Carlo; Luzzi, Simona; Carlesimo, Giovanni A
2014-01-01
According to the semantic hub hypothesis, a supramodal semantic hub is equally needed to deal with verbal and extraverbal "surface" representations. Damage to the supramodal hub is thought to underlie the crossmodal impairment observed in selective semantic deficits. In the present paper, we provide evidence supporting an alternative view: we hold that semantic impairment is not equal across domains but affects verbal behavior disproportionately. We investigated our hypothesis by manipulating the verbal load in an object decision task. Two pathological groups showing different levels of semantic impairment were enrolled together with their normal controls. The severe group included 10 subjects with semantic dementia and the mild group 10 subjects with Alzheimer's disease. In keeping with our hypothesis, when shifting from the low verbal load to the high verbal load condition, brain-damaged individuals, as compared to controls, showed a disproportionate impairment as a function of the severity of their semantic deficit. Copyright © 2013 Elsevier Inc. All rights reserved.
Palmiero, Massimiliano; Di Matteo, Rosalia; Belardinelli, Marta Olivetti
2014-05-01
Two experiments comparing imaginative processing in different modalities and semantic processing were carried out to investigate the issue of whether conceptual knowledge can be represented in different format. Participants were asked to judge the similarity between visual images, auditory images, and olfactory images in the imaginative block, if two items belonged to the same category in the semantic block. Items were verbally cued in both experiments. The degree of similarity between the imaginative and semantic items was changed across experiments. Experiment 1 showed that the semantic processing was faster than the visual and the auditory imaginative processing, whereas no differentiation was possible between the semantic processing and the olfactory imaginative processing. Experiment 2 revealed that only the visual imaginative processing could be differentiated from the semantic processing in terms of accuracy. These results showed that the visual and auditory imaginative processing can be differentiated from the semantic processing, although both visual and auditory images strongly rely on semantic representations. On the contrary, no differentiation is possible within the olfactory domain. Results are discussed in the frame of the imagery debate.
Biomedical semantics in the Semantic Web
2011-01-01
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570
Trust estimation of the semantic web using semantic web clustering
NASA Astrophysics Data System (ADS)
Shirgahi, Hossein; Mohsenzadeh, Mehran; Haj Seyyed Javadi, Hamid
2017-05-01
Development of semantic web and social network is undeniable in the Internet world these days. Widespread nature of semantic web has been very challenging to assess the trust in this field. In recent years, extensive researches have been done to estimate the trust of semantic web. Since trust of semantic web is a multidimensional problem, in this paper, we used parameters of social network authority, the value of pages links authority and semantic authority to assess the trust. Due to the large space of semantic network, we considered the problem scope to the clusters of semantic subnetworks and obtained the trust of each cluster elements as local and calculated the trust of outside resources according to their local trusts and trust of clusters to each other. According to the experimental result, the proposed method shows more than 79% Fscore that is about 11.9% in average more than Eigen, Tidal and centralised trust methods. Mean of error in this proposed method is 12.936, that is 9.75% in average less than Eigen and Tidal trust methods.
Biomedical semantics in the Semantic Web.
Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott
2011-03-07
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.
Automatic detection of protected health information from clinic narratives.
Yang, Hui; Garibaldi, Jonathan M
2015-12-01
This paper presents a natural language processing (NLP) system that was designed to participate in the 2014 i2b2 de-identification challenge. The challenge task aims to identify and classify seven main Protected Health Information (PHI) categories and 25 associated sub-categories. A hybrid model was proposed which combines machine learning techniques with keyword-based and rule-based approaches to deal with the complexity inherent in PHI categories. Our proposed approaches exploit a rich set of linguistic features, both syntactic and word surface-oriented, which are further enriched by task-specific features and regular expression template patterns to characterize the semantics of various PHI categories. Our system achieved promising accuracy on the challenge test data with an overall micro-averaged F-measure of 93.6%, which was the winner of this de-identification challenge. Copyright © 2015 Elsevier Inc. All rights reserved.
Discovering, Indexing and Interlinking Information Resources
Celli, Fabrizio; Keizer, Johannes; Jaques, Yves; Konstantopoulos, Stasinos; Vudragović, Dušan
2015-01-01
The social media revolution is having a dramatic effect on the world of scientific publication. Scientists now publish their research interests, theories and outcomes across numerous channels, including personal blogs and other thematic web spaces where ideas, activities and partial results are discussed. Accordingly, information systems that facilitate access to scientific literature must learn to cope with this valuable and varied data, evolving to make this research easily discoverable and available to end users. In this paper we describe the incremental process of discovering web resources in the domain of agricultural science and technology. Making use of Linked Open Data methodologies, we interlink a wide array of custom-crawled resources with the AGRIS bibliographic database in order to enrich the user experience of the AGRIS website. We also discuss the SemaGrow Stack, a query federation and data integration infrastructure used to estimate the semantic distance between crawled web resources and AGRIS. PMID:26834982
Leveraging Collaborative Filtering to Accelerate Rare Disease Diagnosis
Shen, Feichen; Liu, Sijia; Wang, Yanshan; Wang, Liwei; Afzal, Naveed; Liu, Hongfang
2017-01-01
In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience of care providers. We hypothesize that patients’ phenotypic information available in electronic medical records (EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we proposed a collaborative filtering system enriched with natural language processing and semantic techniques to assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with phenotypic information is able to stratify patients with relatively similar rare diseases. PMID:29854225
Leveraging Collaborative Filtering to Accelerate Rare Disease Diagnosis.
Shen, Feichen; Liu, Sijia; Wang, Yanshan; Wang, Liwei; Afzal, Naveed; Liu, Hongfang
2017-01-01
In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience of care providers. We hypothesize that patients' phenotypic information available in electronic medical records (EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we proposed a collaborative filtering system enriched with natural language processing and semantic techniques to assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with phenotypic information is able to stratify patients with relatively similar rare diseases.
Regulating reprogenetics: strategic sacralisation and semantic massage.
Mackenzie, Robin
2007-12-01
This paper forms part of the feminist critique of the regulatory consequences of biomedicine's systematic exclusion of the role of women's bodies in the development of reprogenetic technologies. I suggest that strategic use of notions of the sacred to decontextualise and delimit disagreement fosters this marginalisation. Here conceptions of the sacred and sacralisation afford a means by which pragmatic consensus over regulation may be achieved, through the deployment of a bricolage of dense images associated with cultural loyalties to solidify support or exclude contradictory elements. Hence an explicit renegotiation of the symbolic order structuring salient debates is necessary to disrupt and enrich the entrenched and exclusionary dominant discourse over reprogenetic regulation. I draw upon previous analyses of strategic rhetoric associated with the regulation of infertility treatment and embryo research in the United Kingdom, the cultural anthropology of biomedicine and feminist ethnographies of reprogenetics to illustrate these claims.
The Genetic Basis of Thought Disorder and Language and Communication Disturbances in Schizophrenia
Levy, Deborah L.; Coleman, Michael J.; Sung, Heejong; Ji, Fei; Matthysse, Steven; Mendell, Nancy R.; Titone, Debra
2009-01-01
Thought disorder as well as language and communication disturbances are associated with schizophrenia and are over-represented in clinically unaffected relatives of schizophrenics. All three kinds of dysfunction involve some element of deviant verbalizations, most notably, semantic anomalies. Of particular importance, thought disorder characterized primarily by deviant verbalizations has a higher recurrence in relatives of schizophrenic patients than schizophrenia itself. These findings suggest that deviant verbalizations may be more penetrant expressions of schizophrenia susceptibility genes than schizophrenia. This paper reviews the evidence documenting the presence of thought, language and communication disorders in schizophrenic patients and in their first-degree relatives. This familial aggregation potentially implicates genetic factors in the etiology of thought disorder, language anomalies, and communication disturbances in schizophrenia families. We also present two examples of ways in which thought, language and communication disorders can enrich genetic studies, including those involving schizophrenia. PMID:20161689
Culto: AN Ontology-Based Annotation Tool for Data Curation in Cultural Heritage
NASA Astrophysics Data System (ADS)
Garozzo, R.; Murabito, F.; Santagati, C.; Pino, C.; Spampinato, C.
2017-08-01
This paper proposes CulTO, a software tool relying on a computational ontology for Cultural Heritage domain modelling, with a specific focus on religious historical buildings, for supporting cultural heritage experts in their investigations. It is specifically thought to support annotation, automatic indexing, classification and curation of photographic data and text documents of historical buildings. CULTO also serves as a useful tool for Historical Building Information Modeling (H-BIM) by enabling semantic 3D data modeling and further enrichment with non-geometrical information of historical buildings through the inclusion of new concepts about historical documents, images, decay or deformation evidence as well as decorative elements into BIM platforms. CulTO is the result of a joint research effort between the Laboratory of Surveying and Architectural Photogrammetry "Luigi Andreozzi" and the PeRCeiVe Lab (Pattern Recognition and Computer Vision Lab) of the University of Catania,
How Semantic Radicals in Chinese characters Facilitate Hierarchical Category-Based Induction.
Wang, Xiaoxi; Ma, Xie; Tao, Yun; Tao, Yachen; Li, Hong
2018-04-03
Prior studies indicate that the semantic radical in Chinese characters contains category information that can support the independent retrieval of category information through the lexical network to the conceptual network. Inductive reasoning relies on category information; thus, semantic radicals may influence inductive reasoning. As most natural concepts are hierarchically structured in the human brain, this study examined how semantic radicals impact inductive reasoning for hierarchical concepts. The study used animal and plant nouns, organized in basic, superordinate, and subordinate levels; half had a semantic radical and half did not. Eighteen participants completed an inductive reasoning task. Behavioural and event-related potential (ERP) data were collected. The behavioural results showed that participants reacted faster and more accurately in the with-semantic-radical condition than in the without-semantic-radical condition. For the ERPs, differences between the conditions were found, and these differences lasted from the very early cognitive processing stage (i.e., the N1 time window) to the relatively late processing stages (i.e., the N400 and LPC time windows). Semantic radicals can help to distinguish the hierarchies earlier (in the N400 period) than characters without a semantic radical (in the LPC period). These results provide electrophysiological evidence that semantic radicals may improve sensitivity to distinguish between hierarchical concepts.
Somatotopic Semantic Priming and Prediction in the Motor System
Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann
2016-01-01
The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635
Auditing Associative Relations across Two Knowledge Sources
Vizenor, Lowell T.; Bodenreider, Olivier; McCray, Alexa T.
2009-01-01
Objectives This paper proposes a novel semantic method for auditing associative relations in biomedical terminologies. We tested our methodology on two Unified Medical Language System (UMLS) knowledge sources. Methods We use the UMLS semantic groups as high-level representations of the domain and range of relationships in the Metathesaurus and in the Semantic Network. A mapping created between Metathesaurus relationships and Semantic Network relationships forms the basis for comparing the signatures of a given Metathesaurus relationship to the signatures of the semantic relationship to which it is mapped. The consistency of Metathesaurus relations is studied for each relationship. Results Of the 177 associative relationships in the Metathesaurus, 84 (48%) exhibit a high degree of consistency with the corresponding Semantic Network relationships. Overall, 63% of the 1.8M associative relations in the Metathesaurus are consistent with relations in the Semantic Network. Conclusion The semantics of associative relationships in biomedical terminologies should be defined explicitly by their developers. The Semantic Network would benefit from being extended with new relationships and with new relations for some existing relationships. The UMLS editing environment could take advantage of the correspondence established between relationships in the Metathesaurus and the Semantic Network. Finally, the auditing method also yielded useful information for refining the mapping of associative relationships between the two sources. PMID:19475724
Nguyen, Thi Phuong; Zhang, Jie; Li, Hong; Wu, Xinchun; Cheng, Yahua
2017-01-01
This study investigates the effects of teaching semantic radicals in inferring the meanings of unfamiliar characters among nonnative Chinese speakers. A total of 54 undergraduates majoring in Chinese Language from a university in Hanoi, Vietnam, who had 1 year of learning experience in Chinese were assigned to two experimental groups that received instructional intervention, called “old-for-new” semantic radical teaching, through two counterbalanced sets of semantic radicals, with one control group. All of the students completed pre- and post-tests of a sentence cloze task where they were required to choose an appropriate character that fit the sentence context among four options. The four options shared the same phonetic radicals but had different semantic radicals. The results showed that the pre-test and post-test score increases were significant for the experimental groups, but not for the control group. Most importantly, the experimental groups successfully transferred the semantic radical strategy to figure out the meanings of unfamiliar characters containing semantic radicals that had not been taught. The results demonstrate the effectiveness of teaching semantic radicals for lexical inference in sentence reading for nonnative speakers, and highlight the ability of transfer learning to acquire semantic categories of sub-lexical units (semantic radicals) in Chinese characters among foreign language learners. PMID:29109694
Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office
Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok
2015-01-01
The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability. PMID:25608216
Integrated semantics service platform for the Internet of Things: a case study of a smart office.
Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok
2015-01-19
The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.
Lah, Suncica; Smith, Mary Lou
2014-01-01
Children with temporal lobe epilepsy are at risk for deficits in new learning (episodic memory) and literacy skills. Semantic memory deficits and double dissociations between episodic and semantic memory have recently been found in this patient population. In the current study we investigate whether impairments of these 2 distinct memory systems relate to literacy skills. 57 children with unilateral temporal lobe epilepsy completed tests of verbal memory (episodic and semantic) and literacy skills (reading and spelling accuracy, and reading comprehension). For the entire group, semantic memory explained over 30% of variance in each of the literacy domains. Episodic memory explained a significant, but rather small proportion (< 10%) of variance in reading and spelling accuracy, but not in reading comprehension. Moreover, when children with opposite patterns of specific memory impairments (intact semantic/impaired episodic, intact episodic/impaired semantic) were compared, significant reductions in literacy skills were evident only in children with semantic memory impairments, but not in children with episodic memory impairments relative to the norms and to children with temporal lobe epilepsy who had intact memory. Our study provides the first evidence for differential relations between episodic and semantic memory impairments and literacy skills in children with temporal lobe epilepsy. As such, it highlights the urgent need to consider semantic memory deficits in management of children with temporal lobe epilepsy and undertake further research into the nature of reading difficulties of children with semantic memory impairments.
Python, Grégoire; Fargier, Raphaël; Laganaro, Marina
2018-02-01
In everyday conversations, we take advantage of lexical-semantic contexts to facilitate speech production, but at the same time, we also have to reduce interference and inhibit semantic competitors. The blocked cyclic naming paradigm (BCNP) has been used to investigate such context effects. Typical results on production latencies showed semantic facilitation (or no effect) during the first presentation cycle, and interference emerging in subsequent cycles. Even if semantic contexts might be just as facilitative as interfering, previous BCNP studies focused on interference, which was interpreted as reflecting lemma selection and self-monitoring processes. Facilitation in the first cycle was rarely considered/analysed, although it potentially informs on word production to the same extent as interference. Here we contrasted the event-related potential (ERP) signatures of both semantic facilitation and interference in a BCNP. ERPs differed between homogeneous and heterogeneous blocks from about 365 msec post picture onset in the first cycle (facilitation) and in an earlier time-window (270 msec post picture onset) in the third cycle (interference). Three different analyses of the ERPs converge towards distinct processes underlying semantic facilitation and interference (post-lexical vs lexical respectively). The loci of semantic facilitation and interference are interpreted in the context of different theoretical frameworks of language production: the post-lexical locus of semantic facilitation involves interactive phonological-semantic processes and/or self-monitoring, whereas the lexical locus of semantic interference is in line with selection through increased lexical competition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissociation of lexical syntax and semantics: evidence from focal cortical degeneration.
Garrard, P; Carroll, E; Vinson, D; Vigliocco, G
2004-10-01
The question of whether information relevant to meaning (semantics) and structure (syntax) relies on a common language processor or on separate subsystems has proved difficult to address definitively because of the confounds involved in comparing the two types of information. At the sentence level syntactic and semantic judgments make different cognitive demands, while at the single word level, the most commonly used syntactic distinction (between nouns and verbs) is confounded with a fundamental semantic difference (between objects and actions). The present study employs a different syntactic contrast (between count nouns and mass nouns), which is crossed with a semantic difference (between naturally occurring and man-made substances) applying to words within a circumscribed semantic field (foodstuffs). We show, first, that grammaticality judgments of a patient with semantic dementia are indistinguishable from those of a group of age-matched controls, and are similar regardless of the status of his semantic knowledge about the item. In a second experiment we use the triadic task in a group of age-matched controls to show that similarity judgments are influenced not only by meaning (natural vs. manmade), but also implicitly by syntactic information (count vs. mass). Using the same task in a patient with semantic dementia we show that the semantic influences on the syntactic dimension are unlikely to account for this pattern in normals. These data are discussed in relation to modular vs. nonmodular models of language processing, and in particular to the semantic-syntactic distinction.
Sinaci, A Anil; Laleci Erturkmen, Gokce B
2013-10-01
In order to enable secondary use of Electronic Health Records (EHRs) by bridging the interoperability gap between clinical care and research domains, in this paper, a unified methodology and the supporting framework is introduced which brings together the power of metadata registries (MDR) and semantic web technologies. We introduce a federated semantic metadata registry framework by extending the ISO/IEC 11179 standard, and enable integration of data element registries through Linked Open Data (LOD) principles where each Common Data Element (CDE) can be uniquely referenced, queried and processed to enable the syntactic and semantic interoperability. Each CDE and their components are maintained as LOD resources enabling semantic links with other CDEs, terminology systems and with implementation dependent content models; hence facilitating semantic search, much effective reuse and semantic interoperability across different application domains. There are several important efforts addressing the semantic interoperability in healthcare domain such as IHE DEX profile proposal, CDISC SHARE and CDISC2RDF. Our architecture complements these by providing a framework to interlink existing data element registries and repositories for multiplying their potential for semantic interoperability to a greater extent. Open source implementation of the federated semantic MDR framework presented in this paper is the core of the semantic interoperability layer of the SALUS project which enables the execution of the post marketing safety analysis studies on top of existing EHR systems. Copyright © 2013 Elsevier Inc. All rights reserved.
Facilitation and interference in naming: A consequence of the same learning process?
Hughes, Julie W; Schnur, Tatiana T
2017-08-01
Our success with naming depends on what we have named previously, a phenomenon thought to reflect learning processes. Repeatedly producing the same name facilitates language production (i.e., repetition priming), whereas producing semantically related names hinders subsequent performance (i.e., semantic interference). Semantic interference is found whether naming categorically related items once (continuous naming) or multiple times (blocked cyclic naming). A computational model suggests that the same learning mechanism responsible for facilitation in repetition creates semantic interference in categorical naming (Oppenheim, Dell, & Schwartz, 2010). Accordingly, we tested the predictions that variability in semantic interference is correlated across categorical naming tasks and is caused by learning, as measured by two repetition priming tasks (picture-picture repetition priming, Exp. 1; definition-picture repetition priming, Exp. 2, e.g., Wheeldon & Monsell, 1992). In Experiment 1 (77 subjects) semantic interference and repetition priming effects were robust, but the results revealed no relationship between semantic interference effects across contexts. Critically, learning (picture-picture repetition priming) did not predict semantic interference effects in either task. We replicated these results in Experiment 2 (81 subjects), finding no relationship between semantic interference effects across tasks or between semantic interference effects and learning (definition-picture repetition priming). We conclude that the changes underlying facilitatory and interfering effects inherent to lexical access are the result of distinct learning processes where multiple mechanisms contribute to semantic interference in naming. Copyright © 2017 Elsevier B.V. All rights reserved.
Personal semantics: at the crossroads of semantic and episodic memory.
Renoult, Louis; Davidson, Patrick S R; Palombo, Daniela J; Moscovitch, Morris; Levine, Brian
2012-11-01
Declarative memory is usually described as consisting of two systems: semantic and episodic memory. Between these two poles, however, may lie a third entity: personal semantics (PS). PS concerns knowledge of one's past. Although typically assumed to be an aspect of semantic memory, it is essentially absent from existing models of knowledge. Furthermore, like episodic memory (EM), PS is idiosyncratically personal (i.e., not culturally-shared). We show that, depending on how it is operationalized, the neural correlates of PS can look more similar to semantic memory, more similar to EM, or dissimilar to both. We consider three different perspectives to better integrate PS into existing models of declarative memory and suggest experimental strategies for disentangling PS from semantic and episodic memory. Copyright © 2012 Elsevier Ltd. All rights reserved.
Subliminal semantic priming in near absence of attention: A cursor motion study.
Xiao, Kunchen; Yamauchi, Takashi
2015-12-15
The role of attention in subliminal semantic priming remains controversial: some researchers argue that attention is necessary for subliminal semantic priming, while others suggest that subliminal semantic processing is free from the influence of attention. The present study employs a cursor motion method to measure priming and evaluate the influence of attention. Specifically, by employing a semantic priming task developed by Naccache, Blandin, and Dehaene (2002), we investigate the extent to which top-down attention influences semantic priming. Results indicate that, consistent with the Naccache et al. (2002) results, attention facilitates priming. However, inconsistent with their theory, significant priming is still observed even in near absence of attention. We suggest that top-down attention helps but is not necessary for subliminal semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Narock, T.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Finin, T.; Hitzler, P.; Krisnadhi, A.; Raymond, L. M.; Shepherd, A.; Wiebe, P. H.
2014-12-01
A wide spectrum of maturing methods and tools, collectively characterized as the Semantic Web, is helping to vastly improve the dissemination of scientific research. Creating semantic integration requires input from both domain and cyberinfrastructure scientists. OceanLink, an NSF EarthCube Building Block, is demonstrating semantic technologies through the integration of geoscience data repositories, library holdings, conference abstracts, and funded research awards. Meeting project objectives involves applying semantic technologies to support data representation, discovery, sharing and integration. Our semantic cyberinfrastructure components include ontology design patterns, Linked Data collections, semantic provenance, and associated services to enhance data and knowledge discovery, interoperation, and integration. We discuss how these components are integrated, the continued automated and semi-automated creation of semantic metadata, and techniques we have developed to integrate ontologies, link resources, and preserve provenance and attribution.
Semantic memory: a feature-based analysis and new norms for Italian.
Montefinese, Maria; Ambrosini, Ettore; Fairfield, Beth; Mammarella, Nicola
2013-06-01
Semantic norms for properties produced by native speakers are valuable tools for researchers interested in the structure of semantic memory and in category-specific semantic deficits in individuals following brain damage. The aims of this study were threefold. First, we sought to extend existing semantic norms by adopting an empirical approach to category (Exp. 1) and concept (Exp. 2) selection, in order to obtain a more representative set of semantic memory features. Second, we extensively outlined a new set of semantic production norms collected from Italian native speakers for 120 artifactual and natural basic-level concepts, using numerous measures and statistics following a feature-listing task (Exp. 3b). Finally, we aimed to create a new publicly accessible database, since only a few existing databases are publicly available online.
Schleepen, T M J; Markus, C R; Jonkman, L M
2014-12-01
The application of elaborative encoding strategies during learning, such as grouping items on similar semantic categories, increases the likelihood of later recall. Previous studies have suggested that stimuli that encourage semantic grouping strategies had modulating effects on specific ERP components. However, these studies did not differentiate between ERP activation patterns evoked by elaborative working memory strategies like semantic grouping and more simple strategies like rote rehearsal. Identification of neurocognitive correlates underlying successful use of elaborative strategies is important to understand better why certain populations, like children or elderly people, have problems applying such strategies. To compare ERP activation during the application of elaborative versus more simple strategies subjects had to encode either four semantically related or unrelated pictures by respectively applying a semantic category grouping or a simple rehearsal strategy. Another goal was to investigate if maintenance of semantically grouped vs. ungrouped pictures modulated ERP-slow waves differently. At the behavioral level there was only a semantic grouping benefit in terms of faster responding on correct rejections (i.e. when the memory probe stimulus was not part of the memory set). At the neural level, during encoding semantic grouping only had a modest specific modulatory effect on a fronto-central Late Positive Component (LPC), emerging around 650 ms. Other ERP components (i.e. P200, N400 and a second Late Positive Component) that had been earlier related to semantic grouping encoding processes now showed stronger modulation by rehearsal than by semantic grouping. During maintenance semantic grouping had specific modulatory effects on left and right frontal slow wave activity. These results stress the importance of careful control of strategy use when investigating the neural correlates of elaborative encoding. Copyright © 2014 Elsevier B.V. All rights reserved.
Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
The MMI Semantic Framework: Rosetta Stones for Earth Sciences
NASA Astrophysics Data System (ADS)
Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.
2009-12-01
Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web services standards could be performed using framework tools.
Musical and verbal semantic memory: two distinct neural networks?
Groussard, M; Viader, F; Hubert, V; Landeau, B; Abbas, A; Desgranges, B; Eustache, F; Platel, H
2010-02-01
Semantic memory has been investigated in numerous neuroimaging and clinical studies, most of which have used verbal or visual, but only very seldom, musical material. Clinical studies have suggested that there is a relative neural independence between verbal and musical semantic memory. In the present study, "musical semantic memory" is defined as memory for "well-known" melodies without any knowledge of the spatial or temporal circumstances of learning, while "verbal semantic memory" corresponds to general knowledge about concepts, again without any knowledge of the spatial or temporal circumstances of learning. Our aim was to compare the neural substrates of musical and verbal semantic memory by administering the same type of task in each modality. We used high-resolution PET H(2)O(15) to observe 11 young subjects performing two main tasks: (1) a musical semantic memory task, where the subjects heard the first part of familiar melodies and had to decide whether the second part they heard matched the first, and (2) a verbal semantic memory task with the same design, but where the material consisted of well-known expressions or proverbs. The musical semantic memory condition activated the superior temporal area and inferior and middle frontal areas in the left hemisphere and the inferior frontal area in the right hemisphere. The verbal semantic memory condition activated the middle temporal region in the left hemisphere and the cerebellum in the right hemisphere. We found that the verbal and musical semantic processes activated a common network extending throughout the left temporal neocortex. In addition, there was a material-dependent topographical preference within this network, with predominantly anterior activation during musical tasks and predominantly posterior activation during semantic verbal tasks. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues
2017-05-01
The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.
Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia.
Irish, Muireann; Hodges, John R; Piguet, Olivier
2014-04-01
Semantic dementia is a progressive neurodegenerative disorder characterized by the amodal and profound loss of semantic knowledge attributable to the degeneration of the left anterior temporal lobe. Although traditionally conceptualized as a language disorder, patients with semantic dementia display significant alterations in behaviour and socioemotional functioning. Recent evidence points to an impaired capacity for theory of mind in predominantly left-lateralized cases of semantic dementia; however, it remains unclear to what extent semantic impairments contribute to these deficits. Further the neuroanatomical signature of such disturbance remains unknown. Here, we sought to determine the neural correlates of theory of mind performance in patients with left predominant semantic dementia (n=11), in contrast with disease-matched cases with behavioural-variant frontotemporal dementia (n=10) and Alzheimer's disease (n=10), and healthy older individuals (n=14) as control participants. Participants completed a simple cartoons task, in which they were required to describe physical and theory of mind scenarios. Irrespective of subscale, patients with semantic dementia exhibited marked impairments relative to control subjects; however, only theory of mind deficits persisted when we covaried for semantic comprehension. Voxel-based morphometry analyses revealed that atrophy in right anterior temporal lobe structures, including the right temporal fusiform cortex, right inferior temporal gyrus, bilateral temporal poles and amygdalae, correlated significantly with theory of mind impairments in the semantic dementia group. Our results point to the marked disruption of cognitive functions beyond the language domain in semantic dementia, not exclusively attributable to semantic processing impairments. The significant involvement of right anterior temporal structures suggests that with disease evolution, the encroachment of pathology into the contralateral hemisphere heralds the onset of social cognitive deficits in this syndrome.
Temporal Representation in Semantic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Vatansever, Deniz; Bzdok, Danilo; Wang, Hao-Ting; Mollo, Giovanna; Sormaz, Mladen; Murphy, Charlotte; Karapanagiotidis, Theodoros; Smallwood, Jonathan; Jefferies, Elizabeth
2017-09-01
Contemporary theories assume that semantic cognition emerges from a neural architecture in which different component processes are combined to produce aspects of conceptual thought and behaviour. In addition to the state-level, momentary variation in brain connectivity, individuals may also differ in their propensity to generate particular configurations of such components, and these trait-level differences may relate to individual differences in semantic cognition. We tested this view by exploring how variation in intrinsic brain functional connectivity between semantic nodes in fMRI was related to performance on a battery of semantic tasks in 154 healthy participants. Through simultaneous decomposition of brain functional connectivity and semantic task performance, we identified distinct components of semantic cognition at rest. In a subsequent validation step, these data-driven components demonstrated explanatory power for neural responses in an fMRI-based semantic localiser task and variation in self-generated thoughts during the resting-state scan. Our findings showed that good performance on harder semantic tasks was associated with relative segregation at rest between frontal brain regions implicated in controlled semantic retrieval and the default mode network. Poor performance on easier tasks was linked to greater coupling between the same frontal regions and the anterior temporal lobe; a pattern associated with deliberate, verbal thematic thoughts at rest. We also identified components that related to qualities of semantic cognition: relatively good performance on pictorial semantic tasks was associated with greater separation of angular gyrus from frontal control sites and greater integration with posterior cingulate and anterior temporal cortex. In contrast, good speech production was linked to the separation of angular gyrus, posterior cingulate and temporal lobe regions. Together these data show that quantitative and qualitative variation in semantic cognition across individuals emerges from variations in the interaction of nodes within distinct functional brain networks. Copyright © 2017 Elsevier Inc. All rights reserved.
Audio-Visual and Meaningful Semantic Context Enhancements in Older and Younger Adults.
Smayda, Kirsten E; Van Engen, Kristin J; Maddox, W Todd; Chandrasekaran, Bharath
2016-01-01
Speech perception is critical to everyday life. Oftentimes noise can degrade a speech signal; however, because of the cues available to the listener, such as visual and semantic cues, noise rarely prevents conversations from continuing. The interaction of visual and semantic cues in aiding speech perception has been studied in young adults, but the extent to which these two cues interact for older adults has not been studied. To investigate the effect of visual and semantic cues on speech perception in older and younger adults, we recruited forty-five young adults (ages 18-35) and thirty-three older adults (ages 60-90) to participate in a speech perception task. Participants were presented with semantically meaningful and anomalous sentences in audio-only and audio-visual conditions. We hypothesized that young adults would outperform older adults across SNRs, modalities, and semantic contexts. In addition, we hypothesized that both young and older adults would receive a greater benefit from a semantically meaningful context in the audio-visual relative to audio-only modality. We predicted that young adults would receive greater visual benefit in semantically meaningful contexts relative to anomalous contexts. However, we predicted that older adults could receive a greater visual benefit in either semantically meaningful or anomalous contexts. Results suggested that in the most supportive context, that is, semantically meaningful sentences presented in the audiovisual modality, older adults performed similarly to young adults. In addition, both groups received the same amount of visual and meaningful benefit. Lastly, across groups, a semantically meaningful context provided more benefit in the audio-visual modality relative to the audio-only modality, and the presence of visual cues provided more benefit in semantically meaningful contexts relative to anomalous contexts. These results suggest that older adults can perceive speech as well as younger adults when both semantic and visual cues are available to the listener.
Audio-Visual and Meaningful Semantic Context Enhancements in Older and Younger Adults
Smayda, Kirsten E.; Van Engen, Kristin J.; Maddox, W. Todd; Chandrasekaran, Bharath
2016-01-01
Speech perception is critical to everyday life. Oftentimes noise can degrade a speech signal; however, because of the cues available to the listener, such as visual and semantic cues, noise rarely prevents conversations from continuing. The interaction of visual and semantic cues in aiding speech perception has been studied in young adults, but the extent to which these two cues interact for older adults has not been studied. To investigate the effect of visual and semantic cues on speech perception in older and younger adults, we recruited forty-five young adults (ages 18–35) and thirty-three older adults (ages 60–90) to participate in a speech perception task. Participants were presented with semantically meaningful and anomalous sentences in audio-only and audio-visual conditions. We hypothesized that young adults would outperform older adults across SNRs, modalities, and semantic contexts. In addition, we hypothesized that both young and older adults would receive a greater benefit from a semantically meaningful context in the audio-visual relative to audio-only modality. We predicted that young adults would receive greater visual benefit in semantically meaningful contexts relative to anomalous contexts. However, we predicted that older adults could receive a greater visual benefit in either semantically meaningful or anomalous contexts. Results suggested that in the most supportive context, that is, semantically meaningful sentences presented in the audiovisual modality, older adults performed similarly to young adults. In addition, both groups received the same amount of visual and meaningful benefit. Lastly, across groups, a semantically meaningful context provided more benefit in the audio-visual modality relative to the audio-only modality, and the presence of visual cues provided more benefit in semantically meaningful contexts relative to anomalous contexts. These results suggest that older adults can perceive speech as well as younger adults when both semantic and visual cues are available to the listener. PMID:27031343
Chiou, Rocco; Humphreys, Gina F; Jung, JeYoung; Lambon Ralph, Matthew A
2018-06-01
Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Examining lateralized semantic access using pictures.
Lovseth, Kyle; Atchley, Ruth Ann
2010-03-01
A divided visual field (DVF) experiment examined the semantic processing strategies employed by the cerebral hemispheres to determine if strategies observed with written word stimuli generalize to other media for communicating semantic information. We employed picture stimuli and vary the degree of semantic relatedness between the picture pairs. Participants made an on-line semantic relatedness judgment in response to sequentially presented pictures. We found that when pictures are presented to the right hemisphere responses are generally more accurate than the left hemisphere for semantic relatedness judgments for picture pairs. Furthermore, consistent with earlier DVF studies employing words, we conclude that the RH is better at accessing or maintaining access to information that has a weak or more remote semantic relationship. We also found evidence of faster access for pictures presented to the LH in the strongly-related condition. Overall, these results are consistent with earlier DVF word studies that argue that the cerebral hemispheres each play an important and separable role during semantic retrieval. Copyright 2009 Elsevier Inc. All rights reserved.
Barraza, Paulo; Chavez, Mario; Rodríguez, Eugenio
2016-01-01
Similar to linguistic stimuli, music can also prime the meaning of a subsequent word. However, it is so far unknown what is the brain dynamics underlying the semantic priming effect induced by music, and its relation to language. To elucidate these issues, we compare the brain oscillatory response to visual words that have been semantically primed either by a musical excerpt or by an auditory sentence. We found that semantic violation between music-word pairs triggers a classical ERP N400, and induces a sustained increase of long-distance theta phase synchrony, along with a transient increase of local gamma activity. Similar results were observed after linguistic semantic violation except for gamma activity, which increased after semantic congruence between sentence-word pairs. Our findings indicate that local gamma activity is a neural marker that signals different ways of semantic processing between music and language, revealing the dynamic and self-organized nature of the semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Federmeier, Kara D.
2017-01-01
There is growing recognition that some important forms of long-term memory are difficult to classify into one of the well-studied memory subtypes. One example is personal semantics. Like the episodes that are stored as part of one’s autobiography, personal semantics is linked to an individual, yet, like general semantic memory, it is detached from a specific encoding context. Access to general semantics elicits an electrophysiological response known as the N400, which has been characterized across three decades of research; surprisingly, this response has not been fully examined in the context of personal semantics. In this study, we assessed responses to congruent and incongruent statements about people’s own, personal preferences. We found that access to personal preferences elicited N400 responses, with congruency effects that were similar in latency and distribution to those for general semantic statements elicited from the same participants. These results suggest that the processing of personal and general semantics share important functional and neurobiological features. PMID:26825011
Grasping the invisible: semantic processing of abstract words.
Zdrazilova, Lenka; Pexman, Penny M
2013-12-01
The problem of how abstract word meanings are represented has been a challenging one. In the present study, we extended the semantic richness approach (e.g., Yap, Tan, Pexman, & Hargreaves in Psychonomic Bulletin & Review 18:742-750, 2011) to abstract words, examining the effects of six semantic richness variables on lexical-semantic processing for 207 abstract nouns. The candidate richness dimensions were context availability (CA), sensory experience rating (SER), valence, arousal, semantic neighborhood (SN), and number of associates (NoA). The behavioral tasks were lexical decision (LDT) and semantic categorization (SCT). Our results showed that the semantic richness variables were significantly related to both LDT and SCT latencies, even after lexical and orthographic factors were controlled. The patterns of richness effects varied across tasks, with CA effects in the LDT, and SER and valence effects in the SCT. These results provide new insight into how abstract meanings may be grounded, and are consistent with a dynamic, multidimensional framework for semantic processing.
Syntax does not necessarily precede semantics in sentence processing: ERP evidence from Chinese.
Zhang, Yaxu; Li, Ping; Piao, Qiuhong; Liu, Youyi; Huang, Yongjing; Shu, Hua
2013-07-01
Two event-related potential experiments were conducted to examine whether the processing of syntactic category or syntactic subcategorization frame always needs to temporally precede semantic processing during the reading of Chinese sentences of object-subject-verb construction. The sentences contained (a) no anomalies, (b) semantic only anomalies, (c) syntactic category plus semantic anomalies, or (d) transitivity plus semantic anomalies. In both experiments, all three types of anomalies elicited a broad negativity between 300 and 500 ms. This negativity included an N400 effect, given its distribution. Moreover, syntactic category plus semantic anomalies elicited a P600 response, whereas the other two types of anomalies did not. The finding of N400 effects suggests that semantic integration can be attempted even when the processing of syntactic category or syntactic subcategorization frame is unsuccessful. Thus, syntactic processing is not a necessary prerequisite for the initiation of semantic integration in Chinese. Copyright © 2013 Elsevier Inc. All rights reserved.
Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science
NASA Astrophysics Data System (ADS)
Emadzadeh, Ehsan
Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.
Electrophysiological effects of semantic context in picture and word naming.
Janssen, Niels; Carreiras, Manuel; Barber, Horacio A
2011-08-01
Recent language production studies have started to use electrophysiological measures to investigate the time course of word selection processes. An important contribution with respect to this issue comes from studies that have relied on an effect of semantic context in the semantic blocking task. Here we used this task to further establish the empirical pattern associated with the effect of semantic context, and whether the effect arises during output processing. Electrophysiological and reaction time measures were co-registered while participants overtly named picture and word stimuli in the semantic blocking task. The results revealed inhibitory reaction time effects of semantic context for both words and pictures, and a corresponding electrophysiological effect that could not be interpreted in terms of output processes. These data suggest that the electrophysiological effect of semantic context in the semantic blocking task does not reflect output processes, and therefore undermine an interpretation of this effect in terms of word selection. Copyright © 2011 Elsevier Inc. All rights reserved.
Is semantic fluency differentially impaired in schizophrenic patients with delusions?
Rossell, S L; Rabe-Hesketh, S S; Shapleske, J S; David, A S
1999-10-01
The study of cognitive deficits in schizophrenia has recently focused upon semantics: the study of meaning. Delusions are a plausible manifestation of abnormal semantics because by definition they involve changes in personal meaning and belief. A symptom-based approach was used to investigate semantic and phonological fluency in a group of schizophrenic patients subdivided into those with delusions and those with no current delusions. The results demonstrated that deluded patients only were differentially impaired on a test of semantic fluency in comparison to phonological fluency. All subjects showed the same decline in performance over the time course of both tests indicating that retrieval speed in schizophrenia is no different from that of normal controls. Further analysis of word associations in two semantic categories (animals and body parts), revealed that deluded subjects have a more idiosyncratic organisation for animals. The findings of reduced semantic fluency production and poor logical word associations may represent a disorganised storage of semantic information in deluded patients, which in turn affects efficient access.
Daniel, Christel; Ouagne, David; Sadou, Eric; Forsberg, Kerstin; Gilchrist, Mark Mc; Zapletal, Eric; Paris, Nicolas; Hussain, Sajjad; Jaulent, Marie-Christine; MD, Dipka Kalra
2016-01-01
With the development of platforms enabling the use of routinely collected clinical data in the context of international clinical research, scalable solutions for cross border semantic interoperability need to be developed. Within the context of the IMI EHR4CR project, we first defined the requirements and evaluation criteria of the EHR4CR semantic interoperability platform and then developed the semantic resources and supportive services and tooling to assist hospital sites in standardizing their data for allowing the execution of the project use cases. The experience gained from the evaluation of the EHR4CR platform accessing to semantically equivalent data elements across 11 European participating EHR systems from 5 countries demonstrated how far the mediation model and mapping efforts met the expected requirements of the project. Developers of semantic interoperability platforms are beginning to address a core set of requirements in order to reach the goal of developing cross border semantic integration of data. PMID:27570649
Huang, Chung-Chi; Lu, Zhiyong
2016-01-01
Identifying relevant papers from the literature is a common task in biocuration. Most current biomedical literature search systems primarily rely on matching user keywords. Semantic search, on the other hand, seeks to improve search accuracy by understanding the entities and contextual relations in user keywords. However, past research has mostly focused on semantically identifying biological entities (e.g. chemicals, diseases and genes) with little effort on discovering semantic relations. In this work, we aim to discover biomedical semantic relations in PubMed queries in an automated and unsupervised fashion. Specifically, we focus on extracting and understanding the contextual information (or context patterns) that is used by PubMed users to represent semantic relations between entities such as ‘CHEMICAL-1 compared to CHEMICAL-2.’ With the advances in automatic named entity recognition, we first tag entities in PubMed queries and then use tagged entities as knowledge to recognize pattern semantics. More specifically, we transform PubMed queries into context patterns involving participating entities, which are subsequently projected to latent topics via latent semantic analysis (LSA) to avoid the data sparseness and specificity issues. Finally, we mine semantically similar contextual patterns or semantic relations based on LSA topic distributions. Our two separate evaluation experiments of chemical-chemical (CC) and chemical–disease (CD) relations show that the proposed approach significantly outperforms a baseline method, which simply measures pattern semantics by similarity in participating entities. The highest performance achieved by our approach is nearly 0.9 and 0.85 respectively for the CC and CD task when compared against the ground truth in terms of normalized discounted cumulative gain (nDCG), a standard measure of ranking quality. These results suggest that our approach can effectively identify and return related semantic patterns in a ranked order covering diverse bio-entity relations. To assess the potential utility of our automated top-ranked patterns of a given relation in semantic search, we performed a pilot study on frequently sought semantic relations in PubMed and observed improved literature retrieval effectiveness based on post-hoc human relevance evaluation. Further investigation in larger tests and in real-world scenarios is warranted. PMID:27016698
Centrality-based Selection of Semantic Resources for Geosciences
NASA Astrophysics Data System (ADS)
Cerba, Otakar; Jedlicka, Karel
2017-04-01
Semantical questions intervene almost in all disciplines dealing with geographic data and information, because relevant semantics is crucial for any way of communication and interaction among humans as well as among machines. But the existence of such a large number of different semantic resources (such as various thesauri, controlled vocabularies, knowledge bases or ontologies) makes the process of semantics implementation much more difficult and complicates the use of the advantages of semantics. This is because in many cases users are not able to find the most suitable resource for their purposes. The research presented in this paper introduces a methodology consisting of an analysis of identical relations in Linked Data space, which covers a majority of semantic resources, to find a suitable resource of semantic information. Identical links interconnect representations of an object or a concept in various semantic resources. Therefore this type of relations is considered to be crucial from the view of Linked Data, because these links provide new additional information, including various views on one concept based on different cultural or regional aspects (so-called social role of Linked Data). For these reasons it is possible to declare that one reasonable criterion for feasible semantic resources for almost all domains, including geosciences, is their position in a network of interconnected semantic resources and level of linking to other knowledge bases and similar products. The presented methodology is based on searching of mutual connections between various instances of one concept using "follow your nose" approach. The extracted data on interconnections between semantic resources are arranged to directed graphs and processed by various metrics patterned on centrality computing (degree, closeness or betweenness centrality). Semantic resources recommended by the research could be used for providing semantically described keywords for metadata records or as names of items in data models. Such an approach enables much more efficient data harmonization, integration, sharing and exploitation. * * * * This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports. This publication was supported by project Data-Driven Bioeconomy (DataBio) from the ICT-15-2016-2017, Big Data PPP call.
Progress in The Semantic Analysis of Scientific Code
NASA Technical Reports Server (NTRS)
Stewart, Mark
2000-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.
Action representation: crosstalk between semantics and pragmatics.
Prinz, Wolfgang
2014-03-01
Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics. © 2013 Elsevier Ltd. All rights reserved.
Integrating a Hypernymic Proposition Interpreter into a Semantic Processor for Biomedical Texts
Fiszman, Marcelo; Rindflesch, Thomas C.; Kilicoglu, Halil
2003-01-01
Semantic processing provides the potential for producing high quality results in natural language processing (NLP) applications in the biomedical domain. In this paper, we address a specific semantic phenomenon, the hypernymic proposition, and concentrate on integrating the interpretation of such predications into a more general semantic processor in order to improve overall accuracy. A preliminary evaluation assesses the contribution of hypernymic propositions in providing more specific semantic predications and thus improving effectiveness in retrieving treatment propositions in MEDLINE abstracts. Finally, we discuss the generalization of this methodology to additional semantic propositions as well as other types of biomedical texts. PMID:14728170
Fast Distributed Dynamics of Semantic Networks via Social Media.
Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández
2015-01-01
We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.
Fast Distributed Dynamics of Semantic Networks via Social Media
Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego
2015-01-01
We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953
Semantic web for integrated network analysis in biomedicine.
Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y
2009-03-01
The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.
Semantic categorization: a comparison between deaf and hearing children.
Ormel, Ellen A; Gijsel, Martine A R; Hermans, Daan; Bosman, Anna M T; Knoors, Harry; Verhoeven, Ludo
2010-01-01
Learning to read is a major obstacle for children who are deaf. The otherwise significant role of phonology is often limited as a result of hearing loss. However, semantic knowledge may facilitate reading comprehension. One important aspect of semantic knowledge concerns semantic categorization. In the present study, the quality of the semantic categorization of both deaf and hearing children was examined for written words and pictures at two categorization levels. The deaf children performed better at the picture condition compared to the written word condition, while the hearing children performed similarly at pictures and written words. The hearing children outperformed the deaf children, in particular for written words. In addition, the results of the deaf children for the written words correlated to their sign vocabulary and sign language comprehension. The increase in semantic categorization was limited across elementary school grade levels. Readers will be able to: (1) understand several semantic categorization differences between groups of deaf and hearing children; (2) describe factors that may affect the development of semantic categorization, in particular the relationship between sign language skills and semantic categorization for deaf children. Copyright 2010 Elsevier Inc. All rights reserved.
Holderbaum, Candice Steffen; de Salles, Jerusa Fumagalli
2011-11-01
Differences in the semantic priming effect comparing child and adult performance have been found by some studies. However, these differences are not well established, mostly because of the variety of methods used by researchers around the world. One of the main issues concerns the absence of semantic priming effects on children at stimulus onset asynchrony (SOA) smaller than 300ms. The aim of this study was to compare the semantic priming effect between third graders and college students at two different SOAs: 250ms and 500ms. Participants performed lexical decisions to targets which were preceded by semantic related or unrelated primes. Semantic priming effects were found at both SOAs in the third graders' group and in college students. Despite the fact that there was no difference between groups in the magnitude of semantic priming effects when SOA was 250ms, at the 500ms SOA their magnitude was bigger in children, corroborating previous studies. Hypotheses which could explain the presence of semantic priming effects in children's performance when SOA was 250ms are discussed, as well as hypotheses for the larger magnitude of semantic priming effects in children when SOA was 500ms.
Monnier, Catherine; Bonthoux, Françoise
2011-11-01
The present research was designed to highlight the relation between children's categorical knowledge and their verbal short-term memory (STM) performance. To do this, we manipulated the categorical organization of the words composing lists to be memorized by 5- and 9-year-old children. Three types of word list were drawn up: semantically similar context-dependent (CD) lists, semantically similar context-independent (CI) lists, and semantically dissimilar lists. In line with the procedure used by Poirier and Saint-Aubin (1995), the dissimilar lists were produced using words from the semantically similar lists. Both 5- and 9-year-old children showed better recall for the semantically similar CD lists than they did for the unrelated lists. In the semantic similar CI condition, semantic similarity enhanced immediate serial recall only at age 9 but contributed to item information memory both at ages 5 and 9. These results, which indicate a semantic influence of long-term memory (LTM) on serial recall from age 5, are discussed in the light of current models of STM. Moreover, we suggest that differences between results at 5 and 9 years are compatible with pluralist models of development. ©2011 The British Psychological Society.
Individual differences in white matter microstructure predict semantic control.
Nugiel, Tehila; Alm, Kylie H; Olson, Ingrid R
2016-12-01
In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.
An investigation into semantic and phonological processing in individuals with Williams syndrome.
Lee, Cheryl S; Binder, Katherine S
2014-02-01
The current study examined semantic and phonological processing in individuals with Williams syndrome (WS). Previous research in language processing in individuals with WS suggests a complex linguistic system characterized by "deviant" semantic organization and differential phonological processing. Two experiments explored these representations in individuals with WS. The first experiment analyzed the relative typicality and frequency of participants' responses to a semantic and phonological fluency task. The second experiment tapped into online language processing through a semantic priming task and an online sentence reading task measuring the effects of word frequency. Thirteen participants with WS were matched to a group of participants on reading grade level and a group of participants on chronological age. The results of the semantic fluency task, semantic priming task, and word frequency task suggest that semantic organization in individuals with WS appears commensurate with their reading level rather than deviant. The pattern of results suggests that individuals with WS do not appear to have deviant semantic organization, while confirming that online tasks that tap into these processes are a promising direction in investigations that include atypically developing populations. These findings for the phonological tasks warrant further research into phonological processing in individuals with WS.
Wu, Chia-Chien; Wang, Hsueh-Cheng; Pomplun, Marc
2014-12-01
A previous study (Vision Research 51 (2011) 1192-1205) found evidence for semantic guidance of visual attention during the inspection of real-world scenes, i.e., an influence of semantic relationships among scene objects on overt shifts of attention. In particular, the results revealed an observer bias toward gaze transitions between semantically similar objects. However, this effect is not necessarily indicative of semantic processing of individual objects but may be mediated by knowledge of the scene gist, which does not require object recognition, or by known spatial dependency among objects. To examine the mechanisms underlying semantic guidance, in the present study, participants were asked to view a series of displays with the scene gist excluded and spatial dependency varied. Our results show that spatial dependency among objects seems to be sufficient to induce semantic guidance. Scene gist, on the other hand, does not seem to affect how observers use semantic information to guide attention while viewing natural scenes. Extracting semantic information mainly based on spatial dependency may be an efficient strategy of the visual system that only adds little cognitive load to the viewing task. Copyright © 2014 Elsevier Ltd. All rights reserved.
Semantic processing of EHR data for clinical research.
Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk
2015-12-01
There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.
Piolino, Pascale; Lamidey, Virginie; Desgranges, Béatrice; Eustache, Francis
2007-01-01
Fifty-two subjects between ages 40 and 79 years were administered a questionnaire assessing their ability to recall semantic information about famous people from 4 different decades and to recollect its episodic source of acquisition together with autonoetic consciousness via the remember-know paradigm. In addition, they underwent a battery of standardized neuropsychological tests to assess episodic and semantic memory and executive functions. The analyses of age reveal differences for the episodic source score but no differences between age groups for the semantic scores within each decade. Regardless of the age of people, the analyses also show that semantic memory subcomponents of the famous person test are highly associated with each other as well as with the source component. The recall of semantic information on the famous person test relies on participants' semantic abilities, whereas the recall of its episodic source depends on their executive functions. The present findings confirm the existence of an episodic-semantic distinction in knowledge about famous people. They provide further evidence that personal source and semantic information are at once distinct and highly interactive within the framework of remote memory. (c) 2007 APA, all rights reserved.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa
2014-01-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
Examining Lateralized Semantic Access Using Pictures
ERIC Educational Resources Information Center
Lovseth, Kyle; Atchley, Ruth Ann
2010-01-01
A divided visual field (DVF) experiment examined the semantic processing strategies employed by the cerebral hemispheres to determine if strategies observed with written word stimuli generalize to other media for communicating semantic information. We employed picture stimuli and vary the degree of semantic relatedness between the picture pairs.…
ERIC Educational Resources Information Center
King, Margaret
The first section of this paper deals with the attempts within the framework of transformational grammar to make semantics a systematic part of linguistic description, and outlines the characteristics of the generative semantics position. The second section takes a critical look at generative semantics in its later manifestations, and makes a case…
Federal Register 2010, 2011, 2012, 2013, 2014
2015-08-03
...] Promoting Semantic Interoperability of Laboratory Data; Public Workshop; Request for Comments AGENCY: Food... workshop entitled ``FDA/CDC/NLM Workshop on Promoting Semantic Interoperability of Laboratory Data.'' The... to promoting the semantic interoperability of laboratory data between in vitro diagnostic devices and...
Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani
2012-11-02
The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated. All down regulated genes in this panel were highly up regulated in most other types of cancers. These panels of proteins may represent signature biomarkers for lung cancer and will aid in lung cancer diagnosis and disease monitoring as well as in the prediction of responses to therapeutics.
Orme, Elizabeth; Brown, Louise A.; Riby, Leigh M.
2017-01-01
In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400–800 ms) and late posterior negativity (LPN; 500–900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively ‘pure’ and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively. PMID:28725203
Orme, Elizabeth; Brown, Louise A; Riby, Leigh M
2017-01-01
In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400-800 ms) and late posterior negativity (LPN; 500-900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively 'pure' and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively.
Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D; Weber, Peter B; Kuperman, Rachel A; Auguste, Kurtis I; Brunner, Peter; Schalk, Gerwin; Lin, Jack J; Parvizi, Josef; Crone, Nathan E; Dronkers, Nina F; Knight, Robert T
2017-06-06
Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.
Synonyms Provide Semantic Preview Benefit in English
Schotter, Elizabeth R.
2013-01-01
While orthographic and phonological preview benefits in reading are uncontroversial (see Schotter, Angele, & Rayner, 2012 for a review), researchers have debated the existence of semantic preview benefit with positive evidence in Chinese and German, but no support in English. Two experiments, using the gazecontingent boundary paradigm (Rayner, 1975), show that semantic preview benefit can be observed in English when the preview and target are synonyms (share the same or highly similar meaning, e.g., curlers-rollers). However, no semantic preview benefit was observed for semantic associates (e.g., curlers-styling). These different preview conditions represent different degrees to which the meaning of the sentence changes when the preview is replaced by the target. When this continuous variable (determined by a norming procedure) was used as the predictor in the analyses, there was a significant relationship between it and all reading time measures, suggesting that similarity in meaning between what is accessed parafoveally and what is processed foveally may be an important influence on the presence of semantic preview benefit. Why synonyms provide semantic preview benefit in reading English is discussed in relation to (1) previous failures to find semantic preview benefit in English and (2) the fact that semantic preview benefit is observed in other languages even for non-synonymous words. Semantic preview benefit is argued to depend on several factors—attentional resources, depth of orthography, and degree of similarity between preview and target. PMID:24347813
McGregor, Karla K.; Oleson, Jacob
2017-01-01
Purpose The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. Method One hundred eighty-five students with LD (n = 53) or normal language development (ND, n = 132) named items in the categories animals and food for 1 minute for each category and completed tests of lexical-semantic knowledge and executive control of memory. Groups were compared on total names, mean cluster size, frequency of embedded clusters, frequency of cluster switches, and change in fluency over time. Secondary analyses of variability within the LD group were also conducted. Results The LD group was less fluent than the ND group. Within the LD group, lexical-semantic knowledge predicted semantic fluency and cluster size; executive control of memory predicted semantic fluency and cluster switches. The LD group produced smaller clusters and fewer embedded clusters than the ND group. Groups did not differ in switching or change over time. Conclusions Deficits in the lexical-semantic system associated with LD may persist into young adulthood, even among those who have managed their disability well enough to attend college. Lexical-semantic deficits are associated with compromised semantic fluency, and the two problems are more likely among students with more severe disabilities. PMID:28267833
From Science to e-Science to Semantic e-Science: A Heliosphysics Case Study
NASA Technical Reports Server (NTRS)
Narock, Thomas; Fox, Peter
2011-01-01
The past few years have witnessed unparalleled efforts to make scientific data web accessible. The Semantic Web has proven invaluable in this effort; however, much of the literature is devoted to system design, ontology creation, and trials and tribulations of current technologies. In order to fully develop the nascent field of Semantic e-Science we must also evaluate systems in real-world settings. We describe a case study within the field of Heliophysics and provide a comparison of the evolutionary stages of data discovery, from manual to semantically enable. We describe the socio-technical implications of moving toward automated and intelligent data discovery. In doing so, we highlight how this process enhances what is currently being done manually in various scientific disciplines. Our case study illustrates that Semantic e-Science is more than just semantic search. The integration of search with web services, relational databases, and other cyberinfrastructure is a central tenet of our case study and one that we believe has applicability as a generalized research area within Semantic e-Science. This case study illustrates a specific example of the benefits, and limitations, of semantically replicating data discovery. We show examples of significant reductions in time and effort enable by Semantic e-Science; yet, we argue that a "complete" solution requires integrating semantic search with other research areas such as data provenance and web services.
Does N200 reflect semantic processing?--An ERP study on Chinese visual word recognition.
Du, Yingchun; Zhang, Qin; Zhang, John X
2014-01-01
Recent event-related potential research has reported a N200 response or a negative deflection peaking around 200 ms following the visual presentation of two-character Chinese words. This N200 shows amplitude enhancement upon immediate repetition and there has been preliminary evidence that it reflects orthographic processing but not semantic processing. The present study tested whether this N200 is indeed unrelated to semantic processing with more sensitive measures, including the use of two tasks engaging semantic processing either implicitly or explicitly and the adoption of a within-trial priming paradigm. In Exp. 1, participants viewed repeated, semantically related and unrelated prime-target word pairs as they performed a lexical decision task judging whether or not each target was a real word. In Exp. 2, participants viewed high-related, low-related and unrelated word pairs as they performed a semantic task judging whether each word pair was related in meaning. In both tasks, semantic priming was found from both the behavioral data and the N400 ERP responses. Critically, while repetition priming elicited a clear and large enhancement on the N200 response, semantic priming did not show any modulation effect on the same response. The results indicate that the N200 repetition enhancement effect cannot be explained with semantic priming and that this specific N200 response is unlikely to reflect semantic processing.
Individual differences in automatic semantic priming.
Andrews, Sally; Lo, Steson; Xia, Violet
2017-05-01
This research investigated whether masked semantic priming in a semantic categorization task that required classification of words as animals or nonanimals was modulated by individual differences in lexical proficiency. A sample of 89 skilled readers, assessed on reading comprehension, vocabulary and spelling ability, classified target words preceded by brief (50 ms) masked primes that were either congruent or incongruent with the category of the target. Congruent primes were also selected to be either high (e.g., hawk EAGLE, pistol RIFLE) or low (e.g., mole EAGLE, boots RIFLE) in semantic feature overlap with the target. "Overall proficiency," indexed by high performance on both a "semantic composite" measure of reading comprehension and vocabulary and a "spelling composite," was associated with stronger congruence priming from both high and low feature overlap primes for animal exemplars, but only predicted priming from low overlap primes for nonexemplars. Classification of high frequency nonexemplars was also significantly modulated by an independent "spelling-meaning" factor, indexed by the discrepancy between the semantic and spelling composites, because relatively higher scores on the semantic than the spelling composite were associated with stronger semantic priming. These findings show that higher lexical proficiency is associated with stronger evidence of automatic semantic priming and suggest that individual differences in lexical quality modulate the division of labor between orthographic and semantic processing in early lexical retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Ortells, Juan J; Kiefer, Markus; Castillo, Alejandro; Megías, Montserrat; Morillas, Alejandro
2016-01-01
The mechanisms underlying masked congruency priming, semantic mechanisms such as semantic activation or non-semantic mechanisms, for example response activation, remain a matter of debate. In order to decide between these alternatives, reaction times (RTs) and event-related potentials (ERPs) were recorded in the present study, while participants performed a semantic categorization task on visible word targets that were preceded either 167 ms (Experiment 1) or 34 ms before (Experiment 2) by briefly presented (33 ms) novel (unpracticed) masked prime words. The primes and targets belonged to different categories (unrelated), or they were either strongly or weakly semantically related category co-exemplars. Behavioral (RT) and electrophysiological masked congruency priming effects were significantly greater for strongly related pairs than for weakly related pairs, indicating a semantic origin of effects. Priming in the latter condition was not statistically reliable. Furthermore, priming effects modulated the N400 event-related potential (ERP) component, an electrophysiological index of semantic processing, but not ERPs in the time range of the N200 component, associated with response conflict and visuo-motor response priming. The present results demonstrate that masked congruency priming from novel prime words also depends on semantic processing of the primes and is not exclusively driven by non-semantic mechanisms such as response activation. Copyright © 2015 Elsevier B.V. All rights reserved.
Visser, M; Forn, C; Lambon Ralph, M A; Hoffman, P; Gómez Ibáñez, A; Sunajuán, Ana; Rosell Negre, P; Villanueva, V; Ávila, C
2018-06-01
According to a large neuropsychological and neuroimaging literature, the bilateral anterior temporal lobe (ATL) is a core region for semantic processing. It seems therefore surprising that semantic memory appears to be preserved in temporal lobe epilepsy (TLE) patients with unilateral ATL resection. However, recent work suggests that the bilateral semantic system is relatively robust against unilateral damage and semantic impairments under these circumstances only become apparent with low frequency specific concepts. In addition, neuroimaging studies have shown that the function of the left and right ATLs differ and therefore left or right ATL resection should lead to a different pattern of impairment. The current study investigated hemispheric differences in the bilateral semantic system by comparing left and right resected TLE patients during verbal semantic processing of low frequency concepts. Picture naming and semantic comprehension tasks with varying word frequencies were included to investigate the pattern of impairment. Left but not right TLE patients showed impaired semantic processing, which was particularly apparent on low frequency items. This indicates that, for verbal information, the bilateral semantic system is more sensitive to damage in the left compared to the right ATL, which is in line with theories that attribute a more prominent role to the left ATL due to connections with pre-semantic verbal regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Semantic guidance of eye movements in real-world scenes
Hwang, Alex D.; Wang, Hsueh-Cheng; Pomplun, Marc
2011-01-01
The perception of objects in our visual world is influenced by not only their low-level visual features such as shape and color, but also their high-level features such as meaning and semantic relations among them. While it has been shown that low-level features in real-world scenes guide eye movements during scene inspection and search, the influence of semantic similarity among scene objects on eye movements in such situations has not been investigated. Here we study guidance of eye movements by semantic similarity among objects during real-world scene inspection and search. By selecting scenes from the LabelMe object-annotated image database and applying Latent Semantic Analysis (LSA) to the object labels, we generated semantic saliency maps of real-world scenes based on the semantic similarity of scene objects to the currently fixated object or the search target. An ROC analysis of these maps as predictors of subjects’ gaze transitions between objects during scene inspection revealed a preference for transitions to objects that were semantically similar to the currently inspected one. Furthermore, during the course of a scene search, subjects’ eye movements were progressively guided toward objects that were semantically similar to the search target. These findings demonstrate substantial semantic guidance of eye movements in real-world scenes and show its importance for understanding real-world attentional control. PMID:21426914
Semantic guidance of eye movements in real-world scenes.
Hwang, Alex D; Wang, Hsueh-Cheng; Pomplun, Marc
2011-05-25
The perception of objects in our visual world is influenced by not only their low-level visual features such as shape and color, but also their high-level features such as meaning and semantic relations among them. While it has been shown that low-level features in real-world scenes guide eye movements during scene inspection and search, the influence of semantic similarity among scene objects on eye movements in such situations has not been investigated. Here we study guidance of eye movements by semantic similarity among objects during real-world scene inspection and search. By selecting scenes from the LabelMe object-annotated image database and applying latent semantic analysis (LSA) to the object labels, we generated semantic saliency maps of real-world scenes based on the semantic similarity of scene objects to the currently fixated object or the search target. An ROC analysis of these maps as predictors of subjects' gaze transitions between objects during scene inspection revealed a preference for transitions to objects that were semantically similar to the currently inspected one. Furthermore, during the course of a scene search, subjects' eye movements were progressively guided toward objects that were semantically similar to the search target. These findings demonstrate substantial semantic guidance of eye movements in real-world scenes and show its importance for understanding real-world attentional control. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hall, Jessica; McGregor, Karla K; Oleson, Jacob
2017-03-01
The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. One hundred eighty-five students with LD (n = 53) or normal language development (ND, n = 132) named items in the categories animals and food for 1 minute for each category and completed tests of lexical-semantic knowledge and executive control of memory. Groups were compared on total names, mean cluster size, frequency of embedded clusters, frequency of cluster switches, and change in fluency over time. Secondary analyses of variability within the LD group were also conducted. The LD group was less fluent than the ND group. Within the LD group, lexical-semantic knowledge predicted semantic fluency and cluster size; executive control of memory predicted semantic fluency and cluster switches. The LD group produced smaller clusters and fewer embedded clusters than the ND group. Groups did not differ in switching or change over time. Deficits in the lexical-semantic system associated with LD may persist into young adulthood, even among those who have managed their disability well enough to attend college. Lexical-semantic deficits are associated with compromised semantic fluency, and the two problems are more likely among students with more severe disabilities.
Haebig, Eileen; Kaushanskaya, Margarita; Ellis Weismer, Susan
2015-12-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development.
Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis
2016-01-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development. PMID:26210517