Sample records for ebola virus challenge

  1. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice

    PubMed Central

    Lennemann, Nicholas J.; Herbert, Andrew S.; Brouillette, Rachel; Rhein, Bethany; Bakken, Russell A.; Perschbacher, Katherine J.; Cooney, Ashley L.; Miller-Hunt, Catherine L.; Ten Eyck, Patrick; Biggins, Julia; Olinger, Gene; Dye, John M.

    2017-01-01

    ABSTRACT The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success. IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant

  2. Successful topical respiratory tract immunization of primates against Ebola virus.

    PubMed

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  3. Interferon-γ Inhibits Ebola Virus Infection.

    PubMed

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  4. Understanding Ebola Virus Transmission

    PubMed Central

    Judson, Seth; Prescott, Joseph; Munster, Vincent

    2015-01-01

    An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus. PMID:25654239

  5. Implementation of an Ebola virus disease vaccine clinical trial during the Ebola epidemic in Liberia: Design, procedures, and challenges.

    PubMed

    Kennedy, Stephen B; Neaton, James D; Lane, H Clifford; Kieh, Mark W S; Massaquoi, Moses B F; Touchette, Nancy A; Nason, Martha C; Follmann, Dean A; Boley, Fatorma K; Johnson, Melvin P; Larson, Gregg; Kateh, Francis N; Nyenswah, Tolbert G

    2016-02-01

    The index case of the Ebola virus disease epidemic in West Africa is believed to have originated in Guinea. By June 2014, Guinea, Liberia, and Sierra Leone were in the midst of a full-blown and complex global health emergency. The devastating effects of this Ebola epidemic in West Africa put the global health response in acute focus for urgent international interventions. Accordingly, in October 2014, a World Health Organization high-level meeting endorsed the concept of a phase 2/3 clinical trial in Liberia to study Ebola vaccines. As a follow-up to the global response, in November 2014, the Government of Liberia and the US Government signed an agreement to form a research partnership to investigate Ebola and to assess intervention strategies for treating, controlling, and preventing the disease in Liberia. This agreement led to the establishment of the Joint Liberia-US Partnership for Research on Ebola Virus in Liberia as the beginning of a long-term collaborative partnership in clinical research between the two countries. In this article, we discuss the methodology and related challenges associated with the implementation of the Ebola vaccines clinical trial, based on a double-blinded randomized controlled trial, in Liberia. © The Author(s) 2016.

  6. Evolutionary history of Ebola virus.

    PubMed

    Li, Y H; Chen, S P

    2014-06-01

    Since Ebola virus was discovered in 1970s, the virus has persisted in Africa and sporadic fatal outbreaks in humans and non-human primates have been reported. However, the evolutionary history of Ebola virus remains unclear. In this study, 27 Ebola virus strains with complete glycoprotein genes, including five species (Zaire, Sudan, Reston, Tai Forest, Bundibugyo), were analysed. Here, we propose a hypothesis of the evolutionary history of Ebola virus which will be helpful to investigate the molecular evolution of these viruses.

  7. Postmortem stability of Ebola virus.

    PubMed

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks.

  8. Ebola Virus Epidemic in West Africa: Global Health Economic Challenges, Lessons Learned, and Policy Recommendations.

    PubMed

    Elmahdawy, Mahmoud; Elsisi, Gihan H; Carapinha, Joao; Lamorde, Mohamed; Habib, Abdulrazaq; Agyie-Baffour, Peter; Soualmi, Redouane; Ragab, Samah; Udezi, Anthony W; Usifoh, Cyril; Usifoh, Stella

    2017-09-01

    The Ebola virus has spread across several Western Africa countries, adding a significant financial burden to their health systems and economies. In this article the experience with Ebola is reviewed, and economic challenges and policy recommendations are discussed to help curb the impact of other diseases in the future. The West African Ebola virus disease epidemic started in resource-constrained settings and caused thousands of fatalities during the last epidemic. Nevertheless, given population mobility, international travel, and an increasingly globalized economy, it has the potential to re-occur and evolve into a global pandemic. Struggling health systems in West African countries hinder the ability to reduce the causes and effects of the Ebola epidemic. The lessons learned include the need for strengthening health systems, mainly primary care systems, expedited access to treatments and vaccines to treat the Ebola virus disease, guidance on safety, efficacy, and regulatory standards for such treatments, and ensuring that research and development efforts are directed toward existing needs. Other lessons include adopting policies that allow for better flow of relief, averting the adverse impact of strong quarantine policy that includes exaggerating the aversion behavior by alarming trade and business partners providing financial support to strengthen growth in the affected fragile economies by the Ebola outbreak. Curbing the impact of future Ebola epidemics, or comparable diseases, requires increased long-term investments in health system strengthening, better collaboration between different international organizations, more funding for research and development efforts aimed at developing vaccines and treatments, and tools to detect, treat, and prevent future epidemics. Copyright © 2017. Published by Elsevier Inc.

  9. Treatment of ebola virus disease.

    PubMed

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  10. [Ebola virus disease].

    PubMed

    Nazimek, Katarzyna; Bociaga-Jasik, Monika; Bryniarski, Krzysztof; Gałas, Aleksander; Garlicki, Aleksander; Gawda, Anna; Gawlik, Grzegorz; Gil, Krzysztof; Kosz-Vnenchak, Magdalena; Mrozek-Budzyn, Dorota; Olszanecki, Rafał; Piatek, Anna; Zawilińska, Barbara; Marcinkiewicz, Janusz

    2014-01-01

    Ebola is one of the most virulent zoonotic RNA viruses causing in humans haemorrhagic fever with fatality ratio reaching 90%. During the outbreak of 2014 the number of deaths exceeded 8.000. The "imported" cases reported in Western Europe and USA highlighted the extreme risk of Ebola virus spreading outside the African countries. Thus, haemorrhagic fever outbreak is an international epidemiological problem, also due to the lack of approved prevention and therapeutic strategies. The editorial review article briefly summarizes current knowledge on Ebola virus disease epidemiology, etiology, pathogenesis, clinical presentation, diagnosis as well as possible prevention and treatment.

  11. A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge

    PubMed Central

    Phoolcharoen, Waranyoo; Dye, John M.; Kilbourne, Jacquelyn; Piensook, Khanrat; Pratt, William D.; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.; Herbst-Kralovetz, Melissa M.

    2011-01-01

    Ebola hemorrhagic fever is an acute and often deadly disease caused by Ebola virus (EBOV). The possible intentional use of this virus against human populations has led to design of vaccines that could be incorporated into a national stockpile for biological threat reduction. We have evaluated the immunogenicity and efficacy of an EBOV vaccine candidate in which the viral surface glycoprotein is biomanufactured as a fusion to a monoclonal antibody that recognizes an epitope in glycoprotein, resulting in the production of Ebola immune complexes (EICs). Although antigen–antibody immune complexes are known to be efficiently processed and presented to immune effector cells, we found that codelivery of the EIC with Toll-like receptor agonists elicited a more robust antibody response in mice than did EIC alone. Among the compounds tested, polyinosinic:polycytidylic acid (PIC, a Toll-like receptor 3 agonist) was highly effective as an adjuvant agent. After vaccinating mice with EIC plus PIC, 80% of the animals were protected against a lethal challenge with live EBOV (30,000 LD50 of mouse adapted virus). Surviving animals showed a mixed Th1/Th2 response to the antigen, suggesting this may be important for protection. Survival after vaccination with EIC plus PIC was statistically equivalent to that achieved with an alternative viral vector vaccine candidate reported in the literature. Because nonreplicating subunit vaccines offer the possibility of formulation for cost-effective, long-term storage in biothreat reduction repositories, EIC is an attractive option for public health defense measures. PMID:22143779

  12. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys.

    PubMed

    Oswald, Wendelien B; Geisbert, Thomas W; Davis, Kelly J; Geisbert, Joan B; Sullivan, Nancy J; Jahrling, Peter B; Parren, Paul W H I; Burton, Dennis R

    2007-01-01

    Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.

  13. Ebola (Ebola Virus Disease)

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  14. Diagnosis of Ebola Virus Disease: Past, Present, and Future

    PubMed Central

    Brooks, Tim J. G.

    2016-01-01

    SUMMARY Laboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward. PMID:27413095

  15. Ebola Virus Disease

    PubMed Central

    Kourtis, Athena P.; Appelgren, Kristie; Chevalier, Michelle S.; McElroy, Anita

    2015-01-01

    Ebola virus is one of the most deadly pathogens known to infect humans. The current Ebola outbreak in West Africa is unprecedented in magnitude and duration and, as of November 30, 2014, shows no signs of abating. For the first time, cases of Ebola virus disease have been diagnosed in the US, originating from patients who traveled during the incubation period. The outbreak has generated worldwide concern. It is clear that U.S. physicians need to be aware of this disease, know when to consider Ebola and how to care for the patient as well as protect themselves. Children comprise a small percentage of all cases globally, likely because of their lower risk of exposure given social and cultural practices. Limited evidence is available on pediatric disease course and prognosis. In this article, we present an overview of the pathogen, its epidemiology and transmission, clinical and laboratory manifestations, treatment and infection control procedures, with an emphasis on what is known about Ebola virus disease in the pediatric population. PMID:25831417

  16. Ebola virus: current and future perspectives.

    PubMed

    Jadav, Surender Singh; Kumar, Anoop; Ahsan, Mohamed Jawed; Jayaprakash, Venkatesan

    2015-01-01

    The present outbreak associated with Ebola disease in Western countries of the African continent which is believed to be one of the massive eruptions caused by the Ebola viral infections. In the present scenario ebola has been transmitted to the European and American regions through the travelers from wide spread countries like Guinea, Liberia, Sierra Leone and Nigeria. The viral disease is spreading through the contact in any form by the infected persons or patients and creating huge risks to the mortals. The symptoms related to ebola virus are often highly pathogenic; about 70-80% of death cases are reported due to critical hemorrhagic fever. Early in infection, ebola virus infects macrophages and endothelial cells. It mainly produces a Viral Protein 24 (eVP24) which prevents interferon-based signals which are important for destruction of viruses. How ebola virus manipulates the function of the immune system is still unclear. Due to lack of this knowledge, no approved treatment is available. In this review, we have tried to compile the epidemiology, pathogenesis and treatment of ebola virus infection. The promising ligands against ebola virus have been also discussed which will be helpful for researchers to design drugs for the treatment of ebola virus disease.

  17. Ebola outbreak in Western Africa 2014: what is going on with Ebola virus?

    PubMed Central

    2015-01-01

    The 2014 outbreak of Ebola virus disease (EVD) in West Africa, caused by Ebola virus (Zaire Ebola virus species), is the largest outbreak of EVD in history. It cause hemorrhagic fever in human and nonhuman primates with high mortality rate up to 90% and can be transmitted by direct contact with blood, body fluids, skin of EVD patients or persons who have died of EVD. As of December 17, 2014, 450 healthcare personnel are known to have been infected with Ebola, of whom 244 died. For development of Ebola vaccine and treatment are highly difficult due to its dangerous and accessibility that requires biosafety level 4 (BSL-4) to conduct experiment. Also there is no specific vaccine and treatment for Ebola virus; however, many candidate vaccines and antiviral-drugs such as ZMapp and TKM-Ebola are being developed for Ebola virus disease. In this review, we focus on the epidemiology of 2014 outbreak of Ebola virus and candidate agent for preventing and curing from Ebola virus. PMID:25648530

  18. Ebola Virus Antibodies in Fruit Bats, Bangladesh

    PubMed Central

    Islam, Ariful; Yu, Meng; Anthony, Simon J.; Epstein, Jonathan H.; Khan, Shahneaz Ali; Khan, Salah Uddin; Crameri, Gary; Wang, Lin-Fa; Lipkin, W. Ian; Luby, Stephen P.; Daszak, Peter

    2013-01-01

    To determine geographic range for Ebola virus, we tested 276 bats in Bangladesh. Five (3.5%) bats were positive for antibodies against Ebola Zaire and Reston viruses; no virus was detected by PCR. These bats might be a reservoir for Ebola or Ebola-like viruses, and extend the range of filoviruses to mainland Asia. PMID:23343532

  19. Ebola Virus RNA in Semen from an HIV-Positive Survivor of Ebola.

    PubMed

    Purpura, Lawrence J; Rogers, Emerson; Baller, April; White, Stephen; Soka, Moses; Choi, Mary J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Kollie, Jomah; Dweh, Straker; Bemah, Philip; Ladele, Victor; Kpaka, Jonathan; Jawara, Mary; Mugisha, Margaret; Subah, Onyekachi; Faikai, Mylene; Bailey, Jeff A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert; Gasasira, Alex; Knust, Barbara; Nichol, Stuart; Williams, Desmond

    2017-04-01

    Ebola virus is known to persist in semen of male survivors of Ebola virus disease (EVD). However, maximum duration of, or risk factors for, virus persistence are unknown. We report an EVD survivor with preexisting HIV infection, whose semen was positive for Ebola virus RNA 565 days after recovery from EVD.

  20. Ebola Virus RNA in Semen from an HIV-Positive Survivor of Ebola

    PubMed Central

    Rogers, Emerson; Baller, April; White, Stephen; Soka, Moses; Choi, Mary J.; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Kollie, Jomah; Dweh, Straker; Bemah, Philip; Ladele, Victor; Kpaka, Jonathan; Jawara, Mary; Mugisha, Margaret; Subah, Onyekachi; Faikai, Mylene; Bailey, Jeff A.; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert; Gasasira, Alex; Knust, Barbara; Nichol, Stuart; Williams, Desmond

    2017-01-01

    Ebola virus is known to persist in semen of male survivors of Ebola virus disease (EVD). However, maximum duration of, or risk factors for, virus persistence are unknown. We report an EVD survivor with preexisting HIV infection, whose semen was positive for Ebola virus RNA 565 days after recovery from EVD. PMID:28287374

  1. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike

    2009-01-20

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface,more » the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.« less

  2. Ebola (Ebola Virus Disease): Treatment

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  3. Ebola (Ebola Virus Disease): Prevention

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  4. Ebola (Ebola Virus Disease): Transmission

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  5. Ebola (Ebola Virus Disease): Diagnosis

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  6. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    PubMed

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.

  7. Development of a broad-spectrum antiviral with activity against Ebola virus.

    PubMed

    Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina

    2009-09-01

    We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.

  8. Ebola virus host cell entry.

    PubMed

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  9. Ebola Virus Persistence in Semen Ex Vivo.

    PubMed

    Fischer, Robert J; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trent; Munster, Vincent J

    2016-02-01

    On March 20, 2015, a case of Ebola virus disease was identified in Liberia that most likely was transmitted through sexual contact. We assessed the efficiency of detecting Ebola virus in semen samples by molecular diagnostics and the stability of Ebola virus in ex vivo semen under simulated tropical conditions.

  10. Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice

    PubMed Central

    Konduru, Krishnamurthy; Bradfute, Steven B.; Jacques, Jerome; Manangeeswaran, Mohanraj; Nakamura, Siham; Morshed, Sufi; Wood, Steven C.; Bavari, Sina

    2011-01-01

    Ebola virus is a Filoviridae that causes hemorrhagic fever in humans and induces high morbidity and mortality rates. Filoviruses are classified as "Category A bioterrorism agents", and currently there are no licensed therapeutics or vaccines to treat and prevent infection. The Filovirus glycoprotein (GP) is sufficient to protect individuals against infection, and several vaccines based on GP are under development including recombinant adenovirus, parainfluenza virus, Venezuelan equine encephalitis virus, vesicular stomatitis virus (VSV) and virus-like particles. Here we describe the development of a GP Fc fusion protein as a vaccine candidate. We expressed the extracellular domain of the Zaire Ebola virus (ZEBOV) GP fused to the Fc fragment of human IgG1 (ZEBOVGP-Fc) in mammalian cells and showed that GP undergoes the complex furin cleavage and processing observed in the native membrane-bound GP. Mice immunized with ZEBOVGP-Fc developed T-cell immunity against ZEBOV GP and neutralizing antibodies against replication-competent VSV-G deleted recombinant VSV containing ZEBOV GP. The ZEBOVGP-Fc vaccinated mice were protected against challenge with a lethal dose of ZEBOV. These results show that vaccination with the ZEBOVGP-Fc fusion protein alone without the need of a viral vector or assembly into virus-like particles is sufficient to induce protective immunity against ZEBOV in mice. Our data suggested that Filovirus GP Fc fusion proteins could be developed as a simple, safe, efficacious, and cost effective vaccine against Filovirus infection for human use. PMID:21329775

  11. An Ebola virus-centered knowledge base

    PubMed Central

    Kamdar, Maulik R.; Dumontier, Michel

    2015-01-01

    Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. Database URL: http://ebola.semanticscience.org. PMID:26055098

  12. Ebola GP-specific monoclonal antibodies protect mice and guinea pigs from lethal Ebola virus infection.

    PubMed

    Qiu, Xiangguo; Fernando, Lisa; Melito, P Leno; Audet, Jonathan; Feldmann, Heinz; Kobinger, Gary; Alimonti, Judie B; Jones, Steven M

    2012-01-01

    Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies (MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in various doses individually or as pools of 3-4 MAbs to test their protection against a lethal challenge with mouse- or guinea pig-adapted EBOV. Each of the 8 MAbs (100 µg) protected mice from a lethal EBOV challenge when administered 1 day before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was significantly prolonged compared to the control group. Moreover, treatment with pools of 3-4 MAbs completely protected the majority of animals, while administration at 2-3 dpi achieved 50-100% protection. This data suggests that the MAbs generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV infection.

  13. Frequently Asked Questions on Ebola Virus Disease

    MedlinePlus

    ... kidney dialysis, blood transfusions, plasma replacement therapy. An experimental Ebola vaccine proved highly protective against Ebola virus ... Ebola. 13. Is there an Ebola vaccine? An experimental Ebola vaccine proved highly protective against the deadly ...

  14. Outbreaks of Ebola virus disease in Africa: the beginnings of a tragic saga.

    PubMed

    Chippaux, Jean-Philippe

    2014-01-01

    The tremendous outbreak of Ebola virus disease occurring in West Africa since the end of 2013 surprises by its remoteness from previous epidemics and dramatic extent. This review aims to describe the 27 manifestations of Ebola virus that arose after its discovery in 1976. It provides an update on research on the ecology of Ebola viruses, modes of contamination and human transmission of the disease that are mainly linked to close contact with an infected animal or a patient suffering from the disease. The recommendations to contain the epidemic and challenges to achieve it are reminded.

  15. Possible sexual transmission of Ebola virus - Liberia, 2015.

    PubMed

    Christie, Athalia; Davies-Wayne, Gloria J; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Blackley, David J; Laney, A Scott; Williams, Desmond E; Shinde, Shivam A; Badio, Moses; Lo, Terrence; Mate, Suzanne E; Ladner, Jason T; Wiley, Michael R; Kugelman, Jeffrey R; Palacios, Gustavo; Holbrook, Michael R; Janosko, Krisztina B; de Wit, Emmie; van Doremalen, Neeltje; Munster, Vincent J; Pettitt, James; Schoepp, Randal J; Verhenne, Leen; Evlampidou, Iro; Kollie, Karsor K; Sieh, Sonpon B; Gasasira, Alex; Bolay, Fatorma; Kateh, Francis N; Nyenswah, Tolbert G; De Cock, Kevin M

    2015-05-08

    On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence. Ebola virus has been isolated from semen as long as 82 days after symptom onset and viral RNA has been detected in semen up to 101 days after symptom onset. One instance of possible sexual transmission of Ebola has been reported, although the accompanying evidence was inconclusive. In addition, possible sexual transmission of Marburg virus, a filovirus related to Ebola, was documented in 1968. This report describes the investigation by the Government of Liberia and international response partners of the source of Liberia's latest Ebola case and discusses the public health implications of possible sexual transmission of Ebola virus. Based on information gathered in this investigation, CDC now recommends that contact with semen from male Ebola survivors be avoided until more information regarding the duration and infectiousness of viral shedding in body fluids is known. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time.

  16. Viraemia and Ebola virus secretion in survivors of Ebola virus disease in Sierra Leone: a cross-sectional cohort study.

    PubMed

    Green, Edward; Hunt, Luke; Ross, J C Gareth; Nissen, Nina Marie; Curran, Tanya; Badhan, Anjna; Sutherland, Katherine A; Richards, Jade; Lee, James S; Allen, Samuel H; Laird, Steven; Blackman, Mandy; Collacott, Ian; Parker, Paul A; Walbridge, Andrew; Phillips, Rebecca; Sellu, Sia Jammie; Dama, Agnes; Sheriff, Alpha Karim; Zombo, Joseph; Ngegba, Doris; Wurie, Alieh H; Checchi, Francesco; Brooks, Timothy J

    2016-09-01

    In survivors of Ebola virus disease, clinical sequelae including uveitis, arthralgia, and fatigue are common and necessitate systematic follow-up. However, the infection risk to health-care providers is poorly defined. Here we report Ebola virus RT-PCR data for body site and fluid samples from a large cohort of Ebola virus survivors at clinic follow-up. In this cross-sectional cohort study, consecutive survivors of Ebola virus disease attending Kerry Town survivor clinic (Freetown, Sierra Leone), who had been discharged from the Kerry Town Ebola treatment unit, were invited to participate. We collected and tested axillary, blood, conjunctival, forehead, mouth, rectal, semen, urine, and vaginal specimens for presence of Ebola virus using RT-PCR. We regarded samples to be positive for Ebola virus disease if the cycle threshold was 40 or lower. We collected demographic data from survivors of their age, sex, time since discharge from the treatment unit, and length of acute admission in the Ebola treatment unit using anonymised standard forms. Between April 2, and June 16, 2015, of 151 survivors of Ebola virus disease invited to participate, 112 (74%) provided consent. The median age of participants was 21·5 years (IQR 14-31·5) with 34 (30%) participants younger than 16 years. 50 (45%) of 112 participants were male. We tested a total of 555 specimens: 103 from the axilla, 93 from blood, 92 from conjunctiva, 54 from forehead, 105 from mouth, 17 from the rectum, one from semen, 69 from urine, and 21 from the vagina. The median time from Ebola treatment unit discharge to specimen collection was 142 days (IQR 127-159). 15 participants had a total of 74 swabs taken less than 100 days from discharge. The semen sample from one participant tested positive for Ebola virus at 114 days after discharge from the treatment unit; specimens taken from the axilla, blood, conjunctiva, forehead, mouth, rectum, and urine of the same participant tested negative. All specimens from the

  17. Vaccines against Ebola virus.

    PubMed

    Venkatraman, Navin; Silman, Daniel; Folegatti, Pedro M; Hill, Adrian V S

    2017-08-02

    We have just witnessed the largest and most devastating outbreak of Ebola virus disease, which highlighted the urgent need for development of an efficacious vaccine that could be used to curtail future outbreaks. Prior to 2014, there had been limited impetus worldwide to develop a vaccine since the virus was first discovered in 1976. Though too many lives were lost during this outbreak, it resulted in the significantly accelerated clinical development of a number of candidate vaccines through an extraordinary collaborative global effort coordinated by the World Health Organisation (WHO) and involving a number of companies, trial centres, funders, global stakeholders and agencies. We have acquired substantial safety and immunogenicity data on a number of vaccines in Caucasian and African populations. The rapid pace of events led to the initiation of the landmark efficacy trial testing the rVSV-vectored vaccine, which showed high level efficacy in an outbreak setting when deployed using an innovative ring vaccination strategy. Though the Public Health Emergency of International Concern (PHEIC) declared by the WHO has now been lifted, the global scientific community faces numerous challenges ahead to ensure that there is a licensed, deployable vaccine available for use in future outbreaks for at least the Zaire and Sudan strains of Ebola virus. There remain several unanswered questions on the durability of protection, mechanistic immunological correlates and preferred deployment strategies. This review outlines a brief history of the development of Ebola vaccines, the significant progress made since the scale of the outbreak became apparent, some lessons learnt and how they could shape future development of vaccines and the management of similar outbreaks. Copyright © 2017. Published by Elsevier Ltd.

  18. Protection of Nonhuman Primates against Two Species of Ebola Virus Infection with a Single Complex Adenovirus Vector▿

    PubMed Central

    Pratt, William D.; Wang, Danher; Nichols, Donald K.; Luo, Min; Woraratanadharm, Jan; Dye, John M.; Holman, David H.; Dong, John Y.

    2010-01-01

    Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat. PMID:20181765

  19. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector.

    PubMed

    Pratt, William D; Wang, Danher; Nichols, Donald K; Luo, Min; Woraratanadharm, Jan; Dye, John M; Holman, David H; Dong, John Y

    2010-04-01

    Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.

  20. Ebola (Ebola Virus Disease): Signs and Symptoms

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  1. Antibodies are necessary for rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus challenge in nonhuman primates.

    PubMed

    Marzi, Andrea; Engelmann, Flora; Feldmann, Friederike; Haberthur, Kristen; Shupert, W Lesley; Brining, Douglas; Scott, Dana P; Geisbert, Thomas W; Kawaoka, Yoshihiro; Katze, Michael G; Feldmann, Heinz; Messaoudi, Ilhem

    2013-01-29

    Ebola viruses cause hemorrhagic disease in humans and nonhuman primates with high fatality rates. These viruses pose a significant health concern worldwide due to the lack of approved therapeutics and vaccines as well as their potential misuse as bioterrorism agents. Although not licensed for human use, recombinant vesicular stomatitis virus (rVSV) expressing the filovirus glycoprotein (GP) has been shown to protect macaques from Ebola virus and Marburg virus infections, both prophylactically and postexposure in a homologous challenge setting. However, the immune mechanisms of protection conferred by this vaccine platform remain poorly understood. In this study, we set out to investigate the role of humoral versus cellular immunity in rVSV vaccine-mediated protection against lethal Zaire ebolavirus (ZEBOV) challenge. Groups of cynomolgus macaques were depleted of CD4+ T, CD8+ T, or CD20+ B cells before and during vaccination with rVSV/ZEBOV-GP. Unfortunately, CD20-depleted animals generated a robust IgG response. Therefore, an additional group of vaccinated animals were depleted of CD4+ T cells during challenge. All animals were subsequently challenged with a lethal dose of ZEBOV. Animals depleted of CD8+ T cells survived, suggesting a minimal role for CD8+ T cells in vaccine-mediated protection. Depletion of CD4+ T cells during vaccination caused a complete loss of glycoprotein-specific antibodies and abrogated vaccine protection. In contrast, depletion of CD4+ T cells during challenge resulted in survival of the animals, indicating a minimal role for CD4+ T-cell immunity in rVSV-mediated protection. Our results suggest that antibodies play a critical role in rVSV-mediated protection against ZEBOV.

  2. An Ebola virus-centered knowledge base.

    PubMed

    Kamdar, Maulik R; Dumontier, Michel

    2015-01-01

    Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. © The Author(s) 2015. Published by Oxford University Press.

  3. [Recent Advances in Vaccines and Drugs Against the Ebola Virus].

    PubMed

    Zhu, Xiang; Yao, Chenguang; Wei, Yanhong; Kou, Zheng; Hu, Kanghong

    2015-05-01

    The Ebola virus belongs to the Filovirus family, which causes Ebola hemorrhagic fever (mortality, 25%-90%). An outbreak of infection by the Ebola virus is sweeping across West Africa, leading to high mortality and worldwide panic. The Ebola virus has caused a serious threat to public health, so intensive scientific studies have been carried out. Several vaccines (e.g., rVSV-ZEBOV, ChAd3-ZEBOV) have been put into clinical trials and antiviral drugs (e.g., TKM-Ebola, ZMAPP) have been administered in the emergency setting to patients infected by the Ebola virus. Here, recent advances in vaccines and drugs against the Ebola virus are reviewed.

  4. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses.

    PubMed

    Geisbert, Thomas W; Daddario-Dicaprio, Kathleen M; Geisbert, Joan B; Reed, Douglas S; Feldmann, Friederike; Grolla, Allen; Ströher, Ute; Fritz, Elizabeth A; Hensley, Lisa E; Jones, Steven M; Feldmann, Heinz

    2008-12-09

    Considerable progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against Ebola and Marburg viruses. A vaccine based on recombinant vesicular stomatitis virus (VSV) seems to be particularly robust as it can also confer protection when administered as a postexposure treatment. While filoviruses are not thought to be transmitted by aerosol in nature the inhalation route is among the most likely portals of entry in the setting of a bioterrorist event. At present, all candidate filoviral vaccines have been evaluated against parenteral challenges but none have been tested against an aerosol exposure. Here, we evaluated our recombinant VSV-based Zaire ebolavirus (ZEBOV) and Marburg virus (MARV) vaccines against aerosol challenge in cynomolgus macaques. All monkeys vaccinated with a VSV vector expressing the glycoprotein of ZEBOV were completely protected against an aerosol exposure of ZEBOV. Likewise, all monkeys vaccinated with a VSV vector expressing the glycoprotein of MARV were completely protected against an aerosol exposure of MARV. All control animals challenged by the aerosol route with either ZEBOV or MARV succumbed. Interestingly, disease in control animals appeared to progress slower than previously seen in macaques exposed to comparable doses by intramuscular injection.

  5. [Ebola and Marburg viruses: the humans strike back].

    PubMed

    Alazard-Dany, Nathalie; Ottmann Terrangle, Michèle; Volchkov, Viktor

    2006-04-01

    Ebola and Marburg viruses are the causative agents of rapidly progressive hemorrhagic fevers with high mortality rates. Pre- or post-exposure treatments against the diseases are currently not available for human use. In the field, establishment of strict quarantine measures preventing further virus transmission are still the only way to fight the infections. However, our knowledge of Ebola and Marburg viruses has markedly increased as a result of two recent discoveries discussed in this review. Chandran et al. have elucidated the mechanism by which Ebola GP is converted to a fusion-active form. Infectivity of Ebola virus was shown to be dependent on the cleavage of GP by cellular endosomal proteases, cathepsin B and L, thus opening new therapeutic approaches options. As for Jones SM et al., they have successfully vaccinated monkeys with recombinant vesicular stomatitis virus expressing Ebola or Marburg virus surface glycoprotein GP, a promising vaccine approach.

  6. Ebola Virus Disease: A Review of Its Past and Present.

    PubMed

    Murray, Michael J

    2015-09-01

    Ebola virus, the virus responsible for Ebola virus disease, has spawned several epidemics during the past 38 years. In 2014, an Ebola epidemic spread from Africa to other continents, becoming a pandemic. The virus's relatively unique structure, its infectivity and lethality, the difficulty in stopping its spread, and the lack of an effective treatment captured the world's attention. This article provides a brief review of the known history of Ebola virus disease, its etiology, epidemiology, and pathophysiology and a review of the limited information on managing patients with Ebola virus disease.

  7. Late Ebola virus relapse causing meningoencephalitis: a case report.

    PubMed

    Jacobs, Michael; Rodger, Alison; Bell, David J; Bhagani, Sanjay; Cropley, Ian; Filipe, Ana; Gifford, Robert J; Hopkins, Susan; Hughes, Joseph; Jabeen, Farrah; Johannessen, Ingolfur; Karageorgopoulos, Drosos; Lackenby, Angie; Lester, Rebecca; Liu, Rebecca S N; MacConnachie, Alisdair; Mahungu, Tabitha; Martin, Daniel; Marshall, Neal; Mepham, Stephen; Orton, Richard; Palmarini, Massimo; Patel, Monika; Perry, Colin; Peters, S Erica; Porter, Duncan; Ritchie, David; Ritchie, Neil D; Seaton, R Andrew; Sreenu, Vattipally B; Templeton, Kate; Warren, Simon; Wilkie, Gavin S; Zambon, Maria; Gopal, Robin; Thomson, Emma C

    2016-07-30

    There are thousands of survivors of the 2014 Ebola outbreak in west Africa. Ebola virus can persist in survivors for months in immune-privileged sites; however, viral relapse causing life-threatening and potentially transmissible disease has not been described. We report a case of late relapse in a patient who had been treated for severe Ebola virus disease with high viral load (peak cycle threshold value 13.2). A 39-year-old female nurse from Scotland, who had assisted the humanitarian effort in Sierra Leone, had received intensive supportive treatment and experimental antiviral therapies, and had been discharged with undetectable Ebola virus RNA in peripheral blood. The patient was readmitted to hospital 9 months after discharge with symptoms of acute meningitis, and was found to have Ebola virus in cerebrospinal fluid (CSF). She was treated with supportive therapy and experimental antiviral drug GS-5734 (Gilead Sciences, San Francisco, Foster City, CA, USA). We monitored Ebola virus RNA in CSF and plasma, and sequenced the viral genome using an unbiased metagenomic approach. On admission, reverse transcriptase PCR identified Ebola virus RNA at a higher level in CSF (cycle threshold value 23.7) than plasma (31.3); infectious virus was only recovered from CSF. The patient developed progressive meningoencephalitis with cranial neuropathies and radiculopathy. Clinical recovery was associated with addition of high-dose corticosteroids during GS-5734 treatment. CSF Ebola virus RNA slowly declined and was undetectable following 14 days of treatment with GS-5734. Sequencing of plasma and CSF viral genome revealed only two non-coding changes compared with the original infecting virus. Our report shows that previously unanticipated, late, severe relapses of Ebola virus can occur, in this case in the CNS. This finding fundamentally redefines what is known about the natural history of Ebola virus infection. Vigilance should be maintained in the thousands of Ebola survivors

  8. Detection of Ebola Virus RNA through Aerosol Sampling of Animal Biosafety Level 4 Rooms Housing Challenged Nonhuman Primates

    DTIC Science & Technology

    2016-08-02

    301- 619-4768(f). 1 2 3 4 5 6 7 8 Title: Detection of Ebola Virus RNA through Aerosol Sampling of Animal Biosafety Level 9 4...5 6 To whom it may concern, 7 8 My colleagues and I are submitting the attached manuscript, Detection of Ebola Virus 9 RNA through Aerosol...embedded in the texts. This is the first report demonstrating detection of Ebola virus 17 RNA from animal rooms housing infected nonhuman primates and

  9. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  10. Ebola Virus Localization in the Macaque Reproductive Tract during Acute Ebola Virus Disease.

    PubMed

    Perry, Donna L; Huzella, Louis M; Bernbaum, John G; Holbrook, Michael R; Jahrling, Peter B; Hagen, Katie R; Schnell, Matthias J; Johnson, Reed F

    2018-03-01

    Sexual transmission of Ebola virus (EBOV) has been demonstrated more than a year after recovery from the acute phase of Ebola virus disease (EVD). The mechanisms underlying EBOV persistence and sexual transmission are not currently understood. Using the acute macaque model of EVD, we hypothesized EBOV would infect the reproductive tissues and sought to localize the infection in these tissues using immunohistochemistry and transmission electron microscopy. In four female and eight male macaques that succumbed to EVD between 6 and 9 days after EBOV challenge, we demonstrate widespread EBOV infection of the interstitial tissues and endothelium in the ovary, uterus, testis, seminal vesicle, epididymis, and prostate gland, with minimal associated tissue immune response or organ pathology. Given the widespread involvement of EBOV in the reproductive tracts of both male and female macaques, it is reasonable to surmise that our understanding of the mechanisms underlying sexual transmission of EVD and persistence of EBOV in immune-privileged sites would be facilitated by the development of a nonhuman primate model in which the macaques survived past the acute stage into convalescence. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Implementation of a study to examine the persistence of Ebola virus in the body fluids of Ebola virus disease survivors in Sierra Leone: Methodology and lessons learned

    PubMed Central

    Marrinan, Jaclyn E.; Sesay, Foday R.; Ervin, Elizabeth; Thorson, Anna E.; Xu, Wenbo; Ströher, Ute; Ongpin, Patricia; Abad, Neetu; Ariyarajah, Archchun; Malik, Tasneem; Liu, Hongtu; Ross, Christine; Durski, Kara N.; Gaillard, Philippe; Morgan, Oliver; Formenty, Pierre; Knust, Barbara; Broutet, Nathalie; Sahr, Foday

    2017-01-01

    Background The 2013–2016 West African Ebola virus disease epidemic was unprecedented in terms of the number of cases and survivors. Prior to this epidemic there was limited data available on the persistence of Ebola virus in survivors’ body fluids and the potential risk of transmission, including sexual transmission. Methodology/Principal findings Given the urgent need to determine the persistence of Ebola virus in survivors’ body fluids, an observational cohort study was designed and implemented during the epidemic response operation in Sierra Leone. This publication describes study implementation methodology and the key lessons learned. Challenges encountered during implementation included unforeseen duration of follow-up, complexity of interpreting and communicating laboratory results to survivors, and the urgency of translating research findings into public health practice. Strong community engagement helped rapidly implement the study during the epidemic. The study was conducted in two phases. The first phase was initiated within five months of initial protocol discussions and assessed persistence of Ebola virus in semen of 100 adult men. The second phase assessed the persistence of virus in multiple body fluids (semen or vaginal fluid, menstrual blood, breast milk, and urine, rectal fluid, sweat, saliva, tears), of 120 men and 120 women. Conclusion/Significance Data from this study informed national and global guidelines in real time and demonstrated the need to implement semen testing programs among Ebola virus disease survivors. The lessons learned and study tools developed accelerated the implementation of such programs in Ebola virus disease affected countries, and also informed studies examining persistence of Zika virus. Research is a vital component of the public health response to an epidemic of a poorly characterized disease. Adequate resources should be rapidly made available to answer critical research questions, in order to better inform

  12. Implementation of a study to examine the persistence of Ebola virus in the body fluids of Ebola virus disease survivors in Sierra Leone: Methodology and lessons learned.

    PubMed

    Deen, Gibrilla Fadlu; McDonald, Suzanna L R; Marrinan, Jaclyn E; Sesay, Foday R; Ervin, Elizabeth; Thorson, Anna E; Xu, Wenbo; Ströher, Ute; Ongpin, Patricia; Abad, Neetu; Ariyarajah, Archchun; Malik, Tasneem; Liu, Hongtu; Ross, Christine; Durski, Kara N; Gaillard, Philippe; Morgan, Oliver; Formenty, Pierre; Knust, Barbara; Broutet, Nathalie; Sahr, Foday

    2017-09-01

    The 2013-2016 West African Ebola virus disease epidemic was unprecedented in terms of the number of cases and survivors. Prior to this epidemic there was limited data available on the persistence of Ebola virus in survivors' body fluids and the potential risk of transmission, including sexual transmission. Given the urgent need to determine the persistence of Ebola virus in survivors' body fluids, an observational cohort study was designed and implemented during the epidemic response operation in Sierra Leone. This publication describes study implementation methodology and the key lessons learned. Challenges encountered during implementation included unforeseen duration of follow-up, complexity of interpreting and communicating laboratory results to survivors, and the urgency of translating research findings into public health practice. Strong community engagement helped rapidly implement the study during the epidemic. The study was conducted in two phases. The first phase was initiated within five months of initial protocol discussions and assessed persistence of Ebola virus in semen of 100 adult men. The second phase assessed the persistence of virus in multiple body fluids (semen or vaginal fluid, menstrual blood, breast milk, and urine, rectal fluid, sweat, saliva, tears), of 120 men and 120 women. Data from this study informed national and global guidelines in real time and demonstrated the need to implement semen testing programs among Ebola virus disease survivors. The lessons learned and study tools developed accelerated the implementation of such programs in Ebola virus disease affected countries, and also informed studies examining persistence of Zika virus. Research is a vital component of the public health response to an epidemic of a poorly characterized disease. Adequate resources should be rapidly made available to answer critical research questions, in order to better inform response efforts.

  13. Intradermal Vaccination With Adjuvanted Ebola Virus Soluble Glycoprotein Subunit Vaccine by Microneedle Patches Protects Mice Against Lethal Ebola Virus Challenge.

    PubMed

    Liu, Ying; Ye, Ling; Lin, Fang; Gomaa, Yasmine; Flyer, David; Carrion, Ricardo; Patterson, Jean L; Prausnitz, Mark R; Smith, Gale; Glenn, Gregory; Wu, Hua; Compans, Richard W; Yang, Chinglai

    2018-06-08

    In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.

  14. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections.

    PubMed

    Geisbert, Thomas W; Feldmann, Heinz

    2011-11-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections.

  15. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice.

    PubMed

    van Lieshout, Laura P; Soule, Geoff; Sorensen, Debra; Frost, Kathy L; He, Shihua; Tierney, Kevin; Safronetz, David; Booth, Stephanie A; Kobinger, Gary P; Qiu, Xiangguo; Wootton, Sarah K

    2018-03-05

    The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.

  16. Potent neutralizing monoclonal antibodies against Ebola virus infection

    PubMed Central

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F.; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-01-01

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584

  17. Potent neutralizing monoclonal antibodies against Ebola virus infection.

    PubMed

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-05-16

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.

  18. Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus-Infected Patients.

    PubMed

    Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J; Prescott, Joseph B; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Nyenswah, Tolbert G; Grolla, Allen; Strong, James E; Kobinger, Gary; Bolay, Fatorma K; Zoon, Kathryn C; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie

    2016-10-15

    The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. All blood samples from suspected Ebola virus-infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus-infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus-infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. [Research progress of the molecule mechanisms of Ebola virus infection of cells].

    PubMed

    Shi, Ming; Shen, Yu-Qing

    2013-01-01

    Ebola virus can cause severe Ebola hemorrhagic fever. The mortality rate is 90 percent. Up till now, there is no effective vaccine or treatment of Ebola virus infection. Relaed researches on Ebola virus have become a hot topic in virology. The understanding of molecular mechanisms of Ebola virus infection of cells are important for the development of vaccine and anti-virus drugs. Therefore, this review summarized the recent research progress on the mechanisms of Ebola virus infection.

  20. Antiviral effect of ranpirnase against Ebola virus.

    PubMed

    Hodge, Thomas; Draper, Ken; Brasel, Trevor; Freiberg, Alexander; Squiquera, Luis; Sidransky, David; Sulley, Jamie; Taxman, Debra J

    2016-08-01

    The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Evidence-based guidelines for supportive care of patients with Ebola virus disease.

    PubMed

    Lamontagne, François; Fowler, Robert A; Adhikari, Neill K; Murthy, Srinivas; Brett-Major, David M; Jacobs, Michael; Uyeki, Timothy M; Vallenas, Constanza; Norris, Susan L; Fischer, William A; Fletcher, Thomas E; Levine, Adam C; Reed, Paul; Bausch, Daniel G; Gove, Sandy; Hall, Andrew; Shepherd, Susan; Siemieniuk, Reed A; Lamah, Marie-Claude; Kamara, Rashida; Nakyeyune, Phiona; Soka, Moses J; Edwin, Ama; Hazzan, Afeez A; Jacob, Shevin T; Elkarsany, Mubarak Mustafa; Adachi, Takuya; Benhadj, Lynda; Clément, Christophe; Crozier, Ian; Garcia, Armando; Hoffman, Steven J; Guyatt, Gordon H

    2018-02-17

    The 2013-16 Ebola virus disease outbreak in west Africa was associated with unprecedented challenges in the provision of care to patients with Ebola virus disease, including absence of pre-existing isolation and treatment facilities, patients' reluctance to present for medical care, and limitations in the provision of supportive medical care. Case fatality rates in west Africa were initially greater than 70%, but decreased with improvements in supportive care. To inform optimal care in a future outbreak of Ebola virus disease, we employed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology to develop evidence-based guidelines for the delivery of supportive care to patients admitted to Ebola treatment units. Key recommendations include administration of oral and, as necessary, intravenous hydration; systematic monitoring of vital signs and volume status; availability of key biochemical testing; adequate staffing ratios; and availability of analgesics, including opioids, for pain relief. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli.

    PubMed

    Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui

    2018-03-03

    The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of therapeutics for treatment of Ebola virus infection.

    PubMed

    Li, Haoyang; Ying, Tianlei; Yu, Fei; Lu, Lu; Jiang, Shibo

    2015-02-01

    Ebola virus infection can cause Ebola virus disease (EVD). Patients usually show severe symptoms, and the fatality rate can reach up to 90%. No licensed medicine is available. In this review, development of therapeutics for treatment of Ebola virus infection and EVD will be discussed. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study.

    PubMed

    Sissoko, Daouda; Duraffour, Sophie; Kerber, Romy; Kolie, Jacques Seraphin; Beavogui, Abdoul Habib; Camara, Alseny-Modet; Colin, Géraldine; Rieger, Toni; Oestereich, Lisa; Pályi, Bernadett; Wurr, Stephanie; Guedj, Jeremie; Nguyen, Thi Huyen Tram; Eggo, Rosalind M; Watson, Conall H; Edmunds, W John; Bore, Joseph Akoi; Koundouno, Fara Raymond; Cabeza-Cabrerizo, Mar; Carter, Lisa L; Kafetzopoulou, Liana Eleni; Kuisma, Eeva; Michel, Janine; Patrono, Livia Victoria; Rickett, Natasha Y; Singethan, Katrin; Rudolf, Martin; Lander, Angelika; Pallasch, Elisa; Bockholt, Sabrina; Rodríguez, Estefanía; Di Caro, Antonino; Wölfel, Roman; Gabriel, Martin; Gurry, Céline; Formenty, Pierre; Keïta, Sakoba; Malvy, Denis; Carroll, Miles W; Anglaret, Xavier; Günther, Stephan

    2017-01-01

    By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. Time

  5. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines.

    PubMed

    Wool-Lewis, R J; Bates, P

    1998-04-01

    Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 x 10(6) infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of MLV(Ebola) infection revealed that the host range conferred by Ebo-GP is very broad, extending to cells of a variety of species. Notably, all lymphoid cell lines tested were completely resistant to infection; we speculate that this is due to the absence of a cellular receptor for Ebo-GP on B and T cells. The generation of high-titer MLV(Ebola) pseudotypes will be useful for the analysis of immune responses to Ebola virus infection, development of neutralizing antibodies, analysis of glycoprotein function, and isolation of the cellular receptor(s) for the Ebola virus.

  6. Anti-Ebola therapies based on monoclonal antibodies: Current state and challenges ahead

    PubMed Central

    González-González, E; Alvarez, MM; Márquez-Ipiña, AR; Santiago, G Trujillo-de; Rodríguez-Martínez, LM; Annabi, N; Khademhosseini, A

    2017-01-01

    The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization (WHO) declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the Ebola virus glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly. PMID:26611830

  7. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014-2015.

    PubMed

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W; Quick, Joshua; Sall, Amadou A; Glynn, Judith R; Formenty, Pierre; Subissi, Lorenzo; Faye, Ousmane

    2016-12-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution.

  8. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus

    PubMed Central

    Karp, Peter D.; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard

    2015-01-01

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology (ISMB) 2016, Orlando, Florida). PMID:26097686

  9. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus.

    PubMed

    Karp, Peter D; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard

    2015-01-01

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology (ISMB) 2016, Orlando, Florida).

  10. Musculoskeletal manifestations of Ebola virus.

    PubMed

    Amissah-Arthur, Maame B; Poller, Bozena; Tunbridge, Anne; Adebajo, Adewale

    2018-01-01

    The 2014 West African Ebola virus disease outbreak shocked the world as it swept through the region leaving Guinea, Liberia and Sierra Leone struggling to gain control. As the largest Ebola virus disease outbreak to date, there are more survivors in its wake than ever before, with a spectrum of health problems requiring management. Here we review various musculoskeletal manifestations of the virus that can occur both during and after the infection, and consider possible pathogenesis. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Characteristics of Filoviridae: Marburg and Ebola Viruses

    NASA Astrophysics Data System (ADS)

    Beer, Brigitte; Kurth, Reinhard; Bukreyev, Alexander

    Filoviruses are enveloped, nonsegmented negative-stranded RNA viruses. The two species, Marburg and Ebola virus, are serologically, biochemically, and genetically distinct. Marburg virus was first isolated during an outbreak in Europe in 1967, and Ebola virus emerged in 1976 as the causative agent of two simultaneous outbreaks in southern Sudan and northern Zaire. Although the main route of infection is known to be person-to-person transmission by intimate contact, the natural reservoir for filoviruses still remains a mystery.

  12. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges.

    PubMed

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.

  13. Ebola virus disease: from epidemiology to prophylaxis.

    PubMed

    Liu, Wen Bin; Li, Zi Xiong; Du, Yan; Cao, Guang Wen

    2015-01-01

    The outbreak of Ebola virus disease (EVD) continues to spread through West Africa. Since the first report of EVD in March 2014, the number of cases has increased rapidly, with the fatality rate of >50%. The most prevalent Ebola virus belongs to the species of Zaire ebolavirus, with a fatality rate as high as 90%. Although there were cases introduced into other continents, Africa is the endemic area where fruit bats and apes are suspected to be Ebola virus carriers. The virus might be transmitted from the host animals to humans if humans consume raw or not fully cooked and contaminated meats. However, human-to-human transmission via close contact is the major route of current outbreaks. EVD can occur during any season and affect people of any race and age group. Direct contact with body fluids of EVD patients or living in contaminated environments greatly increases the risk of being infected. Transmission via aerosol less likely, but transmission via virus-containing droplets is possible in humans. Thus, health care providers are facing danger of getting Ebola virus infection. To date, vaccines, drugs and/or therapies to prevent Ebola virus infection or treat EVD are limited. Medical workers should follow the current standard prophylactic procedures. The military can orchestrate efficient care to mass EVD patients. Although it is necessary to speed up the pace of developing effective vaccine and therapeutics for the prevention and treatment of EVD, public health prevention and management should be important issue at present to control the spread of this disease cost-effectively.

  14. Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection

    PubMed Central

    Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.

    2011-01-01

    Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742

  15. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    PubMed

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  16. Changes associated with Ebola virus adaptation to novel species.

    PubMed

    Pappalardo, Morena; Reddin, Ian G; Cantoni, Diego; Rossman, Jeremy S; Michaelis, Martin; Wass, Mark N

    2017-07-01

    Ebola viruses are not pathogenic but can be adapted to replicate and cause disease in rodents. Here, we used a structural bioinformatics approach to analyze the mutations associated with Ebola virus adaptation to rodents to elucidate the determinants of host-specific Ebola virus pathogenicity. We identified 33 different mutations associated with Ebola virus adaptation to rodents in the proteins GP, NP, L, VP24 and VP35. Only VP24, GP and NP were consistently found mutated in rodent-adapted Ebola virus strains. Fewer than five mutations in these genes seem to be required for the adaptation of Ebola viruses to a new species. The role of mutations in GP and NP is not clear. However, three VP24 mutations located in the protein interface with karyopherin α5 may enable VP24 to inhibit karyopherins and subsequently the host interferon response. Three further VP24 mutations change hydrogen bonding or cause conformational changes. Hence, there is evidence that few mutations including crucial mutations in VP24 enable Ebola virus adaptation to new hosts. Since Reston virus, the only non-human pathogenic Ebolavirus species circulates in pigs in Asia, this raises concerns that few mutations may result in novel human pathogenic Ebolaviruses. m.n.wass@kent.ac.uk , m.michaelis@kent.ac.uk or j.s.rossman@kent.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Acceptability and Willingness-to-Pay for a Hypothetical Ebola Virus Vaccine in Nigeria

    PubMed Central

    Ughasoro, Maduka Donatus; Esangbedo, Dorothy Omono; Tagbo, Beckie Nnenna; Mejeha, Ijeoma Chigozie

    2015-01-01

    Background Ebola virus disease is a highly virulent and transmissible disease. The largest recorded fatality from Ebola virus disease epidemic is ongoing in a few countries in West Africa, and this poses a health risk to the entire population of the world because arresting the transmission has been challenging. Vaccination is considered a key intervention that is capable of arresting further spread of the disease and preventing future outbreak. However, no vaccine has yet been approved for public use, although various recombinant vaccines are undergoing trials and approval for public use is imminent. Therefore, this study aimed to determine the acceptability of and willingness-to-pay for Ebola virus vaccine by the public. Methods The study was a community-based cross-sectional qualitative and quantitative interventional study conducted in two communities, each in two states in Nigeria. An interviewer-administered questionnaire was used to collect information on respondents’ knowledge of the Ebola virus, the ways to prevent the disease, and their preventive practices, as well as their acceptability of and willingness-to-pay for a hypothetical vaccine against Ebola virus disease. The association between acceptability of the vaccine and other independent variables were evaluated using multivariate regression analysis. Results Ebola virus disease was considered to be a very serious disease by 38.5% of the 582 respondents (224/582), prior to receiving health education on Ebola virus and its vaccine. Eighty percent (80%) accepted to be vaccinated with Ebola vaccine. However, among those that accepted to be vaccinated, most would only accept after observing the outcome on others who have received the vaccine. More than 87.5% was willing to pay for the vaccine, although 55.2% was of the opinion that the vaccine should be provided free of charge. Conclusion The level of acceptability of Ebola virus vaccine among respondents was impressive (though conditional), as well as

  18. Spatiotemporal Fluctuations and Triggers of Ebola Virus Spillover

    PubMed Central

    Park, Andrew W.; Kramer, Andrew M.; Han, Barbara A.; Alexander, Laura W.; Drake, John M.

    2017-01-01

    Because the natural reservoir of Ebola virus remains unclear and disease outbreaks in humans have occurred only sporadically over a large region, forecasting when and where Ebola spillovers are most likely to occur constitutes a continuing and urgent public health challenge. We developed a statistical modeling approach that associates 37 human or great ape Ebola spillovers since 1982 with spatiotemporally dynamic covariates including vegetative cover, human population size, and absolute and relative rainfall over 3 decades across sub-Saharan Africa. Our model (area under the curve 0.80 on test data) shows that spillover intensity is highest during transitions between wet and dry seasons; overall, high seasonal intensity occurs over much of tropical Africa; and spillover intensity is greatest at high (>1,000/km2) and very low (<100/km2) human population densities compared with intermediate levels. These results suggest strong seasonality in Ebola spillover from wild reservoirs and indicate particular times and regions for targeted surveillance. PMID:28221131

  19. Spatiotemporal Fluctuations and Triggers of Ebola Virus Spillover.

    PubMed

    Schmidt, John Paul; Park, Andrew W; Kramer, Andrew M; Han, Barbara A; Alexander, Laura W; Drake, John M

    2017-03-01

    Because the natural reservoir of Ebola virus remains unclear and disease outbreaks in humans have occurred only sporadically over a large region, forecasting when and where Ebola spillovers are most likely to occur constitutes a continuing and urgent public health challenge. We developed a statistical modeling approach that associates 37 human or great ape Ebola spillovers since 1982 with spatiotemporally dynamic covariates including vegetative cover, human population size, and absolute and relative rainfall over 3 decades across sub-Saharan Africa. Our model (area under the curve 0.80 on test data) shows that spillover intensity is highest during transitions between wet and dry seasons; overall, high seasonal intensity occurs over much of tropical Africa; and spillover intensity is greatest at high (>1,000/km 2 ) and very low (<100/km 2 ) human population densities compared with intermediate levels. These results suggest strong seasonality in Ebola spillover from wild reservoirs and indicate particular times and regions for targeted surveillance.

  20. Ebola virus vaccines: an overview of current approaches

    PubMed Central

    Marzi, Andrea; Feldmann, Heinz

    2016-01-01

    Ebola hemorrhagic fever is one of the most fatal viral diseases worldwide affecting humans and nonhuman primates. Although infections only occur frequently in Central Africa, the virus has the potential to spread globally and is classified as a category A pathogen that could be misused as a bioterrorism agent. As of today there is no vaccine or treatment licensed to counteract Ebola virus infections. DNA, subunit and several viral vector approaches, replicating and non-replicating, have been tested as potential vaccine platforms and their protective efficacy has been evaluated in nonhuman primate models for Ebola virus infections, which closely resemble disease progression in humans. Though these vaccine platforms seem to confer protection through different mechanisms, several of them are efficacious against lethal disease in nonhuman primates attesting that vaccination against Ebola virus infections is feasible. PMID:24575870

  1. Ebola virus: A gap in drug design and discovery - experimental and computational perspective.

    PubMed

    Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S

    2017-03-01

    The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.

  2. Reidentification of Ebola Virus E718 and ME as Ebola Virus/H.sapiens-tc/COD/1976/Yambuku-Ecran.

    PubMed

    Kuhn, Jens H; Lofts, Loreen L; Kugelman, Jeffrey R; Smither, Sophie J; Lever, Mark S; van der Groen, Guido; Johnson, Karl M; Radoshitzky, Sheli R; Bavari, Sina; Jahrling, Peter B; Towner, Jonathan S; Nichol, Stuart T; Palacios, Gustavo

    2014-11-20

    Ebola virus (EBOV) was discovered in 1976 around Yambuku, Zaire. A lack of nomenclature standards resulted in a variety of designations for each isolate, leading to confusion in the literature and databases. We sequenced the genome of isolate E718/ME/Ecran and unified the various designations under Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Ecran. Copyright © 2014 Kuhn et al.

  3. Human Ebola virus infection results in substantial immune activation.

    PubMed

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  4. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014–2015

    PubMed Central

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J.; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W.; Quick, Joshua; Sall, Amadou A.; Glynn, Judith R.; Formenty, Pierre; Faye, Ousmane

    2016-01-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution. PMID:27869596

  5. Ebola Virus Shedding and Transmission: Review of Current Evidence.

    PubMed

    Vetter, Pauline; Fischer, William A; Schibler, Manuel; Jacobs, Michael; Bausch, Daniel G; Kaiser, Laurent

    2016-10-15

     The magnitude of the 2013-2016 Ebola virus disease outbreak in West Africa was unprecedented, with >28 500 reported cases and >11 000 deaths. Understanding the key elements of Ebola virus transmission is necessary to implement adequate infection prevention and control measures to protect healthcare workers and halt transmission in the community.  We performed an extensive PubMed literature review encompassing the period from discovery of Ebola virus, in 1976, until 1 June 2016 to evaluate the evidence on modes of Ebola virus shedding and transmission.  Ebola virus has been isolated by cell culture from blood, saliva, urine, aqueous humor, semen, and breast milk from infected or convalescent patients. Ebola virus RNA has been noted in the following body fluids days or months after onset of illness: saliva (22 days), conjunctiva/tears (28 days), stool (29 days), vaginal fluid (33 days), sweat (44 days), urine (64 days), amniotic fluid (38 days), aqueous humor (101 days), cerebrospinal fluid (9 months), breast milk (16 months [preliminary data]), and semen (18 months). Nevertheless, the only documented cases of secondary transmission from recovered patients have been through sexual transmission. We did not find strong evidence supporting respiratory or fomite-associated transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Role of natural killer cells in innate protection against lethal ebola virus infection.

    PubMed

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  7. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs.

    PubMed

    Cashman, Kathleen A; Wilkinson, Eric R; Wollen, Suzanne E; Shamblin, Joshua D; Zelko, Justine M; Bearss, Jeremy J; Zeng, Xiankun; Broderick, Kate E; Schmaljohn, Connie S

    2017-12-02

    We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment.

  8. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    PubMed Central

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  9. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    PubMed

    Kilianski, Andy; Evans, Nicholas G

    2015-10-01

    The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  10. Ebola virus outbreaks in Africa: past and present.

    PubMed

    Muyembe-Tamfum, J J; Mulangu, S; Masumu, Justin; Kayembe, J M; Kemp, A; Paweska, Janusz T

    2012-06-20

    Ebola haemorrhagic fever (EHF) is a zoonosis affecting both human and non-human primates (NHP). Outbreaks in Africa occur mainly in the Congo and Nile basins. The first outbreaks of EHF occurred nearly simultaneously in 1976 in the Democratic Republic of the Congo (DRC, former Zaire) and Sudan with very high case fatality rates of 88% and 53%, respectively. The two outbreaks were caused by two distinct species of Ebola virus named Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV). The source of transmission remains unknown. After a long period of silence (1980-1993), EHF outbreaks in Africa caused by the two species erupted with increased frequency and new species were discovered, namely Côte d'Ivoire ebolavirus (CIEBOV) in 1994 in the Ivory Coast and Bundibugyo ebolavirus (BEBOV) in 2007 in Uganda. The re-emergence of EHF outbreaks in Gabon and Republic of the Congo were concomitant with an increase in mortality amongst gorillas and chimpanzees infected with ZEBOV. The human outbreaks were related to multiple, unrelated index cases who had contact with dead gorillas or chimpanzees. However, in areas where NHP were rare or absent, as in Kikwit (DRC) in 1995, Mweka (DRC) in 2007, Gulu (Uganda) in 2000 and Yambio (Sudan) in 2004, the hunting and eating of fruit bats may have resulted in the primary transmission of Ebola virus to humans. Human-to-human transmission is associated with direct contact with body fluids or tissues from an infected subject or contaminated objects. Despite several, often heroic field studies, the epidemiology and ecology of Ebola virus, including identification of its natural reservoir hosts, remains a formidable challenge for public health and scientific communities.

  11. Structure of an Antibody in Complex with Its Mucin Domain Linear Epitope That Is Protective against Ebola Virus

    PubMed Central

    Olal, Daniel; Kuehne, Ana I.; Bale, Shridhar; Halfmann, Peter; Hashiguchi, Takao; Fusco, Marnie L.; Lee, Jeffrey E.; King, Liam B.; Kawaoka, Yoshihiro; Dye, John M.

    2012-01-01

    Antibody 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope in the prominent mucin-like domain of the Ebola virus glycoprotein GP. The structure of 14G7 in complex with its linear peptide epitope has now been determined to 2.8 Å. The structure shows that this GP sequence forms a tandem β-hairpin structure that binds deeply into a cleft in the antibody-combining site. A key threonine at the apex of one turn is critical for antibody interaction and is conserved among all Ebola viruses. This work provides further insight into the mechanism of protection by antibodies that target the protruding, highly accessible mucin-like domain of Ebola virus and the structural framework for understanding and characterizing candidate immunotherapeutics. PMID:22171276

  12. Structure of an antibody in complex with its mucin domain linear epitope that is protective against Ebola virus.

    PubMed

    Olal, Daniel; Kuehne, Ana I; Bale, Shridhar; Halfmann, Peter; Hashiguchi, Takao; Fusco, Marnie L; Lee, Jeffrey E; King, Liam B; Kawaoka, Yoshihiro; Dye, John M; Saphire, Erica Ollmann

    2012-03-01

    Antibody 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope in the prominent mucin-like domain of the Ebola virus glycoprotein GP. The structure of 14G7 in complex with its linear peptide epitope has now been determined to 2.8 Å. The structure shows that this GP sequence forms a tandem β-hairpin structure that binds deeply into a cleft in the antibody-combining site. A key threonine at the apex of one turn is critical for antibody interaction and is conserved among all Ebola viruses. This work provides further insight into the mechanism of protection by antibodies that target the protruding, highly accessible mucin-like domain of Ebola virus and the structural framework for understanding and characterizing candidate immunotherapeutics.

  13. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    PubMed

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  14. A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge.

    PubMed

    Grant-Klein, Rebecca J; Van Deusen, Nicole M; Badger, Catherine V; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2012-11-01

    We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.

  15. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.

    PubMed

    Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S

    2016-08-31

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.

  16. Elimination of Ebola Virus Transmission in Liberia - September 3, 2015.

    PubMed

    Bawo, Luke; Fallah, Mosoka; Kateh, Francis; Nagbe, Thomas; Clement, Peter; Gasasira, Alex; Mahmoud, Nuha; Musa, Emmanuel; Lo, Terrence Q; Pillai, Satish K; Seeman, Sara; Sunshine, Brittany J; Weidle, Paul J; Nyensweh, Tolbert

    2015-09-11

    Following 42 days since the last Ebola virus disease (Ebola) patient was discharged from a Liberian Ebola treatment unit (ETU), September 3, 2015, marks the second time in a 4-month period that the World Health Organization (WHO) has declared Liberia free of Ebola virus transmission (1). The first confirmed Ebola cases in West Africa were identified in southeastern Guinea on March 23, 2014, and within 1 week, cases were identified and confirmed in Liberia (1). Since then, Liberia has reported 5,036 confirmed and probable Ebola cases and 4,808 Ebola-related deaths. The epidemic in Liberia peaked in late summer and early fall of 2014, when more than 200 confirmed and probable cases were reported each week .

  17. Occupational Exposures to Ebola Virus in Ebola Treatment Center, Conakry, Guinea.

    PubMed

    Savini, Hélène; Janvier, Frédéric; Karkowski, Ludovic; Billhot, Magali; Aletti, Marc; Bordes, Julien; Koulibaly, Fassou; Cordier, Pierre-Yves; Cournac, Jean-Marie; Maugey, Nancy; Gagnon, Nicolas; Cotte, Jean; Cambon, Audrey; Mac Nab, Christine; Moroge, Sophie; Rousseau, Claire; Foissaud, Vincent; De Greslan, Thierry; Granier, Hervé; Cellarier, Gilles; Valade, Eric; Kraemer, Philippe; Alla, Philippe; Mérens, Audrey; Sagui, Emmanuel; Carmoi, Thierry; Rapp, Christophe

    2017-08-01

    We report 77 cases of occupational exposures for 57 healthcare workers at the Ebola Treatment Center in Conakry, Guinea, during the Ebola virus disease outbreak in 2014-2015. Despite the high incidence of 3.5 occupational exposures/healthcare worker/year, only 18% of workers were at high risk for transmission, and no infections occurred.

  18. Development of risk reduction behavioral counseling for Ebola virus disease survivors enrolled in the Sierra Leone Ebola Virus Persistence Study, 2015-2016.

    PubMed

    Abad, Neetu; Malik, Tasneem; Ariyarajah, Archchun; Ongpin, Patricia; Hogben, Matthew; McDonald, Suzanna L R; Marrinan, Jaclyn; Massaquoi, Thomas; Thorson, Anna; Ervin, Elizabeth; Bernstein, Kyle; Ross, Christine; Liu, William J; Kroeger, Karen; Durski, Kara N; Broutet, Nathalie; Knust, Barbara; Deen, Gibrilla F

    2017-09-01

    During the 2014-2016 West Africa Ebola Virus Disease (EVD) epidemic, the public health community had concerns that sexual transmission of the Ebola virus (EBOV) from EVD survivors was a risk, due to EBOV persistence in body fluids of EVD survivors, particularly semen. The Sierra Leone Ebola Virus Persistence Study was initiated to investigate this risk by assessing EBOV persistence in numerous body fluids of EVD survivors and providing risk reduction counseling based on test results for semen, vaginal fluid, menstrual blood, urine, rectal fluid, sweat, tears, saliva, and breast milk. This publication describes implementation of the counseling protocol and the key lessons learned. The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol was developed from a framework used to prevent transmission of HIV and other sexually transmitted infections. The framework helped to identify barriers to risk reduction and facilitated the development of a personalized risk-reduction plan, particularly around condom use and abstinence. Pre-test and post-test counseling sessions included risk reduction guidance, and post-test counseling was based on the participants' individual test results. The behavioral counseling protocol enabled study staff to translate the study's body fluid test results into individualized information for study participants. The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol provided guidance to mitigate the risk of EBOV transmission from EVD survivors. It has since been shared with and adapted by other EVD survivor body fluid testing programs and studies in Ebola-affected countries.

  19. Investigating Ebola virus pathogenicity using molecular dynamics.

    PubMed

    Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N

    2017-08-11

    Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.

  20. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.

    PubMed

    Haque, Azizul; Hober, Didier; Blondiaux, Joel

    2015-10-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks

    PubMed Central

    Hober, Didier; Blondiaux, Joel

    2015-01-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. PMID:26248374

  2. Occupational Exposures to Ebola Virus in Ebola Treatment Center, Conakry, Guinea

    PubMed Central

    Janvier, Frédéric; Karkowski, Ludovic; Billhot, Magali; Aletti, Marc; Bordes, Julien; Koulibaly, Fassou; Cordier, Pierre-Yves; Cournac, Jean-Marie; Maugey, Nancy; Gagnon, Nicolas; Cotte, Jean; Cambon, Audrey; Mac Nab, Christine; Moroge, Sophie; Rousseau, Claire; Foissaud, Vincent; De Greslan, Thierry; Granier, Hervé; Cellarier, Gilles; Valade, Eric; Kraemer, Philippe; Alla, Philippe; Mérens, Audrey; Sagui, Emmanuel; Carmoi, Thierry; Rapp, Christophe

    2017-01-01

    We report 77 cases of occupational exposures for 57 healthcare workers at the Ebola Treatment Center in Conakry, Guinea, during the Ebola virus disease outbreak in 2014−2015. Despite the high incidence of 3.5 occupational exposures/healthcare worker/year, only 18% of workers were at high risk for transmission, and no infections occurred. PMID:28726614

  3. Ebola virus disease: What clinicians in the United States need to know

    PubMed Central

    Fischer, William A.; Uyeki, Timothy M.; Tauxe, Robert V.

    2015-01-01

    In March 2014 the World Health Organization was notified of an outbreak of Ebola virus disease (EVD) in the forest region of Guinea. Over the subsequent 8 months, this outbreak has become the most devastating Ebola epidemic in history with 21,296 infections and 8,429 deaths. The recent introduction of Ebola into noncontiguous countries including the United States from infected travelers highlights the importance of preparedness of all healthcare providers. Early identification and rapid isolation of patients suspected of being infected with Ebola virus is critical to limiting the spread of this virus. Additionally, enhanced understanding of Ebola case definitions, clinical presentation, treatment and infection control strategies will improve the ability of healthcare providers to safe care for patients with Ebola virus disease. PMID:26116335

  4. The Drug Targets and Antiviral Molecules for Treatment of Ebola Virus Infection.

    PubMed

    Wu, Wenjiao; Liu, Shuwen

    2017-01-01

    Ebola virus (EBOV) is a highly pathogenic virus causing severe hemorrhagic fever with a high case fatality rate of 50% - 90% in humans. Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. As with the increase of outbreaks, a significant effort has been made to develop promising countermeasures for the prevention and treatment of Ebola virus infection. In this review, development of therapeutics and potential inhibitors for Ebola virus infection will be discussed.

  5. Development of risk reduction behavioral counseling for Ebola virus disease survivors enrolled in the Sierra Leone Ebola Virus Persistence Study, 2015-2016

    PubMed Central

    Malik, Tasneem; Ariyarajah, Archchun; Ongpin, Patricia; Hogben, Matthew; McDonald, Suzanna L. R.; Marrinan, Jaclyn; Massaquoi, Thomas; Thorson, Anna; Ervin, Elizabeth; Bernstein, Kyle; Ross, Christine; Liu, William J.; Kroeger, Karen; Durski, Kara N.; Broutet, Nathalie; Knust, Barbara; Deen, Gibrilla F.

    2017-01-01

    Background During the 2014–2016 West Africa Ebola Virus Disease (EVD) epidemic, the public health community had concerns that sexual transmission of the Ebola virus (EBOV) from EVD survivors was a risk, due to EBOV persistence in body fluids of EVD survivors, particularly semen. The Sierra Leone Ebola Virus Persistence Study was initiated to investigate this risk by assessing EBOV persistence in numerous body fluids of EVD survivors and providing risk reduction counseling based on test results for semen, vaginal fluid, menstrual blood, urine, rectal fluid, sweat, tears, saliva, and breast milk. This publication describes implementation of the counseling protocol and the key lessons learned. Methodology/Principal findings The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol was developed from a framework used to prevent transmission of HIV and other sexually transmitted infections. The framework helped to identify barriers to risk reduction and facilitated the development of a personalized risk-reduction plan, particularly around condom use and abstinence. Pre-test and post-test counseling sessions included risk reduction guidance, and post-test counseling was based on the participants’ individual test results. The behavioral counseling protocol enabled study staff to translate the study’s body fluid test results into individualized information for study participants. Conclusions/Significance The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol provided guidance to mitigate the risk of EBOV transmission from EVD survivors. It has since been shared with and adapted by other EVD survivor body fluid testing programs and studies in Ebola-affected countries. PMID:28892490

  6. Ebola Virus Disease (The Killer Virus): Another Threat to Humans and Bioterrorism: Brief Review and Recent Updates

    PubMed Central

    Sharma, Sarang; Dutta, Shubha Ranjan; Dudeja, Pooja; Sharma, Vivek

    2015-01-01

    Ebola virus disease (EVD) described as “one of the world’s most virulent diseases” by WHO was popularly known as Ebola haemorrhagic fever in the past. It is usually considered a severe and deadly illness when humans are concerned. EVD outbreaks have shown to have a very high fatality rate ranging from 50 - 90% with a reported occurrence primarily seen near the tropical rainforests of remote villages in Central and West Africa. The virus is transmitted to people from wild animals and within the human community through human-to-human contact. Natural host for Ebola virus is not yet conclusively identified but the most probable host appears to be the fruit bats of the Pteropodidae family. Five subspecies of Ebola virus are recognized till date, with Zaire Ebola virus being the most aggressive of all varieties and recording up to 90% mortality. All Ebola forms are highly contagious and hence have been classed as Category A Priority Pathogens by WHO. Severely ill patients warrant intensive support therapy. Medical workers working in affected areas need to undertake extensive measures to prevent contracting the disease. Till date, no particular anti-viral therapy has demonstrated effectiveness in Ebola virus infection. Also, no vaccine for use in humans is yet approved by the regulatory bodies. If Ebola was actually misused as a biological weapon, it could be a serious threat. Idea behind this article is to briefly review the history and present recent updates on Ebola virus, its pathogenesis and possible hopes for treatment. PMID:26266139

  7. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    PubMed Central

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-01-01

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people. The Ebola virus epidemic in West Africa, which was first recognized in early 2014, highlights the threat posed by these deadly viruses. Filovirus disease is characterized by uncontrolled virus replication and the activation of damaging host pathways. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon (IFN) response, which allows high levels of replication. Here we review the mechanisms deployed by filoviruses to block host innate immunity and discuss aspects of virus replication that promote disease. PMID:26439085

  8. Study of the pathogenesis of Ebola fever in laboratory animals with different sensitivity to this virus.

    PubMed

    Chepurnov, A A; Dadaeva, A A; Kolesnikov, S I

    2001-12-01

    Pathophysiological parameters were compared in animals with different sensitivity to Ebola virus infected with this virus. Analysis of the results showed the differences in immune reactions underlying the difference between Ebola-sensitive and Ebola-resistant animals. No neutrophil activation in response to Ebola virus injection was noted in Ebola-sensitive animal. Phagocytic activity of neutrophils in these animals inversely correlated with animal sensitivity to Ebola virus. Animal susceptibility to Ebola virus directly correlated with the decrease in the number of circulating T and B cells. We conclude that the immune system plays the key role in animal susceptibility and resistance to Ebola virus.

  9. What is Ebola?

    PubMed

    Stein, R A

    2015-01-01

    On 23 March 2014, the World Health Organization first announced a new Ebola virus outbreak that started in December 2013 in the eastern part of the Republic of Guinea. Human infections shortly emerged in Liberia, Sierra Leone, and Nigeria. On 30 September 2014, the Centers for Disease Control and Prevention confirmed through laboratory testing the first Ebola virus infection diagnosed in the USA, in a patient who travelled from West Africa to Texas. On 6 October 2014, the first human infection occurring outside of Africa was reported, in a Spanish nurse who treated two priests, both of whom died, and on 23 October 2014, the first human infection was reported in New York City. To date, the 2014 Ebola virus outbreak is the longest, largest, and most persistent one since 1976, when the virus was first identified in humans, and the number of human cases exceeded, as of mid-September 2014, the cumulative number of infections from all the previous outbreaks. The early clinical presentation overlaps with other infectious diseases, opening differential diagnosis difficulties. Understanding the transmission routes and identifying the natural reservoir of the virus are additional challenges in studying Ebola hemorrhagic fever outbreaks. Ebola virus is as much a public health challenge for developing countries as it is for the developed world, and previous outbreaks underscored that the relative contribution of the risk factors may differ among outbreaks. The implementation of effective preparedness plans is contingent on integrating teachings from previous Ebola virus outbreaks with those from the current outbreak and with lessons provided by other infectious diseases, along with developing a multifaceted inter-disciplinary and cross-disciplinary framework that should be established and shaped by biomedical as well as sociopolitical sciences. © 2014 John Wiley & Sons Ltd.

  10. Health workers perceptions and attitude about Ghana's preparedness towards preventing, containing, and managing Ebola Virus Disease.

    PubMed

    Adongo, Philip Baba; Tabong, Philip Teg-Nefaah; Asampong, Emmanuel; Ansong, Joana; Robalo, Magda; Adanu, Richard M

    2017-04-12

    Ebola virus is highly infectious and the disease can be very fatal. The World Health Organization has declared the 2014-2015 Ebola Virus Disease outbreak a Public Health Emergency of International Concern. In response to this, preparations were made in various health facilities and entry points across Ghana. This study explored health workers perceptions, and attitude about Ghana's preparedness towards preventing and containing Ebola Virus Disease. We conducted a qualitative study in five (5) of the ten (10) regions in Ghana. Five focus group discussions (N = 44) were conducted among nurses; one in each region. In addition, ten (10) health workers (2 in each region) who are members of regional Ebola Virus Disease task force were recruited and interviewed. In the Greater Accra, Volta and Western regions that have ports, six (6) port health officials: two in each of these regions were also interviewed. The interviews were recorded digitally and transcribed verbatim. Thematic content analysis was used to analyze the transcripts with the aid of NVivo 10 software. The results of this study showed that Ghanaian health workers perceived the screening at various ports as important and ongoing but felt that the screenings at in-land ports were being undermined by the use of unapproved routes. Training of health workers was also being carried out in all the regions, however, there was a general perception among 33 out of 44 nurses that majority of health workers have not received training on Ebola Virus Disease prevention and management. Logistical challenges were also reported as some health facilities did not have adequate Personal Protective Equipment. In facilities where equipment was available, they were stored in places which are not easily accessible to health workers at all times of the day. Human resource preparation was also perceived to be a challenge as health workers (38/44 of nurses) generally expressed fear and unwillingness to work in Ebola treatment

  11. Disinfection of Ebola Virus in Sterilized Municipal Wastewater

    PubMed Central

    Fischer, Robert J.; Casson, Leonard W.; de Carvalho, Nathalia Aquino; Haas, Charles N.; Munster, Vincent J.

    2017-01-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification. PMID:28146555

  12. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    PubMed

    Bibby, Kyle; Fischer, Robert J; Casson, Leonard W; de Carvalho, Nathalia Aquino; Haas, Charles N; Munster, Vincent J

    2017-02-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification.

  13. Uveitis and Systemic Inflammatory Markers in Convalescent Phase of Ebola Virus Disease.

    PubMed

    Chancellor, John R; Padmanabhan, Sriranjani P; Greenough, Thomas C; Sacra, Richard; Ellison, Richard T; Madoff, Lawrence C; Droms, Rebecca J; Hinkle, David M; Asdourian, George K; Finberg, Robert W; Stroher, Ute; Uyeki, Timothy M; Cerón, Olga M

    2016-02-01

    We report a case of probable Zaire Ebola virus-related ophthalmologic complications in a physician from the United States who contracted Ebola virus disease in Liberia. Uveitis, immune activation, and nonspecific increase in antibody titers developed during convalescence. This case highlights immune phenomena that could complicate management of Ebola virus disease-related uveitis during convalescence.

  14. The Ebola contagion and forecasting virus: evidence from four African countries.

    PubMed

    Nadhem, Selmi; Nejib, Hachicha D

    2015-12-01

    This paper is focused on examining the number of deaths' increases participation in the propagating the Ebola virus during the period ranging from March to October 2014. An application of the MGARCH-DCC model regressions on four countries has led to discover that the finding that human contact play a significant role in transmitting the Ebola virus. Our findings also reveal that Guinea has already suffered from a spread-like virus originating from Sierra Lione and Liberia. Noteworthy also, other countries are now liable to such a risk; for instance, Nigeria is a country vulnerable to the propagation of this virus. Consequently, we undertake to conduct our forecasts for EGARCH model estimates implements; which has estimated a decrease in the Ebola virus incurred number of deadly Ebola virus over the two months following the November and December.

  15. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS - PAPER RETRACTED.

    PubMed

    Babalola, Michael Oluyemi

    2016-01-01

    Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host' immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular permeability is uniquely

  16. Histology, immunohistochemistry, and in situ hybridization reveal overlooked Ebola virus target tissues in the Ebola virus disease guinea pig model.

    PubMed

    Cooper, Timothy K; Huzella, Louis; Johnson, Joshua C; Rojas, Oscar; Yellayi, Sri; Sun, Mei G; Bavari, Sina; Bonilla, Amanda; Hart, Randy; Jahrling, Peter B; Kuhn, Jens H; Zeng, Xiankun

    2018-01-19

    Survivors of Ebola virus infection may become subclinically infected, but whether animal models recapitulate this complication is unclear. Using histology in combination with immunohistochemistry and in situ hybridization in a retrospective review of a guinea pig confirmation-of-virulence study, we demonstrate for the first time Ebola virus infection in hepatic oval cells, the endocardium and stroma of the atrioventricular valves and chordae tendinae, satellite cells of peripheral ganglia, neurofibroblasts and Schwann cells of peripheral nerves and ganglia, smooth muscle cells of the uterine myometrium and vaginal wall, acini of the parotid salivary glands, thyroid follicular cells, adrenal medullary cells, pancreatic islet cells, endometrial glandular and surface epithelium, and the epithelium of the vagina, penis and, prepuce. These findings indicate that standard animal models for Ebola virus disease are not as well-described as previously thought and may serve as a stepping stone for future identification of potential sites of virus persistence.

  17. Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors.

    PubMed

    Anantpadma, Manu; Kouznetsova, Jennifer; Wang, Hang; Huang, Ruili; Kolokoltsov, Andrey; Guha, Rajarshi; Lindstrom, Aaron R; Shtanko, Olena; Simeonov, Anton; Maloney, David J; Maury, Wendy; LaCount, Douglas J; Jadhav, Ajit; Davey, Robert A

    2016-08-01

    Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus. Nine of the most potent, novel compounds that blocked infection by both viruses were analyzed in detail for their mechanisms of action. The compounds inhibited known key steps in the Ebola virus infection mechanism by blocking either cell surface attachment, macropinocytosis-mediated uptake, or endosomal trafficking. To date, very few specific inhibitors of macropinocytosis have been reported. The 2 novel macropinocytosis inhibitors are more potent inhibitors of Ebola virus infection and less toxic than ethylisopropylamiloride, one commonly accepted macropinocytosis inhibitor. Each compound blocked infection of primary human macrophages, indicating their potential to be developed as new antifiloviral therapies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. A Single Dose of Modified Vaccinia Ankara expressing Ebola Virus Like Particles Protects Nonhuman Primates from Lethal Ebola Virus Challenge.

    PubMed

    Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea

    2018-01-16

    Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.

  19. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    PubMed Central

    Martins, Karen A.; Jahrling, Peter B.; Bavari, Sina; Kuhn, Jens H.

    2016-01-01

    Summary Filoviruses are the etiological agents of two human illnesses: Ebola virus disease and Marburg virus disease. Until 2013, medical countermeasure development against these afflictions was limited to only a few research institutes worldwide as both infections were considered exotic due to very low case numbers. Together with the high case-fatality rate of both diseases, evaluation of any candidate countermeasure in properly controlled clinical trials seemed impossible. However, in 2013, Ebola virus was identified as the etiological agent of a large disease outbreak in Western Africa including almost 30,000 infections and more than 11,000 deaths, including case exportations to Europe and North America. These large case numbers resulted in medical countermeasure development against Ebola virus disease becoming a global public-health priority. This review summarizes the status quo of candidate vaccines against Ebola virus disease, with a focus on those that are currently under evaluation in clinical trials. PMID:27160784

  20. Ebola virus: immune mechanisms of protection and vaccine development.

    PubMed

    Nyamathi, Adeline M; Fahey, John L; Sands, Heather; Casillas, Adrian M

    2003-04-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapon-grade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.

  1. The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide.

    PubMed

    Jin, Huali; Yan, Zhipeng; Prabhakar, Bellur S; Feng, Zongdi; Ma, Yijie; Verpooten, Dustin; Ganesh, Balaji; He, Bin

    2010-02-01

    Ebola virus causes rapidly progressive haemorrhagic fever, which is associated with severe immuosuppression. In infected dendritic cells (DCs), Ebola virus replicates efficiently and inhibits DC maturation without inducing cytokine expression, leading to impaired T-cell proliferation. However, the underlying mechanism remains unclear. In this study, we report that Ebola virus VP35 impairs the maturation of mouse DCs. When expressed in mouse immature DCs, Ebola virus VP35 prevents virus-stimulated expression of CD40, CD80, CD86 and major histocompatibility complex class II. Further, it suppresses the induction of cytokines such as interleukin (IL)-6, IL-12, tumour necrosis factor alpha and alpha/beta interferon (IFN-alpha/beta). Notably, Ebola VP35 attenuates the ability of DCs to stimulate the activation of CD4(+) T cells. Addition of type I IFN to mouse DCs only partially reverses the inhibitory effects of VP35. Moreover, VP35 perturbs mouse DC functions induced by lipopolysaccharide, an agonist of Toll-like receptor 4. Deletion of the amino terminus abolishes its activity, whereas a mutation in the RNA binding motif has no effect. Our work highlights a critical role of VP35 in viral interference in DC function with resultant deficiency in T-cell function, which may contribute to the profound virulence of Ebola virus infection.

  2. Statistical considerations for a trial of Ebola virus disease therapeutics.

    PubMed

    Proschan, Michael A; Dodd, Lori E; Price, Dionne

    2016-02-01

    The 2014 West African outbreak of Ebola virus ravaged Liberia, Sierra Leone, and Guinea, causing hemorrhagic fever and death. The need to identify effective therapeutics was acute. The usual drug development paradigm of phase I, followed by phase II, and then phase III trials would take too long. These and other factors led to the design of a clinical trial of Ebola virus disease therapeutics that differs from more conventional clinical trial designs. This article describes the Ebola virus disease medical countermeasures trial design and the thinking behind it. © The Author(s) 2016.

  3. Ebola crisis of 2014: are current strategies enough to meet the long-run challenges ahead?

    PubMed

    Gimm, Gilbert; Nichols, Len M

    2015-05-01

    The outbreak of the Ebola virus disease (EVD) in 2014 mobilized international efforts to contain a global health crisis. The emergence of the deadly virus in the United States and Europe among health care workers intensified fears of a worldwide epidemic. Market incentives for pharmaceutical firms to allocate their research and development resources toward Ebola treatments were weak because the limited number of EVD cases were previously confined to rural areas of West Africa. We discuss 3 policy recommendations to address the long-term challenges of EVD in an interconnected world.

  4. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus.

    PubMed

    Messaoudi, Ilhem; Amarasinghe, Gaya K; Basler, Christopher F

    2015-11-01

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.

  5. Tobacco against Ebola virus disease.

    PubMed

    Budzianowski, Jaromir

    2015-01-01

    The Ebola virus disease (EVD), formerly known as a hemorrhagic fever and discovered in 1976, is dangerous, highly infectious disease with very high mortality. There are no licensed therapeutics against EVD, although a range of medicines and therapies are currently being evaluated. During the 2014 Ebola outbreak, an experimental drug named ZMapp was administered on an emergency basis to seven patients of which five were recovered. Currently, since February 2015, ZMapp is tested in clinical trials. ZMapp is a mixture (named a cocktail) of three chimaeric monoclonal antibodies (mAbs) of IgG class, which bind to three different epitopes on Ebola surface glycoprotein (GP). ZMapp was created by systematic selection of antibodies from two other three-component cocktails--MB-003 and ZMab the components of which were produced by rapid transient expression method in tobacco species of Australian origin--Nicotiana benthamiana. The ZMapp antibodies of pharmaceutical grade are manufactured in green-house grown N.benthamiana according to the cGMP (current Good Manufacturing Practice), using RAMP platform (Rapid Antibody Manufacturing Platform) and MagnICON system, which utilizes transient expression by magnifection method using viral vectors delivered to plant tissue by a bacterium--Agrobacterium tumefaciens. The applied glycosylation mutant of N.benthamiana (delta XTFT) synthesizes human-like, biantennary N-glycans, with terminal N-acetylglucoseamine and without typical of plants, immunogenic sugar epitopes-beta1,2-linked xylose and alpha1,3-linked fucose. Due to an absence of fucose on N-glycans attached to the Fc domains, the plant-produced anti-Ebola mAbs elicited significantly stronger antibody-dependent cellular cytotoxicity (ADCC) than the analogous anti-Ebola mAbs with fucosylated (alpha1,6-linked fucose) N-glycans produced in a mammalian CHO cell line--the basic expression system for the industrial production of recombinant therapeutical glycoproteins. As far as a

  6. Post-exposure treatments for Ebola and Marburg virus infections.

    PubMed

    Cross, Robert W; Mire, Chad E; Feldmann, Heinz; Geisbert, Thomas W

    2018-06-01

    The filoviruses - Ebola virus and Marburg virus - cause lethal haemorrhagic fever in humans and non-human primates (NHPs). Filoviruses present a global health threat both as naturally acquired diseases and as potential agents of bioterrorism. In the recent 2013-2016 outbreak of Ebola virus, the most promising therapies for post-exposure use with demonstrated efficacy in the gold-standard NHP models of filovirus disease were unable to show statistically significant protection in patients infected with Ebola virus. This Review briefly discusses these failures and what has been learned from these experiences, and summarizes the current status of post-exposure medical countermeasures in development, including antibodies, small interfering RNA and small molecules. We outline how our current knowledge could be applied to the identification of novel interventions and ways to use interventions more effectively.

  7. Why has the Ebola outbreak in West Africa been so challenging to control?

    PubMed Central

    Semalulu, T; Wong, G; Kobinger, G; Huston, P

    2014-01-01

    West Africa is in the midst of the largest Ebola outbreak ever; there have been over 1000 deaths and many new cases are reported each day. The World Health Organization (WHO) declared it an outbreak in March 2014 and on August 6, 2014 the WHO declared the outbreak a public health emergency of international concern. Based on the number of deaths and total number of cases reported to the WHO as of August 11, 2014, the current outbreak has an overall mortality rate of 55%. Outbreak control measures against Ebola virus disease are effective. Why then, has this outbreak been so challenging to control? Ebola is transmitted through bodily fluids and immediately attacks the immune system, then progressively attacks the major organs and the lining of blood vessels. Sierra Leone, Guinea and Liberia are small countries that have limited resources to respond to prolonged outbreaks, especially in rural areas. This has been made more challenging by the fact that health care workers are at risk of contracting Ebola virus disease. Treatment to date has been supportive, not curative and outbreak control strategies have been met with distrust due to fear and misinformation. However, important progress is being made. The international response to Ebola is gaining momentum, communication strategies have been developed to address the fear and mistrust, and promising treatments are under development, including a combination of three monoclonal antibodies that has been administered to two American Ebola infected health care workers. The National Microbiology Laboratory of the Public Health Agency of Canada (PHAC) has been supporting laboratory diagnostic efforts in West Africa and PHAC has been working with the provinces and territories and key stakeholders to ensure Canada is prepared for a potential Ebola importation. PMID:29769855

  8. Why has the Ebola outbreak in West Africa been so challenging to control?

    PubMed

    Semalulu, T; Wong, G; Kobinger, G; Huston, P

    2014-08-14

    West Africa is in the midst of the largest Ebola outbreak ever; there have been over 1000 deaths and many new cases are reported each day. The World Health Organization (WHO) declared it an outbreak in March 2014 and on August 6, 2014 the WHO declared the outbreak a public health emergency of international concern. Based on the number of deaths and total number of cases reported to the WHO as of August 11, 2014, the current outbreak has an overall mortality rate of 55%. Outbreak control measures against Ebola virus disease are effective. Why then, has this outbreak been so challenging to control? Ebola is transmitted through bodily fluids and immediately attacks the immune system, then progressively attacks the major organs and the lining of blood vessels. Sierra Leone, Guinea and Liberia are small countries that have limited resources to respond to prolonged outbreaks, especially in rural areas. This has been made more challenging by the fact that health care workers are at risk of contracting Ebola virus disease. Treatment to date has been supportive, not curative and outbreak control strategies have been met with distrust due to fear and misinformation. However, important progress is being made. The international response to Ebola is gaining momentum, communication strategies have been developed to address the fear and mistrust, and promising treatments are under development, including a combination of three monoclonal antibodies that has been administered to two American Ebola infected health care workers. The National Microbiology Laboratory of the Public Health Agency of Canada (PHAC) has been supporting laboratory diagnostic efforts in West Africa and PHAC has been working with the provinces and territories and key stakeholders to ensure Canada is prepared for a potential Ebola importation.

  9. Vaccination With a Highly Attenuated Recombinant Vesicular Stomatitis Virus Vector Protects Against Challenge With a Lethal Dose of Ebola Virus

    PubMed Central

    Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.

    2015-01-01

    Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675

  10. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection.

    PubMed

    Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina

    2009-05-01

    Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.

  11. Asymptomatic infection and unrecognised Ebola virus disease in Ebola-affected households in Sierra Leone: a cross-sectional study using a new non-invasive assay for antibodies to Ebola virus.

    PubMed

    Glynn, Judith R; Bower, Hilary; Johnson, Sembia; Houlihan, Catherine F; Montesano, Carla; Scott, Janet T; Semple, Malcolm G; Bangura, Mohammed S; Kamara, Alie Joshua; Kamara, Osman; Mansaray, Saidu H; Sesay, Daniel; Turay, Cecilia; Dicks, Steven; Wadoum, Raoul E Guetiya; Colizzi, Vittorio; Checchi, Francesco; Samuel, Dhan; Tedder, Richard S

    2017-06-01

    The frequency of asymptomatic infection with Ebola virus is unclear: previous estimates vary and there is no standard test. Asymptomatic infection with Ebola virus could contribute to population immunity, reducing spread. If people with asymptomatic infection are infectious it could explain re-emergences of Ebola virus disease (EVD) without known contact. We validated a new oral fluid anti-glycoprotein IgG capture assay among survivors from Kerry Town Ebola Treatment Centre and controls from communities unaffected by EVD in Sierra Leone. We then assessed the seroprevalence of antibodies to Ebola virus in a cross-sectional study of household contacts of the survivors. All household members were interviewed. Two reactive tests were required for a positive result, with a third test to resolve any discrepancies. The assay had a specificity of 100% (95% CI 98·9-100; 339 of 339 controls tested negative) and sensitivity of 95·9% (89·8-98·9; 93 of 97 PCR-confirmed survivors tested positive). Of household contacts not diagnosed with EVD, 47·6% (229 of 481) had high level exposure (direct contact with a corpse, body fluids, or a case with diarrhoea, vomiting, or bleeding). Among the contacts, 12·0% (95% CI 6·1-20·4; 11 of 92) with symptoms at the time other household members had EVD, and 2·6% (1·2-4·7; 10 of 388) with no symptoms tested positive. Among asymptomatic contacts, seropositivity was weakly correlated with exposure level. This new highly specific and sensitive assay showed asymptomatic infection with Ebola virus was uncommon despite high exposure. The low prevalence suggests asymptomatic infection contributes little to herd immunity in Ebola, and even if infectious, would account for few transmissions. Wellcome Trust ERAES Programme, Save the Children. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.

  12. Inappropriate bradycardia in Ebola virus disease.

    PubMed

    Cellarier, G; Bordes, J; De Greslan, T; Karkowski, L; Gagnon, N; Billhot, M; Cournac, J-M; Rousseau, C; Mac Nab, C; Dubrous, P

    2016-08-01

    As part of French assistance for the outbreak of Ebola virus disease in west Africa, a military treatment center for infected healthcare workers was deployed in Conakry, Guinea. Although some cases of bradycardia have been reported since the first Ebola outbreak, they have never been documented to our knowledge. We studied heart rhythm in patients with Ebola virus disease to analyze inappropriate bradycardia and discuss its mechanism. Nine patients who tested positive for Ebola were admitted in March 2015. Baseline clinical data were noted at admission and twice a day during follow-up, and laboratory analyses (with troponin testing) were performed. At admission, patients had no or moderate tachycardia (pulse = 82 ± 27 bpm). Among them, a 32-year-old midwife admitted on her fourth day of symptoms had marked bradycardia: 43 bpm. ECG showed sinus bradycardia with no conduction disturbances or repolarization anomalies; findings were similar for the three other patients with bradycardia (< 60 bpm). During follow-up, her pulse gradually increased, as it did for the other three; all four recovered. Despite several factors likely to promote tachycardia, we observed no or only moderate tachycardia in all patients with Ebola. In our study, ECG recorded sinus rhythm, without significant node dysfunction or atrioventricular block. In the absence of any evidence of myocarditis, we discuss the possibility of a central nervous system cause, associated with encephalitis. We observed relative or marked bradycardia in our patients infected with Ebola. We hypothesize that its causal mechanism was encephalitis.

  13. Recombinant Vesicular Stomatitis Virus–Based Vaccines Against Ebola and Marburg Virus Infections

    PubMed Central

    Feldmann, Heinz

    2011-01-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections. PMID:21987744

  14. Nucleoprotein-based indirect enzyme-linked immunosorbent assay (indirect ELISA) for detecting antibodies specific to Ebola virus and Marbug virus.

    PubMed

    Huang, Yi; Zhu, Youjie; Yang, Mengshi; Zhang, Zhenqing; Song, Donglin; Yuan, Zhiming

    2014-12-01

    Full-length nucleoproteins from Ebola and Marburg viruses were expressed as His-tagged recombinant proteins in Escherichia coli and nucleoprotein-based enzyme-linked immunosorbent assays (ELISAs) were established for the detection of antibodies specific to Ebola and Marburg viruses. The ELISAs were evaluated by testing antisera collected from rabbit immunized with Ebola and Marburg virus nucleoproteins. Although little cross-reactivity of antibodies was observed in anti-Ebola virus nucleoprotein rabbit antisera, the highest reactions to immunoglobulin G (IgG) were uniformly detected against the nucleoprotein antigens of homologous viruses. We further evaluated the ELISA's ability to detect antibodies to Ebola and Marburg viruses using human sera samples collected from individuals passing through the Guangdong port of entry. With a threshold set at the mean plus three standard deviations of average optical densities of sera tested, the ELISA systems using these two recombinant nucleoproteins have good sensitivity and specificity. These results demonstrate the usefulness of ELISA for diagnostics as well as ecological and serosurvey studies of Ebola and Marburg virus infection.

  15. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS – PAPER RETRACTED

    PubMed Central

    Babalola, Michael Oluyemi

    2016-01-01

    Background: Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. Method: This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Results: Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host’ immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular

  16. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirusmore » pathogenesis.« less

  17. Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus.

    PubMed

    Geisbert, Thomas W; Geisbert, Joan B; Leung, Anders; Daddario-DiCaprio, Kathleen M; Hensley, Lisa E; Grolla, Allen; Feldmann, Heinz

    2009-07-01

    The filoviruses Marburg virus and Ebola virus cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (VSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Here, we performed a proof-of-concept study in order to determine the potential of having one single-injection vaccine capable of protecting nonhuman primates against Sudan ebolavirus (SEBOV), Zaire ebolavirus (ZEBOV), Cote d'Ivoire ebolavirus (CIEBOV), and Marburgvirus (MARV). In this study, 11 cynomolgus monkeys were vaccinated with a blended vaccine consisting of equal parts of the vaccine vectors VSVDeltaG/SEBOVGP, VSVDeltaG/ZEBOVGP, and VSVDeltaG/MARVGP. Four weeks later, three of these animals were challenged with MARV, three with CIEBOV, three with ZEBOV, and two with SEBOV. Three control animals were vaccinated with VSV vectors encoding a nonfilovirus GP and challenged with SEBOV, ZEBOV, and MARV, respectively, and five unvaccinated control animals were challenged with CIEBOV. Importantly, none of the macaques vaccinated with the blended vaccine succumbed to a filovirus challenge. As expected, an experimental control animal vaccinated with VSVDeltaG/ZEBOVGP and challenged with SEBOV succumbed, as did the positive controls challenged with SEBOV, ZEBOV, and MARV, respectively. All five control animals challenged with CIEBOV became severely ill, and three of the animals succumbed on days 12, 12, and 14, respectively. The two animals that survived CIEBOV infection were protected from subsequent challenge with either SEBOV or ZEBOV, suggesting that immunity to CIEBOV may be protective against other species of Ebola virus. In conclusion, we developed an immunization scheme based on a single-injection vaccine that protects nonhuman primates against lethal challenge with representative strains of all human pathogenic

  18. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    PubMed

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  19. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    PubMed

    Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Ayithan, Natarajan; Tailor, Prafullakumar; Shaia, Carl I; Bray, Mike; Ozato, Keiko; Bavari, Sina

    2015-01-01

    Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP) vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs), and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  20. Analytical Performance Characteristics of the Cepheid GeneXpert Ebola Assay for the Detection of Ebola Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna

    The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Our study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay,more » the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. In conclusion, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.« less

  1. Analytical Performance Characteristics of the Cepheid GeneXpert Ebola Assay for the Detection of Ebola Virus

    PubMed Central

    Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna; Kleman, Marika; Kulkarni, Medha; Grufman, Per; Nygren, Malin; Kwiatkowski, Robert; Baron, Ellen Jo; Tenover, Fred; Denison, Blake; Higuchi, Russell; Van Atta, Reuel; Beer, Neil Reginald; Carrillo, Alda Celena; Naraghi-Arani, Pejman; Mire, Chad E.; Ranadheera, Charlene; Grolla, Allen; Lagerqvist, Nina; Persing, David H.

    2015-01-01

    Background The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Methods and Findings This study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay, the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. Conclusion In summary, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection

  2. Analytical Performance Characteristics of the Cepheid GeneXpert Ebola Assay for the Detection of Ebola Virus

    DOE PAGES

    Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna; ...

    2015-11-12

    The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Our study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay,more » the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. In conclusion, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.« less

  3. Emergence of Vaccine-Derived Polioviruses during Ebola Virus Disease Outbreak, Guinea, 2014-2015.

    PubMed

    Fernandez-Garcia, Maria Dolores; Majumdar, Manasi; Kebe, Ousmane; Fall, Aichatou D; Kone, Moussa; Kande, Mouctar; Dabo, Moustapha; Sylla, Mohamed Salif; Sompare, Djenou; Howard, Wayne; Faye, Ousmane; Martin, Javier; Ndiaye, Kader

    2018-01-01

    During the 2014-2015 outbreak of Ebola virus disease in Guinea, 13 type 2 circulating vaccine-derived polioviruses (cVDPVs) were isolated from 6 polio patients and 7 healthy contacts. To clarify the genetic properties of cVDPVs and their emergence, we combined epidemiologic and virologic data for polio cases in Guinea. Deviation of public health resources to the Ebola outbreak disrupted polio vaccination programs and surveillance activities, which fueled the spread of neurovirulent VDPVs in an area of low vaccination coverage and immunity. Genetic properties of cVDPVs were consistent with their capacity to cause paralytic disease in humans and capacity for sustained person-to-person transmission. Circulation ceased when coverage of oral polio vaccine increased. A polio outbreak in the context of the Ebola virus disease outbreak highlights the need to consider risks for polio emergence and spread during complex emergencies and urges awareness of the challenges in polio surveillance, vaccination, and diagnosis.

  4. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors - Final Report.

    PubMed

    Deen, Gibrilla F; Broutet, Nathalie; Xu, Wenbo; Knust, Barbara; Sesay, Foday R; McDonald, Suzanna L R; Ervin, Elizabeth; Marrinan, Jaclyn E; Gaillard, Philippe; Habib, Ndema; Liu, Hongtu; Liu, William; Thorson, Anna E; Yamba, Francis; Massaquoi, Thomas A; James, Faustin; Ariyarajah, Archchun; Ross, Christine; Bernstein, Kyle; Coursier, Antoine; Klena, John; Carino, Marylin; Wurie, Alie H; Zhang, Yong; Dumbuya, Marion S; Abad, Neetu; Idriss, Baimba; Wi, Teodora; Bennett, Sarah D; Davies, Tina; Ebrahim, Faiqa K; Meites, Elissa; Naidoo, Dhamari; Smith, Samuel J; Ongpin, Patricia; Malik, Tasneem; Banerjee, Anshu; Erickson, Bobbie R; Liu, Yongjian; Liu, Yang; Xu, Ke; Brault, Aaron; Durski, Kara N; Winter, Jörn; Sealy, Tara; Nichol, Stuart T; Lamunu, Margaret; Bangura, James; Landoulsi, Sihem; Jambai, Amara; Morgan, Oliver; Wu, Guizhen; Liang, Mifang; Su, Qiudong; Lan, Yu; Hao, Yanzhe; Formenty, Pierre; Ströher, Ute; Sahr, Foday

    2017-10-12

    Ebola virus has been detected in the semen of men after their recovery from Ebola virus disease (EVD). We report the presence of Ebola virus RNA in semen in a cohort of survivors of EVD in Sierra Leone. We enrolled a convenience sample of 220 adult male survivors of EVD in Sierra Leone, at various times after discharge from an Ebola treatment unit (ETU), in two phases (100 participants were in phase 1, and 120 in phase 2). Semen specimens obtained at baseline were tested by means of a quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay with the use of the target sequences of NP and VP40 (in phase 1) or NP and GP (in phase 2). This study did not evaluate directly the risk of sexual transmission of EVD. Of 210 participants who provided an initial semen specimen for analysis, 57 (27%) had positive results on quantitative RT-PCR. Ebola virus RNA was detected in the semen of all 7 men with a specimen obtained within 3 months after ETU discharge, in 26 of 42 (62%) with a specimen obtained at 4 to 6 months, in 15 of 60 (25%) with a specimen obtained at 7 to 9 months, in 4 of 26 (15%) with a specimen obtained at 10 to 12 months, in 4 of 38 (11%) with a specimen obtained at 13 to 15 months, in 1 of 25 (4%) with a specimen obtained at 16 to 18 months, and in no men with a specimen obtained at 19 months or later. Among the 46 participants with a positive result in phase 1, the median baseline cycle-threshold values (higher values indicate lower RNA values) for the NP and VP40 targets were lower within 3 months after ETU discharge (32.4 and 31.3, respectively; in 7 men) than at 4 to 6 months (34.3 and 33.1; in 25), at 7 to 9 months (37.4 and 36.6; in 13), and at 10 to 12 months (37.7 and 36.9; in 1). In phase 2, a total of 11 participants had positive results for NP and GP targets (samples obtained at 4.1 to 15.7 months after ETU discharge); cycle-threshold values ranged from 32.7 to 38.0 for NP and from 31.1 to 37.7 for GP. These data showed the long

  5. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead.

    PubMed

    González-González, Everardo; Alvarez, Mario Moisés; Márquez-Ipiña, Alan Roberto; Trujillo-de Santiago, Grissel; Rodríguez-Martínez, Luis Mario; Annabi, Nasim; Khademhosseini, Ali

    2017-02-01

    The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.

  6. Unique human immune signature of Ebola virus disease in Guinea.

    PubMed

    Ruibal, Paula; Oestereich, Lisa; Lüdtke, Anja; Becker-Ziaja, Beate; Wozniak, David M; Kerber, Romy; Korva, Miša; Cabeza-Cabrerizo, Mar; Bore, Joseph A; Koundouno, Fara Raymond; Duraffour, Sophie; Weller, Romy; Thorenz, Anja; Cimini, Eleonora; Viola, Domenico; Agrati, Chiara; Repits, Johanna; Afrough, Babak; Cowley, Lauren A; Ngabo, Didier; Hinzmann, Julia; Mertens, Marc; Vitoriano, Inês; Logue, Christopher H; Boettcher, Jan Peter; Pallasch, Elisa; Sachse, Andreas; Bah, Amadou; Nitzsche, Katja; Kuisma, Eeva; Michel, Janine; Holm, Tobias; Zekeng, Elsa-Gayle; García-Dorival, Isabel; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Strecker, Thomas; Di Caro, Antonino; Avšič-Županc, Tatjana; Kurth, Andreas; Meschi, Silvia; Mély, Stephane; Newman, Edmund; Bocquin, Anne; Kis, Zoltan; Kelterbaum, Anne; Molkenthin, Peter; Carletti, Fabrizio; Portmann, Jasmine; Wolff, Svenja; Castilletti, Concetta; Schudt, Gordian; Fizet, Alexandra; Ottowell, Lisa J; Herker, Eva; Jacobs, Thomas; Kretschmer, Birte; Severi, Ettore; Ouedraogo, Nobila; Lago, Mar; Negredo, Anabel; Franco, Leticia; Anda, Pedro; Schmiedel, Stefan; Kreuels, Benno; Wichmann, Dominic; Addo, Marylyn M; Lohse, Ansgar W; De Clerck, Hilde; Nanclares, Carolina; Jonckheere, Sylvie; Van Herp, Michel; Sprecher, Armand; Xiaojiang, Gao; Carrington, Mary; Miranda, Osvaldo; Castro, Carlos M; Gabriel, Martin; Drury, Patrick; Formenty, Pierre; Diallo, Boubacar; Koivogui, Lamine; Magassouba, N'Faly; Carroll, Miles W; Günther, Stephan; Muñoz-Fontela, César

    2016-05-05

    Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.

  7. Message from the ISCB: ISCB Ebola award for important future research on the computational biology of Ebola virus.

    PubMed

    Karp, Peter D; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard

    2015-02-15

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains and three-dimensional protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology 2016, Orlando, FL). dkovats@iscb.org or rost@in.tum.de. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Community Knowledge, Attitudes, and Practices Regarding Ebola Virus Disease - Five Counties, Liberia, September-October, 2014.

    PubMed

    Kobayashi, Miwako; Beer, Karlyn D; Bjork, Adam; Chatham-Stephens, Kevin; Cherry, Cara C; Arzoaquoi, Sampson; Frank, Wilmot; Kumeh, Odell; Sieka, Joseph; Yeiah, Adolphus; Painter, Julia E; Yoder, Jonathan S; Flannery, Brendan; Mahoney, Frank; Nyenswah, Tolbert G

    2015-07-10

    As of July 1, 2015, Guinea, Liberia, and Sierra Leone have reported a total of 27,443 confirmed, probable, and suspected Ebola virus disease (Ebola) cases and 11,220 deaths. Guinea and Sierra Leone have yet to interrupt transmission of Ebola virus. In January, 2016, Liberia successfully achieved Ebola transmission-free status, with no new Ebola cases occurring during a 42-day period; however, new Ebola cases were reported beginning June 29, 2015. Local cultural practices and beliefs have posed challenges to disease control, and therefore, targeted, timely health messages are needed to address practices and misperceptions that might hinder efforts to stop the spread of Ebola. As early as September 2014, Ebola spread to most counties in Liberia. To assess Ebola-related knowledge, attitudes, and practices (KAP) in the community, CDC epidemiologists who were deployed to the counties (field team), carried out a survey conducted by local trained interviewers. The survey was conducted in September and October 2014 in five counties in Liberia with varying cumulative incidence of Ebola cases. Survey results indicated several findings. First, basic awareness of Ebola was high across all surveyed populations (median correct responses = 16 of 17 questions on knowledge of Ebola transmission; range = 2-17). Second, knowledge and understanding of Ebola symptoms were incomplete (e.g., 61% of respondents said they would know if they had Ebola symptoms). Finally, certain fears about the disease were present: >90% of respondents indicated a fear of Ebola patients, >40% a fear of cured patients, and >50% a fear of treatment units (expressions of this last fear were greater in counties with lower Ebola incidence). This survey, which was conducted at a time when case counts were rapidly increasing in Liberia, indicated limited knowledge of Ebola symptoms and widespread fear of Ebola treatment units despite awareness of communication messages. Continued efforts are needed to address

  9. Ebola Virus Disease in Children, Sierra Leone, 2014–2015

    PubMed Central

    Naveed, Asad; Wing, Kevin; Gbessay, Musa; Ross, J.C.G.; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohammed Boie; Baion, David; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia A.; Gibb, Diana M.; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2016-01-01

    Little is known about potentially modifiable factors in Ebola virus disease in children. We undertook a retrospective cohort study of children <13 years old admitted to 11 Ebola holding units in the Western Area, Sierra Leone, during 2014–2015 to identify factors affecting outcome. Primary outcome was death or discharge after transfer to Ebola treatment centers. All 309 Ebola virus–positive children 2 days–12 years old were included; outcomes were available for 282 (91%). Case-fatality was 57%, and 55% of deaths occurred in Ebola holding units. Blood test results showed hypoglycemia and hepatic/renal dysfunction. Death occurred swiftly (median 3 days after admission) and was associated with younger age and diarrhea. Despite triangulation of information from multiple sources, data availability was limited, and we identified no modifiable factors substantially affecting death. In future Ebola virus disease epidemics, robust, rapid data collection is vital to determine effectiveness of interventions for children. PMID:27649367

  10. Evaluating the frequency of asymptomatic Ebola virus infection.

    PubMed

    Mbala, Placide; Baguelin, Marc; Ngay, Ipos; Rosello, Alicia; Mulembakani, Prime; Demiris, Nikolaos; Edmunds, W John; Muyembe, Jean-Jacques

    2017-05-26

    The potential for asymptomatic infection from Ebola viruses has long been questioned. Knowing the proportion of infections that are asymptomatic substantially changes the predictions made by mathematical models and alters the corresponding decisions based upon these models. To assess the degree of asymptomatic infection occurring during an Ebola virus disease (EVD) outbreak, we carried out a serological survey in the Djera district of the Equateur province of the Democratic Republic of the Congo affected by an Ebola outbreak in 2014. We sampled all asymptomatic residents ( n = 182) of 48 households where at least one case of EVD was detected. To control for potential background seroprevalence of Ebola antibodies in the population, we also sampled 188 individuals from 92 households in an unaffected area with a similar demographic background. We tested the sera collected for anti-Ebola IgG and IgM antibodies at four different dilutions. We then developed a mixture model to estimate the likely number of asymptomatic patients who developed IgM and IgG responses to Ebola antigens in both groups. While we detected an association between medium to high titres and age, we did not detect any evidence of increased asymptomatic infection in the individuals who resided in the same household as cases.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'. © 2017 The Author(s).

  11. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests.

    PubMed

    Rosenstierne, Maiken Worsøe; Karlberg, Helen; Bragstad, Karoline; Lindegren, Gunnel; Stoltz, Malin Lundahl; Salata, Cristiano; Kran, Anne-Marte Bakken; Dudman, Susanne Gjeruldsen; Mirazimi, Ali; Fomsgaard, Anders

    2016-10-01

    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using the QIAamp viral RNA minikit. We present an easy and convenient method for bedside inactivation using available blood collection vacuum tubes and reagents. We propose to use this simple method for fast, safe, and easy bedside inactivation of Ebola virus for safe transport and routine nucleic acid detection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Proportion of Deaths and Clinical Features in Bundibugyo Ebola Virus Infection, Uganda

    PubMed Central

    Farnon, Eileen C.; Wamala, Joseph; Okware, Sam; Cannon, Deborah L.; Reed, Zachary; Towner, Jonathan S.; Tappero, Jordan W.; Lutwama, Julius; Downing, Robert; Nichol, Stuart T.; Ksiazek, Thomas G.; Rollin, Pierre E.

    2010-01-01

    The first known Ebola hemorrhagic fever (EHF) outbreak caused by Bundibugyo Ebola virus occurred in Bundibugyo District, Uganda, in 2007. Fifty-six cases of EHF were laboratory confirmed. Although signs and symptoms were largely nonspecific and similar to those of EHF outbreaks caused by Zaire and Sudan Ebola viruses, proportion of deaths among those infected was lower (≈40%). PMID:21122234

  13. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    PubMed

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  14. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].

    PubMed

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong

    2016-01-01

    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  15. Ebola virus disease: Biological and diagnostic evolution from 2014 to 2017.

    PubMed

    Mérens, A; Bigaillon, C; Delaune, D

    2018-03-01

    The Ebola virus disease outbreak observed in West Africa from March 2014 to June 2016 has led to many fundamental and applied research works. Knowledge of this virus has substantially increased. Treatment of many patients in epidemic countries and a few imported cases in developed countries led to developing new diagnostic methods and to adapt laboratory organization and biosafety precautions to perform conventional biological analyses. Clinical and biological monitoring of patients infected with Ebola virus disease helped to determine severity criteria and bad prognosis markers. It also contributed to showing the possibility of viral sanctuaries in patients and the risk of transmission after recovery. After a summary of recent knowledge of environmental and clinical viral persistence, we aimed to present new diagnostic methods and other biological tests that led to highlighting the pathophysiological consequences of Ebola virus disease and its prognostic markers. We also aimed to describe our lab experience in the care of Ebola virus-infected patients, especially technical and logistical changes between 2014 and 2017. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Productive Replication of Ebola Virus Is Regulated by the c-Abl1 Tyrosine Kinase

    PubMed Central

    García, Mayra; Cooper, Arik; Shi, Wei; Bornmann, William; Carrion, Ricardo; Kalman, Daniel; Nabel, Gary J.

    2016-01-01

    Ebola virus causes a fulminant infection in humans resulting in diffuse bleeding, vascular instability, hypotensive shock, and often death. Because of its high mortality and ease of transmission from human to human, Ebola virus remains a biological threat for which effective preventive and therapeutic interventions are needed. An understanding of the mechanisms of Ebola virus pathogenesis is critical for developing antiviral therapeutics. Here, we report that productive replication of Ebola virus is modulated by the c-Abl1 tyrosine kinase. Release of Ebola virus–like particles (VLPs) in a cell culture cotransfection system was inhibited by c-Abl1–specific small interfering RNA (siRNA) or by Abl-specific kinase inhibitors and required tyrosine phosphorylation of the Ebola matrix protein VP40. Expression of c-Abl1 stimulated an increase in phosphorylation of tyrosine 13 (Y13) of VP40, and mutation of Y13 to alanine decreased the release of Ebola VLPs. Productive replication of the highly pathogenic Ebola virus Zaire strain was inhibited by c-Abl1–specific siRNAs or by the Abl-family inhibitor nilotinib by up to four orders of magnitude. These data indicate that c-Abl1 regulates budding or release of filoviruses through a mechanism involving phosphorylation of VP40. This step of the virus life cycle therefore may represent a target for antiviral therapy. PMID:22378924

  17. Challenges in responding to the ebola epidemic - four rural counties, Liberia, August-November 2014.

    PubMed

    Summers, Aimee; Nyenswah, Tolbert G; Montgomery, Joel M; Neatherlin, John; Tappero, Jordan W; T, Nyenswah; M, Fahnbulleh; M, Massaquoi

    2014-12-19

    The first cases of Ebola virus disease (Ebola) in West Africa were identified in Guinea on March 22, 2014. On March 30, the first Liberian case was identified in Foya Town, Lofa County, near the Guinean border. Because the majority of early cases occurred in Lofa and Montserrado counties, resources were concentrated in these counties during the first several months of the response, and these counties have seen signs of successful disease control. By October 2014, the epidemic had reached all 15 counties of Liberia. During August 27-September 10, 2014, CDC in collaboration with the Liberian Ministry of Health and Social Welfare assessed county Ebola response plans in four rural counties (Grand Cape Mount, Grand Bassa, Rivercess, and Sinoe, to identify county-specific challenges in executing their Ebola response plans, and to provide recommendations and training to enhance control efforts. Assessments were conducted through interviews with county health teams and health care providers and visits to health care facilities. At the time of assessment, county health teams reported lacking adequate training in core Ebola response strategies and reported facing many challenges because of poor transportation and communication networks. Development of communication and transportation network strategies for communities with limited access to roads and limited means of communication in addition to adequate training in Ebola response strategies is critical for successful management of Ebola in remote areas.

  18. Review of Ebola virus infections in domestic animals.

    PubMed

    Weingartl, H M; Nfon, C; Kobinger, G

    2013-01-01

    Ebola viruses (EBOV; genus Ebolavirus, family Filoviridae) cause often fatal, hemorrhagic fever in several species of simian primates including human. While fruit bats are considered a natural reservoir, the involvement of other species in the EBOV transmission cycle is unclear, especially for domesticated animals. Dogs and pigs are so far the only domestic animals identified as species that can be infected with EBOV. In 2009 Reston-EBOV was the first EBOV reported to infect swine with indicated transmission to humans; and a survey in Gabon found over 30% seroprevalence for EBOV in dogs during the Ebola outbreak in 2001-2002. While infections in dogs appear to be asymptomatic, pigs experimentally infected with EBOV can develop clinical disease, depending on the virus species and possibly the age of the infected animals. In the experimental settings, pigs can transmit Zaire-Ebola virus to naive pigs and macaques; however, their role during Ebola outbreaks in Africa needs to be clarified. Attempts at virus and antibody detection require as a prerequisite validation of viral RNA and antibody detection methods especially for pigs, as well as the development of a sampling strategy. Significant issues about disease development remain to be resolved for EBOV. Evaluation of current human vaccine candidates or development of veterinary vaccines de novo for EBOV might need to be considered, especially if pigs or dogs are implicated in the transmission of an African species of EBOV to humans.

  19. Ebola Virus: a Clear and Present Danger

    PubMed Central

    2014-01-01

    An epidemic of Ebola virus disease is occurring in Western Africa on a scale not seen before, particularly in the countries of Guinea, Liberia, and Sierra Leone. The continued spread is facilitated by insufficient medical facilities, poor sanitation, travel, and unsafe burial practices. Several patients diagnosed with Ebola virus disease in Africa have been evacuated to the United States for treatment, and several other patients have been diagnosed in the United States. It is important for laboratories to be aware of available tests, especially those granted emergency use authorization, as hospitals prepare protocols for the diagnosis and management of high-risk patients. PMID:25392362

  20. Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity.

    PubMed

    Dowall, Stuart D; Matthews, David A; Garcia-Dorival, Isabel; Taylor, Irene; Kenny, John; Hertz-Fowler, Christiane; Hall, Neil; Corbin-Lickfett, Kara; Empig, Cyril; Schlunegger, Kyle; Barr, John N; Carroll, Miles W; Hewson, Roger; Hiscox, Julian A

    2014-01-01

    Ebolaviruses causes a severe and often fatal hemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naive animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV.

  1. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography.

    PubMed

    Bharat, Tanmay A M; Noda, Takeshi; Riches, James D; Kraehling, Verena; Kolesnikova, Larissa; Becker, Stephan; Kawaoka, Yoshihiro; Briggs, John A G

    2012-03-13

    Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly.

  2. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression.

    PubMed

    Liu, Yuanwu; Sun, Jing; Zhang, Hongwen; Wang, Mingming; Gao, George Fu; Li, Xiangdong

    2016-10-01

    The 2014 outbreak of Ebola virus caused more than 10,000 human deaths. Current knowledge of suitable drugs, clinical diagnostic biomarkers and molecular mechanisms of Ebola virus infection is either absent or insufficient. By screening stem-loop structures from the viral genomes of four virulence species, we identified a novel, putative viral microRNA precursor that is specifically expressed by the Ebola virus. The sequence of the microRNA precursor was further confirmed by mining the existing RNA-Seq database. Two putative mature microRNAs were predicted and subsequently validated in human cell lines. Combined with this prediction of the microRNA target, we identified importin-α5, which is a key regulator of interferon signaling following Ebola virus infection, as one putative target. We speculate that this microRNA could facilitate the evasion of the host immune system by the virus. Moreover, this microRNA might be a potential clinical therapeutic target or a diagnostic biomarker for Ebola virus.

  3. Emergence of Vaccine-Derived Polioviruses during Ebola Virus Disease Outbreak, Guinea, 2014–2015

    PubMed Central

    Majumdar, Manasi; Kebe, Ousmane; Fall, Aichatou D.; Kone, Moussa; Kande, Mouctar; Dabo, Moustapha; Sylla, Mohamed Salif; Sompare, Djenou; Howard, Wayne; Faye, Ousmane; Martin, Javier; Ndiaye, Kader

    2018-01-01

    During the 2014–2015 outbreak of Ebola virus disease in Guinea, 13 type 2 circulating vaccine-derived polioviruses (cVDPVs) were isolated from 6 polio patients and 7 healthy contacts. To clarify the genetic properties of cVDPVs and their emergence, we combined epidemiologic and virologic data for polio cases in Guinea. Deviation of public health resources to the Ebola outbreak disrupted polio vaccination programs and surveillance activities, which fueled the spread of neurovirulent VDPVs in an area of low vaccination coverage and immunity. Genetic properties of cVDPVs were consistent with their capacity to cause paralytic disease in humans and capacity for sustained person-to-person transmission. Circulation ceased when coverage of oral polio vaccine increased. A polio outbreak in the context of the Ebola virus disease outbreak highlights the need to consider risks for polio emergence and spread during complex emergencies and urges awareness of the challenges in polio surveillance, vaccination, and diagnosis. PMID:29260690

  4. Towards Detection and Diagnosis of Ebola Virus Disease at Point-of-Care

    PubMed Central

    Kaushik, Ajeet; Tiwari, Sneham; Jayant, Rahul Dev; Marty, Aileen; Nair, Madhavan

    2015-01-01

    Ebola outbreak-2014 (mainly Zaire strain related Ebola virus) has been declared most widely spread deadly persistent epidemic due to unavailability of rapid diagnostic, detection, and therapeutics. Ebola virus disease (EVD), a severe viral hemorrhagic fever syndrome caused by Ebola virus (EBOV) is transmitted by direct contact with the body fluids of infected person and objects contaminated with virus or infected animals. World Health Organization (WHO) has declared EVD epidemic as public health emergency of international concern with severe global economic burden. At fatal EBOV infection stage, patients usually die before the antibody response. Currently, rapid blood tests to diagnose EBOV infection include the antigen or antibodies capture using ELISA and RNA detection using RT/Q-PCR within 3–10 days after the onset of symptoms. Moreover, few nanotechnology-based colorimetric and paper-based immunoassay methods have been recently reported to detect Ebola virus. Unfortunately, these methods are limited to laboratory only. As state-of-the art (SoA) diagnostics time to confirm Ebola infection, varies from 6 hours to about 3 days, it causes delay in therapeutic approaches. Thus developing a cost-effective, rapid, sensitive, and selective sensor to detect EVD at point-of-care (POC) is certainly worth exploring to establish rapid diagnostics to decide therapeutics. This review highlights SoA of Ebola diagnostics and also a call to develop rapid, selective and sensitive POC detection of EBOV for global health care. We propose that adopting miniaturized electrochemical EBOV immunosensing can detect virus level at pM concentration within ~40 minute compared to 3 days of ELISA test at nM levels. PMID:26319169

  5. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  6. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    PubMed

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  7. Reemerging Sudan Ebola Virus Disease in Uganda, 2011

    PubMed Central

    Shoemaker, Trevor; Balinandi, Stephen; Campbell, Shelley; Wamala, Joseph Francis; McMullan, Laura K.; Downing, Robert; Lutwama, Julius; Mbidde, Edward; Ströher, Ute; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities. PMID:22931687

  8. ZMappTM Reinforces the Airway Mucosal Barrier Against Ebola Virus.

    PubMed

    Yang, Bing; Schaefer, Alison; Wang, Ying-Ying; McCallen, Justin; Lee, Phoebe; Newby, Jay M; Arora, Harendra; Kumar, Priya A; Zeitlin, Larry; Whaley, Kevin J; McKinley, Scott A; Fischer, William A; Harit, Dimple; Lai, Samuel K

    2018-04-24

    Filoviruses, including Ebola, have the potential to be transmitted via virus-laden droplets deposited onto mucus membranes. Protecting against such emerging pathogens will require understanding how they may transmit at mucosal surfaces and developing strategies to reinforce the airway mucus barrier.Here, we prepared Ebola pseudovirus (with Zaire strain glycoproteins) and employed high resolution multiple particle tracking to track the motions of hundreds of individual pseudoviruses in fresh and undiluted human airway mucus isolated from extubated endotracheal tubes.We found that Ebola pseudovirus readily penetrate human airway mucus. Addition of ZMappTM, a cocktail of Ebola-binding IgG antibodies, effectively reduced mobility of Ebola pseudovirus in the same mucus secretions. Topical delivery of ZMappTM to the mouse airways also facilitated rapid elimination of Ebola pseudovirus.Our work demonstrates that antibodies can immobilize virions in airway mucus and reduce access to the airway epithelium, highlighting topical delivery of pathogen-specific antibodies to the lungs as a potential prophylactic or therapeutic approach against emerging viruses or biowarfare agents.

  9. [The Emergence of Ebola virus in humans: a long process not yet fully understood].

    PubMed

    Leroy, Éric Maurice

    2015-01-01

    Since 1976 Ebola virus regularly has caused small deadly outbreaks in Central Africa, usually controlled in a few months. For the first time, an Ebola epidemic of exceptional magnitude dramatically engulfed several countries in West Africa since December 2013. Major failures of implementing measures to prevent human-to-human transmissions are the main cause of this large-scale Ebola outbreak. After about one-week incubation period, the Ebola virus disease is characterized by a sudden onset of high fever leading to multiple hemorrhages and to widespread organ failure. Several bat species constitute the main reservoirs of Ebola viruses. Human contamination would occur either directly from bats, widely consumed by the local populations, or through animal species susceptible to Ebola infection, such as chimpanzees and gorillas. Alongside this "natural cycle", an "epidemic cycle" involving domestic animals living in villages such as dogs or pigs, is seriously suggested. Thus, according to the diversity of concerned animals and their clinical infectionform, modalities of human contamination can be multiple and are still largely unknown. In this context, all efforts that could be made to unravel the mystery of the Ebola virus emergence in humans and clarify modalities of the virus transmission, would allow for predicting or for anticipating the future occurrence of epidemics. This review aims to provide an exhaustive inventory of the Ebola ecology to highlight events governing the virus transmission to humans that still remain unsolved.

  10. Ebola: lessons learned and future challenges for Europe.

    PubMed

    Quaglio, GianLuca; Goerens, Charles; Putoto, Giovanni; Rübig, Paul; Lafaye, Pierre; Karapiperis, Theodoros; Dario, Claudio; Delaunois, Paul; Zachariah, Rony

    2016-02-01

    The Ebola virus epidemic has topped media and political agendas for months; several countries in west Africa have faced the worst Ebola epidemic in history. At the beginning of the disease outbreak, European Union (EU) policies were notably absent regarding how to respond to the crisis. Although the epidemic is now receding from public view, this crisis has undoubtedly changed the European public perception of Ebola virus disease, which is no longer regarded as a bizarre entity confined in some unknown corner in Africa. Policy makers and researchers in Europe now have an opportunity to consider the lessons learned. In this Personal View, we discuss the EU's response to the Ebola crisis in west Africa. Unfortunately, although ample resources and opportunities for humanitarian and medical action existed, the EU did not use them to promote a rapid and well coordinated response to the Ebola crisis. Lessons learned from this crisis should be used to improve the role of the EU in similar situations in the future, ensuring that European aid can be effectively deployed to set up an improved emergency response system, and supporting the establishment of sustainable health-care services in west Africa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Clinical development of Ebola vaccines

    PubMed Central

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  12. Acquisition Challenges of a Lethal Virus

    DTIC Science & Technology

    2014-10-01

    March 23, 2014. Since then it has spread to Sierra Leone and Liberia . As of July 3, 2014, WHO reported 779 clini- cal cases of Ebola virus disease...Health Organization team responding to an Ebola virus outbreak. It’s 1995. “The Hot Zone” tops best-seller lists, and millions of people the world...over are fixated on the threat of incurable “hot” hemorrhagic fever viruses like Ebola . Gruesome depictions of melting skin and oozing blood fill

  13. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus.

    PubMed

    Karthick, V; Nagasundaram, N; Doss, C George Priya; Chakraborty, Chiranjib; Siva, R; Lu, Aiping; Zhang, Ge; Zhu, Hailong

    2016-02-17

    The Ebola virus is highly pathogenic and destructive to humans and other primates. The Ebola virus encodes viral protein 40 (VP40), which is highly expressed and regulates the assembly and release of viral particles in the host cell. Because VP40 plays a prominent role in the life cycle of the Ebola virus, it is considered as a key target for antiviral treatment. However, there is currently no FDA-approved drug for treating Ebola virus infection, resulting in an urgent need to develop effective antiviral inhibitors that display good safety profiles in a short duration. This study aimed to screen the effective lead candidate against Ebola infection. First, the lead molecules were filtered based on the docking score. Second, Lipinski rule of five and the other drug likeliness properties are predicted to assess the safety profile of the lead candidates. Finally, molecular dynamics simulations was performed to validate the lead compound. Our results revealed that emodin-8-beta-D-glucoside from the Traditional Chinese Medicine Database (TCMD) represents an active lead candidate that targets the Ebola virus by inhibiting the activity of VP40, and displays good pharmacokinetic properties. This report will considerably assist in the development of the competitive and robust antiviral agents against Ebola infection.

  14. Ebola virus disease: preparedness in Japan.

    PubMed

    Ashino, Yugo; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2015-02-01

    The current outbreak of Ebola virus disease (EVD) is due to a lack of resources, untrained medical personnel, and the specific contact-mediated type of infection of this virus. In Japan's history, education and mass vaccination of the native Ainu people successfully eradicated epidemics of smallpox. Even though a zoonotic virus is hard to control, appropriate precautions and personal protection, as well as anti-symptomatic treatment, will control the outbreak of EVD. Ebola virus utilizes the antibody-dependent enhancement of infection to seed the cells of various organs. The pathogenesis of EVD is due to the cytokine storm of pro-inflammatory cytokines and the lack of antiviral interferon-α2. Matricellular proteins of galectin-9 and osteopontin might also be involved in the edema and abnormality of the coagulation system in EVD. Anti-fibrinolytic treatment will be effective. In the era of globalization, interviews of travelers with fever within 3 weeks of departure from the affected areas will be necessary. Not only the hospitals designated for specific biohazards but every hospital should be aware of the biology of biohazards and establish measures to protect both patients and the community.

  15. Euthanasia assessment in ebola virus infected nonhuman primates.

    PubMed

    Warren, Travis K; Trefry, John C; Marko, Shannon T; Chance, Taylor B; Wells, Jay B; Pratt, William D; Johnson, Joshua C; Mucker, Eric M; Norris, Sarah L; Chappell, Mark; Dye, John M; Honko, Anna N

    2014-11-24

    Multiple products are being developed for use against filoviral infections. Efficacy for these products will likely be demonstrated in nonhuman primate models of filoviral disease to satisfy licensure requirements under the Animal Rule, or to supplement human data. Typically, the endpoint for efficacy assessment will be survival following challenge; however, there exists no standardized approach for assessing the health or euthanasia criteria for filovirus-exposed nonhuman primates. Consideration of objective criteria is important to (a) ensure test subjects are euthanized without unnecessary distress; (b) enhance the likelihood that animals exhibiting mild or moderate signs of disease are not prematurely euthanized; (c) minimize the occurrence of spontaneous deaths and loss of end-stage samples; (d) enhance the reproducibility of experiments between different researchers; and (e) provide a defensible rationale for euthanasia decisions that withstands regulatory scrutiny. Historic records were compiled for 58 surviving and non-surviving monkeys exposed to Ebola virus at the US Army Medical Research Institute of Infectious Diseases. Clinical pathology parameters were statistically analyzed and those exhibiting predicative value for survival are reported. These findings may be useful for standardization of objective euthanasia assessments in rhesus monkeys exposed to Ebola virus and may serve as a useful approach for other standardization efforts.

  16. Euthanasia Assessment in Ebola Virus Infected Nonhuman Primates

    PubMed Central

    Warren, Travis K.; Trefry, John C.; Marko, Shannon T.; Chance, Taylor B.; Wells, Jay B.; Pratt, William D.; Johnson, Joshua C.; Mucker, Eric M.; Norris, Sarah L.; Chappell, Mark; Dye, John M.; Honko, Anna N.

    2014-01-01

    Multiple products are being developed for use against filoviral infections. Efficacy for these products will likely be demonstrated in nonhuman primate models of filoviral disease to satisfy licensure requirements under the Animal Rule, or to supplement human data. Typically, the endpoint for efficacy assessment will be survival following challenge; however, there exists no standardized approach for assessing the health or euthanasia criteria for filovirus-exposed nonhuman primates. Consideration of objective criteria is important to (a) ensure test subjects are euthanized without unnecessary distress; (b) enhance the likelihood that animals exhibiting mild or moderate signs of disease are not prematurely euthanized; (c) minimize the occurrence of spontaneous deaths and loss of end-stage samples; (d) enhance the reproducibility of experiments between different researchers; and (e) provide a defensible rationale for euthanasia decisions that withstands regulatory scrutiny. Historic records were compiled for 58 surviving and non-surviving monkeys exposed to Ebola virus at the US Army Medical Research Institute of Infectious Diseases. Clinical pathology parameters were statistically analyzed and those exhibiting predicative value for survival are reported. These findings may be useful for standardization of objective euthanasia assessments in rhesus monkeys exposed to Ebola virus and may serve as a useful approach for other standardization efforts. PMID:25421892

  17. Post-exposure treatment of Ebola virus using passive immunotherapy: proposal for a new strategy.

    PubMed

    Chippaux, Jean-Philippe; Boyer, Leslie V; Alagón, Alejandro

    2015-01-01

    Better treatments are urgently needed for the management of Ebola virus epidemics in Equatorial Africa. We conducted a systematic review of the literature on the use of passive immunotherapy for the treatment or prevention of Ebola virus disease. We placed findings from this review into the context of passive immunotherapy currently used for venom-induced disease, and recent improvements in manufacturing of polyvalent antivenom products. Passive immunotherapy appears to be one of the most promising specific treatments for Ebola. However, its potential has been incompletely evaluated, considering the overall experience and recent improvement of immunotherapy. Development and use of heterologous serum derivatives could protect people exposed to Ebola viruses with reasonable cost and logistics. Hyperimmune equine IgG fragments and purified polyclonal whole IgG deserve further consideration as treatment for exposure to the Ebola virus.

  18. [Insufficient Preparation of Ambulatory Physicians for Ebola Virus Disease in Germany].

    PubMed

    Brekle, Verena; Weiß, Christel; Kolobaric, Zvonimir; Schulz-Weidhaas, Claudia; Vogelmann, Roger

    2018-05-22

    Globalization and climate change increase the likelihood of a global spread of high consequence infectious diseases. We analyzed how outpatient physicians in Germany were prepared to recognize and handle potential Ebola virus-infected patients during the recent Ebola outbreak in West Africa. Outpatient physicians participated in 2 anonymous surveys (n=166 and 129, respectively) and were asked, among others, about their knowledge of Ebola virus disease, their subjective perception of their own knowledge and the practical implementation in their daily routine. This was compared to a minimum standard defined by 14 members of the German "Permanent Working Group of Competence and Treatment Centres for high consequence infectious diseases" (STAKOB). The Ebola virus-specific knowledge of participants was significantly inferior compared to the defined minimum standard. Of 8 factual questions, an average of merely 5 was answered correctly. The physicians' subjective perception of knowledge presented as 'little'. Although 56% of participants indicated that they had received standard operation procedures, 64% had not implemented them into their daily routine. Merely 22% of surveyed medical doctors participated in Ebola virus-specific education programs. Yet participation led to a significantly better subjective knowledge perception. Contrary to the official assessment that Germany is well prepared for high consequence infectious diseases, this study suggests that there are deficits in this area. Despite the abundance of information about Ebola virus disease, preparation of outpatient physicians in Germany was inadequate. Yet nearly half of the participants indicated the potential risk of occurrence as 'likely' or 'very likely'. The presented data show the different consequences to be drawn regarding potential future crises and further research. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material.

    PubMed

    Trefry, John C; Wollen, Suzanne E; Nasar, Farooq; Shamblin, Joshua D; Kern, Steven J; Bearss, Jeremy J; Jefferson, Michelle A; Chance, Taylor B; Kugelman, Jeffery R; Ladner, Jason T; Honko, Anna N; Kobs, Dean J; Wending, Morgan Q S; Sabourin, Carol L; Pratt, William D; Palacios, Gustavo F; Pitt, M Louise M

    2015-12-19

    Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein's poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.

  20. Low potential for mechanical transmission of Ebola virus via house flies (Musca domestica)

    USDA-ARS?s Scientific Manuscript database

    Ebola virus emerged in West Africa in March 2014 and has caused more than 28,000 cases and 11,000 deaths. The unusually high number of cases raised the question as to whether muscid flies could mechanically transmit the virus. Mechanical transmission of Ebola virus was attempted using house flies t...

  1. Nurses leading the fight against Ebola virus disease.

    PubMed

    Sagar, Priscilla L

    2015-05-01

    The current Ebola crisis has sparked worldwide reaction of panic and disbelief in its wake as it decimated communities in West Africa, particularly in Guinea, Liberia, and Sierra Leone, including its health care workers. This article affirms the crucial role nurses play in maintaining health and preventing diseases, connects the devastating havoc of the Ebola virus disease to another issue of nursing shortage in underdeveloped countries, and asserts the key leadership nurses play in protecting the communities they serve while maintaining their safety and those of other health care workers. Nurses must actively seek a place at the table, as echoed by the American Academy of Nursing and American Nurses Association and the American Nurses Association, when decisions are being made regarding Ebola virus disease: at care settings, in the board room, and at federal, state, and local levels. © The Author(s) 2015.

  2. Identification of Ellagic Acid from Plant Rhodiola rosea L. as an Anti-Ebola Virus Entry Inhibitor.

    PubMed

    Cui, Qinghua; Du, Ruikun; Anantpadma, Manu; Schafer, Adam; Hou, Lin; Tian, Jingzhen; Davey, Robert A; Cheng, Han; Rong, Lijun

    2018-03-27

    The recent 2014-2016 West African Ebola virus epidemic underscores the need for the development of novel anti-Ebola therapeutics, due to the high mortality rates of Ebola virus infections and the lack of FDA-approved vaccine or therapy that is available for the prevention and treatment. Traditional Chinese medicines (TCMs) represent a huge reservoir of bioactive chemicals and many TCMs have been shown to have antiviral activities. 373 extracts from 128 TCMs were evaluated using a high throughput assay to screen for inhibitors of Ebola virus cell entry. Extract of Rhodiola rosea displayed specific and potent inhibition against cell entry of both Ebola virus and Marburg virus. In addition, twenty commercial compounds that were isolated from Rhodiola rosea were evaluated using the pseudotyped Ebola virus entry assay, and it was found that ellagic acid and gallic acid, which are two structurally related compounds, are the most effective ones. The activity of the extract and the two pure compounds were validated using infectious Ebola virus. The time-of-addition experiments suggest that, mechanistically, the Rhodiola rosea extract and the effective compounds act at an early step in the infection cycle following initial cell attachment, but prior to viral/cell membrane fusion. Our findings provide evidence that Rhodiola rosea has potent anti-filovirus properties that may be developed as a novel anti-Ebola treatment.

  3. Identification of Ellagic Acid from Plant Rhodiola rosea L. as an Anti-Ebola Virus Entry Inhibitor

    PubMed Central

    Cui, Qinghua; Du, Ruikun; Anantpadma, Manu; Schafer, Adam; Hou, Lin; Tian, Jingzhen; Cheng, Han; Rong, Lijun

    2018-01-01

    The recent 2014–2016 West African Ebola virus epidemic underscores the need for the development of novel anti-Ebola therapeutics, due to the high mortality rates of Ebola virus infections and the lack of FDA-approved vaccine or therapy that is available for the prevention and treatment. Traditional Chinese medicines (TCMs) represent a huge reservoir of bioactive chemicals and many TCMs have been shown to have antiviral activities. 373 extracts from 128 TCMs were evaluated using a high throughput assay to screen for inhibitors of Ebola virus cell entry. Extract of Rhodiola rosea displayed specific and potent inhibition against cell entry of both Ebola virus and Marburg virus. In addition, twenty commercial compounds that were isolated from Rhodiola rosea were evaluated using the pseudotyped Ebola virus entry assay, and it was found that ellagic acid and gallic acid, which are two structurally related compounds, are the most effective ones. The activity of the extract and the two pure compounds were validated using infectious Ebola virus. The time-of-addition experiments suggest that, mechanistically, the Rhodiola rosea extract and the effective compounds act at an early step in the infection cycle following initial cell attachment, but prior to viral/cell membrane fusion. Our findings provide evidence that Rhodiola rosea has potent anti-filovirus properties that may be developed as a novel anti-Ebola treatment. PMID:29584652

  4. Amino acid mutations in Ebola virus glycoprotein of the 2014 epidemic.

    PubMed

    Giovanetti, Marta; Grifoni, Alba; Lo Presti, Alessandra; Cella, Eleonora; Montesano, Carla; Zehender, Gianguglielmo; Colizzi, Vittorio; Amicosante, Massimo; Ciccozzi, Massimo

    2015-06-01

    Zaire Ebola virus (EBOV) is an enveloped non-segmented negative strand RNA virus of 19 kb in length belonging to the family Filoviridae. The virus was isolated and identified in 1976 during the epidemic of hemorrhagic fever in Zaire. The most recent outbreak of EBOV among humans, was that occurred in the forested areas of south eastern Guinea, that began in February 2014 and is still ongoing. The recent Ebola outbreak, is affecting other countries in West Africa, in addiction to Guinea: Liberia, Nigeria, and Sierra Leone. In this article, a selective pressure analysis and homology modeling based on the G Glycoprotein (GP) sequences retrieved from public databases were used to investigate the genetic diversity and modification of antibody response in the recent outbreak of Ebola Virus. Structural and the evolutionary analysis underline the 2014 epidemic virus being under negative selective pressure does not change with respect to the old epidemic in terms of genome adaptation. © 2015 Wiley Periodicals, Inc.

  5. Structure and assembly of the Ebola virus nucleocapsid

    PubMed Central

    Wan, William; Kolesnikova, Larissa; Clarke, Mairi; Koehler, Alexander; Noda, Takeshi; Becker, Stephan; Briggs, John A. G.

    2017-01-01

    Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause hemorrhagic fever1. Filoviruses are within the order Mononegavirales2 which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein (NP) and other viral proteins to form a helical nucleocapsid (NC). NC acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into NP-NP interactions have been derived from structural studies of oligomerized, RNA-encapsidating NP3–6 and cryo-electron microscopy (cryo-EM) of NC7–12 or NC-like structures11–13. There have been no high-resolution reconstructions of complete mononegavirus NCs. Here, we have applied cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus NC within intact viruses and recombinant NC-like assemblies. These structures reveal the identity and arrangement of the NC components, and suggest that the formation of an extended alpha-helix from the disordered C-terminal region of NP-core links NP oligomerization, NC condensation, RNA encapsidation, and accessory protein recruitment. PMID:29144446

  6. Lack of protection against ebola virus from chloroquine in mice and hamsters.

    PubMed

    Falzarano, Darryl; Safronetz, David; Prescott, Joseph; Marzi, Andrea; Feldmann, Friederike; Feldmann, Heinz

    2015-06-01

    The antimalarial drug chloroquine has been suggested as a treatment for Ebola virus infection. Chloroquine inhibited virus replication in vitro, but only at cytotoxic concentrations. In mouse and hamster models, treatment did not improve survival. Chloroquine is not a promising treatment for Ebola. Efforts should be directed toward other drug classes.

  7. Study of Ebola Virus Disease Survivors in Guinea.

    PubMed

    Qureshi, Adnan I; Chughtai, Morad; Loua, Tokpagnan Oscar; Pe Kolie, Jean; Camara, Hadja Fatou Sikhe; Ishfaq, Muhammad Fawad; N'Dour, Cheikh Tidane; Beavogui, Kezely

    2015-10-01

    There is a paucity of data regarding health consequences of Ebola virus disease among survivors. We surveyed 105 Ebola virus disease survivors postdischarge from an Ebola treatment unit in Guinea using a standard data collection form. Patients rated recovery as the percentage of improvement in functional status, where 0% represents "unable to perform" and 100% represents "able to perform at prior level." The mean ± standard deviation time interval between hospital discharge and administration of questionnaire was 103.5 ± 47.9 days in 105 survivors. Anorexia was reported by 103 patients, with varying severity levels: mild (n = 33), moderate (n = 65), or severe (n = 5). Reported pain according to site was chest (30.7%), joint (86.7%), muscle (26.7%), and back (45.7%), among others. Recovery in functional status was graded as mild (10%-30%) (n = 2 [1.9%]), moderate (40%-70%) (n = 52 [50.0%]), and excellent (80%-100%) (n = 50 [48.1%]). Severity of arthralgia (R(2) = 0.09; P = .008) was directly associated with lower recovery in functional status in multivariate analysis. Ebola virus disease survivors frequently reported anorexia and arthralgia. Severity of arthralgia was related to lower functional recovery. There may be a role for focused screening and intervention for symptoms identified in this study of survivors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Rapid Detection of Ebola Virus with a Reagent-Free, Point-of-Care Biosensor

    PubMed Central

    Baca, Justin T.; Severns, Virginia; Lovato, Debbie; Branch, Darren W.; Larson, Richard S.

    2015-01-01

    Surface acoustic wave (SAW) sensors can rapidly detect Ebola antigens at the point-of-care without the need for added reagents, sample processing, or specialized personnel. This preliminary study demonstrates SAW biosensor detection of the Ebola virus in a concentration-dependent manner. The detection limit with this methodology is below the average level of viremia detected on the first day of symptoms by PCR. We observe a log-linear sensor response for highly fragmented Ebola viral particles, with a detection limit corresponding to 1.9 × 104 PFU/mL prior to virus inactivation. We predict greatly improved sensitivity for intact, infectious Ebola virus. This point-of-care methodology has the potential to detect Ebola viremia prior to symptom onset, greatly enabling infection control and rapid treatment. This biosensor platform is powered by disposable AA batteries and can be rapidly adapted to detect other emerging diseases in austere conditions. PMID:25875186

  9. Clinical presentation and management of severe Ebola virus disease.

    PubMed

    West, T Eoin; von Saint André-von Arnim, Amélie

    2014-11-01

    Clinicians caring for patients infected with Ebola virus must be familiar not only with screening and infection control measures but also with management of severe disease. By integrating experience from several Ebola epidemics with best practices for managing critical illness, this report focuses on the clinical presentation and management of severely ill infants, children, and adults with Ebola virus disease. Fever, fatigue, vomiting, diarrhea, and anorexia are the most common symptoms of the 2014 West African outbreak. Profound fluid losses from the gastrointestinal tract result in volume depletion, metabolic abnormalities (including hyponatremia, hypokalemia, and hypocalcemia), shock, and organ failure. Overt hemorrhage occurs infrequently. The case fatality rate in West Africa is at least 70%, and individuals with respiratory, neurological, or hemorrhagic symptoms have a higher risk of death. There is no proven antiviral agent to treat Ebola virus disease, although several experimental treatments may be considered. Even in the absence of antiviral therapies, intensive supportive care has the potential to markedly blunt the high case fatality rate reported to date. Optimal treatment requires conscientious correction of fluid and electrolyte losses. Additional management considerations include searching for coinfection or superinfection; treatment of shock (with intravenous fluids and vasoactive agents), acute kidney injury (with renal replacement therapy), and respiratory failure (with invasive mechanical ventilation); provision of nutrition support, pain and anxiety control, and psychosocial support; and the use of strategies to reduce complications of critical illness. Cardiopulmonary resuscitation may be appropriate in certain circumstances, but extracorporeal life support is not advised. Among other ethical issues, patients' medical needs must be carefully weighed against healthcare worker safety and infection control concerns. However, meticulous attention

  10. The Pathogenesis of Ebola Virus Disease.

    PubMed

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  11. Distinguishing epidemiological features of the 2013–2016 West Africa Ebola virus disease outbreak

    PubMed Central

    Shultz, James M.; Espinel, Zelde; Espinola, Maria; Rechkemmer, Andreas

    2016-01-01

    ABSTRACT The 2013–2016 West Africa Ebola virus disease epidemic was notable for its scope, scale, and complexity. This briefing presents a series of distinguishing epidemiological features that set this outbreak apart. Compared to one concurrent and 23 previous outbreaks of the disease over 40 years, this was the only occurrence of Ebola virus disease involving multiple nations and qualifying as a pandemic. Across multiple measures of magnitude, the 2013–2016 outbreak was accurately described using superlatives: largest and deadliest in terms of numbers of cases and fatalities; longest in duration; and most widely dispersed geographically, with outbreak-associated cases occurring in 10 nations. In contrast, the case-fatality rate was much lower for the 2013–2016 outbreak compared to the other 24 outbreaks. A population of particular interest for ongoing monitoring and public health surveillance is comprised of more than 17,000 “survivors,” Ebola patients who successfully recovered from their illness. The daunting challenges posed by this outbreak were met by an intensive international public health response. The near-exponential rate of increase of incident Ebola cases during mid-2014 was successfully slowed, reversed, and finally halted through the application of multiple disease containment and intervention strategies. PMID:28229017

  12. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    PubMed

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. How Ebola and Marburg viruses battle the immune system.

    PubMed

    Mohamadzadeh, Mansour; Chen, Lieping; Schmaljohn, Alan L

    2007-07-01

    The filoviruses Ebola and Marburg have emerged in the past decade from relative obscurity to serve now as archetypes for some of the more intriguing and daunting challenges posed by such agents. Public imagination is captured by deadly outbreaks of these viruses and reinforced by the specter of bioterrorism. As research on these agents has accelerated, it has been found increasingly that filoviruses use a combination of familiar and apparently new ways to baffle and battle the immune system. Filoviruses have provided thereby a new lens through which to examine the immune system itself.

  14. Ebola Virus Imported from Guinea to Senegal, 2014.

    PubMed

    Ka, Daye; Fall, Gamou; Diallo, Viviane Cissé; Faye, Ousmane; Fortes, Louise Deguenonvo; Faye, Oumar; Bah, Elhadji Ibrahim; Diallo, Kadia Mbaye; Balique, Fanny; Ndour, Cheikh Tidiane; Seydi, Moussa; Sall, Amadou Alpha

    2017-06-01

    In March 2014, the World Health Organization declared an outbreak of Ebola virus disease in Guinea. In August 2014, a case caused by virus imported from Guinea occurred in Senegal, most likely resulting from nonsecure funerals and travel. Preparedness and surveillance in Senegal probably prevented secondary cases.

  15. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease

    PubMed Central

    Kash, John C.; Walters, Kathie-Anne; Kindrachuk, Jason; Baxter, David; Scherler, Kelsey; Janosko, Krisztina B.; Adams, Rick D.; Herbert, Andrew S.; James, Rebekah M.; Stonier, Spencer W.; Memoli, Matthew J.; Dye, John M.; Davey, Richard T.; Chertow, Daniel S.; Taubenberger, Jeffery K.

    2017-01-01

    The 2013–2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration–approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance. PMID:28404864

  16. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Justin T.; Severns, Virginia; Lovato, Debbie

    Surface acoustic wave (SAW) sensors can rapidly detect Ebola antigens at the point-of-care without the need for added reagents, sample processing, or specialized personnel. This preliminary study demonstrates SAW biosensor detection of the Ebola virus in a concentration-dependent manner. The detection limit with this methodology is below the average level of viremia detected on the first day of symptoms by PCR. We observe a log-linear sensor response for highly fragmented Ebola viral particles, with a detection limit corresponding to 1.9 × 10⁴ PFU/mL prior to virus inactivation. We predict greatly improved sensitivity for intact, infectious Ebola virus. This point-of-care methodologymore » has the potential to detect Ebola viremia prior to symptom onset, greatly enabling infection control and rapid treatment. This biosensor platform is powered by disposable AA batteries and can be rapidly adapted to detect other emerging diseases in austere conditions.« less

  17. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor

    DOE PAGES

    Baca, Justin T.; Severns, Virginia; Lovato, Debbie; ...

    2015-04-14

    Surface acoustic wave (SAW) sensors can rapidly detect Ebola antigens at the point-of-care without the need for added reagents, sample processing, or specialized personnel. This preliminary study demonstrates SAW biosensor detection of the Ebola virus in a concentration-dependent manner. The detection limit with this methodology is below the average level of viremia detected on the first day of symptoms by PCR. We observe a log-linear sensor response for highly fragmented Ebola viral particles, with a detection limit corresponding to 1.9 × 10⁴ PFU/mL prior to virus inactivation. We predict greatly improved sensitivity for intact, infectious Ebola virus. This point-of-care methodologymore » has the potential to detect Ebola viremia prior to symptom onset, greatly enabling infection control and rapid treatment. This biosensor platform is powered by disposable AA batteries and can be rapidly adapted to detect other emerging diseases in austere conditions.« less

  18. On revealing the gene targets of Ebola virus microRNAs involved in the human skin microbiome.

    PubMed

    Hsu, Pei-Chun; Chiou, Bin-Hao; Huang, Chun-Ming

    2018-01-01

    Ebola virus, a negative-sense single-stranded RNA virus, causes severe viral hemorrhagic fever and has a high mortality rate. Histopathological and immunopathological analyses of Ebola virus have revealed that histopathological changes in skin tissue are associated with various degrees of endothelial cell swelling and necrosis. The interactions of microbes within or on a host are a crucial for the skin immune shield. The discovery of microRNAs (miRNAs) in Ebola virus implies that immune escape, endothelial cell rupture, and tissue dissolution during Ebola virus infection are a result of the effects of Ebola virus miRNAs. Keratinocytes obtained from normal skin can attach and spread through expression of the thrombospondin family of proteins, playing a role in initiation of cell-mediated immune responses in the skin. Several miRNAs have been shown to bind the 3' untranslated region of thrombospondin mRNA, thereby controlling its stability and translational activity. In this study, we discovered short RNA sequences that may act as miRNAs from Propionibacterium acnes using a practical workflow of bioinformatics methods. Subsequently, we deciphered the common target gene. These RNA sequences tended to bind to the same thrombospondin protein, THSD4, emphasizing the potential importance of the synergistic binding of miRNAs from Ebola virus, Propionibacterium acnes , and humans to the target. These results provide important insights into the molecular mechanisms of thrombospondin proteins and miRNAs in Ebola virus infection.

  19. Persistent infection with ebola virus under conditions of partial immunity.

    PubMed

    Gupta, Manisha; Mahanty, Siddhartha; Greer, Patricia; Towner, Jonathan S; Shieh, Wun-Ju; Zaki, Sherif R; Ahmed, Rafi; Rollin, Pierre E

    2004-01-01

    Ebola hemorrhagic fever in humans is associated with high mortality; however, some infected hosts clear the virus and recover. The mechanisms by which this occurs and the correlates of protective immunity are not well defined. Using a mouse model, we determined the role of the immune system in clearance of and protection against Ebola virus. All CD8 T-cell-deficient mice succumbed to subcutaneous infection and had high viral antigen titers in tissues, whereas mice deficient in B cells or CD4 T cells cleared infection and survived, suggesting that CD8 T cells, independent of CD4 T cells and antibodies, are critical to protection against subcutaneous Ebola virus infection. B-cell-deficient mice that survived the primary subcutaneous infection (vaccinated mice) transiently depleted or not depleted of CD4 T cells also survived lethal intraperitoneal rechallenge for >/==" BORDER="0">25 days. However, all vaccinated B-cell-deficient mice depleted of CD8 T cells had high viral antigen titers in tissues following intraperitoneal rechallenge and died within 6 days, suggesting that memory CD8 T cells by themselves can protect mice from early death. Surprisingly, vaccinated B-cell-deficient mice, after initially clearing the infection, were found to have viral antigens in tissues later (day 120 to 150 post-intraperitoneal infection). Furthermore, following intraperitoneal rechallenge, vaccinated B-cell-deficient mice that were transiently depleted of CD4 T cells had high levels of viral antigen in tissues earlier (days 50 to 70) than vaccinated undepleted mice. This demonstrates that under certain immunodeficiency conditions, Ebola virus can persist and that loss of primed CD4 T cells accelerates the course of persistent infections. These data show that CD8 T cells play an important role in protection against acute disease, while both CD4 T cells and antibodies are required for long-term protection, and they provide evidence of persistent infection by Ebola virus suggesting

  20. Epidemiology of the Ebola Virus: Facts and Hypotheses.

    PubMed

    Portela Câmara F

    1998-12-01

    Marburg and Ebola viruses are emerging pathogens recognized since 1967, and in 1976, when they were first identified. These viruses are the only members of the Filoviridae family. They cause severe, frequently fatal, hemorrhagic fever. Each genus includes some serotypes with the distinctive characteristics to cause high mortality rate during outbreaks. The Ebola-Zaire subtype is the most lethal variant. The epidemiology of human pathogenic filovirus is reviewed in this paper considering the most relevant facts. Primary human cases arise probably through close contact with infected primates. This point may be the key to preventing the introduction of these viruses in human populations. Once introduced in humans, the infection may spread through close contact with infected individuals or their body fluids, particularly in hospital environments. A main feature of filovirus outbreaks is the occurrence of cycles of secondary infection.

  1. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    PubMed Central

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  2. Ebola Virus Imported from Guinea to Senegal, 2014

    PubMed Central

    Ka, Daye; Fall, Gamou; Diallo, Viviane Cissé; Fortes, Louise Deguenonvo; Faye, Oumar; Bah, Elhadji Ibrahim; Diallo, Kadia Mbaye; Balique, Fanny; Ndour, Cheikh Tidiane; Seydi, Moussa; Sall, Amadou Alpha

    2017-01-01

    In March 2014, the World Health Organization declared an outbreak of Ebola virus disease in Guinea. In August 2014, a case caused by virus imported from Guinea occurred in Senegal, most likely resulting from nonsecure funerals and travel. Preparedness and surveillance in Senegal probably prevented secondary cases. PMID:28518019

  3. Operational Research during the Ebola Emergency.

    PubMed

    Fitzpatrick, Gabriel; Decroo, Tom; Draguez, Bertrand; Crestani, Rosa; Ronsse, Axelle; Van den Bergh, Rafael; Van Herp, Michel

    2017-07-01

    Operational research aims to identify interventions, strategies, or tools that can enhance the quality, effectiveness, or coverage of programs where the research is taking place. Médecins Sans Frontières admitted ≈5,200 patients with confirmed Ebola virus disease during the Ebola outbreak in West Africa and from the beginning nested operational research within its emergency response. This research covered critical areas, such as understanding how the virus spreads, clinical trials, community perceptions, challenges within Ebola treatment centers, and negative effects on non-Ebola healthcare. Importantly, operational research questions were decided to a large extent by returning volunteers who had first-hand knowledge of the immediate issues facing teams in the field. Such a method is appropriate for an emergency medical organization. Many challenges were also identified while carrying out operational research across 3 different countries, including the basic need for collecting data in standardized format to enable comparison of findings among treatment centers.

  4. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material

    PubMed Central

    Trefry, John C.; Wollen, Suzanne E.; Nasar, Farooq; Shamblin, Joshua D.; Kern, Steven J.; Bearss, Jeremy J.; Jefferson, Michelle A.; Chance, Taylor B.; Kugelman, Jeffery R.; Ladner, Jason T.; Honko, Anna N.; Kobs, Dean J.; Wending, Morgan Q.S.; Sabourin, Carol L.; Pratt, William D.; Palacios, Gustavo F.; Pitt, M. Louise M.

    2015-01-01

    Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein’s poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations. PMID:26703716

  5. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  6. Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.

    PubMed

    Schweneker, Marc; Laimbacher, Andrea S; Zimmer, Gert; Wagner, Susanne; Schraner, Elisabeth M; Wolferstätter, Michael; Klingenberg, Marieken; Dirmeier, Ulrike; Steigerwald, Robin; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2017-06-01

    There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant. IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified

  7. Laboratory diagnosis of Ebola virus disease and corresponding biosafety considerations in the China Ebola Treatment Center.

    PubMed

    Huang, Qing; Fu, Wei-Ling; You, Jian-Ping; Mao, Qing

    2016-10-01

    Ebola virus disease (EVD), caused by Ebola virus (EBOV), is a potent acute infectious disease with a high case-fatality rate. Etiological and serological EBOV detection methods, including techniques that involve the detection of the viral genome, virus-specific antigens and anti-virus antibodies, are standard laboratory diagnostic tests that facilitate confirmation or exclusion of EBOV infection. In addition, routine blood tests, liver and kidney function tests, electrolytes and coagulation tests and other diagnostic examinations are important for the clinical diagnosis and treatment of EVD. Because of the viral load in body fluids and secretions from EVD patients, all body fluids are highly contagious. As a result, biosafety control measures during the collection, transport and testing of clinical specimens obtained from individuals scheduled to undergo EBOV infection testing (including suspected, probable and confirmed cases) are crucial. This report has been generated following extensive work experience in the China Ebola Treatment Center (ETC) in Liberia and incorporates important information pertaining to relevant diagnostic standards, clinical significance, operational procedures, safety controls and other issues related to laboratory testing of EVD. Relevant opinions and suggestions are presented in this report to provide contextual awareness associated with the development of standards and/or guidelines related to EVD laboratory testing.

  8. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    PubMed

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  9. Immune barriers of Ebola virus infection.

    PubMed

    McElroy, Anita K; Mühlberger, Elke; Muñoz-Fontela, César

    2018-02-01

    Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Knowledge and attitude towards Ebola and Marburg virus diseases in Uganda using quantitative and participatory epidemiology techniques

    PubMed Central

    Skjerve, Eystein; Nabadda, Daisy; Sitali, Doreen Chilolo; Mumba, Chisoni; Mwiine, Frank N.; Lutwama, Julius J.; Balinandi, Stephen; Shoemaker, Trevor; Kankya, Clovice

    2017-01-01

    Background Uganda has reported five (5) Ebola virus disease outbreaks and three (3) Marburg virus disease outbreaks from 2000 to 2016. Peoples’ knowledge and attitude towards Ebola and Marburg virus disease impact on control and prevention measures especially during outbreaks. We describe knowledge and attitude towards Ebola and Marburg virus outbreaks in two affected communities in Uganda to inform future outbreak responses and help in the design of health education and communication messages. Methods The study was a community survey done in Luweero, Ibanda and Kamwenge districts that have experienced outbreaks of Ebola and Marburg virus diseases. Quantitative data were collected using a structured questionnaire and triangulated with qualitative participatory epidemiology techniques to gain a communities’ knowledge and attitude towards Ebola and Marburg virus disease. Results Out of 740 respondents, 48.5% (359/740) were categorized as being knowledgeable about Ebola and Marburg virus diseases, whereas 60.5% (448/740) were having a positive attitude towards control and prevention of Ebola and Marburg virus diseases. The mean knowledge and attitude percentage scores were 54.3 (SD = 23.5, 95%CI = 52.6–56.0) and 69.9 (SD = 16.9, 95%CI = 68.9–71.1) respectively. People educated beyond primary school were more likely to be knowledgeable about Ebola and Marburg virus disease than those who did not attain any formal education (OR = 3.6, 95%CI = 2.1–6.1). Qualitative data revealed that communities describe Ebola and Marburg virus diseases as very severe diseases with no cure and they believe the diseases spread so fast. Respondents reported fear and stigma suffered by survivors, their families and the broader community due to these diseases. Conclusion Communities in Uganda affected by filovirus outbreaks have moderate knowledge about these diseases and have a positive attitude towards practices to prevent and control Ebola and Marburg viral diseases. The public

  11. Knowledge and attitude towards Ebola and Marburg virus diseases in Uganda using quantitative and participatory epidemiology techniques.

    PubMed

    Nyakarahuka, Luke; Skjerve, Eystein; Nabadda, Daisy; Sitali, Doreen Chilolo; Mumba, Chisoni; Mwiine, Frank N; Lutwama, Julius J; Balinandi, Stephen; Shoemaker, Trevor; Kankya, Clovice

    2017-09-01

    Uganda has reported five (5) Ebola virus disease outbreaks and three (3) Marburg virus disease outbreaks from 2000 to 2016. Peoples' knowledge and attitude towards Ebola and Marburg virus disease impact on control and prevention measures especially during outbreaks. We describe knowledge and attitude towards Ebola and Marburg virus outbreaks in two affected communities in Uganda to inform future outbreak responses and help in the design of health education and communication messages. The study was a community survey done in Luweero, Ibanda and Kamwenge districts that have experienced outbreaks of Ebola and Marburg virus diseases. Quantitative data were collected using a structured questionnaire and triangulated with qualitative participatory epidemiology techniques to gain a communities' knowledge and attitude towards Ebola and Marburg virus disease. Out of 740 respondents, 48.5% (359/740) were categorized as being knowledgeable about Ebola and Marburg virus diseases, whereas 60.5% (448/740) were having a positive attitude towards control and prevention of Ebola and Marburg virus diseases. The mean knowledge and attitude percentage scores were 54.3 (SD = 23.5, 95%CI = 52.6-56.0) and 69.9 (SD = 16.9, 95%CI = 68.9-71.1) respectively. People educated beyond primary school were more likely to be knowledgeable about Ebola and Marburg virus disease than those who did not attain any formal education (OR = 3.6, 95%CI = 2.1-6.1). Qualitative data revealed that communities describe Ebola and Marburg virus diseases as very severe diseases with no cure and they believe the diseases spread so fast. Respondents reported fear and stigma suffered by survivors, their families and the broader community due to these diseases. Communities in Uganda affected by filovirus outbreaks have moderate knowledge about these diseases and have a positive attitude towards practices to prevent and control Ebola and Marburg viral diseases. The public health sector should enhance this community

  12. Cytotoxic T lymphocytes to Ebola Zaire virus are induced in mice by immunization with liposomes containing lipid A.

    PubMed

    Rao, M; Matyas, G R; Grieder, F; Anderson, K; Jahrling, P B; Alving, C R

    1999-08-06

    An eight amino acid sequence (TELRTFSI) present in the carboxy terminal end (aa 577-584) of membrane-anchored GP, the major structural protein of Ebola virus, was identified as an H-2k-specific murine cytotoxic T cell epitope. Cytotoxic T lymphocytes (CTLs) to this epitope were induced by immunizing B10.BR mice intravenously with either irradiated Ebola virus or with irradiated Ebola virus encapsulated in liposomes containing lipid A. The CTL response induced by irradiated Ebola virus could not be sustained after the second round of in vitro stimulation of immune splenocytes with the peptide, unless the irradiated virus was encapsulated in liposomes containing lipid A. The identification of an Ebola GP-specific CTL epitope and the requirement of liposomal lipid A for CTL memory recall responses could prove to be a promising approach for developing a vaccine against Ebola virus infection.

  13. Amiodarone affects Ebola virus binding and entry into target cells.

    PubMed

    Salata, Cristiano; Munegato, Denis; Martelli, Francesco; Parolin, Cristina; Calistri, Arianna; Baritussio, Aldo; Palù, Giorgio

    2018-03-02

    Ebola Virus Disease is one of the most lethal transmissible infections characterized by a high fatality rate. Several research studies have aimed to identify effective antiviral agents. Amiodarone, a drug used for the treatment of arrhythmias, has been shown to inhibit filovirus infection in vitro by acting at the early step of the viral replication cycle. Here we demonstrate that amiodarone reduces virus binding to target cells and slows down the progression of the viral particles along the endocytic pathway. Overall our data support the notion that amiodarone interferes with Ebola virus infection by affecting cellular pathways/targets involved in the viral entry process.

  14. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection

    PubMed Central

    Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu

    2016-01-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. PMID:27297486

  15. Profiling the Native Specific Human Humoral Immune Response to Sudan Ebola Virus Strain Gulu by Chemiluminescence Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Sobarzo, Ariel; Perelman, Eddie; Groseth, Allison; Dolnik, Olga; Becker, Stephan; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Marks, Robert S.

    2012-01-01

    Ebolavirus, a member of the family Filoviridae, causes high lethality in humans and nonhuman primates. Research focused on protection and therapy for Ebola virus infection has investigated the potential role of antibodies. Recent evidence suggests that antibodies can be effective in protection from lethal challenge with Ebola virus in nonhuman primates. However, despite these encouraging results, studies have not yet determined the optimal antibodies and composition of an antibody cocktail, if required, which might serve as a highly effective and efficient prophylactic. To better understand optimal antibodies and their targets, which might be important for protection from Ebola virus infection, we sought to determine the profile of viral protein-specific antibodies generated during a natural cycle of infection in humans. To this end, we characterized the profile of antibodies against individual viral proteins of Sudan Ebola virus (Gulu) in human survivors and nonsurvivors of the outbreak in Gulu, Uganda, in 2000-2001. We developed a unique chemiluminescence enzyme-linked immunosorbent assay (ELISA) for this purpose based on the full-length recombinant viral proteins NP, VP30, and VP40 and two recombinant forms of the viral glycoprotein (GP1-294 and GP1-649) of Sudan Ebola virus (Gulu). Screening results revealed that the greatest immunoreactivity was directed to the viral proteins NP and GP1-649, followed by VP40. Comparison of positive immunoreactivity between the viral proteins NP, GP1-649, and VP40 demonstrated a high correlation of immunoreactivity between these viral proteins, which is also linked with survival. Overall, our studies of the profile of immunorecognition of antibodies against four viral proteins of Sudan Ebola virus in human survivors may facilitate development of effective monoclonal antibody cocktails in the future. PMID:22993411

  16. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease.

    PubMed

    Kash, John C; Walters, Kathie-Anne; Kindrachuk, Jason; Baxter, David; Scherler, Kelsey; Janosko, Krisztina B; Adams, Rick D; Herbert, Andrew S; James, Rebekah M; Stonier, Spencer W; Memoli, Matthew J; Dye, John M; Davey, Richard T; Chertow, Daniel S; Taubenberger, Jeffery K

    2017-04-12

    The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance. Copyright © 2017, American Association for the Advancement of Science.

  17. [Research progress on ebola virus glycoprotein].

    PubMed

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  18. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    PubMed

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  19. Prospects for immunisation against Marburg and Ebola viruses.

    PubMed

    Geisbert, Thomas W; Bausch, Daniel G; Feldmann, Heinz

    2010-11-01

    For more than 30 years the filoviruses, Marburg virus and Ebola virus, have been associated with periodic outbreaks of hemorrhagic fever that produce severe and often fatal disease. The filoviruses are endemic primarily in resource-poor regions in Central Africa and are also potential agents of bioterrorism. Although no vaccines or antiviral drugs for Marburg or Ebola are currently available, remarkable progress has been made over the last decade in developing candidate preventive vaccines against filoviruses in nonhuman primate models. Due to the generally remote locations of filovirus outbreaks, a single-injection vaccine is desirable. Among the prospective vaccines that have shown efficacy in nonhuman primate models of filoviral hemorrhagic fever, two candidates, one based on a replication-defective adenovirus serotype 5 and the other on a recombinant VSV (rVSV), were shown to provide complete protection to nonhuman primates when administered as a single injection. The rVSV-based vaccine has also shown utility when administered for postexposure prophylaxis against filovirus infections. A VSV-based Ebola vaccine was recently used to manage a potential laboratory exposure. 2010 John Wiley & Sons, Ltd.

  20. High-Dose Mannose-Binding Lectin Therapy for Ebola Virus Infection

    DTIC Science & Technology

    2010-06-01

    viruses . N-glycosylation of viral envelopes is an important such target shared between in- fluenza, HIV, HCV, West Nile virus , SARS-CoV, Hendra virus ...host cells. Therefore, MBL preferentially recognizes glycosylated viruses including influenza virus , human immunodeficiency virus , severe acute...respiratory syndrome coronovirus (SARS-CoV), Ebola virus , and Marburg virus . It also recognizes many glycosylated gram- positive and gram-negative bacteria [1

  1. A Comparison of Personal Protective Standards: Caring for Patients With Ebola Virus.

    PubMed

    Franklin, Sativa Michelle

    2016-01-01

    The purpose of this article is to discuss the variance in requirements for personal protective equipment (PPE) used among healthcare workers to treat patients actively infected with the Ebola virus in West Africa. The Ebola virus is a highly contagious disease, which has killed 11020 people within the past year. In order to combat the disease and treat those with active infections, healthcare workers are required to use PPE. The guidelines for the PPE, in addition to the requirements of what should be worn, are varied between the World Health Organization (WHO) and the Centers for Disease Control and Prevention. A military unit was composed of sister services (Army, Navy, and Air Force) deployed to Monrovia, Liberia, to assist in mitigating the devastating effects of the Ebola virus. Each service member was taught PPE standards according to the WHO and were assigned to teach healthcare workers from around the world on how to manage the care of patients infected with the Ebola virus, while simultaneously taking diligent precautions to protect themselves against the deadly disease. More than 1500 healthcare workers were instructed on the latest PPE standards before they entered into the Ebola treatment units (ETUs) that were being constructed in Liberia. Cumulative death rates from the Ebola virus in Liberia increased from 2413 in October 2014 to 3686 by January 2015. The rapid decline in Ebola mortality is multifactorial. The efforts of US military medical personnel likely were a contributing factor in this rapid decline as those international health workers were afforded the latest in PPE training with strict attention to detail. US military medical personnel, in concert with other governmental agencies, created a potent force multiplier in the efforts to curb this deadly infection. The educational initiative was essential to the slowdown in the spread of the Ebola virus in Liberia. Recommendations for a detailed review of the PPE standards and variances in

  2. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    PubMed

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  3. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease

    PubMed Central

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P.

    2016-01-01

    ABSTRACT Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales. To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such

  4. Support services for survivors of ebola virus disease - Sierra Leone, 2014.

    PubMed

    Lee-Kwan, Seung Hee; DeLuca, Nickolas; Adams, Monica; Dalling, Matthew; Drevlow, Elizabeth; Gassama, Gladys; Davies, Tina

    2014-12-19

    As of December 6, 2014, Sierra Leone reported 6,317 laboratory-confirmed cases of Ebola virus disease (Ebola), the highest number of reported cases in the current West Africa epidemic. The Sierra Leone Ministry of Health and Sanitation reported that as of December 6, 2014, there were 1,181 persons who had survived and were discharged. Survivors from previous Ebola outbreaks have reported major barriers to resuming normal lives after release from treatment, such as emotional distress, health issues, loss of possessions, and difficulty regaining their livelihoods. In August 2014, a knowledge, attitude, and practice survey regarding the Ebola outbreak in Sierra Leone, administered by a consortium of partners that included the Ministry of Health and Sanitation, UNICEF, CDC, and a local nongovernmental organization, Focus 1000, found that 96% of the general population respondents reported some discriminatory attitude towards persons with suspected or known Ebola. Access to increased psychosocial support, provision of goods, and family and community reunification programs might reduce these barriers. Survivors also have unique potential to contribute to the Ebola response, particularly because survivors might have some immunity to the same virus strain. In previous outbreaks, survivors served as burial team members, contact tracers, and community educators promoting messages that seeking treatment improves the chances for survival and that persons who survived Ebola can help their communities. As caregivers in Ebola treatment units, survivors have encouraged patients to stay hydrated and eat and inspired them to believe that they, too, can survive. Survivors regaining livelihood through participation in the response might offset the stigma associated with Ebola.

  5. [Ebola and Marburg hemorrhagic fever viruses: update on filoviruses].

    PubMed

    Leroy, E; Baize, S; Gonzalez, J P

    2011-04-01

    The Ebola and Marburg viruses are the sole members of the Filoviridae family of viruses. They are characterized by a long filamentous form that is unique in the viral world. Filoviruses are among the most virulent pathogens currently known to infect humans. They cause fulminating disease characterized by acute fever followed by generalized hemorrhagic syndrome that is associated with 90% mortality in the most severe forms. Epidemic outbreaks of Marburg and Ebola viruses have taken a heavy toll on human life in Central Africa and devastated large ape populations in Gabon and Republic of Congo. Since their discovery in 1967 (Marburg) and 1976 (Ebola), more than 2,300 cases and 1,670 deaths have been reported. These numbers pale in comparison with the burden caused by malnutrition or other infectious disease scourges in Africa such as malaria, cholera, AIDS, dengue or tuberculosis. However, due to their extremely high lethality, association with multifocal hemorrhaging and specificity to the African continent, these hemorrhagic fever viruses have given rise to great interest on the part not only of the international scientific community but also of the general public because of their perceived potential as biological weapons. Much research has been performed on these viruses and major progress has been made in knowledge of their ecology, epidemiology and physiopathology and in development of vaccine candidates and therapeutic schemes. The purpose of this review is to present the main developments in these particular fields in the last decade.

  6. Post-exposure prophylaxis against Ebola virus disease with experimental antiviral agents: a case-series of health-care workers.

    PubMed

    Jacobs, Michael; Aarons, Emma; Bhagani, Sanjay; Buchanan, Ruaridh; Cropley, Ian; Hopkins, Susan; Lester, Rebecca; Martin, Daniel; Marshall, Neal; Mepham, Stephen; Warren, Simon; Rodger, Alison

    2015-11-01

    Although a few international health-care workers who have assisted in the current Ebola outbreak in west Africa have been medically evacuated for treatment of Ebola virus disease, more commonly they were evacuated after potential accidental exposure to Ebola virus. An urgent need exists for a consensus about the risk assessment of Ebola virus transmission after accidental exposure, and to investigate the use of post-exposure prophylaxis (PEP). Experimental vaccines have occasionally been used for Ebola PEP, but newly developed experimental antiviral agents have potential advantages. Here, we describe a new method for risk assessment and management of health-care workers potentially exposed to Ebola virus and report the use of experimental antiviral therapies for Ebola PEP in people. We devised a risk assessment and management algorithm for health-care workers potentially exposed to Ebola virus and applied this to eight consecutive individuals who were medically evacuated to the UK from west Africa between January, and March, 2015. PEP with antiviral agents was given to health-care workers assessed to have had substantial risk exposures to Ebola virus. Participants were followed up for 42 days after potential exposure. Four of eight health-care workers were classified as having had low risk exposures and managed by watchful waiting in the community. None of these health-care workers developed Ebola virus disease. The other four health-care workers had intermediate or maximum risk exposures and were given PEP with antiviral agents. PEP was well tolerated with no serious adverse effects. None of these four health-care workers, including two with maximum risk exposures from penetrating injuries with freshly used hollow-bore needles, developed Ebola virus disease. Standardised risk assessment should be adopted and consensus guidelines developed to systematically study the efficacy and safety of PEP with experimental agents. New experimental antiviral treatments are a

  7. Secondary Infections with Ebola Virus in Rural Communities, Liberia and Guinea, 2014-2015.

    PubMed

    Lindblade, Kim A; Nyenswah, Tolbert; Keita, Sakoba; Diallo, Boubakar; Kateh, Francis; Amoah, Aurora; Nagbe, Thomas K; Raghunathan, Pratima; Neatherlin, John C; Kinzer, Mike; Pillai, Satish K; Attfield, Kathleen R; Hajjeh, Rana; Dweh, Emmanuel; Painter, John; Barradas, Danielle T; Williams, Seymour G; Blackley, David J; Kirking, Hannah L; Patel, Monita R; Dea, Monica; Massoudi, Mehran S; Barskey, Albert E; Zarecki, Shauna L Mettee; Fomba, Moses; Grube, Steven; Belcher, Lisa; Broyles, Laura N; Maxwell, T Nikki; Hagan, Jose E; Yeoman, Kristin; Westercamp, Matthew; Mott, Joshua; Mahoney, Frank; Slutsker, Laurence; DeCock, Kevin M; Marston, Barbara; Dahl, Benjamin

    2016-09-01

    Persons who died of Ebola virus disease at home in rural communities in Liberia and Guinea resulted in more secondary infections than persons admitted to Ebola treatment units. Intensified monitoring of contacts of persons who died of this disease in the community is an evidence-based approach to reduce virus transmission in rural communities.

  8. Infection and Activation of Monocytes by Marburg and Ebola Viruses

    PubMed Central

    Ströher, Ute; West, Elmar; Bugany, Harald; Klenk, Hans-Dieter; Schnittler, Hans-Joachim; Feldmann, Heinz

    2001-01-01

    In this study we investigated the effects of Marburg virus and Ebola virus (species Zaire and Reston) infections on freshly isolated suspended monocytes in comparison to adherent macrophages under culture conditions. Our data showed that monocytes are permissive for both filoviruses. As is the case in macrophages, infection resulted in the activation of monocytes which was largely independent of virus replication. The activation was triggered similarly by Marburg and Ebola viruses, species Zaire and Reston, as indicated by the release of the proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α, and IL-6 as well as the chemokines IL-8 and gro-α. Our data suggest that infected monocytes may play an important role in the spread of filoviruses and in the pathogenesis of filoviral hemorrhagic disease. PMID:11602743

  9. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    PubMed

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  10. Factors Underlying Ebola Virus Infection Among Health Workers, Kenema, Sierra Leone, 2014-2015.

    PubMed

    Senga, Mikiko; Pringle, Kimberly; Ramsay, Andrew; Brett-Major, David M; Fowler, Robert A; French, Issa; Vandi, Mohamed; Sellu, Josephine; Pratt, Christian; Saidu, Josephine; Shindo, Nahoko; Bausch, Daniel G

    2016-08-15

    Ebola virus disease (EVD) in health workers (HWs) has been a major challenge during the 2014-2015 outbreak. We examined factors associated with Ebola virus exposure and mortality in HWs in Kenema District, Sierra Leone. We analyzed data from the Sierra Leone National Viral Hemorrhagic Fever Database, contact tracing records, Kenema Government Hospital (KGH) staff and Ebola Treatment Unit (ETU) rosters, and burial logs. From May 2014 through January 2015, 600 cases of EVD originated in Kenema District, including 92 (15%) HWs, 66 (72%) of whom worked at KGH. Among KGH medical staff and international volunteers, 18 of 62 (29%) who worked in the ETU developed EVD, compared with 48 of 83 (58%) who worked elsewhere in the hospital. Thirteen percent of HWs with EVD reported contact with EVD patients, while 27% reported contact with other infected HWs. The number of HW EVD cases at KGH declined roughly 1 month after implementation of a new triage system at KGH and the opening of a second ETU within the district. The case fatality ratio for HWs and non-HWs with EVD was 69% and 74%, respectively. The cluster of HW EVD cases in Kenema District is one of the largest ever reported. Most HWs with EVD had potential virus exposure both inside and outside of hospitals. Prevention measures for HWs must address a spectrum of infection risks in both formal and informal care settings as well as in the community. © 2016 World Health Organization; licensee Oxford Journals.

  11. Ebola virus outbreak, updates on current therapeutic strategies.

    PubMed

    Elshabrawy, Hatem A; Erickson, Timothy B; Prabhakar, Bellur S

    2015-07-01

    Filoviruses are enveloped negative-sense single-stranded RNA viruses, which include Ebola and Marburg viruses, known to cause hemorrhagic fever in humans with a case fatality of up to 90%. There have been several Ebola virus outbreaks since the first outbreak in the Democratic Republic of Congo in 1976 of which, the recent 2013-2015 epidemic in Guinea, Liberia, and Sierra Leone is the largest in recorded history. Within a few months of the start of the outbreak in December 2013, thousands of infected cases were reported with a significant number of deaths. As of March 2015, according to the Centers for Disease Control and Prevention, there have been nearly 25,000 suspected cases, with 15,000 confirmed by laboratory testing, and over 10,000 deaths. The large number of cases and the high mortality rate, combined with the lack of effective Food and Drug Administration-approved treatments, necessitate the development of potent and safe therapeutic measures to combat the current and future outbreaks. Since the beginning of the outbreak, there have been considerable efforts to develop and characterize protective measures including vaccines and antiviral small molecules, and some have proven effective in vitro and in animal models. Most recently, a cocktail of monoclonal antibodies has been shown to be highly effective in protecting non-human primates from Ebola virus infection. In this review, we will discuss what is known about the nature of the virus, phylogenetic classification, genomic organization and replication, disease transmission, and viral entry and highlight the current approaches and efforts, in the development of therapeutics, to control the outbreak. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Prevention of sexual transmission of Ebola in Liberia through a national semen testing and counselling programme for survivors: an analysis of Ebola virus RNA results and behavioural data.

    PubMed

    Soka, Moses J; Choi, Mary J; Baller, April; White, Stephen; Rogers, Emerson; Purpura, Lawrence J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Abad, Neetu; Kollie, Jomah; Dweh, Straker; Bemah, Philip K; Christie, Athalia; Ladele, Victor; Subah, Oneykachi C; Pillai, Satish; Mugisha, Margaret; Kpaka, Jonathan; Kowalewski, Stephen; German, Emilio; Stenger, Mark; Nichol, Stuart; Ströher, Ute; Vanderende, Kristin E; Zarecki, Shauna Mettee; Green, Hugh Henry W; Bailey, Jeffrey A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert G; Gasasira, Alex; Knust, Barbara; Williams, Desmond

    2016-10-01

    Ebola virus has been detected in semen of Ebola virus disease survivors after recovery. Liberia's Men's Health Screening Program (MHSP) offers Ebola virus disease survivors semen testing for Ebola virus. We present preliminary results and behavioural outcomes from the first national semen testing programme for Ebola virus. The MHSP operates out of three locations in Liberia: Redemption Hospital in Montserrado County, Phebe Hospital in Bong County, and Tellewoyan Hospital in Lofa County. Men aged 15 years and older who had an Ebola treatment unit discharge certificate are eligible for inclusion. Participants' semen samples were tested for Ebola virus RNA by real-time RT-PCR and participants received counselling on safe sexual practices. Participants graduated after receiving two consecutive negative semen tests. Counsellors collected information on sociodemographics and sexual behaviours using questionnaires administered at enrolment, follow up, and graduation visits. Because the programme is ongoing, data analysis was restricted to data obtained from July 7, 2015, to May 6, 2016. As of May 6, 2016, 466 Ebola virus disease survivors had enrolled in the programme; real-time RT-PCR results were available from 429 participants. 38 participants (9%) produced at least one semen specimen that tested positive for Ebola virus RNA. Of these, 24 (63%) provided semen specimens that tested positive 12 months or longer after Ebola virus disease recovery. The longest interval between discharge from an Ebola treatment unit and collection of a positive semen sample was 565 days. Among participants who enrolled and provided specimens more than 90 days since their Ebola treatment unit discharge, men older than 40 years were more likely to have a semen sample test positive than were men aged 40 years or younger (p=0·0004). 84 (74%) of 113 participants who reported not using a condom at enrolment reported using condoms at their first follow-up visit (p<0·0001). 176 (46%) of 385

  13. Effective Chemical Inactivation of Ebola Virus

    PubMed Central

    Haddock, Elaine; Feldmann, Friederike

    2016-01-01

    Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504

  14. Ebola Virus Disease, Democratic Republic of the Congo, 2014.

    PubMed

    Nanclares, Carolina; Kapetshi, Jimmy; Lionetto, Fanshen; de la Rosa, Olimpia; Tamfun, Jean-Jacques Muyembe; Alia, Miriam; Kobinger, Gary; Bernasconi, Andrea

    2016-09-01

    During July-November 2014, the Democratic Republic of the Congo underwent its seventh Ebola virus disease (EVD) outbreak. The etiologic agent was Zaire Ebola virus; 66 cases were reported (overall case-fatality rate 74.2%). Through a retrospective observational study of confirmed EVD in 25 patients admitted to either of 2 Ebola treatment centers, we described clinical features and investigated correlates associated with death. Clinical features were mainly generic. At admission, 76% of patients had >1 gastrointestinal symptom and 28% >1 hemorrhagic symptom. The case-fatality rate in this group was 48% and was higher for female patients (67%). Cox regression analysis correlated death with initial low cycle threshold, indicating high viral load. Cycle threshold was a robust predictor of death, as were fever, hiccups, diarrhea, dyspnea, dehydration, disorientation, hematemesis, bloody feces during hospitalization, and anorexia in recent medical history. Differences from other outbreaks could suggest guidance for optimizing clinical management and disease control.

  15. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    PubMed

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.

  16. Determining the effect of different environmental conditions on Ebola virus viability in clinically relevant specimens.

    PubMed

    Palyi, Bernadett; Magyar, Nora; Henczko, Judit; Szalai, Balint; Farkas, Agnes; Strecker, Thomas; Takacs, Maria; Kis, Zoltan

    2018-03-29

    In 2013-2016, West Africa experienced the largest and longest Ebola virus disease outbreak ever documented. The wide geographic spread and magnitude of the outbreak often limited the timely and rapid testing of diagnostic samples from patients with suspected Ebola virus disease, raising questions regarding the optimal storage and shipping conditions of clinically relevant specimens, including EDTA-whole blood, plasma, capillary blood, urine and seminal fluid (associated with sexual transmission of the Ebola virus after recovery from the disease). Therefore, the aim of our study was to identify the extent to which storage temperature and clinical specimen type influence Ebola virus viability. Virus infectivity was determined using a fluorescent focus-forming assay. In our study, we show that Ebola virus was the most stable in EDTA-whole blood and plasma samples, whereas rapid decay of infectivity was observed in simulated capillary blood, urine and semen samples, especially when these samples were stored at higher temperatures. The analysis of variance results demonstrated that both temperature and clinical specimen type have significant effects on virus viability, whereas donor differences were not observed. Repeated freeze and thaw cycles of the samples also had a notable impact on virus viability in EDTA-whole blood and urine. Due to the rapid temperature- and specimen-dependent degradation of the virus observed here, our study highlights the importance of proper clinical sample storage at low temperatures during transportation and laboratory analysis.

  17. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection.

    PubMed

    Qiu, Xiangguo; Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu; Chrétien, Michel

    2016-09-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    PubMed

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.

    PubMed

    Biedenkopf, Nadine; Lier, Clemens; Becker, Stephan

    2016-05-15

    Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that

  20. Virus genomes reveal factors that spread and sustained the Ebola epidemic.

    PubMed

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor; Tatem, Andrew J; Baele, Guy; Faria, Nuno R; Park, Daniel J; Ladner, Jason T; Arias, Armando; Asogun, Danny; Bielejec, Filip; Caddy, Sarah L; Cotten, Matthew; D'Ambrozio, Jonathan; Dellicour, Simon; Di Caro, Antonino; Diclaro, Joseph W; Duraffour, Sophie; Elmore, Michael J; Fakoli, Lawrence S; Faye, Ousmane; Gilbert, Merle L; Gevao, Sahr M; Gire, Stephen; Gladden-Young, Adrianne; Gnirke, Andreas; Goba, Augustine; Grant, Donald S; Haagmans, Bart L; Hiscox, Julian A; Jah, Umaru; Kugelman, Jeffrey R; Liu, Di; Lu, Jia; Malboeuf, Christine M; Mate, Suzanne; Matthews, David A; Matranga, Christian B; Meredith, Luke W; Qu, James; Quick, Joshua; Pas, Suzan D; Phan, My V T; Pollakis, Georgios; Reusken, Chantal B; Sanchez-Lockhart, Mariano; Schaffner, Stephen F; Schieffelin, John S; Sealfon, Rachel S; Simon-Loriere, Etienne; Smits, Saskia L; Stoecker, Kilian; Thorne, Lucy; Tobin, Ekaete Alice; Vandi, Mohamed A; Watson, Simon J; West, Kendra; Whitmer, Shannon; Wiley, Michael R; Winnicki, Sarah M; Wohl, Shirlee; Wölfel, Roman; Yozwiak, Nathan L; Andersen, Kristian G; Blyden, Sylvia O; Bolay, Fatorma; Carroll, Miles W; Dahn, Bernice; Diallo, Boubacar; Formenty, Pierre; Fraser, Christophe; Gao, George F; Garry, Robert F; Goodfellow, Ian; Günther, Stephan; Happi, Christian T; Holmes, Edward C; Kargbo, Brima; Keïta, Sakoba; Kellam, Paul; Koopmans, Marion P G; Kuhn, Jens H; Loman, Nicholas J; Magassouba, N'Faly; Naidoo, Dhamari; Nichol, Stuart T; Nyenswah, Tolbert; Palacios, Gustavo; Pybus, Oliver G; Sabeti, Pardis C; Sall, Amadou; Ströher, Ute; Wurie, Isatta; Suchard, Marc A; Lemey, Philippe; Rambaut, Andrew

    2017-04-20

    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.

  1. Virus genomes reveal factors that spread and sustained the Ebola epidemic

    PubMed Central

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor; Tatem, Andrew J.; Baele, Guy; Faria, Nuno R.; Park, Daniel J.; Ladner, Jason T.; Arias, Armando; Asogun, Danny; Bielejec, Filip; Caddy, Sarah L.; Cotten, Matthew; D’Ambrozio, Jonathan; Dellicour, Simon; Di Caro, Antonino; Diclaro, JosephW.; Duraffour, Sophie; Elmore, Michael J.; Fakoli, Lawrence S.; Faye, Ousmane; Gilbert, Merle L.; Gevao, Sahr M.; Gire, Stephen; Gladden-Young, Adrianne; Gnirke, Andreas; Goba, Augustine; Grant, Donald S.; Haagmans, Bart L.; Hiscox, Julian A.; Jah, Umaru; Kargbo, Brima; Kugelman, Jeffrey R.; Liu, Di; Lu, Jia; Malboeuf, Christine M.; Mate, Suzanne; Matthews, David A.; Matranga, Christian B.; Meredith, Luke W.; Qu, James; Quick, Joshua; Pas, Suzan D.; Phan, My VT; Pollakis, Georgios; Reusken, Chantal B.; Sanchez-Lockhart, Mariano; Schaffner, Stephen F.; Schieffelin, John S.; Sealfon, Rachel S.; Simon-Loriere, Etienne; Smits, Saskia L.; Stoecker, Kilian; Thorne, Lucy; Tobin, Ekaete Alice; Vandi, Mohamed A.; Watson, Simon J.; West, Kendra; Whitmer, Shannon; Wiley, Michael R.; Winnicki, Sarah M.; Wohl, Shirlee; Wölfel, Roman; Yozwiak, Nathan L.; Andersen, Kristian G.; Blyden, Sylvia O.; Bolay, Fatorma; Carroll, MilesW.; Dahn, Bernice; Diallo, Boubacar; Formenty, Pierre; Fraser, Christophe; Gao, George F.; Garry, Robert F.; Goodfellow, Ian; Günther, Stephan; Happi, Christian T.; Holmes, Edward C.; Kargbo, Brima; Keïta, Sakoba; Kellam, Paul; Koopmans, Marion P. G.; Kuhn, Jens H.; Loman, Nicholas J.; Magassouba, N’Faly; Naidoo, Dhamari; Nichol, Stuart T.; Nyenswah, Tolbert; Palacios, Gustavo; Pybus, Oliver G.; Sabeti, Pardis C.; Sall, Amadou; Ströher, Ute; Wurie, Isatta; Suchard, Marc A.; Lemey, Philippe; Rambaut, Andrew

    2017-01-01

    The 2013–2016 epidemic of Ebola virus disease was of unprecedented magnitude, duration and impact. Analysing 1610 Ebola virus genomes, representing over 5% of known cases, we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic ‘gravity’ model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already set the seeds for an international epidemic, rendering these measures ineffective in curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing they were susceptible to significant outbreaks but at lower risk of introductions. Finally, we reveal this large epidemic to be a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help inform interventions in future epidemics. PMID:28405027

  2. Preventive malaria treatment for contacts of patients with Ebola virus disease in the context of the west Africa 2014-15 Ebola virus disease response: an economic analysis.

    PubMed

    Carias, Cristina; Greening, Bradford; Campbell, Caresse G; Meltzer, Martin I; Hamel, Mary J

    2016-04-01

    After the detection of an Ebola virus disease outbreak in west Africa in 2014, one of the elements of the response was to contact trace and isolate patients in specialised Ebola treatment units (ETUs) at onset of fever. We aimed to assess the economic feasibility of administering preventive malaria treatment to all contacts of patients with Ebola virus disease, to prevent the onset of febrile malaria and subsequent admission to ETUs. We used a decision tree model to analyse the costs of preventive malaria treatment (artemisinin-based combination treatment [ACT]) for all contacts of patients with Ebola virus disease (in terms of administration and averted ETU-stay costs) and benefits (in terms of averted ETU admissions) in west Africa, from a health-care provider perspective. The period of analyses was 1 year, which is roughly similar to the duration of the 2014-15 west Africa Ebola outbreak response. We calculated the intervention's cost per ETU admission averted (average cost-effectiveness ratio) by season (wet and dry), country (Liberia, Sierra Leone, and Guinea), and age of contact (<5 years, 5-14 years, and ≥15 years). We did sensitivity analyses to assess how results varied with malaria parasite prevalence (in children aged 2-10 years), daily cost of ETU stay (for Liberian malaria incidence levels), and compliance and effectiveness of preventive malaria treatment. Administration of ACTs to contacts of patients with Ebola virus disease was cost saving for contacts of all ages in Liberia, Sierra Leone, and Guinea, in both seasons, from a health-care provider perspective. In the wet season, preventive malaria treatment was estimated to reduce the probability of a contact being admitted to an ETU by a maximum of 36% (in Guinea, for contacts aged <5 years), and a minimum of 10% (in Guinea and Sierra Leone, for those aged ≥15 years). Assuming 85% compliance and taking into account the African population pyramid, the intervention is expected to be cost saving in

  3. Ebola haemorrhagic fever

    PubMed Central

    Feldmann, Heinz; Geisbert, Thomas W

    2012-01-01

    Ebola viruses are the causative agents of a severe form of viral haemorrhagic fever in man, designated Ebola haemorrhagic fever, and are endemic in regions of central Africa. The exception is the species Reston Ebola virus, which has not been associated with human disease and is found in the Philippines. Ebola virus constitutes an important local public health threat in Africa, with a worldwide effect through imported infections and through the fear of misuse for biological terrorism. Ebola virus is thought to also have a detrimental effect on the great ape population in Africa. Case-fatality rates of the African species in man are as high as 90%, with no prophylaxis or treatment available. Ebola virus infections are characterised by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock, and thus, in some ways, resembling septic shock. PMID:21084112

  4. Molecular Evidence of Sexual Transmission of Ebola Virus

    PubMed Central

    Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Christie, A; Schroth, G.P.; Gross, S.M.; Davies-Wayne, G.J.; Shinde, S.A.; Murugan, R.; Sieh, S.B.; Badio, M.; Fakoli, L.; Taweh, F.; de Wit, E.; van Doremalen, N.; Munster, V.J.; Pettitt, J.; Prieto, K.; Humrighouse, B.W.; Ströher, U.; DiClaro, J.W.; Hensley, L.E.; Schoepp, R.J.; Safronetz, D.; Fair, J.; Kuhn, J.H.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Lo, T.; Gasasira, A.; Nichol, S.T.; Formenty, P.; Kateh, F.N.; De Cock, K.M.; Bolay, F.; Sanchez-Lockhart, M.; Palacios, G.

    2016-01-01

    Summary A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case. Combined with epidemiologic data, the genomic analysis provides evidence of sexual transmission of EBOV and evidence of the persistence of infective EBOV in semen for 179 days or more after the onset of EVD. (Funded by the Defense Threat Reduction Agency and others.) PMID:26465384

  5. Ebola virus disease and pregnancy - A review of the current knowledge of Ebola virus pathogenesis, maternal and neonatal outcomes

    PubMed Central

    Bebell, Lisa M.; Oduyebo, Titilope; Riley, Laura E.

    2016-01-01

    The 2014-2016 Ebola virus disease (EVD) outbreak in West Africa devastated local health systems and caused thousands of deaths. Historical reports from Zaire ebolavirus outbreaks suggested pregnancy was associated with an increased risk of severe illness and death, with mortality rates from 74-100%. In total, 111 cases of pregnant patients with EVD are reported in the literature, with an aggregate maternal mortality of 86%. Pregnancy-specific data published from the recent outbreak include four small descriptive cohort studies and five case reports. Despite limitations including reporting bias and small sample size, these studies suggest mortality in pregnant women may be lower than previously reported, with five of 13(39%) infected women dying. Optimal treatments for pregnant women, and differences in EVD course between pregnant women and non-pregnant individuals are major scientific gaps that have not yet been systematically addressed. Ebola virus may be transmitted from mother to baby in utero, during delivery, or through contact with maternal body fluids after birth including breast milk. EVD is almost universally fatal to the developing fetus, and limited fetal autopsy data prevent inferences on risk of birth defects. Decisions about delivery mode and other obstetric interventions should be individualized. WHO recommends close monitoring of survivors who later become pregnant, but does not recommend enhanced precautions at subsequent delivery. Though sexual transmission of Ebola virus has been documented, birth outcomes among survivors have not been published and will be important to appropriately counsel women on pregnancy outcomes and inform delivery precautions for healthcare providers. PMID:28398679

  6. The Evolution of Ebola virus: Insights from the 2013–2016 Epidemic

    PubMed Central

    Holmes, Edward C.; Dudas, Gytis; Rambaut, Andrew; Andersen, Kristian G.

    2017-01-01

    Preface The 2013–2016 epidemic of Ebola virus disease in West Africa was of unprecedented magnitude and changed our perspective on this lethal but sporadically emerging virus. This outbreak also marked the beginning of large-scale real-time molecular epidemiology. Herein, we show how evolutionary analyses of Ebola virus genome sequences provided key insights into virus origins, evolution, and spread during the epidemic. We provide basic scientists, epidemiologists, medical practitioners, and other outbreak responders with an enhanced understanding of the utility and limitations of pathogen genomic sequencing. This will be crucially important in our attempts to track and control future infectious disease outbreaks. PMID:27734858

  7. Unique human immune signature of Ebola virus disease in Guinea

    PubMed Central

    Ruibal, Paula; Oestereich, Lisa; Lüdtke, Anja; Becker-Ziaja, Beate; Wozniak, David M.; Kerber, Romy; Korva, Miša; Cabeza-Cabrerizo, Mar; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Weller, Romy; Thorenz, Anja; Cimini, Eleonora; Viola, Domenico; Agrati, Chiara; Repits, Johanna; Afrough, Babak; Cowley, Lauren A; Ngabo, Didier; Hinzmann, Julia; Mertens, Marc; Vitoriano, Inês; Logue, Christopher H.; Boettcher, Jan Peter; Pallasch, Elisa; Sachse, Andreas; Bah, Amadou; Nitzsche, Katja; Kuisma, Eeva; Michel, Janine; Holm, Tobias; Zekeng, Elsa-Gayle; García-Dorival, Isabel; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Strecker, Thomas; Di Caro, Antonino; Avšič-Županc, Tatjana; Kurth, Andreas; Meschi, Silvia; Mély, Stephane; Newman, Edmund; Bocquin, Anne; Kis, Zoltan; Kelterbaum, Anne; Molkenthin, Peter; Carletti, Fabrizio; Portmann, Jasmine; Wolff, Svenja; Castilletti, Concetta; Schudt, Gordian; Fizet, Alexandra; Ottowell, Lisa J.; Herker, Eva; Jacobs, Thomas; Kretschmer, Birte; Severi, Ettore; Ouedraogo, Nobila; Lago, Mar; Negredo, Anabel; Franco, Leticia; Anda, Pedro; Schmiedel, Stefan; Kreuels, Benno; Wichmann, Dominic; Addo, Marylyn M.; Lohse, Ansgar W.; De Clerck, Hilde; Nanclares, Carolina; Jonckheere, Sylvie; Van Herp, Michel; Sprecher, Armand; Xiaojiang, Gao; Carrington, Mary; Miranda, Osvaldo; Castro, Carlos M.; Gabriel, Martin; Drury, Patrick; Formenty, Pierre; Diallo, Boubacar; Koivogui, Lamine; Magassouba, N’Faly; Carroll, Miles W.; Günther, Stephan; Muñoz-Fontela, César

    2016-01-01

    Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD1. In particular, very little is known about human immune responses to Ebola virus (EBOV)2,3. Here, we have for the first time evaluated the physiology of the human T cell immune response in EVD patients at the time of admission at the Ebola Treatment Center (ETC) in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we have identified an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by high percentage of CD4 and CD8 T cells expressing the inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death-1 (PD-1), which was correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation despite comparable overall T cell activation. Concommittant with virus clearance, survivors mounted a robust EBOV-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology. PMID:27147028

  8. Identifying spatio-temporal dynamics of Ebola in Sierra Leone using virus genomes

    PubMed Central

    Proctor, Joshua L.

    2017-01-01

    Containing the recent West African outbreak of Ebola virus (EBOV) required the deployment of substantial global resources. Despite recent progress in analysing and modelling EBOV epidemiological data, a complete characterization of the spatio-temporal spread of Ebola cases remains a challenge. In this work, we offer a novel perspective on the EBOV epidemic in Sierra Leone that uses individual virus genome sequences to inform population-level, spatial models. Calibrated to phylogenetic linkages of virus genomes, these spatial models provide unique insight into the disease mobility of EBOV in Sierra Leone without the need for human mobility data. Consistent with other investigations, our results show that the spread of EBOV during the beginning and middle portions of the epidemic strongly depended on the size of and distance between populations. Our phylodynamic analysis also revealed a change in model preference towards a spatial model with power-law characteristics in the latter portion of the epidemic, correlated with the timing of major intervention campaigns. More generally, we believe this framework, pairing molecular diagnostics with a dynamic model selection procedure, has the potential to be a powerful forecasting tool along with offering operationally relevant guidance for surveillance and sampling strategies during an epidemic. PMID:29187639

  9. Ebola virus disease cluster in the United States--Dallas County, Texas, 2014.

    PubMed

    Chevalier, Michelle S; Chung, Wendy; Smith, Jessica; Weil, Lauren M; Hughes, Sonya M; Joyner, Sibeso N; Hall, Emily; Srinath, Divya; Ritch, Julia; Thathiah, Prea; Threadgill, Heidi; Cervantes, Diana; Lakey, David L

    2014-11-21

    Since March 10, 2014, Guinea, Liberia, and Sierra Leone have experienced the largest known Ebola virus disease (Ebola) epidemic with approximately 13,000 persons infected as of October 28, 2014. Before September 25, 2014, only four patients with Ebola had been treated in the United States; all of these patients had been diagnosed in West Africa and medically evacuated to the United States for care.

  10. Ebola vaccine and treatment.

    PubMed

    Takada, Ayato

    2015-01-01

    Filoviruses (Ebola and Marburg viruses) cause severe hemorrhagic fever in humans and nonhuman primates. No effective prophylaxis or treatment for filovirus diseases is yet commercially available. The recent outbreak of Ebola virus disease in West Africa has accelerated efforts to develop anti-Ebola virus prophylaxis and treatment, and unapproved drugs were indeed used for the treatment of patients during the outbreak. This article reviews previous researches and the latest topics on vaccine and therapy for Ebola virus disease.

  11. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016

    DOE PAGES

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.; ...

    2016-06-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Finally, continued efforts during themore » outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.« less

  12. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Finally, continued efforts during themore » outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.« less

  13. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016.

    PubMed

    Spengler, Jessica R; Ervin, Elizabeth D; Towner, Jonathan S; Rollin, Pierre E; Nichol, Stuart T

    2016-06-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.

  14. Modelling Ebola virus dynamics: Implications for therapy.

    PubMed

    Martyushev, Alexey; Nakaoka, Shinji; Sato, Kei; Noda, Takeshi; Iwami, Shingo

    2016-11-01

    Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Modeling the effect of comprehensive interventions on Ebola virus transmission

    NASA Astrophysics Data System (ADS)

    Shen, Mingwang; Xiao, Yanni; Rong, Libin

    2015-10-01

    Since the re-emergence of Ebola in West Africa in 2014, comprehensive and stringent interventions have been implemented to decelerate the spread of the disease. The effectiveness of interventions still remains unclear. In this paper, we develop an epidemiological model that includes various controlling measures to systematically evaluate their effects on the disease transmission dynamics. By fitting the model to reported cumulative cases and deaths in Guinea, Sierra Leone and Liberia until March 22, 2015, we estimate the basic reproduction number in these countries as 1.2552, 1.6093 and 1.7994, respectively. Model analysis shows that there exists a threshold of the effectiveness of isolation, below which increasing the fraction of latent individuals diagnosed prior to symptoms onset or shortening the duration between symptoms onset and isolation may lead to more Ebola infection. This challenges an existing view. Media coverage plays a substantial role in reducing the final epidemic size. The response to reported cumulative infected cases and deaths may have a different effect on the epidemic spread in different countries. Among all the interventions, we find that shortening the duration between death and burial and improving the effectiveness of isolation are two effective interventions for controlling the outbreak of Ebola virus infection.

  16. Modeling the effect of comprehensive interventions on Ebola virus transmission.

    PubMed

    Shen, Mingwang; Xiao, Yanni; Rong, Libin

    2015-10-30

    Since the re-emergence of Ebola in West Africa in 2014, comprehensive and stringent interventions have been implemented to decelerate the spread of the disease. The effectiveness of interventions still remains unclear. In this paper, we develop an epidemiological model that includes various controlling measures to systematically evaluate their effects on the disease transmission dynamics. By fitting the model to reported cumulative cases and deaths in Guinea, Sierra Leone and Liberia until March 22, 2015, we estimate the basic reproduction number in these countries as 1.2552, 1.6093 and 1.7994, respectively. Model analysis shows that there exists a threshold of the effectiveness of isolation, below which increasing the fraction of latent individuals diagnosed prior to symptoms onset or shortening the duration between symptoms onset and isolation may lead to more Ebola infection. This challenges an existing view. Media coverage plays a substantial role in reducing the final epidemic size. The response to reported cumulative infected cases and deaths may have a different effect on the epidemic spread in different countries. Among all the interventions, we find that shortening the duration between death and burial and improving the effectiveness of isolation are two effective interventions for controlling the outbreak of Ebola virus infection.

  17. Single-Injection Vaccine Protects Nonhuman Primates against Infection with Marburg Virus and Three Species of Ebola Virus▿

    PubMed Central

    Geisbert, Thomas W.; Geisbert, Joan B.; Leung, Anders; Daddario-DiCaprio, Kathleen M.; Hensley, Lisa E.; Grolla, Allen; Feldmann, Heinz

    2009-01-01

    The filoviruses Marburg virus and Ebola virus cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (VSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Here, we performed a proof-of-concept study in order to determine the potential of having one single-injection vaccine capable of protecting nonhuman primates against Sudan ebolavirus (SEBOV), Zaire ebolavirus (ZEBOV), Cote d'Ivoire ebolavirus (CIEBOV), and Marburgvirus (MARV). In this study, 11 cynomolgus monkeys were vaccinated with a blended vaccine consisting of equal parts of the vaccine vectors VSVΔG/SEBOVGP, VSVΔG/ZEBOVGP, and VSVΔG/MARVGP. Four weeks later, three of these animals were challenged with MARV, three with CIEBOV, three with ZEBOV, and two with SEBOV. Three control animals were vaccinated with VSV vectors encoding a nonfilovirus GP and challenged with SEBOV, ZEBOV, and MARV, respectively, and five unvaccinated control animals were challenged with CIEBOV. Importantly, none of the macaques vaccinated with the blended vaccine succumbed to a filovirus challenge. As expected, an experimental control animal vaccinated with VSVΔG/ZEBOVGP and challenged with SEBOV succumbed, as did the positive controls challenged with SEBOV, ZEBOV, and MARV, respectively. All five control animals challenged with CIEBOV became severely ill, and three of the animals succumbed on days 12, 12, and 14, respectively. The two animals that survived CIEBOV infection were protected from subsequent challenge with either SEBOV or ZEBOV, suggesting that immunity to CIEBOV may be protective against other species of Ebola virus. In conclusion, we developed an immunization scheme based on a single-injection vaccine that protects nonhuman primates against lethal challenge with representative strains of all human pathogenic filovirus species

  18. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    PubMed

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross

  19. Control of Ebola hemorrhagic fever: vaccine development and our Ebola project in Sierra Leone.

    PubMed

    Watanabe, Tokiko; Kawaoka, Yoshihiro

    2016-01-01

    Since December 2013, West Africa has experienced the worst Ebola virus outbreak in recorded history. Of the 28,639 cases reported to the World Health Organization as of March 2016, nearly half (14,124) occurred in Sierra Leone. With a case fatality rate of approximately 40%, this outbreak has claimed the lives of 11,316 individuals. No FDA-approved vaccines or drugs are available to prevent or treat Ebola virus infection. Experimental vaccines and therapies are being developed; however, their safety and efficacy are still being evaluated. Therefore, there is an urgent need to develop control measures to prevent or limit future Ebola virus outbreaks.Previously, we developed a replication-defective Ebola virus that lacks the coding region for the essential viral transcription activator VP30 (Ebola ΔVP30 virus). Here, we evaluated the vaccine efficacy of Ebola ΔVP30 virus in a non-human primate model and describe our collaborative Ebola project in Sierra Leone.

  20. Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus.

    PubMed

    Cong, Yu; Dyall, Julie; Hart, Brit J; DeWald, Lisa Evans; Johnson, Joshua C; Postnikova, Elena; Zhou, Huanying; Gross, Robin; Rojas, Oscar; Alexander, Isis; Josleyn, Nicole; Zhang, Tengfei; Michelotti, Julia; Janosko, Krisztina; Glass, Pamela J; Flint, Mike; McMullan, Laura K; Spiropoulou, Christina F; Mierzwa, Tim; Guha, Rajarshi; Shinn, Paul; Michael, Sam; Klumpp-Thomas, Carleen; McKnight, Crystal; Thomas, Craig; Eakin, Ann E; O'Loughlin, Kathleen G; Green, Carol E; Catz, Paul; Mirsalis, Jon C; Honko, Anna N; Olinger, Gene G; Bennett, Richard S; Holbrook, Michael R; Hensley, Lisa E; Jahrling, Peter B

    2016-01-01

    In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 μM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 μg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.

  1. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less

  2. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less

  3. Secondary Infections with Ebola Virus in Rural Communities, Liberia and Guinea, 2014–2015

    PubMed Central

    Nyenswah, Tolbert; Keita, Sakoba; Diallo, Boubakar; Kateh, Francis; Amoah, Aurora; Nagbe, Thomas K.; Raghunathan, Pratima; Neatherlin, John C.; Kinzer, Mike; Pillai, Satish K.; Attfield, Kathleen R.; Hajjeh, Rana; Dweh, Emmanuel; Painter, John; Barradas, Danielle T.; Williams, Seymour G.; Blackley, David J.; Kirking, Hannah L.; Patel, Monita R.; Dea, Monica; Massoudi, Mehran S.; Barskey, Albert E.; Zarecki, Shauna L. Mettee; Fomba, Moses; Grube, Steven; Belcher, Lisa; Broyles, Laura N.; Maxwell, T. Nikki; Hagan, Jose E.; Yeoman, Kristin; Westercamp, Matthew; Mott, Joshua; Mahoney, Frank; Slutsker, Laurence; DeCock, Kevin M.; Marston, Barbara; Dahl, Benjamin

    2016-01-01

    Persons who died of Ebola virus disease at home in rural communities in Liberia and Guinea resulted in more secondary infections than persons admitted to Ebola treatment units. Intensified monitoring of contacts of persons who died of this disease in the community is an evidence-based approach to reduce virus transmission in rural communities. PMID:27268508

  4. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Ling; Lin Jianguo; Sun Yuliang

    2006-08-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity ofmore » Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.« less

  5. Extracorporeal virus elimination for the treatment of severe Ebola virus disease--first experience with lectin affinity plasmapheresis.

    PubMed

    Büttner, Stefan; Koch, Benjamin; Dolnik, Olga; Eickmann, Markus; Freiwald, Tilo; Rudolf, Sarah; Engel, Jürgen; Becker, Stephan; Ronco, Claudio; Geiger, Helmut

    2014-01-01

    Therapeutic options for Ebola virus disease (EVD) are currently limited to (1) best supportive care, and (2) evolving virus-specific therapies, resulting from decades of analyzing one of the world's deadliest diseases. Supportive care ranges from oral or intravenous rehydration therapy and anti-emetics in developing countries to much more extensive life-support interventions in resource-rich countries. Current EVD-specific therapies attempt to either interfere with the earliest steps of viral replication or to elicit a strong immune response against the virus. An entirely new approach is the extracorporeal elimination of viruses and viral glycoproteins by lectin affinity plasmapheresis. Herein, we report for the first time the successful and safe use of lectin affinity plasmapheresis in a patient with severe Ebola virus disease. © 2015 S. Karger AG, Basel.

  6. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System.

    PubMed

    Tsang, Ming-Kiu; Ye, WeiWei; Wang, Guojing; Li, Jingming; Yang, Mo; Hao, Jianhua

    2016-01-26

    Ebola outbreaks are currently of great concern, and therefore, development of effective diagnosis methods is urgently needed. The key for lethal virus detection is high sensitivity, since early-stage detection of virus may increase the probability of survival. Here, we propose a luminescence scheme of assay consisting of BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) conjugated with oligonucleotide probe and gold nanoparticles (AuNPs) linked with target Ebola virus oligonucleotide. As a proof of concept, a homogeneous assay was fabricated and tested, yielding a detection limit at picomolar level. The luminescence resonance energy transfer is ascribed to the spectral overlapping of upconversion luminescence and the absorption characteristics of AuNPs. Moreover, we anchored the UCNPs and AuNPs on a nanoporous alumina (NAAO) membrane to form a heterogeneous assay. Importantly, the detection limit was greatly improved, exhibiting a remarkable value at the femtomolar level. The enhancement is attributed to the increased light-matter interaction throughout the nanopore walls of the NAAO membrane. The specificity test suggested that the nanoprobes were specific to Ebola virus oligonucleotides. The strategy combining UCNPs, AuNPs, and NAAO membrane provides new insight into low-cost, rapid, and ultrasensitive detection of different diseases. Furthermore, we explored the feasibility of clinical application by using inactivated Ebola virus samples. The detection results showed great potential of our heterogeneous design for practical application.

  7. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study.

    PubMed

    Geisbert, Thomas W; Lee, Amy C H; Robbins, Marjorie; Geisbert, Joan B; Honko, Anna N; Sood, Vandana; Johnson, Joshua C; de Jong, Susan; Tavakoli, Iran; Judge, Adam; Hensley, Lisa E; Maclachlan, Ian

    2010-05-29

    We previously showed that small interfering RNAs (siRNAs) targeting the Zaire Ebola virus (ZEBOV) RNA polymerase L protein formulated in stable nucleic acid-lipid particles (SNALPs) completely protected guineapigs when administered shortly after a lethal ZEBOV challenge. Although rodent models of ZEBOV infection are useful for screening prospective countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models. We therefore assessed the efficacy of modified non-immunostimulatory siRNAs in a uniformly lethal non-human primate model of ZEBOV haemorrhagic fever. A combination of modified siRNAs targeting the ZEBOV L polymerase (EK-1 mod), viral protein (VP) 24 (VP24-1160 mod), and VP35 (VP35-855 mod) were formulated in SNALPs. A group of macaques (n=3) was given these pooled anti-ZEBOV siRNAs (2 mg/kg per dose, bolus intravenous infusion) after 30 min, and on days 1, 3, and 5 after challenge with ZEBOV. A second group of macaques (n=4) was given the pooled anti-ZEBOV siRNAs after 30 min, and on days 1, 2, 3, 4, 5, and 6 after challenge with ZEBOV. Two (66%) of three rhesus monkeys given four postexposure treatments of the pooled anti-ZEBOV siRNAs were protected from lethal ZEBOV infection, whereas all macaques given seven postexposure treatments were protected. The treatment regimen in the second study was well tolerated with minor changes in liver enzymes that might have been related to viral infection. This complete postexposure protection against ZEBOV in non-human primates provides a model for the treatment of ZEBOV-induced haemorrhagic fever. These data show the potential of RNA interference as an effective postexposure treatment strategy for people infected with Ebola virus, and suggest that this strategy might also be useful for treatment of other emerging viral infections. Defense Threat Reduction Agency. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  9. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization.

    PubMed

    Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T

    2005-09-01

    Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.

  10. Misconceptions about Ebola virus disease among lay people in Guinea: Lessons for community education.

    PubMed

    Kpanake, Lonzozou; Gossou, Komlantsè; Sorum, Paul Clay; Mullet, Etienne

    2016-05-01

    To characterize the perception of Ebola virus disease (EVD) in Guinea, we administered, from November 2014 to February 2015, a questionnaire to a convenience sample of 200 lay people in Conakry and a group of 8 physicians. We found widespread misconceptions among lay people, including that praying to God can protect against EVD, that traditional healers are more competent than physicians in treating EVD, that people get infected through physical proximity without contact, that the Ebola epidemic is the result of Western bioterrorism experiments, that Western medical staff disseminated the virus, and that the purpose of quarantine measures is to hasten the death of Ebola patients. Major educational interventions, sensitive to local cultural beliefs, are needed to overcome the misconceptions about Ebola in Guinea.

  11. Control of Ebola virus disease - firestone district, liberia, 2014.

    PubMed

    Reaves, Erik J; Mabande, Lyndon G; Thoroughman, Douglas A; Arwady, M Allison; Montgomery, Joel M

    2014-10-24

    On March 30, 2014, the Ministry of Health and Social Welfare (MOHSW) of Liberia alerted health officials at Firestone Liberia, Inc. (Firestone) of the first known case of Ebola virus disease (Ebola) inside the Firestone rubber tree plantation of Liberia. The patient, who was the wife of a Firestone employee, had cared for a family member with confirmed Ebola in Lofa County, the epicenter of the Ebola outbreak in Liberia during March-April 2014. To prevent a large outbreak among Firestone's 8,500 employees, their dependents, and the surrounding population, the company responded by 1) establishing an incident management system, 2) instituting procedures for the early recognition and isolation of Ebola patients, 3) enforcing adherence to standard Ebola infection control guidelines, and 4) providing differing levels of management for contacts depending on their exposure, including options for voluntary quarantine in the home or in dedicated facilities. In addition, Firestone created multidisciplinary teams to oversee the outbreak response, address case detection, manage cases in a dedicated unit, and reintegrate convalescent patients into the community. The company also created a robust risk communication, prevention, and social mobilization campaign to boost community awareness of Ebola and how to prevent transmission. During August 1-September 23, a period of intense Ebola transmission in the surrounding areas, 71 cases of Ebola were diagnosed among the approximately 80,000 Liberians for whom Firestone provides health care (cumulative incidence = 0.09%). Fifty-seven (80%) of the cases were laboratory confirmed; 39 (68%) of these cases were fatal. Aspects of Firestone's response appear to have minimized the spread of Ebola in the local population and might be successfully implemented elsewhere to limit the spread of Ebola and prevent transmission to health care workers (HCWs).

  12. Multi-platform 'Omics Analysis of Human Ebola Virus Disease Pathogenesis.

    PubMed

    Eisfeld, Amie J; Halfmann, Peter J; Wendler, Jason P; Kyle, Jennifer E; Burnum-Johnson, Kristin E; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M; Kim, Young-Mo; Casey, Cameron P; Stratton, Kelly G; Webb-Robertson, Bobbie-Jo M; Gritsenko, Marina A; Monroe, Matthew E; Weitz, Karl K; Shukla, Anil K; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L; van Bakel, Harm; Metz, Thomas O; Smith, Richard D; Waters, Katrina M; N'jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-13

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform 'omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection.

    PubMed

    Geisbert, Thomas W; Strong, James E; Feldmann, Heinz

    2015-10-01

    The filoviruses, Ebola virus and Marburg virus, are zoonotic pathogens that cause severe hemorrhagic fever in humans and nonhuman primates (NHPs), with case-fatality rates ranging from 23% to 90%. The current outbreak of Ebola virus infection in West Africa, with >26 000 cases, demonstrates the long-underestimated public health danger that filoviruses pose as natural human pathogens. Currently, there are no vaccines or treatments licensed for human use. Licensure of any medical countermeasure may require demonstration of efficacy in the gold standard cynomolgus or rhesus macaque models of filovirus infection. Substantial progress has been made over the last decade in characterizing the filovirus NHP models. However, there is considerable debate over a variety of experimental conditions, including differences among filovirus isolates used, routes and doses of exposure, and euthanasia criteria, all of which may contribute to variability of results among different laboratories. As an example of the importance of understanding these differences, recent data with Ebola virus shows that an addition of a single uridine residue in the glycoprotein gene at the editing site attenuates the virus. Here, we draw on decades of experience working with filovirus-infected NHPs to provide a perspective on the importance of various experimental conditions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures ofmore » the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.« less

  15. [Ocular symptoms and treatment of Ebola virus disease].

    PubMed

    Végh, Mihály; Roth, Hans-Walter; Hári-Kovács, András; Facskó, Andrea

    2015-03-01

    Ocular signs and symptoms of Ebola infection initially suggest banal conjunctivitis, but in advanced cases severe haemorrhagic conjunctivitis appears and, in the final stage of the disease, retinal and chorioidal haemorrhages may occur which can cause even blindness. Although the viral infection accompanied by ocular symptoms of a non-specific conjunctivitis, the high fever present from the onset of the disease should raise the suspicion of Ebola infection. There is no causal therapy know so far, and the only adjunctive treatment may be delivered by an ophthalmologist. Because the virus can be detected in the tear, it can theoretically be the mediator of the infection and, therefore, ophthalmological examinations should be carried out with the highest caution. In case of suspected Ebola infection the nearest competent healthcare authority should be immediately alerted in order to take further actions.

  16. Validating the Inactivation Effectiveness of Chemicals on Ebola Virus.

    PubMed

    Haddock, Elaine; Feldmann, Friederike

    2017-01-01

    While viruses such as Ebola virus must be handled in high-containment laboratories, there remains the need to process virus-infected samples for downstream research testing. This processing often includes removal to lower containment areas and therefore requires assurance of complete viral inactivation within the sample before removal from high-containment. Here we describe methods for the removal of chemical reagents used in inactivation procedures, allowing for validation of the effectiveness of various inactivation protocols.

  17. Neutralizing Antibody Fails to Impact the Course of Ebola Virus Infection in Monkeys

    DTIC Science & Technology

    2007-01-19

    endothelial cells. Am J Pathol 163: 2371–2382. 16. Geisbert TW, Hensley LE , Jahrling PB, Larsen T, Geisbert JB, et al. (2003) Treatment of Ebola virus...Hernandez HJ, Thomas WD Jr, et al. (2005) Development and characterization of a severe acute respiratory syndrome-associated coronavirus -neutralizing human...Citation: Oswald WB, Geisbert TW, Davis KJ, Geisbert JB, Sullivan NJ, et al. (2007) Neutralizing antibody fails to impact the course of Ebola virus

  18. Acute respiratory distress syndrome after convalescent plasma use: treatment of a patient with Ebola virus disease contracted in Madrid, Spain.

    PubMed

    Mora-Rillo, Marta; Arsuaga, Marta; Ramírez-Olivencia, Germán; de la Calle, Fernando; Borobia, Alberto M; Sánchez-Seco, Paz; Lago, Mar; Figueira, Juan C; Fernández-Puntero, Belén; Viejo, Aurora; Negredo, Anabel; Nuñez, Concepción; Flores, Eva; Carcas, Antonio J; Jiménez-Yuste, Victor; Lasala, Fátima; García-de-Lorenzo, Abelardo; Arnalich, Francisco; Arribas, Jose R

    2015-07-01

    In the current epidemic of Ebola virus disease, health-care workers have been transferred to Europe and the USA for optimised supportive care and experimental treatments. We describe the clinical course of the first case of Ebola virus disease contracted outside of Africa, in Madrid, Spain. Herein we report clinical, laboratory, and virological findings of the treatment of a female nurse assistant aged 44 years who was infected with Ebola virus around Sept 25-26, 2014, while caring for a Spanish missionary with confirmed Ebola virus disease who had been medically evacuated from Sierra Leone to La Paz-Carlos III University Hospital, Madrid. We also describe the use of experimental treatments for Ebola virus disease in this patient. The patient was symptomatic for 1 week before first hospital admission on Oct 6, 2014. We used supportive treatment with intravenous fluids, broad-spectrum antibiotics, and experimental treatments with convalescent plasma from two survivors of Ebola virus disease and high-dose favipiravir. On day 10 of illness, she had acute respiratory distress syndrome, possibly caused by transfusion-related acute lung injury, which was managed without mechanical ventilation. Discharge was delayed because of the detection of viral RNA in several bodily fluids despite clearance of viraemia. The patient was discharged on day 34 of illness. At the time of discharge, the patient had possible subacute post-viral thyroiditis. None of the people who had contact with the patient before and after admission became infected with Ebola virus. This report emphasises the uncertainties about the efficacy of experimental treatments for Ebola virus disease. Clinicians should be aware of the possibility of transfusion-related acute lung injury when using convalescent plasma for the treatment of Ebola virus disease. La Paz-Carlos III University Hospital. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Resurgence of Ebola Virus Disease in Guinea Linked to a Survivor With Virus Persistence in Seminal Fluid for More Than 500 Days.

    PubMed

    Diallo, Boubacar; Sissoko, Daouda; Loman, Nicholas J; Bah, Hadja Aïssatou; Bah, Hawa; Worrell, Mary Claire; Conde, Lya Saidou; Sacko, Ramata; Mesfin, Samuel; Loua, Angelo; Kalonda, Jacques Katomba; Erondu, Ngozi A; Dahl, Benjamin A; Handrick, Susann; Goodfellow, Ian; Meredith, Luke W; Cotten, Matthew; Jah, Umaru; Guetiya Wadoum, Raoul Emeric; Rollin, Pierre; Magassouba, N'Faly; Malvy, Denis; Anglaret, Xavier; Carroll, Miles W; Aylward, Raymond Bruce; Djingarey, Mamoudou Harouna; Diarra, Abdoulaye; Formenty, Pierre; Keïta, Sakoba; Günther, Stephan; Rambaut, Andrew; Duraffour, Sophie

    2016-11-15

    We report on an Ebola virus disease (EVD) survivor who showed Ebola virus in seminal fluid 531 days after onset of disease. The persisting virus was sexually transmitted in February 2016, about 470 days after onset of symptoms, and caused a new cluster of EVD in Guinea and Liberia. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system?

    PubMed

    Baize, S; Leroy, E M; Mavoungou, E; Fisher-Hoch, S P

    2000-02-01

    In fatal Ebola virus hemorrhagic fever massive intravascular apoptosis develops rapidly following infection and progressing relentlessly until death. While data suggest that T lymphocytes are mainly deleted by apoptosis in PBMC of human fatal cases, experimental Ebola infection in animal models have shown some evidence of destruction of lymphocytes in spleen and lymph nodes probably involving both T and B cells. Nevertheless, we are able to conclude from the accumulated evidence that early interactions between Ebola virus and the immune system, probably via macrophages, main targets for viral replication, lead to massive destruction of immune cells in fatal cases.

  1. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    PubMed

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses

  2. New Perspectives on Ebola Virus Evolution.

    PubMed

    Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty

    2016-01-01

    Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  3. Studies of Ebola Virus Glycoprotein-Mediated Entry and Fusion by Using Pseudotyped Human Immunodeficiency Virus Type 1 Virions: Involvement of Cytoskeletal Proteins and Enhancement by Tumor Necrosis Factor Alpha

    PubMed Central

    Yonezawa, Akihito; Cavrois, Marielle; Greene, Warner C.

    2005-01-01

    The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by β-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola

  4. Outbreaks-of Ebola virus disease in the West African sub-region.

    PubMed

    Osungbade, K O; Oni, A A

    2014-06-01

    Five West African countries, including Nigeria are currently experiencing the largest, most severe, most complex outbreak of Ebola virus disease in history. This paper provided a chronology of outbreaks of Ebola virus disease in the West African sub-region and provided an update on efforts at containing the present outbreak. Literature from Pubmed (MEDLINE), AJOL, Google Scholar and Cochrane database were reviewed. Outbreaks of Ebola, virus disease had frequently occurred mainly in Central and East African countries. Occasional outbreaks reported from outside of Africa were due to laboratory contamination and imported monkeys in quarantine facilities. The ongoing outbreak in West Africa is the largest and first in the sub-region; the number of suspected cases and deaths from this single current outbreak is already about three times the total of all cases and deaths from previous known outbreaks in 40 years. Prevention and control efforts are hindered not only by lack of a known vaccine and virus-specific treatment, but also by weak health systems, poor sanitation, poor personal hygiene and cultural beliefs and practices, including myths and misconceptions about Ebola virus disease--all of which are prevalent in affected countries. Constrained by this situation, the World Health Organisation departed from the global standard and recommended the use of not yet proven treatments to treat or prevent the disease in humans on ethical and evidential grounds. The large number of people affected by the present outbreak in West Africa and the high case-fatality rate calls for accelerated evaluation and development of the investigational medical interventions for life saving and curbing the epidemic. Meanwhile, existing interventions such as early detection and isolation, contact tracing and monitoring, and adherence to rigorous procedures of infection prevention and control should be intensified.

  5. Reduced evolutionary rate in reemerged Ebola virus transmission chains.

    PubMed

    Blackley, David J; Wiley, Michael R; Ladner, Jason T; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L; Gregory, Christopher; D'ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W; Kuhn, Jens H; Hensley, Lisa E; Jahrling, Peter B; Ströher, Ute; Nichol, Stuart T; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-04-01

    On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over.

  6. Recent advances in the development of vaccines for Ebola virus disease.

    PubMed

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses.

    PubMed

    Mahanty, Siddhartha; Hutchinson, Karen; Agarwal, Sudhanshu; McRae, Michael; Rollin, Pierre E; Pulendran, Bali

    2003-03-15

    Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.

  8. Analysis of patient data from laboratories during the Ebola virus disease outbreak in Liberia, April 2014 to March 2015

    PubMed Central

    Fallah, Mosoka; Oshitani, Hitoshi; Kituyi, Ling; Mahmoud, Nuha; Musa, Emmanuel; Gasasira, Alex; Nyenswah, Tolbert; Dahn, Bernice; Bawo, Luke

    2017-01-01

    An outbreak of Ebola virus disease (EVD) in Liberia began in March 2014 and ended in January 2016. Epidemiological information on the EVD cases was collected and managed nationally; however, collection and management of the data were challenging at the time because surveillance and reporting systems malfunctioned during the outbreak. EVD diagnostic laboratories, however, were able to register basic demographic and clinical information of patients more systematically. Here we present data on 16,370 laboratory samples that were tested between April 4, 2014 and March 29, 2015. A total of 10,536 traceable individuals were identified, of whom 3,897 were confirmed cases (positive for Ebola virus RNA). There were significant differences in sex, age, and place of residence between confirmed and suspected cases that tested negative for Ebola virus RNA. Age (young children and the elderly) and place of residence (rural areas) were the risk factors for death due to the disease. The case fatality rate of confirmed cases decreased from 80% to 63% during the study period. These findings may help support future investigations and lead to a fuller understanding of the outbreak in Liberia. PMID:28732038

  9. Analysis of patient data from laboratories during the Ebola virus disease outbreak in Liberia, April 2014 to March 2015.

    PubMed

    Furuse, Yuki; Fallah, Mosoka; Oshitani, Hitoshi; Kituyi, Ling; Mahmoud, Nuha; Musa, Emmanuel; Gasasira, Alex; Nyenswah, Tolbert; Dahn, Bernice; Bawo, Luke

    2017-07-01

    An outbreak of Ebola virus disease (EVD) in Liberia began in March 2014 and ended in January 2016. Epidemiological information on the EVD cases was collected and managed nationally; however, collection and management of the data were challenging at the time because surveillance and reporting systems malfunctioned during the outbreak. EVD diagnostic laboratories, however, were able to register basic demographic and clinical information of patients more systematically. Here we present data on 16,370 laboratory samples that were tested between April 4, 2014 and March 29, 2015. A total of 10,536 traceable individuals were identified, of whom 3,897 were confirmed cases (positive for Ebola virus RNA). There were significant differences in sex, age, and place of residence between confirmed and suspected cases that tested negative for Ebola virus RNA. Age (young children and the elderly) and place of residence (rural areas) were the risk factors for death due to the disease. The case fatality rate of confirmed cases decreased from 80% to 63% during the study period. These findings may help support future investigations and lead to a fuller understanding of the outbreak in Liberia.

  10. Media Messages and Perception of Risk for Ebola Virus Infection, United States.

    PubMed

    Sell, Tara Kirk; Boddie, Crystal; McGinty, Emma E; Pollack, Keshia; Smith, Katherine Clegg; Burke, Thomas A; Rutkow, Lainie

    2017-01-01

    News media have been blamed for sensationalizing Ebola in the United States, causing unnecessary alarm. To investigate this issue, we analyzed US-focused news stories about Ebola virus disease during July 1-November 30, 2014. We found frequent use of risk-elevating messages, which may have contributed to increased public concern.

  11. Acute rhabdomyolysis and delayed pericardial effusion in an Italian patient with Ebola virus disease: a case report.

    PubMed

    Nicastri, Emanuele; Brucato, Antonio; Petrosillo, Nicola; Biava, Gianluigi; Uyeki, Timothy M; Ippolito, Giuseppe

    2017-08-30

    During the 2013-2016 West Africa Ebola virus disease (EVD) epidemic, some EVD patients, mostly health care workers, were evacuated to Europe and the USA. In May 2015, a 37-year old male nurse contracted Ebola virus disease in Sierra Leone. After Ebola virus detection in plasma, he was medically-evacuated to Italy. At admission, rhabdomyolysis was clinically and laboratory-diagnosed and was treated with aggressive hydration, oral favipiravir and intravenous investigational monoclonal antibodies against Ebola virus. The recovery clinical phase was complicated by a febrile thrombocytopenic syndrome with pericardial effusion treated with corticosteroids for 10 days and indomethacin for 2 months. No evidence of recurrence is reported. A febrile thrombocytopenic syndrome with pericardial effusion during the recovery phase of EVD appears to be uncommon. Clinical improvement with corticosteroid treatment suggests that an immune-mediated mechanism contributed to the pericardial effusion.

  12. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013–2016

    PubMed Central

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.; Rollin, Pierre E.

    2016-01-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013–2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community’s insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research. PMID:27070842

  13. Factors Underlying Ebola Virus Infection Among Health Workers, Kenema, Sierra Leone, 2014–2015

    PubMed Central

    Senga, Mikiko; Pringle, Kimberly; Ramsay, Andrew; Brett-Major, David M.; Fowler, Robert A.; French, Issa; Vandi, Mohamed; Sellu, Josephine; Pratt, Christian; Saidu, Josephine; Shindo, Nahoko; Bausch, Daniel G.

    2016-01-01

    Background. Ebola virus disease (EVD) in health workers (HWs) has been a major challenge during the 2014–2015 outbreak. We examined factors associated with Ebola virus exposure and mortality in HWs in Kenema District, Sierra Leone. Methods. We analyzed data from the Sierra Leone National Viral Hemorrhagic Fever Database, contact tracing records, Kenema Government Hospital (KGH) staff and Ebola Treatment Unit (ETU) rosters, and burial logs. Results. From May 2014 through January 2015, 600 cases of EVD originated in Kenema District, including 92 (15%) HWs, 66 (72%) of whom worked at KGH. Among KGH medical staff and international volunteers, 18 of 62 (29%) who worked in the ETU developed EVD, compared with 48 of 83 (58%) who worked elsewhere in the hospital. Thirteen percent of HWs with EVD reported contact with EVD patients, while 27% reported contact with other infected HWs. The number of HW EVD cases at KGH declined roughly 1 month after implementation of a new triage system at KGH and the opening of a second ETU within the district. The case fatality ratio for HWs and non-HWs with EVD was 69% and 74%, respectively. Conclusions. The cluster of HW EVD cases in Kenema District is one of the largest ever reported. Most HWs with EVD had potential virus exposure both inside and outside of hospitals. Prevention measures for HWs must address a spectrum of infection risks in both formal and informal care settings as well as in the community. PMID:27193749

  14. Assessment of Ebola virus disease preparedness in the WHO South-East Asia Region.

    PubMed

    Vong, Sirenda; Samuel, Reuben; Gould, Philip; El Sakka, Hammam; Rana, Bardan J; Pinyowiwat, Vason; Bezbaruah, Supriya; Ofrin, Roderico

    2016-12-01

    To conduct assessments of Ebola virus disease preparedness in countries of the World Health Organization (WHO) South-East Asia Region. Nine of 11 countries in the region agreed to be assessed. During February to November 2015 a joint team from WHO and ministries of health conducted 4-5 day missions to Bangladesh, Bhutan, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, Thailand and Timor-Leste. We collected information through guided discussions with senior technical leaders and visits to hospitals, laboratories and airports. We assessed each country's Ebola virus disease preparedness on 41 tasks under nine key components adapted from the WHO Ebola preparedness checklist of January 2015. Political commitment to Ebola preparedness was high in all countries. Planning was most advanced for components that had been previously planned or tested for influenza pandemics: multilevel and multisectoral coordination; multidisciplinary rapid response teams; public communication and social mobilization; drills in international airports; and training on personal protective equipment. Major vulnerabilities included inadequate risk assessment and risk communication; gaps in data management and analysis for event surveillance; and limited capacity in molecular diagnostic techniques. Many countries had limited planning for a surge of Ebola cases. Other tasks needing improvement included: advice to inbound travellers; adequate isolation rooms; appropriate infection control practices; triage systems in hospitals; laboratory diagnostic capacity; contact tracing; and danger pay to staff to ensure continuity of care. Joint assessment and feedback about the functionality of Ebola virus preparedness systems help countries strengthen their core capacities to meet the International Health Regulations.

  15. Assessment of Ebola virus disease preparedness in the WHO South-East Asia Region

    PubMed Central

    Samuel, Reuben; Gould, Philip; El Sakka, Hammam; Rana, Bardan J; Pinyowiwat, Vason; Bezbaruah, Supriya; Ofrin, Roderico

    2016-01-01

    Abstract Objective To conduct assessments of Ebola virus disease preparedness in countries of the World Health Organization (WHO) South-East Asia Region. Methods Nine of 11 countries in the region agreed to be assessed. During February to November 2015 a joint team from WHO and ministries of health conducted 4–5 day missions to Bangladesh, Bhutan, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, Thailand and Timor-Leste. We collected information through guided discussions with senior technical leaders and visits to hospitals, laboratories and airports. We assessed each country’s Ebola virus disease preparedness on 41 tasks under nine key components adapted from the WHO Ebola preparedness checklist of January 2015. Findings Political commitment to Ebola preparedness was high in all countries. Planning was most advanced for components that had been previously planned or tested for influenza pandemics: multilevel and multisectoral coordination; multidisciplinary rapid response teams; public communication and social mobilization; drills in international airports; and training on personal protective equipment. Major vulnerabilities included inadequate risk assessment and risk communication; gaps in data management and analysis for event surveillance; and limited capacity in molecular diagnostic techniques. Many countries had limited planning for a surge of Ebola cases. Other tasks needing improvement included: advice to inbound travellers; adequate isolation rooms; appropriate infection control practices; triage systems in hospitals; laboratory diagnostic capacity; contact tracing; and danger pay to staff to ensure continuity of care. Conclusion Joint assessment and feedback about the functionality of Ebola virus preparedness systems help countries strengthen their core capacities to meet the International Health Regulations. PMID:27994284

  16. A review on the antagonist Ebola: A prophylactic approach.

    PubMed

    Khan, Fatima Nazish; Qazi, Sahar; Tanveer, Khushnuma; Raza, Khalid

    2017-12-01

    Ebola virus (EBOV), a member of Filoviridae virus family under the genus Ebolavirus, has emerged as a dangerous and potential threat to human health globally. It causes a severe and deadly hemorrhagic fever in humans and other mammals, called Ebola Virus Disease (EVD). In recent outbreaks of EVD, there has been loss of large numbers of individual's life. Therefore, EBOV has attracted researchers and increased interests in developing new models for virus evolution, and therapies. The EBOV interacts with the immune system of the host which led to understand how the virus functions and effects immune system behaviour. This article presents an exhaustive review on Ebola research which includes EVD illness, symptoms, transmission patterns, patho-physiology conditions, development of antiviral agents and vaccines, resilient health system, dynamics and mathematical model of EBOV, challenges and prospects for future studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Emerging Targets and Novel Approaches to Ebola Virus Prophylaxis and Treatment

    PubMed Central

    Choi, Jin Huk; Croyle, Maria A.

    2013-01-01

    Ebola is a highly virulent pathogen causing severe hemorrhagic fever with a high case fatality rate in humans and non-human primates (NHPs). Although safe and effective vaccines or other medicinal agents to block Ebola infection are currently unavailable, a significant effort has been put forth to identify several promising candidates for the treatment and prevention of Ebola hemorrhagic fever. Among these, recombinant-virus based vectors have been identified as potent vaccine candidates with some affording both pre- and post-exposure protection from the virus. Recently, Investigational New Drug (IND) applications have been approved by the United States (U.S.) Food and Drug Administration (FDA) and Phase I clinical trials initiated for two small molecule therapeutics, 1) anti-sense phosphorodiamidate morphino oligomers (PMOs: AVI-6002, AVI-6003), and 2) lipid-nanoparticle/small interfering RNA (LNP/siRNA: TKM-Ebola). These potential alternatives to vector-based vaccines require multiple doses to achieve therapeutic efficacy which is not ideal with regard to patient compliance and outbreak scenarios. These concerns have fueled a quest for even better vaccination and treatment strategies. Here, we summarize recent advances in vaccines or post-exposure therapeutics for prevention of Ebola hemorrhagic fever. The utility of novel pharmaceutical approaches to refine and overcome barriers associated with the most promising therapeutic platforms will also be discussed. PMID:23813435

  18. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    PubMed

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  19. FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection

    PubMed Central

    Johansen, Lisa M.; Brannan, Jennifer M.; Delos, Sue E.; Shoemaker, Charles J.; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G.; DeWald, Lisa Evans; Schornberg, Kathryn L.; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E.; White, Judith M.; Olinger, Gene G.

    2014-01-01

    Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)– and ex–US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections. PMID:23785035

  20. A No-Notice Drill of Hospital Preparedness in Responding to Ebola Virus Disease in Taiwan.

    PubMed

    Hsu, Shih-Min; Chien, Li-Jung; Tseng, Shu-Hui; Kuo, Steve H S

    2015-01-01

    The Ebola virus was first discovered in 1976, but the outbreak of Ebola virus disease that began in Guinea, West Africa, in December 2013 shocked the world. It is the largest and most severe epidemic of Ebola virus disease to date. The US Centers for Disease Control and Prevention confirmed that inadequate implementation of the policy of acquiring travel history led to a delay in identifying the first imported Ebola virus disease case. The Taiwan Centers for Disease Control developed a no-notice drill that used a simulated patient to assess hospitals' emergency preparedness capacity in responding to Ebola virus disease. Despite the fact that regular inspection shows that more than 90% of regional hospitals and medical centers inquired about patients' travel history, occupation, contact history, and cluster information, the no-notice drill revealed that more than 40% of regional hospitals and medical centers failed to ask emergency room patients about these factors. Therefore, to assist in inquiries about travel history, occupation, contact history, and cluster information in emergency triage and outpatient settings, the Taiwan CDC revised the criteria for hospital infection control inspection. It requested that hospitals issue appropriate reminders and implement process control mechanisms to block diagnostic processes in instances in which healthcare workers do not inquire about travel history, occupation, contact history, and cluster information. Furthermore, the Taiwan CDC will continue no-notice inspections in order to strengthen hospitals' infection control measures and reduce the risk of infectious disease transmission in the healthcare system.

  1. [The wanderings of the communication on the Ebola virus disease].

    PubMed

    Seytre, B

    2016-10-01

    For two reasons, communication is one of the major tools in the fight against any Ebola epidemics. Firstly, because Ebola is one of the most easily preventable of all infectious diseases and the thorough application of health-protection measures by the community of the sick persons is the best tool to fight any Ebola epidemic. Secondly, because during the two dozens of known Ebola epidemics health care workers have often met with people's skepticism, or even hostility. However, our review of Ebola communication, as defined by WHO since 2013, shows that it has been marked by a series of errors, as well from a strategic perspective as in its concrete deployment. The same communication messages and tools have been used in non-epidemic and epidemic countries. A general ban on hunting has been promoted, while only 2% of sub-Saharan Africans live in areas inhabited by the bats that are the reservoir of the Ebola virus and while it is not proven that hunting is a major risk of infection. Erroneous or inappropriate messages have contributed to doubts and created anxiety. To be effective, Ebola communication should be based on education about the disease, meaning explanation of its cause, its transmission and its prevention.

  2. Transmission of Ebola Viruses: What We Know and What We Do Not Know

    PubMed Central

    Moore, Kristine A.; Kelley, Nicholas S.; Brosseau, Lisa M.; Wong, Gary; Murphy, Frederick A.; Peters, Clarence J.; LeDuc, James W.; Russell, Phillip K.; Van Herp, Michel; Kapetshi, Jimmy; Muyembe, Jean-Jacques T.; Ilunga, Benoit Kebela; Strong, James E.; Grolla, Allen; Wolz, Anja; Kargbo, Brima; Kargbo, David K.; Formenty, Pierre; Sanders, David Avram; Kobinger, Gary P.

    2015-01-01

    ABSTRACT Available evidence demonstrates that direct patient contact and contact with infectious body fluids are the primary modes for Ebola virus transmission, but this is based on a limited number of studies. Key areas requiring further study include (i) the role of aerosol transmission (either via large droplets or small particles in the vicinity of source patients), (ii) the role of environmental contamination and fomite transmission, (iii) the degree to which minimally or mildly ill persons transmit infection, (iv) how long clinically relevant infectiousness persists, (v) the role that “superspreading events” may play in driving transmission dynamics, (vi) whether strain differences or repeated serial passage in outbreak settings can impact virus transmission, and (vii) what role sylvatic or domestic animals could play in outbreak propagation, particularly during major epidemics such as the 2013–2015 West Africa situation. In this review, we address what we know and what we do not know about Ebola virus transmission. We also hypothesize that Ebola viruses have the potential to be respiratory pathogens with primary respiratory spread. PMID:25698835

  3. Epidemiological features and trends of Ebola virus disease in West Africa.

    PubMed

    Wang, Ligui; Yang, Guang; Jia, Leili; Li, Zhenjun; Xie, Jing; Li, Peng; Qiu, Shaofu; Hao, Rongzhang; Wu, Zhihao; Ma, Hui; Song, Hongbin

    2015-09-01

    According to a World Health Organization report, the epidemiological features of Ebola virus disease (EVD) have changed significantly in West Africa. In this study, the new epidemiological features and prevalence trends for EVD in Guinea, Liberia, and Sierra Leone are described. It was predicted that the Ebola outbreak would end in June 2015. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Media Messages and Perception of Risk for Ebola Virus Infection, United States

    PubMed Central

    Boddie, Crystal; McGinty, Emma E.; Pollack, Keshia; Smith, Katherine Clegg; Burke, Thomas A.; Rutkow, Lainie

    2017-01-01

    News media have been blamed for sensationalizing Ebola in the United States, causing unnecessary alarm. To investigate this issue, we analyzed US-focused news stories about Ebola virus disease during July 1–November 30, 2014. We found frequent use of risk-elevating messages, which may have contributed to increased public concern. PMID:27983495

  5. An update on ocular complications of Ebola virus disease

    PubMed Central

    Shantha, Jessica G.; Crozier, Ian; Yeh, Steven

    2018-01-01

    Purpose of review This review provides a summary of our current understanding of the ophthalmic manifestations of Ebola virus disease (EVD), pathogenesis, treatment options and directions for future study. The individual, public health and global health implications of eye disease in EVD survivors are discussed. Recent findings The West Africa EVD outbreak was of unprecedented magnitude, leading to the largest survivor cohort since the first documented EVD outbreak in 1976. Because of the magnitude of the recent outbreak, thousands of survivors are at-risk of systemic and ophthalmic sequelae termed the ‘post Ebola virus disease syndrome’. Uveitis is the most common finding during EVD convalescence and may lead to severe vision impairment or blindness in 40% of affected individuals. Ocular complications leading to vision loss include cataract, retinal scarring, optic neuropathy, hypotony and phthisis bulbi. The pathogenesis of eye disease in EVD survivors likely involves Ebola virus persistence, severe inflammation and tissue edema, which present as acute, rapidly progressive disease or chronic, smoldering disease. Further studies into disease pathogenesis including mechanisms of viral persistence may provide guidance into therapies for uveitis secondary to EVD. Summary Uveitis is the most common ophthalmic finding in EVD survivors and can lead to vision loss. Further studies into the clinical manifestations and mechanisms of disease are needed to improve therapies for EVD survivors who often have limited access to ophthalmic medical and surgical care. PMID:28872492

  6. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference.

    PubMed

    Geisbert, Thomas W; Hensley, Lisa E; Kagan, Elliott; Yu, Erik Zhaoying; Geisbert, Joan B; Daddario-DiCaprio, Kathleen; Fritz, Elizabeth A; Jahrling, Peter B; McClintock, Kevin; Phelps, Janet R; Lee, Amy C H; Judge, Adam; Jeffs, Lloyd B; MacLachlan, Ian

    2006-06-15

    Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.

  7. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study.

    PubMed

    Faye, Ousmane; Boëlle, Pierre-Yves; Heleze, Emmanuel; Faye, Oumar; Loucoubar, Cheikh; Magassouba, N'Faly; Soropogui, Barré; Keita, Sakoba; Gakou, Tata; Bah, El Hadji Ibrahima; Koivogui, Lamine; Sall, Amadou Alpha; Cauchemez, Simon

    2015-03-01

    hospital admissions could have reduced the length of chains by 26% (95% CI 4-45). In Conakry, interventions had the potential to stop the epidemic, but reintroductions of the disease and poor cooperation of a few families led to prolonged low-level spread, showing the challenges of Ebola virus disease control in large urban centres. Monitoring of chains of transmission is crucial to assess and optimise local control strategies for Ebola virus disease. Labex IBEID, Reacting, PREDEMICS, NIGMS MIDAS initiative, Institut Pasteur de Dakar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Treatment of Ebola Virus Infection With a Recombinant Inhibitor of Factor Vlla/Tissue Factor: A Study in Rhesus Monkeys

    DTIC Science & Technology

    2003-12-13

    ameliorate the effects of Ebola haemorrhagic fever . Here, we tested the notion that blockade of fVIIa/tissue factor is beneficial after infection with...Ebola virus. Methods We used a rhesus macaque model of Ebola haemorrhagic fever , which produces near 100% mortality. We administered recombinant...severe haemorrhagic fever in primates.1,2 Acute mortality caused by the Zaire species of Ebola virus has been about 80% in outbreaks in human beings1

  9. Ebola virus disease cases among health care workers not working in Ebola treatment units--Liberia, June-August, 2014.

    PubMed

    Matanock, Almea; Arwady, M Allison; Ayscue, Patrick; Forrester, Joseph D; Gaddis, Bethany; Hunter, Jennifer C; Monroe, Benjamin; Pillai, Satish K; Reed, Christie; Schafer, Ilana J; Massaquoi, Moses; Dahn, Bernice; De Cock, Kevin M

    2014-11-21

    West Africa is experiencing the largest Ebola virus disease (Ebola) epidemic in recorded history. Health care workers (HCWs) are at increased risk for Ebola. In Liberia, as of August 14, 2014, a total of 810 cases of Ebola had been reported, including 10 clusters of Ebola cases among HCWs working in facilities that were not Ebola treatment units (non-ETUs). The Liberian Ministry of Health and Social Welfare and CDC investigated these clusters by reviewing surveillance data, interviewing county health officials, HCWs, and contact tracers, and visiting health care facilities. Ninety-seven cases of Ebola (12% of the estimated total) were identified among HCWs; 62 HCW cases (64%) were part of 10 distinct clusters in non-ETU health care facilities, primarily hospitals. Early recognition and diagnosis of Ebola in patients who were the likely source of introduction to the HCWs (i.e., source patients) was missed in four clusters. Inconsistent recognition and triage of cases of Ebola, overcrowding, limitations in layout of physical spaces, lack of training in the use of and adequate supply of personal protective equipment (PPE), and limited supervision to ensure consistent adherence to infection control practices all were observed. Improving infection control infrastructure in non-ETUs is essential for protecting HCWs. Since August, the Liberian Ministry of Health and Social Welfare with a consortium of partners have undertaken collaborative efforts to strengthen infection control infrastructure in non-ETU health facilities.

  10. Evidence for a decrease in transmission of Ebola virus--Lofa County, Liberia, June 8-November 1, 2014.

    PubMed

    Sharma, Aditya; Heijenberg, Nico; Peter, Clement; Bolongei, Josephus; Reeder, Bruce; Alpha, Tamba; Sterk, Esther; Robert, Hugues; Kurth, Andreas; Cannas, Angela; Bocquin, Anne; Strecker, Thomas; Logue, Christopher; Di Caro, Antonino; Pottage, Thomas; Yue, Constanze; Stoecker, Kilian; Wölfel, Roman; Gabriel, Martin; Günther, Stephan; Damon, Inger

    2014-11-21

    Lofa County has one of the highest cumulative incidences of Ebola virus disease (Ebola) in Liberia. Recent situation reports from the Liberian Ministry of Health and Social Welfare (MoHSW) have indicated a decrease in new cases of Ebola in Lofa County. In October 2014, the Liberian MoHSW requested the assistance of CDC to further characterize recent trends in Ebola in Lofa County. Data collected during June 8-November 1, 2014 from three sources were analyzed: 1) aggregate data for newly reported cases, 2) case-based data for persons admitted to the dedicated Ebola treatment unit (ETU) for the county, and 3) test results for community decedents evaluated for Ebola. Trends from all three sources suggest that transmission of Ebola virus decreased as early as August 17, 2014, following rapid scale-up of response activities in Lofa County after a resurgence of Ebola in early June 2014. The comprehensive response strategy developed with participation from the local population in Lofa County might serve as a model to implement in other affected areas to accelerate control of Ebola.

  11. Reduced evolutionary rate in reemerged Ebola virus transmission chains

    PubMed Central

    Blackley, David J.; Wiley, Michael R.; Ladner, Jason T.; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L.; Gregory, Christopher; D’ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W.; Kuhn, Jens H.; Hensley, Lisa E.; Jahrling, Peter B.; Ströher, Ute; Nichol, Stuart T.; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A.; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-01-01

    On 29 June 2015, Liberia’s respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak (“flare-up”) of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over. PMID:27386513

  12. Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and Selection in Tissue Culture.

    PubMed

    Ruedas, John B; Ladner, Jason T; Ettinger, Chelsea R; Gummuluru, Suryaram; Palacios, Gustavo; Connor, John H

    2017-08-01

    Ebolaviruses have a surface glycoprotein (GP 1,2 ) that is required for virus attachment and entry into cells. Mutations affecting GP 1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP 1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP 1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP 1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544

  13. Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and Selection in Tissue Culture

    PubMed Central

    Ladner, Jason T.; Ettinger, Chelsea R.; Palacios, Gustavo

    2017-01-01

    ABSTRACT Ebolaviruses have a surface glycoprotein (GP1,2) that is required for virus attachment and entry into cells. Mutations affecting GP1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus. IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544

  14. Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak.

    PubMed

    Bogoch, Isaac I; Creatore, Maria I; Cetron, Martin S; Brownstein, John S; Pesik, Nicki; Miniota, Jennifer; Tam, Theresa; Hu, Wei; Nicolucci, Adriano; Ahmed, Saad; Yoon, James W; Berry, Isha; Hay, Simon I; Anema, Aranka; Tatem, Andrew J; MacFadden, Derek; German, Matthew; Khan, Kamran

    2015-01-03

    The WHO declared the 2014 west African Ebola epidemic a public health emergency of international concern in view of its potential for further international spread. Decision makers worldwide are in need of empirical data to inform and implement emergency response measures. Our aim was to assess the potential for Ebola virus to spread across international borders via commercial air travel and assess the relative efficiency of exit versus entry screening of travellers at commercial airports. We analysed International Air Transport Association data for worldwide flight schedules between Sept 1, 2014, and Dec 31, 2014, and historic traveller flight itinerary data from 2013 to describe expected global population movements via commercial air travel out of Guinea, Liberia, and Sierra Leone. Coupled with Ebola virus surveillance data, we modelled the expected number of internationally exported Ebola virus infections, the potential effect of air travel restrictions, and the efficiency of airport-based traveller screening at international ports of entry and exit. We deemed individuals initiating travel from any domestic or international airport within these three countries to have possible exposure to Ebola virus. We deemed all other travellers to have no significant risk of exposure to Ebola virus. Based on epidemic conditions and international flight restrictions to and from Guinea, Liberia, and Sierra Leone as of Sept 1, 2014 (reductions in passenger seats by 51% for Liberia, 66% for Guinea, and 85% for Sierra Leone), our model projects 2.8 travellers infected with Ebola virus departing the above three countries via commercial flights, on average, every month. 91,547 (64%) of all air travellers departing Guinea, Liberia, and Sierra Leone had expected destinations in low-income and lower-middle-income countries. Screening international travellers departing three airports would enable health assessments of all travellers at highest risk of exposure to Ebola virus infection

  15. Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak

    PubMed Central

    Bogoch, Isaac I; Creatore, Maria I; Cetron, Martin S; Brownstein, John S; Pesik, Nicki; Miniota, Jennifer; Tam, Theresa; Hu, Wei; Nicolucci, Adriano; Ahmed, Saad; Yoon, James W; Berry, Isha; Hay, Simon I; Anema, Aranka; Tatem, Andrew J; MacFadden, Derek; German, Matthew; Khan, Kamran

    2015-01-01

    Summary Background The WHO declared the 2014 west African Ebola epidemic a public health emergency of international concern in view of its potential for further international spread. Decision makers worldwide are in need of empirical data to inform and implement emergency response measures. Our aim was to assess the potential for Ebola virus to spread across international borders via commercial air travel and assess the relative efficiency of exit versus entry screening of travellers at commercial airports. Methods We analysed International Air Transport Association data for worldwide flight schedules between Sept 1, 2014, and Dec 31, 2014, and historic traveller flight itinerary data from 2013 to describe expected global population movements via commercial air travel out of Guinea, Liberia, and Sierra Leone. Coupled with Ebola virus surveillance data, we modelled the expected number of internationally exported Ebola virus infections, the potential effect of air travel restrictions, and the efficiency of airport-based traveller screening at international ports of entry and exit. We deemed individuals initiating travel from any domestic or international airport within these three countries to have possible exposure to Ebola virus. We deemed all other travellers to have no significant risk of exposure to Ebola virus. Findings Based on epidemic conditions and international flight restrictions to and from Guinea, Liberia, and Sierra Leone as of Sept 1, 2014 (reductions in passenger seats by 51% for Liberia, 66% for Guinea, and 85% for Sierra Leone), our model projects 2·8 travellers infected with Ebola virus departing the above three countries via commercial flights, on average, every month. 91 547 (64%) of all air travellers departing Guinea, Liberia, and Sierra Leone had expected destinations in low-income and lower-middle-income countries. Screening international travellers departing three airports would enable health assessments of all travellers at highest risk

  16. Active Monitoring of Travelers for Ebola Virus Disease-New York City, October 25, 2014-December 29, 2015.

    PubMed

    Saffa, Alhaji; Tate, Anna; Ezeoke, Ifeoma; Jacobs-Wingo, Jasmine; Iqbal, Maryam; Baumgartner, Jennifer; Fine, Anne; Perri, Bianca R; McIntosh, Natasha; Levy Stennis, Natalie; Lee, Kristen; Peterson, Eric; Jones, Lucretia; Helburn, Lisa; Heindrichs, Caroline; Guthartz, Seth; Chamany, Shadi; Starr, David; Scaccia, Allison; Raphael, Marisa; Varma, Jay K; Vora, Neil M

    The CDC recommended active monitoring of travelers potentially exposed to Ebola virus during the 2014 West African Ebola virus disease outbreak, which involved daily contact between travelers and health authorities to ascertain the presence of fever or symptoms for 21 days after the travelers' last potential Ebola virus exposure. From October 25, 2014, to December 29, 2015, the New York City Department of Health and Mental Hygiene (DOHMH) monitored 5,359 persons for Ebola virus disease, corresponding to 5,793 active monitoring events. Most active monitoring events were in travelers classified as low (but not zero) risk (n = 5,778; 99%). There were no gaps in contact with DOHMH of ≥2 days during 95% of active monitoring events. Instances of not making any contact with travelers decreased after CDC began distributing mobile telephones at the airport. Ebola virus disease-like symptoms or a temperature ≥100.0°F were reported in 122 (2%) active monitoring events. In the final month of active monitoring, an optional health insurance enrollment referral was offered for interested travelers, through which 8 travelers are known to have received coverage. Because it is possible that active monitoring will be used again for an infectious threat, the experience we describe might help to inform future such efforts.

  17. Detection and classification of ebola on microfluidic chips

    NASA Astrophysics Data System (ADS)

    Lin, Xue; Jin, Xiangyu; Fan, Yunqian; Huang, Qin; Kou, Yue; Zu, Guo; Huang, Shiguang; Liu, Xiaosheng; Huang, Guoliang

    2016-10-01

    Point-of-care testing (POCT) for an infectious diseases is the prerequisite to control of the disease and limitation of its spread. A microfluidic chip for detection and classification of four strains of Ebola virus was developed and evaluated. This assay was based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific primers for Ebola Zaire virus, Ebola Sudan virus, Ebola Tai Forest virus and Ebola Bundibugyo virus were designed. The sensitivity of the microfluidic chip was under 103 copies per milliliter, as determined by ten repeated tests. This assay is unique in its ability to enable diagnosis of the Ebola infections and simultaneous typing of Ebola virus on a single chip. It offers short reaction time, ease of use and high specificity. These features should enable POCT in remote area during outbreaks of Ebola virus.

  18. Effect of the Ebola-virus-disease epidemic on malaria case management in Guinea, 2014: a cross-sectional survey of health facilities

    PubMed Central

    Plucinski, Mateusz M; Guilavogui, Timothée; Sidikiba, Sidibe; Diakité, Nouman; Diakité, Souleymane; Dioubaté, Mohamed; Bah, Ibrahima; Hennessee, Ian; Butts, Jessica K; Halsey, Eric S; McElroy, Peter D; Kachur, S Patrick; Aboulhab, Jamila; James, Richard; Keita, Moussa

    2015-01-01

    Summary Background The ongoing west Africa Ebola-virus-disease epidemic has disrupted the entire health-care system in affected countries. Because of the overlap of symptoms of Ebola virus disease and malaria, the care delivery of malaria is particularly sensitive to the indirect effects of the current Ebola-virus-disease epidemic. We therefore characterise malaria case management in the context of the Ebola-virus-disease epidemic and document the effect of the Ebola-virus-disease epidemic on malaria case management. Methods We did a cross-sectional survey of public health facilities in Guinea in December, 2014. We selected the four prefectures most affected by Ebola virus disease and selected four randomly from prefectures without any reported cases of the disease. 60 health facilities were sampled in Ebola-affected and 60 in Ebola-unaffected prefectures. Study teams abstracted malaria case management indicators from registers for January to November for 2013 and 2014 and interviewed health-care workers. Nationwide weekly surveillance data for suspect malaria cases reported between 2011 and 2014 were analysed independently. Data for malaria indicators in 2014 were compared with previous years. Findings We noted substantial reductions in all-cause outpatient visits (by 23 103 [11%] of 214 899), cases of fever (by 20249 [15%] of 131 330), and patients treated with oral (by 22 655 [24%] of 94 785) and injectable (by 5219 [30%] of 17 684) antimalarial drugs in surveyed health facilities. In Ebola-affected prefectures, 73 of 98 interviewed community health workers were operational (74%, 95% CI 65–83) and 35 of 73 were actively treating malaria cases (48%, 36–60) compared with 106 of 112 (95%, 89–98) and 102 of 106 (96%, 91–99), respectively, in Ebola-unaffected prefectures. Nationwide, the Ebola-virus-disease epidemic was estimated to have resulted in 74 000 (71 000–77 000) fewer malaria cases seen at health facilities in 2014. Interpretation The reduction in

  19. Effect of the Ebola-virus-disease epidemic on malaria case management in Guinea, 2014: a cross-sectional survey of health facilities.

    PubMed

    Plucinski, Mateusz M; Guilavogui, Timothée; Sidikiba, Sidibe; Diakité, Nouman; Diakité, Souleymane; Dioubaté, Mohamed; Bah, Ibrahima; Hennessee, Ian; Butts, Jessica K; Halsey, Eric S; McElroy, Peter D; Kachur, S Patrick; Aboulhab, Jamila; James, Richard; Keita, Moussa

    2015-09-01

    The ongoing west Africa Ebola-virus-disease epidemic has disrupted the entire health-care system in affected countries. Because of the overlap of symptoms of Ebola virus disease and malaria, the care delivery of malaria is particularly sensitive to the indirect effects of the current Ebola-virus-disease epidemic. We therefore characterise malaria case management in the context of the Ebola-virus-disease epidemic and document the effect of the Ebola-virus-disease epidemic on malaria case management. We did a cross-sectional survey of public health facilities in Guinea in December, 2014. We selected the four prefectures most affected by Ebola virus disease and selected four randomly from prefectures without any reported cases of the disease. 60 health facilities were sampled in Ebola-affected and 60 in Ebola-unaffected prefectures. Study teams abstracted malaria case management indicators from registers for January to November for 2013 and 2014 and interviewed health-care workers. Nationwide weekly surveillance data for suspect malaria cases reported between 2011 and 2014 were analysed independently. Data for malaria indicators in 2014 were compared with previous years. We noted substantial reductions in all-cause outpatient visits (by 23 103 [11%] of 214 899), cases of fever (by 20249 [15%] of 131 330), and patients treated with oral (by 22 655 [24%] of 94 785) and injectable (by 5219 [30%] of 17 684) antimalarial drugs in surveyed health facilities. In Ebola-affected prefectures, 73 of 98 interviewed community health workers were operational (74%, 95% CI 65-83) and 35 of 73 were actively treating malaria cases (48%, 36-60) compared with 106 of 112 (95%, 89-98) and 102 of 106 (96%, 91-99), respectively, in Ebola-unaffected prefectures. Nationwide, the Ebola-virus-disease epidemic was estimated to have resulted in 74 000 (71 000-77 000) fewer malaria cases seen at health facilities in 2014. The reduction in the delivery of malaria care because of

  20. Emerging sexually transmitted viral infections: 1. Review of Ebola virus disease.

    PubMed

    Caswell, Rachel J; Manavi, Kaveh

    2017-11-01

    This is the first in a series of articles reviewing four viral infections, Ebola virus, Zika virus, human T-cell lymphotropic virus, type 1 and hepatitis C virus, with an emphasis on recent advances in our understanding of their sexual transmission. With current day speed and ease of travel it is important for staff in sexual healthcare services to know and understand these infections when patients present to them and also to be able to advise those travelling to endemic regions. Following the recent resurgence in West Africa, this first article looks at Ebola virus disease (EVD). EVD has a high mortality rate and, of note, has been detected in the semen of those who have cleared the virus from their blood and have clinically recovered from the disease. As the result of emerging data, the WHO now recommends safe sex practices for all male survivors of EVD for 12 months after the onset of the disease or after having had two consecutive negative tests of semen specimens for the virus. This review provides an up-to-date summary of what is currently known about EVD and its implications for sexual health practice.

  1. Deaths, late deaths, and role of infecting dose in Ebola virus disease in Sierra Leone: retrospective cohort study.

    PubMed

    Bower, Hilary; Smout, Elizabeth; Bangura, Mohamed S; Kamara, Osman; Turay, Cecilia; Johnson, Sembia; Oza, Shefali; Checchi, Francesco; Glynn, Judith R

    2016-05-17

     To assess the frequency of fatal recrudescence from Ebola virus disease after discharge from treatment centres, and explore the influence of infecting dose on case fatality rates.  Retrospective cohort study.  Western Area, Sierra Leone.  151 survivors treated for Ebola virus disease at the Kerry Town treatment centre and discharged. Survivors were followed up for a vital status check at four to nine months after discharge, and again at six to 13 months after discharge. Verbal autopsies were conducted for four survivors who had died since discharge (that is, late deaths). Survivors still living in Western Area were interviewed together with their household members. Exposure level to Ebola virus disease was ascertained as a proxy of infecting dose, including for those who died.  Risks and causes of late death; case fatality rates; odds ratios of death from Ebola virus disease by age, sex, exposure level, date, occupation, and household risk factors.  Follow-up information was obtained on all 151 survivors of Ebola virus disease, a mean of 10 months after discharge. Four deaths occurred after discharge, all within six weeks: two probably due to late complications, one to prior tuberculosis, and only one after apparent full recovery, giving a maximum estimate of recrudescence leading to death of 0.7%. In these households, 395 people were reported to have had Ebola virus disease, of whom 227 died. A further 53 people fulfilled the case definition for probable disease, of whom 11 died. Therefore, the case fatality rate was 57.5% (227/395) for reported Ebola virus disease, or 53.1% (238/448) including probable disease. Case fatality rates were higher in children aged under 2 years and adults older than 30 years, in larger households, and in infections occurring earlier in the epidemic in Sierra Leone. There was no consistent trend of case fatality rate with exposure level, although increasing exposure increased the risk of Ebola virus disease.  In this study of

  2. Clinical Presentation and Care of Patients with Ebola Virus Disease in the China Ebola Treatment Unit, Liberia.

    PubMed

    Shao, Xiaoping; Ren, Weizheng; Zhou, Feihu

    2017-01-24

    In order to evaluate the clinical characteristics of confirmed Ebola Virus Disease (EVD) patients admitted to the China Ebola Treatment Unit (China ETU) between January 2015 and March 2015, we retrospectively analyzed clinical symptoms, treatment, and epidemiologic features of 5 patients with confirmed EVD, and reviewed the relevant medical literature. Of these, 3 patients survived, and 2 died. The time interval from the onset of symptoms to the negative PCR test for Ebola virus in the 3 survivors was 14-18 days. All survivors reported direct contact with confirmed EVD patients up to 21 days prior to admission. All patients developed a fever, fatigue, and anorexia. Fever was generally the first symptom to develop, followed by a gastrointestinal phase characterized by vomiting/nausea (3 cases, 60%), diarrhea (3 cases), and abdominal pain (4 cases, 80%). Three patients (60%) reported joint pain, muscle pain, and conjunctival hemorrhage, respectively, and 2 patients (40%) developed a headache. We concluded that strict isolation and interruption of the route of transmission were required for suspected or confirmed EVD patients. The main treatment strategies were supportive care, maintenance of blood volume and electrolyte balance, and the prevention of complications.

  3. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integratedmore » biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.« less

  4. Ebola Virus Neutralizing Antibodies Detectable in Survivors of theYambuku, Zaire Outbreak 40 Years after Infection.

    PubMed

    Rimoin, Anne W; Lu, Kai; Bramble, Matthew S; Steffen, Imke; Doshi, Reena H; Hoff, Nicole A; Mukadi, Patrick; Nicholson, Bradly P; Alfonso, Vivian H; Olinger, Gerrard; Sinai, Cyrus; Yamamoto, Lauren K; Ramirez, Christina M; Okitolonda Wemakoy, Emile; Kebela Illunga, Benoit; Pettitt, James; Logue, James; Bennett, Richard S; Jahrling, Peter; Heymann, David L; Piot, Peter; Muyembe-Tamfum, Jean Jacques; Hensley, Lisa E; Simmons, Graham

    2018-01-04

    The first reported outbreak of Ebola virus disease occurred in 1976 in Yambuku, Democratic Republic of Congo. Antibody responses in survivors 11 years after infection have been documented. However, this report is the first characterization of anti-Ebola virus antibody persistence and neutralization capacity 40 years after infection. Using ELISAs we measured survivor's immunological response to Ebola virus Zaire (EBOV) glycoprotein and nucleoprotein, and assessed VP40 reactivity. Neutralization of EBOV was measured using a pseudovirus approach and plaque reduction neutralization test with live EBOV. Some survivors from the original EBOV outbreak still harbor antibodies against all 3 measures. Interestingly, a subset of these survivors' serum antibodies could still neutralize live virus 40 years postinitial infection. These data provide the longest documentation of both anti-Ebola serological response and neutralization capacity within any survivor cohort, extending the known duration of response from 11 years postinfection to at least 40 years after symptomatic infection. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Immunobiology of Ebola and Lassa virus infections.

    PubMed

    Prescott, Joseph B; Marzi, Andrea; Safronetz, David; Robertson, Shelly J; Feldmann, Heinz; Best, Sonja M

    2017-03-01

    Two of the most important contemporary emerging viruses that affect human health in Africa are Ebola virus (EBOV) and Lassa virus (LASV). The 2013-2016 West African outbreak of EBOV was responsible for more than 11,000 deaths, primarily in Guinea, Sierra Leone and Liberia. LASV is constantly emerging in these and surrounding West African countries, with an estimate of more than 500,000 cases of Lassa fever, and approximately 5,000 deaths, annually. Both EBOV and LASV are zoonotic, and human infection often results in a severe haemorrhagic fever in both cases. However, the contribution of specific immune responses to disease differs between EBOV and LASV. This Review examines innate and adaptive immune responses to these viruses with the goal of delineating responses that are associated with protective versus pathogenic outcomes.

  6. Evolution and Spread of Ebola Virus in Liberia, 2014-2015.

    PubMed

    Ladner, Jason T; Wiley, Michael R; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R; Beitzel, Brett; Gilbert, Merle L; Fakoli, Lawrence; Diclaro, Joseph W; Schoepp, Randal J; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa E; Park, Daniel J; Sabeti, Pardis C; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Kugelman, Jeffrey R; Palacios, Gustavo

    2015-12-09

    The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Pathogenicity Comparison Between the Kikwit and Makona Ebola Virus Variants in Rhesus Macaques.

    PubMed

    Wong, Gary; Qiu, Xiangguo; de La Vega, Marc-Antoine; Fernando, Lisa; Wei, Haiyan; Bello, Alexander; Fausther-Bovendo, Hugues; Audet, Jonathan; Kroeker, Andrea; Kozak, Robert; Tran, Kaylie; He, Shihua; Tierney, Kevin; Soule, Geoff; Moffat, Estella; Günther, Stephan; Gao, George F; Strong, Jim; Embury-Hyatt, Carissa; Kobinger, Gary

    2016-10-15

    Enhanced virulence and/or transmission of West African Ebola virus (EBOV) variants, which are divergent from their Central African counterparts, are suspected to have contributed to the sizable toll of the recent Ebola virus disease (EVD) outbreak. This study evaluated the pathogenicity and shedding in rhesus macaques infected with 1 of 2 West African isolates (EBOV-C05 or EBOV-C07) or a Central African isolate (EBOV-K). All animals infected with EBOV-C05 or EBOV-C07 died of EVD, whereas 2 of 3 EBOV-K-infected animals died. The viremia level was elevated 10-fold in EBOV-C05-infected animals, compared with EBOV-C07- or EBOV-K-infected animals. More-severe lung pathology was observed in 2 of 6 EBOV-C05/C07-infected macaques. This is the first detailed analysis of the recently circulating EBOV-C05/C07 in direct comparison to EBOV-K with 6 animals per group, and it showed that EBOV-C05 but not EBOV-C07 can replicate at higher levels and cause more tissue damage in some animals. Increased virus shedding from individuals who are especially susceptible to EBOV replication is possibly one of the many challenges facing the community of healthcare and policy-making responders since the beginning of the outbreak. © Crown copyright 2016.

  8. Vaccine to Confer to Nonhuman Primates Complete Protection Against Multistrain Ebola and Marburg Virus Infections

    DTIC Science & Technology

    2008-01-01

    current filovirus threats in the event of natural hemorrhagic fever outbreak or biological attack. Ebola virus (EBOV) and Marburg virus (MARV) are mem...lethal, causing severe hemorrhagic fever disease in humans and apes with high mortality rates (up to 90%). The recent description of massive gorilla...threats in the event of natural hemorrhagic fever outbreak or biological attack. 15. SUBJECT TERMS filovirus, Ebola, Marburg, adenovirus-based vaccine

  9. Ebola

    MedlinePlus

    ... virus. It is a severe and often fatal disease. It can affect humans and other primates. Researchers ... of Ebola are similar to other, more common, diseases. This makes it difficult to diagnose Ebola in ...

  10. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    PubMed

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  11. Ebola virus disease

    MedlinePlus

    ... body fluids of infected animals Contact with infected bats Ebola does NOT spread through: Air Water Food ... who has died from Ebola. Avoid contact with bats and nonhuman primates or blood, fluids, and raw ...

  12. Inhibition of Ebola virus glycoprotein-mediated cytotoxicity by targeting its transmembrane domain and cholesterol.

    PubMed

    Hacke, Moritz; Björkholm, Patrik; Hellwig, Andrea; Himmels, Patricia; Ruiz de Almodóvar, Carmen; Brügger, Britta; Wieland, Felix; Ernst, Andreas M

    2015-07-09

    The high pathogenicity of the Ebola virus reflects multiple concurrent processes on infection. Among other important determinants, Ebola fusogenic glycoprotein (GP) has been associated with the detachment of infected cells and eventually leads to vascular leakage and haemorrhagic fever. Here we report that the membrane-anchored GP is sufficient to induce the detachment of adherent cells. The results show that the detachment induced through either full-length GP1,2 or the subunit GP2 depends on cholesterol and the structure of the transmembrane domain. These data reveal a novel molecular mechanism in which GP regulates Ebola virus assembly and suggest that cholesterol-reducing agents could be useful as therapeutics to counteract GP-mediated cell detachment.

  13. Ebola virus disease outbreak: what's going on.

    PubMed

    Giraldi, G; Marsella, L T

    2015-01-01

    The current West African Ebola Virus Disease (EVD) outbreak was confirmed in March, 2014, and after months of slow, fragmented responses, the EVD has been recognized as a public health emergency of international concern. The early diagnosis of the disease is difficult without laboratory testing, because its symptoms can be seen in many other infections. In the wake of international agencies advices, the Italian Ministry of Health, on October 1, 2014, released to the Healthcare Professional Workers (HPWs) the Protocol about the management of cases and contacts within the national territory. Due to the increasing number of humanitarian groups and HPWs involved in the field, the probability to have new cases of contamination is higher than ever. Proven specific treatments against EVD are not yet available, however, a variety of compounds have been under testing. The most effective are select monoclonal antibodies that have a high neutralizing potential against epitopes of Ebola Virus. For facing the matter, it is important a comprehensive approach according to the recommendations proposed by the international agencies because no single institution or country has all the capacities to respond to a new and emerging infectious disease.

  14. [Establishment of Quality Control System of Nucleic Acid Detection for Ebola Virus in Sierra Leone-China Friendship Biological Safety Laboratory].

    PubMed

    Wang, Qin; Zhang, Yong; Nie, Kai; Wang, Huanyu; Du, Haijun; Song, Jingdong; Xiao, Kang; Lei, Wenwen; Guo, Jianqiang; Wei, Hejiang; Cai, Kun; Wang, Yanhai; Wu, Jiang; Gerald, Bangura; Kamara, Idrissa Laybohr; Liang, Mifang; Wu, Guizhen; Dong, Xiaoping

    2016-03-01

    The quality control process throughout the Ebola virus nucleic acid detection in Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab) was described in detail, in order to comprehensively display the scientific, rigorous, accurate and efficient practice in detection of Ebola virus of first batch detection team in SLE-CHN Biosafety Lab. Firstly, the key points of laboratory quality control system was described, including the managements and organizing, quality control documents and information management, instrument, reagents and supplies, assessment, facilities design and space allocation, laboratory maintenance and biosecurity. Secondly, the application of quality control methods in the whole process of the Ebola virus detection, including before the test, during the test and after the test, was analyzed. The excellent and professional laboratory staffs, the implementation of humanized management are the cornerstone of the success; High-level biological safety protection is the premise for effective quality control and completion of Ebola virus detection tasks. And professional logistics is prerequisite for launching the laboratory diagnosis of Ebola virus. The establishment and running of SLE-CHN Biosafety Lab has landmark significance for the friendship between Sierra Leone and China, and the lab becomes the most important base for Ebola virus laboratory testing in Sierra Leone.

  15. Ebola virus vaccine: benefit and risks of adenovirus-based vectors.

    PubMed

    Mennechet, Franck J D; Tran, Thi Thu Phuong; Eichholz, Karsten; van de Perre, Philippe; Kremer, Eric J

    2015-01-01

    In 2014, an outbreak of Ebola virus spread rapidly in West Africa. The epidemic killed more than 10,000 people and resulted in transmissions outside the endemic countries. WHO hopes for effective vaccines by the end of 2015. Numerous vaccine candidates have been proposed, and several are currently being evaluated in humans. Among the vaccine candidates are vectors derived from adenovirus (Ad). Despite previous encouraging preclinical and Phase I/II trials, Ad vectors used in three Phase II trials targeting HIV were prematurely interrupted because of the lack of demonstrated efficacy. The vaccine was not only ineffective but also led to a higher rate of HIV acquisition. In this context, the authors discuss the potential benefits, risks and impact of using Ad-derived vaccines to control Ebola virus disease.

  16. Ebola virus disease and social media: A systematic review.

    PubMed

    Fung, Isaac Chun-Hai; Duke, Carmen Hope; Finch, Kathryn Cameron; Snook, Kassandra Renee; Tseng, Pei-Ling; Hernandez, Ana Cristina; Gambhir, Manoj; Fu, King-Wa; Tse, Zion Tsz Ho

    2016-12-01

    We systematically reviewed existing research pertinent to Ebola virus disease and social media, especially to identify the research questions and the methods used to collect and analyze social media. We searched 6 databases for research articles pertinent to Ebola virus disease and social media. We extracted the data using a standardized form. We evaluated the quality of the included articles. Twelve articles were included in the main analysis: 7 from Twitter with 1 also including Weibo, 1 from Facebook, 3 from YouTube, and 1 from Instagram and Flickr. All the studies were cross-sectional. Eleven of the 12 articles studied ≥ 1of these 3 elements of social media and their relationships: themes or topics of social media contents, meta-data of social media posts (such as frequency of original posts and reposts, and impressions) and characteristics of the social media accounts that made these posts (such as whether they are individuals or institutions). One article studied how news videos influenced Twitter traffic. Twitter content analysis methods included text mining (n = 3) and manual coding (n = 1). Two studies involved mathematical modeling. All 3 YouTube studies and the Instagram/Flickr study used manual coding of videos and images, respectively. Published Ebola virus disease-related social media research focused on Twitter and YouTube. The utility of social media research to public health practitioners is warranted. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. On the Regularities of the Polar Profiles of Proteins Related to Ebola Virus Infection and their Functional Domains.

    PubMed

    Polanco, Carlos; Samaniego Mendoza, José Lino; Buhse, Thomas; Uversky, Vladimir N; Bañuelos Chao, Ingrid Paola; Bañuelos Cedano, Marcela Angola; Tavera, Fernando Michel; Tavera, Daniel Michel; Falconi, Manuel; Ponce de León, Abelardo Vela

    2018-03-06

    The number of fatalities and economic losses caused by the Ebola virus infection across the planet culminated in the havoc that occurred between August and November 2014. However, little is known about the molecular protein profile of this devastating virus. This work represents a thorough bioinformatics analysis of the regularities of charge distribution (polar profiles) in two groups of proteins and their functional domains associated with Ebola virus disease: Ebola virus proteins and Human proteins interacting with Ebola virus. Our analysis reveals that a fragment exists in each of these proteins-one named the "functional domain"-with the polar profile similar to the polar profile of the protein that contains it. Each protein is formed by a group of short sub-sequences, where each fragment has a different and distinctive polar profile and where the polar profile between adjacent short sub-sequences changes orderly and gradually to coincide with the polar profile of the whole protein. When using the charge distribution as a metric, it was observed that it effectively discriminates the proteins from their functional domains. As a counterexample, the same test was applied to a set of synthetic proteins built for that purpose, revealing that any of the regularities reported here for the Ebola virus proteins and human proteins interacting with Ebola virus were not present in the synthetic proteins. Our results indicate that the polar profile of each protein studied and its corresponding functional domain are similar. Thus, when building each protein from its functional domai-adding one amino acid at a time and plotting each time its polar profile-it was observed that the resulting graphs can be divided into groups with similar polar profiles.

  18. A cellular automata model of Ebola virus dynamics

    NASA Astrophysics Data System (ADS)

    Burkhead, Emily; Hawkins, Jane

    2015-11-01

    We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola virus (EBOV). We make substantial modifications to an existing SCA model used for HIV, introduced by others and studied by the authors. We give a rigorous analysis of the similarities between models due to the spread of virus and the typical immune response to it, and the differences which reflect the drastically different timing of the course of EBOV. We demonstrate output from the model and compare it with clinical data.

  19. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity.

    PubMed

    Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas

    2014-09-01

    Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study

  20. Recurrence and reinfection--a new paradigm for the management of Ebola virus disease.

    PubMed

    MacIntyre, C Raina; Chughtai, Abrar Ahmad

    2016-02-01

    Ebola virus disease (EVD) is an understudied infection and many aspects of viral transmission and clinical course remain unclear. With over 17000 EVD survivors in West Africa, the World Health Organization has focused its strategy on managing survivors and the risk of re-emergence of outbreaks posed by persistence of the virus during convalescence. Sexual transmission from survivors has also been documented following the 2014 epidemic and there are documented cases of survivors readmitted to hospital with 'recurrence' of EVD symptoms. In addition to persistence of virus in survivors, there is also some evidence for 'reinfection' with Ebola virus. In this paper, the evidence for recurrence and reinfection of EVD and implications for epidemic control are reviewed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.

    PubMed

    Carette, Jan E; Raaben, Matthijs; Wong, Anthony C; Herbert, Andrew S; Obernosterer, Gregor; Mulherkar, Nirupama; Kuehne, Ana I; Kranzusch, Philip J; Griffin, April M; Ruthel, Gordon; Dal Cin, Paola; Dye, John M; Whelan, Sean P; Chandran, Kartik; Brummelkamp, Thijn R

    2011-08-24

    Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.

  2. Efficacy of Tilorone Dihydrochloride against Ebola Virus Infection.

    PubMed

    Ekins, Sean; Lingerfelt, Mary A; Comer, Jason E; Freiberg, Alexander N; Mirsalis, Jon C; O'Loughlin, Kathleen; Harutyunyan, Anush; McFarlane, Claire; Green, Carol E; Madrid, Peter B

    2018-02-01

    Tilorone dihydrochloride (tilorone) is a small-molecule, orally bioavailable drug that is used clinically as an antiviral outside the United States. A machine-learning model trained on anti-Ebola virus (EBOV) screening data previously identified tilorone as a potent in vitro EBOV inhibitor, making it a candidate for the treatment of Ebola virus disease (EVD). In the present study, a series of in vitro ADMET (absorption, distribution, metabolism, excretion, toxicity) assays demonstrated the drug has excellent solubility, high Caco-2 permeability, was not a P-glycoprotein substrate, and had no inhibitory activity against five human CYP450 enzymes (3A4, 2D6, 2C19, 2C9, and 1A2). Tilorone was shown to have 52% human plasma protein binding with excellent plasma stability and a mouse liver microsome half-life of 48 min. Dose range-finding studies in mice demonstrated a maximum tolerated single dose of 100 mg/kg of body weight. A pharmacokinetics study in mice at 2- and 10-mg/kg dose levels showed that the drug is rapidly absorbed, has dose-dependent increases in maximum concentration of unbound drug in plasma and areas under the concentration-time curve, and has a half-life of approximately 18 h in both males and females, although the exposure was ∼2.5-fold higher in male mice. Tilorone doses of 25 and 50 mg/kg proved efficacious in protecting 90% of mice from a lethal challenge with mouse-adapted with once-daily intraperitoneal (i.p.) dosing for 8 days. A subsequent study showed that 30 mg/kg/day of tilorone given i.p. starting 2 or 24 h postchallenge and continuing through day 7 postinfection was fully protective, indicating promising activity for the treatment of EVD. Copyright © 2018 American Society for Microbiology.

  3. Ebola virus disease in a humanitarian aid worker - New York City, October 2014.

    PubMed

    Yacisin, Kari; Balter, Sharon; Fine, Annie; Weiss, Don; Ackelsberg, Joel; Prezant, David; Wilson, Ross; Starr, David; Rakeman, Jennifer; Raphael, Marisa; Quinn, Celia; Toprani, Amita; Clark, Nancy; Link, Nathan; Daskalakis, Demetre; Maybank, Aletha; Layton, Marcelle; Varma, Jay K

    2015-04-03

    In late October 2014, Ebola virus disease (Ebola) was diagnosed in a humanitarian aid worker who recently returned from West Africa to New York City (NYC). The NYC Department of Health and Mental Hygiene (DOHMH) actively monitored three close contacts of the patient and 114 health care personnel. No secondary cases of Ebola were detected. In collaboration with local and state partners, DOHMH had developed protocols to respond to such an event beginning in July 2014. These protocols included safely transporting a person at the first report of symptoms to a local hospital prepared to treat a patient with Ebola, laboratory testing for Ebola, and monitoring of contacts. In response to this single case of Ebola, initial health care worker active monitoring protocols needed modification to improve clarity about what types of exposure should be monitored. The response costs were high in both human resources and money: DOHMH alone spent $4.3 million. However, preparedness activities that include planning and practice in effectively monitoring the health of workers involved in Ebola patient care can help prevent transmission of Ebola.

  4. Environmental Contamination and Persistence of Ebola Virus RNA in an Ebola Treatment Center.

    PubMed

    Poliquin, Philippe Guillaume; Vogt, Florian; Kasztura, Miriam; Leung, Anders; Deschambault, Yvon; Van den Bergh, Rafael; Dorion, Claire; Maes, Peter; Kamara, Abdul; Kobinger, Gary; Sprecher, Armand; Strong, James E

    2016-10-15

    Ebola viruses (EBOVs) are primarily transmitted by contact with infected body fluids. Ebola treatment centers (ETCs) contain areas that are exposed to body fluids through the care of patients suspected or confirmed to have EBOV disease. There are limited data documenting which areas/fomites within ETCs pose a risk for potential transmission. This study conducted environmental surveillance in 2 ETCs in Freetown, Sierra Leone, during the 2014-2016 West African Ebola outbreak.  ETCs were surveyed over a 3-week period. Sites to be swabbed were identified with input from field personnel. Swab samples were collected and tested for the presence of EBOV RNA. Ebola-positive body fluid-impregnated cotton pads were serially sampled.  General areas of both ETCs were negative for EBOV RNA. The immediate vicinity of patients was the area most likely to be positive for EBOV RNA. Personal protective equipment became positive during patient care, but chlorine solution washes rendered them negative.  Personal protective equipment and patient environs do become positive for EBOV RNA, but careful attention to decontamination seems to remove it. EBOV RNA was not detected in general ward spaces. Careful attention to decontamination protocols seems to be important in minimizing the presence of EBOV RNA within ETC wards. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Generation of Recombinant Ebola Viruses Using Reverse Genetics.

    PubMed

    Groseth, Allison

    2017-01-01

    Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

  6. Computational Modelling and Optimal Control of Ebola Virus Disease with non-Linear Incidence Rate

    NASA Astrophysics Data System (ADS)

    Takaidza, I.; Makinde, O. D.; Okosun, O. K.

    2017-03-01

    The 2014 Ebola outbreak in West Africa has exposed the need to connect modellers and those with relevant data as pivotal to better understanding of how the disease spreads and quantifying the effects of possible interventions. In this paper, we model and analyse the Ebola virus disease with non-linear incidence rate. The epidemic model created is used to describe how the Ebola virus could potentially evolve in a population. We perform an uncertainty analysis of the basic reproductive number R 0 to quantify its sensitivity to other disease-related parameters. We also analyse the sensitivity of the final epidemic size to the time control interventions (education, vaccination, quarantine and safe handling) and provide the cost effective combination of the interventions.

  7. Molecular Docking, Pharmacophore, and 3D-QSAR Approach: Can Adenine Derivatives Exhibit Significant Inhibitor Towards Ebola Virus?

    PubMed Central

    Rai, Amit; Aboumanei, Mohamed H.; Verma, Suraj P.; Kumar, Sachidanand; Raj, Vinit

    2017-01-01

    Introduction: Ebola Virus Disease (EVD) is caused by Ebola virus, which is often accompanied by fatal hemorrhagic fever upon infection in humans. This virus has caused the majority of deaths in human. There are no proper vaccinations and medications available for EVD. It is pivoting the attraction of scientist to develop the potent vaccination or novel lead to inhibit Ebola virus. Methods & Materials: In the present study, we developed 3D-QSAR and the pharmacophoric model from the previous reported potent compounds for the Ebola virus. Results & Discussion: Results & Discussion: The pharmacophoric model AAAP.116 was generated with better survival value and selectivity. Moreover, the 3D-QSAR model also showed the best r2 value 0.99 using PLS factor. Thereby, we found the higher F value, which demonstrated the statistical significance of both the models. Furthermore, homological modeling and molecular docking study were performed to analyze the affinity of the potent lead. This showed the best binding energy and bond formation with targeted protein. Conclusion: Finally, all the results of this study concluded that 3D-QSAR and Pharmacophore models may be helpful to search potent lead for EVD treatment in future. PMID:29387271

  8. The Ebola virus matrix protein VP40 selectively induces vesiculation from phosphatidylserine-enriched membranes.

    PubMed

    Soni, Smita P; Stahelin, Robert V

    2014-11-28

    Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Ebola virus disease: radiology preparedness.

    PubMed

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community. © RSNA, 2014.

  10. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    PubMed

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  11. Case definition for Ebola and Marburg haemorrhagic fevers: a complex challenge for epidemiologists and clinicians.

    PubMed

    Pittalis, Silvia; Fusco, Francesco Maria; Lanini, Simone; Nisii, Carla; Puro, Vincenzo; Lauria, Francesco Nicola; Ippolito, Giuseppe

    2009-10-01

    Viral haemorrhagic fevers (VHFs) represent a challenge for public health because of their epidemic potential, and their possible use as bioterrorism agents poses particular concern. In 1999 the World Health Organization (WHO) proposed a case definition for VHFs, subsequently adopted by other international institutions with the aim of early detection of initial cases/outbreaks in western countries. We applied this case definition to reports of Ebola and Marburg virus infections to estimate its sensitivity to detect cases of the disease. We analyzed clinical descriptions of 795 reported cases of Ebola haemorrhagic fever: only 58.5% of patients met the proposed case definition. A similar figure was obtained reviewing 169 cases of Marburg diseases, of which only 64.5% were in accordance with the case definition. In conclusion, the WHO case definition for hemorrhagic fevers is too specific and has poor sensitivity both for case finding during Ebola or Marburg outbreaks, and for early detection of suspected cases in western countries. It can lead to a hazardous number of false negatives and its use should be discouraged for early detection of cases.

  12. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques.

    PubMed

    Guedj, Jérémie; Piorkowski, Géraldine; Jacquot, Frédéric; Madelain, Vincent; Nguyen, Thi Huyen Tram; Rodallec, Anne; Gunther, Stephan; Carbonnelle, Caroline; Mentré, France; Raoul, Hervé; de Lamballerie, Xavier

    2018-03-01

    Despite repeated outbreaks, in particular the devastating 2014-2016 epidemic, there is no effective treatment validated for patients with Ebola virus disease (EVD). Among the drug candidates is the broad-spectrum polymerase inhibitor favipiravir, which showed a good tolerance profile in patients with EVD (JIKI trial) but did not demonstrate a strong antiviral efficacy. In order to gain new insights into the antiviral efficacy of favipiravir and improve preparedness and public health management of future outbreaks, we assess the efficacy achieved by ascending doses of favipiravir in Ebola-virus-infected nonhuman primates (NHPs). A total of 26 animals (Macaca fascicularis) were challenged intramuscularly at day 0 with 1,000 focus-forming units of Ebola virus Gabon 2001 strain and followed for 21 days (study termination). This included 13 animals left untreated and 13 treated with doses of 100, 150, and 180 mg/kg (N = 3, 5, and 5, respectively) favipiravir administered intravenously twice a day for 14 days, starting 2 days before infection. All animals left untreated or treated with 100 mg/kg died within 10 days post-infection, while animals receiving 150 and 180 mg/kg had extended survival (P < 0.001 and 0.001, respectively, compared to untreated animals), leading to a survival rate of 40% (2/5) and 60% (3/5), respectively, at day 21. Favipiravir inhibited viral replication (molecular and infectious viral loads) in a drug-concentration-dependent manner (P values < 0.001), and genomic deep sequencing analyses showed an increase in virus mutagenesis over time. These results allowed us to identify that plasma trough favipiravir concentrations greater than 70-80 μg/ml were associated with reduced viral loads, lower virus infectivity, and extended survival. These levels are higher than those found in the JIKI trial, where patients had median trough drug concentrations equal to 46 and 26 μg/ml at day 2 and day 4 post-treatment, respectively, and suggest that the dosing

  13. Risk in the "Red Zone": Outcomes for Children Admitted to Ebola Holding Units in Sierra Leone Without Ebola Virus Disease.

    PubMed

    Fitzgerald, F; Wing, K; Naveed, A; Gbessay, M; Ross, J C G; Checchi, F; Youkee, D; Jalloh, M B; Baion, D; Mustapha, A; Jah, H; Lako, S; Oza, S; Boufkhed, S; Feury, R; Bielicki, J; Williamson, E; Gibb, D M; Klein, N; Sahr, F; Yeung, S

    2017-07-01

    We collected data on 1054 children admitted to Ebola Holding Units in Sierra Leone and describe outcomes of 697/1054 children testing negative for Ebola virus disease (EVD) and accompanying caregivers. Case-fatality was 9%; 3/630 (0.5%) children discharged testing negative were readmitted EVD-positive. Nosocomial EVD transmission risk may be lower than feared. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  14. Experimental Respiratory Infection of Marmosets (Callithrix jacchus) With Ebola Virus Kikwit.

    PubMed

    Smither, Sophie J; Nelson, Michelle; Eastaugh, Lin; Nunez, Alejandro; Salguero, Francisco J; Lever, Mark S

    2015-10-01

    Ebola virus (EBOV) causes a highly infectious and lethal hemorrhagic fever in primates with high fatality rates during outbreaks and EBOV may be exploited as a potential biothreat pathogen. There is therefore a need to develop and license appropriate medical countermeasures against this virus. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess vaccines or therapies against EBOV disease (EVD), initial susceptibility, lethality and pathogenesis studies were performed. Low doses of EBOV-Kikwit, between 4 and 27 times the 50% tissue culture infectious dose, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to EVD between 6 and 8 days after challenge. Typical signs of EVD were observed. Pathogenesis studies revealed that virus was isolated from the lungs of animals beginning on day 3 after challenge and from the liver, spleen and blood beginning on day 5. The most striking features were observed in animals that succumbed to infection, including high viral titers in all organs, increased levels of liver function enzymes and blood clotting times, decreased levels of platelets, multifocal moderate to severe hepatitis, and perivascular edema. © Crown copyright 2015.

  15. Evolutionary conservation of Ebola virus proteins predicts important functions at residue level.

    PubMed

    Arslan, Ahmed; van Noort, Vera

    2017-01-15

    The recent outbreak of Ebola virus disease (EVD) resulted in a large number of human deaths. Due to this devastation, the Ebola virus has attracted renewed interest as model for virus evolution. Recent literature on Ebola virus (EBOV) has contributed substantially to our understanding of the underlying genetics and its scope with reference to the 2014 outbreak. But no study yet, has focused on the conservation patterns of EBOV proteins. We analyzed the evolution of functional regions of EBOV and highlight the function of conserved residues in protein activities. We apply an array of computational tools to dissect the functions of EBOV proteins in detail: (i) protein sequence conservation, (ii) protein-protein interactome analysis, (iii) structural modeling and (iv) kinase prediction. Our results suggest the presence of novel post-translational modifications in EBOV proteins and their role in the modulation of protein functions and protein interactions. Moreover, on the basis of the presence of ATM recognition motifs in all EBOV proteins we postulate a role of DNA damage response pathways and ATM kinase in EVD. The ATM kinase is put forward, for further evaluation, as novel potential therapeutic target. http://www.biw.kuleuven.be/CSB/EBOV-PTMs CONTACT: vera.vannoort@biw.kuleuven.beSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination

    PubMed Central

    Lüdtke, Anja; Ruibal, Paula; Wozniak, David M.; Pallasch, Elisa; Wurr, Stephanie; Bockholt, Sabrina; Gómez-Medina, Sergio; Qiu, Xiangguo; Kobinger, Gary P.; Rodríguez, Estefanía; Günther, Stephan; Krasemann, Susanne; Idoyaga, Juliana; Oestereich, Lisa; Muñoz-Fontela, César

    2017-01-01

    Ebola virus (EBOV) causes severe systemic disease in humans and non-human primates characterized by high levels of viremia and virus titers in peripheral organs. The natural portals of virus entry are the mucosal surfaces and the skin where macrophages and dendritic cells (DCs) are primary EBOV targets. Due to the migratory properties of DCs, EBOV infection of these cells has been proposed as a necessary step for virus dissemination via draining lymph nodes and blood. Here we utilize chimeric mice with competent hematopoietic-driven immunity, to show that EBOV primarily infects CD11b+ DCs in non-lymphoid and lymphoid tissues, but spares the main cross-presenting CD103+ DC subset. Furthermore, depletion of CD8 and CD4 T cells resulted in loss of early control of virus replication, viremia and fatal Ebola virus disease (EVD). Thus, our findings point out at T cell function as a key determinant of EVD progress and outcome. PMID:28256637

  17. Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles.

    PubMed

    Martinez, Osvaldo; Tantral, Lee; Mulherkar, Nirupama; Chandran, Kartik; Basler, Christopher F

    2011-11-01

    Ebola virus (EBOV) glycoprotein (GP), responsible for mediating host-cell attachment and membrane fusion, contains a heavily glycosylated mucin-like domain hypothesized to shield GP from neutralizing antibodies. To test whether the mucin-like domain inhibits the production and function of anti-GP antibodies, we vaccinated mice with Ebola virus-like particles (VLPs) that express vesicular stomatitis virus G, wild-type EBOV GP (EBGP), EBOV GP without its mucin-like domain (ΔMucGP), or EBOV GP with a Crimean-Congo hemorrhagic fever virus mucin-like domain substituted for the EBOV mucin-like domain (CMsubGP). EBGP-VLP immunized mice elicited significantly higher serum antibody titers toward EBGP or its mutants, as detected by western blot analysis, than did VLP-ΔMucGP. However, EBGP-, ΔMucGP- and CMsubGP-VLP immunized mouse sera contained antibodies that bound to cell surface-expressed GP at similar levels. Furthermore, low but similar neutralizing antibody titers, measured against a vesicular stomatitis virus (VSV) expressing EBGP or ΔMucGP, were present in EBGP, ΔMucGP, and CMsubGP sera, although a slightly higher neutralizing titer (2- to 2.5-fold) was detected in ΔMucGP sera. We conclude that the EBOV GP mucin-like domain can increase relative anti-GP titers, however these titers appear to be directed, at least partly, to denatured GP. Furthermore, removing the mucin-like domain from immunizing VLPs has modest impact on neutralizing antibody titers in serum.

  18. The pathogenesis of Ebola hemorrhagic fever.

    PubMed

    Takada, A; Kawaoka, Y

    2001-10-01

    Ebola virus causes lethal hemorrhagic disease in humans, yet there are still no satisfactory biological explanations to account for its extreme virulence. This review focuses on recent findings relevant to understanding the pathogenesis of Ebola virus infection and developing vaccines and effective therapy. The available data suggest that the envelope glycoprotein and the interaction of some viral proteins with the immune system are likely to play important roles in the extraordinary pathogenicity of this virus. There are also indications that genetically engineered vaccines, including plasmid DNA and viral vectors expressing Ebola virus proteins, and passive transfer of neutralizing antibodies could be feasible options for the control of Ebola virus-associated disease.

  19. Sequencing ebola and marburg viruses genomes using microarrays.

    PubMed

    Hardick, Justin; Woelfel, Roman; Gardner, Warren; Ibrahim, Sofi

    2016-08-01

    Periodic outbreaks of Ebola and Marburg hemorrhagic fevers have occurred in Africa over the past four decades with case fatality rates reaching as high as 90%. The latest Ebola outbreak in West Africa in 2014 raised concerns that these infections can spread across continents and pose serious health risks. Early and accurate identification of the causative agents is necessary to contain outbreaks. In this report, we describe sequencing-by-hybridization (SBH) technique using high density microarrays to identify Ebola and Marburg viruses. The microarrays were designed to interrogate the sequences of entire viral genomes, and were evaluated with three species of Ebolavirus (Reston, Sudan, and Zaire), and three strains of Marburgvirus (Angola, Musoke, and Ravn). The results showed that the consensus sequences generated with four or more hybridizations had 92.1-98.9% accuracy over 95-99% of the genomes. Additionally, with SBH microarrays it was possible to distinguish between different strains of the Lake Victoria Marburgvirus. J. Med. Virol. 88:1303-1308, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Ebola Virus Disease--Sierra Leone and Guinea, August 2015.

    PubMed

    Hersey, Sara; Martel, Lise D; Jambai, Amara; Keita, Sakoba; Yoti, Zabulon; Meyer, Erika; Seeman, Sara; Bennett, Sarah; Ratto, Jeffrey; Morgan, Oliver; Akyeampong, Mame Afua; Sainvil, Schabbethai; Worrell, Mary Claire; Fitter, David; Arnold, Kathryn E

    2015-09-11

    The Ebola virus disease (Ebola) outbreak in West Africa began in late 2013 in Guinea (1) and spread unchecked during early 2014. By mid-2014, it had become the first Ebola epidemic ever documented. Transmission was occurring in multiple districts of Guinea, Liberia, and Sierra Leone, and for the first time, in capital cities (2). On August 8, 2014, the World Health Organization (WHO) declared the outbreak to be a Public Health Emergency of International Concern (3). Ministries of Health, with assistance from multinational collaborators, have reduced Ebola transmission, and the number of cases is now declining. While Liberia has not reported a case since July 12, 2015, transmission has continued in Guinea and Sierra Leone, although the numbers of cases reported are at the lowest point in a year. In August 2015, Guinea and Sierra Leone reported 10 and four confirmed cases, respectively, compared with a peak of 526 (Guinea) and 1,997 (Sierra Leone) in November 2014. This report details the current situation in Guinea and Sierra Leone, outlines strategies to interrupt transmission, and highlights the need to maintain public health response capacity and vigilance for new cases at this critical time to end the outbreak.

  1. Anatomy of a Hotspot: Chain and Seroepidemiology of Ebola Virus Transmission, Sukudu, Sierra Leone, 2015-16.

    PubMed

    Kelly, J Daniel; Barrie, Mohamed Bailor; Mesman, Annelies W; Karku, Sahr; Quiwa, Komba; Drasher, Michael; Schlough, Gabriel Warren; Dierberg, Kerry; Koedoyoma, Songor; Lindan, Christina P; Jones, James Holland; Chamie, Gabriel; Worden, Lee; Greenhouse, Bryan; Weiser, Sheri D; Porco, Travis C; Rutherford, George W; Richardson, Eugene T

    2018-03-28

    Studies have yet to include minimally symptomatic Ebola virus (EBOV) infections and unrecognized Ebola virus disease (EVD) in Ebola-related transmission chains and epidemiologic risk estimates. We conducted a cross-sectional, sero-epidemiological survey from October 2015 to January 2016 among 221 individuals living in quarantined households from November 2014 to February 2015 during the Ebola outbreak in the village of Sukudu, Sierra Leone. Of 48 EBOV-infected persons, 25% (95% confidence interval [CI], 14%-40%) had minimally symptomatic EBOV infections and 4% (95% CI, 1%-14%) were unrecognized EVD cases. The pattern of minimally symptomatic EBOV infections in the transmission chain was nonrandom (P < .001, permutation test). Not having lived in the same house as an EVD case was significantly associated with minimally symptomatic infection. This is the first study to investigate a chain of EBOV transmission inclusive of minimally symptomatic EBOV infections and unrecognized EVD. Our findings provide new insights into Ebola transmission dynamics and quarantine practices.

  2. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    PubMed

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  3. Ebola vaccines in clinical trial: The promising candidates

    PubMed Central

    Wang, Yuxiao; Li, Jingxin; Hu, Yuemei; Liang, Qi; Wei, Mingwei; Zhu, Fengcai

    2017-01-01

    ABSTRACT Ebola virus disease (EVD) has become a great threat to humans across the world in recent years. The 2014 Ebola epidemic in West Africa caused numerous deaths and attracted worldwide attentions. Since no specific drugs and treatments against EVD was available, vaccination was considered as the most promising and effective method of controlling this epidemic. So far, 7 vaccine candidates had been developed and evaluated through clinical trials. Among them, the recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV) is the most promising candidate, which demonstrated a significant protection against EVD in phase III clinical trial. However, several concerns were still associated with the Ebola vaccine candidates, including the safety profile in some particular populations, the immunization schedule for emergency vaccination, and the persistence of the protection. We retrospectively reviewed the current development of Ebola vaccines and discussed issues and challenges remaining to be investigated in the future. PMID:27764560

  4. Beyond Knowledge and Awareness: Addressing Misconceptions in Ghana’s Preparation towards an Outbreak of Ebola Virus Disease

    PubMed Central

    Adongo, Philip Baba; Tabong, Philip Teg-Nefaah; Asampong, Emmanuel; Ansong, Joana; Robalo, Magda; Adanu, Richard M.

    2016-01-01

    Background Ebola Virus Disease (EVD) is not new to the world. However, the West African EVD epidemic which started in 2014 evolved into the largest, most severe and most complex outbreak in the history of the disease. The three most-affected countries faced enormous challenges in stopping the transmission and providing care for all patients. Although Ghana had not recorded any confirmed Ebola case, social factors have been reported to hinder efforts to control the outbreak in the three most affected countries. This qualitative study was designed to explore community knowledge and attitudes about Ebola and its transmission. Methods This study was carried out in five of the ten regions in Ghana. Twenty-five focus group discussions (N = 235) and 40 in-depth interviews were conducted across the five regions with community members, stakeholders and opinion leaders. The interviews were recorded digitally and transcribed verbatim. Framework analysis was adopted in the analysis of the data using Nvivo 10. Results The results showed a high level of awareness and knowledge about Ebola. The study further showed that knowledge on how to identify suspected cases of Ebola was also high among respondents. However, there was a firm belief that Ebola was a spiritual condition and could also be transmitted through air, mosquito bites and houseflies. These misconceptions resulted in perceptions of stigma and discrimination towards people who may get Ebola or work with Ebola patients. Conclusion We conclude that although knowledge and awareness about Ebola is high among Ghanaians who participated in the study, there are still misconceptions about the disease. The study recommends that health education on Ebola disease should move beyond creating awareness to targeting the identified misconceptions to improve future containment efforts. PMID:26889683

  5. The rhetorical construction of the predatorial virus: a Burkian analysis of nonfiction accounts of the Ebola virus.

    PubMed

    Weldon, R A

    2001-01-01

    Over the past 5 years, a new subgenre of horror films, referred to as plague films, has turned our focus to the threat of a hemorrhagic viral pandemic, comparable to the Spanish Flu epidemic of 1916. Based on the Ebola viral outbreaks of 1976, various writers have presented their accounts under the guise of increasing interest and prevention strategies. Disregarding inappropriate health care practices as the cause of these epidemics, accountability is refocused onto the rhetorically constructed, predatory nature of the virus. By employing Burke's theory of dramatism and pentadic analysis, the author examines this rhetorical construction of Ebola as a predatorial virus and its implications for public perceptions of public health endeavors.

  6. Evolution and spread of Ebola virus in Liberia, 2014–2015

    PubMed Central

    Ladner, Jason T.; Wiley, Michael R.; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R.; Beitzel, Brett; Gilbert, Merle L.; Fakoli, Lawrence; Diclaro, Joseph W.; Schoepp, Randal J.; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa E.; Park, Daniel J.; Sabeti, Pardis C.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.; Kugelman, Jeffrey R.; Palacios, Gustavo

    2015-01-01

    SUMMARY The 2013–present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. PMID:26651942

  7. Immunization with vesicular stomatitis virus vaccine expressing the Ebola glycoprotein provides sustained long-term protection in rodents.

    PubMed

    Wong, Gary; Audet, Jonathan; Fernando, Lisa; Fausther-Bovendo, Hugues; Alimonti, Judie B; Kobinger, Gary P; Qiu, Xiangguo

    2014-09-29

    Ebola virus (EBOV) infections cause lethal hemorrhagic fever in humans, resulting in up to 90% mortality. EBOV outbreaks are sporadic and unpredictable in nature; therefore, a vaccine that is able to provide durable immunity is needed to protect those who are at risk of exposure to the virus. This study assesses the long-term efficacy of the vesicular stomatitis virus (VSV)-based vaccine (VSVΔG/EBOVGP) in two rodent models of EBOV infection. Mice and guinea pigs were first immunized with 2×10(4) or 2×10(5) plaque forming units (PFU) of VSVΔG/EBOVGP, respectively. Challenge of mice with a lethal dose of mouse-adapted EBOV (MA-EBOV) at 6.5 and 9 months after vaccination provided complete protection, and 80% (12 of 15 survivors) protection at 12 months after vaccination. Challenge of guinea pigs with a lethal dose of guinea pig-adapted EBOV (GA-EBOV) at 7, 12 and 18 months after vaccination resulted in 83% (5 of 6 survivors) at 7 months after vaccination, and 100% survival at 12 and 18 months after vaccination. No weight loss or clinical signs were observed in the surviving animals. Antibody responses were analyzed using sera from individual rodents. Levels of EBOV glycoprotein-specific IgG antibody measured immediately before challenge appeared to correlate with protection. These studies confirm that vaccination with VSVΔG/EBOVGP is able to confer long-term protection against Ebola infection in mice and guinea pigs, and support follow-up studies in non-human primates. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Ebola virus (EBOV) infection: Therapeutic strategies.

    PubMed

    De Clercq, Erik

    2015-01-01

    Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Viral Infections in Pregnancy: A Focus on Ebola Virus.

    PubMed

    Olgun, Nicole S

    2018-01-30

    During gestation, the immune response of the placenta to viruses and other pathogens plays an important role in determining a pregnant woman's vulnerability toward infectious diseases. Located at the maternal- fetal interface, trophoblast cells serve to minimize the spread of viruses between the host and developing fetus through an intricate system of innate antiviral immune signaling. Adverse pregnancy outcomes, ranging from learning disabilities to preterm birth and fetal death, are all documented results of a viral breach in the placental barrier. Viral infections during pregnancy can also be spread through blood and vaginal secretions, and during the post-natal period, via breast milk. Thus, even in the absence of vertical transmission of viral infection to the fetus, maternal health can still be compromised and threaten the pregnancy. The most common viral DNA isolates found in gestation are adenovirus, cytomegalovirus, and enterovirus. However, with the recent pandemic of Ebola virus, and the first documented case of a neonate to survive due to experimental therapies in 2017, it is becoming increasingly apparent that the changing roles and impacts of viral infection during pregnancy needs to be better understood, while strategies to minimize adverse pregnancy outcomes need to be identified. This review focuses on the adverse impacts of viral infection during gestation, with an emphasis on Ebola virus. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.

    PubMed

    Francica, Joseph R; Matukonis, Meghan K; Bates, Paul

    2009-01-20

    Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.

  11. Discovering drugs for the treatment of Ebola virus

    DTIC Science & Technology

    2017-08-04

    Discovering drugs for the treatment of Ebola virus Sandra L. Bixler, Allen J. Duplantier and Sina Bavari Address United States Army Medical...with the recent West African outbreak resulting in over 11,000 deaths. This review provides a summary of the status of drug discovery and development...disease, including small molecules, immunotherapeutics, host factors, and clinical disease management options. Introduction Drug development for

  12. [Input of a laboratory in the management of patients with Ebola virus disease and in the training of health personnel: experience of the Forecariah Ebola treatment centre (Guinea) in 2015].

    PubMed

    Gaüzère, B-A; Ouellet, I; Nottebrock, D; Nied, J-C; Beya-Kadiebwe, B; Camara, A K; Camara, D; Camara, M L M; Camara, M; Soumah, A; Tounkara, M K; Monteil, V; Camara, A; Bauffe, F; Camara, A; Camara, I B; Simon, B; Jaspard, M; Tran-Minh, T; L'Hériteau, F

    2016-10-01

    Ebola virus disease (EVD) is associated with a high lethality rate even when the afflicted are provided with good support in an Ebola treatment center (ETC). Basic laboratory tests can help to better understand the pathophysiology of the disease, to guide treatment and to establish simple protocols and procedures tailored to the practice of medicine in the context of such precarious environment for caregivers. Based on a few clinical cases of patients treated in the ETC of Forecariah, Guinea, run by the French Red Cross, this article describes the difficult conditions associated with the provision of medical practice in this challenging environment, aiming to minimize the casualties in the EVD patient and to train the health staff.

  13. Detection of Zaire Ebola virus by real-time reverse transcription-polymerase chain reaction, Sierra Leone, 2014.

    PubMed

    Liu, Licheng; Sun, Yang; Kargbo, Brima; Zhang, Chuntao; Feng, Huahua; Lu, Huijun; Liu, Wenseng; Wang, Chengyu; Hu, Yi; Deng, Yongqiang; Jiang, Jiafu; Kang, Xiaoping; Yang, Honglei; Jiang, Yongqiang; Yang, Yinhui; Kargbo, David; Qian, Jun; Chen, Weijun

    2015-09-15

    During the 2014 Ebola virus disease (EVD) outbreak, a real-time quantitative polymerase chain reaction was established to detect and identify the Zaire Ebola virus. We describe the use of this assay to screen 315 clinical samples from EVD suspected person in Sierra Leone. The detection rate in blood samples was 77.81% (207/266), and there were relatively higher detection rate (79.32% and 81.42%, respectively) during the first two weeks after onset of symptoms. In the two weeks that followed, the detection rate declined to 66.67% and 25.00%, respectively. There was the highest virus load at the first week and then decreased. The detection rate in swab samples was 89.79% (44/49). This may be benefit from the included patients. 46 of 49 swab samples were collected from died patients. Taken together, the results presented here indicate that the assay specifically and sensitively detects Zaire Ebola virus. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ocular Manifestations of Ebola Virus Disease: An Ophthalmologist's Guide to Prevent Infection and Panic

    PubMed Central

    Vingolo, Enzo Maria; Messano, Giuseppe Alessio; Fragiotta, Serena; Petti, Stefano

    2015-01-01

    Ebola virus disease (EVD—formerly known as Ebola hemorrhagic fever) is a severe hemorrhagic fever caused by lipid-enveloped, nonsegmented, negative-stranded RNA viruses belonging to the genus Ebolavirus. Case fatality rates may reach up to 76% of infected individuals, making this infection a deadly health problem in the sub-Saharan population. At the moment, there are still no indications on ophthalmological clinical signs and security suggestions for healthcare professionals (doctors and nurses or cooperative persons). This paper provides a short but complete guide to reduce infection risks. PMID:26557674

  15. Ebola Virus Epidemiology and Evolution in Nigeria

    DTIC Science & Technology

    2016-10-04

    the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of 10 Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012...cases, and full-4 length Ebola virus (EBOV) genome sequences for 12 of the 20. The detailed contact data permits 5 nearly complete reconstruction of...two methods highlights the strengths of each, and the importance 16 of both contact tracing and genomic sequencing during an outbreak. 17 18

  16. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus.

    PubMed

    Hartman, Amy L; Bird, Brian H; Towner, Jonathan S; Antoniadou, Zoi-Anna; Zaki, Sherif R; Nichol, Stuart T

    2008-03-01

    Zaire ebolavirus causes a rapidly progressing hemorrhagic disease with high mortality. Identification of the viral virulence factors that contribute to the severity of disease induced by Ebola virus is critical for the design of therapeutics and vaccines against the disease. Given the rapidity of disease progression, virus interaction with the innate immune system early in the course of infection likely plays an important role in determining the outcome of the disease. The Ebola virus VP35 protein inhibits the activation of IRF-3, a critical transcription factor for the induction of early antiviral immunity. Previous studies revealed that a single amino acid change (R312A) in VP35 renders the protein unable to inhibit IRF-3 activation. A reverse-genetics-generated, mouse-adapted, recombinant Ebola virus that encodes the R312A mutation in VP35 was produced. We found that relative to the case for wild-type virus containing the authentic VP35 sequence, this single amino acid change in VP35 renders the virus completely attenuated in mice. Given that these viruses differ by only a single amino acid in the IRF-3 inhibitory domain of VP35, the level of alteration of virulence is remarkable and highlights the importance of VP35 for the pathogenesis of Ebola virus.

  17. Systems for rapidly detecting and treating persons with ebola virus disease--United States.

    PubMed

    Koonin, Lisa M; Jamieson, Denise J; Jernigan, John A; Van Beneden, Chris A; Kosmos, Christine; Harvey, Melissa Cole; Pietz, Harald; Bertolli, Jeanne; Perz, Joseph F; Whitney, Cynthia G; Halpin, Alison Sheehan-Laufer; Daley, W Randolph; Pesik, Nicki; Margolis, Gregg S; Tumpey, Abbigail; Tappero, Jordan; Damon, Inger

    2015-03-06

    The U.S. Department of Health and Human Services (HHS), CDC, other U.S. government agencies, the World Health Organization (WHO), and international partners are taking multiple steps to respond to the current Ebola virus disease (Ebola) outbreak in West Africa to reduce its toll there and to reduce the chances of international spread. At the same time, CDC and HHS are working to ensure that persons who have a risk factor for exposure to Ebola and who develop symptoms while in the United States are rapidly identified and isolated, and safely receive treatment. HHS and CDC have actively worked with state and local public health authorities and other partners to accelerate health care preparedness to care for persons under investigation (PUI) for Ebola or with confirmed Ebola. This report describes some of these efforts and their impact.

  18. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom

  19. Knowledge, attitude and practice of medical laboratory practitioners in the fight against Ebola virus disease.

    PubMed

    Hamid, Kabir M; Yusuf, Ibrahim; Onoja, Bernard A; Koki, Abdullahi Y

    2018-01-01

    Ebola virus disease (EVD) in West Africa was an enormous public health challenge. Nigeria was able to contain the spread of the virus with a concerted effort and an effective public health response in terms of identification of contacts, rapid laboratory diagnosis, quarantine and symptomatic treatment. We determined the knowledge, attitude and practice of medical laboratory practitioners (MLPs) in this post-Ebola epidemic era. This cross-sectional study was carried out in eight hospitals in Kano State for 6 months, between January and June 2016. It involved medical laboratory scientists (MLS), medical laboratory technicians (MLT) and medical laboratory assistants (MLA). Questionnaires were administered and analysed. Of the 75 participants, mean knowledge score was 5.54 (standard deviation [SD] ±1.44) while the mean attitude score was 13.72 ±2.80, and mean practice score was 3.10 ±0.80. Mean age of participants was 36.82 ± 8.07 years. There was full awareness of EVD among all 75 participants; however, many medical laboratory practitioners (52.7%) did not know EVD prevention methods. The majority (86.1%) knew the source of disease outbreak and most MLPs (66.7%) practised improper hand washing to prevent Ebola transmission. In addition, they had a negative attitude and practice towards EVD. Of 71 MLPs, 52 (73.2%) strongly disagreed that a traditional remedy was preferable in EVD treatment. Fear of EVD among MLPs has declined.

  20. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    PubMed

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Guidance to Companies on Referring to Registered Disinfectant Products that Meet the CDC Criteria for Use Against the Ebola Virus

    EPA Pesticide Factsheets

    There are no EPA-registered products with label claims against the Ebola virus, but enveloped viruses such as Ebola are susceptible to many hospital disinfectants used to disinfect hard, non-porous surfaces. CDC guidance addresses use of such products.

  2. Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments.

    PubMed

    Fischer, Robert; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trenton; Prescott, Joseph; Munster, Vincent J

    2015-07-01

    We evaluated the stability of Ebola virus on surfaces and in fluids under simulated environmental conditions for the climate of West Africa and for climate-controlled hospitals. This virus remains viable for a longer duration on surfaces in hospital conditions than in African conditions and in liquid than in dried blood.

  3. Non-natural amino acid peptide microarrays to discover Ebola virus glycoprotein ligands.

    PubMed

    Rabinowitz, Joshua A; Lainson, John C; Johnston, Stephen Albert; Diehnelt, Chris W

    2018-02-06

    We demonstrate a platform to screen a virus pseudotyped with Ebola virus glycoprotein (GP) against a library of peptides that contain non-natural amino acids to develop GP affinity ligands. This system could be used for rapid development of peptide-based antivirals for other emerging or neglected tropical infectious diseases.

  4. Challenges in controlling the Ebola outbreak in two prefectures in Guinea: why did communities continue to resist?

    PubMed

    Thiam, Sylla; Delamou, Alexandre; Camara, Soriba; Carter, Jane; Lama, Eugene Kaman; Ndiaye, Bara; Nyagero, Josephat; Nduba, John; Ngom, Mor

    2015-01-01

    The Ebola outbreak emerged in a remote corner of Guinea in December 2013, and spread into Liberia and Sierra Leone in the context of weak health systems. In this paper, we report on the main challenges faced by frontline health services and by communities including their perceptions and views on the current Ebola response in the Prefectures of Coyah and Forecariah in Guinea. A cross-sectional study was conducted in December 2014 using mixed approaches: (i) Desk review; (ii) Interviews; and (iii) Direct observation. Almost one year after the beginning of the Ebola virus disease outbreak in West Africa, the perceptions of stakeholders and the observed reality were that the level of preparedness in the two health districts was low. The study identified poor coordination mechanisms, inadequate training of human resources and lack of equipment and supplies to field teams and health facilities as key elements that affected the response. The situation was worsened by the inadequate communication strategy, misconceptions around the disease, ignorance of local culture and customs and lack of involvement of local communities in the control strategies, within the context of poor socioeconomic development. As a result distrust developed between communities and those seeking to control the epidemic and largely contributed to the reluctance of the communities to participate and contribute to the effort. There is a need to rethink the way disease control interventions in the context of an emergency such as Ebola virus disease are designed, planned and implemented in low income countries.

  5. Challenges in controlling the Ebola outbreak in two prefectures in Guinea: why did communities continue to resist?

    PubMed Central

    Thiam, Sylla; Delamou, Alexandre; Camara, Soriba; Carter, Jane; Lama, Eugene Kaman; Ndiaye, Bara; Nyagero, Josephat; Nduba, John; Ngom, Mor

    2015-01-01

    Introduction The Ebola outbreak emerged in a remote corner of Guinea in December 2013, and spread into Liberia and Sierra Leone in the context of weak health systems. In this paper, we report on the main challenges faced by frontline health services and by communities including their perceptions and views on the current Ebola response in the Prefectures of Coyah and Forecariah in Guinea. Methods A cross-sectional study was conducted in December 2014 using mixed approaches: (i) Desk review; (ii) Interviews; and (iii) Direct observation. Results Almost one year after the beginning of the Ebola virus disease outbreak in West Africa, the perceptions of stakeholders and the observed reality were that the level of preparedness in the two health districts was low. The study identified poor coordination mechanisms, inadequate training of human resources and lack of equipment and supplies to field teams and health facilities as key elements that affected the response. The situation was worsened by the inadequate communication strategy, misconceptions around the disease, ignorance of local culture and customs and lack of involvement of local communities in the control strategies, within the context of poor socioeconomic development. As a result distrust developed between communities and those seeking to control the epidemic and largely contributed to the reluctance of the communities to participate and contribute to the effort. Conclusion There is a need to rethink the way disease control interventions in the context of an emergency such as Ebola virus disease are designed, planned and implemented in low income countries. PMID:26740850

  6. Social vulnerability and Ebola virus disease in rural Liberia

    Treesearch

    John A. Stanturf; Scott L. Goodrick; Melvin L. Warren; Susan Charnley; Christie M. Stegall

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate...

  7. Ebola (Ebola Virus Disease): Q&As on Transmission

    MedlinePlus

    ... Response Planning Tips Managing and Preventing Cases of Malaria in Areas with Ebola Phone Numbers for State ... the Ebola outbreak due to the risk of malaria. In addition, plasma derived products have viral clearance ...

  8. Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif

    PubMed Central

    Gallaher, William R.; Garry, Robert F.

    2015-01-01

    Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis. PMID:25609303

  9. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    PubMed

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  10. "We are survivors and not a virus:" Content analysis of media reporting on Ebola survivors in Liberia.

    PubMed

    Mayrhuber, Elisabeth Anne-Sophie; Niederkrotenthaler, Thomas; Kutalek, Ruth

    2017-08-01

    The Ebola virus disease epidemic between 2013 and 2016 in West Africa was unprecedented. It resulted in approximately 28.000 cases and 10.000 Ebola survivors. Many survivors face social, economic and health-related predicaments and media reporting is crucially important in infectious disease outbreaks. However, there is little research on reporting of the social situation of Ebola survivors in Liberia. The study used a mixed methods approach and analysed media reports from the Liberian Daily Observer (DOL), a daily newspaper available online in English. We were interested to know how the situation of Ebola survivors was portrayed; in what way issues such as stigma and discrimination were addressed; and which stigma reduction interventions were covered and how. We included all articles on the situation of Ebola survivors in the quantitative and in-depth qualitative analysis published between April 2014 and March 2016. The DOL published 148 articles that portrayed the social situation of Ebola survivors between the 24 months observation period. In these articles, Ebola survivors were often defined beyond biological terms, reflecting on a broader social definition of survivorship. Survivorship was associated with challenges such as suffering from after-effects, social and economic consequences and psychological distress. Almost 50% of the articles explicitly mentioned stigmatisation in their reporting on Ebola survivors. This was contextualised in untrustworthiness towards international responses and the local health care system and inconclusive knowledge on cures and transmission routes. In the majority of DOL articles stigma reduction and engaging survivors in the response was reported as crucially important. Reporting in the DOL was educational-didactical and well-balanced in terms of disseminating available medical knowledge and reflecting the social situation of Ebola survivors. While the articles contextualised factors contributing to stigmatisation throughout

  11. "We are survivors and not a virus:" Content analysis of media reporting on Ebola survivors in Liberia

    PubMed Central

    Mayrhuber, Elisabeth Anne-Sophie; Niederkrotenthaler, Thomas

    2017-01-01

    Background The Ebola virus disease epidemic between 2013 and 2016 in West Africa was unprecedented. It resulted in approximately 28.000 cases and 10.000 Ebola survivors. Many survivors face social, economic and health-related predicaments and media reporting is crucially important in infectious disease outbreaks. However, there is little research on reporting of the social situation of Ebola survivors in Liberia. Methods The study used a mixed methods approach and analysed media reports from the Liberian Daily Observer (DOL), a daily newspaper available online in English. We were interested to know how the situation of Ebola survivors was portrayed; in what way issues such as stigma and discrimination were addressed; and which stigma reduction interventions were covered and how. We included all articles on the situation of Ebola survivors in the quantitative and in-depth qualitative analysis published between April 2014 and March 2016. Results The DOL published 148 articles that portrayed the social situation of Ebola survivors between the 24 months observation period. In these articles, Ebola survivors were often defined beyond biological terms, reflecting on a broader social definition of survivorship. Survivorship was associated with challenges such as suffering from after-effects, social and economic consequences and psychological distress. Almost 50% of the articles explicitly mentioned stigmatisation in their reporting on Ebola survivors. This was contextualised in untrustworthiness towards international responses and the local health care system and inconclusive knowledge on cures and transmission routes. In the majority of DOL articles stigma reduction and engaging survivors in the response was reported as crucially important. Discussion Reporting in the DOL was educational-didactical and well-balanced in terms of disseminating available medical knowledge and reflecting the social situation of Ebola survivors. While the articles contextualised factors

  12. Application of unweighted pair group methods with arithmetic average (UPGMA) for identification of kinship types and spreading of ebola virus through establishment of phylogenetic tree

    NASA Astrophysics Data System (ADS)

    Andriani, Tri; Irawan, Mohammad Isa

    2017-08-01

    Ebola Virus Disease (EVD) is a disease caused by a virus of the genus Ebolavirus (EBOV), family Filoviridae. Ebola virus is classifed into five types, namely Zaire ebolavirus (ZEBOV), Sudan ebolavirus (SEBOV), Bundibugyo ebolavirus (BEBOV), Tai Forest ebolavirus also known as Cote d'Ivoire ebolavirus (CIEBOV), and Reston ebolavirus (REBOV). Identification of kinship types of Ebola virus can be performed using phylogenetic trees. In this study, the phylogenetic tree constructed by UPGMA method in which there are Multiple Alignment using Progressive Method. The results concluded that the phylogenetic tree formation kinship ebola virus types that kind of Tai Forest ebolavirus close to Bundibugyo ebolavirus but the layout state ebola epidemic spread far apart. The genetic distance for this type of Bundibugyo ebolavirus with Tai Forest ebolavirus is 0.3725. Type Tai Forest ebolavirus similar to Bundibugyo ebolavirus not inuenced by the proximity of the area ebola epidemic spread.

  13. Molecular docking based screening of compounds against VP40 from Ebola virus.

    PubMed

    M Alam El-Din, Hanaa; A Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif

    2016-01-01

    Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process.

  14. Molecular docking based screening of compounds against VP40 from Ebola virus

    PubMed Central

    M Alam El-Din, Hanaa; A. Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif

    2016-01-01

    Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process. PMID:28149054

  15. Ebola virus disease - pathogenesis, clinical presentation and management.

    PubMed

    Bociaga-Jasik, Monika; Piatek, Anna; Garlicki, Aleksander

    2014-01-01

    On March 2014 the WHO notified the outbreak of Ebola virus disease (EVD) in Guinea, and infection quickly spread to another West African countries including Sierra Leone, Liberia and Nigeria. Current outbreak is the largest in the history, since discovery of the virus in 1976. Imported cases and infection among healthcare workers in Europe and United States have elucidated necessity of better education of medical staff. Clinicians must be familiar with clinical picture of EVD, differential diagnosis and therapeutic approach, as rapid diagnosis and prompt introduction of supportive therapy can have a significant impact on the survival.

  16. Clinical Management of Ebola Virus Disease in the United States and Europe.

    PubMed

    Uyeki, Timothy M; Mehta, Aneesh K; Davey, Richard T; Liddell, Allison M; Wolf, Timo; Vetter, Pauline; Schmiedel, Stefan; Grünewald, Thomas; Jacobs, Michael; Arribas, Jose R; Evans, Laura; Hewlett, Angela L; Brantsaeter, Arne B; Ippolito, Giuseppe; Rapp, Christophe; Hoepelman, Andy I M; Gutman, Julie

    2016-02-18

    Available data on the characteristics of patients with Ebola virus disease (EVD) and clinical management of EVD in settings outside West Africa, as well as the complications observed in those patients, are limited. We reviewed available clinical, laboratory, and virologic data from all patients with laboratory-confirmed Ebola virus infection who received care in U.S. and European hospitals from August 2014 through December 2015. A total of 27 patients (median age, 36 years [range, 25 to 75]) with EVD received care; 19 patients (70%) were male, 9 of 26 patients (35%) had coexisting conditions, and 22 (81%) were health care personnel. Of the 27 patients, 24 (89%) were medically evacuated from West Africa or were exposed to and infected with Ebola virus in West Africa and had onset of illness and laboratory confirmation of Ebola virus infection in Europe or the United States, and 3 (11%) acquired EVD in the United States or Europe. At the onset of illness, the most common signs and symptoms were fatigue (20 patients [80%]) and fever or feverishness (17 patients [68%]). During the clinical course, the predominant findings included diarrhea, hypoalbuminemia, hyponatremia, hypokalemia, hypocalcemia, and hypomagnesemia; 14 patients (52%) had hypoxemia, and 9 (33%) had oliguria, of whom 5 had anuria. Aminotransferase levels peaked at a median of 9 days after the onset of illness. Nearly all the patients received intravenous fluids and electrolyte supplementation; 9 (33%) received noninvasive or invasive mechanical ventilation; 5 (19%) received continuous renal-replacement therapy; 22 (81%) received empirical antibiotics; and 23 (85%) received investigational therapies (19 [70%] received at least two experimental interventions). Ebola viral RNA levels in blood peaked at a median of 7 days after the onset of illness, and the median time from the onset of symptoms to clearance of viremia was 17.5 days. A total of 5 patients died, including 3 who had respiratory and renal

  17. Prevalence and Current Approaches of Ebola Virus Disease in ASEAN Countries.

    PubMed

    Rajiah, Kingston; San, Kok Pui; Jiun, Ting Wei; May, Tam Ai; Neng, Yap Chan; Seng, Hee Kah; Soon, Lim Jing; Pazooki, Nazanin

    2015-09-01

    As indicated by the World Health Organization as of year 2014, around 10,000 people have been influenced with Ebola infection. The episode of Ebola in African locale is courged with a high death rate. Notwithstanding, in the United States, people influenced by Ebola have been given brilliant wellbeing offices, as the U.S. is one of the highest nations that have taken sterner wellbeing measures and principles against Ebola. Aside from the U.S., individuals in Asia, where billions live in indigence and general wellbeing frameworks are frequently extremely powerless, are under more serious danger of the Ebola infection. Despite the fact that nations like Singapore, Malaysia, South Korea and Japan can take stretched out measures to battle against the infection, nations like Philippines and Indonesia have unfathomable quantities of poor who may be incredibly influenced by a conceivable episode. At this moment, the chances that Asia will take a critical hit from the Ebola infection appear to be genuinely little. Yet, while it is far-fetched that Asia will encounter a real flare-up, genuine concerns stay about the infection coming to urban communities like Hong Kong, Beijing, Shanghai and Singapore through their worldwide airplane terminals. Wellbeing priests from the Association of Southeast Asian Nations (ASEAN) reported key measures not long ago to keep the Ebola plague from coming to the locale and to backing influenced nations. This article accordingly will concentrate on the prevalence and current approaches of Ebola Virus Disease in ASEAN nations which is the need of the hour.

  18. Prevalence and Current Approaches of Ebola Virus Disease in ASEAN Countries

    PubMed Central

    San, Kok Pui; Jiun, Ting Wei; May, Tam Ai; Neng, Yap Chan; Seng, Hee Kah; Soon, Lim Jing; Pazooki, Nazanin

    2015-01-01

    As indicated by the World Health Organization as of year 2014, around 10,000 people have been influenced with Ebola infection. The episode of Ebola in African locale is courged with a high death rate. Notwithstanding, in the United States, people influenced by Ebola have been given brilliant wellbeing offices, as the U.S. is one of the highest nations that have taken sterner wellbeing measures and principles against Ebola. Aside from the U.S., individuals in Asia, where billions live in indigence and general wellbeing frameworks are frequently extremely powerless, are under more serious danger of the Ebola infection. Despite the fact that nations like Singapore, Malaysia, South Korea and Japan can take stretched out measures to battle against the infection, nations like Philippines and Indonesia have unfathomable quantities of poor who may be incredibly influenced by a conceivable episode. At this moment, the chances that Asia will take a critical hit from the Ebola infection appear to be genuinely little. Yet, while it is far-fetched that Asia will encounter a real flare-up, genuine concerns stay about the infection coming to urban communities like Hong Kong, Beijing, Shanghai and Singapore through their worldwide airplane terminals. Wellbeing priests from the Association of Southeast Asian Nations (ASEAN) reported key measures not long ago to keep the Ebola plague from coming to the locale and to backing influenced nations. This article accordingly will concentrate on the prevalence and current approaches of Ebola Virus Disease in ASEAN nations which is the need of the hour. PMID:26500929

  19. Ebola and Marburg virus vaccines.

    PubMed

    Reynolds, Pierce; Marzi, Andrea

    2017-08-01

    The filoviruses, Ebola virus (EBOV), and Marburg virus (MARV), are among the most pathogenic viruses known to man and the causative agents of viral hemorrhagic fever outbreaks in Africa with case fatality rates of up to 90%. Nearly 30,000 infections were observed in the latest EBOV epidemic in West Africa; previous outbreaks were much smaller, typically only affecting less than a few hundred people. Compared to other diseases such as AIDS or Malaria with millions of cases annually, filovirus hemorrhagic fever (FHF) is one of the neglected infectious diseases. There are no licensed vaccines or therapeutics available to treat EBOV and MARV infections; therefore, these pathogens can only be handled in maximum containment laboratories and are classified as select agents. Under these limitations, a very few laboratories worldwide conducted basic research and countermeasure development for EBOV and MARV since their respective discoveries in 1967 (MARV) and 1976 (EBOV). In this review, we discuss several vaccine platforms against EBOV and MARV, which have been assessed for their protective efficacy in animal models of FHF. The focus is on the most promising approaches, which were accelerated in clinical development (phase I-III trials) during the EBOV epidemic in West Africa.

  20. Assessment of ebola virus disease, health care infrastructure, and preparedness - four counties,Southeastern Liberia, august 2014.

    PubMed

    Forrester, Joseph D; Pillai, Satish K; Beer, Karlyn D; Neatherlin, John; Massaquoi, Moses; Nyenswah, Tolbert G; Montgomery, Joel M; De Cock, Kevin

    2014-10-10

    Ebola virus disease (Ebola) is a multisystem disease caused by a virus of the genus Ebolavirus. In late March 2014, Ebola cases were described in Liberia, with epicenters in Lofa County and later in Montserrado County. While information about case burden and health care infrastructure was available for the two epicenters, little information was available about remote counties in southeastern Liberia. Over 9 days, August 6-14, 2014, Ebola case burden, health care infrastructure, and emergency preparedness were assessed in collaboration with the Liberian Ministry of Health and Social Welfare in four counties in southeastern Liberia: Grand Gedeh, Grand Kru, River Gee, and Maryland. Data were collected by health care facility visits to three of the four county referral hospitals and by unstructured interviews with county and district health officials, hospital administrators, physicians, nurses, physician assistants, and health educators in all four counties. Local burial practices were discussed with county officials, but no direct observation of burial practices was conducted. Basic information about Ebola surveillance and epidemiology, case investigation, contact tracing, case management, and infection control was provided to local officials.

  1. Clinical inquiries regarding Ebola virus disease received by CDC--United States, July 9-November 15, 2014.

    PubMed

    Karwowski, Mateusz P; Meites, Elissa; Fullerton, Kathleen E; Ströher, Ute; Lowe, Luis; Rayfield, Mark; Blau, Dianna M; Knust, Barbara; Gindler, Jacqueline; Van Beneden, Chris; Bialek, Stephanie R; Mead, Paul; Oster, Alexandra M

    2014-12-12

    Since early 2014, there have been more than 6,000 reported deaths from Ebola virus disease (Ebola), mostly in Guinea, Liberia, and Sierra Leone. On July 9, 2014, CDC activated its Emergency Operations Center for the Ebola outbreak response and formalized the consultation service it had been providing to assist state and local public health officials and health care providers evaluate persons in the United States thought to be at risk for Ebola. During July 9-November 15, CDC responded to clinical inquiries from public health officials and health care providers from 49 states and the District of Columbia regarding 650 persons thought to be at risk. Among these, 118 (18%) had initial signs or symptoms consistent with Ebola and epidemiologic risk factors placing them at risk for infection, thereby meeting the definition of persons under investigation (PUIs). Testing was not always performed for PUIs because alternative diagnoses were made or symptoms resolved. In total, 61 (9%) persons were tested for Ebola virus, and four, all of whom met PUI criteria, had laboratory-confirmed Ebola. Overall, 490 (75%) inquiries concerned persons who had neither traveled to an Ebola-affected country nor had contact with an Ebola patient. Appropriate medical evaluation and treatment for other conditions were noted in some instances to have been delayed while a person was undergoing evaluation for Ebola. Evaluating and managing persons who might have Ebola is one component of the overall approach to domestic surveillance, the goal of which is to rapidly identify and isolate Ebola patients so that they receive appropriate medical care and secondary transmission is prevented. Health care providers should remain vigilant and consult their local and state health departments and CDC when assessing ill travelers from Ebola-affected countries. Most of these persons do not have Ebola; prompt diagnostic assessments, laboratory testing, and provision of appropriate care for other conditions are

  2. Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection.

    PubMed

    Cilloniz, Cristian; Ebihara, Hideki; Ni, Chester; Neumann, Gabriele; Korth, Marcus J; Kelly, Sara M; Kawaoka, Yoshihiro; Feldmann, Heinz; Katze, Michael G

    2011-09-01

    Ebola virus is the etiologic agent of a lethal hemorrhagic fever in humans and nonhuman primates with mortality rates of up to 90%. Previous studies with Zaire Ebola virus (ZEBOV), mouse-adapted virus (MA-ZEBOV), and mutant viruses (ZEBOV-NP(ma), ZEBOV-VP24(ma), and ZEBOV-NP/VP24(ma)) allowed us to identify the mutations in viral protein 24 (VP24) and nucleoprotein (NP) responsible for acquisition of high virulence in mice. To elucidate specific molecular signatures associated with lethality, we compared global gene expression profiles in spleen samples from mice infected with these viruses and performed an extensive functional analysis. Our analysis showed that the lethal viruses (MA-ZEBOV and ZEBOV-NP/VP24(ma)) elicited a strong expression of genes 72 h after infection. In addition, we found that although the host transcriptional response to ZEBOV-VP24(ma) was nearly the same as that to ZEBOV-NP/VP24(ma), the contribution of a mutation in the NP gene was required for a lethal phenotype. Further analysis indicated that one of the most relevant biological functions differentially regulated by the lethal viruses was the inflammatory response, as was the induction of specific metalloproteinases, which were present in our newly identify functional network that was associated with Ebola virus lethality. Our results suggest that this dysregulated proinflammatory response increased the severity of disease. Consequently, the newly discovered molecular signature could be used as the starting point for the development of new drugs and therapeutics. To our knowledge, this is the first study that clearly defines unique molecular signatures associated with Ebola virus lethality.

  3. Biochemical and Functional Characterization of the Ebola Virus VP24 Protein: Implications for a Role in Virus Assembly and Budding

    PubMed Central

    Han, Ziying; Boshra, Hani; Sunyer, J. Oriol; Zwiers, Susan H.; Paragas, Jason; Harty, Ronald N.

    2003-01-01

    The VP24 protein of Ebola virus is believed to be a secondary matrix protein and minor component of virions. In contrast, the VP40 protein of Ebola virus is the primary matrix protein and the most abundant virion component. The structure and function of VP40 have been well characterized; however, virtually nothing is known regarding the structure and function of VP24. Wild-type and mutant forms of VP24 were expressed in mammalian cells to gain a better understanding of the biochemical and functional nature of this viral protein. Results from these experiments demonstrated that (i) VP24 localizes to the plasma membrane and perinuclear region in both transfected and Ebola virus-infected cells, (ii) VP24 associates strongly with lipid membranes, (iii) VP24 does not contain N-linked sugars when expressed alone in mammalian cells, (iv) VP24 can oligomerize when expressed alone in mammalian cells, (v) progressive deletions at the N terminus of VP24 resulted in a decrease in oligomer formation and a concomitant increase in the formation of high-molecular-weight aggregates, and (vi) VP24 was present in trypsin-resistant virus like particles released into the media covering VP24-transfected cells. These data indicate that VP24 possesses structural features commonly associated with viral matrix proteins and that VP24 may have a role in virus assembly and budding. PMID:12525613

  4. Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain.

    PubMed

    Marzi, Andrea; Feldmann, Friederike; Hanley, Patrick W; Scott, Dana P; Günther, Stephan; Feldmann, Heinz

    2015-10-01

    In late 2013, the largest documented outbreak of Ebola hemorrhagic fever started in Guinea and has since spread to neighboring countries, resulting in almost 27,000 cases and >11,000 deaths in humans. In March 2014, Ebola virus (EBOV) was identified as the causative agent. This study compares the pathogenesis of a new EBOV strain, Makona, which was isolated in Guinea in 2014 with the prototype strain from the 1976 EBOV outbreak in the former Zaire. Both strains cause lethal disease in cynomolgus macaques with similar pathologic changes and hallmark features of Ebola hemorrhagic fever. However, disease progression was delayed in EBOV-Makona-infected animals, suggesting decreased rather than increased virulence of this most recent EBOV strain.

  5. The etiology of Ebola virus disease-like illnesses in Ebola virusnegative patients from Sierra Leone.

    PubMed

    Li, Wen-Gang; Chen, Wei-Wei; Li, Lei; Ji, Dong; Ji, Ying-Jie; Li, Chen; Gao, Xu-Dong; Wang, Li-Fu; Zhao, Min; Duan, Xue-Zhang; Duan, Hui-Juan

    2016-05-10

    During the 2014 Ebola virus disease (EVD) outbreak, less than half of EVD-suspected cases were laboratory tested as Ebola virus (EBOV)-negative, but disease identity remained unknown. In this study we investigated the etiology of EVD-like illnesses in EBOV-negative cases. From November 13, 2014 to March 16, 2015, EVD-suspected patients were admitted to Jui Government Hospital and assessed for EBOV infection by real-time PCR. Of 278 EBOV negative patients, 223 (80.21%), 142 (51.08%), 123 (44.24%), 114 (41.01%), 59 (21.22%), 35 (12.59%), and 12 (4.32%) reported fever, headache, joint pain, fatigue, nausea/vomiting, diarrhea, hemorrhage, respectively. Furthermore, 121 (43.52%), 44 (15.83%), 36 (12.95%), 33 (11.87%), 23 (8.27%), 10 (3.60%) patients were diagnosed as infection with malaria, HIV, Lassa fever, tuberculosis, yellow fever, and pneumonia, respectively. No significant differences in clinical features and symptoms were found between non-EVD and EVD patients. To the best of our knowledge, the present study is the first to explore the etiology of EVD-like illnesses in uninfected patients in Sierra Leone, highlighting the importance of accurate diagnosis to EVD confirmation.

  6. Modeling Ebola Virus Genome Replication and Transcription with Minigenome Systems.

    PubMed

    Cressey, Tessa; Brauburger, Kristina; Mühlberger, Elke

    2017-01-01

    In this chapter, we describe the minigenome system for Ebola virus (EBOV), which reconstitutes EBOV polymerase activity in cells and can be used to model viral genome replication and transcription. This protocol comprises all steps including cell culture, plasmid preparation, transfection, and luciferase reporter assay readout.

  7. Household Transmission of Ebola Virus: risks and preventive factors, Freetown, Sierra Leone, 2015.

    PubMed

    Reichler, Mary R; Bangura, James; Bruden, Dana; Keimbe, Charles; Duffy, Nadia; Thomas, Harold; Knust, Barbara; Farmar, Ishmail; Nichols, Erin; Jambai, Amara; Morgan, Oliver; Hennessy, Thomas

    2018-04-06

    Knowing risk factors for household transmission of Ebola virus is important to guide preventive measures during Ebola outbreaks. We enrolled all confirmed persons with Ebola who were the first case in a household from December 2014-April 2015 in Freetown, Sierra Leone, and their household contacts. Cases and contacts were interviewed, contacts followed prospectively through the 21-day incubation period, and secondary cases confirmed by laboratory testing. We enrolled 150 index Ebola cases and 838 contacts; 83 (9.9%) contacts developed Ebola during 21-day follow-up. In multivariable analysis, risk factors for transmission included index case death in the household, Ebola symptoms but no reported fever, age <20 years, more days with wet symptoms; and providing care to the index case (P<0.01 for each). Protective factors included avoiding the index case after illness onset and a piped household drinking water source (P<0.01 for each). To reduce Ebola transmission, communities should rapidly identify and follow-up all household contacts; isolate those with Ebola symptoms, including those without reported fever; and consider closer monitoring of contacts who provided care to a case. Households could consider efforts to minimize risk by designating one care provider for ill persons with all others avoiding the suspected case.

  8. Management of Microbiological Samples in a Confirmed Case of Ebola Virus Disease: Constraints and Limitations.

    PubMed

    Hogardt, Michael; Wolf, Timo; Kann, Gerrit; Brodt, Hans-Reinhard; Brandt, Christian; Keppler, Oliver T; Wicker, Sabine; Zacharowski, Kai; Gottschalk, René; Becker, Stephan; Kempf, Volkhard A J

    2015-11-01

    In light of the recent Ebola virus outbreak, it has to be realized that besides medical treatment, precise algorithms for the management of complicating microbial infections are mandatory for Ebola virus disease (EVD) patients. While the necessity of such diagnostics is apparent, practical details are much less clear. Our approach, established during the treatment of an EVD patient at the University Hospital in Frankfurt am Main, Germany, provides a roadmap for reliable and safe on-site microbiological testing. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Implementation of a National Semen Testing and Counseling Program for Male Ebola Survivors - Liberia, 2015-2016.

    PubMed

    Purpura, Lawrence J; Soka, Moses; Baller, April; White, Stephen; Rogers, Emerson; Choi, Mary J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Vanderende, Kristin; Kollie, Jomah; Dweh, Straker; Bemah, Philip; Christie, Athalia; Ladele, Victor; Subah, Onyekachi; Pillai, Satish; Mugisha, Margaret; Kpaka, Jonathan; Nichol, Stuart; Ströher, Ute; Abad, Neetu; Mettee-Zarecki, Shauna; Bailey, Jeff A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert; Gasasira, Alex; Knust, Barbara; Williams, Desmond

    2016-09-16

    According to World Health Organization (WHO) data, the Ebola virus disease (Ebola) outbreak that began in West Africa in 2014 has resulted in 28,603 cases and 11,301 deaths (1). In March 2015, epidemiologic investigation and genetic sequencing in Liberia implicated sexual transmission from a male Ebola survivor, with Ebola virus detected by reverse transcription-polymerase chain reaction (RT-PCR) 199 days after symptom onset (2,3), far exceeding the 101 days reported from an earlier Ebola outbreak (4). In response, WHO released interim guidelines recommending that all male survivors, in addition to receiving condoms and sexual risk reduction counseling at discharge from an Ebola treatment unit (ETU), be offered semen testing for Ebola virus RNA by RT-PCR 3 months after disease onset, and every month thereafter until two consecutive semen specimens collected at least 1 week apart test negative for Ebola virus RNA (5). Male Ebola survivors should also receive counseling to promote safe sexual practices until their semen twice tests negative. When these recommendations were released, testing of semen was not widely available in Liberia. Challenges in establishing and operating the first nationwide semen testing and counseling program for male Ebola survivors included securing sufficient resources for the program, managing a public health semen testing program in the context of ongoing research studies that were also collecting and screening semen, identification of adequate numbers of trained counselors and appropriate health communication messages for the program, overcoming Ebola survivor-associated stigma, identification and recruitment of male Ebola survivors, and operation of mobile teams.

  10. Ebola Virus Training: A Needs Assessment and Gap Analysis.

    PubMed

    Yeskey, Kevin; Hughes, Joseph; Galluzzo, Betsy; Jaitly, Nina; Remington, James; Weinstock, Deborah; Lee Pearson, Joy; Rosen, Jonathan D

    In response to the 2014 Ebola virus disease outbreak, the Worker Training Program embarked on an assessment of existing training for those at risk for exposure to the virus. Searches of the recent peer-reviewed literature were conducted for descriptions of relevant training. Federal guidance issued during 2015 was also reviewed. Four stakeholder meetings were conducted with representatives from health care, academia, private industry, and public health to discuss issues associated with ongoing training. Our results revealed few articles about training that provided sufficient detail to serve as models. Training programs struggled to adjust to frequently updated federal guidance. Stakeholders commented that most healthcare training focused solely on infection control, and there was an absence of employee health-related training for non-healthcare providers. Challenges to ongoing training included funding and organizational complacency. Best practices were noted where management and employees planned training cooperatively and where infection control, employee health, and hospital emergency managers worked together on the development of protective guidance. We conclude that sustainable training for infectious disease outbreaks requires annual funding, full support from organizational management, input from all stakeholders, and integration of infection control, emergency management, and employee health when implementing guidance and training.

  11. Ebola virus disease in Africa: epidemiology and nosocomial transmission.

    PubMed

    Shears, P; O'Dempsey, T J D

    2015-05-01

    The 2014 Ebola outbreak in West Africa, primarily affecting Guinea, Sierra Leone, and Liberia, has exceeded all previous Ebola outbreaks in the number of cases and in international response. There have been 20 significant outbreaks of Ebola virus disease in Sub-Saharan Africa prior to the 2014 outbreak, the largest being that in Uganda in 2000, with 425 cases and a mortality of 53%. Since the first outbreaks in Sudan and Zaire in 1976, transmission within health facilities has been of major concern, affecting healthcare workers and acting as amplifiers of spread into the community. The lack of resources for infection control and personal protective equipment are the main reasons for nosocomial transmission. Local strategies to improve infection control, and a greater understanding of local community views on the disease, have helped to bring outbreaks under control. Recommendations from previous outbreaks include improved disease surveillance to enable more rapid health responses, the wider availability of personal protective equipment, and greater international preparedness. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Clinical Laboratory Values as Early Indicators of Ebola Virus Infection in Nonhuman Primates.

    PubMed

    Reisler, Ronald B; Yu, Chenggang; Donofrio, Michael J; Warren, Travis K; Wells, Jay B; Stuthman, Kelly S; Garza, Nicole L; Vantongeren, Sean A; Donnelly, Ginger C; Kane, Christopher D; Kortepeter, Mark G; Bavari, Sina; Cardile, Anthony P

    2017-08-01

    The Ebola virus (EBOV) outbreak in West Africa during 2013-2016 demonstrated the need to improve Ebola virus disease (EVD) diagnostics and standards of care. This retrospective study compared laboratory values and clinical features of 3 nonhuman primate models of lethal EVD to assess associations with improved survival time. In addition, the study identified laboratory values useful as predictors of survival, surrogates for EBOV viral loads, and triggers for initiation of therapeutic interventions in these nonhuman primate models. Furthermore, the data support that, in nonhuman primates, the Makona strain of EBOV may be less virulent than the Kikwit strain of EBOV. The applicability of these findings as potential diagnostic and management tools for EVD in humans warrants further investigation.

  13. Meeting the Challenge of Ebola Virus Disease in a Holistic Manner by Taking into Account Socioeconomic and Cultural Factors: The Experience of West Africa

    PubMed Central

    Phua, Kai-Lit

    2015-01-01

    Even if an effective vaccine against Ebola virus disease (EVD) becomes available, the challenges posed by this disease are complex. Certain socioeconomic and cultural factors have been linked to recent outbreaks of EVD in West Africa. The outbreaks revealed widespread ignorance by laypersons of EVD etiology, mode of transmission, and personal protective measures that can be taken. Lack of trust in the authorities, virus infection during the preparation of “bushmeat” for human consumption, traditional funerary practices, and relatively free flow of goods and people between regions and across international borders may have facilitated the spread of EVD and hindered outbreak control efforts. Inadequacy in health systems of the most seriously affected countries, such as Guinea, Sierra Leone, and Liberia, is also an important factor. The objectives of this article are to argue that EVD should be evaluated in a systematic and holistic manner and that this can be done through the use of the modified Haddon Matrix. PMID:26604778

  14. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    PubMed

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  15. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function.

    PubMed

    García-Dorival, Isabel; Wu, Weining; Dowall, Stuart; Armstrong, Stuart; Touzelet, Olivier; Wastling, Jonathan; Barr, John N; Matthews, David; Carroll, Miles; Hewson, Roger; Hiscox, Julian A

    2014-11-07

    Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.

  16. Responding to the Potential of Ebola Virus Disease (EVD) Importation into Malaysia

    PubMed Central

    WAN MOHAMED NOOR, Wan Noraini; SANDHU, Sukhvinder Singh; AHMAD MAHIR, Husna Maizura; KURUP, Devan; RUSLI, Norhayati; SAAT, Zainah; CHONG, Chee Kheong; SULAIMAN, Lokman Hakim; ABDULLAH, Noor Hisham

    2014-01-01

    The current Ebola outbreak, which is the first to affect West African countries, has been declared to have met the conditions for a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO). Thus, the Ministry of Health (MOH) of Malaysia has taken steps to strengthen and enhanced the five core components of preparedness and response to mitigate the outbreak. The National Crisis Preparedness and Response Centre (CPRC) commands, controls and coordinates the preparedness and response plans for disasters, outbreaks, crises and emergencies (DOCE) related to health in a centralised way. Through standardised case definition and mandatory notification of Ebola by public and private practitioners, surveillance of Ebola is made possible. Government hospitals and laboratories have been identified to manage and diagnose Ebola virus infections, and medical staff members have been trained to handle an Ebola outbreak, with emphasis on strict infection prevention and control practices. Monitoring of the points of entry, focusing on travellers and students visiting or coming from West African countries is made possible by interagency collaborations. To alleviate the public’s anxiety, effective risk communications are being delivered through various channels. With experience in past outbreak control, the MOH’s preparedness and response plans are in place to abate an Ebola outbreak. PMID:25897276

  17. Recent advances in vaccine development against Ebola threat as bioweapon.

    PubMed

    Gera, Prachi; Gupta, Ankit; Verma, Priyanka; Singh, Joginder; Gupta, Jeena

    2017-09-01

    With the increasing rate of Ebola virus appearance, with multiple natural outbreaks of Ebola hemorrhagic fever, it is worthy of consideration as bioweapon by anti-national groups. Further, with the non-availability of the vaccines against Ebola virus, concerns about the public health emerge. In this regard, this review summarizes the structure, genetics and potential of Ebola virus to be used as a bioweapon. We highlight the recent advances in the treatment strategies and vaccine development against Ebola virus. The understanding of these aspects might lead to effective treatment practices which can be applied during the future outbreaks of Ebola.

  18. Electron Microscopy of Ebola Virus-Infected Cells.

    PubMed

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  19. [Epidemiological aspects of Ebola virus disease in Guinea (december 2013-april 2016)].

    PubMed

    Migliani, R; Keïta, S; Diallo, B; Mesfin, S; Perea, W; Dahl, B; Rodier, G

    2016-10-01

    Ebola Zaire species variant Makona between its emergence in December 2013 and April 2016, resulted in an epidemic of Guinea importance and unprecedented gravity with 3814 reported cases of which 3358 were confirmed (88.0%) and 2544 were died (66.7%). The epidemic has evolved in phases: a silent phase without identification of all fatal cases until February 2014; a first outbreak from March 2014, when the alarm is raised and the virus detected, which lasted until July 2014; a second increase, which was the most intense, from August 2014 to January 2015 focused primarily on the forest Guinea; and a final increase from February 2015 centered on lower Guinea and the capital Conakry. Adapting strategies in 2015 (initiative "Zero Ebola in 60 days" active case search and suspicious deaths and awareness of active prefectures, microbanding the last affected communities and raking around these localities) and ring vaccination of contacts around confirmed cases has allowed to gradually control the main outbreak in October 2015. But a survivor was originally resurgence in forest areas between March and April 2016 with 10 cases including 8 deaths. The epidemic has particularly affected the forest Guinea region (44% and 48% of Guinean cases and deaths), elderly women (≥ 50 years), and health professionals (211 cases including 115 deaths); however, almost one-third of the patients (32.6%) was not provided supportive care in the Ebola centers. The epidemic is currently marked by the resurgence of small foci, from excreting subjects cured of the virus who have been controlled so far successfully. The survivors are the subject of special attention. It is necessary to learn lessons from the response to better prepare for the future, to improve knowledge about the natural history of the Ebola virus disease, and to rethink communication in this regard with the public and its leaders.

  20. Incubation period of ebola hemorrhagic virus subtype zaire.

    PubMed

    Eichner, Martin; Dowell, Scott F; Firese, Nina

    2011-06-01

    Ebola hemorrhagic fever has killed over 1300 people, mostly in equatorial Africa. There is still uncertainty about the natural reservoir of the virus and about some of the factors involved in disease transmission. Until now, a maximum incubation period of 21 days has been assumed. We analyzed data collected during the Ebola outbreak (subtype Zaire) in Kikwit, Democratic Republic of the Congo, in 1995 using maximum likelihood inference and assuming a log-normally distributed incubation period. The mean incubation period was estimated to be 12.7 days (standard deviation 4.31 days), indicating that about 4.1% of patients may have incubation periods longer than 21 days. If the risk of new cases is to be reduced to 1% then 25 days should be used when investigating the source of an outbreak, when determining the duration of surveillance for contacts, and when declaring the end of an outbreak.

  1. Infectious Disease Physician Assessment of Hospital Preparedness for Ebola Virus Disease.

    PubMed

    Polgreen, Philip M; Santibanez, Scott; Koonin, Lisa M; Rupp, Mark E; Beekmann, Susan E; Del Rio, Carlos

    2015-09-01

    Background.  The first case of Ebola diagnosed in the United States and subsequent cases among 2 healthcare workers caring for that patient highlighted the importance of hospital preparedness in caring for Ebola patients. Methods.  From October 21, 2014 to November 11, 2014, infectious disease physicians who are part of the Emerging Infections Network (EIN) were surveyed about current Ebola preparedness at their institutions. Results.  Of 1566 EIN physician members, 869 (55.5%) responded to this survey. Almost all institutions represented in this survey showed a substantial degree of preparation for the management of patients with suspected and confirmed Ebola virus disease. Despite concerns regarding shortages of personal protective equipment, approximately two thirds of all respondents reported that their facilities had sufficient and ready availability of hoods, full body coveralls, and fluid-resistant or impermeable aprons. The majority of respondents indicated preference for transfer of Ebola patients to specialized treatment centers rather than caring for them locally. In general, we found that larger hospitals and teaching hospitals reported higher levels of preparedness. Conclusions.  Prior to the Centers for Disease Control and Prevention's plan for a tiered approach that identified specific roles for frontline, assessment, and designated treatment facilities, our query of infectious disease physicians suggested that healthcare facilities across the United States were making preparations for screening, diagnosis, and treatment of Ebola patients. Nevertheless, respondents from some hospitals indicated that they were relatively unprepared.

  2. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model.

    PubMed

    Smither, Sophie J; Eastaugh, Lin S; Steward, Jackie A; Nelson, Michelle; Lenk, Robert P; Lever, Mark S

    2014-04-01

    Filoviruses cause disease with high case fatality rates and are considered biological threat agents. Licensed post-exposure therapies that can be administered by the oral route are desired for safe and rapid distribution and uptake in the event of exposure or outbreaks. Favipiravir or T-705 has broad antiviral activity and has already undergone phase II and is undergoing phase III clinical trials for influenza. Here we report the first use of T-705 against Ebola virus. T-705 gave 100% protection against aerosol Ebola virus E718 infection; protection was shown in immune-deficient mice after 14 days of twice-daily dosing. T-705 was also shown to inhibit Ebola virus infection in cell culture. T-705 is likely to be licensed for use against influenza in the near future and could also be used with a new indication for filovirus infection. Copyright © 2014. Published by Elsevier B.V.

  3. Ebola: Facing a New Transboundary Animal Disease?

    PubMed Central

    Feldmann, F.; Feldmann, H.

    2016-01-01

    Ebola viruses are zoonotic pathogens with the potential of causing severe viral hemorrhagic fever in humans and nonhuman primates. Bats have been identified as a reservoir for Ebola viruses but it remains unclear if transmission to an end host involves intermediate hosts. Recently, one of the Ebola species has been found in Philippine pigs raising concerns regarding animal health and food safety. Diagnostics have so far focused on human application, but enhanced pig surveillance and diagnostics, particularly in Asia, for Ebola virus infections seem to be needed to establish reasonable guidelines for public and animal health and food safety. Livestock vaccination against Ebola seems currently not justified but proper preparedness may include experimental vaccine approaches. PMID:23689898

  4. The 2014 Ebola virus disease outbreak in West Africa.

    PubMed

    Gatherer, Derek

    2014-08-01

    On 23 March 2014, the World Health Organization issued its first communiqué on a new outbreak of Ebola virus disease (EVD), which began in December 2013 in Guinée Forestière (Forested Guinea), the eastern sector of the Republic of Guinea. Located on the Atlantic coast of West Africa, Guinea is the first country in this geographical region in which an outbreak of EVD has occurred, leaving aside the single case reported in Ivory Coast in 1994. Cases have now also been confirmed across Guinea as well as in the neighbouring Republic of Liberia. The appearance of cases in the Guinean capital, Conakry, and the transit of another case through the Liberian capital, Monrovia, presents the first large urban setting for EVD transmission. By 20 April 2014, 242 suspected cases had resulted in a total of 147 deaths in Guinea and Liberia. The causative agent has now been identified as an outlier strain of Zaire Ebola virus. The full geographical extent and degree of severity of the outbreak, its zoonotic origins and its possible spread to other continents are sure to be subjects of intensive discussion over the next months. © 2014 The Authors.

  5. Rapid detection and quantification of Ebola Zaire virus by one-step real-time quantitative reverse transcription-polymerase chain reaction.

    PubMed

    Ro, Young-Tae; Ticer, Anysha; Carrion, Ricardo; Patterson, Jean L

    2017-04-01

    Given that Ebola virus causes severe hemorrhagic fever in humans with mortality rates as high as 90%, rapid and accurate detection of this virus is essential both for controlling infection and preventing further transmission. Here, a one-step qRT-PCR assay for rapid and quantitative detection of an Ebola Zaire strain using GP, VP24 or VP40 genes as a target is introduced. Routine assay conditions for hydrolysis probe detection were established from the manufacturer's protocol used in the assays. The analytical specificity and sensitivity of each assay was evaluated using in vitro synthesized viral RNA transcripts. The assays were highly specific for the RNA transcripts, no cross-reactivity being observed among them. The limits of detection of the assays ranged from 10 2 to 10 3 copies per reaction. The assays were also evaluated using viral RNAs extracted from cell culture-propagated viruses (Ebola Zaire, Sudan and Reston strains), confirming that they are gene- and strain-specific. The RT-PCR assays detected viral RNAs in blood samples from virus-infected animal, suggesting that they can be also a useful method for identifying Ebola virus in clinical samples. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  6. [Study of the functional role of mutation in the guinea pig-adapted Ebola virus genome on a Drosophila melanogaster model].

    PubMed

    Shelemba-Chepurnova, A A; Omel'ianchuk, L V; Chepurnov, A A

    2011-01-01

    Ebola virus virulence in guinea pigs, which appears through virus adaptation to this animal host, correlates with substitutions in the gene encoding vp24 protein. In particular, the substitution His-->Tyr186 was found when obtaining strain 8 ms. An attempt was made to clarify the functional role of this substitution in a transgenic fruit fly model. Using the drosophila transformation technique provided transgenic strains that contained genomic insertions of wild-type Ebola virus vp24 gene and the mutant gene with the His-->Tyr substitution at the above position. Thus, the drosophila strains carrying the sequences encoding for the vp24 proteins of Ebola virus Zaire and 8 ms in pUAST vector were obtained. This makes it possible to study the expression of transgenic constructs in various D. melanogaster organs and tissues.

  7. Development of a Sensitive and Specific Serological Assay Based on Luminex Technology for Detection of Antibodies to Zaire Ebola Virus

    PubMed Central

    Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S.; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine

    2016-01-01

    ABSTRACT The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. PMID:27795350

  8. Development of a Sensitive and Specific Serological Assay Based on Luminex Technology for Detection of Antibodies to Zaire Ebola Virus.

    PubMed

    Ayouba, Ahidjo; Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine

    2017-01-01

    The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. Copyright © 2016 American Society for Microbiology.

  9. Virus-encoded miRNAs in Ebola virus disease.

    PubMed

    Duy, Janice; Honko, Anna N; Altamura, Louis A; Bixler, Sandra L; Wollen-Roberts, Suzanne; Wauquier, Nadia; O'Hearn, Aileen; Mucker, Eric M; Johnson, Joshua C; Shamblin, Joshua D; Zelko, Justine; Botto, Miriam A; Bangura, James; Coomber, Moinya; Pitt, M Louise; Gonzalez, Jean-Paul; Schoepp, Randal J; Goff, Arthur J; Minogue, Timothy D

    2018-04-24

    Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.

  10. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm.

    PubMed

    Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-09-26

    consistently linked with fatal disease outcome. Previous findings have demonstrated that specific T-cell subsets are key contributors to the onset of a cytokine storm. In this study, we investigated the role of Tim-1, a T-cell-receptor-independent trigger of T-cell activation. We first demonstrated that Tim-1-knockout (KO) mice survive lethal Ebola virus challenge. We then used a series of in vitro assays to demonstrate that Ebola virus directly binds primary T cells in a Tim-1-phosphatidylserine-dependent manner. We noted that binding induces a cytokine storm-like phenomenon and that blocking Tim-1-phosphatidylserine interactions reduces viral binding, T-cell activation, and cytokine production. These findings highlight a previously unknown role of Tim-1 in the development of a cytokine storm and "immune paralysis." Copyright © 2017 Younan et al.

  11. Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy.

    PubMed

    Marzi, Andrea; Ebihara, Hideki; Callison, Julie; Groseth, Allison; Williams, Kinola J; Geisbert, Thomas W; Feldmann, Heinz

    2011-11-01

    For Ebola virus (EBOV), 4 different species are known: Zaire, Sudan, Côte d'Ivoire, and Reston ebolavirus. The newly discovered Bundibugyo ebolavirus has been proposed as a 5th species. So far, no cross-neutralization among EBOV species has been described, aggravating progress toward cross-species protective vaccines. With the use of recombinant vesicular stomatitis virus (rVSV)-based vaccines, guinea pigs could be protected against Zaire ebolavirus (ZEBOV) infection only when immunized with a vector expressing the homologous, but not a heterologous, EBOV glycoprotein (GP). However, infection of guinea pigs with nonadapted wild-type strains of the different species resulted in full protection of all animals against subsequent challenge with guinea pig-adapted ZEBOV, showing that cross-species protection is possible. New vectors were generated that contain EBOV viral protein 40 (VP40) or EBOV nucleoprotein (NP) as a second antigen expressed by the same rVSV vector that encodes the heterologous GP. After applying a 2-dose immunization approach, we observed an improved cross-protection rate, with 5 of 6 guinea pigs surviving the lethal ZEBOV challenge if vaccinated with rVSV-expressing SEBOV-GP and -VP40. Our data demonstrate that cross-protection between the EBOV species can be achieved, although EBOV-GP alone cannot induce the required immune response.

  12. Ebola: Implications and Perspectives

    PubMed Central

    Del Rio, Carlos; Guarner, Jeannette

    2015-01-01

    The 2014 Ebola virus disease outbreak in West Africa has been the largest in recorded history. During this Ebola epidemic, the media has focused much attention to the magnitude of the problem in West Africa but has also overplayed the potential for an Ebola virus pandemic as patients have been transported for treatment to the United States and Europe causing panic and paranoia in the population. Knowledge of the epidemiology, pathogenesis, clinical presentation, treatment, and prevention of this infection will allow a better understanding of the disease and decrease irrational fear of spread. PMID:26330663

  13. Learning from Ebola Virus: How to Prevent Future Epidemics

    PubMed Central

    Kekulé, Alexander S.

    2015-01-01

    The recent Ebola virus disease (EVD) epidemic in Guinea, Liberia and Sierra Leone demonstrated that the World Health Organization (WHO) is incapable to control outbreaks of infectious diseases in less developed regions of the world. This essay analyses the causes for the failure of the international response and proposes four measures to improve resilience, early detection and response to future outbreaks of infectious diseases. PMID:26184283

  14. Mapping the zoonotic niche of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  15. Efficacy of Vesicular Stomatitis Virus-Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona.

    PubMed

    Marzi, Andrea; Hanley, Patrick W; Haddock, Elaine; Martellaro, Cynthia; Kobinger, Gary; Feldmann, Heinz

    2016-10-15

    The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus–Infected Patients

    PubMed Central

    Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J.; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O.; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J.; Prescott, Joseph B.; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L.; Feldmann, Friederike; Williamson, Brandi N.; Best, Sonja M.; Nyenswah, Tolbert G.; Grolla, Allen; Strong, James E.; Kobinger, Gary; Bolay, Fatorma K.; Zoon, Kathryn C.; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T.; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie

    2016-01-01

    Background. The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. Methods. All blood samples from suspected Ebola virus–infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus–infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. Results. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus–infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Conclusions. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. PMID:27531847

  17. Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak.

    PubMed

    Dietzel, Erik; Schudt, Gordian; Krähling, Verena; Matrosovich, Mikhail; Becker, Stephan

    2017-01-15

    The Ebola virus (EBOV) outbreak in West Africa started in December 2013, claimed more than 11,000 lives, threatened to destabilize a whole region, and showed how easily health crises can turn into humanitarian disasters. EBOV genomic sequences of the West African outbreak revealed nonsynonymous mutations, which induced considerable public attention, but their role in virus spread and disease remains obscure. In this study, we investigated the functional significance of three nonsynonymous mutations that emerged early during the West African EBOV outbreak. Almost 90% of more than 1,000 EBOV genomes sequenced during the outbreak carried the signature of three mutations: a D759G substitution in the active center of the L polymerase, an A82V substitution in the receptor binding domain of surface glycoprotein GP, and an R111C substitution in the self-assembly domain of RNA-encapsidating nucleoprotein NP. Using a newly developed virus-like particle system and reverse genetics, we found that the mutations have an impact on the functions of the respective viral proteins and on the growth of recombinant EBOVs. The mutation in L increased viral transcription and replication, whereas the mutation in NP decreased viral transcription and replication. The mutation in the receptor binding domain of the glycoprotein GP improved the efficiency of GP-mediated viral entry into target cells. Recombinant EBOVs with combinations of the three mutations showed a growth advantage over the prototype isolate Makona C7 lacking the mutations. This study showed that virus variants with improved fitness emerged early during the West African EBOV outbreak. The dimension of the Ebola virus outbreak in West Africa was unprecedented. Amino acid substitutions in the viral L polymerase, surface glycoprotein GP, and nucleocapsid protein NP emerged, were fixed early in the outbreak, and were found in almost 90% of the sequences. Here we showed that these mutations affected the functional activity of

  18. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections.

    PubMed

    Iversen, Patrick L; Warren, Travis K; Wells, Jay B; Garza, Nicole L; Mourich, Dan V; Welch, Lisa S; Panchal, Rekha G; Bavari, Sina

    2012-11-06

    There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.

  19. Live neonates born to mothers with Ebola virus disease: a review of the literature.

    PubMed

    Nelson, J M; Griese, S E; Goodman, A B; Peacock, G

    2016-06-01

    Ebola virus disease (EVD) is associated with a high mortality, especially among neonates. There is a paucity of literature on live neonates born to pregnant women with EVD, and therefore, our understanding of their clinical illness and outcomes is extremely limited. A literature search was conducted to identify descriptions of live neonates born to pregnant women with EVD. To date, five known reports have provided limited information about 15 live neonates born to pregnant women with EVD. All 15 neonates died, and of those with information, death was within 19 days of birth. Of the 12 neonates with information on signs and symptoms, 8 (67%) were reported to have fever; no other signs or symptoms were reported. There are no published data describing the clinical course or treatments provided for these neonates. Potential modes of Ebola virus transmission from mother to neonate are through in utero transmission, during delivery, direct contact or through breast milk. There is an urgent need for more information about neonates with EVD, including clinical course (for example, onset and presentation of illness, symptomatology and course of illness) and treatments provided as well as information on Ebola viral load in breast milk from Ebola-positive and convalescing mothers.

  20. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    NASA Astrophysics Data System (ADS)

    Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-03-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.

  1. Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone

    PubMed Central

    Park, Daniel J.; Dudas, Gytis; Wohl, Shirlee; Goba, Augustine; Whitmer, Shannon L.M.; Andersen, Kristian G.; Sealfon, Rachel S.; Ladner, Jason T.; Kugelman, Jeffrey R.; Matranga, Christian B.; Winnicki, Sarah M.; Qu, James; Gire, Stephen K.; Gladden-Young, Adrianne; Jalloh, Simbirie; Nosamiefan, Dolo; Yozwiak, Nathan L.; Moses, Lina M.; Jiang, Pan-Pan; Lin, Aaron E.; Schaffner, Stephen F.; Bird, Brian; Towner, Jonathan; Mamoh, Mambu; Gbakie, Michael; Kanneh, Lansana; Kargbo, David; Massally, James L.B.; Kamara, Fatima K.; Konuwa, Edwin; Sellu, Josephine; Jalloh, Abdul A.; Mustapha, Ibrahim; Foday, Momoh; Yillah, Mohamed; Erickson, Bobbie R.; Sealy, Tara; Blau, Dianna; Paddock, Christopher; Brault, Aaron; Amman, Brian; Basile, Jane; Bearden, Scott; Belser, Jessica; Bergeron, Eric; Campbell, Shelley; Chakrabarti, Ayan; Dodd, Kimberly; Flint, Mike; Gibbons, Aridth; Goodman, Christin; Klena, John; McMullan, Laura; Morgan, Laura; Russell, Brandy; Salzer, Johanna; Sanchez, Angela; Wang, David; Jungreis, Irwin; Tomkins-Tinch, Christopher; Kislyuk, Andrey; Lin, Michael F.; Chapman, Sinead; MacInnis, Bronwyn; Matthews, Ashley; Bochicchio, James; Hensley, Lisa E.; Kuhn, Jens H.; Nusbaum, Chad; Schieffelin, John S.; Birren, Bruce W.; Forget, Marc; Nichol, Stuart T.; Palacios, Gustavo F.; Ndiaye, Daouda; Happi, Christian; Gevao, Sahr M.; Vandi, Mohamed A.; Kargbo, Brima; Holmes, Edward C.; Bedford, Trevor; Gnirke, Andreas; Ströher, Ute; Rambaut, Andrew; Garry, Robert F.; Sabeti, Pardis C.

    2015-01-01

    Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission. PMID:26091036

  2. YouTube as a Source of Information on Ebola Virus Disease.

    PubMed

    Pathak, Ranjan; Poudel, Dilli Ram; Karmacharya, Paras; Pathak, Amrit; Aryal, Madan Raj; Mahmood, Maryam; Donato, Anthony A

    2015-07-01

    The current West Africa epidemic of Ebola virus disease (EVD), which began from Guinea in December 2013, has been the longest and deadliest Ebola outbreak to date. With the propagation of the internet, public health officials must now compete with other official and unofficial sources of information to get their message out. This study aimed at critically appraising videos available on one popular internet video site (YouTube) as a source of information for Ebola virus disease (EVD). Videos were searched in YouTube (http://www.youtube.com) using the keyword "Ebola outbreak" from inception to November 1, 2014 with the default "relevance" filter. Only videos in English language under 10 min duration within first 10 pages of search were included. Duplicates were removed and the rest were classified as useful or misleading by two independent reviewers. Video sources were categorized by source. Inter-observer agreement was evaluated with kappa coefficient. Continuous and categorical variables were analyzed using the Student t-test and Chi-squared test, respectively. One hundred and eighteen out of 198 videos were evaluated. Thirty-one (26.27%) videos were classified as misleading and 87 (73.73%) videos were classified as useful. The kappa coefficient of agreement regarding the usefulness of the videos was 0.68 (P < 0.001). Independent users were more likely to post misleading videos (93.55% vs 29.89%, OR = 34.02, 95% CI = 7.55-153.12, P < 0.001) whereas news agencies were most likely to post useful videos (65.52% vs 3.23%, OR = 57.00, 95% CI = 7.40-438.74, P < 0.001). This study demonstrates that majority of the internet videos about Ebola on YouTube were characterized as useful. Although YouTube seems to generally be a useful source of information on the current outbreak, increased efforts to disseminate scientifically correct information is desired to prevent unnecessary panic among the among the general population.

  3. Structures of protective antibodies reveal sites of vulnerability on Ebola virus.

    PubMed

    Murin, Charles D; Fusco, Marnie L; Bornholdt, Zachary A; Qiu, Xiangguo; Olinger, Gene G; Zeitlin, Larry; Kobinger, Gary P; Ward, Andrew B; Saphire, Erica Ollmann

    2014-12-02

    Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.

  4. Feasibility of Xpert Ebola Assay in Médecins Sans Frontières Ebola Program, Guinea

    PubMed Central

    Chaillet, Pascale; Sow, Mamadou Saliou; Amand, Mathieu; van Vyve, Charlotte; Jonckheere, Sylvie; Crestani, Rosa; Sprecher, Armand; Van Herp, Michel; Chua, Arlene; Piriou, Erwan; Koivogui, Lamine; Antierens, Annick

    2016-01-01

    Rapid diagnostic methods are essential in control of Ebola outbreaks and lead to timely isolation of cases and improved epidemiologic surveillance. Diagnosis during Ebola outbreaks in West Africa has relied on PCR performed in laboratories outside this region. Because time between sampling and PCR results can be considerable, we assessed the feasibility and added value of using the Xpert Ebola Assay in an Ebola control program in Guinea. A total of 218 samples were collected during diagnosis, treatment, and convalescence of patients. Median time for obtaining results was reduced from 334 min to 165 min. Twenty-six samples were positive for Ebola virus. Xpert cycle thresholds were consistently lower, and 8 (31%) samples were negative by routine PCR. Several logistic and safety issues were identified. We suggest that implementation of the Xpert Ebola Assay under programmatic conditions is feasible and represents a major advance in diagnosis of Ebola virus disease without apparent loss of assay sensitivity. PMID:26812466

  5. Feasibility of Xpert Ebola Assay in Médecins Sans Frontières Ebola Program, Guinea.

    PubMed

    Van den Bergh, Rafael; Chaillet, Pascale; Sow, Mamadou Saliou; Amand, Mathieu; van Vyve, Charlotte; Jonckheere, Sylvie; Crestani, Rosa; Sprecher, Armand; Van Herp, Michel; Chua, Arlene; Piriou, Erwan; Koivogui, Lamine; Antierens, Annick

    2016-02-01

    Rapid diagnostic methods are essential in control of Ebola outbreaks and lead to timely isolation of cases and improved epidemiologic surveillance. Diagnosis during Ebola outbreaks in West Africa has relied on PCR performed in laboratories outside this region. Because time between sampling and PCR results can be considerable, we assessed the feasibility and added value of using the Xpert Ebola Assay in an Ebola control program in Guinea. A total of 218 samples were collected during diagnosis, treatment, and convalescence of patients. Median time for obtaining results was reduced from 334 min to 165 min. Twenty-six samples were positive for Ebola virus. Xpert cycle thresholds were consistently lower, and 8 (31%) samples were negative by routine PCR. Several logistic and safety issues were identified. We suggest that implementation of the Xpert Ebola Assay under programmatic conditions is feasible and represents a major advance in diagnosis of Ebola virus disease without apparent loss of assay sensitivity.

  6. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication

    PubMed Central

    Reynard, Olivier; Nguyen, Xuan-Nhi; Alazard-Dany, Nathalie; Barateau, Véronique; Cimarelli, Andrea; Volchkov, Viktor E.

    2015-01-01

    The current outbreak of Ebola virus (EBOV) in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC) demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV. PMID:26633464

  7. Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells.

    PubMed

    Hölzer, Martin; Krähling, Verena; Amman, Fabian; Barth, Emanuel; Bernhart, Stephan H; Carmelo, Victor A O; Collatz, Maximilian; Doose, Gero; Eggenhofer, Florian; Ewald, Jan; Fallmann, Jörg; Feldhahn, Lasse M; Fricke, Markus; Gebauer, Juliane; Gruber, Andreas J; Hufsky, Franziska; Indrischek, Henrike; Kanton, Sabina; Linde, Jörg; Mostajo, Nelly; Ochsenreiter, Roman; Riege, Konstantin; Rivarola-Duarte, Lorena; Sahyoun, Abdullah H; Saunders, Sita J; Seemann, Stefan E; Tanzer, Andrea; Vogel, Bertram; Wehner, Stefanie; Wolfinger, Michael T; Backofen, Rolf; Gorodkin, Jan; Grosse, Ivo; Hofacker, Ivo; Hoffmann, Steve; Kaleta, Christoph; Stadler, Peter F; Becker, Stephan; Marz, Manja

    2016-10-07

    The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.

  8. Deciphering Dynamics of Recent Epidemic Spread and Outbreak in West Africa: The Case of Ebola Virus

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Roy, Parimita

    Recently, the 2014 Ebola virus (EBOV) outbreak in West Africa was the largest outbreak to date. In this paper, an attempt has been made for modeling the virus dynamics using an SEIR model to better understand and characterize the transmission trajectories of the Ebola outbreak. We compare the simulated results with the most recent reported data of Ebola infected cases in the three most affected countries Guinea, Liberia and Sierra Leone. The epidemic model exhibits two equilibria, namely, the disease-free and unique endemic equilibria. Existence and local stability of these equilibria are explored. Using central manifold theory, it is established that the transcritical bifurcation occurs when basic reproduction number passes through unity. The proposed Ebola epidemic model provides an estimate to the potential number of future cases. The model indicates that the disease will decline after peaking if multisectorial and multinational efforts to control the spread of infection are maintained. Possible implication of the results for disease eradication and its control are discussed which suggests that proper control strategies like: (i) transmission precautions, (ii) isolation and care of infectious Ebola patients, (iii) safe burial, (iv) contact tracing with follow-up and quarantine, and (v) early diagnosis are needed to stop the recurrent outbreak.

  9. Use of convalescent plasma in Ebola virus infection.

    PubMed

    Garraud, Olivier

    2017-02-01

    The recent Ebola virus epidemics which threatened three West African countries (Dec.2014-Apr.2016) has urged global collaborative health organizations and countries to set up measures to stop the infection and to treat patients, near half of them being at risk of death. Convalescent plasma-recovered from rescued West Africans-was considered a feasible therapeutic option. Efficacy was difficult to evaluate because of numerous unknowns (especially evolution of neutralizing antibodies), prior to the cessation of active transmission. This raises a large body of questions spanning epidemiological, virological, immunological but also ethical, sociological and anthropological aspects, alongside with public health concerns, in order to be better prepared to the next outbreak. This essay summarizes efforts made by a large number of groups worldwide, and attempts to address still unanswered questions on the benefit of specific versus non-specific plasma on altered-leaking-vascular endothelia in Ebola infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhibitory Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Daisy W.; Shabman, Reed S.; Farahbakhsh, Mina

    2010-09-21

    Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address thismore » question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-{angstrom} crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 {angstrom}, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for

  11. Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain.

    PubMed

    Leung, Daisy W; Shabman, Reed S; Farahbakhsh, Mina; Prins, Kathleen C; Borek, Dominika M; Wang, Tianjiao; Mühlberger, Elke; Basler, Christopher F; Amarasinghe, Gaya K

    2010-06-11

    Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled

  12. A web-based resource for designing therapeutics against Ebola Virus.

    PubMed

    Dhanda, Sandeep Kumar; Chaudhary, Kumardeep; Gupta, Sudheer; Brahmachari, Samir Kumar; Raghava, Gajendra P S

    2016-04-26

    In this study, we describe a web-based resource, developed for assisting the scientific community in designing an effective therapeutics against the Ebola virus. Firstly, we predicted and identified experimentally validated epitopes in each of the antigens/proteins of the five known ebolaviruses. Secondly, we generated all the possible overlapping 9mer peptides from the proteins of ebolaviruses. Thirdly, conserved peptides across all the five ebolaviruses (four human pathogenic species) with no identical sequence in the human proteome, based on 1000 Genomes project, were identified. Finally, we identified peptide or epitope-based vaccine candidates that could activate both the B- and T-cell arms of the immune system. In addition, we also identified efficacious siRNAs against the mRNA transcriptome (absent in human transcriptome) of all the five ebolaviruses. It was observed that three species can potentially be targeted by a single siRNA (19mer) and 75 siRNAs can potentially target at least two species. A web server, EbolaVCR, has been developed that incorporates all the above information and useful computational tools (http://crdd.osdd.net/oscadd/ebola/).

  13. A web-based resource for designing therapeutics against Ebola Virus

    NASA Astrophysics Data System (ADS)

    Dhanda, Sandeep Kumar; Chaudhary, Kumardeep; Gupta, Sudheer; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.

    2016-04-01

    In this study, we describe a web-based resource, developed for assisting the scientific community in designing an effective therapeutics against the Ebola virus. Firstly, we predicted and identified experimentally validated epitopes in each of the antigens/proteins of the five known ebolaviruses. Secondly, we generated all the possible overlapping 9mer peptides from the proteins of ebolaviruses. Thirdly, conserved peptides across all the five ebolaviruses (four human pathogenic species) with no identical sequence in the human proteome, based on 1000 Genomes project, were identified. Finally, we identified peptide or epitope-based vaccine candidates that could activate both the B- and T-cell arms of the immune system. In addition, we also identified efficacious siRNAs against the mRNA transcriptome (absent in human transcriptome) of all the five ebolaviruses. It was observed that three species can potentially be targeted by a single siRNA (19mer) and 75 siRNAs can potentially target at least two species. A web server, EbolaVCR, has been developed that incorporates all the above information and useful computational tools (http://crdd.osdd.net/oscadd/ebola/).

  14. Ebola hemorrhagic Fever and the current state of vaccine development.

    PubMed

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  15. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    PubMed

    Blaney, Joseph E; Marzi, Andrea; Willet, Mallory; Papaneri, Amy B; Wirblich, Christoph; Feldmann, Friederike; Holbrook, Michael; Jahrling, Peter; Feldmann, Heinz; Schnell, Matthias J

    2013-01-01

    We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  16. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus.

    PubMed

    Ekins, Sean; Freundlich, Joel S; Coffee, Megan

    2014-01-01

    We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested.

  17. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus

    PubMed Central

    Ekins, Sean; Freundlich, Joel S.; Coffee, Megan

    2014-01-01

    We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested. PMID:25653841

  18. Multimodal Imaging and Spatial Analysis of Ebola Retinal Lesions in 14 Survivors of Ebola Virus Disease.

    PubMed

    Steptoe, Paul J; Momorie, Fayiah; Fornah, Alimamy D; Komba, Sahr P; Emsley, Elizabeth; Scott, Janet T; Harding, Simon P; Vandy, Matthew J; Sahr, Foday; Beare, Nicholas A V; Semple, Malcolm G

    2018-05-03

    Differentiation between Ebola retinal lesions and other retinal pathologies in West Africa is important, and the pathogenesis of Ebola retinal disease remains poorly understood. To describe the appearance of Ebola virus disease (EVD) retinal lesions using multimodal imaging to enable inferences on potential pathogenesis. This prospective case series study was carried out at 34 Military Hospital in Freetown, Sierra Leone. Ophthalmological images were analyzed from 14 consecutively identified survivors of EVD of Sierra Leonean origin who had identified Ebola retinal lesions. Multimodal imaging findings including ultra-widefield scanning laser ophthalmoscopy, fundus autofluorescence, swept-source optical coherence tomography (OCT), Humphrey visual field analysis, and spatial analysis. The 14 study participants had a mean (SD) age of 37.1 (8.8) years; 6 (43%) were women. A total of 141 Ebola retinal lesions were observed in 22 of 27 eyes (81%) of these 14 survivors on ultra-widefield imaging. Of these, 41 lesions (29.1%) were accessible to OCT imaging. Retinal lesions were predominantly nonpigmented with a pale-gray appearance. Peripapillary lesions exhibited variable curvatures in keeping with the retinal nerve fiber layer projections. All lesions respected the horizontal raphe and spared the fovea. The OCT imaging demonstrated a V-shaped hyperreflectivity of the outer nuclear layer overlying discontinuities of the ellipsoid zone and interdigitation zone in the smaller lesions. Larger lesions caused a collapse of the retinal layers and loss of retinal thickness. Lesion shapes were variable, but sharp angulations were characteristic. Perilesional areas of dark without pressure (thinned ellipsoid zone hyporeflectivity) accompanied 125 of the 141 lesions (88.7%) to varying extents. We demonstrate OCT evidence of localized pathological changes at the level of the photoreceptors in small lesions among survivors of EVD with retinal lesions. The relevance of associated areas

  19. Preliminary Evaluation of the Effect of Investigational Ebola Virus Disease Treatments on Viral Genome Sequences.

    PubMed

    Whitmer, Shannon L M; Albariño, César; Shepard, Samuel S; Dudas, Gytis; Sheth, Mili; Brown, Shelley C; Cannon, Deborah; Erickson, Bobbie R; Gibbons, Aridth; Schuh, Amy; Sealy, Tara; Ervin, Elizabeth; Frace, Mike; Uyeki, Timothy M; Nichol, Stuart T; Ströher, Ute

    2016-10-15

     Several patients with Ebola virus disease (EVD) managed in the United States have received ZMapp monoclonal antibodies, TKM-Ebola small interfering RNA, brincidofovir, and/or convalescent plasma as investigational therapeutics.  To investigate whether treatment selected for Ebola virus (EBOV) mutations conferring resistance, viral sequencing was performed on RNA extracted from clinical blood specimens from patients with EVD following treatment, and putative viral targets were analyzed.  We observed no major or minor EBOV mutations within regions targeted by therapeutics.  This small subset of patients and clinical specimens suggests that evolution of resistance is not a direct consequence of antiviral treatment. As EVD antiviral treatments are introduced into wider use, it is essential that continuous viral full-genome surveillance is performed, to monitor for the emergence of escape mutations. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Recommendations for dealing with waste contaminated with Ebola virus: a Hazard Analysis of Critical Control Points approach

    PubMed Central

    Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark

    2016-01-01

    Abstract Objective To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. Methods A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. Findings The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. Conclusion The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease. PMID:27274594

  1. Recommendations for dealing with waste contaminated with Ebola virus: a Hazard Analysis of Critical Control Points approach.

    PubMed

    Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark; Hunter, Paul R

    2016-06-01

    To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease.

  2. An Inactivated Rabies Virus-Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models.

    PubMed

    Johnson, Reed F; Kurup, Drishya; Hagen, Katie R; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L; Cooper, Kurt; Jahrling, Peter B; Wang, Jonathan T; Ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J

    2016-10-15

    The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus-based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti-rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. A DNA vaccine for the prevention of Ebola virus infection.

    PubMed

    Dery, Markalain; Bausch, Daniel G

    2008-06-01

    The NIH and Vical Inc are developing an intramuscular needle-free DNA vaccine containing plasmids encoding the envelope glycoprotein of Ebola virus (EBOV) from the Sudan and Zaire strains, and the nucleoprotein of EBOV Zaire strain. A phase I clinical trial demonstrated a good safety profile, with most adverse events limited to the site of injection and largely attributable to the delivery.

  4. Ebola Virus VP35-VP40 Interaction Is Sufficient for Packaging 3E-5E Minigenome RNA into Virus-Like Particles

    PubMed Central

    Johnson, Reed F.; McCarthy, Sarah E.; Godlewski, Peter J.; Harty, Ronald N.

    2006-01-01

    The packaging of viral genomic RNA into nucleocapsids and subsequently into virions is not completely understood. Phosphoprotein (P) and nucleoprotein (NP) interactions link NP-RNA complexes with P-L (polymerase) complexes to form viral nucleocapsids. The nucleocapsid then interacts with the viral matrix protein, leading to specific packaging of the nucleocapsid into the virion. A mammalian two-hybrid assay and confocal microscopy were used to demonstrate that Ebola virus VP35 and VP40 interact and colocalize in transfected cells. VP35 was packaged into budding virus-like particles (VLPs) as observed by protease protection assays. Moreover, VP40 and VP35 were sufficient for packaging an Ebola virus minignome RNA into VLPs. Results from immunoprecipitation-reverse transcriptase PCR experiments suggest that VP35 confers specificity of the nucleocapsid for viral genomic RNA by direct VP35-RNA interactions. PMID:16698994

  5. Two-Center Evaluation of Disinfectant Efficacy against Ebola Virus in Clinical and Laboratory Matrices.

    PubMed

    Smither, Sophie J; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M Stephen; Miller, David M; Mitzel, Dana; Noah, James W; Reddick-Elick, Mary S; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B; Hevey, Michael; Wahl-Jensen, Victoria

    2018-01-01

    Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.

  6. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses

    PubMed Central

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Zimmer, Gert; Marz, Manja; Müller, Marcel A.

    2017-01-01

    ABSTRACT Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including

  7. Mucosal parainfluenza virus-vectored vaccine against Ebola virus replicates in the respiratory tract of vector-immune monkeys and is immunogenic.

    PubMed

    Bukreyev, Alexander A; Dinapoli, Joshua M; Yang, Lijuan; Murphy, Brian R; Collins, Peter L

    2010-04-10

    We previously used human parainfluenza virus type 3 (HPIV3) as a vector to express the Ebola virus (EBOV) GP glycoprotein. The resulting HPIV3/EboGP vaccine was immunogenic and protective against EBOV challenge in a non-human primate model. However, it remained unclear whether the vaccine would be effective in adults due to preexisting immunity to HPIV3. Here, the immunogenicity of HPIV3/EboGP was compared in HPIV3-naive and HPIV3-immune Rhesus monkeys. After a single dose of HPIV3/EboGP, the titers of EBOV-specific serum ELISA or neutralization antibodies were substantially less in HPIV3-immune animals compared to HPIV3-naive animals. However, after two doses, which were previously determined to be required for complete protection against EBOV challenge, the antibody titers were indistinguishable between the two groups. The vaccine virus appeared to replicate, at a reduced level, in the respiratory tract despite the preexisting immunity. This may reflect the known ability of HPIV3 to re-infect and may also reflect the presence of EBOV GP in the vector virion, which confers resistance to neutralization in vitro by HPIV3-specific antibodies. These data suggest that HPIV3/EboGP will be immunogenic in adults as well as children. Published by Elsevier Inc.

  8. Controlling the last known cluster of Ebola virus disease - Liberia, January-February 2015.

    PubMed

    Nyenswah, Tolbert; Fallah, Mosoka; Sieh, Sonpon; Kollie, Karsor; Badio, Moses; Gray, Alvin; Dilah, Priscilla; Shannon, Marnijina; Duwor, Stanley; Ihekweazu, Chikwe; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Shinde, Shivam A; Hamblion, Esther; Davies-Wayne, Gloria; Ratnesh, Murugan; Dye, Christopher; Yoder, Jonathan S; McElroy, Peter; Hoots, Brooke; Christie, Athalia; Vertefeuille, John; Olsen, Sonja J; Laney, A Scott; Neal, Joyce J; Yaemsiri, Sirin; Navin, Thomas R; Coulter, Stewart; Pordell, Paran; Lo, Terrence; Kinkade, Carl; Mahoney, Frank

    2015-05-15

    As one of the three West African countries highly affected by the 2014-2015 Ebola virus disease (Ebola) epidemic, Liberia reported approximately 10,000 cases. The Ebola epidemic in Liberia was marked by intense urban transmission, multiple community outbreaks with source cases occurring in patients coming from the urban areas, and outbreaks in health care facilities (HCFs). This report, based on data from routine case investigations and contact tracing, describes efforts to stop the last known chain of Ebola transmission in Liberia. The index patient became ill on December 29, 2014, and the last of 21 associated cases was in a patient admitted into an Ebola treatment unit (ETU) on February 18, 2015. The chain of transmission was stopped because of early detection of new cases; identification, monitoring, and support of contacts in acceptable settings; effective triage within the health care system; and rapid isolation of symptomatic contacts. In addition, a "sector" approach, which divided Montserrado County into geographic units, facilitated the ability of response teams to rapidly respond to community needs. In the final stages of the outbreak, intensive coordination among partners and engagement of community leaders were needed to stop transmission in densely populated Montserrado County. A companion report describes the efforts to enhance infection prevention and control efforts in HCFs. After February 19, no additional clusters of Ebola cases have been detected in Liberia. On May 9, the World Health Organization declared the end of the Ebola outbreak in Liberia.

  9. Post-Ebola Syndrome, Sierra Leone.

    PubMed

    Scott, Janet T; Sesay, Foday R; Massaquoi, Thomas A; Idriss, Baimba R; Sahr, Foday; Semple, Malcolm G

    2016-04-01

    Thousands of persons have survived Ebola virus disease. Almost all survivors describe symptoms that persist or develop after hospital discharge. A cross-sectional survey of the symptoms of all survivors from the Ebola treatment unit (ETU) at 34th Regimental Military Hospital, Freetown, Sierra Leone (MH34), was conducted after discharge at their initial follow-up appointment within 3 weeks after their second negative PCR result. From its opening on December 1, 2014, through March 31, 2015, the MH34 ETU treated 84 persons (8-70 years of age) with PCR-confirmed Ebola virus disease, of whom 44 survived. Survivors reported musculoskeletal pain (70%), headache (48%), and ocular problems (14%). Those who reported headache had had lower admission cycle threshold Ebola PCR than did those who did not (p<0.03). This complete survivor cohort from 1 ETU enables analysis of the proportion of symptoms of post-Ebola syndrome. The Ebola epidemic is waning, but the effects of the disease will remain.

  10. The ongoing evolution of antibody-based treatments for Ebola virus infection.

    PubMed

    Mendoza, Emelissa J; Racine, Trina; Kobinger, Gary P

    2017-03-01

    The 2014-2016 Ebola virus outbreak in West Africa was the deadliest in history, prompting the evaluation of various drug candidates, including antibody-based therapeutics for the treatment of Ebola hemorrhagic fever (EHF). Prior to 2014, only convalescent blood products from EHF survivors had been administered to newly infected individuals as a form of treatment. However, during the recent outbreak, monoclonal antibody cocktails such as ZMapp, ZMAb and MB-003 were either tested in a human clinical safety and efficacy trial or provided to some based on compassionate grounds. This review aims to discuss the evolution of antibody-based treatments for EHF, their clinical trial efficacy and the development of new antibody-based therapies currently advancing in preclinical testing.

  11. Discovery and Early Development of AVI-7537 and AVI-7288 for the Treatment of Ebola Virus and Marburg Virus Infections

    PubMed Central

    Iversen, Patrick L.; Warren, Travis K.; Wells, Jay B.; Garza, Nicole L.; Mourich, Dan V.; Welch, Lisa S.; Panchal, Rekha G.; Bavari, Sina

    2012-01-01

    There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates. PMID:23202506

  12. Lateral Flow Immunoassays for Ebola Virus Disease Detection in Liberia.

    PubMed

    Phan, Jill C; Pettitt, James; George, Josiah S; Fakoli, Lawrence S; Taweh, Fahn M; Bateman, Stacey L; Bennett, Richard S; Norris, Sarah L; Spinnler, David A; Pimentel, Guillermo; Sahr, Phillip K; Bolay, Fatorma K; Schoepp, Randal J

    2016-10-15

    Lateral flow immunoassays (LFIs) are point-of-care diagnostic assays that are designed for single use outside a formal laboratory, with in-home pregnancy tests the best-known example of these tests. Although the LFI has some limitations over more-complex immunoassay procedures, such as reduced sensitivity and the potential for false-positive results when using complex sample matrices, the assay has the benefits of a rapid time to result and ease of use. These benefits make it an attractive option for obtaining rapid results in an austere environment. In an outbreak of any magnitude, a field-based rapid diagnostic assay would allow proper patient transport and for safe burials to be conducted without the delay caused by transport of samples between remote villages and testing facilities. Use of such point-of-care instruments in the ongoing Ebola virus disease (EVD) outbreak in West Africa would have distinct advantages in control and prevention of local outbreaks, but proper understanding of the technology and interpretation of results are important. In this study, a LFI, originally developed by the Naval Medical Research Center for Ebola virus environmental testing, was evaluated for its ability to detect the virus in clinical samples in Liberia. Clinical blood and plasma samples and post mortem oral swabs submitted to the Liberian Institute for Biomedical Research, the National Public Health Reference Laboratory for EVD testing, were tested and compared to results of real-time reverse transcription-polymerase chain reaction (rRT-PCR), using assays targeting Ebola virus glycoprotein and nucleoprotein. The LFI findings correlated well with those of the real-time RT-PCR assays used as benchmarks. Rapid antigen-detection tests such as LFIs are attractive alternatives to traditional immunoassays but have reduced sensitivity and specificity, resulting in increases in false-positive and false-negative results. An understanding of the strengths, weaknesses, and

  13. Teicoplanin inhibits Ebola pseudovirus infection in cell culture.

    PubMed

    Wang, Yizhuo; Cui, Rui; Li, Guiming; Gao, Qianqian; Yuan, Shilin; Altmeyer, Ralf; Zou, Gang

    2016-01-01

    There is currently no approved antiviral therapy for treatment of Ebola virus disease. To discover readily available approved drugs that can be rapidly repurposed for treatment of Ebola virus infections, we screened 1280 FDA-approved drugs and identified glycopeptide antibiotic teicoplanin inhibiting Ebola pseudovirus infection by blocking virus entry in the low micromolar range. Teicoplanin could be evaluated further and incorporated into ongoing clinical studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The perspective of gender on the Ebola virus using a risk management and population health framework: a scoping review.

    PubMed

    Nkangu, Miriam N; Olatunde, Oluwasayo A; Yaya, Sanni

    2017-10-11

    In the three decades since the first reported case of Ebola virus, most known index cases have been consistently traced to the hunting of "bush meat", and women have consistently recorded relatively high fatality rates in most catastrophic outbreaks. This paper discusses Ebola-related risk factors, which constantly interact with cultural values, and provides an insight into the link between gender and the risk of contracting infectious diseases, using Ebola virus as an example within Africa. A comprehensive search of the literature was conducted using the PubMed, Ovid Medline and Global Health CABI databases as well as CAB Abstracts, including gray literature. We used a descriptive and sex- and gender-based analysis to revisit previous studies on Ebola outbreaks since 1976 to 2014, and disaggregated the cases and fatality rates according to gender and the sources of known index cases based on available data. In total, approximately 1530 people died in all previous Ebola outbreaks from 1976 to 2012 compared with over 11,310 deaths from the 2014 outbreak. Women's increased exposure can be attributed to time spent at home and their responsibility for caring for the sick, while men's increased vulnerability to the virus can be attributed to their responsibility for caring for livestock and to time spent away from home, as most known sources of the index cases have been infected in the process of hunting. We present a conceptual model of a circle of interacting risk factors for Ebola in the African context. There is currently no evidence related to biological differences in female or male sex that increases Ebola virus transmission and vulnerability; rather, there are differences in the level of exposure between men and women. Gender is therefore an important risk factor to consider in the design of health programs. Building the capacity for effective risk communication is a worthwhile investment in public and global health for future emergency responses.

  15. Human immune system mouse models of Ebola virus infection.

    PubMed

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  16. The Use of Ebola Convalescent Plasma to Treat Ebola Virus Disease in Resource-Constrained Settings: A Perspective From the Field

    PubMed Central

    van Griensven, Johan; De Weiggheleire, Anja; Delamou, Alexandre; Smith, Peter G.; Edwards, Tansy; Vandekerckhove, Philippe; Bah, Elhadj Ibrahima; Colebunders, Robert; Herve, Isola; Lazaygues, Catherine; Haba, Nyankoye; Lynen, Lutgarde

    2016-01-01

    The clinical evaluation of convalescent plasma (CP) for the treatment of Ebola virus disease (EVD) in the current outbreak, predominantly affecting Guinea, Sierra Leone, and Liberia, was prioritized by the World Health Organization in September 2014. In each of these countries, nonrandomized comparative clinical trials were initiated. The Ebola-Tx trial in Conakry, Guinea, enrolled 102 patients by 7 July 2015; no severe adverse reactions were noted. The Ebola-CP trial in Sierra Leone and the EVD001 trial in Liberia have included few patients. Although no efficacy data are available yet, current field experience supports the safety, acceptability, and feasibility of CP as EVD treatment. Longer-term follow-up as well as data from nontrial settings and evidence on the scalability of the intervention are required. CP sourced from within the outbreak is the most readily available source of anti-EVD antibodies. Until the advent of effective antivirals or monoclonal antibodies, CP merits further evaluation. PMID:26261205

  17. Two-Center Evaluation of Disinfectant Efficacy against Ebola Virus in Clinical and Laboratory Matrices

    PubMed Central

    Smither, Sophie J.; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M. Stephen; Miller, David M.; Mitzel, Dana; Noah, James W.; Reddick-Elick, Mary S.; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B.; Hevey, Michael

    2018-01-01

    Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification. PMID:29261093

  18. The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt.

    PubMed

    Viboud, Cécile; Sun, Kaiyuan; Gaffey, Robert; Ajelli, Marco; Fumanelli, Laura; Merler, Stefano; Zhang, Qian; Chowell, Gerardo; Simonsen, Lone; Vespignani, Alessandro

    2018-03-01

    Infectious disease forecasting is gaining traction in the public health community; however, limited systematic comparisons of model performance exist. Here we present the results of a synthetic forecasting challenge inspired by the West African Ebola crisis in 2014-2015 and involving 16 international academic teams and US government agencies, and compare the predictive performance of 8 independent modeling approaches. Challenge participants were invited to predict 140 epidemiological targets across 5 different time points of 4 synthetic Ebola outbreaks, each involving different levels of interventions and "fog of war" in outbreak data made available for predictions. Prediction targets included 1-4 week-ahead case incidences, outbreak size, peak timing, and several natural history parameters. With respect to weekly case incidence targets, ensemble predictions based on a Bayesian average of the 8 participating models outperformed any individual model and did substantially better than a null auto-regressive model. There was no relationship between model complexity and prediction accuracy; however, the top performing models for short-term weekly incidence were reactive models with few parameters, fitted to a short and recent part of the outbreak. Individual model outputs and ensemble predictions improved with data accuracy and availability; by the second time point, just before the peak of the epidemic, estimates of final size were within 20% of the target. The 4th challenge scenario - mirroring an uncontrolled Ebola outbreak with substantial data reporting noise - was poorly predicted by all modeling teams. Overall, this synthetic forecasting challenge provided a deep understanding of model performance under controlled data and epidemiological conditions. We recommend such "peace time" forecasting challenges as key elements to improve coordination and inspire collaboration between modeling groups ahead of the next pandemic threat, and to assess model forecasting

  19. Quantification of RNA Content in Reconstituted Ebola Virus Nucleocapsids by Immunoprecipitation.

    PubMed

    Banadyga, Logan; Ebihara, Hideki

    2017-01-01

    Immunoprecipitations are commonly used to isolate proteins or protein complexes and assess protein-protein interactions; however, they can also be used to assess protein-RNA complexes. Here we describe an adapted RNA immunoprecipitation technique that permits the quantification of RNA content in Ebola virus nucleocapsids that have been reconstituted in vitro by transient transfection.

  20. Ebola hemorrhagic fever outbreaks: strategies for effective epidemic management, containment and control.

    PubMed

    Matua, Gerald Amandu; Van der Wal, Dirk Mostert; Locsin, Rozzano C

    2015-01-01

    Ebola hemorrhagic fever, caused by the highly virulent RNA virus of the filoviridae family, has become one of the world's most feared pathogens. The virus induces acute fever and death, often associated with hemorrhagic symptoms in up to 90% of infected patients. The known sub-types of the virus are Zaire, Sudan, Taï Forest, Bundibugyo and Reston Ebola viruses. In the past, outbreaks were limited to the East and Central African tropical belt with the exception of Ebola Reston outbreaks that occurred in animal facilities in the Philippines, USA and Italy. The on-going outbreak in West Africa that is causing numerous deaths and severe socio-economic challenges has resulted in widespread anxiety globally. This panic may be attributed to the intense media interest, the rapid spread of the virus to other countries like United States and Spain, and moreover, to the absence of an approved treatment or vaccine. Informed by this widespread fear and anxiety, we analyzed the commonly used strategies to manage and control Ebola outbreaks and proposed new approaches that could improve epidemic management and control during future outbreaks. We based our recommendations on epidemic management practices employed during recent outbreaks in East, Central and West Africa, and synthesis of peer-reviewed publications as well as published "field" information from individuals and organizations recently involved in the management of Ebola epidemics. The current epidemic management approaches are largely "reactive", with containment efforts aimed at halting spread of existing outbreaks. We recommend that for better outcomes, in addition to "reactive" interventions, "pre-emptive" strategies also need to be instituted. We conclude that emphasizing both "reactive" and "pre-emptive" strategies is more likely to lead to better epidemic preparedness and response at individual, community, institutional, and government levels, resulting in timely containment of future Ebola outbreaks. Copyright

  1. Modeling ebola virus disease transmissions with reservoir in a complex virus life ecology.

    PubMed

    Berge, Tsanou; Bowong, Samuel; Lubuma, Jean; Manyombe, Martin Luther Mann

    2018-02-01

    We propose a new deterministic mathematical model for the transmission dynamics of Ebola Virus Disease (EVD) in a complex Ebola virus life ecology. Our model captures as much as possible the features and patterns of the disease evolution as a three cycle transmission process in the two ways below. Firstly it involves the synergy between the epizootic phase (during which the disease circulates periodically amongst non-human primates populations and decimates them), the enzootic phase (during which the disease always remains in fruit bats population) and the epidemic phase (during which the EVD threatens and decimates human populations). Secondly it takes into account the well-known, the probable/suspected and the hypothetical transmission mechanisms (including direct and indirect routes of contamination) between and within the three different types of populations consisting of humans, animals and fruit bats. The reproduction number R0 for the full model with the environmental contamination is derived and the global asymptotic stability of the disease free equilibrium is established when R0andlt;1. It is conjectured that there exists a unique globally asymptotically stable endemic equilibrium for the full model when R0andgt;1. The role of a contaminated environment is assessed by comparing the human infected component for the sub-model without the environment with that of the full model. Similarly, the sub-model without animals on the one hand and the sub-model without bats on the other hand are studied. It is shown that bats influence more the dynamics of EVD than the animals. Global sensitivity analysis shows that the effective contact rate between humans and fruit bats and the mortality rate for bats are the most influential parameters on the latent and infected human individuals. Numerical simulations, apart from supporting the theoretical results and the existence of a unique globally asymptotically stable endemic equilibrium for the full model, suggest further

  2. Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.

    PubMed

    Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-04-24

    Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.

  3. Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.

    PubMed

    Diehl, William E; Lin, Aaron E; Grubaugh, Nathan D; Carvalho, Luiz Max; Kim, Kyusik; Kyawe, Pyae Phyo; McCauley, Sean M; Donnard, Elisa; Kucukural, Alper; McDonel, Patrick; Schaffner, Stephen F; Garber, Manuel; Rambaut, Andrew; Andersen, Kristian G; Sabeti, Pardis C; Luban, Jeremy

    2016-11-03

    The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The development of a massive open online course during the 2014-15 Ebola virus disease epidemic.

    PubMed

    Evans, Dabney P; Luffy, Samantha M; Parisi, Stephanie; Del Rio, Carlos

    2017-09-01

    Timely training was urgently needed at the onset of the 2014 Ebola virus disease epidemic. Massive open online courses (MOOCs) have grown in popularity, though little is known about their utility in time-sensitive situations, including infectious disease outbreaks. We created the first English language massive open online course on Ebola virus disease. Designed by a team representing various units of Emory University and six partner institutions, the six module course was aimed at a global general audience but also relevant for health care professionals. Over 7,000 learners from 170 countries participated in the initial course offering. More than a third of learners were from emerging economies, including seven percent from Africa, and another 13% from countries outside the United States who received individuals requiring treatment for Ebola virus disease. Creating and producing the first English language MOOC on EVD in a short time period required effective collaboration and strong coordination between subject matter and course development experts from Emory. Through these collaborative efforts, the development team was able to provide urgently needed training and educational materials while the epidemic of EVD continued to radiate through West Africa. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ebola virus convalescent blood products: where we are now and where we may need to go.

    PubMed

    Burnouf, Thierry; Seghatchian, Jerard

    2014-10-01

    The world is regularly exposed to emerging infections with the potential to burst into a pandemic. One possible way to treat patients, when no other treatment is yet developed,is passive immunization performed by transfusing blood, plasma or plasma immunoglobul infractions obtained from convalescent donors who have recovered from the disease and have developed protective antibodies. The most recent on-going epidemic is caused by the Ebola virus, a filovirus responsible for Ebola virus disease, a severe, often lethal, hemorrhagic fever. Recently, the use of convalescent blood products was proposed by the WHO as one early option for treating patients with Ebola virus disease. This publication provides an overview of the various convalescent blood products and technological options that could theoretically be considered when there is a need to rely on this therapeutic approach.In countries without access to advanced blood-processing technologies, the choice may initially be restricted to convalescent whole blood or plasma. In technologically advanced countries, additional options for convalescent blood products are available, including virally inactivated plasma and fractionated immunoglobulins. The preparation of minipool immunoglobulins is also a realistic option to consider.

  6. Ebola images emerge from the cave.

    PubMed

    Diamond, Michael S; Fremont, Daved H

    2008-08-14

    Ebola virus causes a lethal hemorrhagic disease for which no therapy or vaccine is currently approved. Recently, the crystal structure of the Ebola virus glycoprotein in complex with a human neutralizing antibody was illuminated, providing a path from the shadows toward understanding cellular attachment, viral fusion, and immune evasion.

  7. Ebola virus disease in children during the 2014-2015 epidemic in Guinea: a nationwide cohort study.

    PubMed

    Chérif, Mahamoud Sama; Koonrungsesomboon, Nut; Kassé, Diénaba; Cissé, Sékou Ditinn; Diallo, Saliou Bella; Chérif, Fatoumata; Camara, Facély; Koné, Alpha; Avenido, Eleonor Fundan; Diakité, Mandiou; Diallo, Mamadou Pathé; Le Gall, Edouard; Cissé, Mohamed; Karbwang, Juntra; Hirayama, Kenji

    2017-06-01

    The most recent epidemic of Ebola virus disease (EVD) has resulted in more than 11,000 deaths in West Africa. It has threatened child health in the affected countries, including Guinea. This nationwide retrospective cohort study included all children under 20 years of age with laboratory-confirmed EVD in Guinea during the 2014-2015 Ebola outbreak for analysis. Of 8,448 children with probable or suspected EVD, 695 cases were laboratory-confirmed EVD. The overall case fatality rate (CFR) was 62.9%. Pediatric patients with younger age had a significantly higher rate of death (adjusted OR = 0.995; 95%CI = 0.990-1.000; p = 0.046), with the highest CFR of 82.9% in children aged less than 5 years. Fever (91%), fatigue (87%), and gastrointestinal signs and symptoms (70%) were common clinical features on admission of the pediatric patients, while bleeding signs were not occurring often (24%). None of clinical features and epidemiologic risk factors for Ebola were associated with mortality outcome in our cohort study. EVD is a major threat to child health, especially among children under 5 years of age. To date, none of demographic and clinical features, except younger age, have been consistently shown to affect mortality outcome in children infected with Ebola virus. What is Known: • The 2014-2015 West Africa Ebola epidemic is the largest and most widespread outbreak of Ebola virus disease (EVD) in history, with more than 11,000 deaths in Guinea, Liberia, and Sierra Leone. • During ongoing outbreak investigations, it is suggested that young children aged less than 5 years are particularly vulnerable and highly susceptible to death. What is New: • Demographic and clinical characteristics of the nationwide cohort of pediatric patients with laboratory-confirmed EVD in Guinea are reported. • The results confirm the high rate of death among EVD children under 5 years of age, while none of demographic and clinical features, except younger age, could serve as a

  8. General introduction into the Ebola virus biology and disease.

    PubMed

    Zawilińska, Barbara; Kosz-Vnenchak, Magdalena

    2014-01-01

    Epidemic of Ebola hemorrhagic fever which appeared in the countries of West Africa in 2014, is the largest outbreak which occurred so far. The virus causing this epidemic, Zaire Ebolavirus (ZEBOV), along with four other species of Ebolaviruses is classified to the genus Ebolavirus in the family Filoviridae. ZEBOV is one of the most virulent pathogens among the viral haemorrhagic fevers, and case fatality rates up to 90% have been reported. Mortality is the result of multi-organ failure and severe bleeding complications. The aim of this review is to present the general characteristics of the virus and its biological properties, pathogenicity and epidemiology, with a focus on laboratory methods used in the diagnosis of these infections.

  9. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model.

    PubMed

    Oestereich, Lisa; Lüdtke, Anja; Wurr, Stephanie; Rieger, Toni; Muñoz-Fontela, César; Günther, Stephan

    2014-05-01

    Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Development, Evaluation, and Integration of a Quantitative Reverse-Transcription Polymerase Chain Reaction Diagnostic Test for Ebola Virus on a Molecular Diagnostics Platform

    PubMed Central

    Cnops, Lieselotte; Van den Eede, Peter; Pettitt, James; Heyndrickx, Leo; De Smet, Birgit; Coppens, Sandra; Andries, Ilse; Pattery, Theresa; Van Hove, Luc; Meersseman, Geert; Van Den Herrewegen, Sari; Vergauwe, Nicolas; Thijs, Rein; Jahrling, Peter B.; Nauwelaers, David; Ariën, Kevin K.

    2016-01-01

    Background. The 2013–2016 Ebola epidemic in West Africa resulted in accelerated development of rapid diagnostic tests for emergency outbreak preparedness. We describe the development and evaluation of the Idylla™ prototype Ebola virus test, a fully automated sample-to-result molecular diagnostic test for rapid detection of Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). Methods. The Idylla™ prototype Ebola virus test can simultaneously detect EBOV and SUDV in 200 µL of whole blood. The sample is directly added to a disposable cartridge containing all reagents for sample preparation, RNA extraction, and amplification by reverse-transcription polymerase chain reaction analysis. The performance was evaluated with a variety of sample types, including synthetic constructs and whole blood samples from healthy volunteers spiked with viral RNA, inactivated virus, and infectious virus. Results. The 95% limits of detection for EBOV and SUDV were 465 plaque-forming units (PFU)/mL (1010 copies/mL) and 324 PFU/mL (8204 copies/mL), respectively. In silico and in vitro analyses demonstrated 100% correct reactivity for EBOV and SUDV and no cross-reactivity with relevant pathogens. The diagnostic sensitivity was 97.4% (for EBOV) and 91.7% (for SUDV), the specificity was 100%, and the diagnostic accuracy was 95.9%. Conclusions. The Idylla™ prototype Ebola virus test is a fast, safe, easy-to-use, and near-patient test that meets the performance criteria to detect EBOV in patients with suspected Ebola. PMID:27247341

  11. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death

    PubMed Central

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-01-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394

  12. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.

    PubMed

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-08-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30-50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.

  13. Molecular mechanisms of Ebola pathogenesis.

    PubMed

    Rivera, Andrea; Messaoudi, Ilhem

    2016-11-01

    Ebola viruses (EBOVs) and Marburg viruses (MARVs) are among the deadliest human viruses, as highlighted by the recent and widespread Ebola virus outbreak in West Africa, which was the largest and longest epidemic of Ebola virus disease (EVD) in history, resulting in significant loss of life and disruptions across multiple continents. Although the number of cases has nearly reached its nadir, a recent cluster of 5 cases in Guinea on March 17, 2016, has extended the enhanced surveillance period to June 15, 2016. New, enhanced 90-d surveillance windows replaced the 42-d surveillance window to ensure the rapid detection of new cases that may arise from a missed transmission chain, reintroduction from an animal reservoir, or more important, reemergence of the virus that has persisted in an EVD survivor. In this review, we summarize our current understanding of EBOV pathogenesis, describe vaccine and therapeutic candidates in clinical trials, and discuss mechanisms of viral persistence and long-term health sequelae for EVD survivors. © Society for Leukocyte Biology.

  14. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis.

    PubMed

    Merler, Stefano; Ajelli, Marco; Fumanelli, Laura; Gomes, Marcelo F C; Piontti, Ana Pastore Y; Rossi, Luca; Chao, Dennis L; Longini, Ira M; Halloran, M Elizabeth; Vespignani, Alessandro

    2015-02-01

    The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since

  15. Membrane association and localization dynamics of the Ebola virus matrix protein VP40.

    PubMed

    Gc, Jeevan B; Gerstman, Bernard S; Chapagain, Prem P

    2017-10-01

    The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP 2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP 2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses.

    PubMed

    Uebelhoer, Luke S; Albariño, César G; McMullan, Laura K; Chakrabarti, Ayan K; Vincent, Joel P; Nichol, Stuart T; Towner, Jonathan S

    2014-06-01

    Marburg virus (MARV) and Ebola virus (EBOV), members of the family Filoviridae, represent a significant challenge to global public health. Currently, no licensed therapies exist to treat filovirus infections, which cause up to 90% mortality in human cases. To facilitate development of antivirals against these viruses, we established two distinct screening platforms based on MARV and EBOV reverse genetics systems that express secreted Gaussia luciferase (gLuc). The first platform is a mini-genome replicon to screen viral replication inhibitors using gLuc quantification in a BSL-2 setting. The second platform is complementary to the first and expresses gLuc as a reporter gene product encoded in recombinant infectious MARV and EBOV, thereby allowing for rapid quantification of viral growth during treatment with antiviral compounds. We characterized these viruses by comparing luciferase activity to virus production, and validated luciferase activity as an authentic real-time measure of viral growth. As proof of concept, we adapt both mini-genome and infectious virus platforms to high-throughput formats, and demonstrate efficacy of several antiviral compounds. We anticipate that both approaches will prove highly useful in the development of anti-filovirus therapies, as well as in basic research on the filovirus life cycle. Published by Elsevier B.V.

  17. The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus.

    PubMed

    Garrison, Aura R; Giomarelli, Barbara G; Lear-Rooney, Calli M; Saucedo, Carrie J; Yellayi, Srikanth; Krumpe, Lauren R H; Rose, Maura; Paragas, Jason; Bray, Mike; Olinger, Gene G; McMahon, James B; Huggins, John; O'Keefe, Barry R

    2014-12-01

    The cyanobacterial lectin scytovirin (SVN) binds with high affinity to mannose-rich oligosaccharides on the envelope glycoprotein (GP) of a number of viruses, blocking entry into target cells. In this study, we assessed the ability of SVN to bind to the envelope GP of Zaire Ebola virus (ZEBOV) and inhibit its replication. SVN interacted specifically with the protein's mucin-rich domain. In cell culture, it inhibited ZEBOV replication with a 50% virus-inhibitory concentration (EC50) of 50 nM, and was also active against the Angola strain of the related Marburg virus (MARV), with a similar EC50. Injected subcutaneously in mice, SVN reached a peak plasma level of 100 nm in 45 min, but was cleared within 4h. When ZEBOV-infected mice were given 30 mg/kg/day of SVN by subcutaneous injection every 6h, beginning the day before virus challenge, 9 of 10 animals survived the infection, while all infected, untreated mice died. When treatment was begun one hour or one day after challenge, 70-90% of mice survived. Quantitation of infectious virus and viral RNA in samples of serum, liver and spleen collected on days 2 and 5 postinfection showed a trend toward lower titers in treated than control mice, with a significant decrease in liver titers on day 2. Our findings provide further evidence of the potential of natural lectins as therapeutic agents for viral infections. Published by Elsevier B.V.

  18. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses.

    PubMed

    Martines, Roosecelis Brasil; Ng, Dianna L; Greer, Patricia W; Rollin, Pierre E; Zaki, Sherif R

    2015-01-01

    Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. The most characteristic histopathological findings are seen in the liver; however, the findings overlap with many other viral and non-viral haemorrhagic diseases. The need to distinguish filovirus infections from other haemorrhagic fevers, particularly in areas with multiple endemic viral haemorrhagic agents, is of paramount importance. In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication.

    PubMed

    Hartman, Amy L; Dover, Jason E; Towner, Jonathan S; Nichol, Stuart T

    2006-07-01

    The VP35 protein of Zaire Ebola virus is an essential component of the viral RNA polymerase complex and also functions to antagonize the cellular type I interferon (IFN) response by blocking activation of the transcription factor IRF-3. We previously mapped the IRF-3 inhibitory domain within the C terminus of VP35. In the present study, we show that mutations that disrupt the IRF-3 inhibitory function of VP35 do not disrupt viral transcription/replication, suggesting that the two functions of VP35 are separable. Second, using reverse genetics, we successfully recovered recombinant Ebola viruses containing mutations within the IRF-3 inhibitory domain. Importantly, we show that the recombinant viruses were attenuated for growth in cell culture and that they activated IRF-3 and IRF-3-inducible gene expression at levels higher than that for Ebola virus containing wild-type VP35. In the context of Ebola virus pathogenesis, VP35 may function to limit early IFN-beta production and other antiviral signals generated from cells at the primary site of infection, thereby slowing down the host's ability to curb virus replication and induce adaptive immunity.

  20. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    PubMed

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity